
2021 European Conference on Computing in Construction
Online eConference
July 26-28, 2021

A CLOUD IFC-BASED BIM PLATFORM FOR BUILDING ENERGY PERFORMANCE
SIMULATION

Kyriakos Katsigarakis, Georgios N. Lilis, Dimitrios Rovas
University College London, London, UK

ABSTRACT
The BIM Management Platform (BIM-MP) is a digi-
tal Building Information Model processing tool, re-
sponsible for handling BIM data that conform to
the IFC standard. It provides an integrated data
management solution for storing, versioning, updat-
ing and checking IFC data, which are created and
modified by AEC practitioners. The embedded API
allows the data exchange between BIM-MP and other
online tools which forward IFC files into the BIM-MP
repository to perform various operations using differ-
ent BIM-MP functional modules. Some of the mod-
ules create visual and textual reports regarding data
quality issues in terms of data consistency, complete-
ness and correctness, while others enrich the IFC data
with new IFC objects with the necessary semantic
links. All these modules are deployed as standalone
containerized applications using the Service-Oriented
Architecture (SOA) design principle.

INTRODUCTION
The proliferation of BIM usage within Architectural
Engineering and Construction domains, paved the
path to transparent project collaboration, which led
to the development of multiple open BIM handling
software platforms such BIMserver (Beetz et al. 2010)
, xBIM (Lockley et al. 2017), to name a few. On the
other hand, the latest efforts to reduce the new and
existing buildings’ carbon footprint, by assessing de-
sign alternatives and retrofitting scenarios, led to an
increased use of Building Energy Performance Simu-
lation (BEPS) programs.
To support these work pathways, a cloud based
framework of BIM processing software tools, called
BIM Management Platform (BIM-MP), is intro-
duced. The basic philosophy and goal of BIM-MP,
which differentiates it from other openBIM platforms,
is the support of automatic BEPS model generation
from open-BIM data conforming to the IFC ISO stan-
dard (ISO et al. 2018). To this direction, BIM-MP
offers data quality checking and data enrichment ser-
vices to AEC practitioners, in a unified cloud-based
service-oriented architecture. BIM-MP platform is
used to support H2020 project BIMERR operational
workflows.
The rest of the paper is organized as follows: Ini-

tially, the platform’s architecture is presented fol-
lowed by the description of its functional and support-
ing components. BIM-MP’s revision control manage-
ment scheme is also analyzed in a separate section.
The paper concludes with the description of opera-
tion, assumptions and restrictions based on the cur-
rent state of development. Application results on a
pre-validation building, from a H2020 project called
BIMERR, are presented in respective subsections.

PLATFORM ARCHITECTURE
BIM-MP is responsible for providing functionalities
in relation to the storing, checking, updating, and
querying of BIM models. These models conform to
the openBIM International Foundation Classes (IFC)
standard (ISO 16739:2018) which contains a rich set
of classes designed to provide a robust interoperabil-
ity solution for data exchange between different built
environments and software applications. This sec-
tion describes the back-end system architecture of a
cloud-BIM management solution that enables the in-
teroperability between functional modules and exter-
nal clients.

High-level Architecture
BIM-MP includes a core and a set of reusable modules
to support synchronous and asynchronous requests
in a unified manner. Some modules can respond to
requests immediately while others require more time
depending on the complexity of the BIM models. All
of them include a set of low- and high-level libraries
to perform their business logic operations. Figure 1
displays a generalized view of BIM-MP’s architecture
with its core and reusable modules.

Figure 1: BIM-MP’s high-level architecture



The high-level libraries are responsible for handling
and querying BIM models and for extracting the
required information for the execution of the low-
level operations. The low-level libraries support mul-
tithread processing and exchange information with
the high-level libraries through the JNI programming
framework. The modules are deployed in the cloud in-
frastructure as a standalone Spring Boot Application
following the Software-Oriented Architecture (SOA)
design principle.
For the communication of the different modules,
BIM-MP uses the Red Hat Fuse Enterprise Ser-
vice Bus (ESB) which is in charge of providing the
asynchronous communication using queues as well
as for handling the routing of the messages. The
ESB acts as a message broker providing the required
queues and facilitates interoperability. The ESB in-
cludes Extract-Transform-Load (ETL) logic and cus-
tom mappers to transform the payload of the mes-
sages in a proper form according to the requirements
of the receivers. In the proposed architecture, BIM-
MP modules are standalone applications based on the
Spring Boot Framework. Each of them contains high-
level and low-level libraries to perform its business
logic operations. We defined the following modules
as a basis for the prototype implementation of the
platform:

1. Core Module contains the GUI implementation
and REST API of BIM-MP. It uses high-level li-
braries to parse BIM models and extract the nec-
essary information used by the functional mod-
ules.

2. Geometric Error Detection (GED) Module inte-
grates geometric model-checking functionalities
into the platform helps BIM designers to create
an error-free model in terms of geometry in the
scope of building energy performance simulation
analysis. The GED module reports detected er-
rors to the designer in a visual form using OBJ
and BCF data.

3. Model View Definition Checking Module helps
BIM designers to validate BIM models in terms
of data completeness based on predefined rules
following the mvdXML specification.

4. Graphics Engine Module uses the geometric in-
formation of BIM models to generate B-Rep
solids of the structural and non-structural build-
ing elements. It stores the B-Rep solids in BIF
using OBJ files. Additionally, the embedded We-
bGL viewer of the BIM-MP uses the B-Rep solids
for a visual representation of the model through
the GUI.

5. Common Boundary Intersection Projection
(CBIP) Module uses geometric operations to en-
rich the BIM model with 2nd-level space bound-
aries and shading surfaces.

6. Automatic Space Generation Module uses the ge-

ometric information to generate the geometry of
the spaces and enriches the BIM model.

Each of these modules exchange information using
data structures which conform to open standards.
The Core Module itself controls the binding between
the BIM-MP front-end system and the functional
modules.

Module Orchestration
As mentioned earlier, BIM-MP implementation fol-
lows the SOA design approach. The distributed na-
ture of the platform requires orchestration techniques
and a messaging framework that provides a loose cou-
pling between components, to achieve performance
and reliability. The use of asynchronous messaging
offers many benefits, but also brings challenges such
as the delivery sequence of messages and the concur-
rency between the different BIM-MP modules.

Figure 2: BIM-MP module orcherstration

A secure and private containerized environment
hosted on dedicated server infrastructure is used to
provide the BIM-MP functionality. The container
images facilitate the portability and distribution of
workloads in a standardized manner, and allow de-
velopers to package all software components and de-
pendencies into reusable units.

CORE MODULE
The Core Module is deployed as a cloud application
and provides the web-based interface and the API of
BIM-MP. It uses a set of software components and
libraries to handle the BIM models and to extract
the information required by the functional modules.

Web-based User Interface
The Core Module is developed in Java EE, adopting
the micro-service design pattern. It includes the GUI
(see screenshot of Figure 3) of the platform and pro-
vides authorized access to users and tools through the
Identity Provider.
The Core Module is based on the Spring Boot Frame-
work and uses its embedded web-server to support the
Model-View-Control (MVC) design pattern.



Figure 3: BIM-MP’s modules control panel

Moreover, the Core Module uses the Spring Secu-
rity Framework and the Spring Keycloak Adapter to
handle access policies for the BIM-MP. The Iden-
tity Provider grants access to BIM-MP for access-
ing information such as user data, user roles and
groups. Apart from the requirement to support mod-
ern web technologies, the Core Module includes a set
of components to configure a database for storing its
data. Moreover, it includes AMQP adapters to ini-
tialize asynchronous communication interfaces with
the functional modules through the Enterprise Ser-
vice Bus.

Data Model
The Core Module of BIM-MP includes entities, at-
tributes, and relationships between entities, to rep-
resent the logical data model which stores the data
needed to perform the BIM-MP operations (illus-
trated in Figure 4).

Figure 4: BIM-MP’s data model

Using the Spring Framework and Hibernate2, the au-
tomatic deployment of the database is driven based
on Java Persistence API (JPA) annotations. In this
context, Java classes represent the tables, while some
fields inside the classes represent the relations be-
tween different tables. The framework supports all
types of relations such as one-to-one, many-to-one,
one-to-many and many-to-many. When using this ap-
proach, the relational database can be transparently
managed from Java, increasing the abstraction level
of the persistence layer. The Core Module requires a
connection to a MySQL Server. MySQL Server is a
Relational Database Management System (RDBMS)
that support multi-tenancy. The Hibernate frame-

work utilizes the MySQL dialect to access the BIM-
MP’s database to perform transactional operations
and queries.

SUPPORTING COMPONENTS
BIM-MP uses software components and libraries to
handle the complexity of the functional modules and
to increase the automation and reliability of the busi-
ness logic operations. It contains five primary soft-
ware components described below:

EXPRESS Schema Compiler
The EXPRESS Schema Compiler is a standalone
application that uses the Java EE Code Model
framework to generate the IFC Java classes directly
from EXPRESS data. It can parse successfully the
most frequently used IFC releases, from IFC2X3 to
IFC4X1. Initially, the application transforms the EX-
PRESS data into in-memory objects using an internal
data model representation. Then, a set of predefined
transformation rules is applied on the objects to in-
stantiate the representation of the Code Model. Fi-
nally, the Code Model generates the IFC classes and
organizes them into Java packages based on the re-
lease of the IFC schema. This IFC class generation
and Java class organization process from an input IFC
EXPRESS schema, is illustrated in Figure 5.

Figure 5: IFC Classes generation using the EXPRESS Schema
Compiler

IFC Java Library
The IFC Java Library uses the generated IFC Java
classes to parse efficiently the STEP data and to in-
stantiate a representation of the BIM model. The
current version of the IFC library can handle the
most frequently used IFC releases, from IFC2X3 to
IFC4X1. The IFC Java Library provides an API
that includes a set of useful functionalities for ma-
nipulating the loaded objects. Moreover, it supports
the initialization of reverse relations. Reverse rela-
tion is the addition of the instance of an object to
the corresponding collection of the inverse connected
instances of another object. The creation of the IFC
components from an input IFC model by the IFC Li-
brary, is demonstrated in Figure 6.

Figure 6: IFC Java Library Components



IFC Geometry Exporter
The IFC Geometry Exporter extracts the geometric
content and the respective semantics of an input IFC
model, to provide the necessary geometric data to
low-level geometric algorithms, implemented in C++.
The binding between the Geometry exporter, which
is developed using the IFC Java library, and the low-
level C++ geometric routines, is implemented via
JNI programming interface. To extract the geomet-
ric content, the exporter serializes the input IFC file
and populates respective XML classes organized in a
tree-like structure, following the building hierarchy.
This XML file population from an input IFC model,
is displayed in the block diagram of Figure 7.

Figure 7: IFC geometry exportation process

IFC Optimizer
The IFC Optimizer performs lossless compression of
large IFC files, to speed up the loading process and
the execution of some ETL tools such as the IFC Ge-
ometry Exporter. The IFC exporters of BIM author-
ing tools often generate multiple instances of the same
object, increasing IFC verbosity. The IFC Optimizer
uses the IFC Java Library to compare the hash values
of the IFC objects and to merge them, in case they
are equal. Furthermore, it updates the express iden-
tifiers of the deleted objects to maintain the original
connections. This optimization operation is applied
on an input IFC0 model to produce an output IFC1
model, as illustrated in the block diagram of Figure
8.

Figure 8: IFC file size optimization process

IFC Unit Converter
In general, the tools and algorithms require the input
BIM model to conform to the defined MVD that en-
sures the semantics and completeness of the used IFC
data. The units of values in an IFC file depend on the
IFC Exporters of the BIM authoring tools. The IFC
Unit Converter uses the methods of the IFC Java Li-
brary to convert the values of basic and derived units
into a new unit system as illustrated in the diagram
of Figure 9.

Figure 9: IFC unit converter process

REVISION CONTROL
BIM-MP can handle the geometry and the semantic
information of a BIM model that is provided in IFC.
In the IFC schema specification, IFC objects may re-
flect a final as well as a transient state. For instance,
during a renovation project, external BIM tools may
continuously revise IFC objects. In case multiple
tools are making changes to the same objects, IFC
schema supports local copies of the modified IFC ob-
jects. This revision scheme identifies changes, per ob-
ject, instead of identifying changes in text. An IFC
object is considered modified when: a) any of its di-
rect attributes change; b) any of its referenced re-
sources change; and c) items are added or removed
from any collection. Within this revision scheme,
each IFC object is marked with a change action in-
dicating if the IFC object was ADDED, MODIFIED,
DELETED or not changed.

Object-based Tracking Changes

BIM-MP can efficiently determine which objects have
been added and modified in a series of IFC files mod-
ified by different external software tools. Finally,
BIM-MP can either merge or reject these changes,
as determined by the user. For this tracking service
to work, when an external tool updates the IFC file,
should set the ChangeAction attribute of the IfcOwn-
erHistory of the new added IFC objects to ADDED,
of the modified objects to MODIFIED and of the
deleted objects to DELETED. If no change is ap-
plied, the ChangeAction attribute of the IfcOwner-
History should be set to NOCHANGE. Finally, the
OwningApplication should be updated with the ap-
plication characteristics of the updating tool.

FUNCTIONAL COMPONENTS
Overview

In this section, the function of individual BIM-MP
components is analyzed. BIM-MP components can
be grouped into four categories: (1) Data quality
checking, (2) Semantic enrichment, (3) Geometry en-
gine and (4) Revision control components. These cat-
egories and their respective BIM-MP functional com-
ponents are described in the following subsections.

Data Quality Checking

The quality of IFC data should be checked regularly,
as there multiple software applications which alter the
IFC data content. These data quality checking opera-
tions can be classified into three categories: a) schema
compliance where the consistency of the IFC data is
checked based on the IFC data schema, b) model view
definition (MVD) checking where the completeness of
the IFC data files are checked, and c) Geometric Error
Detection operations where the geometric correctness
checks are performed to IFC data files. These opera-
tions are analyzed in the following subsections.



Schema Compliance
One of the advantages of the openBIM standards,
such as the ISO IFC4 ADD2 TC1 (ISO et al. 2018)
data exchange format, is the transparent data ex-
change among different tools within the AEC domain.
In this standard, BIM data are coded in a STEP file,
the structure of which is defined according to an EX-
PRESS schema conforming to the EXPRESS data
modelling language. Taking this into account, the
IFC Schema Compliance Checker of BIM-MP vali-
dates the STEP data of the input IFC files against
the corresponding EXPRESS schema defined in the
standard. This functionality is integrated into the
IFC Library of BIM-MP and includes validation of
datatypes, class names, the range of numerical vari-
ables and the sizes of the data collections.

MVD Checking
The IFC specification provides a multi-domain infor-
mation model for capturing building data such as ge-
ometry, materials, components, properties and more.
To support specific data exchange requirements be-
tween different tools and processes only a subset of
the IFC specification is required in terms of used en-
tities and properties. The Model View Definition
(MVD) specification (buildingSMART 2020) allows
to define reusable Concept Templates and Rules for
describing precisely the data exchange requirements.
Along with the maintenance of the IFC specification,
buildingSMART has published two general-purpose
Model View Definitions described below:
IFC Reference View is mainly used by tools and pro-
cesses that do not require modifications of the geom-
etry. The geometric representation is optimized for
analysis and display purposes but excludes paramet-
ric geometry definitions.
IFC Design Transfer View includes instances with
support for editing the geometric representations of
building elements and spaces. It is the preferred
MVD in BIMEER, because it enables the enrichment
of the BIM model with new geometric information
and property sets.
BIM-MP provides an MVD Checking Module to help
users to automatically validate the completeness of
the IFC data against specific rules defined using the
mvdXML format. Three steps are needed to achieve
automatic MVD validation of a BIM model:

1. The creation of the mvdXML file using the Ifc-
Doc tool

2. The application of the rules on the IFC objects
using the IFC Library

3. The generation of the validation report based on
openBIM standards such as the BCF

IfcDoc has been developed by buildingSMART In-
ternational, to improve the computer-interpretable
implementation of the specification. The user can
create custom a Model View and assign new Con-

cepts. Each Concept contains the applicable IFC En-
tity connected to a Concept Template and the ap-
plied Rules that include the logical operations, e.g.
entities that are checked by type or properties that
are checked by value.
The MVD Checking Module takes as an input the IFC
data and the mvdXML data. BIM-MP’s IFC Library
is then used for the STEP data serialization and for
the initialization of the inverse relations of the IFC
instances. The output of the tool is a detailed report
of the validation process for each individual Concept.
This process is summarized in Figure 10. MVD check-
ing will examine whether the data requirements of a
BIMEER tool are satisfied. These requirements in-
clude material thermal properties, property sets, op-
erating schedules etc.

Figure 10: BIM-MP’s MVD checking process

Geometric Error Detection
Geometric errors contained in IFC files affect sig-
nificantly Building Energy Performance Simulations
(BEPS) since they alter the geometric content of
BEPS models i.e. the second level space boundary
topology (Bazjanac 2010), which is derived from the
geometric content of BIM (IFC) files using well doc-
umented and tested algorithms (Lilis et al. 2017).
BIM-MP contains all the necessary software com-
ponents to perform the necessary checks to detect
geometric errors which affect BEPS model genera-
tion process. These checking procedures are executed
during the Geometric Error Detection (GED) process
(Katsigarakis et al. 2019), the block diagram of which
is presented in Figure 11.

Figure 11: BIM-MP’s GED checking process
According to the process diagram of Figure 11, the
GED process receives the geometric content and se-
mantics of the IFC model, extracted by the IFC Ge-
ometry Exporter, performes the detection process de-
scribed next and outputs an error report in OBJ
format (Wavefront, 1992). This error report is for-
warded to the WebGL viewer, for user display.

Detection process If at least one internal building
space volume description is present in the IFC file,
then a BEPS-dedicated geometric detection process
is executed by BIM-MP which, according to the ge-
ometric error classification of (Lilis et al. 2015), in-
cludes the following three stages:



1. Surface error detection In this first stage, the sur-
face integrity of the boundary representations of
all architectural elements, including the build-
ing spaces, is checked. Missing surfaces or sur-
faces with inverted surface normal vectors (in-
verted surfaces) are reported. The geometric
solids passing these checks pass to the next stage.

2. BEPS-clash error detection During this stage
only clashes with the clash surfaces attached to
neighbour building spaces are detected (neigh-
bour space condition). This kind of clash errors
affects the BEPS model generation. If the clash
involves a building space volume, then it is re-
ported in this stage without taking into account
the neighbour space condition.

3. Space error detection Finally, the BEPS geomet-
ric error detection process concludes with the
space error detection process, described in the
previous section, applied to all building space
volume geometric descriptions contained in the
IFC file.

Data quality is of paramount importance for the BIM
to BEPS automated model generation processes to
properly function. Since error-free data seems like
a utopic objective, the quality improvement is ad-
dressed through a top-bottom perspective (guidelines
for preparing the BIM models) with a bottom-up per-
spective (explicit checking at the BIM-MP level). It
is possible that model-checkers (e.g. Solibri) can also
be used to ensure modelling errors (geometric or oth-
erwise) are detected. While the developments here
focus primarily on using the data for BEPS, they also
prove the concept that model checking can mostly be
performed on the cloud. The development and inte-
gration of a generic rule-engine is considered out of
scope, at the moment.

Figure 12: Application of BIM-MP’s GED algorithm on
KRIPIS building

Semantic enrichment

BIM-MP offers IFC data enrichment services, where
certain data classes of input IFC files are populated
with data which are obtained from existing IFC data
classes. These enrichment services are offered to en-
sure that all IFC BIMs have the necessary infor-
mation for the generation of BEPS models required
for the assessment of building retrofitting projects.
Two data enrichment services are offered by BIM-
MP: Automatic Space Generation (ASG) and Com-
mon Boundary Intersection Projection (CBIP) ser-
vices, both analyzed in the following sections.

Automatic Space Generation (ASG)

Frequently, the geometric representations of the inter-
nal building space volumes are missing or are defined
incorrectly in the respective IFC BIM data classes.
This happens because the design on an inner build-
ing space with BIM authoring tools is a tedious task
involving filling all the space cavities (gaps), between
the internal building space volume and its surround-
ing building architectural elements (walls, slabs, ...).
These cavities can be too complicated, rendering the
design of the inner building space impossible, even
with the best BIM design software suites.
To overcome such difficulties, BIM-MP offers the Au-
tomatic Space Generation (ASG) service, which en-
riches an input IFC file with the geometric data of
all building inner shells defined by the inner building
space volumes.
According to Figure 13, ASG process receives as input
the geometric content and its semantics exported in
XML format by the IFC Geometry Exporter, of an
initial IFC model IFC0. Then, the building’s space
geometric representations in XML format produced
by ASG algorithm, together with the initial model
IFC0 are used as input to the BIM-MP enrichment
service to produce the final enriched IFC model IFC1.
ASG implements this IFC data enrichment by popu-
lating IfcSpace data classes which contain the bound-
ary representations of the inner shells of the building
spaces translated to the local coordinate systems of
the respective spaces’ level. ASG leaves no space gaps
between the generated building space volumes and
the surrounding building architectural elements.

Figure 13: BIM-MP’s ASG enrichment process

Initially, the ASG algorithm extracts the joint bound-
ary surfaces among all the possible pairs of boundary
representations of architectural elements of the build-
ing of interest, illustrated with blue color in part I
Figure 14. Then, these joint boundary surfaces are
subtracted from the respective boundary representa-
tions of the elements they belong to, yielding the re-
maining set of surfaces illustrated with green colors
in part II of Figure 14.
The remaining surfaces of all architectural elements
of a building form inner and outer surface shells. The
obtained inner shells define the desired inner building
space volumes. BIM-MP ASG service is applied on
KRIPIS building as displayed in Figure 15.



Figure 14: ASG algorithm demonstration

Figure 15: Application of BIM-MP’s ASG algorithm on KRIPIS
building

Common Boundary Intersection Projection (CBIP)
When the BIM files are generated using BIM au-
thoring tools (Revit, ArchiCAD), necessary geomet-
ric content for the BEPS model generation (the build-
ing’s second-level space boundary topology (Bazjanac
2010) and the external shading surfaces) may be ei-
ther missing or incorrectly exported due to flaws in
the IFC exporter of the BIM authoring tool. In this
case, the generation of the second-level space bound-
ary surface topology of the building and the popula-
tion of the respective IFC data classes (IfcRelSpace-
Boundary2ndLevel), are performed by BIM-MP’s
CBIP tool (Lilis et al. 2017).
According to Figure 16, CBIP process receives as in-
put the geometric content and its semantics, of an
initial IFC model IFC0, exported in XML format by
the IFC Geometry Exporter. Then, CBIP process,
outputs: the building’s boundary surface topology
(second-level space boundaries and external shading
surfaces) in XML format. CBIP’s output together
with the initial model IFC0, are used as input to BIM-
MP enrichment service to produce the final enriched
IFC model IFC1.

Figure 16: BIM-MP’s CBIP service process

CBIP algorithm is also applied on BIMERR’s
KRIPIS pre-validation building and obtained second-
level space boundary surfaces from this building are
displayed in Figure 17.

Geometry Engine
The geometric data content of IFC files is not in a
graphics compatible representation format to avoid
verbosity and be as short as possible without losing
critical information. To convert the IFC geometric

Figure 17: Application of BIM-MP’s CBIP algorithm on
KRIPIS building

data into a graphics compatible format, BIM-MP has
a dedicated geometry engine which transforms all ge-
ometric representations of the architectural elements
into boundary representations first using a B-rep gen-
eration process and finally into a graphics compatible
format (OBJ, glTF) using a model viewer. These
low-level geometric operations are performed using
a dedicated C++ geometric library which based on
clipper - one of the fastest and robust open-source
freeware libraries for clipping and offsetting lines and
polygons in two dimensions. The B-rep generation
and the model viewer components are described in
the following sections.

B-rep Generation
The B-rep generation (BRG) module of BIM-MP
is responsible for transforming the various geomet-
ric representations of building elements existing in
IFC data into correctly oriented boundary represen-
tations. This process is illustrated in Figure 18: BRG
receives as input the geometric content and its se-
mantics of an IFC model, exported in XML file by
the IFC Geometry Exporter, and returns the B-reps
of this content, in OBJ format.

Figure 18: B-rep generation process

The BRG module outputs correctly oriented B-reps,
which conform to the right-hand rule. BRG trans-
forms to B-reps, multiple solid geometric representa-
tion types defined by the IfcProducDefinitionShape
and its subclasses. Essentially, the BRG module per-
forms the necessary complex geometric transforma-
tion operations, depending on the input solid rep-
resentation, to produce the three-dimensional points
of the surfaces of the boundary representations con-
tained in the output OBJ file.

Model Viewer
The Model Viewer is a BIM model visualization com-
ponent based on the open-source project xeogl (Xeo-
labs 2018). It uses WebGL for rendering 3D graphics
natively within any compatible web browser. This
component loads the geometry of a BIM model from
glTF data (Robinet, 2014), data, allowing the BIM-
MP user to navigate with the camera and to explore



the structural and non-structural elements of a build-
ing and their properties. The Model Viewer is written
in JavaScript and deployed as part of the Core Mod-
ule. It has access to the project repository to load and
visualize the 3D geometric representation of the BIM
model. The process is the following: The BIM-MP
triggers the execution of the B-Rep Module automat-
ically when the IFC data are available in the project
repository. Next, the B-Rep Module generates and
stores the OBJ data into the project repository. Fi-
nally, BIM-MP uses an open-source glTF converter
(CesiumGS) to generate the glTF data. The oper-
ation of BIM-MP’s model viewer is summarized in
Figure 19.

Figure 19: Process diagram of BIM-MP’s model viewer

ASSUMPTIONS AND RESTRICTIONS
BIM-MP operation has the following assumptions:

• BIM-MP’s Core Module contains a 3D viewer
with limited functionalities i.e. colour and tex-
ture support. The model navigation panel, as
well as textures and colours of the building ele-
ments will be included in future versions.

• BIM-MP’s REST API supports queries of IFC
objects by type or GUID. Additional REST API
endpoints such as updating, editing of IFC ob-
jects will be included in a future version of the
BIM-MP.

• BIM-MP is fully compatible with IFC4, and sup-
ports only, non-curved IFC geometric represen-
tations. Some IFC curved geometric representa-
tions are approximated using segmentation pro-
cesses.

All BIM-MP software components were developed by
the authors using JAVA (BIM Library) and C++
(Geometric library). The only external dependence
was the clipper program (Johnson 2016), for low level
C++ geometric polygon operations in 2D.

CONCLUSIONS
An integrated cloud-based platform called BIM Man-
agement Platform (BIM-MP) is introduced and de-
scribed in detail. BIM-MP is developed to handle
OpenBIM files conforming to the IFC4 ISO stan-
dard and to prepare them for automatic generation
of building energy performance simulation models.
BIM-MP follows a SOA design approach, in which
micro-services offering IFC data quality checking and
data enrichment operations are orchestrated and exe-
cuted in an asynchronous manner to ensure fast per-
formance and reliability. Apart from its core mod-
ule which performs GUI and data storing operations,
BIM-MP offers five additional services grouped into
three sub-categories: (a) two data quality services:

an MVD-based data completeness checking service
and a geometric error detection service, (b) two data
enrichment services: the automatic space generation
(ASG service) and the second-level space boundary
topology generation service (CBIP service) and (c)
a graphics engine for displaying IFC components.
These operations are demonstrated on a simple office
building.

ACKNOWLEDGEMENTS
The research leading to these results has been par-
tially funded by the European Commission H2020
project “BIM-based holistic tools for Energy-driven
Renovation of existing Residences” under contract
#820621 (BIMERR).

References
Bazjanac, V. (2010), Space boundary requirements

for modeling of building geometry for energy and
other performance simulation, in ‘CIB W78: 27th
International Conference’.

Beetz, J., van Berlo, L., de Laat, R. & van den
Helm, P. (2010), BIMserver. org–An open source
IFC model server, in ‘CIP W78 conference’, p. 8.

buildingSMART (2020), Model View Definition
(MVD) - An Introduction, https://technical.
buildingsmart.org/standards/ifc/mvd/.

ISO, TC-59 & SC-13 (2018), ISO 16739-1: Industry
Foundation Classes (IFC) for data sharing in the
construction and facility management industries —
Part 1: Data schema, ISO.

Johnson, A. (2016), ‘Clipper - an open source
freeware library for clipping and offsetting lines
and polygons’, http://www.angusj.com/delphi/
clipper.php.

Katsigarakis, K., Lilis, G. N., Giannakis, G. & Rovas,
D. (2019), An IFC data preparation Workflow for
building Energy Performance Simulation, in ‘Euro-
pean Conference on Computing in Construction’,
EC3.

Lilis, G. N., Giannakis, G. & Rovas, D. (2015), De-
tection and semi-automatic correction of geometric
inaccuracies in IFC files, in ‘IBPSA Building Sim-
ulation Conference 2015’, IBPSA, pp. 2182–2189.

Lilis, G. N., Giannakis, G. & Rovas, D. (2017), ‘Au-
tomatic generation of second-level space boundary
topology from ifc geometry inputs’, Automation in
Construction 76, 108–124.

Lockley, S., Benghi, C. & Cerny, M. (2017), ‘Xbim.
essentials: a library for interoperable building
information applications’, The Journal of Open
Source Software 2(20), 473.

Xeolabs (2018), xeogl, http://xeogl.org/.


