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1 Introduction

1.1 Main results

The interpolation polynomials P ρλ (x) are inhomogenous symmetric polynomials in x = (x1, . . . , xn) that were

introduced by Sahi [44] following earlier work with Kostant [27, 28], and are characterized by simple vanishing

conditions described in §2.1. They are indexed by partitions λ ∈ Nn, have degree |λ| = λ1 + · · ·+ λn, and

their coefficients depend on n parameters ρ = (ρ1, . . . , ρn). Of particular interest is the one-parameter family

ρ = rδ, δ = (n− 1, . . . , 0) studied by Knop-Sahi [25] and Okounkov-Olshanski [38].

The P rδλ have a rich combinatorial structure that belies their simple definition. As shown in [25], the top

degree part of P rδλ is the Jack polynomial P
(α)
λ with parameter

α = 1/r.

© The Author 0000. Published by Oxford University Press. All rights reserved. For permissions,
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In his remarkable book, Macdonald [31, VI.10.26?] introduced a normalization J
(α)
λ = cλ(α)P

(α)
λ and conjectured

that its coefficients lie in N[α]. This was proved by Knop and Sahi [26], who also gave a combinatorial formula

for J
(α)
λ in terms of certain admissible tableaux.

In this paper we extend the results of [26] to all of P rδλ . This involves the normalized polynomial

Jrδλ (x) = (−1)|λ|cλ(α)P rδλ (−x), where α = 1/r as before, and its symmetric monomial expansion

Jrδλ =
∑

µα
|µ|−|λ|aλ,µ(α)mµ.

We prove the following result conjectured by Knop and Sahi [25, Conjecture 7].

Theorem A. The coefficient aλ,µ(α) is a polynomial in N[α].

The interpolation polynomials have nonsymmetric analogues Eρη [24, 45, 46] indexed by compositions

η ∈ Nn and characterized by vanishing conditions described in §2.2. For ρ = rδ, the top degree part of Erδη

is the nonsymmetric Jack polynomial E
(α)
η of Heckman and Opdam [40]. After an explicit normalization,

F
(α)
η = dη(α)E

(α)
η has coefficients in N[α]. This was also proved in [26] and we now extend this to Erδη .

More precisely, we consider the normalized polynomial F rδη = (−1)|η|dη(α)Erδη (−x) and its (ordinary) monomial

expansion

F rδη =
∑

γα
|γ|−|η|bη,γ(α)xγ .

Theorem B. The coefficient bη,γ(α) is a polynomial in N[α].

The homogeneous F
(α)
η and the inhomogeneous F rδη are both linear bases for F[x1, . . . , xn] over the field

F = Q(α) = Q(r). Thus there is a unique F-linear “dehomogenization” operator Ξ such that Ξ(F
(α)
η ) = F rδη for

all η ∈ Nn. Its action on monomials has the form

Ξ(xη) = xη +
∑
|γ|<|η|cη,γ(r)xγ ,

and we prove the following positivity result for cη,γ(r), which implies Theorems A and B.

Theorem C. The coefficient cη,γ(r) is a polynomial in N[r] of degree ≤ |η| − |γ|.

We write xη = Ξ(xη) and refer to it as a bar monomial. The notation is motivated by the fact that for

n = 1, we get the rising factorial xk = x(x+ 1) · · · (x+ k − 1).

In view of Theorem C, it is natural to ask for a combinatorial formula for bar monomials that is manifestly

positive and integral. We provide such a formula, which involves the following simple operation on the (English)

Ferrers diagram of a composition:
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Delete the last box from the highest row k of maximal

length m; then move l ≥ 0 boxes from the end of row k to

the end of another row, either above and strictly left,

or below and weakly left of their original positions.

We call this a glissade, which in mountaineering means “descent via a controlled slide”. We define the weight

of a glissade applied to γ to be r if l > 0, otherwise we define it to be

xk + (m− 1) + r (n− 1− lγ(k,m)) .

Here lγ(k,m) is the leg of the box (k,m) in γ, which was defined in [26] as follows:

lγ (k,m) := # {i > k : m ≤ γi ≤ γk} + # {i < k : m ≤ γi + 1 ≤ γk} .

If we start with some η and apply a sequence of |η| glissades then we necessarily arrive at 0. We call such

a sequence G a bar game on η, and we define its weight w(G) to be the product of the weights of its glissades.

We write G(η) for the set of all bar games on η, and we prove the following result that implies Theorem C, and

hence also Theorems A and B.

Theorem D. We have xη =
∑

G∈G(η) w(G).

1.2 Examples.

Before discussing the proof of Theorem D, we give three small examples to illustrate the various concepts.

More detailed examples can be found in §5.

Fig. 1: All possible glissades on (1,2,4,1)

Figure 1 shows all possible glissades on (1,2,4,1). The deleted box is indicated with a ×, and the arrows

show the movement of other boxes. The resulting shapes are (1,2,3,1), (2,2,2,1), (1,2,2,2), and (1,2,1,3). See also

Figure 4 for all moves on (1,4,1,2) and on (1,1,4,2).

Fig. 2: A bar game on (6,4,1,0,2,6)
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Figure 2 shows a complete bar game on (6,4,1,0,2,6). For the sake of space, when a box is deleted but no

other boxes are moved, we put a × in that box and continue working with the same diagram. Thus the last

diagram represents 14 deletions. This game has weight

r3 · (x4 + 3 + 4r) · r · (x4 + 2 + r) · (x5 + 2 + r) ·
∏6
k=1(xk + 1) ·

∏6
k=1xk

Fig. 3: All bar games on (1,2,4,1)

Figure 3 shows all possible games on (1,2,4,1). There are 5 games in total, and taking their weighted sum

gives the bar monomial x(1,2,4,1). The explicit formula is given in §5.1.

1.3 Discussion of the proof.

In sections §2.1 and 2.2 we recall the precise definitions of symmetric and nonsymmetric interpolation

polynomials and their relationship with Jack polynomials. The symmetric polynomials are more natural objects,

but it is easier to work with the nonsymmetric polynomials because they satisfy a recursion with respect to

the graded affine Hecke algebra of the symmetric group [24, 45, 46]. This recursion is discussed in §2.3; it is

an inhomogeneous extension of a homogenous recursion that plays a key role in the proof of positivity for Jack

polynomials [26]. However the inhomogeneous recursion does not preserve positivity. This is the main reason

why Theorems A and B remained conjectures for almost 25 years.

In §3.1 we introduce the dehomogenization operator, and use this to define the bar monomials in §3.2. In

§3.3 we show how to deduce Theorems A and B from the positivity of bar monomials, i.e. from Theorem C.

The bar monomials satisfy a recursion described in §3.2; this is simpler than the recursion of §2.3, but it too is

not positive.

The essential new results of the paper are in §4. In §4.1 and 4.2 we define the notion of a glissade and

establish its properties under the action of the affine symmetric group. This is naturally related to a new partial

order on compositions that we call the bar order. In §4.3 we define notion of a bar game, and show how to

deduce Theorem C from Theorem D. In §4.4 we prove Theorem D. The key here is the transition formula for

bar monomials in Theorem 4.4.6. This is proved using the recursions for bar monomials from §3.2, and it implies

Theorem D by a simple iteration. Thus Theorem D can be regarded as a positive combinatorial solution to a

non-positive recursion.
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We conclude the paper with some further examples illustrating Theorem D, and also explain how to use

Theorem D to obtain combinatorial formulas for interpolation polynomials.

1.4 Related results and open problems.

Jack polynomials were introduced by Henry Jack [23] as a one parameter generalization of Schur functions

and of the zonal polynomials which play an important role in multivariate statistics [19, 33]. Along with Hall-

Littlewood polynomials, they were one of the two key sources of inspiration for Macdonald’s introduction of his

two parameter family of symmetric functions [31]; see [29] for a historical background. These polynomials, in

turn, were the impetus behind Cherednik’s discovery of the double affine Hecke algebra [9, 10, 32, 47].

Since their discovery, Jack polynomials and Macdonald polynomials have found an incredible number of

applications in many different areas of mathematics. It is impossible to give anything approaching a complete

accounting, but a partial list includes probability and statistics [6, 7, 39, 42], harmonic analysis [3, 43],

combinatorics [12, 13, 15, 16], representation theory [20, 21], algebraic geometry [17, 18, 34, 41, 56], and knot

theory [4, 11].

Symmetric Jack polynomials admit a formula in terms of semistandard tableaux [31, 58], which generalizes

the formula for Schur functions. However this involves weights that are rational functions in α; thus it does not

imply the integrality and positivity, which was conjectured by Macdonald, and which is immediate from the

Knop-Sahi formula [25] in terms of admissible tableaux. The semistandard tableau formula has been generalized

by Okounkov [37, 38] to interpolation polynomials, but it likewise does not imply Theorem A. Moreover there

does not seem to be a nonsymmetric analog of Okounkov’s formula.

As explained in [44], interpolation polynomials arise naturally as solutions to the Capelli eigenvalue problem

for invariant differential operators on a symmetric cone. The Capelli problem has analogues for other symmetric

spaces studied in [50, 52, 54, 55] and also for symmetric superspaces [2, 51, 53]. The solutions of these other

problems are related to interpolation polynomials defined by Okounkov, Ivanov, and Sergeev-Veselov [22, 36, 57].

It would be interesting to see whether these classes of polynomials also have combinatorial interpretations along

the lines of the present paper.

Special values of interpolation polynomials appear as expansion coefficients at x = 1 in the binomial formula

for Jack polynomials [38, 46]. These too seem to have a subtle positivity property, and it has been conjectured

in [48] that (−r)|λ|Jrδλ (−µ− rδ) belongs to N[α] for all partitions λ and µ. Although this conjecture does not

follow from the results of the present paper, the combinatorial ideas introduced do provide another line of attack.

This is discussed further in section 5.3 below.

Interpolation analogues of symmetric and nonsymmetric Macdonald polynomials have been defined in

[24, 45, 46]; these depend on two parameters q and t. Thus one might ask for a two parameter extension

of the results of the present paper to the Macdonald setting. Such an extension will not have the same positivity

properties as the Jack case presented here, but experiments suggest that an elegant combinatorial formula (with
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signs) should still exist. Further ideas are required to fully generalize the tools developed here, and therefore we

postpone this question to a subsequent paper.

There has been considerable interest in Macdonald polynomials and interpolation polynomials in connection

with integrable probability and solvable lattice models. In particular, the papers [1, 8] describe formulas for

Macdonald polynomials and related polynomials in terms of 6-vertex models. It is an open problem whether

these formulas can be extended to the setting of interpolation polynomials. Relating the combinatorics of bar

monomials to lattice models might offer some clues in this direction.

For the special case q = t, the interpolation analogues of Macdonald polynomials are Harish-Chandra images

of Capelli elements in the center of Uq(glN ). These central elements play a key role in the recent work of Beliakova

and Gorsky [4], which proves that the so-called “universal link invariant” dominates the Witten-Reshetekhin-

Turaev invariants for Uq(glN ). This work also raises the interesting problem of categorifying the two parameter

interpolation polynomials, with the expectation that this should have some applications to the study of knot and

link invariants; see [4, 14] and the references therein. Perhaps the results of the present paper and its eventual

extension to Macdonald polynomials might shed some light on this important question.

2 Preliminaries

2.1 Symmetric polynomials

The interpolation polynomials P ρλ (x) are inhomogeneous symmetric polynomials that were introduced by Sahi

in [44] following earlier work with Kostant on generalizations of the Capelli identity [27, 28]. They are indexed

by partitions

Pn = {λ ∈ Zn | λ1 ≥ · · · ≥ λn ≥ 0} ,

and their coefficients depend on n indeterminates ρ = (ρ1, . . . , ρn).

Theorem 2.1.1 ([44]). There is a unique symmetric polynomial P ρλ (x) = P ρλ (x1, . . . , xn) of total degree

|λ| = λ1 + λ2 + · · ·+ λn such that

1. P ρλ (µ+ ρ) = 0 for all µ ∈ Pn with |µ| ≤ |λ|, µ 6= λ, and

2. the coefficient of the symmetric monomial mλ in P ρλ is 1.

As explained in [44] the existence and uniqueness of these polynomials is equivalent to the following

interpolation result.

Theorem 2.1.2 ([44]). A symmetric polynomial of degree d is uniquely characterized by its values on the set

{µ+ ρ : |µ| ≤ d} .
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The case ρ = rδ with δ = (n− 1, . . . , 1, 0) was studied in some detail by Knop and Sahi [25], and is related

to Jack polynomials P
(α)
λ with parameter α = 1/r [31, 58].

Theorem 2.1.3 ([25]). We have P rδλ = P
(α)
λ + terms of degree < |λ|.

For a box s = (i, j) in the Ferrers diagram of λ, its arm and leg are defined to be

aλ (i, j) = λi − j, lλ (i, j) = # {k > i : λk ≥ j} .

We set cλ (α) =
∏
s∈λ (αaλ (s) + lλ (s) + 1) and we define the normalized Jack polynomial to be

J
(α)
λ = cλ (α)P

(α)
λ

Theorem 2.1.4 ([26]). The coefficients of J
(α)
λ with respect to the mµ belong to N[α].

This was conjectured by Macdonald in his book [31, VI.10.26?]. The paper [26] also provides a combinatorial

formula for J
(α)
λ in terms of certain “admissible” tableaux.

In [25], Knop and Sahi introduced a normalized version of the interpolation polynomial, which involves the

same constant cλ(α) together with a sign twist. They also made a conjecture concerning its expansion coefficients

with respect to mµ, which generalizes Macdonald’s conjecture (Theorem 2.1.4).

Definition 2.1.5. Let α = 1/r. The normalized symmetric interpolation polynomial is

Jrδλ := (−1)|λ| cλ(α)P rδλ (−x), (2.1.1)

and its expansion coefficients aλ,µ (α) are defined by

Jrδλ =
∑

µ
α|µ|−|λ| aλ,µ(α)mµ. (2.1.2)

Conjecture 2.1.6 ([25, Conjecture 7]). The coefficients aλ,µ(α) belong to N[α].

We prove this conjecture in Theorem A below.

2.2 Nonsymmetric polynomials

Nonsymmetric interpolation polynomials are indexed by compositions η ∈ Nn and their coefficients depend on

ρ = (ρ1, . . . , ρn) as before. For γ ∈ Nn let wγ be the shortest permutation such that γ+ = w−1
γ (γ) is a partition

and define

γ = γ + wγ (ρ) = wγ
(
γ+ + ρ

)
. (2.2.1)
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We note that for a partition µ we have µ = µ+ and wµ = 1 and hence µ = µ+ ρ.

Theorem 2.2.1 ([24, 45]). There is a unique polynomial Eρη (x) = Eρη(x1, . . . , xn) of total degree |η| =

η1 + · · ·+ ηn such that

1. Eρη (γ) = 0 for all γ ∈ Nn such that |γ| ≤ |η| , γ 6= η.

2. The coefficient of the monomial xη in Eρη is 1.

As before, this is equivalent to the following interpolation result.

Theorem 2.2.2 ([24, 45]). A polynomial of degree d is uniquely characterized by its values on the set

{γ : |γ| ≤ d} .

This is proved in [24, 45] for various special choices of ρ, but the argument works in general. Indeed the

interpolation conditions mean that the coefficients of the polynomial satisfy a (square) system of linear equations

over the field Q (ρ1, . . . , ρn). What we need to show is that the determinant of the corresponding matrix is not

identically zero. Thus the result for any special ρ actually implies the result for generic ρ.

For the special choice ρ = rδ the interpolation polynomials are related to nonsymmetric Jack polynomials

[26, 40].

Theorem 2.2.3 ([24]). For ρ = rδ we have

Erδη = E(α)
η + terms of degree < |η|,

where E
(α)
η is the nonsymmetric Jack polynomial with parameter α = 1/r.

This is proved in [24] for a slightly different polynomial, denoted Eη in [24] and Gη in [46], which is defined

with respect to

ρ = (0,−r, . . . ,− (n− 1) r) = rδ − (nr − r) 1 (2.2.2)

where 1 = (1, . . . , 1). It follows easily that

Erδη (x) = Gη (x+ (nr − r) 1) . (2.2.3)

In particular Erδη has the same top degree part as Gη, namely E
(α)
η .

In [26, Sec. 4], Knop and Sahi defined the normalized nonsymmetric Jack polynomials

F (α)
η = dη(α)E(α)

η , (2.2.4)
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where the normalizing factor dη(α) is a product over boxes in the Ferrers diagram of η, i.e. over pairs s = (i, j)

such that j ≤ ηi. Explicitly we have

dη(α) =
∏

s∈λ
(α (aη (s) + 1) + lη (s) + 1) ,

where aη and lη are the arm and leg of s = (i, j) defined by

aη (i, j) = ηi − j, lη (i, j) = # {k > i : j ≤ ηk ≤ ηi}+ # {k < i : j ≤ ηk + 1 ≤ ηi} . (2.2.5)

The main result of [26, Sec. 4] is as follows.

Theorem 2.2.4 ([26]). The coefficients of F
(α)
η with respect to the monomials xγ belong to N[α].

Our Theorem B is a generalization of this result for interpolation polynomials. In analogy with Definition

2.1.5 we make the following definition.

Definition 2.2.5. Let α = 1/r. The normalized nonsymmetric interpolation polynomial is

F rδη (x) = (−1)
|η|
dη(α)Erδη (−x) (2.2.6)

and its expansion coefficients bη,γ(α) are defined by

F rδη =
∑

γ
α|γ|−|η| bη,γ(α)xγ . (2.2.7)

In Theorem B we show that the bη,γ(α) belong to N[α].

2.3 Intertwiners and recursion

Symmetric polynomials arise naturally as special functions in representation theory and combinatorics. However,

in the context of the present paper, nonsymmetric polynomials are easier to work with because they satisfy useful

recursions with respect to the symmetric group. The simplest manifestation of this phenomenon involves ordinary

monomials, which can be generated from x0 = 1 by the recursions

xsiη = si (xη) , xΦη = Φ (xη) .

Here si is the elementary transposition which interchanges ηi and ηi+1, and which acts on functions by

interchanging xi and xi+1, while Φ is the “affine intertwiner” which acts by

Φη = (η2, . . . , ηn, η1 + 1) , Φf (x) = xnf(xn, x1, . . . , xn−1). (2.3.1)
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Thus Φ is the translation η 7→ (η1 + 1, η2, . . . , ηn) followed by the n-cycle

ω = s1 · · · sn−1 = (1, 2, . . . , n) (2.3.2)

The corresponding result for Jack polynomials involves the scalars

cηi =
r

ηi − ηi+1

and dηi =


1 if ηi < ηi+1

1− (cηi )
2

if ηi ≥ ηi+1.

(2.3.3)

Theorem 2.3.1 ([25]). Nonsymmetric Jack polynomials satisfy the recursions

E
(α)
Φη = Φ

(
E(α)
η

)
, (si + cηi )E(α)

η = dηiE
(α)
siη . (2.3.4)

The Φ-relation is [25, Cor 4.2]. The si-relation is proved for ηi < ηi+1 in [25, Prop 4.3] and for ηi = ηi+1

in [25, Lemma 2.4]. In the latter situation we have cηi = −1 and dηi = 0 so that the si-relation reduces to

siE
(α)
η = E

(α)
η as in [25, Lemma 2.4]. The remaining case ηi > ηi+1 follows readily by applying si to both sides

of the relation for the case ηi < ηi+1.

The analogous result for interpolation polynomials involves the operators

∂i (f) =
si (f)− f
xi − xi+1

, σ−i = si − r∂i, Φ−f (x) = xnf(xn − 1, x1, . . . , xn−1). (2.3.5)

Theorem 2.3.2 ([24]). Nonsymmetric interpolation polynomials satisfy the recursions

ErδΦη = Φ−Erδη ,
(
σ−i + cηi

)
Erδη = dηiE

rδ
siη.

This is proved in [24] for the variant Gη corresponding to ρ as in (2.2.2), and by (2.2.3) it implies the result

for Erδη .

Remark 2.3.3. These recursions suffice to generate all Erδη : Suppose η 6= 0. Let i be the largest index such

that ηi 6= 0. If i = n, then

Erδη = Φ−
(
Erδγ
)
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where γ = (ηn − 1, η1, η2, . . . , ηn−1). Otherwise,

Erδη =
1

d
si(η)
i

(
σ−i + c

si(η)
i

)
Erδsi(η)

Applying these identities repeatedly, we eventually reach the case Erδ0 = 1. We can generate all E
(α)
η in a similar

way.

3 Bar monomials

3.1 The dehomogenization operator

The homogeneous polynomials F
(α)
η and the inhomogeneous F rδη are both linear bases for the polynomial algebra

F [x1, . . . , xn] over the field F = Q (r) = Q (α). Thus there is a unique linear operator on F [x1, . . . , xn] which

maps the first basis to the second.

Definition 3.1.1. The dehomogenization operator Ξ is the unique F-linear operator satisfying

Ξ(F (α)
η ) = F rδη . (3.1.1)

We now prove some basic properties of Ξ. It is simpler to first consider the modification Ψ = S−1ΞS = SΞS

where S = S−1 is the sign change operator

Sf (x) = f (−x) .

Proposition 3.1.2. The operator Ψ maps E
(α)
η to Erδη and satisfies the intertwining properties

Φ−Ψ = ΨΦ, σ−i Ψ = Ψsi. (3.1.2)

Proof . Since E
(α)
η is homogeneous of degree |η| and Ξ is linear we get

Ξ
(
SE(α)

η

)
= Ξ

(
(−1)

|η|
E(α)
η

)
=

(−1)
|η|

dη (α)
Ξ(F (α)

η ) =
(−1)

|η|

dη (α)
F rδη = S

(
Erδη
)
,

whence Ψ = S−1ΞS maps E
(α)
η to Erδη . Next, by Theorems 2.3.1 and 2.3.2 we have

Φ−Ψ
(
E(α)
η

)
= EΦ(η) = ΨΦ

(
E(α)
η

)
(
σ−i + cηi

)
Ψ
(
E(α)
η

)
= dηiE

rδ
siη = Ψ (si + cηi )

(
E(α)
η

)
.
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This shows that identities in (3.1.2) hold on the basis E
(α)
η , and therefore hold in general.

Proposition 3.1.3. If f is homogenous then g = Ψ (f) is characterized by the properties

1. g (x) = f (x) + terms of degree < deg (f) .

2. g (η) = 0 for all compositions η with |η| < deg (f) .

Proof . For f of a fixed homogeneity degree the two properties are linear in f . Therefore it is sufficient to verify

them for f = E
(α)
η . By Proposition 3.1.2 we have g = Erδη , and by Theorem 2.2.3 Erδη satisfies the two properties.

Now suppose g1 and g2 both satisfy the two properties. Then the difference g1 − g2 has degree < deg (f)

and vanishes at all η with |η| < deg (f) . Thus by Theorem 2.2.2 we have g1 − g2 = 0. This proves the uniqueness

of g.

Proposition 3.1.4. The operator Ψ preserves the space of symmetric polynomials.

Proof . A function f is symmetric iff si (f) = f for all i. By the definition of σ−i we have

σ−i (f)− f =

(
1− r

xi − xi+1

)
(si (f)− f)

Thus si (f) = f if and only if σ−i (f) = f . Now the relation σ−i Ψ = Ψsi (3.1.2) shows that if f is symmetric then

so is Ψ (f) .

Proposition 3.1.5. If f is homogeneous symmetric then g = Ψ (f) is characterized by the properties

1. g is symmetric

2. g (x) = f (x) + terms of degree < deg (f) .

3. g (µ+ rδ) = 0 for all partitions µ with |µ| < deg (f) .

Proof . By Propositions 3.1.4 and 3.1.3 g = Ψ (f) satisfies the three properties, and the uniqueness follows from

Theorem 2.1.2.

Proposition 3.1.6. The operator Ψ maps P
(α)
λ to P rδλ .

Proof . This is immediate from Proposition 3.1.5 and Theorems 2.1.1, 2.1.2.
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Proposition 3.1.6 shows that the restriction of Ψ to symmetric polynomials is the operator studied in [25,

Sec. 6] in connection with the Pieri formula for interpolation polynomials.

We now set σ+
i = S−1σiS and Φ+ = S−1Φ−S so that we have

σ+
i = si + r∂i, Φ+f (x) = xnf(xn + 1, x1, . . . , xn−1). (3.1.3)

Theorem 3.1.7. The operator Ξ satisfies the intertwining properties

Φ+Ξ = ΞΦ, σ+
i Ξ = Ξsi. (3.1.4)

Proof . This is immediate from Proposition 3.1.2

Theorem 3.1.8. If f is homogeneous then g = Ξ (f) is characterized by the properties

1. g (x) = f (x) + terms of degree < deg (f) .

2. g (−η) = 0 for all compositions η with |η| < deg (f) .

Proof . This is immediate from Proposition 3.1.3.

Theorem 3.1.9. The operator Ξ preserves the space of symmetric polynomials and maps J
(α)
λ to Jrδλ . If f is

homogeneous symmetric then g = Ξ (f) is characterized by the properties

1. g is symmetric.

2. g (x) = f (x) + terms of degree < deg (f) .

3. g (−µ− rδ) = 0 for all partitions µ with |µ| < deg (f) .

Proof . This is immediate from Propositions 3.1.4, 3.1.5 and 3.1.6.

3.2 The bar monomials

We now consider the action of the dehomogenization operator on the monomial

xη = xη11 x
η2
2 · · ·x

ηn
n .
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Definition 3.2.1. The bar monomial corresponding to a composition η is

xη = Ξ (xη)

We note that the bar monomial is not a monomial, however by Theorem 3.1.8 it is a monomial up to lower

degree terms.

Theorem 3.2.2. The bar monomial xη is the unique polynomial g (x) satisfying

1. g (x) = xη+ terms of degree < |η|

2. g (−γ) = 0 if |γ| < |η|

Proof . This immediate from Theorem 3.1.8.

Example 3.2.3. The three bar monomials for n = 2 and |η| = 2 are as follows:

x(2,0) = (x1 + 1 + r)(x1 + r) + r(x2)

x(1,1) = (x1)(x2)

x(0,2) = (x2 + 1 + r)(x2)

They satisfy the properties of Theorem 3.2.2. They have the appropriate top degree term, and each vanishes at

−γ with |γ| < 2, i.e. at the points

−(0, 0) = (−r, 0), −(1, 0) = (−1−r, 0), −(0, 1) = (0,−1−r).

We now establish the basic recursive properties of the bar monomials.

Theorem 3.2.4. The bar monomials satisfy the recursions

xsiη = σ+
i (xη) , xΦη = Φ+ (xη) .
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Proof . By Theorem 3.1.7 we have

xsiη = Ξ (xsiη) = Ξ (six
η) = σ+

i Ξ (xη) = σ+
i (xη) .

The argument for xΦη is entirely analogous.

Remark 3.2.5. Just as in Remark 2.3.3, it is easy to see that these recursions generate all bar monomials. We

make this explicit in the proof of Theorem 4.4.6, where it plays a central role.

We now formulate the symmetric analogues of the above ideas.

Definition 3.2.6. The symmetric bar monomial corresponding to a partition λ is

mλ = Ξ (mλ) .

Theorem 3.2.7. mλ is the unique polynomial g (x) satisfying

1. g (x) is symmetric

2. g (x) = mλ+ terms of degree < |λ|

3. g (−µ) = 0 if |µ| < |λ|

Proof . This immediate from Theorem 3.1.9.

For any two compositions η, γ, we write η ∼ γ if one is a rearrangement of the other.

Proposition 3.2.8. We have mλ =
∑

η∼λ x
η.

Proof . This follows from the homogeneous version mλ =
∑

η∼λ x
η by applying Ξ.

Example 3.2.9. The two symmetric bar monomials for n = 2 and |λ| = 2 are as follows:

m(1,1) = x(1,1) = x1x2

m(2,0) = x(2,0) + x(0,2) = (x1 + 1 + r)(x1 + r) + r(x2) + (x2 + 1 + r)(x2)

= x2
1 + x2

2 + (1 + 2r) (x1 + x2) + r (1 + r)

They satisfy the properties of Theorem 3.2.7. That is, each is a symmetric polynomial with the appropriate top

degree terms, and vanishes at −µ with |µ| < 2, i. e. at the points

−(0, 0) = (−r, 0), −(1, 0) = (−1−r, 0).
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3.3 Proofs of Theorems A and B

The bar monomials in the examples above are polynomials in x1, x2 and r with positive integral coefficients. We

will show that this true in general.

Definition 3.3.1. The expansion coefficients of the bar monomials are defined by

xη =
∑

γ
cη,γ(r)xγ , mλ =

∑
µ
dλ,µ(r)mµ.

Theorem C. The coefficient cη,γ(r) is a polynomial in N[r] of degree ≤ |η| − |γ|.

We prove this in Subsection 4.3 below, but we first deduce some important consequences. In view of

Proposition 3.2.8 we have an analogous result for dλ,µ(r).

Corollary 3.3.2. The coefficient dλ,µ(r) is a polynomial in N[r] of degree ≤ |λ| − |µ|.

Proof . By Proposition 3.2.8 we have

mλ =
∑

η∼λ
xη =

∑
η∼λ

∑
γ
cη,γ(r)xγ =

∑
γ

[∑
η∼λ

cη,γ(r)
]
xγ .

Comparing the coefficients of xµ on both side, we get

dλ,µ(r) =
∑

η∼λ
cη,µ(r).

Now the result follows from Theorem C.

We can also prove Theorems A and B.

Proof of Theorem B. The nonsymmetric interpolation polynomials and Jack polynomials have expansions

F rδη =
∑
|γ|≤|η|

α|γ|−|η| bη,γ(α)xγ , F (α)
η =

∑
|ζ|=|η|

bη,ζ(α)xζ , (3.3.1)

and by Theorem 2.2.4 we have

bη,ζ(α) ∈ N[α] for |ζ| = |η|. (3.3.2)

Since F rδη = Ξ
(
F

(α)
η

)
we get

F rδη =
∑
|ζ|=|η|

bη,ζ(α)xζ =
∑
|ζ|=|η|

bη,ζ(α)
∑

γ
cζ,γ(r)xγ
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which implies that

bη,γ(α) =
∑
|ζ|=|η|

bη,ζ(α) c̃ζ,γ(α)

where

c̃ζ,γ(α) = α|η|−|γ| cζ,γ(r) = α|ζ|−|γ| cζ,γ(r).

Rewriting Theorem C in terms of α = 1/r we have

α|ζ|−|γ| cζ,γ(r) ∈ N[α]. (3.3.3)

Together with (3.3.2) this implies that bη,γ(α) ∈ N [α], proving Theorem B.

Proof of Theorem A. In the symmetric case we get the formula

aλ,µ(α) =
∑
|ν|=|λ|

aλ,ν(α) d̃ν,µ(α)

d̃ν,µ(α) =
∑

η∼ν
c̃η,µ(α).

Arguing as above we get aλ,µ(α) ∈ N [α], proving Theorem A.

4 Bar games

In this section we introduce some new combinatorial objects related to compositions. These objects will be the

summation indices in Theorem D, the combinatorial expression for the bar monomials. We will prove this using

Theorem 3.2.4. As such, it will be important to understand how the weights of our objects behave under the

operators σ+
i and Φ+, and how compositions behave under si and Φ.

4.1 The critical box

Our main combinatorial object will be called a bar game. A game will consist of moves. Each move will begin

by deleting a prescribed box from a composition, which we will call the critical box.

Definition 4.1.1. We define the critical box of a composition η to be s [η] = (k,m) where

m = m [η] := max {ηi} , k = k [η] := min {i : ηi = m} .

We will call k = k [η] the critical row and l [η] := lη (k,m) the critical leg.

Alternatively k = k [η] is characterized by

ηk > η1, . . . , ηk−1 and ηk ≥ ηk+1, . . . ηn. (4.1.1)



18 Y. Naqvi et al.

Then we have m = m [η] = ηk, and the formula (2.2.5) for lη (k,m) becomes

l [η] = # {i > k : ηi = m}+ # {i < k : ηi = m− 1} (4.1.2)

We now discuss the behavior of these quantities under the maps si, Φ, and ω where

Φ (η) = (η2, . . . , ηn, η1 + 1) and ω (η) = (η2, . . . , ηn, η1) .

Proposition 4.1.2. Suppose the critical box of η is s [η] = (k,m).

1. If k > 1 then s [Φη] = (k − 1,m); if k = 1 then s [Φη] = (n,m+ 1) .

2. If siη 6= η then s [siη] = (si (k) ,m)

Proof . Since m [η] is the length of the critical row k [η], it suffices to prove that critical rows of Φη and siη

are ω (k) and si (k), respectively. In the case of Φη this comes down to the following inequalities which are

immediate from (4.1.1)

η1 + 1 > η2, . . . , ηn if k = 1,

ηk > η2, . . . , ηk−1 and ηk ≥ ηk+1, . . . ηn, η1 + 1 if k > 1,

For the case of siη since (siη)si(j) = ηj it suffices to show

si (j) < si (k) =⇒ ηj < ηk

Except if k = i, j = i+ 1 the condition si (j) < si (k) implies j < k and hence ηj < ηk For k = i, j = i+ 1 we

need to show ηk+1 < ηk. Now by definition of k = k [η] we have ηk+1 ≤ ηk and since k = i, the assumption

siη 6= η implies ηk+1 6= ηk.

The critical leg l [η] behaves as follows.

Lemma 4.1.3. We have l [Φη] = l [η]; moreover l [siη] = l [η] except in the following two cases

1. l [siη] = l [η] + 1 if k [η] = i and ηi+1 = ηi − 1

2. l [siη] = l [η]− 1 if k [η] = i+ 1 and ηi = ηi+1 − 1

Proof . This is immediate from (4.1.2) and Proposition 4.1.2.
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Definition 4.1.4. We write η∗ for the composition obtained from η by deleting the critical box.

Then Proposition 4.1.2 immediately implies the following result.

Corollary 4.1.5. We have [Φ (η)]
∗

= Φ (η∗), and if si (η) 6= η then (siη)
∗

= si (η∗).

4.2 Glissades and the bar order

We consider the following operation on compositions that we call a glissade. (These will be the moves of our

games, which are introduced in the next subsection.)

Delete the critical box to get η∗, and then move l ≥ 0 boxes from

the end of the critical row k to the end of some other row j, with

the proviso that the new positions of the boxes are either above and

strictly left, or below and weakly left of their original positions.

Example 4.2.1. Some examples of glissades can be found in Figures 2, 4, and 5. For each glissade, we have

placed a × in the critical box and indicated movement of other boxes with arrows.

We write η m γ if γ is obtained from η by a glissade. We now discuss how glissades behave under the action

of the operators si and Φ. In view of Corollary 4.1.5 we focus on the case of glissades γ 6= η∗, and thus we define

P [η] = {γ : η m γ} \ {η∗} (4.2.1)

Proposition 4.2.2. We have P [Φη] = Φ (P [η]), and if siη 6= η then P [siη] = si (P [η]) except as in the following

table

i ηi+1 − ηi P [siη]

k − 1 > 1 si (P [η]) ∪ {η∗}

k < −1 si (P [η]) \ {η∗}

(4.2.2)

Proof . We denote by M = 〈γ, η, j, k, l〉 the statement that “k = k [η] and γ is obtained from η∗ by moving l > 0

boxes from row k to row j”. By Proposition 4.1.2 the statement M is equivalent to

Φ (M) := 〈Φγ,Φη, ω (j) , ω (k) , l〉 and si (M) := 〈siγ, siη, si (j) , si (k) , l〉 .
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Moreover M = 〈γ, η, j, k, l〉 represents a glissade if and only if

ε = ε (M) := ηk − 1− γj = ηk − ηj − l − 1 satisfies


ε > 0 if j < k

ε ≥ 0 if j > k

(4.2.3)

The M -inequality (4.2.3) is identical to that for Φ (M) and si (M) with the following exceptions where

there is a change in the relative order of (j, k) and/or a change in ε:

(j, k) M Φ (M)

(1, k) ε > 0 ε− 1 ≥ 0

(j, 1) ε ≥ 0 ε+ 1 > 0

(j, k) M si (M)

(i, i+ 1) ε > 0 ε ≥ 0

(i+ 1, i) ε ≥ 0 ε > 0

.

In each row of the first table the two inequalities are still equivalent ; thus M is a glissade iff Φ (M) is a glissade.

The same is true in the second table except if ε = 0 which implies that γ = siη
∗ and siγ = η∗ and leads to the

following two situations:

(j, k) ηi+1 − ηi siη
∗ ∈ P [η] η∗ ∈ P [siη]

(i, i+ 1) l + 1 False True

(i+ 1, i) − (l + 1) True False

.

Since we have l > 0 we get l + 1 > 1 and the above table corresponds precisely to the exceptions in (4.2.2). This

completes the proof of the proposition.

Fig. 4: All non-trivial glissades on (1,4,1,2) and (1,1,4,2).

Example 4.2.3. Figure 4 shows P [1, 4, 1, 2] and P [1, 1, 4, 2]. Notice that there is a glissade on (1, 4, 1, 2) which

moves two boxes out of the critical row, but not on (1, 1, 4, 2). This illustrates the special cases in the last table

of the Proof of Proposition 4.2.2 when η = (1, 4, 1, 2) or η = (1, 1, 4, 2) and i = 2.
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Definition 4.2.4. The bar order on compositions is the transitive closure of m.

The bar order equips (N)
n

with the structure of a ranked poset for which m is the covering relation. The

rank function is |η| and the composition 0 is the unique minimal element.

4.3 Bar games and the proof of Theorem C

Definition 4.3.1. A bar game on η is a maximal m-chain with greatest element η. We write G (η) for the set

of bar games on η.

Each bar game G in G (η) is a chain of length d = |η| of the form

G : η = η(0) m η(1) m · · ·m η(d) = 0. (4.3.1)

We can visualize G (η) as the set of all possible “solitaire” games that start with the Ferrers diagram of η and

reach 0 along a sequence of glissades. There are finitely many games in G (η), each of which ends after exactly

|η| moves.

Fig. 5: A sequence of glissades in a game on (1,8,3,0,2,5)

Example 4.3.2. Figure 5 shows a bar game on η = (1, 8, 3, 0, 2, 5). Once we reach the rightmost shape,

(2,2,3,2,2,3), there is only one possible choice of all future glissades: delete the critical box and do nothing

else. The next few shapes will be (2, 2, 2, 2, 2, 3), (2, 2, 2, 2, 2, 2), (1, 2, 2, 2, 2, 2), (1, 1, 2, 2, 2, 2), and so on.

We now introduce the crucial notion of the weight of a bar game.

Definition 4.3.3. We define the weight of a composition η with critical box (k,m) to be

wη = xk + (m− 1) + r (n− 1− l [η]) ,

where l [η] = lη (k,m) is the critical leg. We define the weight of a pair η m γ to be

w (η m γ) =


wη if γ = η∗

r if γ 6= η∗

.

We define the weight of a game G as in (4.3.1) to be w (G) =
∏d
i=1 w

(
η(i−1) m η(i)

)
.
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Example 4.3.4. The game in Example 4.3.2 has weight

r · (x1 + 5r + 5) · r3 · (x3 + 2r + 2) · (x6 + 2) ·
∏6
k=1(xk + 1) ·

∏6
k=1xk.

The connection between bar games and bar monomials is given by Theorerm D of the introduction, which

we now recall in a precise form.

Theorem D. We have xη =
∑

G∈G(η) w(G).

We will prove Theorem D in a moment, but we first note that it immediately implies Theorem C.

Proof of Theorem C. From Definition 4.3.3 each w(G) is a polynomial of total degree ≤ |η| in x1, . . . , xn, r, with

non-negative integral coefficients; thus the same is true of xη.

For the distinguished game G∗ with η(i+1) =
(
η(i)
)∗

for all i, the monomial xη occurs once in the expansion

of w (G∗) . All other monomials in any w (G) have degree < |η| in x1, . . . , xn. This implies Theorem C.

4.4 The transition formula and the proof of Theorem D

Bar monomials satisfy the recursions of Theorem 3.2.4 which involve the operators

ω̃ (f) (x) = f (xn + 1, x1, . . . , xn−1) , ∂if =
si (f)− f
xi − xi+1

, Φ+ = xnω̃, σ+
i = si + r∂i.

For the proof of Theorem D we study their action on the polynomials

Aη =
∑

γ∈P [η]
xγ , Bη = wηx

η∗ , Cη = (Bη + rAη) .

Lemma 4.4.1. We have Φ+ (Aη) = AΦη and if ηi > ηi+1 then σ+
i (Aη) = Asiη except

if i = k and ηi − 1 > ηi+1then σ+
i (Aη) = Asiη − rxη

∗
.

Proof . This is immediate from Theorem 3.2.4 and Proposition 4.2.2.

For the action on Bη we first note the following general result.

Lemma 4.4.2. For any two functions f, g we have

Φ (fg) = ω̃ (f) Φ+ (g) , σ+
i (fg) = si (f)σ+

i (g) + r∂i (f) g
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Proof . The operators ω̃ and si are multiplicative

ω̃ (fg) = ω̃ (f) ω̃ (g) , si (fg) = si (f) si (g) ,

while ∂i is a “twisted” derivation in the following sense

∂i (fg) =
si (f) si (g)− si (f) g

xi − xi+1
+
si (f) g − fg
xi − xi+1

= si (f) ∂i (g) + ∂i (f) g.

This gives

Φ+ (fg) = xnω̃ (f) ω̃ (g) = ω̃ (f) Φ+ (g)

σ+
i (fg) = si (f) si (g) + r [si (f) ∂i (g) + ∂i (f) g] = si (f)σ+

i (g) + r∂i (f) g

as desired.

We now prove the analog of Lemma 4.4.1 for Bη.

Lemma 4.4.3. We have Φ+ (Bη) = BΦη and if ηi > ηi+1 then σ+
i (Bη) = Bsiη except

if i = k and ηi − 1 > ηi+1then σ+
i (Bη) = Bsiη + rxη

∗
.

Proof . By Theorem 3.2.4, Corollary 4.1.5 and the previous lemma we have

Φ+ (Bη) = ω̃ (wη) Φ+
(
xη

∗
)

= ω̃ (wη)xΦ(η∗) = ω̃ (wη)x(Φη)∗ (4.4.1)

σ+
i (Bη) = si (wη)σ+

i

(
xη

∗
)

+ r∂i (wη)xη
∗

= si (wη)x(siη)∗ + r∂i (wη)xη
∗

(4.4.2)

Now suppose the critical box of η is s [η] = (k,m) and the critical leg is l [η] = l so that

wη = xk + (m− 1) + r (n− 1− l) .

By Proposition 4.1.2 if k > 1 then s [Φη] = (k − 1,m) and l [Φη] = l and we get

wΦη = xk−1 + (m− 1) + r (n− 1− l) = ω̃ (wη) ,

while if k = 1 then s [Φη] = (n,m+ 1) and l [Φη] = l and we get

wΦη = xn +m+ r (n− 1− l)

= (xn + 1) + (m− 1) + r (n− 1− l) = ω̃ (wη) ,
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Thus ω̃ (wη) = wΦη always, and by (4.4.1) we deduce Φ+ (Bη) = BΦη.

By Proposition 4.1.2 if i 6= k, k + 1 then s [siη] = (k,m) and l [siη] = l and we get

wsiη = xk + (m− 1) + r (n− 1− l) = wη = si (wη)

∂i (wη) =
si (wη)− wη
xi − xi+1

= 0

and by (4.4.2) we deduce σ+
i (Bη) = Bsiη in this case.

For i = k we have s [siη] = (k + 1,m). If ηi+1 6= ηi − 1 then we have l [siη] = l hence we get

wsiη = xk+1 + (m− 1) + r (n− 1− l) = si (wη) ,

if ηi+1 6= ηi − 1 then we have l [siη] = l + 1 and so we get

wsiη = si (wη)− r.

In both cases ∂i (wη) = ∂i (xi) = 1 and so by (4.4.2) we get

σ+
i (Bη) =


Bsiη + r if i = k and ηi − 1 > ηi+1

Bsiη otherwise

.

Finally we consider the case of Cη = Bη + rAη

Lemma 4.4.4. We have Φ+ (Cη) = CΦη and if ηi 6= ηi+1 then σ+
i (Cη) = Csiη.

Proof . Since
(
σ+
i

)2
= 1 it suffices to prove the σ+

i -recursion for ηi > ηi+1. This follows from Lemmas 4.4.1 and

4.4.3 since the two exceptions cancel out for the combination Bη + rAη. The Φ+-recursion is immediate from

Lemmas 4.4.1 and 4.4.3.

Example 4.4.5. Consider the case η = (1, 4, 1, 2) and i = 2. Lemma 4.4.1 gives

σ+
2 (A1,4,1,2) = A1,1,4,2 − rx1,3,1,2.

See Example 4.2.3. On the other hand, Lemma 4.4.3 gives

σ+
2 (B1,4,1,2) = B1,1,4,2 + rx1,3,1,2.
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Adding these gives σ+
2 (C1,4,1,2) = C1,1,4,2 as desired.

We can now prove the following one-step transition formula for bar monomials

Theorem 4.4.6. For η 6= 0 we have

xη = wη x
η∗ + r

∑
γ∈P [η]

xγ . (4.4.3)

Proof . The right side is, of course, the polynomial Cη; we set

Zη = xη − Cη.

By Theorem 3.2.4 and Lemma 4.4.4, we get

Φ+ (Zη) = ZΦη and if ηi 6= ηi+1 then σ+
i (Zη) = Zsiη.

We will prove Zη = 0 by induction on the size |η| and, for a given |η|, by downward induction on the largest

index i = i (η) for which ηi 6= 0. The base case (0, . . . , 0, 1) is a straightforward check. Now suppose we are given

γ 6= (0, . . . 0, 1). If i (γ) = n then we can write

γ = Φη, η := (γn − 1, γ1, . . . , γn−1) ,

and thus Zγ = Φ+ (Zη) = 0 by induction, since |η| < |γ|. If i (γ) = i < n then we can write

γ = si (η) , η := (γ1, . . . , γi−1, 0, γi, 0, . . . , 0) ;

and thus Zγ = σ+
i (Zη) = 0 by induction, since |η| = |γ| and i (η) = i+ 1 > i (γ) .

Proof of Theorem D. Theorem D follows by iterating Theorem 4.4.6.

5 Examples, explicit formulas, and binomial coefficients

We now give several detailed examples of Theorem D, leading to explicit formulas for bar monomials and

interpolation polynomials. We also discuss special values of interpolation polynomials, known as binomial

coefficients. These too are conjecturally positive, although this does not follow from our formulas.
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5.1 Examples of Theorem D

Now we give three examples of the full computation of xγ . For brevity, when we delete the critical box without

moving anything else, we record this with a × and continue working with the same diagram. For instance, the

top middle part of Figure 6 represents the game (1, 0, 4)→ (1, 0, 3)→ (1, 1, 1)→ (0, 1, 1)→ (0, 0, 1)→ (0, 0, 0).

Fig. 6: The set G(1, 0, 4) of all games on (1,0,4)

Example 5.1.1. From Figure 6, we obtain

x1,0,4 = (x3 + 3 + 2r) · (x3 + 2 + 2r) · (x3 + 1 + r) · (x1 + r) · x3

+ (x3 + 3 + 2r) · r · x1 · x2 · x3

+ r · (x1 + 1 + r) · (x3 + 1 + r) · (x1 + r) · x3

+ r · (x3 + 1) · x1 · x2 · x3

+ r · (x2 + 1 + r) · x1 · x2 · x3

+ r2 · (x3 + 1 + r) · x2 · x3.

Fig. 7: The set G(3, 0, 3) of all games on (3,0,3)
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Example 5.1.2. From Figure 7, we obtain

x3,0,3 = (x1 + 2 + r) · (x3 + 2 + r) · (x1 + 1 + r) · (x3 + 1 + r) · (x1 + r) · x3

+ (x1 + 2 + r) · (x3 + 2 + r) · r · (x3 + 1 + r) · x2 · x3

+ (x1 + 2 + r) · r · (x1 + 1 + 2r) · x1 · x2 · x3

+ r · (x3 + 2 + 2r) · (x3 + 1) · x1 · x2 · x3

+ r · (x3 + 2 + r) · (x2 + 1 + r) · (x3 + 1 + r) · x2 · x3

+ r2 · (x2 + 1 + r) · x1 · x2 · x3.

Example 5.1.3. Continuing our example from Subsection 1.2, Figure 3 gives

x1,2,4,1 = (x3 + 3 + 3r) · (x3 + 2 + 2r) · (x2 + 1 + r) · (x3 + 1 + r) · x1 · x2 · x3 · x4

+ (x3 + 3 + 3r) · r · (x2 + 1 + r) · (x4 + 1) · x1 · x2 · x3 · x4

+ r · (x1 + 1 + r) · (x2 + 1 + r) · (x3 + 1 + r) · x1 · x2 · x3 · x4

+ r · (x2 + 1 + r) · (x3 + 1 + r) · (x4 + 1 + r) · x1 · x2 · x3 · x4

+ r · (x4 + 2 + 2r) · (x2 + 1 + r) · (x4 + 1) · x1 · x2 · x3 · x4.

5.2 A combinatorial expansion for Jack interpolation polynomials

A fundamental result of [26] is that F
(α)
γ can be written as a positive, weighted sum of certain “admissible”

tableaux. Combining this result with Theorem D gives a positive, combinatorial expansion for the Jack

interpolation polynomials. We state this result below. For the necessary combinatorial notions, we follow the

definitions and notation of [26, sections 4-5].

Theorem 5.2.1. Let γ ∈ Nn. Then

F rδγ (x) =
∑

T 0-admissible

d0
T (α)

∑
G∈G(ω(T ))

w(G).

Let γ+ be the unique partition conjugate to γ. Then

Jrδγ+(x) =
∑

T admissible

dT (α)
∑

G∈G(ω(T ))

w(G).
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Example 5.2.2. There are four tableaux of shape (0, 2) (shown below), but only the latter two are 0-admissible.

1 1 1 2 2 1 2 2

Hence

F rδ(0,2) = ( 2
r + 2)x1,1 + ( 2

r + 2)( 1
r + 1)x0,2

= ( 2
r + 2)x1x2 + ( 2

r + 2)( 1
r + 1)(x2 + 1 + r)x2.

On the other hand, all four tableaux of shape (2,0) are 0-admissible. We get

F rδ(2,0) = ( 2
r + 1)( 1

r + 1)x2,0 +
(
( 2
r + 1) + 1

)
x1,1 + ( 1

r + 1)x0,2

= ( 2
r + 1)( 1

r + 1)
(

(x1 + 1 + r)(x1 + r) + r(x2)
)

+
(
( 2
r + 1) + 1

)
x1x2 + ( 1

r + 1)(x2 + 1 + r)x2.

and

Jrδ(2,0) = ( 1
r + 1)x2,0 + 2x1,1 + ( 1

r + 1)x0,2

= ( 1
r + 1)

(
(x1 + 1 + r)(x1 + r) + r(x2)

)
+ 2x1x2 + ( 1

r + 1)(x2 + 1 + r)x2.

2

3

1

3

1 2

3

1 2

3

3

3

1 1 2

3
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Fig. 8: All 0-admissible tableau of shape (2, 0, 1).
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Example 5.2.3. There are six 0-admissible tableaux of shape (2, 0, 1). They are given in Figure 8. The weights

ω of these tableaux are (2, 0, 1), (1, 1, 1), (1, 0, 2), (1, 1, 1), (0, 2, 1), and (0, 1, 2), respectively. Hence

F rδ(2,0,1) = ( 2
r + 2)( 1

r + 1)( 1
r + 2)x(2,0,1)

+ ( 2
r + 2)( 1

r + 2)x(1,1,1)

+ ( 2
r + 2)( 1

r + 2)x(1,0,2)

+ ( 1
r + 2)x(1,1,1)

+ ( 1
r + 1)( 1

r + 2)x(0,2,1)

+ ( 1
r + 2)x(0,1,2).

To further expand, we need to look at games. Notice that among all the games of shapes (2, 0, 1), (1, 1, 1), (1, 0, 2),

(0, 2, 1), and (0, 1, 2), there is only one game with a non-trivial move: (2, 0, 1)→ (0, 1, 1)→ (0, 0, 1)→ (0, 0, 0).

Hence we get the following expansion:

F rδ(2,0,1) = ( 2
r + 2)( 1

r + 1)( 1
r + 2)

(
(x1 + 1 + 2r)(x1 + r)x3 + rx2x3

)
+ ( 2

r + 2)( 1
r + 2)x1x2x3

+ ( 2
r + 2)( 1

r + 2)(x3 + 1 + r)(x1 + r)x3

+ ( 1
r + 2)x1x2x3

+ ( 1
r + 1)( 1

r + 2)(x2 + 1 + 2r)x2x3

+ ( 1
r + 2)(x3 + 1 + r)x2x3.

5.3 Vanishing properties

By definition, the bar monomials have lower vanishing properties. For instance, x3,0 vanishes at (1, 1) =

(−1− r,−1). However, this does not happen game by game. Combinatorially it is not clear why it happens

at all.

Furthermore, when the interpolation Jack polynomials are evaluated at shapes that are larger in the

containment order, it seems that we get positive Laurent polynomials in r (up to an overall sign). These

polynomials are called binomial coefficients [5, 30, 38]. But this is not true at the level of bar monomials (much

less at the level of games), and again the combinatorics is obscure.

We give examples to illustrate the two phenomena.
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Example 5.3.1. Vanishing of x3,0 at (1, 1) = (−1− r,−1)

x3,0 = (x1 + 2 + r)(x1 + 1 + r)(x1 + r) + (x1 + 2 + r)rx2 + r(x2 + 1 + r)x2 + rx1x2

and at (1, 1) = (−1− r,−1) we get

(x1 + 2 + r)(x1 + 1 + r)(x1 + r) → 0

(x1 + 2 + r)rx2 → −r

r(x2 + 1 + r)x2 → −r2

rx1x2 → r2 + r

Example 5.3.2. Positivity of F rδ(3,1) at (3, 4) = (−3,−4− r)

F rδ(3,1) = ( 3
r + 2)( 2

r + 1)( 1
r + 1)2 x3,1 + ( 3

r + 2)( 1
r + 1)x2,2

+ ( 3
r + 2)( 2

r + 1)( 1
r + 1)x2,2 + ( 3

r + 2)( 1
r + 1)2 x1,3

= ( 3
r + 2)( 2

r + 1)( 1
r + 1)2

(
(x1 + 2 + r)(x1 + 1 + r)x1x2 + r(x2 + 1)x1x2

)
+ ( 3

r + 2)( 1
r + 1) (x1 + 1)(x2 + 1)x1x2

+ ( 3
r + 2)( 2

r + 1)( 1
r + 1) (x1 + 1)(x2 + 1)x1x2

+ ( 3
r + 2)( 1

r + 1)2 (x2 + 2 + r)(x2 + 1)x1x2
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Evaluating this at (3, 4) = (−3,−4− r) gives

144

r4
+

60

r3
− 834

r2
− 1530

r
− 1074− 330r − 36r2

+
432

r3
+

1188

r2
+

1230

r
+ 600 + 138r + 12r2

+
216

r2
+

486

r
+ 372 + 114r + 12r2

+
216

r3
+

702

r2
+

858

r
+ 486 + 126r + 12r2

=
144

r4
+

708

r3
+

1272

r2
+

1044

r
+ 384 + 48r

Currently there is no manifestly positive combinatorial formula for the binomial coefficients, except in some

small cases [25, 49, 35]. Understanding the lower vanishing properties of the bar monomials from a combinatorial

perspective may shed more light on the binomial coefficient problem.
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