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Quantifying behavioural difference in latent class models to assess empirical 1 

identifiability: analytical development and application to multiple heuristics 2 

GONZALEZ-VALDES, Felipe1; HEYDECKER, Benjamin G.2; ORTÚZAR, Juan de Dios3 3 

ABSTRACT 4 

Latent class (LC) models have been used for decades. In some cases, models of this kind have 5 

exhibited difficulties in identifying distinct classes. Identifiability is key to determining the 6 

presence or absence of the different population cohorts represented by the latent classes. 7 

Theoretical identifiability addresses this issue in general, but no empirical identifiability analysis 8 

of this kind of model has been performed previously. Here, we analyse the theoretical properties 9 

of LC models to establish necessary conditions on the classes to be identifiable jointly. We then, 10 

establish a measure of behavioural difference and relate it to empirical identifiability; this measure 11 

highlights factors that are crucial for identifiability. We show how these factors affect 12 

identifiability through simulation experiments in which classes are known, and test elements such 13 

as the proportion of individuals belonging to each latent class, different correlation structures and 14 

sample sizes. In our experiments, each choice heuristic belongs to a distinct latent class. We present 15 

a graphical diagnostic that supports the measure of behavioural difference that promotes 16 

identifiability and provide examples of model non-identifiability, partial identifiability, and strong 17 

identifiability. We conclude by discussing how non-identifiability can be detected and understood 18 

in ways that will inform survey design and analysis. 19 

 20 
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1. INTRODUCTION 1 

Latent class (LC) models can be used to represent finite mixtures of distinct groups of individuals 2 

(Kamakura and Russell, 1989). They have been widely applied in recent decades either exclusively 3 

with exogenous variables (Swait and Adamowicz, 2001; Rossetti et al., 2018) or in conjunction 4 

with latent variables in a MIMIC model (Huang and Bandeen-Roche, 2004; Hess and 5 

Stathopoulos, 2013), with diffuse choice sets (Ben-Akiva and Boccara, 1995), and either using 6 

only utility maximisation heuristics or adopting a different choice heuristic for each latent class 7 

(Hess et al., 2012; Gonzalez-Valdes and Raveau, 2018).  8 

A key issue concerning LC models is their identifiability, which is related to the possibility of 9 

drawing inference from observed samples about an underlying theoretical structure that is 10 

observationally unique1. Rothenberg (1971) examined the identifiability of parametric models, 11 

concluding that this required the information matrix to be non-singular. Walker and Ben-Akiva 12 

(2002) investigated theoretical and empirical identifiability. Here, we focus on the latter, where 13 

the model theoretically can be identified, but due to the data and model structure, the Hessian 14 

matrix is singular or nearly so (Chiou and Walker, 2007; Cherchi and Ortúzar, 2008), leading to 15 

poor estimates of model parameters and impeding empirical identification. 16 

In LC models, identifiability informs about distinguishing different behaviour types and estimating 17 

the parameters that govern them, with the behaviour of each individual in the population being 18 

described as a linear combination of the theoretical constructs2. The identifiability of LC models 19 

has been studied to varying extents. Huang and Bandeen-Roche (2004) explored theoretical 20 

identifiability in LC models specifying conditions of the components of a latent class – latent 21 

variable choice model required to achieve it. However, requirements for empirical identifiability 22 

                                                 
1 Identifiability of a model is achieved when no other model is observationally equivalent and no different set of 

parameters yield the same result. Drawing inferences from observed samples depend on the estimation method: under 

maximum likelihood, identifiability is a condition of the estimation whereas under the Bayesian approach it is a feature 

that can be assessed post-estimation. Nonetheless, the concept of identifiability is independent of the estimation 

method.  

2 One interpretation of the theoretical construct of latent classes is that they represent individuals according to 

similarities in their behaviour, although another is that the classes represent groups of the individuals themselves. We 

adopt the former interpretation even when there is a continuum of behaviours, in which case we use classes to represent 

clusters of them. However, for the sake of simplicity, here we develop our analysis according to the latter 

interpretation. 
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of models that have no latent variables have not been addressed thoroughly. Thus, this paper 1 

focuses on determining conditions necessary for empirical identifiability in the absence of latent 2 

variables.  3 

Among the applications of LC models, the one that motivated the present study is when multiple 4 

choice heuristics are considered. Success has been reported in the literature for LC models under 5 

a single heuristic with multiple parameter sets (e.g. Greene and Hensher, 2003), but few have 6 

successfully presented identifiable multiple heuristic models. Indeed, these LC models have 7 

resorted to latent variables (Hess and Stathopoulos, 2013) and normalisations (Leong and Hensher, 8 

2012) for identifiability. Here, after establishing analytical conditions for identifiability, we show 9 

how they apply in practice to the challenge of identifying multiple heuristics. 10 

Connecting both of these objectives, this paper investigates the empirical identifiability of LC 11 

models when only exogenous variables are used (i.e. without latent variables). To understand this, 12 

we first develop a theoretical framework to analyse the interaction of the governing forces of 13 

identifiability and show that the ratio of class-conditional probability to the model-wide probability 14 

of observed choices is crucial. Then, we investigate the use of this framework by conducting a 15 

battery of Monte Carlo simulation experiments in a realistic transport context. In this, we follow 16 

the approach proposed by Chiou and Walker (2007) to explore influences on identifiability. The 17 

simulation of latent classes is performed in the context of multiple-choice heuristics to investigate 18 

identifiability. Each of three distinct choice heuristics is tested against a linear random utility 19 

maximisation (RUM) model to assess the identifiability of that combination. We explore drivers 20 

for non-identifiability that are exemplified by the scenario of multiple-choice heuristics.  Finally, 21 

we show how the results of this study provide a framework for practitioners to design surveys and 22 

experiments of LC models.  23 

The remainder of this paper is organised as follows. Section 2 develops a theoretical framework 24 

to investigate empirical identifiability and provides a metric to explain the reasons for non-25 

identifiability. Section 3 describes the specification and execution of a battery of empirical 26 

experiments. Section 4 analyses the results of the experiments and relates them to the drivers of 27 

identifiability within the theoretical framework; indeed, this section is helpful for practitioners to 28 

understand possible reasons for lack of identifiability. It also shows how to connect reasons beyond 29 
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those described here to the overarching theoretical framework discussed in Section 2. Finally, 1 

Section 5 concludes the paper summarising the main findings and tools. 2 

2. ANALYTICAL DEVELOPMENT 3 

We develop a theoretical framework based on maximum likelihood estimation that facilitates 4 

understanding of the identifiability of LC models. We first analyse a binary case in which the 5 

simple structure illuminates the underlying phenomena. Then, we generalise this to the case of 6 

multi-classes. In each analysis, we establish the first-order optimality conditions on the likelihood 7 

function to understand when coexisting classes can be identifiable, which we refer to as theoretical 8 

identifiability. Finally, the Hessian matrix of the likelihood function is analysed to relate 9 

identifiability to features of the model. 10 

The results of applying this framework can be assessed according to the definition of identifiability 11 

introduced by Gu and Xu (2020). Thus, strict identifiability is achieved when all parameters of the 12 

model are recovered accurately. Partial identifiability is achieved when a range of parameter 13 

values yield similar model performance. Finally, non-identifiability arises when estimation results 14 

in a single class. 15 

2.1 Binary Case 16 

2.1.1 Latent classes with constant class membership function 17 

Suppose that individuals align their behaviour to one of two latent classes, denoted as 𝑎 and 𝑏, 18 

with probabilities πa and π𝑏 = (1 − π𝑎) respectively. Let 𝑃𝑐𝑞𝑖(θ) be the probability that according 19 

to class c  {a, b} with parameters θ, individual 𝑞 chooses alternative 𝑖. Then, 𝑃𝑞𝑖(θ, π𝑎), the 20 

probability of individual q choosing alternative 𝑖 under the LC model, is given by (1): 21 

 𝑃𝑞𝑖(θ, π𝑎) = π𝑎𝑃𝑎𝑞𝑖(θ) + (1 − π𝑎)𝑃𝑏𝑞𝑖(θ) (1) 

The log-likelihood function of this model is given by (2), where 𝑃𝑐𝑞∗(θ) represents the probability 22 

that individual q would have chosen their selected alternative aligning their behaviour to latent 23 

class c: 24 
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 𝑙(θ, π𝑎) = ∑𝑙𝑛 (π𝑎  𝑃𝑎𝑞∗(θ) + (1 − π𝑎) 𝑃𝑏𝑞∗(θ))

𝑞

 . (2) 

The maximum value of this likelihood function could arise either at a boundary or at an interior 1 

value of π𝑎. In the case of a boundary solution (i.e. π𝑎 ∈ {0,1}), the optimal model consists of a 2 

single latent class: a when π𝑎 = 1, or b when π𝑎 = 0. By contrast, in the case of an interior 3 

solution (i.e. π𝑎 ∈ (0, 1)), the two classes of individuals coexist in a mixture model corresponding 4 

to simultaneous identification of the two distinct latent classes. Thus, when an interior solution 5 

arises, it reflects theoretical identifiability3. 6 

The solution (interior or boundary) depends upon the losses and gains in likelihood associated with 7 

including an additional class in the model and, therefore, reducing the proportion of the 8 

complementary one. Class a may perform better than class b for some observations, with the 9 

reverse occurring for other observations. Including a second class, b, would improve the likelihood 10 

for the latter observations. However, in cases where the first class a performs better, there would 11 

be a loss of likelihood due to the reduction of its proportion in the model. The balance between 12 

these two changes in performance determines the type of solution obtained (i.e. whether the 13 

solution is a boundary or an interior one). A boundary solution will be obtained when it is optimal 14 

for the model to consider a single class of individuals, corresponding to the case where the 15 

improvement in likelihood from the inclusion of a second class does not compensate for the 16 

associated losses. Some examples illustrating these cases are shown in Appendix A. 17 

In the case of an interior solution when identifiability of the class membership component is 18 

possible, likelihood is maximised when the likelihood function is stationary with respect to 19 

variations in the class membership probability π𝑎. This can be detected as an interior point at 20 

which the derivative of the log-likelihood function equals zero. Among the variables to examine, 21 

an interesting one is precisely π𝑎, because it indicates the proportions of the two classes and, 22 

therefore, connects them in the model. This first-order stationarity condition regarding π𝑎 is 23 

analysed next. 24 

                                                 
3 This condition is related to theoretically identification only of the class membership component, which is the focus 

of this paper.  
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We start by considering the case where the class membership function π𝑎 is constant across the 1 

population (i.e. the probability of class membership is the same for every individual). For the 2 

context of multiple-choice heuristics that we explore later, this is the most frequent formulation 3 

(Adamowicz & Swait, 2013; Araña et al., 2008; Balbontin et al., 2017; Hess et al., 2012; McNair 4 

et al., 2012). Under this specification, the following theorem describes the optimality of estimation 5 

that corresponds to the coexistence of two latent classes: 6 

THEOREM 1: Two latent classes coexist optimally in a discrete choice model with constant class 7 

membership function if the vector  of estimated parameters satisfies the balance specified by (3): 8 

 ∑
 𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ)
𝑞

= ∑
 𝑃𝑏𝑞∗(θ)

𝑃𝑞∗(θ)
𝑞

 (3) 

where 𝑃𝑞∗(θ, π𝑎) = π𝑎 𝑃𝑎𝑞∗(θ) + (1 − π𝑎) 𝑃𝑏𝑞∗(θ) denotes the modelled probability that 9 

individual q chooses the chosen alternative (consistent with (2)). 10 

 11 

PROOF: For an interior solution, the first-order condition for the maximisation is given by (4):  12 

 

∂𝑙(θ, π𝑎)

∂π𝑎
= 0 

⟺ ∑
 𝑃𝑎𝑞∗(θ) − 𝑃𝑏𝑞∗(θ)

π𝑎 𝑃𝑎𝑞∗(θ) + (1 − π𝑎) 𝑃𝑏𝑞∗(θ)
𝑞

= 0 . 

(4) 

Manipulation of (4) leads to (5):  13 

 ∑
 𝑃𝑎𝑞∗(θ)

π𝑎 𝑃𝑎𝑞∗(θ) + (1 − π𝑎) 𝑃𝑏𝑞∗(θ)
𝑞

= ∑
 𝑃𝑏𝑞∗(θ)

π𝑎 𝑃𝑎𝑞∗(θ) + (1 − π𝑎) 𝑃𝑏𝑞∗(θ)
𝑞

  (5) 

Using the definition of  𝑃𝑞∗(θ), this is equivalent to (3). 14 

Equations (3) and (5) show that a balance is achieved when it is optimal for the model to include 15 

both latent classes. This balance is given by the sum of the ratio of the likelihoods of the class to 16 

the complete model. This expression quantifies the balance dynamics of gains and losses in the 17 

likelihood function associated with the introduction of a second latent class to the model.  18 
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The magnitude of this sum is described by Theorem 2: 1 

THEOREM 2: Two latent classes coexist optimally in a discrete choice model with constant class 2 

membership function if the balance quantity in (3) is equal to the sample size Q. 3 

PROOF: Expanding the left-hand side of (3) leads to (6): 4 

∑
 𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

= ∑
π𝑎  𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

+ ∑
(1 − π𝑎) 𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

  

= ∑
π𝑎  𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

+ ∑
(1 − π𝑎) 𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

+ ∑
(1 − π𝑎) 𝑃𝑏𝑞∗(θ) − (1 − π𝑎)𝑃𝑏𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

  

⟹ ∑
 𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

= ∑
π𝑎  𝑃𝑎𝑞∗(θ) + (1 − π𝑎) 𝑃𝑏𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

+ (1 − πa)∑
𝑃𝑎𝑞∗(θ) − 𝑃𝑏𝑞∗(θ)

𝑃𝑞∗(θ, π𝑎)
𝑞

  (6) 

According to equation (1), every term in the first summation of the right-hand side of (6) is 5 

identically equal to one; therefore, that summation adds to Q. The second summation is equal to 6 

zero because of stationarity (4) for the likelihood maximising parameters . Because of (3) and 7 

considering the symmetry between the latent classes, the condition for class 𝑎 applies equally in 8 

the corresponding form to class 𝑏. Then, (7) describes the balance in a model with two latent 9 

classes and constant class membership function: 10 

 ∑
 𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ,π𝑎)
𝑞

= ∑
 𝑃𝑏𝑞∗(θ)

𝑃𝑞∗(θ,π𝑎)
𝑞

= 𝑄 (7) 

Examples in which this balance is achieved are given in Appendix A. As discussed above, the 11 

balance is broken (i.e. the optimal model contains only one latent class) when it is optimal not to 12 

include any amount of the second latent class. A diagnostic condition for this is presented in (8) 13 

and (9) for the case of a model that includes latent class 𝑎 alone: 14 

 
∂𝑙(θ,π𝑎)

∂π𝑎

|
π𝑎=1

= ∑
 𝑃𝑎𝑞∗(θ) − 𝑃𝑏𝑞∗(θ)

π𝑎 𝑃𝑎𝑞∗(θ) + (1 − π𝑎) 𝑃𝑏𝑞∗(θ)
𝑞

> 0 ⟹   π𝑎
∗ = 1 (8) 
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 ∑
 𝑃𝑏𝑞∗(θ)

𝑃𝑎𝑞∗(θ)
𝑞

< 𝑄 ⟹   π𝑎
∗ = 1 (9) 

In this case of a single latent class a,  𝑃𝑞∗(θ, π) ≡ 𝑃𝑎𝑞∗(θ)  so that  ∑
 𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ,π)𝑞 = 𝑄. The result of 1 

Theorem 2 shows that this equality extends to each latent class in a model where two classes co-2 

exist; this is generalised to multiple latent classes in Theorem 4 presented in section 2.2. 3 

Conclusions from these theorems can be helpful for practitioners and researchers to explain the 4 

lack of theoretical identifiability in their models. If only one class is identified, this is not sufficient 5 

to establish that the other behaviour is absent from the data but shows only that the single class 6 

can interpret the behaviour exhibited by the other class adequately. This arises when the gain in 7 

likelihood of including a second class does not compensate the loss in likelihood for the 8 

observations that are aligned more closely to the first class. 9 

2.1.2 The balance of latent classes with non-constant class membership function 10 

If the class membership function π𝑎 is not constant but is instead some function π𝑎(θ), the 11 

condition for balance is stated in Theorem 3: 12 

THEOREM 3: Two latent classes coexist optimally in a discrete choice model if the vector    of 13 

estimated parameters satisfies the ratio specified by (11): 14 

∑
 
∂π𝑎(θ)

∂θ
𝑃𝑎𝑞∗(θ) + 

∂𝑃𝑎𝑞∗(θ)

∂θ
π𝑎(θ)

𝑃𝑞∗(θ)
𝑞

= ∑

∂π𝑎(θ)
∂θ

 𝑃𝑏𝑞∗(θ) −
∂𝑃𝑏𝑞∗(θ)

∂θ
 (1 − π𝑎(θ))

𝑃𝑞∗(θ)
𝑞

 (11) 

PROOF: Equation (12) states the stationarity condition required for optimality:  15 

0 =
∂𝑙(θ)

∂θ

= ∑

∂π𝑎(θ)
∂θ

 𝑃𝑎𝑞∗(θ) + π𝑎(θ)
∂𝑃𝑎𝑞∗(θ)

∂θ
−

∂π𝑎(θ)
∂θ

𝑃𝑏𝑞∗(θ) + (1 − π𝑎(θ))
∂𝑃𝑏𝑞∗(θ)

∂θ
π𝑎(θ)𝑃𝑎𝑞∗(θ) + (1 − π𝑎(θ)) 𝑃𝑏𝑞∗(θ)

𝑞

 

(12) 

Equation (11) is a direct rearrangement of (12) that expresses stationarity in terms of the balance 16 

between the latent classes.  17 
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Suppose now that the set of parameters β of the class membership function is disjoint from the set 1 

θ affecting the choices themselves. Then, Theorem 3 has the following corollary: 2 

COROLLARY 3.1: If the class membership function, with parameters  , is independent of the 3 

latent classes, with parameters  , the balance required of sensitivity of class membership is given 4 

by (13): 5 

∑
 
∂π𝑎(β)

∂β
𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, β)
𝑞

= ∑

∂π𝑏(β)
∂β

 𝑃𝑏𝑞∗(θ)

𝑃𝑞∗(θ, β)
𝑞

 .  (13) 

The analysis presented in this section identifies when it is optimal for the model to include more 6 

than one latent class. Nevertheless, the coexistence of latent classes (theoretical identifiability) 7 

does not guarantee that the model will have reasonable standard deviations (empirical 8 

identifiability); we address empirical identifiability next.  9 

2.1.3 Class behavioural diversity for empirical identifiability 10 

To study the empirical identifiability of multiple latent classes, we assume that the model is 11 

theoretically identifiable (i.e. the model has an interior solution). If instead the model had a 12 

boundary solution (i.e. only one class was estimated), the conclusion would be that one class 13 

outperforms any combination of the two classes in explaining population behaviour. 14 

For a parametric model to be theoretically identifiable, the information matrix F given in (14) must 15 

be non-singular (Rothenberg, 1971). Moreover, for greater precision in the parameter estimates, 16 

the covariance of the estimation matrix  should have values on the principal diagonal with small 17 

square roots compared to the corresponding point estimates of parameters. The covariance matrix 18 

is related to the model via the Fisher information matrix F by (15): 19 

 𝐹 = −𝔼(
∂2𝑙(θ)

∂θ𝑥 ∂θ𝑦
) (14) 

 Σ ≈ 𝐹−1 . (15) 

The elements on the principal diagonal of  𝐹−1 provide the Cramér-Rao lower bound on the 20 

variance of estimation of the parameters  in the corresponding elements of  Σ. Thus, to obtain 21 
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higher precision in the estimation, the determinant of the information matrix F should be large, 1 

hence requiring large values of −𝔼(
𝜕2𝑙(θ)

𝜕θ2 ) on its principal diagonal. 2 

As in the analysis of the first-order condition for the two-class case, we analyse the information 3 

matrix at the point determined by π𝑎. First, we analyse the case where the class membership 4 

function is constant. Thus, the diagonal element of the information matrix corresponding to π𝑎 is 5 

given by the derivative of Equation (4) with respect to π𝑎, and relates to the empirical 6 

identifiability of the class proportions: 7 

 
∂2𝑙(θ)

∂π𝑎
2

= −∑
(𝑃𝑎𝑞∗(θ) − 𝑃𝑏𝑞∗(θ))

2

(P𝑞∗(θ))
2

𝑞

 . (16) 

For F to have a large determinant, and thus for the standard errors of the estimators to be small, 8 

the magnitude of expression (16) must be large. Because the maximum likelihood estimates are 9 

obtained when the probability  𝑃𝑞∗
2   is maximum, identifiability is determined by the numerator of 10 

(16). Thus, the expression (𝑃𝑎𝑞∗ − 𝑃𝑏𝑞∗)
2
 is an essential element in the empirical identification of 11 

latent classes. Large values of this expression are obtained when the classes exhibit disparate 12 

behaviour.  13 

Section 2.1.1 discussed how behavioural difference is needed for theoretical identifiability. For 14 

latent classes to coexist (theoretical identifiability), different preferences between the classes 15 

according to their probabilities and hence variation around 1.0 in the ratio of their model 16 

probabilities for the chosen alternative is needed. To obtain small standard deviations relative to 17 

the point estimates (empirical identifiability), the square of the difference of the latent classes must 18 

be large. Thus, empirical identifiability is promoted more by prominent behavioural contrast on a 19 

few observations rather than frequent more minor ones. Finally, note that given the addition over 20 

the sample in (16), even for small differences, as the sample size grows, the information contained 21 

also grows so that empirical identifiability increases. 22 

2.2 Multiple Latent Class Case 23 

We now consider the general case in which behaviour within the population aligns with several 24 

latent classes. We start by analysing the first-order conditions to generalise the results on 25 

Jo
urn

al 
Pre-

pro
of



11 

 

theoretical identifiability obtained in section 2.1. Then, the analysis of empirical identifiability is 1 

extended to multiple classes. 2 

Extending the notation of section 2.1, let πc be the probability that individual behaviour aligns to 3 

class 𝑐𝐶 so that ∑ πc𝑐∈𝐶 = 1 and πc ≥ 0 ∀𝑐 ∈ 𝐶. Then, the joint log-likelihood function 𝑙(π, θ) 4 

of the model is given by (19): 5 

 𝑙(π, θ) = ∑𝑙𝑛 (∑πcP𝑐𝑞∗(θ)

𝑐∈𝐶

)

𝑞

 (19) 

By extending Theorems 1 and 2, Theorem 4 establishes a necessary condition for the coexistence 6 

of several latent classes in a model: 7 

THEOREM 4: Several latent classes 𝑐𝐶 coexist optimally in a model when each of them achieves 8 

the same aggregated ratio  ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞 = 𝑄. 9 

PROOF: The likelihood (19) is maximised subject to the sum constraint ∑ πc𝑐∈𝐶 = 1 (with 10 

Lagrange multiplier ) and positivity constraints on the probabilities πc ≥ 0 ∀𝑐 ∈ 𝐶  (with 11 

Lagrange multipliers  c) when the Lagrangian (20) is stationary with respect to variations in  π𝑐 12 

∀𝑐 ∈ 𝐶:   13 

 L = −𝑙(π, θ) − λ(1 − ∑ π𝑐𝑐∈𝐶 ) − ∑ η𝑐π𝑐𝑐∈𝐶   (20) 

Differentiating the Lagrangian L with respect to π𝑐 and equating to 0 for stationarity gives the 14 

necessary condition for optimality with respect to the probability  π𝑐:  15 

  
𝜕

𝜕πc
L = 0 ⟺ ∑

𝑃𝑐𝑞∗

∑ π𝑎𝑃𝑎𝑞∗𝑎∈𝐶
𝑞 = λ − η𝑐  ∀𝑐 ∈ 𝐶 16 

 

 

⇒ ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞

= λ − η𝑐    ∀𝑐 ∈ 𝐶 .  

The first-order Karush-Kuhn-Tucker (KKT) conditions for the positivity constraints on  π𝑐 with 17 

multiplier η𝑐 are:  π𝑐 ≥ 0,   π𝑐η𝑐 = 0, η𝑐 ≥ 0.  According to the complementarity of π𝑐 and η𝑐 18 

for each latent class  𝑐𝐶, 19 
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π𝑐 > 0  ⇒   η𝑐 = 0 ⇒  ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞

= λ 

π𝑐 = 0  ⇒    η𝑐 ≥ 0 ⇒  ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞

≤ λ . 

(21) 

Applying the equation for  Pq*, the stationarity condition for likelihood and the KKT conditions 1 

gives: 2 

𝑄 =  ∑
∑ πc𝑃𝑐𝑞∗𝑐∈𝐶

∑ π𝑎𝑃𝑎𝑞∗𝑎∈𝐶
𝑞

= ∑π𝑐 ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞𝑐∈𝐶

                 = λ∑πc

𝑐∈𝐶

− ∑πcη𝑐

𝑐∈𝐶

= λ .

 3 

The sum constraint ∑ πc𝑐∈𝐶 = 1 yields the value  for the first term in the last line, whilst the KKT 4 

complementarity conditions πcη𝑐 = 0  𝑐𝐶  yields the value 0 for the second term.  5 

Using this in (21), πc > 0  ⇒   ∑
𝑃𝑐𝑞∗

𝑃𝑞∗
𝑞 = 𝑄  𝑐𝐶. 6 

This proves Theorem 4 and extends the conclusions of the balance requirement for theoretical 7 

identifiability in section 2.1 to multiple latent classes. Those latent classes c  identified by the 8 

model have identical aggregated value Q of the ratio 𝑃𝑐𝑞∗/𝑃𝑞∗;  according to the second case in 9 

(21), other latent classes have aggregated values that are no greater than Q. 10 

Theorem 4 presents the balance condition for the optimal combination of latent classes but does 11 

not guarantee their empirical identifiability. For the class membership probabilities π to be 12 

identifiable, the information matrix F should be non-singular and, because it is real and symmetric, 13 

the Hessian matrix of the Lagrangian should be positive definite. This requires that all principal 14 

submatrices of the Hessian that correspond to the second derivatives with respect to the proportions 15 

should have positive determinants. The mixed second partial derivatives of the Lagrangian L are 16 

equal to those of the log-likelihood (because all the constraints are linear) and are stated in (22): 17 

 
∂2

∂π𝑎 ∂π𝑏
L = ∑

𝑃𝑎𝑞∗𝑃𝑏𝑞∗

(∑ π𝑐𝑃𝑐𝑞∗𝑐∈𝐶 ) 2𝑞 = ∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2𝑞  .  (22) 
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Therefore, each 2×2 submatrix of this kind has the structure shown in (23): 1 

 

[
 
 
 
 
 ∑

𝑃𝑎𝑞∗
2

𝑃𝑞∗
2

𝑞

∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

𝑞

∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

𝑞

∑
𝑃𝑏𝑞∗

2

𝑃𝑞∗
2

𝑞 ]
 
 
 
 
 

 . (23) 

Because both elements on the principal diagonal are positive, the submatrix is positive definite if 2 

the determinant exceeds zero. Moreover, if the determinant D given by (24) is large, then the 3 

covariances of the estimators will be small: 4 

 𝐷 = ∑
𝑃𝑎𝑝∗

2

𝑃𝑝∗
2

𝑝∈𝑄

 ∑
𝑃𝑏𝑞∗

2

𝑃𝑞∗
2

𝑞∈𝑄

− (∑
𝑃𝑎𝑟∗𝑃𝑏𝑟∗

𝑃𝑟∗
2

𝑟∈𝑄

)

2

. (24) 

Before analysing (24) to assess when D will be positive, we note that this analysis requires that the 5 

latent classes represent distinct behaviour. Because of this, we cannot have 𝑃𝑎𝑞∗ = 𝑃𝑏𝑞∗ ∀𝑞. 6 

Therefore, for each class 𝑐 ∈ 𝐶 to be present there will be some cases where it outperforms the 7 

combined model. The quadratic structure of the expression 𝑃𝑐𝑞∗
2 𝑃𝑞∗

2⁄   𝑐 ∈ 𝐶 tends to amplify the 8 

difference when one class outperforms the combined model substantially. Provided that each of 9 

the classes outperforms the combined model on some observations, then every determinant 𝐷 of 10 

the form (24) will be positive, so that the model is theoretically identifiable. Empirical 11 

identifiability is addressed in Theorem 5. 12 

THEOREM 5: If several latent classes coexist in an identifiable model, empirical identifiability 13 

improves as the covariance of the latent classes decreases. 14 

PROOF: To make the analysis more convenient, we introduce some notation for the moments of 15 

the ratios of probabilities 
𝑃𝑐𝑞∗

𝑃𝑞∗
  𝑐ϵ𝐶. Thus, let the first and second moments be respectively: 16 

μ𝑐 = 𝔼(
𝑃𝑐𝑞∗

𝑃𝑞∗
) , 𝑐 ∈ 𝐶 17 

σ𝑐
2 = 𝑉𝑎𝑟 (

𝑃𝑐𝑞∗

𝑃𝑞∗
)   𝑐 ∈ 𝐶  and  σ𝑎𝑏 = 𝐶𝑜𝑣 (

𝑃𝑎𝑞∗

𝑃𝑞∗
,
𝑃𝑏𝑞∗

𝑃𝑞∗
)     𝑎, 𝑏 ∈ 𝐶 .   18 

 19 

Jo
urn

al 
Pre-

pro
of



14 

 

With this notation, the expectation of elements in (24) can be written as: 1 

𝔼(∑
𝑃𝑐𝑞∗

2

𝑃𝑞∗
2

𝑞∈𝑄

) = 𝑄(μ𝑐
2 + σ𝑐

2)  and  𝔼(∑
𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

𝑞∈𝑄

) = 𝑄(μ𝑎μ𝑏 + σ𝑎𝑏) . 2 

Therefore, the expectation of (24) can be rearranged to express D as an unbiased sample estimate 3 

of the population quantity: 4 

1

𝑄2
𝔼(𝐷) = μ𝑎

2μ𝑏
2 (

σ𝑎
2

μ𝑎
2

− 2
σ𝑎𝑏

μ𝑎μ𝑏
+

σ𝑏
2

μ𝑏
2) + σ𝑎

2σ𝑏
2 (1 −

σ𝑎𝑏
2

σ𝑎
2σ𝑏

2)  
(25) 

Recall that from condition (21), for both classes a and b to be present in the model we need 5 

μ𝑎 = μ𝑏 = 1. If the choice probabilities are perfectly correlated, then σ𝑎𝑏
2 = σ𝑎

2𝜎𝑏
2 so that the 6 

second term on the right-hand side of (25) would be null. The remaining term would then be 7 

(𝜎𝑎 − 𝜎𝑎)2 with perfect correlation and neither class dominating the other, this will also be null. 8 

The Hessian matrix would therefore be singular in expectation. The expectation of the partial 9 

derivative of D with respect to the correlation ab in (26) is negative so that the expectation of the 10 

determinant increases as this correlation decreases. In particular, 11 

𝔼 (
∂𝐷

∂σ𝑎𝑏
) = −2𝑄2(μ𝑎μ𝑏 + σ𝑎𝑏) = −2𝑄2𝔼(

𝑃𝑎𝑞∗𝑃𝑏𝑞∗

𝑃𝑞∗
2

) ≤ 0 . (26) 

Consequently, estimation of the mixed model is better conditioned (as indicated by larger D 12 

values) when correlation ab decreases and as the sample size Q increases, thus proving Theorem 13 

5. 14 

Therefore, the requirement for positive determinants of the principal submatrices of the Hessian 15 

generalises the requirement for the binary classes’ case presented in section 2.1. To be identifiable, 16 

the behaviour of a class should outperform that of the combined model in at least one observation; 17 

the greater the behavioural difference, the greater the determinant (24) and hence the smaller the 18 

covariance of the estimators.  19 

In conclusion, Theorem 4 presents the balance conditions required if the presence of several latent 20 

classes is optimal. Theorem 5 generalises the requirements for empirical identifiability showing in 21 

a simple structure that empirical identifiability increases as the behavioural difference of the latent 22 

classes increases as quantified by decreasing covariance among them. 23 
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3. EXEMPLIFYING FACTORS AFFECTING EMPIRICAL EXPERIMENTS IN A 1 

REALISTIC CONTEXT 2 

We now show how the factors identified by the theorems developed in Section 2 apply in practice. 3 

Specifically, we focus on outcomes and conclusions from Sections 2.1.1 and 2.1.3, where we 4 

addressed the conditions for theoretical and empirical identifiability respectively in the two-class 5 

context. Our objective is to show how different drivers of identifiability are related to the 6 

theoretical background that we have established. Conclusions from these experiments can help 7 

practitioners understand potential causes of non-identifiability, how this relates to the over-arching 8 

theorems, and to understand the implications of this for survey design and analysis.  9 

We chose as testing ground the case of multiple-choice heuristics. As presented in Section 1, this 10 

context usually provides challenging identifiability scenarios (e.g. Leong and Hensher, 2012; Hess 11 

and Stathopoulos, 2013). Here, each choice heuristic is modelled under a different latent class. 12 

In the experiment formulation, to guarantee the presence of different choice heuristics and control 13 

the choice parameters, we generated a synthetic population following the seminal work of 14 

Williams and Ortúzar (1982). We tested three dimensions affecting the choice process that could 15 

potentially affect identifiability: (i) the latent class behaviour given by a distinct choice heuristic, 16 

which will determine the behavioural difference quantified in equation (16) and hence empirical 17 

identifiability; (ii) the proportion of each latent class in the synthetic sample, which will affect the 18 

feasibility of equation (7), determining the existence of balance; and (iii) the correlation between 19 

the parameters of the probability of belonging to each class and the parameters associated with 20 

their sensitivities for different attributes of the alternatives, which could provide external 21 

confounding effects exemplifying a more general case. For each case of these three dimensions, 22 

ten simulation experiments were performed. 23 

The first dimension described is the latent class formulation, in our case, given by the choice 24 

heuristic. The analysis of Section 2 established that the difference between the latent classes is key 25 

to their identification as quantified in equation (16). Three different choice heuristics were tested 26 

against random utility maximisation (RUM), the most widely used, to investigate whether they 27 

could be identified in our practical context. These are: Elimination by Aspects –EBA– (Tversky, 28 

1972a; 1972b), Stochastic Satisficing –SS– (González-Valdés and Ortúzar, 2018) and Random 29 

Regret Minimisation –RRM– (Chorus et al., 2008). 30 
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The second dimension is the proportion of each latent class (or choice heuristic) in the sample. The 1 

results (5) and (7) show that the greater this proportion, the greater the number of observations for 2 

which one latent class will outperform the other, thus increasing its presence in the balance. Two 3 

proportions were tested: 70% of the sample chooses according to RUM and 30% according to the 4 

other heuristic, and vice versa, that is, πc ∈ {0.3, 0.7}.  5 

Finally, the third dimension is the correlation between the choice and the class membership 6 

probabilities. This dimension aims to analyse how any such correlation would affect identifiability. 7 

This correlation was introduced through a personal trait that affects both the probability of 8 

belonging to a class and the choice preferences.  9 

We use a simulated dataset to investigate how these factors affect the theoretical and empirical 10 

identifiability in a realistic context. For estimation, we require two components: for each individual 11 

a set of alternatives available and their choices from this set. The choice sets for the individuals 12 

were extracted from a revealed preference dataset to represent a realistic scenario; the individuals’ 13 

choices were simulated for the synthetic population under the various heuristics to control the 14 

underlying behaviours. 15 

3.1 The Choice Sets 16 

The choice sets were created based on a well-tested dataset from a transport survey in Santiago de 17 

Chile (Gaudry et al., 1989; Guevara, 2016; Jara-Díaz & Ortúzar, 1989), comprising the trips from 18 

home to work of 1,374 individuals, who chose among a maximum of nine modes.  19 

This dataset provided real choice sets ranging from two to nine alternatives from which the 20 

simulated choice sets were created. To control the number of alternatives available in the 21 

experiment, all choice sets presented to our synthetic individuals were specified with three 22 

alternatives. Moreover, we could also estimate the respective alternative-specific constants (ASC) 23 

because the alternatives were labelled. 24 

Two separate processes were performed to create the simulated choices: (i) fictitious choice sets 25 

of size 3 were generated and (ii) each individual’s choice was simulated for each one of these sets. 26 

To generate these fictitious choice sets, real choice sets were sampled from the databank and then 27 

adjusted as follows. If the sampled choice set had fewer than three alternatives, it was discarded; 28 
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if it had more than three alternatives, one of the alternatives was deleted at random4. This process 1 

was repeated5 until the choice set size was reduced to three.  2 

After the choice sets were generated, each individual’s choice was simulated under the specified 3 

heuristic. Each alternative in the choice sets was characterised by four attributes: monetary cost, 4 

in-vehicle time, walking time, and waiting time. 5 

3.2 Synthetic Population and Choice Heuristics 6 

We followed four steps to simulate the choice of an alternative from the simulated choice sets. 7 

First, we created the individuals’ traits. To do this, a binary variable was generated for each 8 

individual in the sample to represent their socio-demographic attribute 𝑧 (named trait) with 9 

probability pz. Second, each simulated individual was assigned independently to use one of the 10 

two available choice heuristics: RUM and the contrasting one (i.e. EBA, RRM or SS). These 11 

choice heuristics are explained in more detail below. In each case, the probability π𝑅 of using 12 

RUM was given by the inverse logit function (27) with parameters shown in Table 1.  13 

 π𝑅 =
exp(θ0 + θ1𝑧)

1 + exp (θ0 + θ1𝑧)
 (27) 

Following this, a choice set was selected from the simulated databank of 28,477. Finally, the 14 

individual’s choice from their choice set was simulated according to their assigned heuristic. 15 

 16 

 17 

 18 

                                                 
4 This elimination process is agnostic to which alternative was chosen in the real context. Thus, although the real 

chosen alternative might be eliminated, this does not create any difficulty because we simulated from the choice sets 

that we generated. 

5 Because we delete excess alternatives at random to generate each choice set, an initial set of size 4, say, can create 

four different choice sets of size 3 (by deleting a different alternative in each one); whereas one of size 9 can create 

84 different choice sets of size 3. Accounting for all the sets in the original dataset, we had a total of 28,477 different 

choice sets to pool from. We repeated this procedure of uniform random sampling with replacement from the 1,374 

individuals to generate a synthetic sample of 10,000 choices. 
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Table 1. Synthetic population latent class parameters 1 

Parameter Value 

θ0
6 0 

θ1 +/- 1.39 

pz 0.70 

Random utility maximisation (RUM) 2 

RUM is the most widely used heuristic in choice modelling. We used its simplest form, the 3 

multinomial logit model – MNL – (McFadden, 1973) with additive linear in the parameters utility 4 

function. In some experiments, the cost attribute was modified based on the individual’s 5 

sociodemographic trait to test the effect of correlation between the class membership function and 6 

the choice heuristic. If the individual had the trait (indicated by 𝑧 = 1), the sensitivity to cost was 7 

modified; we called this attribute cost difference of sensitivity. The model parameters used for this 8 

simulation are given in Appendix B. 9 

Random regret minimisation (RRM) 10 

RRM (Chorus et al., 2008) is a heuristic where individuals evaluate alternatives relative to each 11 

other. It is based on the concept of anticipated regret, which is the feeling stimulated when the 12 

individual imagines what they would have experienced if they had chosen another alternative 13 

(Simonson, 1992). Among the several versions of RRM, we considered the μ − 𝑅𝑅𝑀 (van 14 

Cranenburgh et al., 2015), where the regret Ri  for each alternative i is given by (28):  15 

 𝑅𝑖 = ∑ ∑ μloge (1 + exp (
β𝑘

μ
(𝑥𝑗𝑘 − 𝑥𝑖𝑘)))

𝑘∈𝐾𝑗∈𝐽, j≠i

 (28) 

The parameter  in this formulation controls the profundity of regret: smaller values represent 16 

emphasised regret and strengthened preference for the most attractive alternative. We selected this 17 

formulation to increase the profundity of regret compared to the simplest version, which implicitly 18 

                                                 
6 Note that in our case θ0 is not necessary for simulation. However, a modeller unaware of the function that was used 

to generate the probabilities (which would normally be the case) could test a model considering it. If the model is 

estimated correctly, this parameter will not differ significantly from zero. 
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has =1 (Chorus, 2010). The greater profundity of regret induced by using the value =0.2 1 

increases the behavioural difference between RRM and RUM. According to Theorem 5, increasing 2 

the difference between the choice heuristics increases the chance of identifying them jointly. The 3 

model parameters used for the simulation are also given in Appendix B. 4 

Stochastic Satisficing (SS) 5 

Satisficing is a bounded rationality heuristic that involves several simplifications to rational 6 

decision-making (Simon, 1955; 1956). Because Simon’s definition is incompletely detailed, 7 

several interpretations of this theory exist, and no consensus has yet been reached about the precise 8 

definition (Manski, 2017). Here, we interpret satisficing as a heuristic according to which 9 

individuals choose the first satisfactory (i.e. good enough) alternative they consider. 10 

Among several possible implementations of this heuristic, we use the Stochastic Satisficing –SS– 11 

model (González-Valdés and Ortúzar, 2018), where the probability (29) of an alternative i being 12 

acceptable for an individual q is the product of the probabilities that each of the attributes k is 13 

acceptable (30):  14 

 𝑃𝑟(𝐴𝑖𝑞 = 1) =  ∏𝑎𝑘𝑖𝑞

𝑘

 (29) 

where   

 𝑎𝑘𝑖𝑞 =
exp (β𝑘(𝑥𝑘𝑖𝑞 − 𝑓𝑘))

1 + exp (β𝑘(𝑥𝑘𝑖𝑞 − 𝑓𝑘))
 .  (30) 

The probability akiq of each attribute k of alternative  i  being acceptable to individual  q  is given 15 

by the logistic function (30), where β𝑘 represents the sensitivity to attribute k and 𝑓𝑘 is the 16 

associated acceptability reference (threshold) value for that attribute. In this model, different 17 

attributes may appear in the acceptability functions of the various alternatives. Even though 18 

theoretically, sensitivities and thresholds functions can vary across alternatives and individuals, 19 

we modelled the simplest version with constant sensitivities and thresholds among alternatives.  20 

In our simulation, costs were modelled by separate acceptability functions, whilst in-vehicle, 21 

waiting, and walking time were modelled using the same acceptability function in each alternative. 22 

For the time attribute, a time sensitivity, a time reference value, and two marginal rates of 23 
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substitution were estimated. The marginal rates of substitution represent the equivalence between 1 

travel time and, respectively, waiting time or walking time. The values used for all parameters in 2 

the simulation are specified in Appendix B. To simulate choices under this interpretation of 3 

stochastic satisficing, the alternatives were sampled with replacement from the choice set and 4 

evaluated for acceptability according to (29) until one was accepted. 5 

Elimination by aspects (EBA) 6 

EBA (Tversky, 1972a, 1972b) is a bounded rationality choice heuristic where individuals consider 7 

alternatives according to the values of a sequence of attributes, following a recursive procedure7. 8 

At each step, individuals select the most important (to them) of the remaining aspects (attributes) 9 

and discard every alternative that does not satisfy pre-specified thresholds. This process continues 10 

until only one option remains, which is therefore selected.  11 

Each aspect (𝑘 ∈ 𝐾) has an associated weight (wk) which determines the probability of being 12 

considered in the decision process. The modelling process adopted here estimates the logarithm 13 

𝛼𝑘 of each weight wk (32) in the whole real space.  14 

 𝑃𝑘 =
𝑤𝑘

∑ 𝑤𝑗𝑗 
 (31) 

 𝑤𝑘 = exp(α𝑘) (32) 

The weights used for each aspect are given in Appendix B. 15 

In the EBA model, selection according to each aspect is binary. Although the attributes may have 16 

continuous values as in the present case, the acceptability thresholds are specified to achieve binary 17 

discrimination. We considered two thresholds for the cost attribute, at US$ 0.25 and US$ 0.65 (i.e. 18 

three aspect levels were created with two of them considered desirable). Whereas for travel time, 19 

waiting time and walking time, one threshold8 for each attribute was adopted at 15, 5 and 3 mins, 20 

                                                 
7 Examples of simple EBA models can be found in the work of Gilbride & Allenby (2006). 

8 Note that this is indeed a “threshold” that corresponds to a critical value that determines acceptability. By contrast, 

the reference value in SS has a continuous influence on the probability of acceptability. 
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respectively. Therefore, an alternative would be discarded if any one of its time elements exceeded 1 

the corresponding threshold. 2 

3.3 Estimation Procedure 3 

Previewing the results detailed in Section 4, we found different degrees of identifiability in our 4 

models, which is a consequence of the borderline cases we designed in our experiment. In some 5 

cases, models were strictly identifiable, meaning all parameters were recovered (following the 6 

definition proposed by Gu and Xu, 2020). In contrast, models were only partially identifiable in 7 

some other cases, meaning that a combination of model parameters allowed for observationally 8 

equivalent models. Finally, in the remaining cases, estimation resulted in a single component 9 

without a balance being achieved.  10 

For the specific context of testing the theorems on borderline identifiable cases, we preferred 11 

Bayesian estimation over maximum likelihood estimation for several reasons. First, fundamental 12 

non-identifiability in maximum likelihood is related to the impossibility of inverting the Hessian 13 

matrix of the likelihood, with identifiability being a diagnosis of the estimation. Misdiagnosis of 14 

non-identifiability can be related to any one or more of (i) failure of the maximisation algorithm, 15 

(ii) the algorithm used to calculate the information matrix, (iii) assumption of asymptotical 16 

convergence to the covariance matrix or indeed, (iv) a fundamental lack of identifiability. 17 

On the other hand, in Bayesian estimation procedures, non-identifiability is inferred from the 18 

estimators. We assessed identifiability based on the ratio of the standard deviation of the posterior 19 

to the prior, which is a measure of progress in the Bayesian estimation. We also considered the 20 

variation among simulations of the estimates of parameter values, which quantifies the consistency 21 

in the outcomes of the Bayesian estimation process. Misdiagnosis of false non-identifiability9 22 

under Bayesian estimation can result if the priors are too narrow or the Markov chains used for 23 

estimation are too short to cover the whole posterior distribution effectively. We protected against 24 

misdiagnosis by using wide-uninformative priors and allowing long Markov chains to run in the 25 

                                                 
9 Bayesian estimation is prone to the opposite, misdiagnosis of false identifiability due to inadequate priors. Narrow 

or over-informative priors could identify the model by erroneously eliminating potential plausible parameter 

combinations. 
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testing scenarios10. Notwithstanding this, we note that Train (2009, p290) showed that the choice 1 

of estimation technique as between likelihood maximisation and Bayesian estimation has little 2 

influence when the sample size Q is large (as in our case). 3 

Previous tests have suggested that this estimation procedure usually requires numerous iterations 4 

to achieve stationarity (Godoy and Ortúzar, 2008). Here, 5,000 burn-in samples were discarded 5 

before sampling from the Markov chain. After this, 10,000 samples were obtained from the 6 

posterior distribution of the parameters.  7 

4. ANALYSIS OF RESULTS  8 

Given the combinations of dimensions tested and the replications for each combination, a total of 9 

120 experiments were undertaken. In each of these experiments, we simulated the choices of a 10 

sample of 10,000 individuals and then estimated the choice models from the resulting data. First, 11 

across the various dimensions, we analysed the proportion of replications of each model that 12 

resulted in a balance between the latent classes. Then, we verified that Theorem 2 held for the 13 

models that identified both latent classes notwithstanding being estimated using Bayesian 14 

methods11.  15 

4.1 Analysis of Convergence 16 

In this section, we report the progress of the Bayesian estimation process by analysing the posterior 17 

distribution. In practice, the target distribution of the parameters will not usually be known; this 18 

has led to the formulation of measures such as the potential scale reduction factor (PSRF), which 19 

compares the variability of parameter estimates between Markov chains with that within them 20 

(Gelman and Rubin, 1992; Brooks and Gelman, 1998). Values of the resulting test statistic close 21 

to 1.0 indicate chain convergence, with variability between chains consistent with that within them. 22 

PSRF values greater than 1.0 show excessive variability between chains, which indicates lack of 23 

convergence due either to insufficient sampling or non-identifiability. We calculated this by 24 

                                                 
10 Bayesian estimation was undertaken using Markov Chain Monte Carlo, specifically Gibbs sampling, using the 

JAGS package (Plummer, 2016) for the R software system (R Core Team, 2016). 

11 For reference and comparison, we also report results of maximum likelihood estimation of two models on identical 

simulated datasets in Appendix D. 
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comparing the long-term variability of parameter estimates with their short-term variability12. In 1 

the present context, however, parameter estimates could converge to those of a single latent class 2 

so that a satisfactory PSRF value is not sufficient for model recovery.  3 

The mean over 10 simulations of the PSRF is shown in Table 2 together with the standard deviation 4 

for each of the 12 scenarios tested. This was considered acceptable in 8 of the 12 scenarios, with 5 

values in the range [1, 1.08] and standard deviations no greater than 0.08. The remaining four 6 

scenarios had mean PSRF values of 1.16 or greater, with standard deviations ranging from 0.39 to 7 

1.21. In these four scenarios, the mean values exceeding the reference value of 1.10 show 8 

instability in some of the estimation processes, whilst the large standard deviations show further 9 

that the instability varied among the 10 simulations. Together, these indicate lack of reliable 10 

convergence in the estimation of the four models with those combinations of choice heuristics. We 11 

explore the implications of this for model identifiability in the next section. 12 

Table 2. Potential scale reduction factor 13 

 Case 

Mean (Standard Deviation); Median across ten cases per scenario 

 
71% RUM class 

Class correlation 

71% Non-RUM class 

Class correlation 

Latent classes None Positive  None Positive  

RUM & RRM 1.08 (0.08); 1.05 1.16 (0.39); 1.04 1.65 (0.82); 1.37 1.51 (1.21); 1.11 

RUM & SS 1.07 (0.05); 1.05 1.39 (0.91); 1.06 1.05 (0.03); 1.05 1.06 (0.04); 1.06 

RUM & EBA 1.06 (0.04); 1.05 1.08 (0.08); 1.06 1.06 (0.03); 1.06 1.07 (0.05); 1.05 

 14 

4.2 Analysis of Identifiability 15 

A model is non-identifiable if the information matrix is singular, which is equivalent to having an 16 

infinite element within the covariance matrix. In our context of Bayesian estimation, no matrix 17 

inversion is required; nevertheless, model non-identifiability can be detected when the standard 18 

                                                 
12 Because we ran only one chain for each of the estimations, we estimate the scale reduction factor by cutting each 

post-burn-in chain into two subsets of 5,000 samples each. 
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deviations of the posterior distributions of the parameters are extreme with associated instability 1 

of the Markov chain, which is illustrated in the example in Appendix C and consistent with section 2 

4.1. This instability is manifest in failure of the posterior distribution of parameters to develop 3 

from the initial prior, leading to excessive variability between estimates of different Markov chains 4 

relative to that within the chains. In our investigation, we adopted accuracy of parameter recovery 5 

as an indicator of model identifiability.  6 

Following Gu and Xu (2020) to distinguish degrees of identifiability that models may exhibit, we 7 

developed three further descriptions: 8 

- Strict identifiability: all model parameters are estimated with acceptable standard 9 

deviations. Both latent classes are identified, thus there is a balance between them. 10 

- Partial identifiability: the model balances two classes (theoretical identifiability) and 11 

model parameters are estimated accurately, but a small proportion of them are estimated 12 

with extreme standard deviations (empirical non-identifiability).  13 

- Non-identifiability: most parameters are estimated with extreme standard deviation, or no 14 

balance can be found between latent classes.  15 

In section 2, we analysed how behavioural differences may impact the identifiability of the latent 16 

classes. Figure 1 provides a graphical diagnostic that shows the distribution of behavioural 17 

differences between the RUM class and the other choice heuristic classes among the alternatives 18 

of the dataset. This is quantified by the absolute difference between the probabilities given by the 19 

two choice heuristics. For example, if two heuristics a and b estimate probabilities Pai and Pbi of 20 

choosing alternative i, then the difference is calculated as |Pai – Pbi|.  21 

Figure 1 shows that among the cases that we considered, the RRM latent class differs least from 22 

the RUM latent class in its behaviour. Thus, we expect the RRM latent class to have the least 23 

chance of achieving balance with RUM in this context. Conversely, each of SS and EBA represents 24 

a substantial behavioural difference from the RUM latent class. Note, however, that because this 25 

analyses only one dimension of the information matrix, it helps generate hypotheses but does not 26 

guarantee universal support for them. 27 
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Figure 1 Behavioural difference between RUM and each of RRM, SS and EBA 1 

We analysed each pair of latent classes separately and evaluated the results according to the three 2 

degrees of identifiability. We also analysed separately the influence of the population proportions 3 

in each of the latent classes simulated and each correlation case as follows.  4 

RRM and RUM classes identifiability analysis 5 

Table 3 shows the results of the identifiability analysis for each of the 40 estimations among the 6 

four scenarios of correlation and proportions of each latent class in the combination. In most cases 7 

in which the sample was dominated by the RUM latent class, it was the only one identified and no 8 

balance was achieved between the RUM and RRM classes in any of the cases. Linking to the 9 

theorems provided, this suggests that even though some individuals in the simulated population 10 

exhibit RRM behaviour, the improvement in model fit by including an additional class for them is 11 

insufficient to compensate for the consequent worsening of fit for the RUM individuals.  12 

When the RRM class dominated the sample, its identifiability increased, although it was less 13 

identifiable than the RUM class when that dominated. When no correlation was present between 14 

the class membership function and the parameters of the RUM class, RRM was identified in seven 15 

of the ten cases. Nevertheless, in three of the seven cases where the RRM class was identified, it 16 

was identified weakly, with some parameters having extreme variance.  17 
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Table 3. Identifiability results of RUM vs RRM models 1 

Correlation 

RUM dominates  

π𝑅  = 0.71 

 

RRM dominates 

π𝑅  = 0.29 

 
 8

10
 identifies RUM only 

3

10
 identifies RUM only 

No correlation 2

10
 identifies RRM only 

4

10
 identifies RRM only 

  3

10
 identifies partially RRM  

   
 No balance detected No balance detected 

   

 9

10
 identifies RUM only 

3

10
 identifies RUM only 

Positive correlation 1

10
 identifies RRM only 

6

10
 identifies RRM only 

  1

10
 identifies RRM partially  

 

 

  
 No balance detected No balance detected 

 2 

Finally, when the correlation between the class membership function and the RUM heuristic was 3 

greater, the strength of identifiability of the RRM increased with only one case still being partially 4 

identifiable; this can be understood as being due to the increased difficulty in identifying the RUM 5 

class. 6 

The PSRF values calculated for this combination of latent classes are shown in the first row of 7 

Table 2. Although the PSRF value of 1.080.08 indicates a good degree of convergence in the un-8 

correlated case where RRM dominates, the results in Table 3 show that this arose because of 9 

convergence of a model form with a single latent class. The remaining three cases of mixed RUM 10 

and RRM classes all had high PSRF values, ranging from 1.160.39 to 1.650.82 indicating lack 11 

of convergence of the estimation. In none of these four cases was a balanced combination of latent 12 

classes identified. 13 

The results from these cases, whichever RUM or RRM dominates, are consistent: the balance, or 14 

coexistence of RUM and RRM in the estimated choice model, is improbable in this dataset. Based 15 

on inference from the relationships (8), this suggests that in our simulated mode choice dataset, 16 
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the RUM mechanism seems to be more robust in that it can accommodate RRM individuals better 1 

than can the RRM accommodate RUM ones, thus emerging from the estimation more frequently 2 

than RRM. Therefore, under no balance conditions, identifiability is not expected. 3 

Moreover, note that although we used the μ-RRM to increase the probability of detecting 4 

coexistence by emphasising the behavioural difference between RRM and RUM, this was not 5 

sufficient for effective identifiability. We also tested an increased sample size; but even a sample 6 

size of 40,000 observations did not provide enough information to identify these two classes in 7 

balance. However, several authors have reported identifying RRM and RUM jointly in practice 8 

without the need for latent variables (e.g. Boeri et al, 2014; Boeri and Longo, 2017). Thus, we 9 

conclude that the lack of behavioural difference exhibited in the choice scenarios presented here 10 

is a good indication of the plausibility of identification (consistent with Figure 1). 11 

SS and RUM identifiability analysis 12 

Table 4 shows the results of estimating SS and RUM jointly. In the cases where the RUM class 13 

dominated the sample, it was always identified with a degree of balance in the model. The SS class 14 

was identified only weakly, because some parameters had extreme variance. The mean PSRF of 15 

1.07 for this case in Table 2 shows that the estimates converged. Introducing greater correlation 16 

did not affect identifiability, though it did reduce the convergence of estimation as quantified by 17 

the large mean PSRF of 1.39.  18 

Table 4. Identifiability results of RUM and SS models 19 

Correlation 
RUM dominates 

π𝑅  = 0.71 

 

SS dominates  

π𝑅  = 0.29 

   9

10
 identifies RUM and weakly SS 

10

10
 identifies RUM and SS 

No correlation 1

10
  weakly identifies RUM and SS  

   
 Partial identifiability and balance 

detected 

Balance and identifiability detected 

   

 9

10
 identifies RUM and weakly SS 

9

10
 identifies RUM and SS 

Positive correlation 1

10
 identifies weakly RUM only 

1

10
 identifies RUM and weakly SS 
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 Partial identifiability and balance 

detected 

Balance and identifiability detected 

 1 

When the SS class dominated the sample, a proper balance was detected whilst the mean PSRF of 2 

1.06 – 1.08 shows good convergence of estimation. The model was able to identify the estimators 3 

of the RUM class, the SS class, and the class membership function with reasonably small variance. 4 

When correlation was introduced, the degree of identifiability decreased slightly.  5 

These results for the SS and RUM latent classes show that a balance can be achieved in this model, 6 

although it depends on the proportion of the population that uses each of these choice heuristics. 7 

When most individuals followed the RUM class, incorporating the SS class did not usually 8 

compensate for the loss of likelihood of the RUM individuals. Conversely, when the proportion of 9 

SS dominated, the better performance of the RUM individuals did compensate for the decrease in 10 

the likelihood for the SS individuals. Hence, a balance may be achieved when SS individuals are 11 

more numerous than RUM ones. In either case, the RUM appears to be the more robust heuristic 12 

in our context, because it could be identified even in cases where it was present in low proportion. 13 

As in the case of RRM, we also tested increasing the sample size to 40,000 observations. In all 14 

these cases, we detected strong identifiability of both latent classes. Thus, the increase in 15 

information was sufficient for identifiability. 16 

We note, again, that these results are specific to the present dataset. However, if a dataset provides 17 

choice situations in which SS behaviour differs more from RUM – and the individuals behave 18 

following such heuristics – achieving balance seems possible.  19 

EBA and RUM identifiability analysis  20 

Table 5 shows the results of estimating the Latent Class model with RUM and EBA as choice 21 

heuristics. These results show that balance was achieved in the 40 experiments, with mean PSRF 22 

values in the range 1.05 – 1.06 (Table 2), showing good convergence. In all cases the dominant 23 

latent class was identified accurately, as was the other class in most cases. In a few cases, the 24 

minority class was identified only weakly, with slightly more of these when there was positive 25 

correlation.  26 
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These results show that in our scenarios, when RUM and EBA are present in the data, they can be 1 

identified jointly, indicating that neither RUM nor EBA can represent the behaviour of the other 2 

choice heuristic effectively. 3 

Table 4. Identifiability results of RUM and EBA models 4 

Correlation 

RUM dominates  

π𝑅  = 0.71 

EBA dominates  

π𝑅  = 0.29 

 
 9

10
 identifies RUM and EBA 

10

10
 identifies RUM and EBA 

No correlation 1

10
 identifies RUM and weakly EBA   

   
 Balance and identifiability detected Balance and identifiability detected 

   

 7

10
 identifies RUM and EBA 

9

10
 identifies RUM and EBA 

Positive 

correlation 

3

10
 identifies RUM and weakly EBA  

1

10
 identifies EBA and weakly RUM  

   
 Balance and identifiability detected Balance and identifiability detected 

 5 

5. CONCLUSIONS 6 

Latent class (LC) models have been reported in the literature for several decades. In these models, 7 

identifiability is key to determining whether the different classes are present in the data. For this 8 

kind of model, identifiability has only been studied in general terms, whilst empirical identifiability 9 

has not been considered in depth. This paper presents theoretical and empirical studies of 10 

identifiability for LC models.  11 

The theoretical framework developed here of LC models provides a basis for analysis of their 12 

identifiability. Through this, we established two analytical conditions for identifiability. First, there 13 

must be a balance between the latent classes for theoretical identifiability. Second, the behaviour 14 

of the classes must differ sufficiently so that they can be identified empirically with acceptable 15 

accuracy in estimates of their parameters. The balance required for joint estimation requires that 16 

one latent class is not sufficiently good in explaining the behaviour of members of the other class, 17 

which we quantify in the balance equation. On empirical identifiability, we show that the latent 18 

classes must differ sufficiently in their typical behaviour and that the data used in estimation must 19 
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include sufficient cases that expose this difference. If either of these conditions is not satisfied, 1 

then simultaneous identification of the latent classes in a single model will not be possible. 2 

To show how the theoretical framework developed here links to practical scenarios, we tested it 3 

using data synthesised for choice situations using three pairs of choice heuristics: Random Utility 4 

Maximisation (RUM) in combination with each of Elimination by Aspects (EBA), Random Regret 5 

Minimisation (RRM) and Stochastic Satisficing (SS). Each of these three combinations of choice 6 

models were estimated using Bayesian statistical methods. For each mixture, 40 cases were 7 

simulated in four groups of 10 that differed in correlation and choice heuristic dominance. 8 

Our experiments show that estimation may fail to identify both classes, even though the generating 9 

process contains a mixture of them. The existence of a balance depends on the inadequacy of each 10 

class in representing the behaviour of the other in some cases. Indeed, the dominant heuristic must 11 

perform poorly in some cases following the other to be able to estimate the model fully.  12 

In view of these findings, a practical strategy would be to analyse the classes before estimating a 13 

combined model. This can be undertaken using the straightforward diagnostic tests presented here. 14 

This way, using some testing parameters, modellers can examine whether the datasets are 15 

sufficiently rich in their choice behaviour to support joint estimation of the desired heuristics. 16 

Finally, we note that the empirical analysis was made for a specific context and limited number of 17 

alternatives. A latent class that could not be identified in a particular context might be suitable and 18 

identifiable in another context that provides sufficient richness to expose the behavioural 19 

differences.  20 
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Appendix A. BALANCE IN LATENT CLASS MODELS 1 

We show three examples of the balance of latent classes. In each of these examples, three 2 

individuals choose according to class 𝑎 and three to class 𝑏. In all examples, individuals choose 3 

the alternatives shown in Table A1. 4 

Table A1. Class of individual and chosen alternative in the balance examples 5 

Individual Class Chosen alternative 

1 a 1 

2 a 2 

3 a 2 

4 b 1 

5 b 1 

6 b 2 

 6 

For simplicity, we assume that the heuristics within each class are identified correctly but the 7 

classes used by the individuals are unknown.  Therefore, we estimate a LC model with maximum 8 

likelihood according to (34) with only one unknown parameter which is the class membership 9 

probability π𝑎 . 10 

 𝑃𝑞𝑖(π𝑎) = π𝑎𝑃𝑎𝑞𝑖 + (1 − π𝑎)𝑃𝑏𝑞𝑖  (34) 

Columns 1-4 in Tables A2, A3 and A4 show the probabilities of choosing each alternative when 11 

belonging to each class. By changing the probabilities of class 𝑏, we manipulate the point of 12 

maximum likelihood, which is shown in column 5. Column 6 shows the probability for the chosen 13 

alternative given by the latent class model which takes as input  π𝑎 and the probabilities of 14 

choosing each alternative conditional on the class. Finally, the last column shows the ratio of the 15 

probability that each class assigns to the chosen alternative. 16 

Table A2 shows an example where a balance of classes exists. The optimal class membership 17 

function indicates that the probability of belonging to class 𝑎 is 0.31. Note that the balance given 18 

by the sum of the ratios of the heuristics and the model has a value equal to the sample size of 6, 19 

as stated in Theorem 2 and more generally Theorem 4. 20 

Jo
urn

al 
Pre-

pro
of



36 

 

Table A2. Latent class balanced example 1 

Heuristic 𝑎 Heuristic 𝑏 Heuristic 𝑎 

probability 
Probability for the chosen alternative 

Alt 1 Alt 2 Alt 1 Alt 2 π𝑎 𝑃𝑞∗ 𝑃𝑎𝑞∗/𝑃𝑞∗ 𝑃𝑏𝑞∗/𝑃𝑞∗ 

0.50 0.50 0.35 0.65 0.31 0.40 1.26 0.88 

0.50 0.50 0.60 0.40 0.31 0.43 1.16 0.93 

0.50 0.50 0.70 0.30 0.31 0.36 1.38 0.83 

0.50 0.50 0.80 0.20 0.31 0.71 0.71 1.13 

0.50 0.50 0.80 0.20 0.31 0.71 0.71 1.13 

0.50 0.50 0.30 0.70 0.31 0.64 0.78 1.10 

     Sum 6 6 

 2 

In the second example, shown in Table A3, one of the probabilities –which is underlined– is 3 

changed, improving the performance of class 𝑏. In this example, the balance still exists but the 4 

model estimated probability of belonging to class 𝑎 decreases. Because the balance still exists, 5 

Theorems 2 and 4 hold, showing that the sum of the ratios of the choice heuristic and the models 6 

remains equal to the sample size. 7 

Table A3. Latent class low proportion balance example 8 

Heuristic 𝑎 Heuristic 𝑏 Heuristic 𝑎 

probability 
Probability for the chosen alternative 

Alt 1 Alt 2 Alt 1 Alt 2 π𝑎 𝑃𝑞∗ 𝑃𝑎𝑞∗/𝑃𝑞∗ 𝑃𝑏𝑞∗/𝑃𝑞∗ 

0.50 0.50 0.35 0.65 0.04 0.36 1.40 0.98 

0.50 0.50 0.60 0.40 0.04 0.40 1.24 0.99 

0.50 0.50 0.64 0.36 0.04 0.37 1.37 0.98 

0.50 0.50 0.80 0.20 0.04 0.79 0.63 1.02 

0.50 0.50 0.80 0.20 0.04 0.79 0.63 1.02 

0.50 0.50 0.30 0.70 0.04 0.69 0.72 1.01 

     Sum 6 6 
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Finally, the third example shown in Table A4 corresponds to a model for which a single latent 1 

class is optimal. Even though class 𝑎 performs better than class 𝑏 when predicting choices made 2 

following class 𝑎, the potential benefit of including class a in the model is outweighed by the loss 3 

of performance for the last three individuals. Therefore, even though class a is present in the 4 

sample, the optimal choice model does not include it. Finally, note that the balance is broken and 5 

only the included class ratio sums to the sample size of 6 whilst the excluded class sums to the 6 

lower value of 5.89, as is required by Theorem 4. 7 

Table A4. Multiple Heuristic Model example with no balance 8 

Heuristic 𝑎 Heuristic 𝑏 Heuristic 𝑎 

probability 
Probability for the chosen alternative 

Alt 1 Alt 2 Alt 1 Alt 2 π𝑎 𝑃𝑞∗ 𝑃𝑎𝑞∗/𝑃𝑞∗ 𝑃𝑏𝑞∗/𝑃𝑞∗ 

0.50 0.50 0.35 0.65 0 0.35 1.43 1 

0.50 0.50 0.60 0.40 0 0.40 1.25 1 

0.50 0.50 0.60 0.40 0 0.40 1.25 1 

0.50 0.50 0.80 0.20 0 0.80 0.63 1 

0.50 0.50 0.80 0.20 0 0.80 0.63 1 

0.50 0.50 0.30 0.70 0 0.70 0.71 1 

     Sum 5.89 6 

 9 

These cases show that the balance can be fragile depending on the probabilities estimated for each 10 

heuristic. Even though the underlying process may contain several choice heuristics, a balance 11 

among them might not be achieved in estimation. 12 

  13 
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Appendix B. SIMULATION PARAMETERS 1 

The simulation parameters for each class are given in Table B1, where times are in hours and costs 2 

in US$. 3 

Table B1. Choice heuristic simulation parameters 4 

Parameter EBA RRM SS RUM 

Cost sensitivity 1.39; 1.39 0.375 -6.25 -0.31; +0.09 

SS cost threshold - - 0.28 - 

Vehicle time sensitivity 1.39 2 -12 -5 

Waiting time sensitivity 2.30 10 1.5 -20 

Walking time sensitivity 2.08 4 4 -6.5 

SS time threshold - - 0.60 - 

μ - 0.2 - - 

ASC1 0.41 0.1 -0.84 0.5 

ASC2 0 0 0 0 

ASC3 0.10 0.02 -0.96 0.1 

ASC4 0.59 0.16 -0.77 0.8 

ASC5 0.53 0.14 -0.80 0.7 

ASC6 0.47 0.12 -0.82 0.6 

ASC7 0.18 0.04 -0.93 0.2 

ASC8 0.26 0.06 -0.90 0.3 

ASC9 0.34 0.08 -0.87 0.4 

 5 

  6 
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Appendix C. DETECTING IDENTIFIABILITY IN BAYESIAN MODELS 1 

Identifiable models tend to have a stable trace plot as in Figure C1. The trace plot shows a stable 2 

mean with no trend and a stable variance, thus exhibiting a clearly-located density function as in 3 

the right hand of Figure C1. 4 

Figure C1 Trace plot for identifiable model 5 

 6 

Non-identifiable models tend to have an unstable trace plot as in Figure C2. Under a frequentist 7 

approach, a non-identifiable model would have infinite variance given by the inverse of a singular 8 

information matrix. Under a Bayesian approach, this is represented by the broad and weakly 9 

located posterior distribution.  10 

We adopted the ratio of the standard deviation of the posterior to that of the prior as a quantitative 11 

measure of identifiability: small values indicate identifiability whilst values close to one show an 12 

absence of information to support identification of the parameter. In the case of the parameter 13 

RUM_Asc[3] shown in Figure C1, the prior was a Uniform (-10,10) which has a standard deviation 14 

of 5.8 and the posterior distribution had a mean of 0.18 and standard deviation of 0.11, giving a 15 

ratio of the standard deviations of approximately 0.019.  16 

In the case of the parameter RRM_Time shown in Figure C2, the prior distribution is Uniform 17 

(-100,100), which has a standard deviation of 57.7. The posterior distribution has a mean of 2.5 18 

and a standard deviation of 58.6, giving a ratio of the standard deviations of approximately 1.01 , 19 

showing lack of progress After a burn-in of 6,000 samples, a collection of 10,000 samples was 20 

used for estimation. Within these, the Markov chain covered the domain of the prior. We assessed 21 

this and other similar cases as non-identifiable. 22 
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 1 

Figure C2 Trace plot for non-identifiable model 2 

 3 

  4 
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Appendix D. COMPARISON OF BAYESIAN AND MAXIMUM LIKELIHOOD 1 

ESTIMATION 2 

Table D1 contrasts maximum likelihood (ML) estimation and Bayesian Estimation for two 3 

experiments, where the classes were RUM and EBA. Diagnosis of this shows that both estimation 4 

procedures achieve strict identifiability. Even though point estimates of the parameters differ, the 5 

ML and Bayesian estimates are mutually consistent and are consistent with the values used for 6 

simulation 7 

 8 

Table D1. Choice heuristic parameters 9 

 10 
Experiment  Exp 1. Estimate 

(Standard deviation) 

Exp 2. Estimate  

(Standard deviation) 

 

Parameter    ML Bayesian ML Bayesian Simulation 

Heuristic 

choice 

function 

θ0 -0.21 (0.21) 0.07 (0.24) -0.63 (0.23) -0.42 (0.26) 0.00 

θ1 1.42 (0.19) 1.24 (0.18) 1.73 (0.20) 1.57 (0.20) 1.39 

RUM ASC1 0.56 (0.13) 0.55 (0.12) 0.44 (0.13) 0.44 (0.13) 0.50 

 ASC 2 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0.00 

 ASC 3 0.17 (0.11) 0.10 (0.11) 0.13 (0.11) 0.13 (0.10) 0.10 

 ASC 4 0.86 (0.15) 0.86 (0.15) 0.67 (0.16) 0.63 (0.16) 0.80 

 ASC 5 0.74 (0.10) 0.72 (0.10) 0.84 (0.11) 0.83 (0.11) 0.70 

 ASC6 0.65 (0.13) 0.66 (0.13) 0.67 (0.13) 0.67 (0.13) 0.60 

 ASC 7 0.06 (0.14) 0.06 (0.15) 0.35 (0.14) 0.33 (0.14) 0.20 

 ASC 8 0.35 (0.14) 0.35 (0.14) 0.24 (0.14) 0.23 (0.14) 0.30 

 ASC 9 0.58 (0.14) 0.56 (0.14) 0.32 (0.15) 0.30 (0.14) 0.40 

 Cost  - 0.70 (0.11) - 0.67 (0.11) - 0.31 (0.11) - 0.31 (0.11) -0.31 

 Time:      

     Vehicle  - 5.34 (0.52) - 5.13 (0.52) - 5.91 (0.56) - 5.83 (0.56) -5.0 

     Walk - 19.9 (1.92) - 19.8 (1.92) - 21.4 (2.11) - 21.0 (2.14) -20 

     Wait - 7.13 (0.53) - 6.96 (0.52) - 6.65 (0.53) - 6.50 (0.56) -6.5 

EBA ASC1 0.72 (0.34) 0.70 (0.49) 0.72 (0.34) 0.41 (0.36) 0.41 

 ASC 2 1 (fixed) 1 (fixed) 1 (fixed) 1 (fixed) 0 

 ASC 3 0.08 (0.40) -0.37 (0.83) 0.08 (0.40) -0.70 (0.56) 0.10 

 ASC 4 0.82 (0.43) 0.81 (0.62) 0.82 (0.43) 0.70 (0.44) 0.59 

 ASC 5 0.60 (0.32) 0.72 (0.46) 0.60 (0.32) 0.14 (0.27) 0.53 

 ASC6 0.54 (0.39) 0.41 (0.65) 0.54 (0.39) 0.48 (0.35) 0.47 

 ASC 7 0.80 (0.37) 0.92 (0.49) 0.80 (0.37) -0.38 (0.30) 0.18 

 ASC 8 -0.04 (0.39) -0.14 (0.62) -0.04 (0.39) 0.32 (0.33) 0.26 

 ASC 9 0.46 (0.34) 0.57 (0.46) 0.46 (0.34) 0.26 (0.29) 0.34 

 Cost 1 1.04 (0.40) 1.37 (0.67)  1.04 (0.40) 1.35 (0.43)  1.39 

 Cost 2 0.70 (0.44) 0.60 (1.10) 0.70 (0.44) 0.65 (0.39) 1.39 

 Time:      

     Vehicle 1.67 (0.37) 1.99 (0.63) 1.67 (0.37) 0.81 (0.42) 1.39 

     Walk 2.27 (0.38) 2.53 (0.59) 2.27 (0.38) 1.94 (0.45) 2.30 

     Wait 2.10 (0.37) 2.42 (0.62) 2.10 (0.37) 1.81 (0.55) 2.08 

  11 
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Appendix E. VERIFICATION OF BALANCE THEOREMS IN BAYESIAN ESTIMATION 1 

We show how the theoretical balance of Theorem 3 holds in the examples simulated. Although it 2 

applies strictly to maximum likelihood estimation rather than the Bayesian estimation used here, 3 

we show that for our large sample sizes Theorem 3 holds almost exactly. This is consistent with 4 

findings in practice (McElreath, 2015; Train, 2001) that Bayesian estimates align closely to 5 

maximum likelihood ones as the sample size increases.  6 

For simplicity, we tested the case with no correlation between the class membership function and 7 

the choice heuristic parameters. For this case 𝑣 = θ0 + θ1 · 𝑡𝑟𝑎𝑖𝑡 and  π𝑎 =
exp(𝑣)

1+exp (𝑣)
,   

𝜕𝑃𝑎𝑞∗

𝜕𝑣
= 0,  8 

so according to Corollary 3.1, the balance of Theorem 3 states as (33): 9 

 

∑
 
∂π𝑎(𝑣)

∂𝑣
𝑃𝑎𝑞∗(θ)

𝑃𝑞∗(θ, 𝑣)
𝑞

= ∑
 
∂π𝑏(𝑣)

∂𝑣
𝑃𝑏𝑞∗(θ)

𝑃𝑞∗(θ, 𝑣)
𝑞

 

 

⇒ ∑
π𝑎(𝑣)𝑃𝑎𝑞∗(θ)

(1 + exp(𝑣)) 𝑃𝑞∗(θ, 𝑣)
𝑞

= ∑
π𝑏(𝑣)𝑃𝑏𝑞∗(θ)

(1 + exp(𝑣))  𝑃𝑞∗(θ, 𝑣)
𝑞

  . 

(33) 

 10 

To investigate, in each experiment, whether the sum in (33) for the RUM class has the same value 11 

as that for the other class, we calculated their quotient R. Results close to 1 show balance between 12 

the latent classes, whereas those different from 1 show a lack of balance. Specifically, we 13 

calculated expression (34). 14 

 𝑅 =

∑
π𝑎(𝑣)𝑃𝑎𝑞∗(θ)

(1 + exp(𝑣)) 𝑃𝑞∗(θ, 𝑣)𝑞

∑
π𝑏(𝑣)𝑃𝑏𝑞∗(θ)

(1 + exp(𝑣)) 𝑃𝑞∗(θ, 𝑣)𝑞

 (34) 

In Table 5, non-balance cases show higher instability in the ratio given by (34). Indeed, in the non-15 

balance cases, the standard deviation of the ratio was at least 3-4 times larger than in the cases 16 

where a balance was achieved. 17 
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Table 5. Theorem 3 verification 1 

Secondary 

class 

Dominant 

class 

Strong Balance 

cases  

Ratio  R  for balance cases 

(standard deviation) 

Ratio  R  for non-balance cases 

(standard deviation) 

RRM 

RUM 0 - 1.019 (0.043) 

RRM 0 - 0.997 (0.03) 

SS 

RUM 0 - 1.003 (0.004) 

SS 10 1.001 (<0.001) - 

EBA 

RUM 9 1.004 (0.001) 1.005 (-) 

EBA 10 0.997 (0.001) - 

 2 

In conclusion, this analysis shows that Theorem 3 applies closely when the model is estimated 3 

using Bayesian rather than maximum likelihood methods. Larger standard deviations show 4 

instability of the balance. Further work would be required to investigate the rate of approach of 5 

Bayesian estimates to the maximum likelihood results of the Theorems. 6 

 7 
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- we analyse the theoretical properties of latent class models to establish 
necessary conditions on the classes to be identifiable jointly 

 
-  we establish a measure of behavioural difference and relate it to empirical 

identifiability; this measure highlights factors that are crucial for identifiability 
 

- we provide a graphical diagnostic for identifiability with examples of model 
non-identifiability, weak identifiability and strong identifiability 
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