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Abstract

Providing patients with Mendelian disorders a genetic diagnosis improves the management of

symptoms, informs genetic counselling and provides opportunities for therapeutic intervention.

The advent of next generation sequencing technologies have greatly improved our ability to

identify gene-disease associations. Despite these advances, most patients still leave the clinic

without a genetic diagnosis. Although whole genome sequencing can capture genome-wide

genetic variation, accurate interpretation of these variants remains a major challenge. In this

thesis, I develop and apply methods that use transcriptomics to improve variant interpretation

and consequently, diagnostic yield.

Using publicly available RNA-seq data across 43 different human tissues, I improved the

annotation of the majority of known, disease-causing genes. The detected novel exons were

more depleted for genetic variation in humans than expected by chance, suggestive of their

functional importance. In addition, a subset were shown to be potentially protein-coding. The

novel annotation is publicly released through the resource, vizER, which enables the querying

and visualisation of genes for evidence of their reannotation.

I developed the R/Bioconductor package, dasper, which integrates junction and coverage

data from RNA-sequencing to improve the detection of aberrant splicing events. Benchmarking

analysis demonstrated that dasper detects pathogenic splicing events more accurately than existing

approaches, as well as harnesses both publicly available and in-house RNA-sequencing data

effectively as controls. dasper is designed for diagnostics, providing a rank-based report of

how aberrant each splicing event looks, as well as including visualization functions to facilitate

interpretation.

RNA-sequencing was applied to fibroblasts derived from a cohort of patients with suspected

mitochondrial disorders, who remained unsolved after whole exome sequencing. Using this

approach, a genetic diagnosis was confirmed for 1 patient and candidate genes were discovered

for a remaining third. Beyond diagnosis, the potential of RNA-sequencing to improve our
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understanding of disease pathogenesis was explored in three ways; deriving the mechanism of

splicing disruptions, detection of perturbed pathways downstream of the pathogenic variant and

elucidating genetic modifiers that influence phenotypic variability.



Impact Statement

Within this thesis, I contribute insights, tools and resources that will facilitate the application

of RNA-seq for diagnostics for researchers and diagnostic laboratories, as well as increase

diagnostic yield for the benefit of patients with Mendelian disorders.

The analyses within this thesis contribute broad insights for the field of diagnostic RNA-seq.

In chapter 1, my work describes how diagnostic rates remain hindered by incomplete annotation,

and the disproportionate impact this is likely to have on neurogenetic disorders. These results can

be helpful for determining when unsuccessful diagnoses are likely to be attributed to incomplete

annotation, as well as offer a potential solution through the related resource, vizER. In chapter

2, the development of dasper highlights the possibility of using publicly available RNA-seq

data as controls for diagnostic tools. If put into practice, this is likely to greatly improve the

accessibility of RNA-seq in a diagnostic setting. In chapter 3, I describe how RNA-seq can be

used to systematically characterise the consequence of aberrant splicing events. This informs the

development of future methods which have the aim of automating the interpretation of aberrant

splicing events using short-read RNA-seq; an area that remains underrepresented in existing

tools, but holds considerable promise for the design of splice-modulating therapies.

The work in this thesis has also led to the development of two Bioconductor packages,

dasper and ODER, that facilitate the application of RNA-seq by researchers. The output of

these tools can be integrated into a diagnostic RNA-seq pipeline, with the goal of improving

variant interpretation and, potentially, diagnostic yield. I have designed these tools to be robust

and user-friendly by conforming to best practices of software development. For example, both

packages are extensively tested across three operating systems (Windows, Mac, Linux) and have

their documentation continuously deployed via a pkgdown website. Furthermore, the release of

these tools on the Bioconductor platform improves their visibility and credibility. Together, these

factors are likely to increase the user base of the tools and at the time of this thesis submission,

dasper and ODER have collectively been downloaded over 1300 times.
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In chapter 3, I apply diagnostic RNA-seq to a cohort of 32 patients with suspected mito-

chondrial disorders, diagnosing a single patient and finding candidate genes for a third. In

the diagnosed patient, a successful genetic diagnosis of the patient’s disorder will permit more

accurate genetic counselling for the patient’s parents, in particular for family planning. For

the remaining third of patients, which had candidate genes identified, these are currently being

followed up in ongoing investigations.

Overall, I anticipate that the work in this thesis will facilitate the wider adoption of diagnostic

RNA-seq as well as potentially increase the diagnostic yield achievable through its application.

Ultimately, it is my hope that this will contribute to improvements in the lives of patients with

Mendelian disorders.



Table of contents

List of figures xvii

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Genetic diagnosis of Mendelian disorders . . . . . . . . . . . . . . . . . . . . 1

1.2 Incomplete gene annotation hinders variant interpretation . . . . . . . . . . . . 2

1.3 Detection of aberrant events using RNA-seq . . . . . . . . . . . . . . . . . . . 3

1.4 Tools for the detection of aberrant events from RNA-seq . . . . . . . . . . . . 5

1.5 The value of splicing information in a clinical setting . . . . . . . . . . . . . . 5

1.6 Objectives of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Improving gene annotation of disease-causing genes using RNA-sequencing data 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 OMIM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 GTEx data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Optimising the detection of transcription . . . . . . . . . . . . . . . . 11

2.2.4 Calculating the transcriptome size per annotation feature . . . . . . . . 13

2.2.5 Annotating ERs with junction read data . . . . . . . . . . . . . . . . . 14

2.2.6 Validation of detected transcription . . . . . . . . . . . . . . . . . . . 15

2.2.7 Analysing the conservation and constraint of novel ERs . . . . . . . . . 15

2.2.8 Checking ER protein-coding potential . . . . . . . . . . . . . . . . . . 16

2.2.9 Gene properties influencing re-annotation . . . . . . . . . . . . . . . . 16



xiv Table of contents

2.2.10 Sanger sequencing of novel junctions . . . . . . . . . . . . . . . . . . 17

2.2.11 Development and release of ODER . . . . . . . . . . . . . . . . . . . 17

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Optimising the tissue-specific, annotation-agnostic detection of transcrip-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Novel transcription is most commonly observed in the central nervous

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Validation of novel transcription . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Novel expressed regions are likely to be functionally important within

humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Incomplete annotation of OMIM genes may limit genetic diagnosis . . 27

2.3.6 Automating the improvement of gene annotation using ODER . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Detection of pathogenic splicing events from RNA-sequencing data using dasper 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Patient samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Fibroblast culture and RNA extraction . . . . . . . . . . . . . . . . . . 37

3.2.3 RNA-sequencing, alignment and quality control of patient samples . . . 37

3.2.4 Control RNA-seq data . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.5 Obtaining the set of OMIM-morbid genes and relevant gene panels . . 38

3.2.6 LeafCutterMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.7 FRASER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.8 dasper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Pathogenic splicing events are characterised by abnormalities of anno-

tated junction reads and coverage in associated regions . . . . . . . . . 42

3.3.2 Development of a clinically accessible, machine-learning pathogenic

splicing detection method . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Comparison of dasper to other methods used to detect pathogenic splicing 48

3.3.4 dasper is able to leverage publicly available control data effectively . . 50



Table of contents xv

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Improving the diagnostic rate of patients with suspected mitochondrial disorders

using RNA-sequencing 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Patient and control samples . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Culturing fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 RNA-sequencing, alignment and quality control . . . . . . . . . . . . . 59

4.2.4 Detection of aberrant spliced events using dasper . . . . . . . . . . . . 59

4.2.5 Generating gene count matrices . . . . . . . . . . . . . . . . . . . . . 60

4.2.6 Detection of aberrant expressed genes using OUTRIDER . . . . . . . . 61

4.2.7 Disease and Mitocarta gene lists . . . . . . . . . . . . . . . . . . . . . 61

4.2.8 Filtering for aberrant events capable of causing a suspected mitochondrial

disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.9 Whole-exome sequencing . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.10 Sanger sequencing and splice prediction . . . . . . . . . . . . . . . . . 63

4.2.11 Variant classification (ACGS 2020 guidelines) . . . . . . . . . . . . . 64

4.2.12 Detection of differentially expressed genes and pathways . . . . . . . . 65

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Patient cohorts used in this study . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Prioritisation of candidate genes through the detection of aberrantly

expressed and spliced genes . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 Diagnosis of unsolved patients using RNA-sequencing . . . . . . . . . 70

4.3.4 The representation of splicing disruptions in RNA-seq . . . . . . . . . 74

4.3.5 Detection of disrupted downstream pathways and potential disease modi-

fiers using RNA-sequencing . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusions and future directions 87

5.1 Summary of the thesis contributions . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Limitations of RNA-seq for diagnostics . . . . . . . . . . . . . . . . . . . . . 90

5.3 RNA-sequencing beyond diagnostics . . . . . . . . . . . . . . . . . . . . . . . 95



xvi Table of contents

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References 97

Appendix A Supplementary Tables 119



List of figures

1.1 Variant interpretation relies on reference annotation . . . . . . . . . . . . . . . 3

1.2 RNA-sequencing for diagnostics workflow . . . . . . . . . . . . . . . . . . . . 5

1.3 Detection of splicing from RNA-sequencing. . . . . . . . . . . . . . . . . . . 7

2.1 Proportion of exons that fall into different gene biotypes. . . . . . . . . . . . . 12

2.2 Characterising ERs using Ensembl annotation features and split reads . . . . . 14

2.3 Optimisation of the detection of transcription. . . . . . . . . . . . . . . . . . . 19

2.4 Transcription detected across 41 GTEx tissues categorised by annotation feature. 21

2.5 Tissue specificity of novel ERs. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Total Kb of novel ER entering Ensembl v92 annotation compared to random,

length-matched intron and intergenic regions. . . . . . . . . . . . . . . . . . . 24

2.7 Validation of novel transcription. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Novel ERs collectively serve an important function for humans and a proportion

can form potentially protein coding transcripts. . . . . . . . . . . . . . . . . . 27

2.9 Re-annotation of OMIM genes. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Primer locations for sanger sequence validation of SNCA novel exon. . . . . . 30

2.11 Automating the improvement of gene annotation using ODER. . . . . . . . . . 32

3.1 Illustration of the different categories of splicing event. . . . . . . . . . . . . . 41

3.2 Pathogenic splicing is characterized by disruptions to junctions and coverage. . 44

3.3 Correlation z-scores that were used as input into dasper. . . . . . . . . . . . . . 45

3.4 dasper applies an outlier detection method with junction and coverage informa-

tion as input to detect aberrant splicing events. . . . . . . . . . . . . . . . . . . 47

3.5 dasper applies an outlier detection method with junction and coverage informa-

tion as input to detect aberrant splicing events. . . . . . . . . . . . . . . . . . . 48



xviii List of figures

3.6 Comparison of the performace of dasper to existing pathogenic splicing detection

tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 dasper is able to leverage publicly available and in-house controls effectively. . 52

4.1 Overlap between aberrant events and mitochondrial, OMIM-morbid and Mito-

carta gene lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Prioritisation of candidate genes using RNA-sequencing . . . . . . . . . . . . 69

4.3 Detection of cryptic exon insertion events within ECHS1 and DNAJA3 . . . . . 72

4.4 Prediction of ECHS1 cryptic splice sites from DNA sequence . . . . . . . . . . 73

4.5 Representation of aberrant splicing events in RNA-sequencing data . . . . . . . 75

4.6 Detection of exon extension event in SURF1 and a shift in alternative splicing of

TBCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Detection of exon skipping event in TPK1 and a novel start site in GLDC . . . 79

4.8 Golgi-related pathways are disrupted in the ATG7 patients . . . . . . . . . . . 81

4.9 HMG20A, TBC1D3L and VPS41 are expression outliers in individuals from

family 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of tables

1.1 Bioinformatic tools for diagnostic RNA-seq . . . . . . . . . . . . . . . . . . . 6

2.1 Gene properties influencing re-annotation. . . . . . . . . . . . . . . . . . . . . 22

3.1 Details of Mendelian disease patients. . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Forward and reverse primer sequences for ECHS1 and DNAJA3. . . . . . . . . 64

4.2 Pathogenic variants of 5 neurometabolic disease patients. . . . . . . . . . . . . 66

4.3 Candidate genes discovered through RNA-sequencing. . . . . . . . . . . . . . 70

4.4 Types of aberrant splice events detected across the 10 candidate genes . . . . . 74

A.1 Primer positions and sequences used to experimentally validate the novel ER of

SNCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Protein domains detected within the DNAJA3 transcript ENST00000262375 . . 121

A.3 The sample identifiers, institutions that provided samples and the demographic of

the patient samples with suspected mitochondrial disorders analysed in chapter 4. 122

A.4 The clinical phenotype of the samples with suspected mitochondrial disorders

analysed in chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.5 The biochemistry results of the samples with suspected mitochondrial disorders

analysed in chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.6 The diagnostic criteria for the samples with suspected mitochondrial disorders

analysed in chapter 4. This includes the details of any diagnoses or discovered

VUSs during the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125





Abbreviations

ACMG American College of Medical Genetics

ASE Allele-specific expression

CDT S Context dependent tolerance scores

CNS Central nervous system

DJs Downregulated junctions

ERs Expressed regions

FPKM Fragments per kilobase of transcript per million mapped reads

GT Ex Genotype-Tissue Expression Consortium

GWAS Genome-wide association studies

HPO Human Phenotype Ontology

iPSCs Induced pluripotent stem cells

Mb Megabases

MCC Mean coverage cut-off

MRG Mean region gap

NGS Next-generation sequencing

OMIM Online Mendelian Inheritance in Man

RNA− seq RNA-sequencing

SNPs Single nucleotide polymorphisms



xxii Abbreviations

T PM Transcripts per kilobase per million mapped reads

UJs Upregulated junctions

UT Rs Untranslated regions

VUSs Variants of unknown significance

WES Whole-exome sequencing

WGS Whole-genome sequencing



Chapter 1

Introduction

1.1 Genetic diagnosis of Mendelian disorders

Mendelian disorders, collectively affecting more than 1 in 50 individuals, impose a considerable

burden on healthcare systems worldwide (1). Accurate molecular diagnosis of Mendelian diseases

improves the management of patient symptoms, informs genetic counselling and provides

opportunities and preventative therapies (2). The advent of next-generation sequencing (NGS)

has accelerated the identification of causative genes and variants associated with disease and as

result, whole-exome sequencing (WES) and whole-genome sequencing (WGS) are increasingly

incorporated into the diagnostic routine. WES offers a cost-effective, comprehensive approach to

capture pathogenic variants within protein-coding regions and, depending on the disorder and the

selection of patients, has been estimated to lead to a diagnosis rate of 30%–50% (3). Patients that

are left without a molecular diagnosis after exome-sequencing likely remain unsolved as their

pathogenic variant(s) reside in novel disease genes or are not readily detectable by WES. These

include structural variants, repeat expansions, and those that lie within deep intronic regions of the

genome (4). For such cases, WGS has been demonstrated as a promising approach to elucidate

pathogenic variants missed by WES (5). Although WGS enables the detection of variants at

a genome-wide scale, accurate interpretation of the functional consequence of the captured

genetic variation remains a major challenge. In the context of establishing a molecular diagnosis,

this leads to patients being left undiagnosed, since pathogenic mutations cannot be accurately

distinguished from the other rare, potentially functional, yet benign variants present in any human

genome (6). Importantly, the interpretation of non-coding variants is particularly difficult, due to

the historical prioritisation and consequently, better understanding of protein-coding regions of
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the genome (7, 8). Furthermore, it is increasingly recognised that these non-coding regions confer

important regulatory roles and consequently, non-coding variants have the capability to cause

Mendelian disorders (8, 9). Overall, in large part due to the limitations in variant interpretation,

the current rate of successful genetic diagnoses remains an estimated 25-50% (5, 10, 11). One

possible solution lies in characterising the downstream functional consequences of variants, for

instance, at the transcriptome, proteome or metabalome level (3). These approaches enable

the discovery of pathogenic molecular products, which can be used to re-interpret variants and

resolve variants of unknown significance (VUSs), leading to an increase in diagnostic yield.

1.2 Incomplete gene annotation hinders variant interpretation

Reference annotation databases are comprised of the genomic co-ordinates of all the genes,

transcripts and their constituent exons in a given model organism. Current efforts to annotate

the human genome principally originate from 4 organisations; RefSeq, GENCODE, Ensembl

and AceView, which differ in the stringency of their annotation pipeline and consequently, the

demographic of their user base (12–15). For example, the reference annotation derived from

RefSeq is the most conservative and therefore, most commonly used within the diagnostic

community. While these databases have now become essential resources within research and

diagnostic analyses, there is evidence to suggest that they remain incomplete or inaccurate.

Foremost, reference annotation databases are still consistently updated, with the addition of

newly discovered genes as well as corrections to existing gene definitions (12). Secondly,

there are discrepancies between the reference annotations generated by different sources (16, 17).

Thirdly, analyses performed using large-scale RNA-sequencing (RNA-seq) datasets have revealed

an abundance of transcription originating from intergenic or intronic (unannotated) regions (18).

Finally, efforts using de novo transcript assembly methods or long-read RNA-seq have discovered

a plethora of unannotated transcripts, especially for genes with complex splicing patterns (19, 20).

The interpretation of the functional consequence of a variant on a gene or transcript is

fundamentally reliant on accurate and complete reference annotation (Figure 1.1) (21). This is

exemplified by changes in variant interpretation arising from the usage of different reference

annotation databases. For instance, Frankish et al. found that variant annotation was substantially

different when using GENCODE versus RefSeq derived reference annotation. In addition, these

discrepancies were concentrated on variants that fell into non-coding transcripts or untranslated
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regions (UTRs) (17). In the context of genetic diagnoses, this suggests inaccurate or incomplete

gene annotation can lead to variants being falsely de-prioritised as benign or assigned as VUSs.

Together, it is likely that improvements to reference annotation will lead to more accurate

interpretation of variants and therefore, an increase in the rate of genetic diagnoses.

Figure 1.1 Variant interpretation relies on reference annotation. A simple schematic to illustrate how
the interpretation of a non-coding variant (red, dashed line) could shift depending on genome annotation.
Annotated, known exons are represented by grey boxes, whilst the blue box marks a discovered novel
exon. Importantly, the discovery of novel exons could permit the prediction of the consequence of any
overlapping variants on protein sequence and function.

1.3 Detection of aberrant events using RNA-seq

In the past decade, RNA-seq has become the gold-standard approach for measuring RNA

abundance and transcript diversity. More recently, it has also been shown to be a promising

diagnostic tool for cases that remain unsolved after WES or WGS (22). RNA-seq has been

applied in diagnostic pipelines to obtain a transcriptome-wide readout of gene expression, splicing

levels and allele-specific expression (ASE) in patient samples (23, 24). By comparing these

metrics to a set of unaffected controls, this enables the detection of aberrant RNA-level products,

namely aberrantly expressed genes, aberrantly spliced transcripts and allele-specific expression

events (Figure 1.2). Such aberrant events serve as functional data, which provide evidence for

the downstream consequences of variants with the patient sample. In this way, the RNA-seq

derived aberrant events complement the DNA-seq derived variants, enabling more accurate

variant interpretation. The re-interpretation of variants using RNA-seq can resolve variants of

unknown significance (VUSs) and/or narrow down a list of candidate variants to an actionable

size permitting further functional investigation (25). Together, using this approach, RNA-seq

has been leveraged to detect aberrant events, re-prioritise variants and lead to assignment of

pathogenicity.

To date, several studies have applied RNA-seq for diagnostics, achieving an improvement in

diagnostic yield between 5-35% for cases unsolved after WES or WGS (26, 27). Earlier studies
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have focused on exome-negative patient cohorts skeletal muscle disorders or mitochondrial

disease, however the more recently, diagnostic RNA-seq has also been applied to cohort with

a large variety of disorders (23, 24, 27–29). In order to systematically assess the value of

integrating RNA-seq into the diagnostic pipeline, a recent study investigated the diagnostic yield

of using WES, WGS and RNA-seq for 113 rare disease patients spanning a wide spectrum of

clinical indications (25). In total, a genetic diagnoses was achieved for 38% of the 113 patients;

the diagnoses rate using WES/WGS alone was 31%, whilst RNA-seq evidence was required to

establish the additional 7% of diagnoses. Overall, these studies have established RNA-seq as a

valuable diagnostic tool that can be effective across a wide range of disorders.

A major challenge of using diagnostic RNA-seq arises from the differences in expression

and splicing across human tissues, coupled with the fact that disease relevant tissues are not

always accessible; this is commonly referred to as the proxy tissue problem (26). In this way,

the proxy tissues sampled from patients may not express the disease-associated RNA-level

events to a detectable level, thereby limiting the diagnostic yield from RNA-seq. Despite this

limitation, recent studies highlight that pathogenic events can still be successfully detected in

tissues that are typically unaffected by disease. For example, Fresard et al. use RNA-seq from

whole blood samples to successfully diagnose 7.5% of a cohort of 94 rare disease patients

with clinical diagnoses spanning 16 diverse disease categories, including neurological disorders

(27). In order to quantify the the extent to which the proxy tissue problem will limit RNA-seq

for diagnostics, a recent study has assessed the ability of clinical accessible tissues (CATs) to

capture the transcriptomic complexity of the remaining human tissues. With this approach, they

estimate the majority (60%) of genes had splicing adequately replicated in at least 1 CAT (30).

Furthermore, they release their findings as a database, MAJIQ-CAT, upon which the known

disease genes can be queried to gauge the suitability of a patient or disorder for the diagnostic

RNA-seq approach. In recent years, new technologies have emerged that allow the differentiation

of CATs into disease relevant tissues; these represent a potential solution to the proxy tissue

problem. For example, Gonorazky et al. and Bronstein et al. demonstrate that differentiation of

fibroblasts or induced pluripotent stem cells (iPSCs) to disease tissues enabled the detection of

pathogenic events that would otherwise have been missed in the original tissue (28, 29). Overall,

these studies demonstrate that RNA-seq has the potential to provide diagnostic value, even in

situations where the disease relevant tissue is inaccessible. Furthermore, it is forseeable that
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resources such as MAJIQ-CAT and technologies such as IPSCs will reduce the impact of the

proxy tissue problem and thereby improve the diagnostic value of RNA-seq in the future.

Figure 1.2 RNA-sequencing for diagnostics workflow. Adapted from Kremer et al. 2017 (24). There
are three major strategies employed to facilitate genetic diagnosis of Mendelian disease patients using
RNA-seq: detection of aberrantly expressed genes, aberrantly spliced events and mono-allelic expression
of the alternative allele. Such aberrant events can be used to complement DNA-seq sequencing and
improve variant interpretation, leading to potential increase in diagnostic yield.

1.4 Tools for the detection of aberrant events from RNA-seq

As the number of studies applying diagnostic RNA-seq have increased, so too has the number

bioinformatic tools developed for its application. Currently, to my knowledge, there are 4

diagnostic tools that are released for the detection of aberrant events from RNA-seq, which can

be categorised by the type of aberrant event which they aim to discovery; aberrant expression,

aberrant splicing and ASE events (Table 1.1). Traditional differential expression or splicing

tools such as DESeq2 and leafcutter have been designed to compare between groups of samples,

typically across treatment versus control, often with a few replicates for each sample (31, 32).

These approaches do not transfer well to Mendelian disease diagnostics, where there are often

no replicates available and there is typically an experimental design where a single patient is

compared to a set of controls (1-vs-all). In addition, one is often interested in identifying an

outlier event in this single patient, rather than a event with a subtle fold change between groups.

For a result, all diagnostic RNA-seq tools developed to date have employed a 1-vs-all framework,

which aims to detect outlier/aberrant events by comparing each patient with a set of controls

(33–36).

1.5 The value of splicing information in a clinical setting

Alternative splicing is the complex, tightly regulated process by which introns are excised from

pre-mRNA. Splicing is an essential cellular process used to generate transcriptomic and functional
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Tool Type DOI
1 OUTRIDER Expression doi.org/10.1016/j.ajhg.2018.10.025
2 FRASER Splicing doi.org/10.1038/s41467-020-20573-7
3 LeafCutterMD Splicing doi.org/10.1093/bioinformatics/btaa259
4 ANEVADOT Allele-specific expression doi.org/10.1126/science.aay0256

Table 1.1 Bioinformatic tools for diagnostic RNA-seq. The table highlights the current available tools
that are designed to facilitate diagnostic RNA-seq through the detection of aberrant events from RNA-seq.

complexity in higher eukaryotes (37). The spliceosome complex is comprised of hundreds of

proteins and small nuclear RNAs, which function in concert to form the machinery required for

splicing (38). The fidelity of splicing also depends on interactions between trans-acting factors

(proteins and ribonucleoproteins) and cis-acting pre-mRNA sequence motifs, which regulate

splicing through facilitating the binding of splicing factors (39). The complexity of splicing is

crucial for generating transcript and phenotypic diversity, but also increases the vulnerability of

splicing to perturbations. Consequently, aberrant splicing has been shown to be a key cause of

Mendelian disorders, with an estimated one third of pathogenic mutations impacting splicing

(40, 41). Notably, pathogenic variants that disrupt splicing most commonly fall within the core

consensus motifs (5’ splice site, 3’ splice site, and branch point) or within non-coding regulatory

elements.

In the past decade, RNA-seq has become the principal approach used to obtain a transcriptome-

wide profile of alternative splicing. From a short-read RNA-seq experiment, information re-

garding splicing can be obtained in two main ways; measures of junction counts and coverage

(Figure 1.3) (42). Junctions reads are defined as those reads which map with a gapped alignment

to the genome, with the gap representing the removal of an intron via the mechanism of splicing.

The number of reads across a given junction can be used to quantify the relative expression of a

splicing event. On the other hand, coverage is defined as the number of reads that align to each

base within the genome. Coverage across exons can be used to derive the relative usage of exons,

which in turn can inform the number of times an intron is excised. Overall, RNA-seq can provide

a transcriptome-wide profile of the splicing within a given sample through measures of junction

counts and coverage.

The value of splicing information obtained through RNA-seq is particularly valuable in

a clinical context for two reasons. Firstly, variants distributed in the non-coding regions of

the genome disproportionately affect splicing, often through disruptions to intronic splicing

enhancers, silencers or recognition sequences (8). Therefore, in a diagnostic context, detection of
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aberrant splicing events using RNA-seq can be useful for the re-interpretation of the non-coding

variation. Consistent with this, the majority of molecular diagnoses achieved using RNA-seq to

date have involved information regarding disruptions in splicing (23, 24, 27). Secondly, splicing

information has the potential to inform the development of splice-modulating treatments such as

antisense oligonucleotides (ASOs) (43). For example, Kim et al. applied RNA-seq characterise a

pathogenic splicing event and as a results, design and target a personalised ASO for a patient

with Battens disease (44). Together, RNA-seq provides a platform to measure transcriptome-

wide levels of alternative splicing in a patient, which can be used to improve diagnostic yield

through the re-interpretation of non-coding variation, as well as inform the development of

splice-modulating therapies.

Figure 1.3 Detection of splicing from RNA-sequencing. Adapted from Collado-Torres et al. 2017 (42).
RNA-seq reads are represented by the pink boxes. Normal reads are those that fall completely within
exonic regions, which can be used to inform the coverage and therefore, the differential usage of exons.
Junction reads are those that align to the boundary of two exons with a gap within the middle that marks
the excision of an intron. Together, junctions and coverage can be used to capture, measure and quantify
splicing events from RNA-seq.

1.6 Objectives of this thesis

The overarching objective of this thesis is to demonstrate and improve the value of RNA-seq

as a diagnostic tool for Mendelian disorders. I address this goal in 2 ways; 1. developing and

releasing resources and pipelines that facilitate the use of RNA-seq in a diagnostic setting and 2.

apply RNA-seq to diagnose a cohort of patients that remain unsolved after WES.

In chapter 2, I leverage RNA-seq across multiple human tissues to improve the annotation for

the majority of disease genes. The annotation I generate is publicly released via a web interface
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vizER, on which individual genes can be queried for novel exons. In addition, the pipeline for the

generation of this novel annotation is made available as a Bioconductor package, ODER, which

facilitates the re-application of the annotation pipeline to additional datasets.

In chapter 3, I develop and publish the Bioconductor package, dasper, which uses and

junctions and coverage to detect aberrant splicing events from RNA-seq data. dasper is tailored

for use in a diagnostic setting; it applies a 1-vs-all experimental framework to detect outlier

splicing events and has in-built visualisation functionality to facilitate the interpretation of

detected splicing events.

In chapter 4, I apply RNA-seq to diagnose a set of unsolved patients with suspected mito-

chondrial disorders. Using this approach, I diagnose 1 patient and obtain improved candidate

gene resolution for a remaining third of patients. Candidate genes are currently being followed

up for further investigation by the clinicians. Furthermore, I touch upon the use of RNA-seq for

utility beyond diagnoses, namely the characterisation of the consequence of splicing events and

improvements to disease understanding.

Together, it is my hope, that the work within this thesis expands upon and facilitates the use

of RNA-seq as a tool for diagnostics and beyond.

http://rytenlab.com/browser/app/vizER
https://bioconductor.org/packages/release/bioc/html/ODER.html
https://bioconductor.org/packages/release/bioc/html/dasper.html


Chapter 2

Improving gene annotation of

disease-causing genes using

RNA-sequencing data

2.1 Introduction

Genetic and transcriptomic studies are fundamentally reliant on accurate and complete human

gene annotation. Amongst other analyses, this is required for the quantification of expression or

splicing from RNA-sequencing experiments, interpretation of significant genome-wide associa-

tion studies (GWAS) signals and variant interpretation from genetic tests. As the understanding

of transcriptomic complexity improves, it is apparent that existing gene annotation principally

originating from 4 sources (RefSeq, GENCODE, Ensembl, AceView) remains incomplete (12–

15). Comparison of these different existing gene annotation databases reveals that over 17,000

Ensembl genes fall into intronic or intergenic regions according to the AceView database and

the choice of reference annotation greatly influences the performance of variant interpretation

software, such as VEP and ANNOVAR (16, 18). This evidence suggests that incomplete anno-

tation may cause pathogenic variants to be overlooked within exonic regions that are yet to be

annotated.

Despite accumulating evidence that the map of the human transcriptome remains incomplete,

it is not yet fully understood which tissues and consequently diseases are most affected. The

extent to which this poses an issue is unlikely to be equal across all types of tissues or cells. In

particular, the fact that the human brain harbours longer transcripts, higher transcript diversity
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and higher cellular heterogeneity than other tissues might be expected to make identifying all

transcripts from this tissue more challenging (45). Moreover, the difficulties of accessing brain

tissue and dependence on post-mortem tissue may also limit the quantity of high quality, brain-

specific data inputted into gene annotation pipelines to date. In fact, several analyses of bulk

RNA-sequencing data derived from human brain tissues have discovered transcription originating

from intronic or intergenic regions (henceforth termed novel) (46, 47). For example, Jaffe and

colleagues found that as much as 41% of transcription in the human frontal cortex was novel (18).

In combination, these factors lead to specific challenges in fully capturing the transcriptome of

the human brain and suggest that improvements to gene annotation may have a disproportionate

impact on the understanding of neurological diseases.

In this study, I address this issue by leveraging transcriptomic data available through the

Genotype-Tissue Expression Consortium (GTEx) to identify novel exons of known disease genes.

Distinct from existing de novo assembly approaches, such as that implemented by Pertea and

colleagues leading to the development of the CHESS database, my analytical approach was

focused on the detection of novel exons amongst known genes rather than the assembly of

novel transcripts (19). This conservative approach was adopted because of the well-recognised

challenges in accurately calling novel transcripts from short read sequencing data and because

the major aim of this study was to improve the annotation of genes already known to cause

Mendelian disorders (48, 49). With this in mind, I defined transcription in an tissue-specific,

annotation-agnostic manner using RNA-sequencing data from 13 regions of the human central

nervous system (CNS) and a further 28 non-brain tissues. I found that novel transcription

although widespread across all tissues, is most prevalent in human brain. I provide evidence to

suggest that the novel exons I discover are likely to be functionally important on the basis of

their tissue specific expression, the significant depletion of genetic variation within humans and

their protein-coding potential. Finally, by combining novel transcription with junction read data,

defined as reads that have a gapped alignment to the genome, I link these regions to known genes,

focussing on those associated with Mendelian disorders. Overall, I improve the annotation of

13,429 genes, encompassing 1831 (63%) OMIM genes. I release this data via an online platform

vizER as well as the method for its generation as a Bioconductor package, ODER. vizER allows

individual genes to be queried and visualised for re-annotation as well as the download of all

novel annotations discovered. It is my hope that this resource will facilitate improvements to the

genetic diagnosis of Mendelian disorders.

http://rytenlab.com/browser/app/vizER
https://bioconductor.org/packages/release/bioc/html/ODER.html
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2.2 Methods

2.2.1 OMIM data

Phenotype relationships and clinical synopses of all Online Mendelian Inheritance in Man

(OMIM) genes were downloaded using http://api.omim.org on the 29th of May 2018 (50).

OMIM genes were filtered to exclude provisional, non-disease and susceptibility phenotypes

retaining 2,898 unique genes that were confidently associated to 4,034 Mendelian diseases.

Phenotypic abnormality groups were linked to corresponding affected GTEx tissues through

manual inspection of the Human Phenotype Ontology (HPO) terms within each group by a

medical specialist (51).

2.2.2 GTEx data

Data download and wrangling of the GTEx data was performed by Sebastian Guelfi. RNA-seq

data in base-level coverage format for 7,595 samples originating from 41 different GTEx tissues

was downloaded using the R package recount version 1.4.6 (52). Cell lines, sex-specific tissues

and tissues with 10 samples or below were removed. Samples with large chromosomal deletions

and duplications or large CNVs previously associated with disease were filtered out (smafrze

= “USE ME”). Coverage for all remaining samples was normalised to a target library size of

40 million 100bp reads using the area under coverage value provided by recount2. For each

tissue, base-level coverage was averaged across all samples to calculate the mean base-level

coverage. GTEx junction read data, defined as reads with a non-contiguous gapped alignment to

the genome, was downloaded using the recount2 resource and filtered to include only junction

reads detected in at least 5% of samples for a given tissue and those that had available donor and

acceptor splice sequences.

2.2.3 Optimising the detection of transcription

This method was concieved with the help of Sebastian Guelfi, a postdoctoral research associate

within the Ryten lab at the time this analysis was conducted. Transcription was detected across

41 GTEx tissues using the package derfinder version 1.14.0 (53). The mean coverage cut-off

(MCC), defined as the number of reads supporting each base above which bases were considered

to be transcribed, and max region gap (MRG), defined as the maximum number of bases

between expressed regions (ERs) below which adjacent ERs will be merged, were optimised.

http://api.omim.org
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Optimisation was performed using 156,674 non-overlapping exons (defined by Ensembl v92) as

the gold standard (12). Exon biotypes of all Ensembl v92 exons were compared to this set of

non-overlapping exons to ensure the analysis was not preferentially optimising for one particular

biotype (Figure 2.1). Non-overlapping exons were selected as these definitions would be least

likely to be influenced by ambiguous reads. For each tissue, I generated ERs using mean coverage

cut-offs increasing from 1 to 10 in steps of 0.2 (46 cut-offs) and max gaps increasing from 0 to

100 in steps of 10 (11 max region gaps) to produce a total of 506 unique transcriptomes. For

each set of ERs, I found all ERs that intersected with non-overlapping exons, then calculated the

exon delta by summing the absolute difference between the start/stop positions of each ER and

the overlapping exon (Figure 2.3a). Situations in which a single ER overlapped with multiple

exons were removed to avoid assigning the ER to an incorrect exon when calculating downstream

optimisation metrics. For each tissue, I selected the mean coverage cut-off and max region gap,

which minimised the difference between ER and “gold standard” exon definitions (median exon

delta) and maximised the number of ERs that precisely matched the boundaries of exons (number

of ERs with an exon delta equal to 0). All ERs that were <3bp in width were removed as these

were below the minimum size of a microexon (54).

Figure 2.1 Proportion of exons that fall into different gene biotypes. Comparison of the proportion of
exons that are classified within the different gene biotypes between all exons from Ensembl v92 and the
non-overlapping set of exons used to optimise the detection of transcription.
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2.2.4 Calculating the transcriptome size per annotation feature

ERs were classified with respect to the annotation feature (exon, intron, intergenic) with which

they overlapped. A minimum of 1bp overlap was required for an ER to be categorised as

belonging to a given annotation feature. ERs overlapping multiple annotation features were

labelled with a combination of each. This generated 6 distinct categories – “exon”, “exon, intron”,

“exon, intergenic”, “exon, intergenic, intron”, “intergenic” and “intron” (Figure 2.2a). ERs

classified as “exon, intergenic, intron” were removed from all downstream analysis as these

formed only 0.54% of all ERs and were presumed to be technical artefacts generated from

regions of dense, overlapping gene expression. For each tissue, the length of all ERs within

each annotation feature was summed generating the total Mb of ERs per annotation feature.

Normalised variance of exonic, intronic and intergenic ERs was calculated by dividing the

standard deviation of the total Mb of ERs across tissues by the mean total Mb of ERs for each

annotation feature. To compare between brain and non-brain tissues, the total Mb of intronic and

intergenic ERs were first summed together to generate an overall measure of novel transcription

abundance across brain and non-brain tissues, then a two-sided Wilcoxon rank sum test was

applied.
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Figure 2.2 Characterising ERs using Ensembl annotation features and split reads. a) Illustration of
the ER categorisation dependent on overlap with existing gene annotation. ERs in red are considered
novel transcription. Blue ERs are those that overlap existing exons and are considered part of existing
annotation. Grey ERs were uninformative and likely an artefact generated from genomic regions with high
amounts of noise, pre-mRNA or overlapping genes, therefore were removed from all downstream analysis.
b) Diagram showing the use of split reads (reads with a gapped alignment to the genome) to characterise
novel ERs. Split reads were classified as annotated, partially annotated or unannotated dependent on
whether the acceptor or donor sites both overlapped, only 1 of the acceptor or donor sites overlapped or
neither overlapped known Ensembl v92 exon boundaries respectively. Partially annotated split reads were
used to connect novel ERs to known genes. Partially annotated and unannotated split reads were used to
provide evidence of RNA processing for novel ERs.

2.2.5 Annotating ERs with junction read data

Intronic and intergenic ERs were connected to known genes using reads, which I term junction

reads, with a gapped alignment to the genome, presumed to be reads spanning exon-exon

junctions (Figure 2.2b). Such exon-exon junctions are defined as non-contiguous reads which

fall on the boundary between two exons of the same mRNA molecule, therefore when aligned

to the genome these reads have a break in the middle indicating the splicing out of an intron.

Junction read data was categorised into three groups: annotated junction reads, with both ends

falling within known exons; partially annotated junction reads, with only one end falling within a

known exon; and unannotated junction reads, with both ends within intron or intergenic regions.
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In this way, intron and intergenic ERs that overlapped with partially annotated junction reads

were connected to known genes.

2.2.6 Validation of detected transcription

Transcription was validated across different versions of Ensembl and within an independent

dataset. ERs that overlapped purely intronic or intergenic regions according to Ensembl v87, but

fell within exons according to v92, were counted as novel transcription that was validated in later

versions of Ensembl. Furthermore, ERs overlapping exonic regions in Ensembl v87 now classified

as intronic or intergenic in v92 were measured to control for expected corrections in gene

definitions. To assess whether the total Kb of validated novel ERs entering v92 annotation was

greater than what would be expected by chance, I generated 10,000 random sets of length-matched

regions for each tissue that were intronic or intergenic with respect to Ensembl. Using a one

sample Wilcoxon test, I compared the total Kb of intronic and intergenic ERs entering annotation

to the total Kb distribution of the randomised intronic and intergenic regions, respectively.

Validation within an independent dataset was performed using RNA-seq coverage data from

49 control frontal cortex (BA9) samples originally reported by Labadorf and colleagues (2015)

and available via the recount R package version 1.4.6 (52, 55). ERs derived from the GTEx

frontal cortex (BA9) data were re-quantified using this independent frontal cortex dataset and

those that had a mean coverage of at least 1.4 (the optimised MCC for the GTEx frontal cortex

data), were counted as novel transcription that was validated.

2.2.7 Analysing the conservation and constraint of novel ERs

Conservation scores in the form of phastCons7 (derived from genome-wide alignments of 7

mammalian species) were downloaded from UCSC (56). Constraint scores generated from

the genome-wide alignment of 7,794 unrelated human genomes were downloaded as context

dependent tolerance scores (CDTS) (57). The raw phastCons7 and CDTS were in bins of 1bp and

10bp, respectively, therefore when annotating the corresponding positions of ERs, I aggregated

each score as a mean across the entire genomic region of interest. To account for missing CDTS

values, I calculated the coverage of each ER by dividing the number of bases annotated by the

CDTS by the total length of the ER. For all downstream analysis, I filtered out ERs for which

CDTS coverage was less than 80%.
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To assess whether our novel ERs were more constrained or conserved than by expected

by chance, I compared the phastCons7 and CDTS of novel ERs to 10,000 randomised length-

matched sets of intronic and intergenic ERs for each tissue. For each of the 10,000 iterations,

I first selected a random intronic or intergenic region that was larger than the respective ER,

then selected a random segment along the randomised region which matched the length of the

corresponding ER. The randomised regions were annotated with constraint scores and CDTS

using the aforementioned method. The mean CDTS and phastCons7 of the novel ERs (split by

annotation feature) were compared to the corresponding distribution of CDTS and phastCons7

of the randomised regions using a one sample, two-tailed t-test. For easier interpretation when

plotting, CDTS scores have been converted to their opposite sign, therefore for both phastCons

and CDTS, the higher the value the greater the magnitude of conservation or constraint.

2.2.8 Checking ER protein-coding potential

Intronic and intergenic ERs that were intersected by 2 junction reads were extracted. The junction

reads were used to determine the precise boundaries of the ER. The DNA sequence corresponding

to the ER genetic co-ordinates was extracted from the genome build hg38. Since the translation

frame was ambiguous without knowledge of the other exons that are part of the transcript that

included the novel ER, I converted the DNA sequence to amino acid sequence for all three

possible frames starting from the first, second or third base. Any ER that had at least 1 frame that

did not include a stop codon was considered to be potentially protein coding.

2.2.9 Gene properties influencing re-annotation

All Ensembl v92 genes were marked with a 1 or a 0 depending on whether I detected a re-

annotation for that gene in the form of an ER connected to the gene using a junction read, with 1

representing a detected re-annotation event. Details of gene length, biotype, transcript count and

whether the gene overlapped another gene were retrieved from the Ensembl v92 database. Brain-

specificity was assigned using the Finucane dataset and selecting the top 10% of brain-specific

genes when compared to non-brain tissues (58). Mean gene TPM was calculated by downloading

tissue-specific TPM values from the GTEx portal and summarised by calculating the mean across

all tissues. The list of OMIM genes was used to assign whether a gene was known to cause

disease or not. I used a logistic regression to test whether different gene properties significantly

influenced the variability of re-annotation.
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2.2.10 Sanger sequencing of novel junctions

Primer design and sanger sequencing was performed with the help of other members of the

Ryten lab; Regina Reynolds and Beatrice Costa. Commercially purchased (Takara) frontal cortex

and cerebellum RNA samples, isolated from individuals of European descent, were used for

validation of novel junctions detected in SNCA and ERLIN1 respectively. Tissues were chosen to

match the tissue in which the re-annotation for each gene was detected. Reverse transcription was

performed using 1ug of RNA from each tissue, then converted to cDNA using the High-Capacity

cDNA Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems) and random primers

as per manufacturer’s instructions. Primers were designed to span predicted exon-exon junctions

using Primer-BLAST (NCBI) and ordered from Sigma. PCR was performed using FastStart PCR

Master (Roche) and enzymatic clean-up of PCR products was performed using Exonuclease

I (Thermo Scientific) and FastAP Thermosensitive Alkaline Phosphatase (Thermo Scientific).

Sanger sequencing was performed using the BigDye terminator kit (Applied Biosystems) and

sequences were viewed and exported using CodonCode aligner (version 8.0.2). Sequences were

blatted against the human genome (hg38) and alignment visually inspected for confirmation of

validation.

2.2.11 Development and release of ODER

The method for the detection of ERs was released on the Bioconductor platform as the package,

ODER. ODER’s development was led by me with assistance from a member of the Ryten lab,

Emmanuel Olagbaju. As part of its development, ODER incorporates new features to facilitate

the use of the pipeline. In order to output ERs as a count matrix, the mean coverage across

each ER is calculated using the megadepth package (59). The pipeline has also been modified

to accept stranded BigWig files as input. In such cases, 2 sets of ERs will be defined (one set

derived from each strand), then merged together before the ER optimisation step. In order to more

accurately associate ERs to genes, ODER enables the filtering of genes above a user-inputted

threshold expression value in a particular tissue. The gene expression data used were downloaded

from GTEx v8 (https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_

2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz).

https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz
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2.3 Results

2.3.1 Optimising the tissue-specific, annotation-agnostic detection of transcrip-

tion

Pervasive transcription of the human genome, the presence of pre-mRNA even within polyA-

selected RNA-sequencing libraries and variability in read depth complicates the identification

of novel exons and transcripts using RNA-sequencing data (60). With this in mind, I used a set

of exons with the most reliable boundaries (namely all exons from Ensembl v92 that did not

overlap with any other exon) to calibrate the detection of transcription from 41 GTEx tissues. Of

available annotation databases, Ensembl was selected as it is one of the most commonly used

and comprehensive annotation providers. I used the tool, derfinder, to perform this analysis (53).

However, I noted that while derfinder enables the detection of continuous blocks of transcribed

bases termed expressed regions (ERs) in an annotation-agnostic manner, the mean coverage

cut-off (MCC) applied to determine transcribed bases is difficult to define and variability in read

depth even across an individual exon can result in false segmentation of blocks of expressed

sequence. Therefore, in order to improve our analysis and define ERs more accurately, I applied

derfinder, but with the inclusion of an additional parameter termed the max region gap (MRG),

which merges adjacent ERs (see detailed Methods). Next, I sought to identify the optimal values

for MCC and MRG using our learning set of known, non-overlapping exons.

This process involved generating 506 transcriptome definitions for each tissue using unique

pairs of MRCs and MRGs, resulting in a total of 20,746 transcriptome definitions across all 41

tissues. For each of the 20,746 transcriptome definitions, all ERs that intersected non-overlapping

exons were extracted and the absolute difference between the ER definition and the corresponding

exon boundaries, termed the exon delta, was calculated (Figure 2.3a). I summarised the exon

delta for each transcriptome using two metrics, the median exon delta and the number of ERs

with exon delta equal to 0. The median exon delta represents the overall accuracy of all ER

definitions, whereas, the number of ERs with exon delta equal to 0 indicates the extent to which

ER definitions precisely match overlapping exon boundaries. The MCC and MRG pair that

generated the transcriptome with the lowest median exon delta and highest number of ERs with

exon delta equal to 0 was chosen as the most accurate transcriptome definition for each tissue.

Across all tissues, 50-54% of the ERs tested had an exon delta = 0, suggesting I had defined the

majority of ERs accurately. Taking the cerebellum as an example and comparing ER definitions
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to those which would have been generated applying the default derfinder parameters used in the

existing literature (MCC: 0.5, MRG: None equivalent to 0), I noted an 96bp refinement in ER

size, equating to 67% of median exon size (Figure 2.3b, 2.3c). In summary, by using known

exons to calibrate the detection of transcription, I generated more accurate annotation-agnostic

transcriptome definitions for 13 regions of the CNS and a further 28 human tissues.

Figure 2.3 Optimisation of the detection of transcription. a) Transcription in the form of expressed
regions (ERs) was detected in an annotation agnostic manner across 41 human tissues. The mean coverage
cut-off (MCC) is the number of reads supporting each base above which that base would be considered
transcribed and the max region gap (MRG) is the maximum number of bases between ERs below which
adjacent ERs would be merged. MCC and MRG parameters were optimised for each tissue using the
non-overlapping exons from Ensembl v92 reference annotation. b) Line plot illustrating the selection
of the MCC and MRG that minimised the difference between ER and exon definitions (median exon
delta). c) Line plot illustrating the selection of the MCC and MRG that maximised the number of ERs that
precisely matched exon definitions (exon delta = 0). The cerebellum tissue is plotted for (b) and (c), which
is representative of the other GTEx tissues. Green and red lines indicate the optimal MCC (2.6) and MRG
(70), respectively.

2.3.2 Novel transcription is most commonly observed in the central nervous sys-

tem

To assess how much of the detected transcription was novel, ERs were categorised with respect to

the genomic features with which they overlapped as defined by the Ensembl v92 reference anno-

tation (exons, introns, intergenic; Figure 2.2a). Those that solely overlapped intronic or intergenic

regions were classified as novel. I discovered 8.4 to 22Mb of potentially novel transcription across
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all tissues, consistent with previous reports that annotation remains incomplete (18, 19). Novel

ERs predominantly fell into intragenic regions suggesting that I were preferentially improving

the annotation of known genes, rather than identifying new genes (Figure 2.4) Although novel

transcription was found to be ubiquitous across tissues, the abundance varied greatly between

tissues (Figure 2.4b & 2.4d, 2.4e). To investigate this further, I calculated the coefficient of

variation for exonic, intronic and intergenic ERs. I found that the levels of novel transcription

varied 3.4-7.7x more between tissues than the expression of exonic ERs (coefficient of variation

of exonic ERs: 0.066Mb, intronic ERs: 0.222Mb, intergenic ERs: 0.481Mb). Furthermore,

focusing on a subset of novel ERs for which I could infer the precise boundaries of the presumed

novel exon (using intersecting junction reads), I found that more than half of these ERs were

detected in only 1 tissue and that 86.3% were found in less than 5 tissues (Figure 2.5a). Even

when restricting to ERs derived from only the 13 CNS tissues, 34.3% were specific to 1 CNS

region (Figure 2.5b). This suggests that novel ERs are largely derived from tissue-specific

transcription, potentially explaining why they had not already been discovered. This finding

lead us to hypothesise that genes highly expressed in brain would be amongst the most likely to

be re-annotated due to the difficulty of sampling human brain tissue, the cellular heterogeneity

of this tissue and the particularly high prevalence of alternative splicing (46). As predicted,

the quantity of novel transcription found within brain was significantly higher than non-brain

tissues (p-value: 2.35e-10) (Figure 2.4e & 2.4f). In fact, ranking the tissues by descending

Mb of novel transcription demonstrated that tissues of the CNS constituted 13 of the top 14

tissues. Interestingly, the importance of improving annotation in the human brain tissue was most

apparent when considering purely intergenic ERs and ERs that overlapped exons and extended

into intergenic regions (Figure 2.4d & 2.4e). This observation raised the question of which factors

were most important in determining whether a gene was re-annotated (connected to a novel ER).

I used logistic regression to find genic properties, such as measures of structural complexity and

specificity of expression to brain, that significantly changed a gene’s likelihood of re-annotation.

I also accounted for factors which might be expected to contribute to errors in ER identification,

including whether the gene overlapped with another known gene making attribution of reads

more complex. I found that the annotation of longer, brain-specific genes with higher transcript

complexity were more likely to have evidence for incomplete annotation (Table 2.1). Importantly,

overlapping genes were not significantly more likely to be re-annotated (taking into account gene

length), suggesting that novel transcription is not merely a product of noise from intersecting
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genes. Taken together these findings demonstrate that widespread novel transcription is found

across all human tissues, the quantity of which varies extensively between tissues. CNS tissues

displayed the greatest quantity of novel transcription and accordingly, genes highly expressed in

the human brain are most likely to be re-annotated.

Figure 2.4 Transcription detected across 41 GTEx tissues categorised by annotation feature. Within
each tissue the length of the ERs Mb overlapping a) all annotation features b) purely exons c) exons and
introns d) exons and intergenic regions e) purely intergenic regions f) purely introns according to Ensembl
v92 was computed. Tissues are plotted in descending order based on the respective total size of intronic
and intergenic regions. Tissues are colour-coded as indicated in the x-axis, with GTEx brain regions
highlighted with bold font. At least 8.4Mb of novel transcription was discovered in each tissue, with
the greatest quantity found within brain tissues (mean across brain tissues: 18.6Mb, non-brain: 11.2Mb,
two-sided Wilcoxon rank sum test p-value: 2.35e-10
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Figure 2.5 Tissue specificity of novel ERs. . Taking all intronic and intergenic ERs that were intersected
by two non-overlapping split reads, we inferred the precise boundaries of this set of 5,129 unique novel
ERs. We then counted the number of tissues in which these ERs were detected. The majority (51.3%) of
ERs were detected in only 1 tissue and 85.9% were detected in less than 5 tissues

Gene property Odds ratio p-value Estimate
1 Brain-specific 1.10 *** 0.09
2 Transcript count 1.02 *** 0.02
3 Gene length 1.00 *** 0.00
4 Gene biotype - protein coding 1.24 *** 0.22
5 Gene biotype - lincRNA 0.96 *** -0.04
6 Gene biotype - processed pseudogene 0.86 *** -0.15
7 Gene biotype - unprocessed pseudogene 0.91 *** -0.09
8 Gene biotype - other 0.89 *** -0.11
9 Gene TPM 1.00 0.403 -0.00

10 Overlapping gene 1.00 0.773 -0.00
11 Constant 1.15 *** 0.14

Table 2.1 Gene properties influencing re-annotation. Gene characteristics such as brain specificity,
transcript count, gene length, mean TPM and whether the gene overlapped with another were used to assess
which genes were the most likely to be identified as re-annotated. Brain-specific, longer, protein-coding
genes of high transcript complexity were the most likely to be re-annotated.

2.3.3 Validation of novel transcription

A proportion of novel transcription may originate from technical variability or pre-mRNA

contamination. Therefore, the reliability of detecting novel ERs across different versions of

Ensembl and within an independent dataset was assessed. Firstly, I measured how many Kb of the

transcription detected would have been classified as novel with respect to Ensembl v87, but was

now annotated in Ensembl v92 and found that across all tissues an average of 68Kb (43-127Kb)

had changed status. This value was 5.3x (3.2-10.1x) greater in every tissue compared to the Kb of

ERs overlapping exons in Ensembl v87 that had become purely intronic or intergenic in Ensembl
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v92 (Figure 2.7a). To further assess whether this was greater than what would be expected by

chance, I compared the total Kb of novel ERs entering v92 annotation for each tissue to 10,000

sets of random length-matched intronic and intergenic regions. For all tissues, the total Kb of both

intronic and intergenic ERs that were now annotated in Ensembl v92 was significantly higher than

the total Kb distribution of the randomised negative control regions, implying a high validation

rate of novel ERs (Figure 2.6). Notably, brain regions had significantly higher Kb of ERs entering

Ensembl v92 annotation from Ensembl v87 than non-brain tissues, even when subtracting the Kb

of ERs leaving Ensembl v87 (p-value: 7.6e-9), suggesting the greater abundance of brain-specific

novel transcription was not purely attributed to increased transcriptional noise. While our analysis

of novel ERs across different Ensembl versions provided a high level of confidence in the quality

of ER calling, it was limited to ERs which had already been incorporated into annotation and did

not provide an overall indication of the rate of validation across all ERs. Therefore, I investigated

whether our GTEx frontal cortex derived ERs could also be discovered in an independent frontal

cortex dataset reported by Labadorf and colleagues (55). As expected, ERs which overlapped

with annotated exons had near complete validation (>= 89%), but importantly 62% of intergenic

and 70% of intronic ERs respectively were also detected in the second independent frontal cortex

dataset (Figure 2.7b). While this high validation rate implied the majority of all ERs were reliably

detected, I investigated whether a subset of ERs supported with evidence of RNA splicing as well

as transcription would have even better rates of validation. Evidence of transcription is provided

by the coverage data derived using derfinder, whilst junction reads, which are reads with a gapped

alignment to the genome provide evidence of the splicing out of an intron. With this in mind, I

focused on the putative spliced ERs as indicated by the presence of an overlapping junction read.

Consistent with expectation, I found that ERs with junction read support had higher validation

rates than ERs lacking this additional feature. This increase in validation rate for ERs with

junction read support was greatest for intergenic and intronic ERs with the validation rate rising

to 87% for intergenic ERs and 88% for intronic ERs (as compared to 99% for ERs overlapping

exons, Figure 2.7b). Even when considering this set of highly validated ERs with junction read

support, 1.7-3.8Mb of intronic and 0.5-2.2Mb of intergenic transcription was detected across all

41 tissues. Thus, in summary, the majority of novel ERs were reliably detected and validated in

an independent dataset.
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Figure 2.6 Total Kb of novel ER entering Ensembl v92 annotation compared to random, length-
matched intron and intergenic regions. For each of the 41 tissues, 10,000 random sets of intron and
intergenic (with respect to Ensembl v87) regions were generated and length matched to the intron and
intergenic ERs derived from that tissue. For all 10,000 sets, we counted the total Kb of regions that were
now exonic in Ensembl v92, shown by distributions of black dots on the graph. Red “X”’s mark the actual
total Kb of novel ERs for each tissue that were validated and one-sample Wilcoxon rank sum tests were
used to test whether this quantity was significantly different from the randomised sets (all p-values <
2e-16).
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Figure 2.7 Validation of novel transcription. a) The classification of ERs based on v87 and v92 of
Ensembl was compared. Across all tissues, the number of intron or intergenic ERs with respect to v87
that were known to be exonic in Ensembl v92 was greater than the number of ERs overlapping exons
according to v87 that were now unannotated in v92. Tissues are plotted in descending order based on the
total Mb of novel ERs with respect to Ensembl v87 that were validated (classified as exonic in the Ensembl
v92). Tissues are colour-coded as indicated in the x-axis, with GTEx brain regions highlighted with bold
font. b) Barplot represents the percentage of ERs seeding from the GTEx frontal cortex that validated in
an independent frontal cortex RNA-seq dataset. ERs defined in the seed tissue were re-quantified using
coverage from the validation dataset, after which the optimised mean coverage cut off was applied to
determine validated ERs. Colours represent the different annotation features that the ERs overlapped and
the shade indicates whether the ER was supported by junction read(s).
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2.3.4 Novel expressed regions are likely to be functionally important within hu-

mans

Given recent reports suggesting widespread transcriptional noise and acknowledging that tran-

scription, even when tissue-specific, does not necessarily translate to function I investigated

whether novel ERs were likely to be of functional significance using measures of both conserva-

tion and genetic constraint (19, 61). The degree to which a base is evolutionarily conserved across

species is dependent on its functional importance and accordingly, conservation scores have been

used to aid exon identification (13). However, this measure is unable to capture genomic regions

of human-specific importance. Thus, I investigated novel ERs not only in terms of conservation

but also genetic constraint. Constraint scores, measured here as a context-dependent tolerance

score (CDTS), represent the likelihood a base is mutated within humans (57). By comparing

our detected novel ERs to 10,000 randomised sets of length-matched intronic and intergenic

regions, I found that both intronic and intergenic ERs were significantly less conserved, but more

constrained than expected by chance (p-value < 2e-16, Figure 2.8a). This would suggest that

they have an important functional role specifically in humans. Furthermore, considering the

importance of higher-order cognitive functions in differentiating humans from other species, I

measured the constraint of brain-specific novel ERs separately on the basis that these ERs may

be the most genetically constrained of all novel ERs identified. Indeed, I found that brain-specific

novel ERs were even more constrained than other novel ERs. Another metric of functional

importance is whether a region of the genome is translated into protein and notably the vast

majority of all known Mendelian disease mutations fall within protein-coding regions. For this

reason, I investigated whether novel ERs could potentially encode for proteins. Here, I focused

on the subset of novel ERs which had evidence of splicing since the overlapping junction reads

can be used to assign the precise boundaries of ERs, allowing us to confidently retrieve the

DNA sequence and corresponding amino acid sequence for each novel ER. A total of 2,961 ERs

covering 274Kb was found to be potentially protein coding, which represented 57% of the ERs

analysed (Figure 2.8b). Amongst this set of ERs with protein coding potential, 758 ERs also fell

within the top 20% of most constrained regions of the genome. These ERs connect to 694 genes,

30% of which are expressed specifically in the CNS. Overall, I discovered that novel ERs are

likely to have a human-specific function. I also identified an important subset of novel ERs that
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have protein coding potential and are highly depleted for genetic variation in humans. Together,

this suggested that at least a proportion of novel ERs are functionally significant.

Figure 2.8 Novel ERs collectively serve an important function for humans and a proportion can
form potentially protein coding transcripts. a) Comparison of conservation (phastCons7) and constraint
(CDTS) of intronic and intergenic ERs to 10,000 sets of random, length-matched intronic and intergenic
regions. Novel ERs marked by the red, dashed line are less conserved than expected by chance, but are
more constrained. Brain–specific ERs marked by the green, dashed lines are amongst the most constrained.
Data for the cerebellum shown and is representative of other GTEx tissues. b) The DNA sequence for ERs
overlapping 2 junction reads was obtained and converted to amino acid sequence for all 3 possible frames.
2,168 ERs (57%) lacked a stop codon in at least 1 frame and were considered potentially protein-coding.

2.3.5 Incomplete annotation of OMIM genes may limit genetic diagnosis

Since re-annotation of genes already known to cause Mendelian disease would have a direct

impact on clinical diagnostic pipelines, I specifically assessed this gene set. I found that 63%

of this set of OMIM-morbid genes were re-annotated and 14% were connected to a potentially

protein-coding ER, suggesting that despite many of these genes having been extensively studied,

the annotation of many OMIM-morbid genes remains incomplete (Figure 2.9a). Given that

OMIM-morbid genes often produce abnormalities specific to a given set of organs or systems, I

investigated the relevance of novel transcription to disease by matching the human phenotype

ontology (HPO) terms obtained from the disease corresponding to the OMIM-morbid gene, to

the GTEx tissue from which ERs connected to that gene were derived. I discovered that 72% of

re-annotated OMIM-morbid genes had an associated novel ER originating from a phenotypically

relevant tissue (Figure 2.9b). This phenomenon was exemplified by the OMIM-morbid gene

ERLIN1, which when disrupted is known to cause spastic paraplegia 62 (SPG62), an autosomal

recessive form of spastic paraplegia, which has been reported in some families to cause not

only lower limb spasticity, but also cerebellar abnormalities (62). I detected a cerebellar-specific

novel ER that was intronic with respect to ERLIN1. The novel ER had the potential to code
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for a non-truncated protein and connected through intersecting junction reads to two flanking,

protein-coding exons of ERLIN1, supporting the possibility of this ER being a novel protein-

coding exon. Furthermore, the putative novel exon was highly conserved (phastcons7 score:

1) and was amongst the top 30% most constrained regions in the genome, suggesting it is

functionally important both across mammals and within humans (Figure 2.9c). Similarly, I

detected a brain-specific novel ER in the long intron of the gene SNCA, which encodes alpha-

synuclein protein implicated in the pathogenesis of Mendelian and complex Parkinson’s disease.

This ER connected to two flanking protein-coding exons through junction reads (Figure 2.9d)

and appeared to also have coding potential. Interestingly, while the ER sequence is not conserved

within mammals (phastcons7 score: 0.09) or primates (phastcons20 score: 0.21), it is in the

top 19% of most constrained regions in the genome suggesting it is of functional importance

specifically in humans. I validated the existence of this ER both in silico and experimentally.

The expression of this ER was confirmed in silico using an independent frontal cortex dataset

reported by Labadorf and colleagues (55). Using Sanger sequencing, I validated the junctions

intersecting the ER and the flanking exons in RNA samples originating from pooled human

frontal cortex samples (Figure 2.10). In order to gain more information about the transcript

structure in which the novel ER was contained, I also performed Sanger sequencing from the first

(ENSE00000970013) and last coding exons (ENSE00000970014) of SNCA to the novel ER. This

implied a full transcript structure containing a minimum of 609bp with the novel ER predicted to

add an additional 63 amino acids (45% of existing transcript size). This example highlights the

potential of incomplete annotation to both hinder genetic diagnosis since variants located in the

novel ER linked to SNCA would not be captured using whole exome sequencing (WES).
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Figure 2.9 Re-annotation of OMIM genes. a) A novel ER connected through a junction read was
discovered for 63% of OMIM-morbid genes. b) Comparison of the phenotype (HPO terms) associated
with each re-annotated OMIM-morbid gene and the GTEx tissue from which novel ERs were derived.
Through manual inspection, HPO terms were matched to disease-relevant GTEx tissues and for 72%
of re-annotated OMIM genes, the associated novel ER was detected in the phenotype-relevant tissue.
Visualised examples of re-annotated OMIM-morbid genes c) ERLIN1 and d) SNCA. Top track represents
the genomic region including the gene of interest marked in green. Second group of tracks detail the
junction reads and ERs overlapping the genomic region derived from the labelled tissue. Blue ERs
overlap known exonic regions and red ERs fall within intronic or intergenic regions. Blue junction reads
overlap blue ERs, while green junction reads overlap both red and blue ERs, connecting novel ERs to
OMIM-morbid genes. Thickness of junction reads represents the proportion of samples of that tissue in
which the junction read was detected. Only partially annotated junction reads (solid lines) and unannotated
junction reads (dashed lines) are plotted. The last track displays the genes within the region according to
Ensembl v92, with all known exons of the gene collapsed into one “meta” transcript.
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Figure 2.10 Primer locations for sanger sequence validation of SNCA novel exon. . The genomic
locations of the of the primers used for sanger sequence validation are displayed in relation to the SNCA
gene structure and the novel exon (in red). P4 and P5 sequenced from the novel exon to flanking exons of
SNCA, whilst P2 and P3 sequenced from the novel exon to the first and last coding exons of SNCA. Full
details of primer sequences are found in Table A.1

2.3.6 Automating the improvement of gene annotation using ODER

Although our analysis of the GTEx data set, resulted in the discovery of an abundance of novel

transcription across human tissues and identified the widespread incomplete annotation of disease

genes, we were aware of the limitations of this approach. More specifically, GTEx short-read

RNAs-seq data represents only a small fraction of the total available RNAs-seq data available on

human tissues and cells, and that in fact that through recount3 it is possible to analyse 750,000

human RNA-seq samples, with additional datasets available outside this project (63). With this

in mind, I automated the approach for the detection of novel ERs (Figure 2.3a). In particular,

it would be expected that that the application of this pipeline to other datasets such as those of

developmental brain would yield even greater abundance of novel exons that are not yet part

of annotation. Therefore, in collaboration with a colleague from the Ryten Lab, Emmanual

Olagbaju, we refactored the pipeline for novel exon discovery into an R package, ODER, which

is publicly released on Bioconductor. ODER takes an input BigWig and junction files from

RNA-seq and outputs a set of putative novel exons. Broadly, ODER is comprised of 2 steps;

defining and optimising the definition of ERs, then annotating ERs with respect to existing

gene annotation (Figure 2.11a). It is our hope that the automation and public release of ODER

will facilitate the improvement of gene annotation, through users who apply it ODER to their
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own and public RNA-seq datasets. In order to streamline the application of ODER for genetic

analyses downstream of ERs, several new features have been added to the pipeline (Figure 2.11b).

First, we have provided functionality for the conversion of the outputted novel ERs into a count

matrix, calculating the average coverage across each ER as the input for each element. This is

designed to be convenient for users intending to run differential expression analyses using the

novel ERs. Secondly, we have enabled the association of ERs to genes, not only through junction

and distance information, but also the expression of a gene in the tissue of interest. For example,

if two genes lie within close proximity to a detected novel ER, ODER can filter for genes that are

expressed in a tissue of the user’s choosing, which will improve the ability to associate ERs to

genes accurately. Thirdly, ODER permits the input of stranded BigWig files to define ERs more

accurately. Finally, the output of ODER has been designed to be compatible with the method

developed within the Ryten lab by Sid Sethi, F3UTER (https://github.com/sid-sethi/F3UTER).

F3UTER uses machine learning to classify whether novel ERs that fall on the 3’ end of a gene

are likely to be 3’UTRs using various features derived from the RNA-seq data (64). This may

be useful for users who wish to study the diversity of and variation in 3’UTRs. Overall, these

improvements to ODER allow users’ to have more versatility when conducting downstream

analyses on novel ERs. Together, the public release, automation and improvements to the pipeline

to discover novel ERs available through ODER are likely to make it a more widely used and

versatile tool.

https://github.com/sid-sethi/F3UTER
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Figure 2.11 Automating the improvement of gene annotation using ODER. a) ODER takes as input
coverage and junctions from RNA-seq data. The first step of ODER is to load in the coverage data, then
generate ERs across multiple MCCs and MRGs. The pair of MCCs and MRGs that minimise the exon
delta are selected and associated ERs are taken forward as those with the optimal definitions. Next, ERs
annotated with respect to existing annotation. Those that fall outside the boundaries of genes in intergenic
regions or between exons in intronic regions are termed novel ERs. Then, 2 approaches are used to connect
ERs to genes. ERs can be connected to a gene through an overlapping junction or if the ER is with a certain
distance to a gene. After applying ODER, there are several downstream applications for the outputted
novel ERs. Here, I give 3 examples of downstream applications that ODER has included functionality
to facilitate. First, ODER includes functionality to further refine the ER definitions by closing ERs to
the boundaries of junctions, which is particularly useful for downstream application, whereby the ERs
boundary definitions are paramount, such as variant interpretation in the context of rare disease. Second,
ERs definitions can be converted into a count matrix using ODER, the standard format for commonly
used, downstream analyses such as differential expression. Third, the output of ODER has been designed
to function as input into F3UTER, which can be leveraged to study 3’ UTR diversity.

2.4 Discussion

In recent years, the use of next-generation sequencing has changed the landscape of clinical

genetics. WES and to a lesser extent WGS are becoming key components of diagnostic testing
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and have dramatically accelerated the discovery of new disease-causing genes. However, recent

analyses predict that there is a finite pool of disease-causing genes (2). With the reducing number

of potential disease genes left to discover, genetic diagnosis will become more reliant on the

accuracy and completeness of the annotation of known disease-related genes. Here, I build on

existing resources to develop a method to accurately detect novel transcription in an annotation-

agnostic manner, then connect novel ERs to known genes and ultimately, improve the annotation

of 63% of OMIM-morbid genes.

In order to improve the confidence in the discovered novel transcription, I performed 3

types of validation: i. assessing the amount of novel transcription that has become annotated in

newer versions of Ensembl, ii. using an independent dataset and iii. for select genes, confirming

novel exon existence using sanger sequencing. I recognise that given annotation databases are

continually updated, it would be useful to replicate this first validation strategy across multiple,

more recent annotations of Ensembl and across gene annotation originating from other sources

such as GENCODE, RefSeq and AceView. However, through the use of multiple validation

strategies, I provide evidence to suggest that at least a substantial proportion of the discovered

novel transcription is likely to be real.

I find that the majority of probable novel exons detected have a restricted expression pattern,

which is often disease-relevant and significantly more abundant in brain. Furthermore, since

our approach does not rely on conservation across species to annotate novel exons, I am able

to identify ERs which are likely to be of human-specific importance. Using constraint scores

generated from aligning 7,794 human genomes and PhastCons conservation scores I find that

collectively the probable novel exons, while not necessarily conserved, are depleted for genetic

variation within humans suggesting that they are potential sites for pathogenic variation. The

putative tissue-specific origin and human-specific functions of the novel transcription detected

also provides a reasonable explanation for their omission from existing annotation databases

and the abundance of novel transcription in human brain. The practical difficulty of accessing

the brain reduces the number of available brain-specific datasets and its higher transcriptomic

diversity is known to generate a higher number of brain-specific transcripts. In addition, I find

that brain-specific ERs have the highest constraint scores, emphasising their specific importance

in humans. Together, these factors suggest that the resource I have generated will have the

greatest impact on the diagnosis of neurogenetic disorders.
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The advent of long-read RNA-seq technologies such as those provided by Oxford Nanopore

and Pacific Biosciences enable the accurate capture of full-length transcript structures (65, 66).

Such technologies hold considerable promise for the future improvement of gene annotation

databases and in fact, have already been applied to better capture transcriptomic complexity of

large, complex genes such as TTN and CACNA1C (20, 67). However, to date, whole transcriptome

long-read RNA-seq has been limited by its cost and related to that its sequencing depth and the

range of public data sets on which it has been applied. In contrast, short-read RNA-seq has

already been implemented at a transcriptome-wide scale on a large range of individuals, tissues

and cell-types. With this in mind, it is likely that for the forseeable future, short-read RNA-seq

will still be a valuable resource for improving gene annotation. For this reason, I release the

method for generating the novel exons developed in this study as a Bioconductor package, ODER.

It is my hope that this will facilitate the re-application of ODER on short-read RNA-seq data

to further improve the annotation of disease-causing genes. I anticipate that this will have the

most potential when applied to datasets that still remain less well-covered in gene annotation

databases, including data generated from single-cell RNA-seq and samples across various stages

of development. (68–70). In addition, I release the novel exons discovered in this study via a

dedicated web resource, vizER, which enables individual genes to be queried for incomplete

annotation as well as the download of all novel exon definitions. I anticipate this will serve as an

important resource for clinical scientists in the diagnosis of Mendelian disorders.

https://bioconductor.org/packages/release/bioc/html/ODER.html
http://rytenlab.com/browser/app/vizER


Chapter 3

Detection of pathogenic splicing events

from RNA-sequencing data using

dasper

3.1 Introduction

Next-generation sequencing has greatly accelerated the discovery of novel gene-to-disease

associations (2, 71). As a result, whole exome sequencing (WES) and more recently, whole

genome sequencing (WGS) are increasingly incorporated into the genetic diagnostic routine.

However, it is estimated that the success rate of such DNA-sequencing approaches in Mendelian

diseases is plateauing at 35-50% (3, 5, 72). To an extent, this is due to the challenges of

interpreting genetic variation beyond those that alter protein sequence or DNA structure (73, 74).

In particular, non-coding regulatory variants remain difficult to assess and are more likely to

be classified as variants of unknown significance (VUSs), as compared to coding variants for

which more analytic approaches exist (75). Pathogenic variants that impact splicing are one class

of non-coding variation, which are likely to account for a significant proportion of unsolved

cases (76). The splicing machinery is tightly regulated by numerous cis and trans signals; this

complexity is crucial for generating transcript and phenotypic diversity, but also increases the

likelihood that genetic variation will disrupt splicing (38, 77). In fact, variants distributed in

non-coding regions of the genome disproportionately affect splicing, often through disruptions to

intronic splicing enhancers, silencers or recognition sequences. Furthermore, aberrant splicing



36 Detection of pathogenic splicing events from RNA-sequencing data using dasper

has been shown to be a primary cause of rare diseases, with an estimated one third of pathogenic

variants impacting splicing (40, 41).

Given the prevalence of unsolved rare disease patients with putative genetic causes through

disruptions to splicing, there has been growing interest in the application of RNA-sequencing

(RNA-seq) for diagnostics to directly measure transcriptome-wide splicing (22). Using RNA-seq,

researchers can obtain a functional readout of splicing levels, gene expression and allele-specific

expression (ASE) in patients relative to unaffected controls. This enables the discovery of aberrant

molecular products, which can be used to resolve the list of candidate genes and variants identified

through WGS/WES to an actionable number. Aberrant RNA-level events discovered in this way

can be used to re-prioritise VUS, leading to assignment of pathogenicity. Previous publications

have demonstrated the promising utility of RNA-seq for diagnostics, with success rates ranging

from 7.5-21% for patients with no candidate genes after WES and/or WGS (23, 24, 27, 28).

In principle, information on splicing, gene expression and ASE obtained from RNA-seq all

have diagnostic potential. However, in practice the majority of genetic diagnoses made through

RNA-seq have involved detection of aberrant splicing and/or aberrant expression (23–25).

Since the first systematic application of RNA-seq for diagnostics by Cummings and col-

leagues in 2017, there has been growing interest in developing methods to detect pathogenic RNA

events in rare disease patients (33–35, 78). Although numerous tools exist to perform differential

splicing analysis, almost all are designed to identify global transcriptional differences between

moderate-to-large case-control cohorts (32, 79). Few are specialised for genetic diagnosis, where

success relies on distinguishing a pathogenic splicing event in a single patient (N of 1). Improve-

ments to the methodologies to detect pathogenic splicing events will relieve clinical scientists of

the requirement for manual curation, permitting the wider implementation of RNA-seq-based

approaches within accredited diagnostic laboratories and increasing diagnostic success.

Here, I introduce dasper, a method which integrates disruptions in both exon-exon junction

and base pair level coverage data through machine learning to detect aberrant splicing events

in patient samples. I find that dasper detects pathogenic splicing events with greater accuracy

than existing methods. After applying an OMIM-morbid gene filter, dasper is able to rank true

pathogenic splicing events in the top 10 most aberrant splicing events. Furthermore, dasper is

designed with diagnostic applications in mind and includes functionality to visualize candidate

genes in the form of sashimi plots for manual inspection (Figure 3.2). Finally, I demonstrate

that dasper is able to effectively leverage publicly-available control RNA-seq datasets, enabling
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RNA-seq to be a more cost-effective, standardized solution for diagnostics. dasper is released

as an R package on Bioconductor (http://www.bioconductor.org/packages/dasper) and it is my

hope that its use will improve the detection and interpretation of pathogenic splicing events and,

ultimately, the diagnostic yield for rare disease patients.

3.2 Methods

3.2.1 Patient samples

RNA-sequencing was performed on a total of 55 individuals. Written informed consent was ob-

tained for all subjects in accordance with the Declaration of Helsinki protocols and experimental

protocols approved by local institutional review boards. 16 of these were genetically diagnosed

Mendelian disease patients with known pathogenic splicing variants detailed in Table 3.1. The

remaining 39 samples were used as in-house controls.

Pathogenic variants were classified by their proximity to annotated acceptor or donor splice

sites. Those within 10bp of an acceptor or donor site were classified as "acceptor" or "donor"

variants respectively, whilst those further than 10bp away were termed "deep intronic".

3.2.2 Fibroblast culture and RNA extraction

Fibroblast cell lines cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% Fetal Bovine Serum and 0.05 g/ml uridine. Fibroblasts were harvested by first detaching

cells using TrypLE Enzyme, followed by washing with Dulbecco’s Phosphate Buffered Saline

(DPBS) prior to storage at -80°C. Total RNA was extracted from fibroblast pellets following the

manufacturer’s protocol. In order to assess RNA quality, RNA integrity numbers (RIN) were

measured using Agilent Technologies 2100 Bioanalyzer or Agilent 4200 Tapestation with all

RIN values found to exceed 8.0.

3.2.3 RNA-sequencing, alignment and quality control of patient samples

I prepared libraries for sequencing using the Illumina TruSeq Stranded mRNA Library Prep

kit by loading 50 ng of total RNA into the initial reaction; fragmentation and PCR steps were

undertaken as per the manufacturer’s instructions. Final library concentrations were determined

using Qubit 2.0 fluorometer and pooled to a normalized input library. Pools were sequenced

using the Illumina NovaSeq 6000 Sequencing system to generate 150 bp paired-end reads with

http://www.bioconductor.org/packages/dasper
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an average read depth of 100 million reads per sample. Pre-alignment quality control including

adapter trimming, read filtering and base correction were performed using fastp, an all-in-one

FASTQ preprocessor (v0.20.0) (80). Reads were aligned using STAR 2-pass (v2.7.0) to the

hg38 build of the reference human genome (hg38) using gene annotation from Ensembl v97

(81). Novel junctions discovered in the 1st pass alignment were used as input to the 2nd pass

to improve the sensitivity of junction detection. Reads were required to uniquely map to only

a single position in the genome. The minimum required overhang length of an annotated and

unannotated junction was set to be 3 and 8 base pairs, respectively. The output BAM files

underwent post-alignment QC using RSeQC (v2.6.4), with all samples passing quality control

after manual assessment (82).

3.2.4 Control RNA-seq data

dasper analysis was conducted with two sets of controls samples; 504 GTEx (v8) fibroblast

samples or a set of 55 in-house samples (including the 16 patients). GTEx v8 fibroblast junction

and BigWig data was downloaded via the recount3 R package (v1.1.2) and filtered for samples

without large CNVs or chromosomal duplications and deletions (SMAFRZE = “RNASEQ”)

(53, 63, 83, 84). In-house RNA-seq data in the form of BAM files were converted into the BigWig

format using megadepth (v1.08b) for input into dasper (v1.1.3) (59). In order to investigate the

effect of changing the number of control samples used on the detection of pathogenic events, I

down-sampled control numbers systematically. For GTEx control samples, 10, 20, 40, 80, 160,

320 up to a maximum of 504 samples were used. For in-house control samples, analysis was

performed using 2, 4, 8, 16, 32 up to a maximum of 55 samples. For each size (N) and type of

control samples, 5 iterations were executed. For each iteration, I used N randomly selected control

samples of the appropriate type as input into the dasper pipeline. When using in-house samples,

to ensure that I were not including related patients as controls, any controls with pathogenic

variants matching the current patient of interest were removed prior to down-sampling.

3.2.5 Obtaining the set of OMIM-morbid genes and relevant gene panels

The full set of Online Mendelian Inheritance in Man (OMIM) morbid genes were obtained using

the biomaRt R package (v2.40.5), with gene symbols taken from the Ensembl v97 database. The

Genomics England panels for neuromuscular disorders (v5.9) and mitochondrial disorders (v2.12)

were downloaded from the PanelApp website (https://panelapp.genomicsengland.co.uk/panels/).
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Only “green” level genes with a high degree of confidence of association with disease were

retained for downstream analyses.

3.2.6 LeafCutterMD

STAR outputted junctions were wrangled into a bed format for input into LeafCutterMD (v2.7).

All 55 in-house samples were used for intron clustering. Introns were clustered matching

the settings used on the LeafCutterMD documentation, namely requiring at least 50 junctions

supporting a cluster and permitting introns of up to 500kb in size. Outlier intron excision

analysis was performed on the 16 patient samples using default settings. Outputted p-values were

standardized to ranks for comparison with the output of dasper (35).

3.2.7 FRASER

FRASER was run using the Snakemake pipeline DROP (36, 85). Patient RNA-seq data in the

form of BAM files were used as input for DROP. Similar to dasper, each patient was compared to

the remaining 54 patients adopting an 1-vs-all experimental design. Ensembl v97 gene annotation

was used for the reference gene definitions from which junctions were annotated. FRASER was

run with the default configuration provided by DROP. Importantly, this meant that only splicing

events with a delta percent-spliced-in of over 0.05 and at least 10 reads in a single sample were

retained for comparison. P-values were multiple test corrected using the Benjamini-Hochberg

method then ranked within each sample, with a rank of 1 specifying the splicing event with the

most significant p-value.

3.2.8 dasper

Figure 3.4 depicts the top-level workflow for dasper described in the following section. The

inputs for dasper (v1.1.3) were junction read files (containing reads mapping with a gapped

alignment to the genome) and BigWig files (which store coverage data) for control samples and

the case sample of interest. Junction reads were annotated based on: i) whether their start and/or

end position precisely overlapped with an annotated exon boundary, and ii) whether that junction

read matched an intron definition from existing annotation as defined by Ensembl v97 (12).

Using this information together with the strand, junctions were categorised as: annotated, novel

acceptor, novel donor, novel combination, novel exon skip, ambiguous gene and unannotated.

Annotated junctions were those that matched an existing intron definition. Novel acceptor and
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novel donor junctions had a single end that overlapped with a known exon boundary. Novel

combination, novel exon skip and ambiguous gene junctions had both ends overlapping known

exon boundaries, however the resulting introns did not match an existing intron definition as

defined within Ensembl v97 (Figure 3.1). Novel combination junctions connected to exons

associated with multiple transcripts, whilst novel exon skip junctions were only associated

with a single transcript. Ambiguous gene junctions were connected exons originating from 2

different genes. Unannotated junctions had neither end overlapping a known exon boundary.

Junctions were filtered for those that had at least 5 counts in at least 1 sample, a length between

20-1,000,000 base pairs, did not overlap any ENCODE blacklist regions and were not classified

as ambiguous gene or unannotated (86). For each junction, any other junction that shared an

acceptor or donor site with it was obtained to form a junction cluster. In order to normalize the

junction counts to enable comparison between samples, the counts for each junction were divided

by the total counts associated with its corresponding cluster.

For each junction, 3 regions of interest were defined and used to obtain coverage information,

namely the intron and the two flanking exons. Exon boundaries were based on exon definitions if

the end of a junction overlapped an annotated exon. Otherwise, the putative unannotated exons

were presumed to be 20bp in length. Coverage across these 3 regions was loaded from BigWig

files. In order to normalize the coverage for comparison between samples, the mean coverage

across each of the 3 regions was divided by the total coverage across the exons of the associated

gene.

I used z-scores to assess the degree to which junctions and coverage in each patient deviated

from the corresponding distribution in controls. For each junction, the coverage z-score with

the greatest absolute value across the 3 regions was retained, reducing the number of z-scores

per junction from 4 to 2. Junctions were then split into those which had a junction count based

z-score above 0 (up-regulated) and below 0 (down-regulated). An isolation forest model was

fitted on the up-regulated and the down-regulated junctions separately, using the two z-scores as

input. Isolation forests are an ensemble-based outlier detection method, that detect anomalies

as those that require shorter paths to isolate33. The output of the isolation forest model was an

outlier score per junction. Junction-level outlier scores were aggregated to a cluster-level rank in

3 steps. First, clusters that did not contain at least 1 up-regulated and 1 down-regulated junction

were omitted. Then, a mean was taken of the up-regulated and down-regulated junction with

the greatest outlier scores in each cluster; this formed the cluster-level outlier score. Finally,
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within each patient, clusters were ranked based on this cluster-level outlier score, with a rank

of 1 describing the cluster that had the lowest outlier score and so was predicted to be the most

aberrant.

Gene A

Gene A

Transcript 1

Transcript 2

Gene B

Gene C

Gene C

Gene C

5’ 3’

Am
bi
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s
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ne

Gene D

Gene E

Figure 3.1 Illustration of the different categories of splicing event. Junction reads used to define
Leafcutter introns were annotated based on their relationship to the annotated transcriptome (Ensembl
v97). Here, the annotated transcriptome is illustrated by the grey-filled boxes. Annotated junctions have
donor and acceptor splice sites that match the boundaries of an existing intron. Likewise, novel exon skip
and novel combination junctions have donor and acceptor splice sites that overlap known exon boundaries
derived from exons contained within the same transcript, but, they represent introns which are not found
in the set of annotated introns. They are distinguished by whether or not their donor and acceptor splice
sites overlap exons derived from the same transcript. Novel donors and novel acceptors are junctions
where only one end (3’ or 5’, respectively) matches the boundary of a known exon. All novel events are
considered partially annotated. Unannotated junctions ("None") have neither end overlapping a known
exon. Ambiguous gene junctions are have either end overlapping different genes
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3.3 Results

3.3.1 Pathogenic splicing events are characterised by abnormalities of annotated

junction reads and coverage in associated regions

Previous methods to detect aberrant splicing have often focused on up-regulated novel junctions

that are never or very rarely present in controls (3, 23). However, studies have demonstrated

that splicing disruptions have complex consequences, which can be difficult to predict from

DNA sequence data alone (43). For this reason, I first explored the consequences of pathogenic

splicing variants using RNA-seq data derived from 16 Ill-characterized and deeply-sequenced

patient fibroblast samples. Importantly, this cohort was selected to be heterogenous with respect

to disease and variant type (Table 3.1). Patient samples were derived from individuals diagnosed

with a range of neurological disease, focusing specifically on Mendelian mitochondrial disorders

and rare neuromuscular conditions including Ullrich congenital muscular dystrophy (Table 3.1).

All patients had diagnostically-confirmed splicing variants impacting on acceptor sites, donor

sites or located deep within intronic sequence. Detailed inspection using sashimi plots of the

resulting sequence data demonstrated that all pathogenic splicing events were characterized by:

i) up-regulated novel junction/s (termed UJs), ii) down-regulated annotated junction/s (termed

DJs), and iii) changes in coverage within the associated exonic or intronic regions. For example,

analysis of RNA-seq data from an individual with a pathogenic donor splice site variant in the

gene, NDUFA4, confirmed that this variant resulted in the generation of an UJ due to use of an

novel donor site 4bp downstream of the canonical splice site (Figure 3.2) (87). However, based

on the RNA-seq data I observed additional splicing changes, namely an almost complete absence

of an annotated DJ, the appearance of another UJ as Ill as disruptions in coverage across the first

intron (Figure 3.2). Similarly, inspection of RNA-seq data derived from an individual with a

pathogenic donor splice site variant in the gene HTRA2 (Figure 3.2), showed that as Ill as causing

retention of the intron 3 with loss of the canonical splicing event (DJ), there was also a novel UJ

caused by use of an novel donor site which was not previously predicted or detected35 (Figure

3.2).
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Figure 3.2 Pathogenic splicing is characterized by disruptions to junctions and coverage. a) Sashimi
plots are split into two panels; the top representing the coverage and the bottom the junctions as well as
gene body. Junctions are labelled with their counts and colored with respect to their annotation. The red
cross represents the known pathogenic variant. The arrow represents the direction of transcription. a) In
NDUFA4, the pathogenic splicing event can be observed through the appearance of 2 novel junctions;
a novel acceptor (red) and a novel donor (green) junction, which are never found in control samples.
Additionally, there is an almost complete loss of an annotated junction (blue), which is always present
in control samples. Abnormalities can also be detected in the coverage data across introns associated
with the aberrant junctions. First, there is a slight shift in the right-most exon boundary, which matches
the donor site that is represented by the novel donor junction. Additionally, a lowly expressed, longer
extension of the exon boundary is observed, which is corroborated by the annotated junction that has a
normalized count of 0.01 in the patient. b) Previous studies have demonstrated that the pathogenic splicing
in HTRA2 causes an intron retention event. From the RNA-seq data, this is consistent with the loss of an
annotated junction (blue) as well as a significant increase in coverage across the intron that is retained.
Unexpectedly, there is also an appearance of a novel donor junction (green).

Next, I investigated the relationship between disruptions to junction usage (both UJs and

DJ) and abnormalities in sequencing coverage over implied exonic and intronic regions for

pathogenic splicing events. This was achieved by calculating corresponding z-scores for each of

the four features of interest (UJ, UJ-related coverage, DJ and DJ-related coverage) and based
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on the distributions of counts and coverage in controls ( 50 in-house samples). I found that

absolute UJ z-scores were significantly higher than DJ z-scores (median DJ: -15.21, UJ: 27.82,

p-value: 0.043) and that both types of junction z-scores tended to be higher than coverage

z-scores. Furthermore, I found that the correlation between junction and coverage z-scores was

low (Pearson r = -0.1), suggesting that they contained distinct information. Similarly, UJ and DJ

z-scores, though negatively correlated (Pearson r: -0.58), could be independently informative

for detecting pathogenic splicing events 3.3. Thus, taken together this analysis suggested that

pathogenic splicing events were characterized by abnormalities in UJs, DJs and nearby coverage,

and that all these features could be informative.

Figure 3.3 Correlation z-scores that were used as input into dasper. a) Correlation between coverage
and junction z-score. b) Correlation between the coverage z-scores for up and down regulated junctions.
c) Correlation between junction z-scores for up and down regulated junctions.

3.3.2 Development of a clinically accessible, machine-learning pathogenic splic-

ing detection method

Informed by the characterization of pathogenic splicing, I next sought to improve on existing

approaches for the identification of aberrant splicing through development of a new tool, dasper.

Given that I found that pathogenic splicing variants generate both DJs and UJs within a junction

cluster, dasper explicitly requires each splicing event to have both features, reducing the search

space for pathogenic events (Figure 3.4). Furthermore, dasper incorporates coverage information

alongside junction counts to better inform the detection of pathogenic splicing events. These

key improvements are embedded within the dasper workflow, which begins with the input of

patient RNA-seq data, and a set of user-defined RNA-seq control samples. The formats of the

files required for dasper are standard tabular junction data and BigWigs (Methods: dasper).

This enables easy access to large publicly available control data sets through resources such as

recount2 and recount3 (63, 83). Leveraging this advantage, dasper includes the functionality to
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download GTEx control data for all clinically-accessible tissues (fibroblasts, skeletal muscle,

whole blood, adipose tissue, lymphocytes), permitting the running of dasper with only a single

patient RNA-seq analysis sourced from any of these sample types. Within dasper the user can

then load, locally normalize and score junctions and coverage counts in patients based on their

deviation from the set of controls (See methods section 3.2.8). After generating junction and

coverage-related features, dasper applies an outlier detection method, namely an isolation forest,

to aggregate junction and coverage scores in a single metric describing the aberrancy of each

splicing event33. Notably, dasper permits easy interchange of the statistical models used to score

junctions and coverage as well as the addition of other features, enabling further optimisation

of the pipeline in future. Finally, the output of dasper is a ranked list of splicing events within

each patient sample such that a rank of 1 represents the splicing event predicted to be most

pathogenic (Figure 3.4). This is complemented by functions that enable visualisation of junctions

and coverage of cases and controls in the form of sashimi plots to aid interpretation (Figure 3.2

and 3.4).

I assessed the utility of dasper and specifically the value of pairing the use of UJs and DJs,

and incorporating coverage information to detect pathogenic splicing events, I compared the

ranking of junctions generated on the basis of: i) UJs alone, ii) DJs alone, and dasper (UJs,

DJs and coverage). This analysis demonstrated that dasper ranks pathogenic splicing events on

average in the top 34 most aberrant, whilst use of only UJ or DJ information results in average

similar ranks of 142 and 202 respectively (Figure 3.5). Overall, the use of information originating

from both DJs and UJs, alongside the incorporation of coverage in dasper improves the detection

of pathogenic splicing events.
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Figure 3.4 dasper applies an outlier detection method with junction and coverage information as
input to detect aberrant splicing events. dasper takes as input RNA-seq data from a set of cases and
controls. Controls can be patient samples or publicly available data, of which dasper includes GTEx
data originating from any clinical accessible tissue. Junctions and coverage data are extracted from the
RNA-seq and processed. Specifically, this involves normalizing the junction and coverage counts to permit
comparison between cases and controls. Then, scoring junctions and coverage by the deviation of their
counts from the corresponding count distribution in control samples. These scores are aggregated using
an outlier detection model. For each patient, the outputted outlier scores are ranked, generating a list
of all splicing events in each patient ranked by their aberrancy. A rank of 1 specifies the most aberrant
splicing event in each patient. dasper includes functions to plot sashimi plots to permit manual inspection
of candidate splicing events.
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Figure 3.5 dasper applies an outlier detection method with junction and coverage information as
input to detect aberrant splicing events. Boxplots displaying the rank of 16 pathogenic splicing events
across varying inputs. Each point represents a pathogenic splicing event from one of the 16 patients
analyzed. The x-axis shows what information has been used for the ranking, either only up-regulated
junctions (UJ), down-regulated junctions (DJ) or the dasper method (UJs, DJs and coverage). The y-axis
displays the rank outputted from dasper, with lower ranks specifying splicing events that are predicted to
be more aberrant.

3.3.3 Comparison of dasper to other methods used to detect pathogenic splicing

Next, I evaluated dasper’s performance in comparison to existing, commonly used approaches

for pathogenic splicing detection, namely the LeafCutterMD, FRASER and z-score methods

(35, 36). In order to enable comparison between tools, I converted LeafCutterMD and FRASER

p-values as well as z-scores to a ranking such that the lowest p-value or highest absolute z-score

was assigned a rank of 1. Based on the analysis of patient-derived fibroblast samples. I found

that the rankings for pathogenic splicing events produced by dasper were significantly lower

than those generated by LeafCutterMD and z-score (LeafCutterMD wilcoxon p-value: 0.013;

vs z-score: 0.0003) (Figure 3.6). However, in comparison to FRASER, a new method released

during the writing of this thesis, dasper ranked the majority of pathogenic splicing events higher

with the exception of 2 patients (FRASER wilcoxon p-value: 0.001).
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Given that pathogenic splicing can vary in its difficulty of detection dependent on the type

of event, I also investigated the performance of dasper across the different causative variant

types. I found that while dasper detected variants at donor versus acceptor sites with similar

accuracy (wilcoxon p-value: 0.482), pathogenic events caused by deep intronic variants received

significantly higher ranks, indicating that they were more difficult to detect (wilcoxon p-value:

0.013) (Figure 3.6).

I recognized that the utility of dasper in diagnostic settings depends not only on how it

compares to existing tools but on its performance in clinically-relevant contexts. To investigate

this, I measured the absolute ranking of pathogenic splicing events using dasper. I found that

pathogenic splicing events were ranked on average in the top 40 (median: 33.750) most aberrant

events in each patient (Figure 3.6), but note that these ranks were obtained without any gene,

variant or phenotypic level filters. Given that in diagnostic settings only genetic variants in

known disease-associated genes would be considered, I re-calculated rankings after filtering for

splicing events that were connected to genes within the OMIM-morbid gene set or the appropriate

Genomics England panels (see detailed methods). After filtering for OMIM-morbid genes, I

found that dasper was able to rank pathogenic splicing events within the top 10 most aberrant in

each patient (median: 6.750) (Figure 3.6). The more stringent gene panel-based filtering, which

not only assumes the gene has to be known to cause disease but is also linked to the patient

phenotype, further reduced rankings such that pathogenic events were within the top 5 most

aberrant on average (median: 2.5) (Figure 3.6). In summary, dasper is able to rank pathogenic

splicing events such that they would be identifiable with only minimal manual curation.
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Figure 3.6 Comparison of the performace of dasper to existing pathogenic splicing detection tools.
a) Comparison of different methods used to detect aberrant splicing. dasper ranks pathogenic splicing
lower or more aberrant than existing LeafCutterMD or z-score approaches. However, dasper ranks
pathogenic splicing higher than the FRASER method. The y-axis represents the rank of pathogenic
splicing events, whilst the x-axis specifies the method used. b) Ranking pathogenic events across different
gene filters. The x-axis details the sets of gene sets that have been used for filtering; either no filter,
splicing events connected to OMIM-morbid genes or splicing events associated with gene panels. After
applying the OMIM-morbid or Genomics England gene panel filter, pathogenic splicing events are ranked
on average in the top 10 and top 5 most aberrant splicing events respectively. c) Pathogenic splicing events
resulting from deep intronic variants are ranked higher than acceptor or donor variants, suggesting that
they are more difficult to detect.

3.3.4 dasper is able to leverage publicly available control data effectively

While there is increasing evidence to show that paired patient-derived transcriptomic data can

increase the diagnostic yield of WES/WGS, there remain significant barriers to implementing

this approach in clinical settings. One such hurdle is the generation or identification of suitable

control data. In the previous analyses, I have used 50 in-house sequenced RNA samples as

controls. I are aware that sequencing this number of RNA-seq samples would incur a substantial

resource burden on diagnostic labs, which may not be feasible in practice. To address this issue, I

assessed the performance of dasper when using publicly available GTEx v8 data originating from

504 fibroblasts, matching the tissue of origin of patient-derived RNA-seq data in this study (51).

I found that, on average, using in-house samples resulted in more accurate calling of pathogenic

splicing events, when compared to the use of GTEx samples as controls. The improvement

in ranking of pathogenic events when using in-house controls was observed in 14/16 patients

analysed. This pattern of improvement remained true following filtering for pathogenic splicing

events within known disease genes (median no filter GTEx: 90, no filter in-house: 34) (Figure 3.7.

However, this analysis also demonstrated that the absolute ranking when using publicly available

controls may be sufficient to be useful when applied in a more clinically-relevant manner. After

limiting splicing events to only those connected to genes already implicated in genetic disease

as defined in OMIM, and using GTEx controls, dasper was still able to rank true pathogenic
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splicing events in the top 25 most aberrant events (median: 24.5). Overall, this suggests that while

technical variability between patient and controls samples reduces the ability to detect pathogenic

splicing events, publicly available control data is a viable alternative to costly, time-consuming

in-house data generation.

Next, I explored the relationship between control sample number and the power to detect

pathogenic splicing events, a significant concern for implementation in a diagnostic setting

whether in-house or external control data is being used. To investigate this, I applied dasper while

randomly down-sampling the number of control samples used, analysing GTEx and in-house

control data separately. As would be expected, I found that an increase in the number of controls

considerably improves the detection of pathogenic splicing events using either GTEx or in-house

control data (Figure 3.7). Notably, while the rate of improvement in pathogenic splicing detection

greatly diminishes with increasing control number suggesting a diminishing return, it does not

appear to plateau at the maximum number of available samples for either control type. This

analysis would suggest that further increases in the quantity of publicly available control samples

could compensate against the technical differences between patient and control sample sets.

Notably, I found that the ranking when using 504 GTEx controls matched the performance of

using between 8 and 16 in-house samples (Figure 3.7). In summary, it is likely an increase in

sample number would improve the detection of pathogenic events for both control types.
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Figure 3.7 dasper is able to leverage publicly available and in-house controls effectively. a) ) The
rank of pathogenic splicing events across varying gene filters and control types. The colour of boxplot
represents the control type used, either 504 GTEx v8 samples (blue) or 50 in-house sequenced samples
(yellow). In general, in-house samples are able to detect pathogenic splicing events easier than GTEx
samples. However, after applying a gene panel filter, pathogenic splicing events are detected in the top 10
splicing events for either control type. b) Comparison of the performance of GTEx and in-house control
data for detecting pathogenic splicing events. The x-axis describes the number of controls used. The
colour of the points and lines describes which control type is used, namely up to 504 GTEx fibroblasts or
up to 50 in-house samples. At each N of controls analysed, the mean and standard deviation of the rank of
the 16 pathogenic events for the 5 sets of randomly down-sampled controls is plotted.

3.4 Discussion

In this study, I present dasper, an R package released on Bioconductor that can be used to

detect aberrant splicing events from RNA-seq data. Here, I use a cohort of 16 patients with

known pathogenic splicing variants to inform the development of dasper and demonstrate its

utility. Uniquely, dasper pairs information from DJs with UJs as well as incorporating coverage

changes across a gene to improve the detection of pathogenic splicing events. dasper was
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able to rank pathogenic splicing events in the top 10 most aberrant after OMIM-morbid gene

filtering. Designed with clinical accessibility and interpretation in mind, dasper uses standard

RNA-seq data formats as input granting users flexibility to incorporate publicly available datasets

as controls. Moreover, I demonstrated that dasper was able to leverage publicly available GTEx

data effectively. Finally, dasper includes sashimi plot functionality to aid the manual inspection

of candidate splicing events (53, 83, 88).

In comparison to existing aberrant splicing detection tools, dasper outperformed the LeafCut-

terMD and z-score based approaches. However, the recently released method FRASER ranked

the majority of pathogenic splicing events more accurately than dasper. FRASER was released

within the time frame of the completion of this thesis. While our benchmarking suggests that the

autoencoder approach within FRASER does outperform dasper, it would be useful to confirm

whether this remains the case on a larger set of patients. Furthermore, due to inherent potential of

over correction when employing an autoencoder, in future studies it would be valuable to assess

the performance of FRASER compared to dasper when external, publicly available controls are

used.

To the best of my knowledge, this is the first study to explore the impact of splicing variant

subtypes and control sample selection on the detection of pathogenic splicing events. My analyses

highlighted that the selection of control sample type and number greatly impacts the power of

pathogenic splicing detection. In particular, I compare the usage of two types of control data;

either the use of publicly available GTEx RNA-seq data or in-house sequencing data. While I

find that the use of in-house samples improves the performance of dasper, presumably because

of a reduction in the technical differences between patient and control data, this approach is

associated with increased costs and reduced flexibility, creating barriers to the use of RNA-seq

pipelines in diagnostic laboratories. In contrast, the use of publicly available datasets has minimal

associated costs and is highly flexible; it enables any kind of (clinically-accessible) tissue sample

to be analysed for a given patient, reduces the need batch patient samples together, which would

reduce turnaround times for laboratory results. Although dasper performed better when using

in-house samples, GTEx samples still enabled pathogenic splicing events to be detected, on

average, in the top 25 most aberrant after applying an OMIM-morbid filter alone. This ranking

was equivalent to using 8-16 in-house samples suggesting that use of publicly available data

could be a viable, cost-effective alternative for the detection of pathogenic splicing. In this

context, it is worth noting that public RNA-seq datasets are progressively increasing in size. In
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fact, for tissues such as blood, public datasets collectively could provide RNA-seq profiles for

>30,000 unrelated individuals which could be meta-analysed as elegantly demonstrated by the

eQTLgen consortium (88). Additionally, over 70,000 and 300,000 human RNA-seq samples

are publicly released through the recount2 and recount3 projects respectively (53, 63, 83). It

would helpful to assess the usage of publicly available control datasets of this size on pathogenic

splicing detection, as one might expect that the increased N number within such datasets could

have the potential to match the efficacy of in-house controls. Furthermore, if put into practice, the

use of publicly available controls would permit different centers to use identical computational

protocols for diagnoses thus enable the standardization of pathogenic splicing identification

across laboratories.

Together, through leveraging in-house or publicly available datasets effectively, it is my hope

that dasper will make RNA-seq a more affordable, effective and standardized tool for diagnostics

and ultimately, lead to an increased rate of genetic diagnoses for Mendelian disease patients.



Chapter 4

Improving the diagnostic rate of

patients with suspected mitochondrial

disorders using RNA-sequencing

4.1 Introduction

Although individually rare, Mendelian diseases collectively affect an estimated 3.5-6% of the

human population, with an estimated 80% of disorders expected to have a genetic origin (1).

Establishing a genetic diagnosis in rare disease patients enables a more accurate prognosis,

informs genetic counselling, can improve the management of disease symptoms and, in some

cases, enables disease-modifying therapies to be administered (2). The advent of next-generation

sequencing technologies has revolutionised the landscape of clinical genetics, as evidenced by

the incorporation of whole-exome sequencing (WES) and whole-genome sequencing (WGS) into

the diagnostic routine. These technologies have reduced the cost of sequencing a human genome

and as a consequence, accelerated the number of gene-disease associations identified in recent

years (71). However, even after the application of WGS, a recent report found that a genetic

diagnosis was achieved in only 33% of probands across a large range of clinical phenotypes

and diseases (5). While it is worth noting that diagnostic yield varied widely by disorder type

(range: 0-55%), whether the disorder was thought to be entirely monogenic in origin or likely

to have a complex cause (range: 11-35%) and the family structure (5), across all disease areas

there remain many undiagnosed patients. This is largely because although WGS is capable of
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capturing the vast majority of variation within a human genome, accurate interpretation of this

variation remains a major challenge for diagnostics.

Variant interpretation relies on the cumulative evidence from population-wide variant fre-

quency data, bioinformatic predictions, functional assays, and segregation patterns (25). Func-

tional data requires determining the consequence of a variant on RNA and/or protein abundance,

structure and function (3). Given the historic focus on protein-coding regions, prediction of the

consequence of non-coding variants on expression, splicing or RNA stability remains particularly

challenging (37). Of all pathogenic variants, it is suggested that 30% fall in non-coding regions

(40). A further 10% of exonic pathogenic variants are thought to impact on splicing and also re-

main difficult to interpret correctly (89). Despite the development of several computational tools

to predict the effect of variants on transcription, their accuracy remains too low for diagnostic

applications (23, 43, 90). Thus, often these non-coding variants and splice-disrupting variants

remain as variants of unknown significance (VUSs) and require downstream functional assays

for validation of their consequence (24).

RNA-sequencing (RNA-seq) has become the gold-standard method for the systematic detec-

tion of aberrant gene expression, splicing and allele-specific expression. These aberrant events

can provide evidence of the functional impact of VUSs, thereby allowing the re-assignment

of their pathogenicity (4). A recent study systematically assessed the efficacy of WES, WGS

and RNA-seq for genetic diagnoses and found that almost 20% of the pathogenic variants they

discovered required RNA-seq data to determine their causality (4). In practice, RNA-seq has

been applied to patients clinically diagnosed with a variety of disorders and has been shown

to improve the success rate of genetic diagnosis by 5-35%, with the vast majority of diagnoses

have been made through the detection of aberrantly expressed genes or aberrant splicing events

(23–25, 27, 28).

Given RNA-seq data provides a transcriptome-wide functional readout of DNA, its application

can identify and characterise the structure of aberrant transcripts that drive pathogenicity at a

specific locus. This can be important for the development of personalised therapies, such as the

design of splice-modulating treatments, an approach which has recently been applied successfully

to treat a patient with Batten’s disease (44). In addition, RNA-seq can be used to identify other

genetic loci outside of the pathogenic gene that modify to the disease phenotype, a situation has

been estimated to occur in 5% of Mendelian disease patients (91). If discovered, such genetic

modifiers have the potential to improve prognostic accuracy for patients (92). Finally, RNA-seq
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can be used to obtain a molecular signature of the disease process, which could be used to

understand the disrupted pathways as well as discover novel disease-associated genes (93, 94).

Here, I apply RNA-seq to 60 patient samples, of which 32 are derived from undiagnosed

individuals, 26 are derived from individuals with a known genetic diagnosis and 2 samples are

derived from unaffected individuals. I attempted to use RNA-seq to diagnose the 32 individuals

with a suspected mitochondrial disease for whom WES or WGS had been inconclusive. Mito-

chondrial disease represents a disorder type for which a transcriptome-wide approach would be

expected to provide diagnostic utility, due to its clinical heterogeneity and the large number of

known causative genes (25). I used RNA-seq to detect aberrantly expressed genes and aberrant

splicing events, then integrated this information with the phenotype of the patients to discover

candidate genes. In total, this resulted in the successful diagnosis of 1 patient and provided

candidate genes for a remaining third of the patients. By analysing these candidate genes, I also

demonstrate the utility of RNA-seq for characterising splicing events. Next, by analysing 5 of

the 26 patients with known genetic diagnoses with pathogenic mutations within the gene ATG7,

I demonstrate the ability of RNA-seq to improve our understanding of the disease mechanism

within these patients. RNA-seq detected a global down-regulation of mitotic, cell-cycle and golgi

pathways. Furthermore, RNA-seq was able to detect the aberrant down-regulation of the gene

VPS41, which upon further investigation revealed a heterozygous mutation within this gene that

segregated in 2 of the 5 patients. Together, I demonstrate the ability of RNA-seq to improve

diagnostic rates as well as improve our understanding of the pathogenic processes in Mendelian

disorders.

4.2 Methods

4.2.1 Patient and control samples

RNA-sequencing was performed on fibroblasts samples from a total of 60 individuals. Written

informed consent was obtained for all subjects in accordance with the Declaration of Helsinki

protocols and experimental protocols approved by local institutional review boards. This includes:

i) 32 patients clinically diagnosed with a suspected mitochondrial disorder (Tables A.3, A.4,

A.5, A.6) 26 patients with a known genetic diagnosis and iii) 2 unaffected individuals. Of the

26 genetically diagnosed patients, 14 patients had a Mendelian mitochondrial disorder, 7 had

congenital muscular dystrophy and 5 had a ATG7-associated neurometabolic disorder. Fibroblasts
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from the 7 congenital muscular dystrophy patients were obtained through collaboration with Dr.

Haiyan Zhou and Prof. Francesco Muntoni. Fibroblasts from the remaining 53 patients have been

obtained from the collaborators within the Lilly consortium including Dr. Charu.Deshpande, Dr.

Ines Barbosa, Prof. Joanna Poulton, Prof. Michael Simpson, Prof. Robert McFarland, Dr. Robert

Pitceathly and Prof. Robert Taylor.

The 32 suspected mitochondrial disorder patients remained genetically unsolved after WES

sequencing or panel-based analysis. The phenotype of these patients is detailed in table A.4.

These patients were analysed with the aim of improving their genetic diagnosis using RNA-

sequencing. All downstream analyses using dasper or OUTRIDER conducted for this reason

was performed in a 1-vs-all manner, whereby each of 32 patients was independently compared

to a the control group. Here, the control group used for each patient consisted of a total of 59

individuals. This comprised of the remaining 31 suspected mitochondrial disorder patients, 14

patients genetically diagnosed with mitochondrial disease, 7 patients genetically diagnosed with

congenital muscular dystrophy and 2 unaffected individuals.

The 5 individuals genetically diagnosed with neurodevelopmental syndrome had pathogenic

mutations within the ATG7 gene (Table 4.2). The phenotypes of these patients is described

described in a recent publication (95). RNA-sequencing data derived from this sample set was

analysed to find i) differentially expressed genes common across all 5 patients, and ii) aberrantly

expressed genes specific to a single family. For the former, all 5 patients were grouped together

as the case cohort. As before, the control set consisted of all other individuals - 32 patients

clinically diagnosed with suspected mitochondrial disorder, 14 patients genetically diagnosed with

mitochondrial disease and 7 patients genetically diagnosed with congenital muscular dystrophy

and 2 unaffected individuals. For the latter, each of the 5 patients was compared independently to

a set of the controls. The control samples used were the same 55 individuals as described above.

4.2.2 Culturing fibroblasts

Skin biopsies were taken from each individual and fibroblast lines generated by each of the

recruiting centres. After receiving frozen cell pellets, fibroblast cell lines were cultured locally

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum

and 0.05 g/ml uridine. Fibroblasts were harvested by first detaching cells using TrypLE Enzyme

(Thermofisher), followed by washing with Dulbecco’s Phosphate Buffered Saline (DPBS) prior

to storage at -80°C. Total RNA was extracted from fibroblast pellets using Qiagen RNeasy kit and
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following the manufacturer’s protocol. In order to assess RNA quality, RNA integrity numbers

(RIN) were measured using Agilent Technologies 2100 Bioanalyzer or Agilent 4200 Tapestation

with all RIN values found to exceed 8.0

4.2.3 RNA-sequencing, alignment and quality control

Libraries for sequencing were prepared by Emil Gustavsson from the Ryten lab using the

Illumina TruSeq Stranded mRNA Library Prep kit using 50 ng of total RNA in the initial reaction;

fragmentation and PCR steps were undertaken as per the manufacturer’s instructions. Final

library concentrations were determined using a Qubit 2.0 fluorometer and pooled to a normalized

input library. Pools were sequenced using the Illumina NovaSeq 6000 Sequencing system to

generate 150 bp paired-end reads with an average read depth of 100 million reads per sample.

Pre-alignment quality control including adapter trimming, read filtering and base correction

were performed using fastp, an all-in-one FASTQ preprocessor (v0.20.0) (80). Reads were

aligned using STAR 2-pass (v2.7.0) to the GRCh38 build of the reference human genome (hg38)

using gene annotation from Ensembl v97 (12, 81). Novel junctions discovered in the 1st pass

alignment were used as input to the 2nd pass to improve the sensitivity of junction detection.

Reads were required to uniquely map to only a single position in the genome. The minimum

required overhang length of an annotated and unannotated junction was set to 3 and 8 base pairs,

respectively. The output BAM files underwent post-alignment QC using RSeQC (v2.6.4), with

all samples passing quality control after manual assessment (82).

4.2.4 Detection of aberrant spliced events using dasper

dasper (v1.1.0) was used to detect aberrant splicing events in RNA-sequencing data derived from

each of the 32 patients with suspected mitochondrial disorders. Junctions in the SJ.out format

as well as BigWig files were used as input for dasper. SJ.out files were obtained through STAR

during alignment, whilst BigWig files were generated from the BAM files using megadepth (59).

dasper operates in a 1-vs-all manner, comparing each patient independently to a remaining set

of controls. Here, each of the 32 patients were compared to a set of 54 control samples (See

methods section 4.2.1).

First, the junction data was filtered to remove reads that were likely attributed to noise or

technical artefacts. Specifically, junctions were required to have at least 5 counts in at least 1

sample. In addition, junctions that had an implied intron shorter or longer than any existing
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known intron (20-1,000,000 base pairs). Finally, junctions were required to not overlap any

ENCODE blacklist regions to avoid those attributed to potential mapping errors (86). Next,

junctions were classified with respect to the existing annotation (Ensembl v97) (12) into the

categories "annotated", "novel acceptor", "novel donor", "novel combo", "novel exon skip",

"ambig gene" and "unannotated" (Figure 3.1). "unannotated" and "ambig gene" junctions were

removed, as assignment to a gene was required for downstream prioritisation. Junctions were

clustered together through the sharing of an acceptor or donor site. The raw count of each

junction was normalised using the total number of counts in its associated cluster.

Coverage was obtained across the 3 regions of interest, namely the intron and 2 flanking

exonic regions, for each junction within each sample. Coverage was normalised by dividing the

coverage across these 3 regions of interest, by the mean coverage across exonic regions of the

corresponding gene. To determine the exonic regions for each gene, the MANE-select transcript

was used.

The normalised counts of junction and coverage were compared between each patient of

interest and the control set using the z-score approach. For a given junction, only coverage

from a single region, namely that with the highest absolute z-score, was kept for input into the

downstream isolation forest model. The isolation forest outlier was implemented via the python

sklearn library (version 1.0). Junction and coverage z-scores for each patient were placed into an

isolation forest model with default parameters (estimators = 100, contamination = "auto", max

features = 1.0) to generate an outlier score that represented the aberrancy of each splicing events

in the patient in comparison to controls (96). For each patient, splicing events were ranked upon

this outlier score. The output of dasper is a ranked list describing the aberrancy of each splicing

event within each of the patients, with a rank of 1 representing the most aberrant splicing event

in that patient.

4.2.5 Generating gene count matrices

The input for the tools OUTRIDER and DESeq2 is a gene count matrix. Gene count matri-

ces are formatted with rows corresponding to genes, columns corresponding to samples and

each cell containing the count for that gene-sample pair. For each of the 60 individuals who

underwent RNA-sequencing, gene count matrices were obtained using RNA-SeQC (v2.3.4)

with the BAM files as input (97). Ensembl v97 reference annotation was used to obtain gene

definitions. Gene models were collapsed matching the protocol used in the GTEx pipeline
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(https://github.com/broadinstitute/gtex-pipeline). Importantly, amongst other pre-processing

steps, this collapse removed overlapping intervals between genes to avoid conflation of gene

counts.

4.2.6 Detection of aberrant expressed genes using OUTRIDER

The input for OUTRIDER was the gene count matrix for each patient sample. OUTRIDER (v1.6.1)

was used to find aberrantly expressed genes in each of the patients with suspected mitochondrial

disorders or an ATG7-associated neurometabolic disorder (33). A 1-vs-all experiment design

was used, whereby each patient was compared to a set of controls. See methods section 4.2.1 for

details of the control samples used for each analysis.

OUTRIDER was used to normalise gene counts into fragments per kilobase of transcript

per million mapped reads (FPKM), the gene expression standard. FPKM matrices were filtered

for genes that were expressed with an FPKM above 1 in 5% of samples. The optimal encoding

dimension of the autoencoder was obtained using default OUTRIDER settings. During this fitting

process, related samples which had the same pathogenic variant were masked to avoid obscuring

outlier expression events that may have been shared across samples. Gene expression values were

then corrected using the autoencoder. The default statistical test within OUTRIDER was applied

to find significantly aberrantly expressed genes within each patient. P-values were corrected for

multiple testing using the Benjamin Hochberg method and 0.05 was used as the significance

threshold.

4.2.7 Disease and Mitocarta gene lists

The full set of Online Mendelian Inheritance in Man morbid (OMIM-morbid) genes were

obtained using the biomaRt R package (v2.40.5) and based on Ensembl v100 (12, 98). A wider

set of genes known to cause mitochondrial disorders was downloaded from the recent paper by

Kremer and colleagues (24). Genes found to have strong experimental support of localisation

to the mitochondria were obtained through Mitocarta 3.0 (https://www.broadinstitute.org/files/

shared/metabolism/mitocarta/human.mitocarta3.0.html) (99).

https://www.broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta3.0.html
https://www.broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta3.0.html
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4.2.8 Filtering for aberrant events capable of causing a suspected mitochondrial

disorder

Patients without a genetic diagnosis (32 cases) were thought to have rare, genetic disorders with

a suspected mitochondrial component (Tables A.3, A.4, A.5, A.6). Therefore, after the detection

of aberrantly expressed genes and aberrant splicing events, I applied a set of automated filters to

try to detect genes that were capable of causing such a phenotype (Figure 4.2). Specifically, I

filtered for any event (aberrant expression or splicing) that affected genes: i) within the set of

OMIM-morbid disease genes or, ii) genes known to cause mitochondrial disorders, or iii) genes

that were part of Mitocarta 3.0.

For the genes that remained, I used DisGeNET to identify if any of these genes had published

disease associations (100). For genes with disease associations, I manually checked these

publications for evidence of association to a mitochondrial function. Additionally, I used https://

pubmed.ncbi.nlm.nih.gov to search for the "Gene name + mitochondria" to find primary literature

that had evidence of the genes being involved in mitochondrial function. This information was

collected and manually compared for compatibility with the patient phenotype in collaboration

with the recruiting clinical teams.

Aberrant splicing events were curated by predicting whether they would be expected to disrupt

the protein-coding sequence. First, dasper was used to generate sashimi plots of each aberrant

splicing event. Then, splicing events were visually inspected and classified into categories:

cryptic exon, exon extension, exon truncation, intron retension, novel start site, exon skipping

and change in annotated alternative splicing (isoform switching). Using this classification and

the co-ordinates of the specific aberrant junctions a predicted transcript structure was built. This

transcript structure was compared to the existing canonical transcript to determine the functional

consequence of the change upon predicted protein sequence. When more than one annotated

transcript was present for a gene, the MANE-select transcript was chosen for this comparison. In

order to find the DNA-sequence of the aberrant transcript, the tool ORFik (v1.12.5) was used

find the open reading frame (ORF). If multiple ORFs were possible, the longest ORF with the

same start site as the canonical ORF was selected. Next, Biostrings (v2.60.1) was used to obtain

the DNA and amino acid sequence for the ORF of both the aberrant and canonical transcripts

(101). The amino acid sequence of the aberrant and canonical transcripts was manually compared

to determine severity of the protein coding consequence. In order to highlight the functional

https://www.disgenet.org
https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
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importance of disrupted exons, conservation of these exons as well as overlapping domains were

retrieved. The phastcons20 score was used to obtain the mammalian conservation of exons of

interest (102). The Ensembl web browser was used to find protein domains that overlapped the

transcript of interest (12).

Together, manual assessment of the information regarding the compatibility of the gene with

the patient phenotype alongside the aberrant splicing consequence was used to identify candidate

genes.

4.2.9 Whole-exome sequencing

Exome library preparation was performed by members of the Lily consortium using Agilent

SureSelectXT All Exon V6 according to manufacturer’s instructions, followed by sequencing

on an Illumina HiSeq 3000/4000 with 100 bp paired-end reads. Variant calls were generated

with an in-house pipeline as previously described with minor alterations. In brief, resulting reads

were aligned to the reference genome (hg19) with the NovoAlign (Novocraft, 2014) alignment

tool. Clonal reads resulting from polymerase chain reaction, optical errors, and reads mapping

to multiple locations were discarded from further analyses. SNPs and small insertion/deletions

were identified and filtered for quality with SAMtools (103). Variant files were annotated with

respect to genes and functional consequences using the ANNOVAR tool. Further annotation

included variant pathogenicity predictors, CADD, SIFT , and PolyPhen2 as well as information

on variant novelty and estimated population frequencies by cross-referencing identified variants

with publicly available data from 1,000 genomes, ESP and ExAC datasets, and 1̃,000 in-house

control exomes processed with the pipeline described above (104–109).

4.2.10 Sanger sequencing and splice prediction

The genetic defect underlying the aberrant mRNA splicing pattern was investigated using Sanger

sequencing. The characteristics of the aberrant splicing events were considered to allow the

location of the genetic variant to be estimated. For example, for a cryptic exon event, sequencing

analysis of the region spanning the cryptic exon donor and acceptor motifs would be likely

to contain the variant of interest. Prediction of splicing changes and Sanger sequencing was

performed by Dr Charlotte Alston. This approach was implemented to search for putative splicing

variants within ECHS1 and DNAJA3.

http://cadd.gs.washington.edu/home
http://sift.jcvi.org
http://genetics.bwh.harvard. edu/pph2/
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Confluent fibroblasts were harvested and RNA was extracted using the ReliaPrep™ RNA

Miniprep System according to the manufacturer’s protocol (Promega). 1ug of fibroblast-derived

RNA was reverse transcribed using 0.5ug random hexamers and 200U M-MLV Reverse Tran-

scriptase (Promega) supplemented with 25U RNasin RNAse inhibitor (Promega). PCR was

performed using Go Taq Hot Start polymerase (Promega) and enzymatic clean-up of PCR

products was performed using Exonuclease I (Thermo Scientific) and FastAP Thermosensitive

Alkaline Phosphatase (Thermo Scientific). Sanger sequencing was performed using the BigDye

terminator kit v3.1 (Life Technologies) and sequencing chromatograms were visualised using

FinchTV (v1.4.0) and aligned against the Human Genome (GRCh38) using BLAT (110).

DNA sequence for the region of interest was obtained using the ‘View Data’ tool within the

UCSC genome browser; oligonucleotide primers were designed using Primer3 and manufactured

by Integrated DNA Technologies. PCR amplification of 50ng genomic DNA was achieved using

Go Taq Hot Start polymerase (Promega) using the following Thermocycling conditions (on

ABI9700 machine): 95°C – 2mins; 30 cycles of [95°C – 1min, 62°C – 1min, 72°C – 1min] and a

final extension at 72°C – 10mins. The primer sequences for ECHS1 and DNAJA3 are found in

Table 4.1.

Gene Strand Sequence
1 ECHS1 Forward 5’-CCAAGAAATAACTGGCGGGT-3’
2 DNAJA3 Forward 5’-TGTTTGGATCCATTGCCCAC-3’
3 ECHS1 Reverse 5’-AGTGATTGACAAGGTGAAGCA-3’
4 DNAJA3 Reverse 5’-CACACGCGCCTATAAACACA-3’

Table 4.1 Forward and reverse primer sequences for ECHS1 and DNAJA3.

4.2.11 Variant classification (ACGS 2020 guidelines)

Variants were classified using the standardised American College of Medical Genetics (ACMG)

guidelines which assign weight using a variety of criteria, including population frequency data,

in silico prediction tools, previous/additional cases and functional study data. A culminative

score is assigned depending on the final ‘weight’ of evidence, either class 5 (pathogenic), class

4 (likely pathogenic), class 2 (likely benign) and class 1 (benign) whilst variants remaining of

uncertain pathogenicity (VUS) are given class 3 status.
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4.2.12 Detection of differentially expressed genes and pathways

DESeq2 (v1.26.0) and gprofiler2 was applied to the 5 the patients with ATG7-associated neu-

rometabolic disorder to find differentially expressed genes and pathways on comparison to control

samples (consisting of 55 individuals, details in the methods section 4.2.1). (31, 111). The input

for DESeq2 were the gene count matrices. Gene count matrixes were filtered for genes with an

FPKM above 1 in 5% of samples. DESeq2 was applied with default settings using 5 patients

grouped as the case cohort. The Benjamin Hochberg method was used for multiple test correction.

Genes with a corrected p-value less than 0.05 and an absolute log-fold change greater than 1.5

were considered to be differentially expressed. gprofiler2 was then applied to the differentially

expressed genes to find pathways that were dysregulated across the 5 patients. Inputted genes

were ranked by their p-value. All expressed genes within the expression-filtered gene count

matrixes were used as the background list.

4.3 Results

4.3.1 Patient cohorts used in this study

The patients analysed within this chapter originated from two cohorts; 32 patients that were

diagnosed with a suspected mitochondrial disorder and 5 patients that were diagnosed with an

ATG7-associated neurometabolic disorder.

All 32 patients with a suspected mitochondrial disorder were recruited from UK-based

institutions. The origin, phenotype, demographic and diagnostic criteria of the 32 patients is

detailed in the tables A.3, A.4, A.5, A.6. Dependent on the diagnostic routine that patients

had undergone, they fell into 2 categories; those which had undergone WGS, those which had

undergone WES and those which had panel-based sequencing (Table A.6). Irrespective of

DNA sequencing method, none of the patients had a genetic diagnosis. It was expected that

RNA-sequencing could provide diagnostic utility for this cohort through the detection of aberrant

expression and splicing events.

Samples from the cohort of 5 patients with a neurometabolic disorder were analysed as part

of a collaboration with Professor Robert Taylor. These 5 patients originated from 4 unrelated

families and were all diagnosed with pathogenic variants within the gene ATG7 (95). All patients

were known to have biallelic missense or acceptor splice site variants (Table 4.2). Despite

the pathogenicity of these novel variants being confirmed through detailed functional testing
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including complementation studies in human and yeast models, it was hypothesised that RNA-

sequencing would help better inform our understanding of the pathogenesis of this new congenital

disorder of macroautophagy through detection of dysregulated genes and pathways (95).

Sample ID Family Gene Symbol Variant type Variant HGVS
1 M1856.17 1 ATG7 missense;acceptor c.1975C>T;c.2080-2A>G
2 M0920.18 2 ATG7 missense;missense c.1727G>A;c.1870C>T
3 M0921.18 2 ATG7 missense;missense c.1727G>A;c.1870C>T
4 M1111.19 3 ATG7 missense;missense c.700C>A;c.1762G>A
5 M1716.19 4 ATG7 missense;missense c.782A>G;c.1532G>A

Table 4.2 Pathogenic variants of 5 neurometabolic disease patients. All 5 patients were genetically
diagnosed with causative variants within ATG7. The patients originated from 4 unrelated families and
each family harboured distinct variants. The table describes the HGVS identifiers and locations of these
variants.

4.3.2 Prioritisation of candidate genes through the detection of aberrantly ex-

pressed and spliced genes

RNA-sequencing has previously been demonstrated to serve as a promising diagnostic tool

through the transcriptome-wide detection of aberrant RNA-level expression and splicing, com-

plementing DNA-sequencing and allowing for the re-interpretation of variants (23, 24, 27, 28).

Following this approach, I applied the tools OUTRIDER and dasper to detect aberrantly expressed

genes and aberrant splicing events within the RNA-sequencing data derived from the 32 patients

who remained unsolved following WES or panel-based analysis (Table A.6) (33, 112). Both

OUTRIDER and dasper operate through a 1-vs-all experimental design, comparing the reads

associated with genes or splicing events within each patient to a set of controls (See detailed

Methods). However, the two methods differ in their approach for identifying aberrant events.

OUTRIDER uses an autoencoder to correct for covariates in the RNA-sequencing data, then

applies a statistical test to find genes with significant aberrant expression. Whilst dasper uses an

isolation forest to rank every splicing event by its aberrancy, with a rank of 1 specifying the most

aberrant splicing event in each patient. Across the 32 patients, OUTRIDER detected 26 significant

aberrantly expressed genes, comprising of 14 up-regulated genes and 12 down-regulated genes.

When applying dasper, I considered the top 100 most aberrant splicing events in each patient to

be taken forward for further prioritisation, resulting in 3200 aberrant splicing events across 1712

unique genes. Between the OUTRIDER and dasper results, 6 genes overlapped and were found
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to be both expressed and spliced aberrantly. In total, I detected 3226 aberrant RNA-level events

across the 32 patients, which were associated with 1732 unique genes (Figure 4.2).

In order to filter these 3326 aberrant events to set of candidate genes, I combined the RNA-

sequencing results with phenotypic information for the 32 patients. All patients within the

analysed cohort were clinically diagnosed with a rare, genetic disorder which was found to

cause a degree of mitochondrial dysfunction. Therefore, I filtered for aberrant events which were

associated with genes that were known to cause Mendelian disease or had evidence of localisation

to the mitochondria. Namely, this included 4183 genes that were previously reported to cause an

OMIM-morbid disease, an additional wider set of 283 genes reported to cause mitochondrial

disease by Kremer and colleagues and 1136 genes that were demonstrated to localise to the

mitochondria through the Mitocarta project (24, 98, 99). After these filters, 5 aberrantly expressed

genes and 619 aberrant splicing events were retained, which were associated with 391 unique

genes (Figure 4.2). Of these 391 genes, 7 (2%) were already known to cause mitochondrial

disease, whilst 46 (12%) were solely part of Mitocarta and had no known association with any

disease. The majority of genes were part of the OMIM-morbid catalogue (344/88%). There was

a degree of overlap between the gene lists, with 5 (1%) genes being part of all 3 lists and 16

(4%) genes being both an OMIM-morbid gene and part of Mitocarta (Figure 4.1). Together, this

automated gene-level filter was able to reduce the set of 3326 aberrant events to 624 (Figure 4.2).
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Figure 4.1 Intersection between aberrant events and mitochondrial disease, OMIM-morbid and
Mitocarta gene lists. Aberrantly expressed genes and aberrant splicing events were identified using the
RNA-sequencing data. The genes associated to these aberrant events were filtered for only those that
were associated with mitochondrial disease genes, OMIM-morbid genes and genes which were part of
Mitocarta. Of the remaining aberrant events, the plot displays the number of genes that were present
within a single gene list, spanned across two gene lists or were present across all three.
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Figure 4.2 Prioritisation of candidate genes using RNA-sequencing. The workflow describes a set
of analyses and filters that were used to identify candidate genes from patient RNA-sequencing data.
RNA-sequencing was performed on fibroblast cell lines derived from 32 patients who remained unsolved
after WES or panel-based analysis. Next, the tools OUTRIDER and dasper were applied to the RNA-
sequencing data and identified 26 aberrantly expressed genes and 3200 aberrant splicing events across the
32 patients respectively. The resulting aberrant events were filtered for those that had evidence of being
able to cause the patients’ phenotypes, reducing this list to 624 aberrant events. Finally, these remaining
examples were manually curated, which involved further investigation of prioritised gene function and
predicting the functional consequence of the aberrant splicing events. Together, this approach discovered
10 candidate genes.

Finally, I manually curated the 624 prioritised aberrant events to find the most promising

candidate genes. In brief, I searched the previous literature for consistency between the prioritised

gene function or associated disease and the patient’s reported phenotype. Specifically for aberrant

splicing events, I also investigated whether the splicing change would be predicted to cause

a functional disruption with respect to the canonical, MANE-select transcript. In particular, I
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predicted whether the aberrant splicing event would induce a frameshift and/or stop codon in

the coding sequence, or cause a reduction in expression of the major protein-coding transcript.

Overall, I discovered candidate genes for 10 (31%) out of the 32 patients (Table 4.3). This

included 10 genes that were part of the OMIM-morbid catalogue, 5 genes associated with

mitochondrial disease and 1 gene that was solely part of Mitocarta and not previously known to

cause disease. Thus, I demonstrated that using automated prioritisation and manual curation of

aberrant events detected through RNA-sequencing, I was able to discover candidate genes for a

third of the unsolved cases recruited in this study.

Gene Symbol Aberrant Event Mitochondrial disease Mitocarta MIM number
1 ECHS1 expression/splicing TRUE TRUE 616277
2 TBCK expression/splicing FALSE FALSE 616900
3 DNAJA3 expression/splicing FALSE TRUE
4 SURF1 splicing TRUE TRUE 256000, 616684
5 TPK1 splicing TRUE FALSE 614458
6 CHCHD10 splicing TRUE TRUE 615048, 615911, 616209
7 NSUN3 splicing TRUE TRUE
8 FANCD2 splicing FALSE FALSE 227646
9 ACE splicing FALSE FALSE 267430, 612624, 614519

10 GLDC splicing FALSE TRUE 605899

Table 4.3 Candidate genes discovered through RNA-sequencing. Details of the 10 candidate genes
that were discovered through RNA-sequencing of the 32 unsolved cases. Of the 10 candidate genes, 3
were found to had evidence of being both aberrantly expressed and spliced from the RNA-sequencing
data, whilst the remaining 9 were only found to be aberrantly spliced.

4.3.3 Diagnosis of unsolved patients using RNA-sequencing

The 10 candidate genes identified on the basis of aberrant splicing or expression were further

investigated in collaboration with the teams involved in their care. Here, I highlight two examples

of potential diagnoses made through the follow up of the candidates ECHS1 and DNAJA3.

From the RNA-sequencing data, I discovered that ECHS1 is both aberrantly expressed (p-

value: 9x10−7) and aberrantly spliced (rank: 19) in the patient M2566.15. Previous literature has

demonstrated that disruptions of ECHS1 function are known to cause mitochondrial disease and

Leigh syndrome (24, 98, 113). Furthermore, the observed decrease in expression (z-score: -7.3)

of ECHS1 is consistent with previous reports that deficiency of ECHS1 can cause mitochondrial

encephalopathy with cardiac involvement (114). The consequence of the aberrant splicing is

observed to be a cryptic exon insertion event represented in the RNA-sequencing data by the

appearance of 2 novel junction events, one with a novel acceptor and the other with a novel

donor site (Figure 4.3). This inserts a 191bp cryptic exon between exon 4 and exon 5 of the

ENST00000368547 MANE-select transcript(NM_004092.4) and predicts a r.514_515ins515-
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753_515-563 at the mRNA level and p.Gly172Glufs*16 at the predicted protein level. Therefore,

it is expected to induce a premature stop codon, which truncates exons 5-8 of the ECHS1 protein.

Although it is likely that this aberrant transcript would undergo NMD, given that I was able to

detect the splicing disruptions through RNA-seq, I also checked the functional consequence of the

truncation. I found that mutations within exon 5 have been shown to cause Leigh syndrome and

additionally, exons 5-7 are highly conserved (phastCons20: 0.78, 0.69, 0.75), suggesting that they

are functionally important (115, 116). Sanger sequencing of the regions flanking the cryptic exon

revealed a rare homozygous variant chr10:g.133367556T>C (hg38) (NM_004092.4(ECHS1):

c.515-563A>G), which is completely absent in the gnomAD database (117). Furthermore,

this variant was predicted by multiple splicing prediction tools to cause the cryptic exon event

observed in the RNA-sequencing data (Figure 4.4). Finally, the patient’s phenotype (neonatal

onset, persistent lactic acidosis, encephalopathy and myopathy), was consistent with other ECHS1

cases in the literature (118, 119). Taken together, this example shows how RNA-sequencing

data can be used to highlight decreased expression and presence of a cryptic exon event within

ECHS1, leading to detection of the rare, non-coding variant as well as providing the evidence for

its pathogenicity.
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Figure 4.3 Detection of cryptic exon insertion events within ECHS1 and DNAJA3. Sashimi plots
illustrate the aberrant splicing events found in the candidate genes ECHS1 and DNAJA3. Both plots detail
the coverage and junctions across the region of the transcripts which contain the aberrant splicing events.
The top track represents the coverage across the region, whereas the bottom tracks display the junctions.
Within the junction track, grey blocks highlight the position of the annotated exons and curved lines
represent the junctions. Junctions are labelled with their corresponding normalised count found in the
case sample or averaged across the control samples. The arrow represents the direction of transcription
for the plotted gene. For both ECHS1 and DNAJA3, the cryptic exon insertions are characterised by
non-overlapping novel acceptor (red) and novel donor (green) junctions within the same intron, alongside
an increase in coverage across the associated region. For DNAJA3, the presence of 2 novel donor junctions
suggests that 2 distinct cryptic exons are created within this gene.
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Figure 4.4 Prediction of ECHS1 cryptic splice sites from DNA sequence. The wild-type sequence is
depicted in the top panel, whilst the patient’s DNA sequence is displayed on the bottom. A variety of in
silico tools were used to predict the splice sites from the DNA sequences using the Sofia Genetics’ Alamut
Visual Software (v2.1.2). Donor changes are represented by the blue arrows (above the DNA sequence)
and acceptor changes by the green arrow (below the DNA sequence).

As in the case of M2566.15, RNA-sequencing data from the patient M1316.12, identified

the significant down-regulation of a specific gene, DNAJA3, in comparison to controls (p-value:

0.0001, z-score: -6.44) as well as evidence of aberrant splicing in the same gene (rank: 13).

Dysfunction of DNAJA3 has not previously been reported to cause disease, however there is

evidence of its mitochondrial localisation through the Mitocarta database (99). Furthermore,

previous studies in mice suggest that this gene plays a crucial role in mitochondrial biogenesis.

Deficiency of Dnaja3 has been demonstrated to be lethal in mice within 10 weeks (120). The

aberrant splicing event in DNAJA3 is characterized by the appearance of 2 novel donor junctions

and a novel acceptor junction (Figure 4.3). This is predicted to cause two distinct cryptic exons to

be inserted into the ENST00000262375 (MANE-select v0.93) transcript structure. The existence

of these two cryptic exons is supported by increased coverage across the putative exonic region.

These two cryptic exons are of length 76 and 156 respectively and lie between exon 2 and exon 3.

They are both predicted to induce a premature stop codon truncating exons 3-12 from the DNAJA3

protein. The disrupted exons are highly conserved (phastCons20; mean: 0.83, median: 0.90, min:

0.25, max: 0.99) and the protein regions they encode contain multiple protein domains suggesting
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that they are functionally important (Table A.2) (115, 121, 122). Overall, DNAJA3 represents

a promising candidate and a possible novel gene-disease association discovered through RNA-

sequencing. Investigation of the patient’s WES data alongside functional studies are required to

confirm DNAJA3 as genetic cause of the patient’s disease and this work is on-going.

4.3.4 The representation of splicing disruptions in RNA-seq

Abnormalities in splicing can impact on transcript structures in multiple ways and these include:

exon skipping, cryptic exon insertions, exon extensions or truncations, intron retentions and

changes in the usage of annotated transcripts (23). An improved understanding of the specific

form of splicing disruption can be used to highlight the region containing the causative variant,

as well as provide the framework for developing therapeutics that modulate splicing (44). With

this in mind, I investigated the types of aberrant splicing events detected within the 10 candidate

genes. Overall, I detected 1 exon skipping event, 1 novel start site, 2 cryptic exon events, 2

isoform switching and 4 exon extension events (Table 4.4). Here, I describe the representation

of these splicing disruptions in the RNA-sequencing data through the examples GLDC, TPK1,

ECHS1, DNAJA3, SURF1 and TBCK (Figure 4.5, 4.7 and 4.6).

Gene Symbol Splicing event DNA consequence Protein consequence
1 TBCK isoform switch - reduction in protein expression
2 CHCHD10 isoform switch - reduction in protein expression
3 ECHS1 cryptic exon premature stop codon truncation
4 DNAJA3 cryptic exon premature stop codon truncation
5 SURF1 exon extension frameshift downstream exon AA sequence
6 NSUN3 exon extension premature stop codon truncation
7 FANCD2 exon extension premature stop codon truncation
8 TPK1 exon skipping premature stop codon truncation
9 ACE exon skipping, exon extension premature stop codon truncation

10 GLDC novel start site novel start site truncation of upstream exons

Table 4.4 Types of aberrant splice events detected across the 10 candidate genes. All 10 candidate
genes that were prioritised after manual curation had evidence of being aberrantly spliced according to the
RNA-sequencing data. The gene symbols, type of splicing event and consequence to the DNA/protein
sequence are described here.
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Figure 4.5 Representation of aberrant splicing events in RNA-sequencing data. The schematic illus-
trates how the 5 aberrant splicing types are represented in the RNA-sequencing data in terms of junctions
and coverage. Top and bottom panels for each type of aberrant splicing event detail the coverage and
junctions respectively. On the coverage panel, grey blocks indicate the coverage across annotated exons
and red blocks indicate coverage associated with the novel splicing event. On the junction panel, red
dashed lines show the expected junction location and grey blocks indicate the annotated exons.

Cryptic exons are represented in the RNA-sequencing data through two, non-overlapping

novel donor and novel acceptor junctions that lie within the same intron. Furthermore, depending
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on their level of expression and noise across the associated intron, cryptic exons may be supported

by an increase in coverage across the exonic region, as observed in DNAJA3 (Figure 4.3). In

the example of both ECHS1 and DNAJA3, this would be expected to lead to disruption of the

protein-coding sequence through the introduction of a premature stop codon, which truncated all

exons downstream of the aberrant event. Furthermore, given the drop in expression, it is likely

that the aberrant transcripts generated by these cryptic exon events within ECHS1 and DNAJA3

undergo nonsense-mediated decay. For ECHS1, as pathogenic variants which create cryptic exon

insertions are likely to occur within or in close proximity to the novel splice sites, this facilitated

the primer design and sanger sequencing, which consequently detected the causative variant in

this patient.

Novel exon extension and truncation events are characterised in the RNA-sequencing data

by a single novel acceptor or novel donor junction as well as a shift in coverage that supports

the novel exon boundary in the case vs the control. Depending on whether the novel splice

site falls within an intron or an exon, this will result in an extension or truncation of an exon

respectively. For example, I detected an exon extension event in the gene SURF1. Here, exon 7

of ENST00000371974 is extended by 31bp which is predicted to cause a frameshift affecting

the downstream exons 8 and 9 (Figure 4.6). Additionally, a shift in coverage is also observed,

supporting the position of the novel exon boundary. Variants that disrupt the annotated splice site,

create a novel splice site, or favour the usage of usually dormant splice sites can generate exon

extension events. Such variants would be expected to fall near or within the novel or annotated

splice sites.

Novel start site events are also represented by the appearance of a single novel acceptor or

novel donor junction. However, the increase in coverage between the novel splice site and the

annotated exon boundary is not contiguous, which distinguishes novel start site events from

extension or truncation of exons. For example, in GLDC a novel donor junction is observed with

a novel end that falls deep within the intron. The coverage supporting this novel event does not

connect to the upstream annotated exon and there is an absence in coverage across all upstream

exons. Together, this suggests the usage of a novel start site (Figure 4.7). This is predicted to

generate an aberrant transcript beginning at the novel start site and containing the downstream

exons (Figure 4.7). With respect to the MANE-select transcript ENST00000321612, this will

truncate the exons 1-13. Similar to exon extension events, variants causing such events could lie

in the vicinity of the novel or annotated splice sites.
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In the RNA-sequencing data, exon skipping events are represented by the appearance of a

novel junction which overlaps an annotated exon. Both ends of the novel junction must fall on

annotated splice sites but their combined usage is not found within existing annotation. Depending

on the expression of the aberrant event, this is likely to cause a decrease in the coverage across

the skipped exon. In the example of TPK1, exon 4 is skipped in the MANE-select transcript

ENST00000360057 (Figure 4.7). This causes a frameshift in exon 5, which as a result induces

a premature stop codon truncating exons 6-8 from the TPK1 protein. Variants that cause exon

skipping events may be expected to fall within or near the splice sites of the skipped exons.

A shift in the alternative splicing of known transcripts can occur to a degree to which is

considered aberrant. These events do not include the appearance of a novel junction but instead

are represented through a change in the expression of annotated junctions in the RNA-sequencing

data. For instance, in TBCK, I observed a reduction in the expression of a junction that is

annotated within the MANE-select transcript ENST00000394708 (Control count: 0.85, Patient

count: 0.24). This is replaced in the patient with the expression of a junction that is only present

in the nonsense-mediated decay transcript ENST00000467183 (Control count: 0.08, Patient

count 0.72). The magnitude of this switch is large enough to be detected as aberrant using

dasper (rank: 85). Interestingly, in the same patient I observe that the overall expression of

TBCK is significantly decreased (p-value: 0.0097, z-score: -6.01), which suggests the switch

to predominant expression of the nonsense-mediated decay transcript is reducing the overall

expression of this gene. Variants that cause a shift in alternative splicing can fall within or near

either of the disrupted, annotated splice sites.

Overall, I demonstrate the utility of RNA-sequencing to characterise splicing disruptions, a

process which can be informative for determining and therefore, sequencing the likely genomic

location of the causative variant.
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Figure 4.6 Detection of exon extension event in SURF1 and a shift in alternative splicing of TBCK
Sashimi plots illustrate the aberrant splicing events found in the candidate genes SURF1 and TBCK. See
Figure 4.3 for details of sashimi plot elements. a) In SURF1, a exon extension event is detected, which
is represented through a novel donor junction (green) together with a shift in the coverage that matches
the novel exon boundary. b) In TBCK, there is a shift in the alternative splicing from the canonical
MANE-select transcript (Control count: 0.85, Patient count: 0.24) to a nonsense-mediated decay transcript
(Control count: 0.08, Patient count 0.72). This is represented by changes in the count of annotated (blue)
junctions and lacks the appearance of a novel junction.
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Figure 4.7 Detection of exon skipping event in TPK1 and a novel start site in GLDC Sashimi plots
illustrate the aberrant splicing events found in the candidate genes TPK1 and GLDC. See Figure 4.3 for
details of sashimi plot elements. a) In TPK1, a novel exon skip junction (orange) can be observed, which
skips exon 4 of the MANE-select transcript ENST00000360057. This is predicted to induce a premature
stop codon truncating downstream exons 6-8 from the resulting protein. b) In GLDC, a novel exon that
contains a novel start site is detected through the changes in both junctions and coverage. A novel donor
junction (green) represents the usage of a novel splice site that lies deep within intron. Alongside, a block
of coverage that extends from the novel donor site and ends within the intron represents the novel exon
boundaries.
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4.3.5 Detection of disrupted downstream pathways and potential disease modi-

fiers using RNA-sequencing

RNA-sequencing generates a functional readout of cellular activity, which enables the transcriptome-

wide detection of disruptions to pathways and genes that occur alongside or downstream of a

pathogenic event. This improved understanding of the pathogenesis of a patient’s disease can

provide prognostic information and permit better management of disease symptoms. Here, I

applied the tools DESeq2 and gprofiler to the RNA-seq data derived from a cohort of 5 patients

diagnosed with neurometabolic syndrome to discover pathways that were disrupted downstream

of the causative mutation (31, 111).

The cohort of neurometabolic syndrome patients consisted of 5 individuals genetically

diagnosed with pathogenic variants within the gene ATG7, which encodes one of the core

proteins involved in the autophagy pathway. (Table 4.2) (95). Given the common genetic origin

of the disease within this cohort, I hypothesised that there would be common downstream

pathways that were disrupted across all 5 patients. In order to investigate this, the 5 patients were

grouped together as cases. Then, DESeq2 was applied to detect genes that were differentially

expressed across the cases compared to set of controls (See detailed Methods). I detected 358

genes that were significantly differentially expressed with a log-fold change of >1.5 across

the 5 patients. Next, gprofiler was applied to find biological pathways that these 358 genes

were enriched within. In general, I discovered that the majority of disrupted pathways were

associated with mitotic and cell cycle functions. In addition, 5 Golgi-related pathways were

also found amongst the dysregulated pathways (Figure 4.8). Consistent with this finding, recent

reports demonstrate that the golgi apparatus is involved in the formation of autophagosomes and

disruptions to the formation of autophagy can impact on golgi function (123).
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Figure 4.8 Golgi-related pathways are disrupted in the ATG7 patients Each point represents a pathway
that the differentially expressed genes are enriched within. The numbered points represent the 5 pathways
related to golgi function. The table below gives further detail of these 5 pathways including their full
pathway name ("term_name") and "p_value".

I recognised that the ATG7 patients had variable phenotypes and in particular, the neurological

phenotype of family 2 was found to be more severe than those of the remaining families (95). I

hypothesised whether this variability may be explained through disruptions outside of the ATG7

locus. For this reason, I applied OUTRIDER to find genes that were specifically dysregulated

within each family. In total, I discovered 264 unique genes that were aberrantly expressed across

the 5 patients. Amongst these 264 genes, VPS41, HMG20A and TBC1D3L were found to be down-

regulated in both patients from family 2, however expressed at normal levels in the remaining

families (Figure 4.9). Of these 3 genes, TBC1D3L and VPS41 had known functions related to the

autophagy pathway. TBC1D3L encodes a GTPase activating protein for RAB5, which has a role

in regulating autophagy (124). Whilst VPS41 is suggested to confer a neuroprotective effect in

neurodegenerative diseases acting via the autophagy pathway (125). For these 3 genes, the WES

data of family 2 individuals was analysed for variants driving these changes in expression. This

revealed a heterozygous variant that overlapped VPS41 in the individuals from family 2. A recent

report suggests that biallelic VPS41 variants can cause cerebellar and corpus callosum defects,

which aligns with the phenotypes of the patients within this family (125). However, it remains

unclear whether this change in transcript abundance is a cause or result of the neurological

symptoms of this family. Further investigations such as mutation burden analyses would be

helpful to explore the potential of VPS41 to operate as a genetic modifier.
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Overall, I have demonstrated the capability of RNA-sequencing to detect the downstream

disrupted pathways that are common across a disease as well as dysregulated genes specific to

individual patients.

Figure 4.9 HMG20A, TBC1D3L and VPS41 are expression outliers common to individuals from
family 2. Expression plots describe FRKM of the genes HMG20A, TBC1D3L and VPS41 in controls,
compared to the ATG7 patients. Expression values in each patient are coloured, with cyan representing
family 2. Individuals from family 2 have the consistently low expression for these 3 genes. After
autoencoder correction of FPKM values, the expression of all 3 genes in family 2 individuals are detected
to have aberrantly low expression according to OUTRIDER.

4.4 Discussion

In this study, I demonstrate the power of RNA-seq data as applied to patient-derived samples to

enable an increase in diagnostic yield beyond conventional genetic testing, identify additional

variants of relevance outside the primary locus, and improve our understanding of the pathophys-

iology of disease even with small case numbers. This is achieved through the application of a

diagnostic workflow that integrates the assessment of aberrant gene expression with aberrant

splicing. I apply this workflow to fibroblast RNA-seq data derived from 32 patients suspected

of having mitochondrial disease. As a result of this analysis, a genetic diagnosis is confirmed

for 1 patient and candidate genes are found for a remaining third which are still undergoing

further investigation. Through specific cases, I explore the likely pathogenic mechanisms of

several of these candidates. Furthermore, I use RNA-seq to improve the understanding of disease

pathogenesis in a cohort of 5 patients with ATG7-associated disease. Not only was RNA-seq able

to detect global pathways that were commonly disrupted across the patients, but it also enabled

the detection of a second disrupted gene outside the causative locus that is thought to potentially
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explain the increased severity of the corresponding patient’s phenotype. Overall, I highlight the

utility of RNA-seq in a clinical setting and add evidence for its incorporation into the diagnostic

routine.

However, as a relatively expensive and specialised form of analysis there remain significant

barriers to the widespread use of transcriptomics in clinical diagnostics, and this raises questions

as to how to select cases most likely to benefit from the approach. With this in mind, it

is noteworthy that suspected mitochondrial disorders represent an attractive class of disease

(24, 25). With variants in over 340 nuclear genes known to cause mitochondrial disease, the

transcriptome-wide nature of RNA-seq has considerable value. However, for other diseases such

as tuberous sclerosis where mutations in TSC1 and TSC2 account for 95% of clinically suspected

cases, it is likely that the targeted generation of RNA-seq data could be more cost-effective

and robust (126–129). Furthermore, the genetic heterogeneity of mitochondrial diseases also

has advantages for the generation of control RNA-seq data. As demonstrated in this thesis and

within other studies, each patient can be analysed with the remainder of the cohort acting as

controls reducing the overall cost of sample collection, maintenance of cell lines and sequencing.

However, for a disorder for whereby only a handful of genes explain most cases, this would

not be advised since common gene mutations/changes would make the identification of outlier

expression or splicing events highly challenging.

The selection of control samples is also of broader importance for the outlier detection

approaches used in this chapter. Within diagnostics, where pathogenic variants are often unique

to a family or patient, the majority of tools developed, including my own, have adopted a 1-vs-all

experimental structure (33, 112, 130). However, there remains no consensus on the selection

of appropriate control samples for any given set of patients. In certain studies, controls have

been matched to the patients on the basis of sex, age and sequencing parameters (23). Others

have ignored the demographics of the individuals and adopted a strategy of using the remaining

patients in a cohort as controls (24). With the emergence of publicly available datasets containing

tens of thousands of RNA-seq samples, it is of particular interest how the number and types

of control samples will impact on the detection of aberrant events. Previous work performed

with 504 GTEx samples suggests that the number of controls is partially able to overcome the

difference in demographic and sequencing protocol between samples, however this remains

unclear at larger N numbers (112). The selection of control samples will not only affect the

outcome of a diagnostic analysis, but also the practical implementation of RNA-seq in the clinic.
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For instance, the use of publicly available data has far fewer associated costs, enables patient

samples to be processed flexibly and would permit a standardised protocol across diagnostic

laboratories. In contrast, more stringent matching of control and patient samples as well as the

use of in-house control samples increases patient recruitment time and costs. Overall, more

studies are needed to benchmark the selection of control samples on the detection of aberrant

events and this could impact on the results of analyses such as that presented in chapter.

The availability of public control RNA-seq sample sets is also closely related to the choice

of patient tissue for RNA-seq analyses. For most diseases the tissue analysed will not be that

in which the disease manifests with the notable exception of skeletal muscle disorders. The

most used proxy tissues to date have been blood and fibroblasts with concerns raised about the

use of both tissue types. One concern is that the proxy tissue will not adequately represent and

thus, miss the pathogenic event observed in the disease tissue. Resources such as GTEx and

MAJIQ-CAT allow for the assessment of the expression and common splicing of disease genes

in clinically accessible tissues (30, 51). Using this approach, recent studies have suggested that

the majority of OMIM-genes are expressed within fibroblasts, supporting the choice of this tissue

for the analyses presented in this chapter (25). Nonetheless, it has been shown that whole blood

RNA-seq can be used to diagnose various diseases including those with a neurological phenotype

with a 10% diagnostic yield (27).

As demonstrated in this thesis, prediction of the functional consequence of aberrant splicing

events detected through RNA-seq can be used to help interpret their pathogenicity. This process

has also been shown by other studies to be useful for informing the development of splice-

modulating treatments (44). To date, approaches that interpret the functional consequence of

splicing events from short-read RNA-seq require comparison to a reference transcript. The

selection of this reference remains challenging, with the vast majority of protein-coding genes

presenting with multiple isoforms according to Ensembl annotation (12). This has triggered the

development of the MANE-select set of transcripts, which I used to interpret the aberrant splicing

events in this thesis. The MANE-select project has the goal of simplifying each gene to a single,

functional transcript in most cases. However, this is unlikely to reflect the underlying biology

and thus, may lead to the incorrect prediction of the consequence of aberrant splicing events.

Furthermore, short-read RNA-seq and more recently, long-read RNA-seq studies elude to the

plethora of transcripts left out of annotation databases, which complicates interpretation further

(19, 131, 132). Whilst the function and redundancy of these newly discovered transcripts remains
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contested, it is becoming increasingly likely that the reduction of all genes to a single transcript

represents an oversimplification (61). In the future, it is likely that the application of long-read

RNA-seq in a diagnostic setting, which can capture full-length transcript structure accurately,

will improve the interpretation of the consequences of aberrant splicing events.

Beyond diagnosis, RNA-sequencing also has the ability to improve the understanding of

disease pathogenesis through the detection of disruptions to global pathways and genetic contrib-

utors to disease outside of the primary locus. For example, I demonstrate that the application of

RNA-seq to a cohort of patients with ATG7 mutations enables the identification of pathways that

would be expected to be perturbed such as those related to golgi-function. Furthermore, I identify

pathways which have not previously been linked to the ATG7 function but, given the neurodevel-

opmental phenotype of these patients, may be important (for example, cell-cycle perturbations).

One application of this downstream pathway information would be to help prioritise the causative

genes in patients with similar clinical phenotypes. In addition, this approach may be useful

for identifying the pathways that could be modulated to ameliorate disease-related processes.

However, the global disruptions in RNA expression, which are secondary to the pathogenic event,

may also complicate analyses. For instance, the transcriptional changes that are attributed to

these pathway disruptions may, in certain cases, become noise that obscures the identification of

a causative RNA-level event.

Overall, in this chapter, I add to the accumulating evidence that RNA-seq has utility as a

diagnostic tool as well as demonstrate that RNA-seq can improve disease understanding, namely

through the characterisation of splicing events, detection of perturbed pathways and potential

genetic modifiers outside of the causative locus.





Chapter 5

Conclusions and future directions

5.1 Summary of the thesis contributions

The overarching goal of this thesis is to explore the use of transcriptomics to improve the

diagnostic rate of Mendelian disorders. I contribute to this goal by developing methods to

improve variant interpretation as well as conducting analyses that support the value of using

RNA-sequencing (RNA-seq) for diagnostics and beyond. In chapter 1, I demonstrate that existing

gene annotation remains incomplete, which hinders variant interpretation and likely limits

diagnostic yield as a consequence. To address this, I leverage publicly available RNA-seq data

across 46 human tissues to detect novel exons and improve annotation for the majority of known

Mendelian disease genes. This novel annotation is publicly released through a web interface,

vizER, and the method for its generation as a Bioconductor package, ODER (131, 133). In chapter

2, I develop an aberrant sequencing detection method, dasper, which uses junction and coverage

information from patient-derived RNA-seq data to detect aberrant splicing events. dasper is

also publicly released via the Bioconductor project and has been designed with diagnostics

in mind (112, 134). It applies a 1-vs-all experimental framework, produces a ranked list of

aberrant splicing events and allows for the flexible visualisation of aberrant splicing events in

the form of sashimi plots. In the final chapter, I apply RNA-seq to patient-derived samples in

order to diagnose a set of genetically unsolved cases suspected of having mitochondrial disease

due to nuclear mutations. RNA-seq achieved a genetic diagnosis in 1/32 (3.13%) patients and

discovered candidate genes for a remaining third, supporting the increasing evidence of the utility

of RNA-seq as a diagnostic tool. Each of the above projects has its own discussion, therefore this

http://rytenlab.com/browser/app/vizER
https://bioconductor.org/packages/release/bioc/html/ODER.html
http://www.bioconductor.org/packages/dasper
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chapter aims to summarise the major insights obtained from this thesis, highlight the limitations

of the work and discuss the future directions of the field of RNA-seq for diagnostics.

One of the key findings from this thesis is the detection of widespread, unannotated tran-

scription across all human tissues, with the implication that gene annotation remains incomplete

even for well-studied, disease-associated genes. During the timeline of this PhD, other studies

employing computational transcript assembly approaches or long-read sequencing have been

published, supporting this finding through the discovery of a plethora of unannotated, human

transcripts (19, 20, 132). However, one area not addressed by these studies is the disproportionate

impact incomplete annotation has on specific tissues and diseases. I tackle this by comparing the

abundance of novel transcription across human tissues and genes. I find that the transcriptome of

the brain remains the least well understood and that genes associated with neurodegenerative dis-

eases are enriched amongst the set of genes I re-annotate. This suggests that variant interpretation

will be more difficult for genes expressed in the brain. As a consequence, I anticipate that im-

provements to gene annotation, such as the public release of the novel annotation derived within

this thesis, will have the greatest impact on the diagnostic yield of patients with neurogenetic

disorders.

In chapter 2, I demonstrate that dasper detects pathogenic splicing events more accurately

than the existing method, LeafCutterMD (35). Other similar aberrant splicing detection tools

have been released during the course of this PhD, namely FRASER and SPOT (36, 135). It worth

noting that SPOT is not directly designed for diagnostics, rather the detection of aberrant splicing

events in unaffected individuals. Therefore, it remains unclear how SPOT would perform on

patients with Mendelian disorders, where there are likely to be global transcriptional changes

related to disease pathogenesis that could obscure the signal of the pathogenic event. However,

the outlier detection models employed by FRASER and SPOT are both comparable to daspers

therefore, in future work it would be useful to benchmark the performance of dasper to these

tools. Despite the growing number of aberrant splicing detection tools, dasper addresses three

areas that, to my knowledge, have not been formally tackled by any other splicing method in

the diagnostic RNA-seq space. Firstly, analyses using dasper revealed that the incorporation

of coverage data alongside junction counts can be used to improve the detection of aberrant

splicing events. Coverage information has been employed by differential splicing tools such as

dSpliceType (136). However, dasper is the only tool applied to RNA-seq for diagnostics that

demonstrates the utility of coverage within an N-vs-1 experiment, where one would expect the
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variance of coverage noise to be greater. Secondly, dasper includes functionality for visualising

aberrant splicing events in the form of sashimi plots, which facilitates the interpretation of the

consequence of these events with respect to transcript structure and function. The addition

of plotting functionality within dasper itself permits a more efficient, automated diagnostics

pipeline, streamlining the processes of detection and interpretation. Thirdly, I compare the

detection of known pathogenic splicing events through dasper using in-house samples versus

publicly available RNA-seq data as controls. To my knowledge, this has not yet been investigated

by any of the other aberrant splicing detection methods, which have relied on in-house controls

generated using similar sequencing protocols to the patient samples. Further exploration of

the impact of using publicly available data as controls is likely to be extremely valuable for

several reasons. The use of publicly available data can: i) reduce the cost of the diagnostic

workflow by avoiding the need to sequence control samples making the analysis more affordable,

ii) standardise the diagnostic RNA-seq pipeline between laboratories, which would otherwise be

using different control data sets, and iii) avoid the need to batch patient RNA-seq samples and

therefore delays to genetic diagnoses.

In chapter 3, the application of RNA-seq for diagnosing a cohort of unsolved cases with

suspected mitochondrial disorders supports the accumulating evidence that RNA-seq serves

as a promising diagnostic tool. The diagnostic success rate I obtain, 3.15%, is similar to the

existing, diagnostic RNA-seq studies on patients with mitochondrial disorders (24, 25). Given

the requirement for more standardised pipelines within the diagnostic RNA-seq field, I outline

a workflow for the prioritisation of candidate genes using detection of aberrant splicing and

expression events from RNA-seq. During the course of this PhD, Yépez and colleagues have

released an open-source, modular workflow, DROP, which also incorporates ASE analyses and

variant calling from RNA-seq (85). I anticipate that DROP is likely to be immensely valuable to

clinicians and researchers, representing a milestone in the movement towards the standardisation

and automation of diagnostic RNA-seq, which will also greatly aid the adoption of RNA-seq

within diagnostic laboratories. Notably, the modular design of DROP permits the extension of the

workflow in future. In particular, as an area of growing interest, this could include the addition

of the use of RNA-seq to inform the development of personalised therapies. For instance, as

demonstrated in chapter 3, RNA-seq can be used to characterise the consequences of aberrant

splicing events, a process that has been shown to be helpful for the design of personalised, ASO

therapies (44). Overall, the release of standardised workflows such as DROP are a major step
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towards the adoption of RNA-seq within the diagnostic routine; it is my hope that in the future,

such workflows will also incorporate tools that use RNA-seq to benefit patients beyond diagnoses.

5.2 Limitations of RNA-seq for diagnostics

While the analyses conducted within my thesis provide valuable contributions to the field of

diagnostic RNA-seq, there are several limitations. These limitations arise from the current incom-

plete understanding of transcriptome complexity, the rapid evolution of sequencing technologies,

the relative paucity of publicly available patient RNA-seq data and differences in transcript

expression and/or splicing between human tissues.

One of the key issues raised in this thesis is the requirement for accurate transcript structures

as a basis to interpret the impact of a given variant or splicing event. For any given gene, there

can be a large number of potential transcript structures reported, which could potentially generate

conflicting predictions of pathogenicity (21). Furthermore, since aberrant splicing is called

locally using short read RNA-seq data rather than within the context of a whole transcript, I have

made a key assumption in order to perform the analysis, namely that there is a major transcript

structure of interest and that the aberrant event occurs within that structure. More generally, there

is a drive to simplify transcript annotation as exemplified by resources such as MANE-select

and methods such as APPRIS, which aim to prioritise 1 or 2 principle, functional transcripts per

gene (137, 138). Albeit useful for the standardisation of variant interpretation across analyses

and annotation databases, these approaches may lead to a substantial oversimplification of

transcriptome complexity. As a result, these approaches can lead to erroneous predictions and

inaccurate variant interpretation, in particular for variants that lie in non-coding regions with

respect to the MANE-select transcript. For example, in the case of the gene TTN, the exonic

usage and isoform expression of this gene are tightly regulated among different developmental

and physiological states. In fact, a subset of TTN exons are only expressed during development

and never found in adult human skeletal muscle (139). This suggests that at least a subset of

genes are likely to have more than a single functional transcript, illustrating the need to account

for transcript complexity in order to accurately interpret variants (140). The advent of 3rd

generation sequencing technologies such as Oxford Nanopore and Pacific Biosciences, which

have the capability to capture full-length transcript structures, will provide a more accurate

view of transcriptome complexity (65, 66). Therefore, long-read RNA-seq is likely to have a
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revolutionary impact on the development of gene annotation databases. In particular, as the

sequencing depth remains a major bottleneck for whole transcriptome long-read sequencing,

targeted approaches have been employed which are capable of improving the transcript resolution

for complex genes such as TTN and CACNA1C (20, 67). In the context of diagnostic RNA-seq,

targeted long-read RNA-seq can improve variant interpretation in two ways. When applied to

control samples, targeted long-read RNA-seq can be used to profile transcriptome complexity

and improve the accuracy of reference annotation databases. When applied to patient samples,

these technologies allow you to directly measure changes to the full-length transcript structure

and relative abundance allowing more accurate detection of aberrant events and derivation of

their functional consequence. Overall, it is my hope that long-read sequencing represents a new

phase for diagnostics, whereby the fundamental unit used for interpretation will shift from the

existing gene-centric paradigm or local, cluster-based approaches, to a transcript-oriented view

that more accurately represents the underlying biology.

Sequencing technologies have evolved not only in the length of outputted reads but also the

resolution and type of their inputted samples. For instance, single-cell RNA-seq is an emerging

technology that allows profiling the transcriptome at cellular resolution (141). In addition, there

has been an increase in the number of publicly available datasets such as that released by the

BrainSEQ consortium, PsychENCODE, the Human Developmental Cell Atlas and SCDevDB

that include samples from various stages of human development (68–70, 142). These examples

highlight a limitation of the analyses within this thesis, namely that it is applied solely on bulk

tissue samples from human adults. In chapter 1, I found that novel transcription was most

commonly discovered in the human brain, which is likely attributed to the relative lack of

brain-derived data that has entered annotation pipelines to date. Accordingly, one would also

expect that single-cell and developmental RNA-seq datasets would be enriched for previously

unannotated cell or developmentally specific transcripts. I anticipate that the future application

of approaches such as ODER and long-read sequencing on these datasets will be valuable for

improving our understanding of the transcriptomic changes that account for the differences

between cell-types and developmental stages. In fact, recent studies have already started to

address this by combining long-read and single cell RNA-seq technologies (143, 144).

Despite the progressively increasing quantity of publicly available RNA-seq data, this has

not encompassed data derived from patient samples. Although there are several published studies

applying diagnostic RNA-seq on hundreds of samples, to my knowledge, none of these release



92 Conclusions and future directions

their RNA-seq data publicly (23–25, 27). Predominantly, this is due to static consent frameworks

that restrict the use of patient samples to research projects outlined at the stage of sample retrieval

(145). Following from this, a key limitation of the development of dasper in chapter 2 is the

reliance on a small number of patient samples with pathogenic splicing variants. Importantly,

this limitation is not only related to the total number of patient samples, but also the type of

pathogenic splicing variant carried by each patient. For the purpose of developing an aberrant

splicing detection method, samples from patients carrying deep intronic mutations would be

most valuable, however this class of variant itself forms only a small proportion of pathogenic

variant databases such as ClinVar (146). The small N number of patient samples limits the

generalisability of dasper, as the detection of aberrant splicing events is influenced by the type of

pathogenic splicing mutation, the disorder of the patient and the demographic of the samples

analysed. Without a larger cohort of positive controls, it is difficult to extrapolate the performance

of dasper across these variables. This problem of benchmarking dasper is compounded, as

the small N number also introduces testing circularity; the 16 patient samples which inform

dasper’s development are the same 16 which are used to validate its performance. In addition,

the design of the computational method within dasper relies on the assumption of both an up-

and down-regulated junction to be present in each pathogenic splicing event. Although this holds

true for the 16 positive controls on which dasper is tested, given the limited sample number it is

unclear whether this assumption will remain the case for all pathogenic splicing events. Notably,

this could be a particular issue for intron retention events, which are only represented by a single

patient in the analysed cohort, wherein one might not expect the appearance of an up-regulated

junction. It is likely that the quantity of publicly available patient samples will increase in the

future for several reasons. First, new dynamic consent policies employed by large organisations

such as Genomics England in the UK allow extensions to the research scope that a patient sample

can be used for (145). Secondly, there is an increasing adoption of cloud-based, computational

infrastructures such as Terra, which enable access to vast compute resources and data to be

processed without being downloaded (147, 148). Finally, many aberrant splicing detection tools

do not require read-level information, which carries the risk of an individual being identified

from their genetic variants. Instead, they can leverage non-identifiable junction count matrices

and BigWig files as input; these data formats can be shared more readily. This is exemplified

by the recount projects which standardise processing and publicly release RNA-seq data from

hundreds of thousands of samples (52, 63). Together, it is my hope that these factors will lead to
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easier access to a larger number of patient-derived RNA-seq data in the future, which will aid

the development of better quality bioinformatics tools. In the case of dasper, this will allow the

performance and assumptions of the method to be assessed across a larger cohort of patients and

specifically, those that carry deep intronic splicing variants of interest.

While the development of the tools such as dasper and workflows such as DROP are

valuable within research studies, there are still bottlenecks that prevent these approaches from

being widely adopted in clinical settings (85, 112). One major hurdle is the lack of clear,

community-accepted criteria for evaluating RNA-seq evidence in a diagnostic context. Without

such guidelines, it remains the responsibility of individual groups and clinicians to assess the

evidence resulting from the applied methods and workflows. This increases the time taken for

interpretation and leads to a set of diverse, subjective criteria or thresholds being employed for

determining the pathogenicity of RNA events that varies between studies and research groups.

Although this is surmountable within individual research studies, it represents a much greater

bottleneck for diagnostic laboratories. It is likely a set of extended clinical guidelines, similar

to the update of the ACMG guidelines driven by the adoption of WES as a standard diagnostic

approach, will be required for RNA-seq (149). The development of these criteria should involve

a conversation between the community and consider the effect sizes and statistical cut-offs

that would define a pathological or benign phenotype from RNA-seq data. For example, a

threshold of observed population frequency could be established for junctions, above which

the splicing event represented by that junction should be considered benign. It is worth noting

that such cut-offs would need to be more complex than those currently used for genetic data,

for example by accounting for tissue, cell-type and developmental differences. This is likely to

require a better understanding of the landscape of normal junction frequencies than currently

available. Ultimately, this would greatly aid the adoption of RNA-seq within a clinical setting

by standardising the criteria for assigning the pathogenicity of variants using RNA-seq based

evidence.

Another core limitation of diagnostic RNA-seq is that often, the sampled tissue from a patient

is not a disease-relevant tissue. This phenomena is commonly termed the proxy tissue problem

and can arise for multiple reasons (30). The disease tissue may be physically inaccessible without

harming the patient, for example in the case of neurological disorders. For developmental

disorders, certain disease changes may only be observable at a specific developmental stage,

which cannot be sampled in adult patients. Finally, in certain disorders, the transcriptional
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signature of disease may be constrained to a specific cell-type, and therefore, masked in bulk

tissue samples. In all cases, the proxy tissue problem leads to major challenges, whereby the

disease-associated transcriptional changes may not be adequately captured in the proxy tissue.

Due to the variability in gene expression across human tissues, it is unclear whether the disease-

associated transcript will be expressed (and therefore captured) within a proxy tissue. Even if

expressed, the splicing and transcript-level changes related to disease state may not be represented

in a proxy tissue. Furthermore, for practical reasons, often a cell line is used as the proxy tissue.

However, the in vitro culturing and maintenance of cell lines induces transcriptional changes

that may not accurately reflect the endogenous, disease state. It is important to note that proxy

tissue problem will impact different diseases to a varying degree. For example, skeletal muscle

disorders such as Duchenne muscular dystrophy are an ideal disease for application of diagnostic

RNA-seq as muscle biopsies are already routinely performed as part of the diagnostic pathway.

As a consequence, studies analysing patients with skeletal disorders, to my knowledge, have

achieved the highest diagnostic yield obtained by application of RNA-seq to date (35%) (23). In

chapter 3, I apply RNA-seq to diagnose patients with suspected mitochondrial disorders using

data derived from fibroblast cell lines. Disrupted mitochondrial function is likely to have impact

on transcription ubiquitously across tissues, however the degree of this impact is likely to vary

due to tissue differences in expression and splicing. In addition, transcriptional artefacts are likely

to be induced during the culturing process of fibroblasts. Together, it is likely that the proxy tissue

problem still limits the diagnostic yield of RNA-seq applied to mitochondrial disease patients. It

is foreseeable that the proxy tissue problem can be overcome through technological developments,

such as the differentiation or transdifferentiation of cell lines into the disease-relevant tissues.

In fact, research studies have employed such techniques successfully in the diagnostic context,

for example through the differentiation of IPSCs to retinal organoids or transdifferentiation

of fibroblasts to myoblasts (28, 150). These examples suggest that the conversion of proxy

tissues to a disease relevant tissue can reproduce disease-associated transcriptional changes that

would otherwise have been missed. Although these technologies represent solution for disorders

where the disease tissue remains inaccessible, they are not without drawbacks. Primarily, they

incur an increased resource and expertise burden, which prevent them being from being widely

adopted in a clinical setting. Additionally, the differentiation process will generate genetic and

transcriptomic artefacts which may obscure disease associated events. Overall, the proxy tissue

problem remains a major challenge, which limits diagnostic yield obtainable through RNA-seq,
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especially for disorders where the disease tissue is inaccessible. Although technological advances

in differentiating cell lines represents a viable solution in principle, their incorporation into the

diagnostic routine is not practically feasible until their costs can be greatly reduced.

Given the considerable resources required to generate patient-derived RNA-seq data this also

raises questions about whether this form of data provides additional insights beyond diagnosis

for the individual patients or patient cohorts.

5.3 RNA-sequencing beyond diagnostics

The clinical value of an RNA-seq experiment lies not only in establishing a genetic diagnosis

for patients. RNA-seq data can provide additional information about disease pathogenesis,

which could in turn lead to more accurate prognostic information and the development of

personalised therapies. More specifically, as demonstrated in chapter 3, RNA-seq data can be

used to characterise the pathogenesis of Mendelian disorders by detecting transcriptomic changes:

i) at the causative locus, and ii) more broadly, outside of the causative locus. Focusing on the

former, characterisation of aberrant splicing events, can inform the design of splice-modulating

therapies such as ASOs. For example, I demonstrate that junction and coverage information

from RNA-seq data can be used to classify aberrant splicing events by their consequence on

the transcript structure. In previous studies, a similar approach has been successfully employed

to design ASOs targeting a pathogenic splicing event in a patient with Batten’s disease (44).

Together with the recent development of other successful splice-modulating therapies, such as

the FDA-approved oligonucleotide, nusinersen for spinal muscular atrophy, the area of RNA

modulating compounds is of growing interest amongst drug discovery companies (151, 152).

Given that transcriptomic data provides a broad functional readout of cellular activity, it

potentially contains information about downstream pathways that are perturbed in disease

and genetic modifiers contributing to severity. In the field of cancer research, the value of

understanding the genetic profile and disrupted transcriptomic pathways downstream of tumour

genesis are already well-recognised. For example, pathway and variant level information has

been combined with clinical symptoms to inform the prognosis of patients with breast cancer

(153, 154). In addition, the molecular profiling of tumour cells has become a fundamental

component of the development of precision cancer treatments tailored to the somatic mosaicism

within individual patients (155). There are reasons to believe that these approaches should
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also be applicable to field of rare diseases. Pathway activation has been shown to correlate

with phenotype severity in Mendelian disorders. For instance, in cystic fibrosis patients the

expression of genes within the type I interferon response pathway have been demonstrated to be a

determinant of whether a patient will have mild or severe lung phenotype (93). Similarly, studies

using mutational burden analyses to investigate sickle cell anemia have found that variants in

CLCN6 or OGHDL were enriched in patients that had a longer survival duration (92). With 5% of

Mendelian patients observed to have variation at multiple loci contributing to major phenotypic

features, the importance of such genetic modifiers is likely to be underappreciated (91).

Overall, I anticipate that the full clinical value of RNA-seq will not only be for genetically

diagnosing a patient, but also to improve understanding of their disease pathogenesis and aid the

design of personalised, RNA-modulating therapies.

5.4 Concluding remarks

The evidence from this thesis and other studies released during the course of my PhD have

established RNA-seq as a valuable tool for improving the genetic diagnostic rate of Mendelian

disease patients. I expect that, over the next decade, the emerging diagnostic RNA-seq workflows

will mature and be supplemented with the release of a standardised, diagnostic criteria for

evaluating RNA-seq evidence. This will enable the adoption of RNA-seq as part of the staple

diagnostic routine. In parallel, with the growth in the field of personalised medicine, I envision

that the clinical application of RNA-seq will evolve beyond diagnostics, to become a framework

for improving disease understanding as well as a platform for the discovery of RNA-modulating

therapies.
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Ensembl Transcript ID Protein Start Protein End Domain source Description Accession
1 ENST00000262375 80.00 457.00 PANTHER DNAJ HOMOLOG SUBFAMILY A MEMBER 3, MITOCHONDRIAL PTHR44145
2 ENST00000262375 80.00 457.00 PANTHER DNAJ HOMOLOG SUBFAMILY A MEMBER 3, MITOCHONDRIAL PTHR44145:SF3
3 ENST00000262375 207.00 416.00 CDD DnaJ_C cd10747
4 ENST00000262375 211.00 321.00 Gene3D Urease metallochaperone UreE 2.60.260.20
5 ENST00000262375 236.00 296.00 Gene3D - 2.10.230.10
6 ENST00000262375 335.00 438.00 Gene3D Urease metallochaperone UreE 2.60.260.20
7 ENST00000262375 90.00 477.00 HAMAP DnaJ MF_01152
8 ENST00000262375 210.00 413.00 Pfam DnaJ_C PF01556
9 ENST00000262375 89.00 203.00 Gene3D Chaperone J-domain superfamily 1.10.287.110

10 ENST00000262375 90.00 196.00 SuperFamily Chaperone J-domain SSF46565
11 ENST00000262375 92.00 150.00 Smart dnaj_3 SM00271
12 ENST00000262375 93.00 147.00 CDD DnaJ cd06257
13 ENST00000262375 93.00 155.00 Pfam DnaJ PF00226
14 ENST00000262375 93.00 158.00 Prosite_profiles DNAJ_2 PS50076
15 ENST00000262375 95.00 113.00 PRINTS JDOMAIN PR00625
16 ENST00000262375 113.00 128.00 PRINTS JDOMAIN PR00625
17 ENST00000262375 130.00 150.00 PRINTS JDOMAIN PR00625
18 ENST00000262375 150.00 169.00 PRINTS JDOMAIN PR00625
19 ENST00000262375 135.00 154.00 Prosite_patterns DNAJ_1 PS00636
20 ENST00000262375 338.00 424.00 SuperFamily HSP40/DnaJ peptide-binding domain SSF49493
21 ENST00000262375 223.00 301.00 Prosite_profiles ZF_CR PS51188
22 ENST00000262375 236.00 296.00 CDD DnaJ_zf cd10719
23 ENST00000262375 236.00 296.00 Pfam DnaJ_CXXCXGXG PF00684
24 ENST00000262375 223.00 299.00 SuperFamily DnaJ/Hsp40 cysteine-rich domain SSF57938

Table A.2 Protein domains detected within the DNAJA3 transcript ENST00000262375. This table is
downloaded through the Ensembl web browser and contains all protein coding domains that were present
in the DNAJA3 MANE-select transcript ENST00000262375. Protein start and Protein end columns specify
the amino acid positions where the corresponding domain starts and ends.
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Sample ID Provider Sex Ethnicity Age of onset of symptoms
1 M0367-16 Newcastle M Pakistani (consanguineous) Infancy
2 M2566-15 Newcastle M Nepalese (consanguineous) Birth
3 M1237-16 Newcastle F Not stated (consanguineous) Birth
4 M0906-17 Newcastle F South African Infancy
5 M1451-17 Newcastle F Not stated (consanguineous) Infancy
6 M1532-17 Newcastle M Irish Infancy
7 M1316-12 Newcastle M Not stated (consanguineous) Birth
8 M2198-15 Newcastle F European Birth
9 M0905-18 Newcastle F European Birth

10 M0014-18 Newcastle F European Infancy
11 M1708-15 Newcastle M European Infancy
12 M0892-14 Newcastle F European Infancy
13 M0138-11 Newcastle M European Infancy
14 M0687-14 Newcastle F European Infancy
15 M1122-11 Newcastle F Pakistani (consanguineous) Infancy
16 M0229-16 Newcastle M Not stated Birth
17 M1710-16 Newcastle F European Birth
18 ION176 UCL M Caucasian Adult
19 L1219.1875F UCL M South Asian Adult
20 L1550.2631F UCL F Caucasian Childhood
21 L1901.3262F UCL F European Childhood
22 L949.3246F UCL M Irish (consanguineous) Birth
23 S1741 Oxford M Not stated Infancy
24 S1742 Oxford M Not stated Birth
25 S1743 Oxford M Not stated Infancy
26 S1820 Oxford F Not stated Infancy
27 S2110 Oxford F Caucasian Infancy
28 S2112 Oxford M Not stated Birth
29 S2220 Oxford M Not stated Birth
30 S2220B Oxford M Not stated Birth
31 S2582 Oxford M Not stated Infancy
32 S2586BK Oxford M Turkish Birth

Table A.3 The sample identifiers, institutions that provided samples and the demographic of the patient
samples with suspected mitochondrial disorders analysed in chapter 4.
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