
Journal of Computational Physics 463 (2022) 111233
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Towards fast weak adversarial training to solve high

dimensional parabolic partial differential equations using

XNODE-WAN

Paul Valsecchi Oliva a, Yue Wu b,c,d, Cuiyu He e, Hao Ni a,c,∗
a The Department of Mathematics, University College London, 25 Gordon St, London, WC1H 0AY, UK
b Mathematical Institute, University of Oxford, Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd, Oxford, OX2 6GG, UK
c Alan Turing Institute, 2QR, John Dodson House, 96 Euston Rd, London, NW1 2DB, UK
d The Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond St, Glasgow, G1 1XQ, UK
e School of Mathematics and Statistical Science, University of Texas Rio Grande Valley, 1 West University Blvd, Brownsville, TX, 78520, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 January 2022
Received in revised form 10 April 2022
Accepted 13 April 2022
Available online 20 April 2022

Keywords:
Parabolic partial differential equation
Generative adversarial network
Neural ordinary differential equation
Weak adversarial network

Due to the curse of dimensionality, solving high dimensional parabolic partial differential
equations (PDEs) has been a challenging problem for decades. Recently, a weak adversarial
network (WAN) proposed in Zang et al. (2020) [17] offered a flexible and computationally
efficient approach to tackle this problem defined on arbitrary domains by leveraging the
weak solution. WAN reformulates the PDE problem as a generative adversarial network,
where the weak solution (primal network) and the test function (adversarial network)
are parameterized by the multi-layer deep neural networks (DNNs). However, it is not
yet clear whether DNNs are the most effective model for the parabolic PDE solutions
as they do not take into account the fundamentally different roles played by time and
spatial variables in the solution. To reinforce the difference, we design a novel so-called
XNODE model for the primal network, which is built on the neural ODE (NODE) model
with additional spatial dependency to incorporate the a priori information of the PDEs
and serve as a universal and effective approximation to the solution. The proposed hybrid
method (XNODE-WAN), by integrating the XNODE model within the WAN framework, leads
to significant improvement in the performance and efficiency of training. Numerical results
show that our method can reduce the training time to a fraction of that of the WAN model.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Applying classical numerical methods (finite element, finite difference, finite volume, etc.) to solve high dimensional par-
tial differential equations (PDEs) has been highly challenging due to the notorious curse of dimensionality [1,2]. Traditional
numerical methods, used as PDE solvers, lead to an exponential growth of computing cost with respect to the dimension
of the PDE problem. The application of neural networks on high dimensional data, including image classification [3] and
natural language processing [4], has empirically proven to be successful. Recently, applying deep learning models to tackle
high dimensional PDE problems, which achieved superior empirical results [1,5–8], has been a growing area of research.

* Corresponding author at: The Department of Mathematics, University College London, 25 Gordon St, London, WC1H 0AY, UK.
E-mail address: h.ni@ucl.ac.uk (H. Ni).
https://doi.org/10.1016/j.jcp.2022.111233
0021-9991/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2022.111233
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111233&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:h.ni@ucl.ac.uk
https://doi.org/10.1016/j.jcp.2022.111233
http://creativecommons.org/licenses/by/4.0/

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Relevant numerical analysis that takes into account of approximation rates, generality and optimization theory can be also
found in many works, see [9,10,2,11].

As an important class of PDEs, parabolic PDEs have been studied extensively and applied to a various number of fields,
including acoustic propagation [12], heat conduction [13], image denoising [14], derivative pricing [15], etc. In [16,17], multi-
layer deep neural networks (DNNs) are used to approximate the solution to parabolic problems thanks to their universality.
However, DNNs do not take into account the fundamental difference in the roles played by time and spatial variables in the
parabolic solution, and hence may not be efficient in capturing the spatio-temporal dependence of the parabolic solution.
To this end, we propose a novel so-called XNODE model for the solution to reinforce the spatio-temporal dependence. It
effectively incorporates the a priori information of the PDEs through the modified neural ordinary differential equations
(NODEs) [18].

More specifically, we consider the following parabolic PDE defined on an arbitrary bounded domain D ⊂ [0, T] × Rd

under the mild condition,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t u(t,x) −
d∑

i=1
∂i(

d∑
i=1

aij(t,x)∂ ju(t,x)) +
d∑

i=1
bi(t,x)∂iu(t,x)

+c(u, t,x) − f (t,x) = 0 for (t,x) ∈ D,

u(t,x) = g(t,x) on ∂D,

u(0,x) − h(x) = 0 on �(0),

(1)

where aij, bi, f :D →R, c :R ×D →R and h : �(0) →R are given. c can be a non-linear function with respect to the first
augment. Let �(t) := {x|(t, x) ∈D} denote the spatial domain of D when restricting time to be t . Note that D could be not
only the time-independent domain, i.e. there exists � ⊂ Rd , such that D = [0, T] × �, but also the time varying domain,
i.e. �(t) changes over time t .

The motivation of the XNODE model lies in the key observation that for a fixed spatial variable x, a parabolic PDE
solution ũ = u(., x) evolves into an ODE solution, which naturally leads to employing the NODE network [18]. A NODE
network builds a general model by leveraging the ODE solver and parameterizing the vector field as a neural network,
which can be regarded as a continuous version of the residual neural network. The NODE model recently introduced in [18]
soon became a top-pick model for (continuous) time series modeling because of its efficiency and scalability. As opposed to
classical neural networks models, the gradient calculation of the NODE models via the adjoint method has constant memory
cost.

Therefore, to model the parabolic PDE solution efficiently, the above observation leads to the proposed XNODE model,
which is built by introducing the additional dependency on the spatial variable x to the NODE model. More specifically, the
XNODE model takes any spatial variable x and h from (1) as the input, and returns the output of the NODE with vector fields
dependent on spatial variable x to predict the solution ũ = u(., x). In contrast to the DNNs which treat the time and spatial
variable equally, the proposed XNODE model utilizes the NODE to capture the temporal dependency of the solution path ũ ,
while the spatial dependence is embedded to the vector field of NODE model. In the XNODE model, the initial condition of
PDEs h is incorporated effectively through the initial condition of the NODE. Moreover, we introduce efficient data sampling
and path construction with the XNODE method to ensure efficiency for predicting the solution on both time-independent
domains and time-varying domains.

The formulation of the PDE problem using deep learning can be broadly divided into two classes, (1) optimization
problems and (2) min-max problems. For the first category, learning the PDE solution is translated into minimizing the loss
function, which is used to quantify the performance of the estimated solution. For example, one can consider the mean
square error regarding the equilibrate equations and boundary and initial conditions as the loss function, see e.g., [19,16,7].
The least square approach is known for its generality. However, the evaluation of high order derivatives are required in
the cost functional if the equilibrate equation is directly penalized [16,7]. Another commonly used cost functional is based
on the energy or minimal principal, [20–22]. Though the energy functional often only involves the lower order derivatives,
i.e. no higher derivative is required to compute, the energy based method is restricted to certain differential operators for
which a minimal principal holds. The second category is to utilize the generative adversarial networks (GANs) to solve the
PDEs by using the min-max game formulation. The weak adversarial network (WAN) [17] is a typical example of this type.
By leveraging the weak formulation of the PDE solution, WAN converts the task of finding the weak solution into a saddle
point problem with the solution (u, φ), where u is the solution to the PDE, and φ is a test function. Compared with the
least square method of the first category, WAN can be applied to solve a large general class of PDEs, including the cases
where the strong solution does not exist as long as the weak solution is well defined. It also can be applied to the case
where the minimal principal of the PDEs is not satisfied.

Based on the above considerations, we propose the hybrid XNODE-WAN method by incorporating the XNODE model into
the WAN framework [17] as an enhancement of the WAN to learn the solutions to parabolic PDEs more efficiently. In the
WAN framework, there is a primal network and an adversarial network to approximate the solution (u) and the test function
(φ) respectively, which are both approximated by DNNs [17]. In our proposed XNODE-WAN method, we replace the DNNs
with the XNODE model for the primal network of WAN, as the XNODE model is able to better model the spatio-temporal
dependency of the solution and encode a priori information of the PDE, which leads to reduced training time and faster
2

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
convergence. As many of the other deep learning methods for PDE solvers [17,7,22], the proposed XNODE-WAN method
is mesh-free. It can be applied to a general class of the spatio-temporal domains, whose spatial domain can be irregular
and/or time-varying.

Numerical results show that our proposed method significantly outperforms WAN in terms of training efficiency for
both time-independent and time-varying domains. Moreover, such improvement of the XNODE-WAN model is consistent
regardless of the dimension of the spatial variable, which demonstrates a better scalability for the high dimensional PDEs.

The paper is structured as follows. Section 2 gives a brief introduction to the WAN framework [17]. It is followed by
Section 3, which starts with preliminaries of NODE model and then introduces the proposed XNODE model for the primal
solution and the hybrid XNODE-WAN method for parabolic PDE solution on general time-space domains. Numerical results
are provided in Section 4. Section 5 concludes the paper.

2. Weak Adversarial Network (WAN) framework

In this section, we provide a brief summary of theoretical underpinning and a general framework of the weak adversarial
network for solving the linear and non-linear parabolic PDEs of form (1).

2.1. The weak formulation

We consider the PDE problem (1) on a time-dependent bounded domain denoted by D ⊂ [0, T] × Rd with �(t) =
{x|(t, x) ∈ D}, where we impose typical assumptions such as the uniformly parabolic property of the differential operator.1

We assume further that aij ∈ L∞(D), f ∈ L2(D) and h ∈ L2(�(0)).
When the problem (1) is linear and on a time-independent domain, i.e., D = [0, T] × �, the well-posedness of

equation (1) can be ensured with the solution u ∈ L2([0, T], H1
0(�)) := {v : v ∈ L2([0, T], H1(�), v|∂� = 0} and ∂t u ∈

L2([0, T], H−1(�)), given the coefficients are uniformly elliptic [23].
In general, we consider the time-space domain D ⊂ [0, T] ×Rd . We now define the following bilinear form:

B(u, v) =
T∫

0

∫
�(t)

∂t u · vdxdt +
T∫

0

∫
�(t)

⎛
⎝∑

i j

ai j∂ ju∂i v +
∑

i

bi∂iu, v + cuv

⎞
⎠dxdt

and the linear operator:

f (v) =
T∫

0

∫
�(t)

f vdxdt.

For the ease of notation, we define H1
0(D), L2(D) and L2(∂D) by

H1
0(D) :=

{
f : D → R

∣∣∣∣∣ ∀t ∈ [0, T], f (t, ·) ∈ H1
0

(
�(t)

)
and

T∫
0

∫
�(t)

| f (t, x)|2 + |∇ f (t, x)|2dxdt < +∞
}

,

L2(D) :=
{

f : ∂D → R

∣∣∣∣∣
T∫

0

∫
�(t)

| f (t, x)|2dxdt < +∞
}

,

and

L2(∂D) :=
{

f : D → R

∣∣∣∣∣
T∫

0

∫
∂�(t)

| f (t, x)|2dxdt < +∞
}

,

where ∇ f (t, ·) is the weak derivative of f (t, ·).
From integration by parts, it is easy to check that the weak solution u to (1) satisfies the following variational problem:

B(u, v) = f (v) ∀v ∈ H1
0(D). (2)

1 The uniformly parabolic property means there exists α > 0 such that ∑d
i, j=1 aij(x, t)ζiζ j ≥ α|ζ |2 ∀ζ ∈Rn, (x, t) ∈ [0, T] × �.
3

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Therefore, it leads to a new interpretation of u as a solution to the below minimization problem:

inf
w∈H1

0(D)

sup
v∈H1

0(D),v
=0

|B(w, v) − f (v)|2
‖v‖2

L2(D)

, (3)

where ‖v‖L2(D) is L2 norm of v ([17]). Note that for a given w , the optimal test function v is the one to attain the
supremum |B(w, v) − f (v)|2/‖v‖2

L2(D)
. In (3) we reformulate the original parabolic PDE into an inf-sup type optimization

problem, which sets the foundation for the WAN framework.

2.2. WAN framework

In this subsection, we introduce the WAN framework initially proposed in [17] (cf. Algorithm 3 in [17]) for solving
parabolic PDEs by leveraging the weak formulation in Section 2.1. The main idea is to formulate the problem as the inf-sup
problem (3), where the PDE solution u and the test function φ are parameterized by deep neural networks uθ and φη ,
respectively, with θ, η being the trainable model weights. In [17], a deep neural network is employed for both the solutions
u and φ. The primal network will be replaced by our proposed XNODE model, which will be discussed in Section 3.

The loss function of [17], which is also used in our method, consists of the interior loss, the boundary loss, and the
initial loss as follows:

L(θ,η) = Lint(θ,η) + αLbdry(θ) + γ Linit(θ), (4)

where α, γ are hyperparameters as penalty terms and

Lint(θ,η) = log

(
|B(uθ , φη) − f (φη)|2

||φη||2
L2(D)

)
,

Linit(θ) = ||uθ (0,x) − h(x)||2L2(�(0))
,

Lbdry(θ) = ||uθ (t,x) − g(t,x)||2L2(∂D)
.

(5)

Note that the interior loss Lint is based on the weak formulation of the solution (3) to quantify the discrepancy between
the true solution u and the estimator uθ over the interior. Due to the different norms and log operator applied in the loss
function, the coefficient α and γ should be chosen numerically by cross-validation to ensure efficiency.

The evaluation of three loss terms can be done through the Monte-Carlo simulation on the domain. We shall create a
collection of points for such evaluation at every iteration of our algorithm. As shown in [17], for any bounded domain D, at
each iteration, we uniformly sample Nn points (ti, xi)

Nn
i=1 over the interior of the domain. Similarly, we conduct the uniform

sampling on the boundary ∂D with the corresponding number of sampling points denoted by Nb . Let L̃int(θ, η), ̃Lbdry(θ) and
L̃init(θ) denote the corresponding Monte-Carlo estimators of Lint(θ, η), Lbdry(θ) and Linit(θ) based on the sampling points
respectively. Then we define the empirical loss function by

L̃(θ,η) = L̃int(θ,η) + α L̃bdry(θ) + γ L̃init(θ). (6)

Eq. (6) is the loss function of the min-max game used in the WAN to learn the PDE solution.
Despite the same loss function of our method, due to the XNODE model, we adjust the above point sampling strategies

to both time-independent domain and time-dependent domain respectively. One may refer to Section 3.2.1 and 3.2.2.
The algorithm of WAN is outline in Algorithm 1, where the lines with additional comments will be modified in our

algorithm in Section 3. A list of notation explanation can be found in Table B.2.

3. The XNODE-WAN method

In this section, we introduce a novel so-called XNODE model for the solution u to the parabolic PDE problem (1) on
arbitrary spatio-temporal domains. It can be conveniently incorporated within the WAN framework by replacing the deep
neural network by the XNODE model for the primal solution to achieve superior training efficiency. We will refer to our
method as XNODE-WAN in the remaining contents.

The main motivation of the proposed XNODE model comes from the observation that with the spatial variable fixed,
the parabolic problem (1) reduces to an ODE problem, which can be efficiently modeled using the neural ODE model
(NODE) [18]. Hence, the proposed XNODE model captures the additional dependency on spatial coordinates, incorporates
the a priori information of the parabolic PDEs and initial conditions effectively. To facilitate the efficiency of XNODE to
approximate the primal solution over the domain, we propose the use of multiple constant paths to traverse the domain as
the point sampling strategy over the domain.

For the rest of this section, we start with a brief introduction to conventional NODE model. Then we proceed to discuss
how to adapt the NODE model to approximate the parabolic solution by introducing additional spatial state variable, i.e.,
4

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Algorithm 1 WAN algorithm.
Input: domain D, tolerance ε > 0, ND/N∂D/N0: number of sampled points on the domain/boundary/initial condition, Ku/Kφ : number of solu-
tion/adversarial network parameter updates per iteration, α/γ ∈ R+: the weight of boundary/initial loss, and the hyperparameters for all DNNs in-
volved

1: Initialize: the DNN network architectures uθ , φη : D →R
2: generate points sets XD , X∂D and X0 � random point sampling step
3: while L̃(θ, η) > ε do
4: # update weak solution network parameter
5: for k = 1, ..., Ku do
6: compute ∇θ L̃(θ, η); � gradient calculation step
7: update θ ← θ − τθ∇θ L̃(θ, η);
8: end for
9: # update test network parameter

10: for k = 1, ..., Kφ do
11: compute ∇η L̃(θ, η); � gradient calculation step

12: update η ← η + τη∇η L̃(θ, η);
13: end for
14: generate points sets XD, X∂D and X0; � random point sampling step for the next run
15: end while

Output: the weak solution uθ : D →R

Fig. 1. An illustration of constant paths for spatial-time domains. (a) The red stars are the initial time points and the points are all the points at which we
evaluate the data. Note that they are aligned in the time dimension. (b) The red squares here represent the inserted points that act as the initial points for
the paths that cannot be traced back to the initial time. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

the XNODE model. This is followed by a subsection of using the XNODE-WAN model for solving time-independent domain
problems, which involves incorporating the XNODE model within the WAN framework. We then generalize the proposed
methodology to the time varying domains (see Fig. 1 for illustrative examples of time-independent domains and time-
varying domains respectively).

3.1. The neural ODE (NODE) model

The NODE [18] method that fuses concepts of ODEs and neural networks, is well known for offering benefits to time
series and density modeling. One of its main benefits lies in the computational feasibility brought by the adjoint sensitivity
method, for which one solves an ODE to compute the gradients with constant memory cost.

More specifically, NODE models a continuous function which maps Rd to Rd (or C([0, T], Rd)2) by defining the ODE
model as follows: for every input h0 ∈Rd , the corresponding output of NODE model is h(T) (or h = (h(t))t∈[0,T]) where h
satisfies

dh(t)

dt
= N vec

θ (h(t), t), h(0) = h0. (7)

Here, the vector field N vec
θ is a parameterized neural network with trainable weights θ . The generality of the NODE model

mainly come from the fact that the vector field can be universally approximated by a neural network. By Picard’s Theorem,

2 C([0, T], Rd) denotes the space of continuous functions mapping from [0, T] to Rd .
5

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
the initial value problem will yield a unique solution provided N vec
θ is Lipschitz continuous which is guaranteed by using

finite weights and the activation functions relu or tanh [18].
The details of forward evaluation of h and the derivative calculation of h with respect to θ can be found in [18]. Note

that the dependency of the NODE output h on the input is solely passed through the initial condition of ODE model, i.e.,
h0.

3.2. XNODE-WAN

3.2.1. Time-independent domain
Consider the time-independent domain [0, T] ×�, where � ⊂Rd is bounded. When given a fixed spatial variable x ∈ �,

the map ũ : t �→ u(t, x) can be viewed as a solution to the following ODE problem from PDE (1):

dũ(t)

dt
= F (ũ, t;x), ũ(0) = h(x), (8)

where F is a function depending on (ũ, t; x) defined as

F (ũ, t;x) =
d∑

i=1

∂i

(d∑
j=1

aij∂ ju(t,x)
)

+
d∑

i=1

bi∂iu(t,x) + c(u(t,x)) − f (t,x). (9)

Note that although F is not observable due to the unknown partial derivative ∂i u(t, x), it can be universally approximated
by a neural network provided that F is continuous. This observation motivates us to use the NODE model [18] for a primal
solution ũ for each given x.

XNODE model. Similar to the NODE model, we will employ a deep neural network N vec to approximate the vector field
F in (8). To construct a universal model for the primal solution ũ, we suggest in (8) that the spatial variable x should be
incorporated in the vector field N vec as the additional dependent variable. More specifically, the XNODE model maps an
arbitrary input x ∈Rd to the output ox(t)t∈[0,T] ∈ C([0, T], R) through the Rh-valued latent process h = (h(t))t∈[0,T] which
is defined by the output of the NODE model with the x-dependent vector field. More precisely, for every t ∈ [0, T], we have{

dh(t)
dt = N vec

θ2
(h(t), t,x), h(0) = N init

θ1
(h(x)) ∈Rh,

ox(t) = Lθ̃ (h(t)),

where N vec
θ2

and N init
θ1

are neural networks fully parameterized by θ1 and θ2 for the vector fields and initial condition of
the hidden neural h respectively, and Lθ̃ is a linear trainable layer with the weights θ̃ . We denote by � = (θ1, θ2, θ̃) the
set of all trainable model parameters of the proposed XNODE model. We note that the output of XNODE o is a function,
that lives in an infinite dimensional space. However in practice, the model output has to be finite dimensional for numer-
ical computation. Hence given any time partition
T = (ti)

nT
i=1

3 of [0, T], the corresponding output of XNODE is given by
XNODE�(x,
T) := ox(
T).

In essence, our proposed XNODE model is built upon the NODE model, though it incorporates an additional spatial
variable to model the high dimensional latent process of the PDE solution ũ . The uniqueness of XNODE follows from that
of NODE, by considering x as the additional model parameter. Similarly, the adjoint sensitivity of XNODE is inherited from
NODE, allows us to compute gradients with low memory cost. We also establish the universal approximation property of
XNODE in Theorem A.2 in the Appendix.

To effectively use the initial condition of the PDE u(0, x) = h(x), the hidden neuron at the initial time h(0) is given
by a neural network N init of h(x) from d-dimensional input x to 1-dimensional input h(x), without compromising any
discriminate capacity of the model. As long as Lθ̃ ◦ N init can approximate the identity map, which is guaranteed by the
universality of the neural network, it is able to achieve the satisfactory fitting performance of initial condition.

Point sampling. At each iteration as in the WAN Algorithm 1, to compute L̃int, ̃Linit and L̃bdry defined in (5), one needs to
sample points {(ti, xi)}i uniformly on the interior and the boundary of the domain [0, T] × � respectively and estimate the
solution u evaluated at the grid. Recall that the output of the XNODE�(x,
T) is to approximate the solution u evaluated
at the points
T × {x}. Therefore, unlike the sampling strategy of WAN, XNODE only requires sampling independently and
uniformly on both time domain and spatial domain. Let us denote the sampled time partition and collocation points of the
spatial domain � and domain boundary ∂� by
T , Sr and Sb respectively, with Sr := {xr

j ∈ �}Nr
j=1 and Sb := {xr

b ∈ ∂�}Nb
j=1.

Note the proposed sampling method (e.g. see the solid red points in Fig. 1a for an illustration) implicitly generates a

3
T is a time partition of [0, T] if and only if
T =
{
(ti)

nT
1

∣∣∣0 = t1 < t2 < · · · < tnT = T
}

.

6

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
uniformly sampled grid of [0, T] × � in a more economical way by recycling the uniformly sampled spatial points at each
sampled time.4

Weak solution prediction. For any point x ∈ �, we can construct the corresponding constant spatial path (i.e. X(t) ≡ x, ∀t ∈
[0, T], e.g. see a solid line in Fig. 1a). The output XNODE�(x,
T) then provides to a discrete approximation of the weak
solution u evaluated at {(x, ti)}ti∈
T along this constant spatial path. By repeating this procedure on each point xr

i ∈ Sr ,
we can generate a collection of constant paths (Xr

i)
Nr
i=1 such that Xr

i ≡ xr
i . Similarly we generate a collection of constant

paths (Xb
i)

Nb
i=1. In total, we obtain the corresponding (XNODE�(Xi,
T))xi∈Sr∪Sb to approximate the solution u over the grid

T × (Sr ∪ Sb). The algorithm of using NODE model to approximate the weak solution network is given in Algorithm 2.

Algorithm 2 XNODE Network for modeling the weak solution u on a constant domain [0, T] × �.

Input: sampled sets of points Sr = {xr
j ∈ �}Nr

j=1 and Sb = {xb
j ∈ ∂�}Nb

j=1;
T = (ti)
nT
i=0 time partition of [0, T]; XNODE parameter set � = (θ1, θ2, ̃θ)

Output: O � approximate u at Sr ×
T and Sb ×
T
Algorithm:
1: initialize O as an empty vector
2: for x in Sr ∪ Sb do
3: compute ox = XNODE�(x,
T); � approximate u at {x} ×
T

4: set O = concatenate(O , ox);
5: end for
6: return output O

XNODE-WAN algorithm. Finally, we obtain the XNODE-WAN model by replacing the DNN network by the XNODE net-
work for the primal solution in the WAN algorithm (see Algorithm 1). In particular, we adapt the WAN algorithm in the
following steps:

• In line 1, the DNN network for the primary solution uθ is replaced by the XNODE network.
• In line 2, the point sampling strategy is updated as described before. For each iteration, our algorithm implements such

sampling to generate a set of random collocation data points over the domain.
• In line 6 and line 12, the adjoint method is used to compute the derivative of XNODE model instead of the gradient

descent method of DNN network in WAN.

The full XNODE-WAN algorithm is outlined in Algorithm 5 in Appendix.

3.2.2. Time-dependent domain
In this subsection, we consider a more general case D ⊂ [0, T] × Rd which allows that the spatial domain is time-

dependent. Let �(t) denote the spatial domain of D restricted to any t ∈ [0, T], i.e. �(t) = {x|(t, x) ∈D}. When �(t) changes
over t ∈ [0, T], we call D a time-varying domain. The proposed XNODE model in Section 3.2.1 can not be directly applied
to a time varying domain as the constant path X ≡ x ∈ �(0) might go outside the domain D at some time s ∈ [0, T], i.e.
(s, x) /∈D (see e.g., the sample point marked in ◦ in Fig. 1b).

To circumvent the problem, we shall divide each constant path X ≡ x into multiple sub-paths and only keep the sub-
paths remaining within the domain D. To be more specific, we firstly define the entry and exit points on a constant path X .

Definition 3.1. Let D be a bounded domain in [0, T] ×Rd and fix x ∈ Rd . Let X denote a constant path taking value in x,
i.e. X(t) ≡ x, ∀t ∈ [0, T]. For i = 1, 2, · · · , the ith entry point and exit point of the constant path X , denoted by τ (i)

X and τ (i)
X

are defined as follows:

τ
(1)
X = inf

t∈[0,T]{t|(t,x) ∈ D};

τ
(i)
X = inf

t∈[0,T]{t|(t,x) /∈ D, t ≥ τ
(i)
X }; τ

(i+1)
X = inf

t∈[0,T]{t|(t,x) ∈ D, t ≥ τ
(i)
X },

where inf∅ = +∞ by convention. Let Nx denote the total number of finite τ (i)
X , i.e.

Nx = sup
i∈{1,2,··· }

{i|τ (i)
X < +∞},

where sup∅ = −∞ by convention.

4 The collocation of points on the interior (resp. boundary) of the domain [0, T] ×� (resp. [0, T] × ∂�) is given by
T × Sr (resp.
T × Sb). To generate
NT × Nr points over the interior of the domain [0, T] × �, the number of random points generated by the WAN is NT × (Nr + Nb) while that of our point
sampling strategy is NT + Nr + Nb .
7

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Fig. 2. An illustration for entry and exit points of a constant path (see Definition 3.1) and the corresponding subpaths
x,1
T and
x,2

T for the given domain
presented as a shaded region. The solid line presents the constant path X ≡ x. The time coordinates of the blue solid dots are the entry and exit points,
while the blue circles represent x ×
T the samples along the path. Clearly there are two points (t4, x) and (t5, x) along the path but not in the shaded
domain, which are filtered out when constructing sub-paths within the domain.

An illustration example is given in Fig. 2, with the blue solid dots along the blue lines indicating where the entry and
exit points locate for the given constant path X .

For the ease of notation, when there is no ambiguity, we omit the subscript X in τ (i)
X and τ (i)

X for the rest of the paper.
When restricting the constant path X ≡ x to the time interval from the ith entry point τ (i) to the ith exit point τ (i) , we
obtain a constant sub-path denoted by Xi = X[τ (i),τ (i)] , whose time augmented path5 takes value in the closure of D (e.g.
see the solid red lines in Fig. 1b).

We assume that for the given domain D, the entry and exit points of every constant path X ≡ x can be computed and
Nx is finite. For any given time partition
T and the spatial point x, we propose the following way to assign the collocation
of time points from
T to each sub-path Xi for the XNODE model. We define a set
x,i

T , which is composed with the ith

entry starting point τ (i) and all the elements of
T belonging to the ith time interval [τ (i), τ (i)] for i ∈ {1, · · · , Nx}. Hence

x,i
T is the time collocation points associated with the sub-path Xi . Fig. 2 presents an example of computing the entry and

exit points and constructing time collection points of each constant subpaths.

Example 3.1. In Fig. 2, a shaded grey region represents the domain D. For the given constant path X = x marked as the
solid blue line, one can compute two pairs of finite entry and exit points, denoted by {(τ (i), τ (i))}2

i=1, which corresponds
to two constant sub-paths within the domain D. Let
T = (ti)

8
i=1 denote a time partition of length 8 in Fig. 2. The time

collocation points of the first and second sub-paths are
x,1
T = (τ 1, t2, t3) and
x,2

T = (τ
(2)
X , t6, t7, t8, τ

(2)
X) respectively.6

Now we are ready to outline the proposed modification of Algorithm 2 for the time-varying domain as follows.

Point sampling. First of all, we find the minimum time-independent domain to cover D, i.e. D̃ = [0, T] × �max, where
�max = ∪t∈[0,T]�(t). We adopt the point sampling method in Section 3.2.1 to generate the uniform grid to cover [0, T] ×
�max, i.e.
T × Sr , where Sr is sampled uniformly from �max. Secondly, for every x ∈ Sr , we compute {(τ (i), τ (i))}Nx

i=1. We
then construct x-valued constant sub-paths and determine the time collocations points associated with each sub-path as
described above. The algorithm of computing
x,i

T is given in Algorithm 3. To sample of the boundary points of the general
domain D, we use the same method of WAN [17], i.e. uniformly sample a number of points from the boundary ∂D.

Weak solution prediction. For each x ∈ Sr , we have Nx many constant sub-paths defined on the sub-time interval [τ i, τ i]
with corresponding discrete time collocation points

x,i
T . Therefore we can estimate the weak solution u evaluated at

{x} ×
T
x,i by XNODE(x,
x,i

T) for i ∈ {1, · · · Nx}. Note that the initial condition of XNODE model for each constant sub-path
Xi is well defined as u(τ i, x) is given by either the initial condition or boundary condition, i.e.

h(τ (i)) =
{
N init

θ1
(h(x)), if i = 0 and τ (i) = 0;

N init
θ1

(g(x, τ (i))), otherwise.
(10)

We now present the modified algorithm of XNODE for the time-dependent domain in Algorithm 4, on top of Algorithm 3.
Note training the XNODE-WAN network relies on the ODE solver to update the model parameters of the XNODE model. The

5 Let f : [0, T] →Rd . The time augmented path of f is defined as a map from [0, T] → [0, T] ×Rd : t �→ (t, f (t)).
6 Note t1 = τ

(1)
X and hence
x,1

T = (τ (1)) ∪ (t1, t2, t3) = (τ (1), t2, t3).
8

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Algorithm 3 Compute the constant sub-paths and the corresponding time collocation points.

Input: domain D, x ∈Rd ,
T

Output: (

x,i
T)

Nx
i=1

Algorithm:
1: compute the entry and exit points (τ (i), τ (i))

Nx
i=1

2: for i from 1 to Nx do
3: initialize
x,i

T as an empty list;

4: add τ (i) to
x,i
T ;

5: for t in
T and t in (τ (i), τ (i)] do
6: add t to
x,i

T ;
7: end for
8: end for

Algorithm 4 XNODE Network for modeling the weak solution u on a time-dependent domain D.

Input: sampled sets of points Sr = {xr
j ∈ �max}Nr

j=1 and
T = (ti)
nT
i=0 time partition of [0, T]; XNODE parameter set � = (θ1, θ2, ̃θ)

Output: O � approximate u at Sr ×
T

Algorithm:
1: initialize O as an empty vector
2: for x in Sr do
3: compute (
x,i

T)
Nx
i=1 with the input arguments D, x and
T through Algorithm 3;

4: initialize ox as a zero vector of length Nx;
5: for i from 1 to Nx do
6: compute ox,i = XNODE�(x,
x,i); � approximate u at {x} ×
T

x,i

7: add ox,i to ox in the corresponding locations based on
T
x,i ;

8: end for
9: set O = concatenate(O , ox);

10: end for
11: return output O

supplementary code implementation of the proposed XNODE-WAN method is flexible enough to incorporate any ODE solver
(e.g., Euler method or higher-order Runge-Kutta method). The choice of a suitable ODE solver used in XNODE-WAN can be
determined based on cross-validation numerical results.

Lastly, we highlight that the proposed XNODE-WAN is intrinsically different from classical numerical methods (e.g., Euler
or other time advanced methods) of the parabolic PDEs in the following two main aspects. First, the XNODE network is
a family of universal models for continuous spatial-temporal functionals, which does not depend on the specific parabolic
PDE. However, the estimated solution by classical numerical methods is specific to the given parabolic PDEs and computed
directly through discretizing the PDE in the temporal domain. Second, in stark contrast to the classical numerical methods,
the vector field of the XNODE model is optimized and updated iteratively during the training process. Hence, the XNODE
model is trained by optimizing the loss function, which incorporates the PDE information.

4. Numerical results

In this section, we conduct several numerical experiments of parabolic PDEs defined on time independent domains or
time varying domains, respectively. We compare the performance of the proposed XNODE-WAN algorithms (Algorithm 2
and Algorithm 4) with the baseline WAN algorithm [17]. In particular, following the numerical example in [17], we consider
PDE examples in the form of a d-dimensional nonlinear diffusion-reaction equation (Eq. (11)) defined on a bounded domain
D ⊂ [0, 1] ×Rd:⎧⎪⎨

⎪⎩
∂t u − �u − u2 − f = 0 for (t,x) ∈ D
u − g = 0 on ∂D
u(0,x) − h(x) = 0 on �(0),

(11)

where f , g and h may vary from example to example. In Section 4.2, we consider PDE (11) on two time independent
domains D = [0, 1] × � where � is a hyper cube or a unit ball. Note our example where � is a hyper cube is the same
as that in Section 4.2.6 of [17]. We then investigate the scalability of our proposed method with respect to high spatial
dimension in Section 4.3 and follow by a sensitivity analysis in Section 4.4. At the end of this section, we provide an
example of a time-varying domain. Numerical implementation of our work is available at https://github .com /paulvoliva /
XNODE -WAN -PDE -solver.git.

4.1. Experimental setup

To quantitatively access the accuracy and efficiency of the method, we consider the following test metrics:
9

https://github.com/paulvoliva/XNODE-WAN-PDE-solver.git
https://github.com/paulvoliva/XNODE-WAN-PDE-solver.git

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Table 1
Performance comparison between XNODE-WAN and WAN on Example 4.1.

Relative error (± SE) Time per epoch (s) Nε Tε (s)

WAN 2.6% ± 0.0144% 0.38 15,463 5865
XNODE-WAN 1.7% ± 0.0114% 0.35 211 74

1. The relative error: ||uθ − u||L2/||u||L2 , where uθ and u are the approximation and exact solution of the problem with

||u||L2 =
(∫ T

0

∫
�(t) |u(t,x)|2dxdt

) 1
2

.

2. Time per epoch: the average time elapsed in each epoch in the training process.
3. Nε : for any error tolerance level ε > 0, the minimum number of epochs such that the relative error of the trained

model is no more than ε .
4. Tε : given any error tolerance level ε > 0, the minimum of time (seconds) such that the relative error of the trained

model is no more than ε; we would also refer to it the time at convergence.

For a fair comparison, we choose the following hyperparameters, which are the same for both WAN and XNODE-WAN:
Nr = Nb = 400, nT = 20, Ku = 2, Kφ = 1, α = γ = 400, 000 × d2 and the learning rate of the adversarial network τη = 0.04
(see Table B.2 for the summary of notations of variables used in models and algorithms). Note that we set ND = Nr ∗ nT
and N∂D = Nb ∗ nT for WAN to have a fair comparison. Besides we keep the same network architecture of the adversarial
network (test function φη) the same for both WAN and XNODE-WAN. However, as the training performance of each method
may be sensitive to the learning rate, the learning rate of the primal network should be adjusted to the XNODE or DNN
separately. By hyper-parameter tuning, the learning rate of the XNODE-WAN and WAN for the primal network are chosen
to be 0.015 and 0.00005 respectively. Note when increasing the learning rate of the WAN algorithm from 0.00005, the WAN
may suffer from either divergence or slower training. One may refer the effects of the learning rate in Section 4.4. We use
the above hyper-parameter setting for all the following numerical examples. In addition, here we use the explicit midpoint
method as the ODE solver of the XNODE-WAN model.

4.2. Time-independent domains

In this subsection, we investigate the performance of the proposed method on a time-independent domain D = [0, 1] ×
�. To demonstrate that our method is applicable to a general spatial domain �, we consider two examples of �, i.e. (1) a
hyper-cube � = [0, 1]d and (2) a unit ball � = {x ∈Rd||x| ≤ 1} for d = 5.

Example 4.1. We consider the same example in Section 4.2.6 in [17] with f , g, h specified as follows:⎧⎪⎨
⎪⎩

f (t,x) = (π2 − 2) sin
(
π
2

)
cos

(
π
2 e−t

) − 4 sin2(π
2 x1) cos(π

2 x2)e−2t;
g(t,x) = 2 sin(π

2 x1) cos(π
2 x2)e−t;

h(x) = 2 sin(π
2 x1) cos(π

2 x2),

(12)

where � = [0, 1]5. The exact solution is given by

u(t,x) = 2 sin
(π

2
x1

)
cos

(π

2
x2

)
e−t . (13)

The stopping criteria for both algorithms is set to achieve a relative error tolerance level ε = 10−3. We also randomly test
50 trials on randomly selected data to measure the relative L2 error on the obtained models. We report the mean and the
standard deviation of relative error of the XNODE-WAN and WAN in Table C.3, which demonstrates that XNODE-WAN model
significantly outperforms in terms of computational time and iteration number. In particular, to reach the same stopping
criteria, XNODE-WAN model saves 99.8% in time and only takes less than 1.5 minutes for training in this case. Furthermore,
XNODE-WAN and WAN need 165 and 15, 463 iterations respectively whereas the time used for each iteration is comparable.
In addition, Fig. 3a gives the evolution of relative errors over time for both models. Clearly the proposed model converges
much faster than that of WAN. See Table 1.

Fig. 3b and Fig. 3d demonstrate the comparison between the XNODE-WAN and WAN estimator for the PDE solution
u(T , x) at the convergence and their respective absolute point-wise error on the (x1, x2) domain. It shows that the out-of-
sample point-wise absolution error of our method has less magnitude than that of WAN. The superior performance of our
method over WAN is also verified by a smaller relative error (1.7% ±0.0114% v.s. 2.6% ±0.0144%) with statistical significance.

Finally, in Fig. 3e, we show that when XNODE-WAN reaches the stopping criteria at 74 s, the WAN solution is far from
being close to the true solution with large error.

Example 4.2. We consider the same problem as in Example 4.1 but on a 5-dimensional hypersphere domain, i.e., D =
[0, 1] × B(xc, 0.5), where xc = [0.5, 0.5, 0.5, 0.5, 0.5]T . The exact solution is given in (13) on D.
10

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Fig. 3. Performance comparison between XNODE-WAN and WAN in Example 4.1. In the right subplots of (b), (d) and (e), the error is the pointwise absolute
error |u(T , x) − û(T , x)|, where û is the model estimated solution. All the images (b)-(e) only show 2D slice of x3 = x4 = x5 = 0 as the true solution u of
this example only depends on the first two coordinates.

We again implement both models and the results is shown in Fig. 4 with the same stopping criteria, i.e., the relative
L2 error ε = 10−3. The evolution of the relative L2 error for the hypersphere domain is similar to that in Example 4.1. In
particular, the XNODE-WAN model achieves the targeted error tolerance within 100 s while it takes longer than 3,000 s for
WAN to reach the stopping criteria.

This example justifies the advantage of using XNODE-WAN for solving parabolic PDE with an irregular spatial domain �.

4.3. Scalability analysis

In this subsection, we investigate the scalability of the proposed XNODE-WAN model with respect to the spatial dimen-
sion.

Example 4.3. We consider Eq. (11) on different spatial dimension d ∈ {4, 8, 16, 32, 64}, where f , g are defined on [0, 1] × �

and h are defined on � as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (t,x) = 2e
1−e

(
π
2

)d
((

π
2 − 2

)
e−t
d

i=1 sin
(

π
2 xi + π i

2

)
− 4e−2t
d

i=1 sin2
(

π
2 xi + π i

2

))
,

g(t,x) = 2e
1−e

(
π
2

)d 2e−t
d
i=1 sin

(
π
2 xi + π i

2

)
,

h(x) = 2e
1−e

(
π
2

)d 2
d
i=1 sin

(
π
2 xi + π i

2

)
.

(14)
11

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Fig. 4. Performance comparison of XNODE-WAN and WAN in Example 4.2, where � is a 5 dimensional unit ball. (a) the evolution of relative L2 error of
both XNODE-WAN and WAN method over time; (b) The plot of pointwise absolute error |u(T , x) − û(T , x)|, where û is the trained model of each method
until hitting the stopping criteria. All the images only show 2D slice of x3 = x4 = x5 = 0 as the true solution u of this example only depends on the first
two coordinates.

Fig. 5. Scalability results of Example 4.3 in terms of spatial dimension d. (a) The evolution of relative L2 error of the XNODE-WAN method over time (0 to
103 s) for d ∈ {4, 16, 64}; (b) the computational time costs (Left) and average training time per epoch (Right) of XNODE-WAN and WAN until they achieve
error tolerance respectively. Here we use ε = 10−2 for each spatial dimension d ∈ {4, 8, 16, 32, 64}.

It is easy to verify that the solution to (11) is given by

u(t,x) =
(π

2

)d
2e−t
d

i=1 sin

(
π

2
xi + π i

2

)
.

Note in Example 4.3, ||u||L2 = 1 regardless of the problem dimension d. For both methods, we choose the number of
points Nr, Nb = 800d and ε = 10−2.

We investigate the performance of our proposed XNODE-WAN method with different spatial dimension d in terms of
the relative error evolution over the training, total training time and training time per epoch, which is visualized in Fig. 5.
Fig. 5a shows that even for a high dimensional d = 64, our method is able to converge to the relative error tolerance
ε = 10−2 within 102 seconds.

Shown in Fig. 5b, for a dimension as high as 64, to achieve the error tolerance 10−2, the training time of WAN is 4,000 s,
roughly 40 times of that of XNODE-WAN. It appears that, as Nr and Nb are chosen proportional to d, the average training
time increases approximately linearly in dimension d for XNODE-WAN. Clearly for the same dimension d, the training time
per epoch from WAN is longer than that from XNODE-WAN, especially for large values of d. In total, Fig. 5 shows that
XNODE-WAN has greater potential in scalability for higher dimensional PDEs.

4.4. Sensitivity analysis

In this subsection, we aim to investigate the sensitivity of our proposed XNODE model in terms of the network archi-
tecture of the hidden field N vec

θ2
and learning rate τθ . Here we choose the same PDE setting defined in Section 4.3 and set

d = 5. We follow [17] to choose the error tolerance level ε = 0.005.
To investigate the effects of the neural network architecture of the hidden field N vec

θ2
on the predictive performance of

the XNODE-WAN, we consider different number of neurons per layer (hidden dimension) and number of layers (depth).
When the hidden dimension is high as 18 or 22, our method can achieve the satisfactory results. It can be observed, when
12

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Fig. 6. The relative error plots for sensitivity analysis. All these experiments are implemented under the same setting of hyperparameters as in the Sec-
tion 4.3.

Fig. 7. Performance comparison of XNODE-WAN and WAN on an time-dependent domain in Example 4.4. (a) The evolution of relative L2 error of both
XNODE-WAN and WAN method over time; (b) The plot of pointwise absolute error |u(t, x1) − û(t, x1)|, where û is the trained model of each method until
hitting the stopping criteria.

increasing the depth to 7 or above, the predictive performance of our method is improving. It suggests that our method
usually works well as long as the neural network architecture is sufficiently rich. However, the over-complicated network
should be discouraged as it may prolong the training time and cause the overfitting.

Furthermore, we consider different values of learning rate for both our method and WAN, and the corresponding per-
formance. Fig. 6b shows that, independently of the depth of the hidden field, a learning rate on the magnitude of 10−5 is
needed to achieve a reasonable loss for WAN while XNODE-WAN allows for a much wider range of learning rate, i.e., from
10−5 to 10−2. In practice, we conduct the grid search to select the optimal learning rate for each method, i.e. to achieve
the satisfactory accuracy, the learning rate is chosen to be the one corresponding to the least training time. That is the
justification of different learning rate used for XNODE-WAN and WAN.

4.5. Time-varying domain

Example 4.4. We now consider the PDE problem on the time-varying domain D ⊂ [0, 1] × [−1, 1] defined as follows (see
Fig. 7a for its shape),

D = {(t, x1)|t ∈ [0,0.5], |x1 − 0.5| ≤ 0.5(1 − t)}⋃ {(t, x1)|t ∈ [0.5,1], |x1 − 0.5| ≤ 0.5t} .

Note that to illustrate the idea in this example we only consider d = 1.

In this example, we choose the error tolerance level ε = 10−2 to train both XNODE-WAN and WAN models. The perfor-
mance comparison results are shown in Fig. 7. In particular, from Fig. 7b we observe that both models are able to learn the
solution on the time-varying domain to a satisfactory level. The heatmap plot of Fig. 7b shows that they both achieve an er-
ror below 0.04 for most of the region at their convergence. However, as shown in Fig. 7a, similarly to the time-independent
13

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
case, the convergence of XNODE-WAN in terms of the relative error is much faster than that of WAN, which is reflected by
the enlarged relative error gap between two models over time until the end of XNODE-WAN training.

To solve the PDE problem on the time-varying domain, both WAN and XNODE-WAN may require more computational
time to train compared with their time-independent counterpart as expected. It is evident by that the computational cost
of each model on low-dimensional time varying domain example (Example 4.4) is even higher than that for the higher
dimensional time-invariant domain (see Fig. 3a). For our method, it is mainly a result of additional complexity of constant
sub-path construction in Algorithm 4.

However, more importantly, for this time-varying domain example, our proposed model consistently outperforms in
terms of efficiency: WAN requires significantly longer time (5,000 s) to converge compared to XNODE-WAN (less than
100 s) in Fig. 7a. In part this can be explained by the fact that XNODE-WAN model incorporates the boundary condition to
the model (Eq. (10)) and its weak solution estimators evaluated at the entry points on the boundary have little error. This
anchors our model at more places than the WAN model, making it more suited to a time-varying domain. This example
justifies the advantage of using XNODE-WAN for solving PDE on an time-varying domain.

5. Conclusion

In this paper, we propose the novel XNODE model as a universal and effective network for the parabolic PDE solution
by leveraging the priori information of the PDE though the NODEs. To tackle the high dimensional parabolic PDE problems
on arbitrary bounded domain, incorporating the XNODE model to the WAN as a primal network leads to significantly faster
training and better scalability. Our XNODE-WAN method consistently outperforms WAN in terms of computational time on
both time-independent domain and time-dependent domain. However, quantitative analysis of the impact of the primal
network architecture on the training efficiency of WAN for the parabolic PDE solution remains open and merits further
investigation in future work.

CRediT authorship contribution statement

Paul Valsecchi Oliva: Conceptualization, Investigation, Methodology, Software, Writing – original draft, Writing – review
& editing. Yue Wu: Conceptualization, Formal analysis, Methodology, Software, Validation, Writing – original draft, Writing –
review & editing. Cuiyu He: Conceptualization, Formal analysis, Methodology, Validation, Writing – original draft, Writing –
review & editing. Hao Ni: Conceptualization, Formal analysis, Methodology, Supervision, Validation, Writing – original draft,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Funding: HN and YW are supported by the Engineering and Physical Sciences Research Council (EPSRC) [grant number
EP/S026347/1] and the Alan Turing Institute under the EPSRC grant [grant number EP/N510129/1].

Appendix A. Universality of XNODE model

Let us recall the definition of XNODE model, which is a map from an input x ∈ Rd to the output o = (ot)t∈[0,T] ∈
C([0, T], R) through the Rh-valued latent process h = (h(t))t∈[0,T] , i.e. for every t ∈ [0, T],{

dh(t)
dt = N vec

θ1
(h(t), t, x), h(0) = N init

θ2
(h(x)) ∈Rh,

ot = Lθ̃ (h(t)),
(A.1)

where N vec
θ1

and N init
θ2

are neural networks fully parameterized by θ1 and θ2 for the vector fields and initial condition of the
hidden neural h respectively, and Lθ̃ is a linear trainable layer with the weights θ̃ .

We will establish the universal approximation theorem of the proposed XNODE model for the parabolic PDE solution.
Our proof mainly replies on the stability estimates of the ODE theory.

Theorem A.1 (Theorem 2.8 in [24]). Suppose V 1, V 2 ∈ C(U , Rn) where U is an compact subset in [0, T] × Rn and V 1 is Lipschitz
continuous in the first argument with

L = sup
(y1,t),(y2,t)∈U

|V 1(y1, t) − V 1(y2, t)|
|y1 − y2| .
y1
=y2

14

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
If F1 and F2 are the solutions to the two initial value problems defined as follows:

F ′
1(t) = V 1

(
F1(t), t

)
, F1(0) = f1; (A.2)

F ′
2(t) = V 2

(
F2(t), t

)
, F2(0) = f2. (A.3)

Then for all t ∈ [0, T],

|F1(t) − F2(t)| ≤ | f1 − f2|exp(Lt) + M

L

(
exp(Lt) − 1

)
,

where

M = sup
(y,t)∈U

|V 1(y, t) − V 2(y, t)|.

Thanks to the universality of neural network and the above theorem, we now establish the universality of the XNODE
model in the following theorem.

Theorem A.2. Let � ⊂Rd be a bounded domain and F : [0, T] ×� →R be a solution to the following ODE with the initial condition:

dF (t,x)

dt
= V (F (t,x), t;x), F (0,x) = h(x), (A.4)

where V is Lipschitz continuous in the first argument for any x ∈ � and there exists a bounded constant L > 0 such that

L = sup
x∈�

sup
(y1,t),(y2,t)∈U

y1
=y2

|V (y1, t;x) − V (y2, t;x)|
|y1 − y2| .

Then for any given error tolerance level ε > 0, there exists a XNODE solution F̃ defined in (A.1) such that

sup
(t,x)∈[0,T]×�

|F (t,x) − F̃ (t,x)| ≤ ε. (A.5)

Proof. In this proof, we constrain the XNODE models to the ones which has the hidden dimension 1 and identity map
being their output layer. Therefore F̃ satisfies the below ODE similar to (A.4):

d F̃ (t, x)

dt
= N vec

θ1
(F̃ , t; x), F̃ (0, x) = N init

θ2
(h(x)), (A.6)

where the activation functions (e.g. ReLu) are chosen such that the vector field is uniformly Lipschitz continuous. The
wellposeness of the XNODE model is a directly consequence of Picard’s Theorem. So is the function F due to the Lipschitz
continuity assumption of its vector field F .

Thanks to the universality of neural network, for every ε > 0, there exist two neural networks with sufficiently large
number of hidden neurons and number of layers, denoted by N vec

θ1
and N init

θ2
such that

sup
y,t,x

|N vec
θ1

(y, t;x) − V (y, t;x)| + sup
x

|N init
θ2

(h(x)) − h(x)| ≤ C−1ε,

where C can be pre-determined through

C = exp (LT) + exp (LT)/L.

The stability result (A.5) is then a direct consequence of Theorem A.1. �
Appendix B. Pseudocode of XNODE-WAN algorithm

We present in the Table B.2 the explanation for notations in algorithms. The following algorithm (Algorithm 5) is the full
pseudocode of the XNODE-WAN algorithm for a time-independent domain.

Table B.2
List of algorithm parameters.

Notation Meaning

XD Sampled collocation points of the whole domain D
X∂D Sampled collocation points on the domain boundary ∂D
X0 Sampled collocation points at the initial condition

(continued on next page)
15

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
Table B.2 (continued)

Notation Meaning

Sr Sampled collocation points of the spatial domain
Sb Collocation points of the spatial domain boundary

T Sampled time partition
ND Number of sampled collocation points of the space-time domain D
N∂D Number of sampled collocation points of domain boundary ∂D
N0 Number of sampled collocation points of the initial condition
Nr Number of sampled collocation points of the spatial domain
Nb Number of sampled collocation points of the spatial domain boundary
nT Number of sampled time partition
Ku Inner iteration to update weak solution uθ or u�

Kφ Inner iteration to update test function φη

α Weight parameter of boundary loss L̃bdry

γ Weight parameter of initial loss L̃init
ε error tolerance
τθ or τ� Learning rate for the primal network
τη Learning rate for network parameter η of test function φη

Algorithm 5 XNODE-WAN algorithm for time-independent domains.
Input: domain D = � ×[0, T], tolerance ε > 0, Nr/Nb/nT : number of sampled points on spatial domain/spatial boundary/temporal domain, Ku/Kφ : number
of solution/adversarial network parameter update per iteration, α/γ ∈R+: the weight of boundary/initial loss

1: Initialize: the XNODE network φ� : D →R and the DNN network φη : D →R
2: generate the sets of collection points Sr, Sb and
T � random point sampling step
3: while L̃(�, η) > ε do
4: # update weak solution network parameter
5: for k = 1, ..., Ku do
6: compute ∇θ L̃(�, η); � gradient calculation step
7: update � ← � − τ�∇� L̃(�, η);
8: end for
9: # update test network parameter

10: for k = 1, ..., Kφ do
11: compute ∇η L̃(�, η) using the points Xr ;
12: update η ← η + τη∇η L̃(�, η);
13: end for
14: generate the sets of collocation points Sr , Sb and
T ; � random point sampling step
15: end while

Output: {XNODE�(xi ,
T)}xi∈Sr ∪Sb � the weak solution estimator evaluated at {x} ×
T

Appendix C. Numerical results summary

Below we present some results from the comparisons of the XNODE-WAN and WAN models presented in Example 4.2
and Example 4.4.

Table C.3
Performance comparison between XNODE-WAN and WAN on various domains for Example 4.2 and Example 4.4.

Example 4.2: Cylinder domain

Model Relative error Time per epoch (s) Nε Tε (s)

WAN 1.0% 0.38 15,278 5806
XNODE-WAN 1.1% 0.35 271 88

Example 4.4: Hourglass domain

WAN 8.3% 0.38 21,594 8206
XNODE-WAN 7.1% 0.43 221 95

References

[1] J. Han, A. Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (2018) 8505–8510.
[2] M. Hutzenthaler, A. Jentzen, T. Kruse, T. Anh Nguyen, P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation

of semilinear parabolic partial differential equations, Proc. R. Soc. A 476 (2020) 20190630.
[3] P. Druzhkov, V. Kustikova, A survey of deep learning methods and software tools for image classification and object detection, Pattern Recognit. Image

Anal. 26 (2016) 9–15.
[4] Y. Goldberg, A primer on neural network models for natural language processing, J. Artif. Intell. Res. 57 (2016) 345–420.
[5] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
16

http://refhub.elsevier.com/S0021-9991(22)00295-9/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib8DA78247A21D1DBA452D55F7290CD1F5s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib8DA78247A21D1DBA452D55F7290CD1F5s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib5605389C30EEF14F86C0FDF59A99ABB0s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib5605389C30EEF14F86C0FDF59A99ABB0s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib94E84299A75285EA6026A8C94C933634s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib53EF7BEEFFBCC434AC4215FA1276D943s1

P. Valsecchi Oliva, Y. Wu, C. He et al. Journal of Computational Physics 463 (2022) 111233
[6] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Multipole graph neural operator for parametric partial differ-
ential equations, preprint, arXiv:2006 .09535, 2020.

[7] C. He, X. Hu, L. Mu, A mesh-free method using piecewise deep neural network for elliptic interface problems, preprint, arXiv:2005 .04847, 2020.
[8] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, Deepxde: a deep learning library for solving differential equations, SIAM Rev. 63 (2021) 208–228.
[9] J. Berner, P. Grohs, A. Jentzen, Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the

curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations, SIAM J. Math. Data Sci. 2 (2020) 631–657.
[10] C. Duan, Y. Jiao, Y. Lai, X. Lu, Z. Yang, Convergence rate analysis for deep Ritz method, preprint, arXiv:2103 .13330, 2021.
[11] T. Luo, H. Yang, Two-layer neural networks for partial differential equations: optimization and generalization theory, preprint, arXiv:2006 .15733, 2020.
[12] K.E. Gilbert, M.J. White, Application of the parabolic equation to sound propagation in a refracting atmosphere, J. Acoust. Soc. Am. 85 (1989) 630–637.
[13] J. Douglas, H.H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Trans. Am. Math. Soc. 82 (1956)

421–439.
[14] J. Hahn, X.-C. Tai, S. Borok, A.M. Bruckstein, Orientation-matching minimization for image denoising and inpainting, Int. J. Comput. Vis. 92 (2011)

308–324.
[15] Y. Achdou, O. Pironneau, Computational Methods for Option Pricing, SIAM, 2005.
[16] J. Sirignano, K. Spiliopoulos, Dgm: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[17] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411 (2020) 109409.
[18] R.T. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, preprint, arXiv:1806 .07366, 2018.
[19] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys.

420 (2020) 109707.
[20] E. Weinan, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018)

1–12.
[21] E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial

differential equations in computational mechanics via machine learning: concepts, implementation and applications, Comput. Methods Appl. Mech.
Eng. 362 (2020) 112790.

[22] Q. Hong, J.W. Siegel, J. Xu, A priori analysis of stable neural network solutions to numerical PDEs, preprint, arXiv:2104 .02903, 2021.
[23] M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, vol. 13, Springer Science & Business Media, 2006.
[24] G. Teschl, Ordinary Differential Equations and Dynamical Systems, vol. 140, American Mathematical Soc., 2012.
17

http://refhub.elsevier.com/S0021-9991(22)00295-9/bibC139E43B87FD17ACB32DAC024FE68FA0s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibC139E43B87FD17ACB32DAC024FE68FA0s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib332688A0728F528C4551AF7034F3A21Ds1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibA9A2267C45752EDB9B91858EBD25D92Fs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibE121D013BB13B3E41E8019768BF0E96Ds1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibE121D013BB13B3E41E8019768BF0E96Ds1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibA3ED7034A923590200F30000213580A0s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibBE6341D9EEB434D06E0C51A6FB4CF4C4s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib4850E495F341DD20A2647B50AAFDC93Bs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibDDF47F6B2A371F9F8C2A1B80079B318Fs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bibDDF47F6B2A371F9F8C2A1B80079B318Fs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib0CCD1D42D2F85D78E7CCB16F7F45B554s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib0CCD1D42D2F85D78E7CCB16F7F45B554s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib62BC6A1075758370808E373A979124FCs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib6559BDA91F6B39FD51E2A8A0C3EFBC5Cs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib0452E4C4BF947D1E2B46B31E62CDE9B7s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib937659F06BE4911C05A26EA4CBF071A2s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib937659F06BE4911C05A26EA4CBF071A2s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib937659F06BE4911C05A26EA4CBF071A2s1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib5FD5193AE73767C7BE7E4F2F299265CDs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib507D82C5431BDD593C76A2F643B4258Fs1
http://refhub.elsevier.com/S0021-9991(22)00295-9/bib2A17B109D575EAB53DC6FBF6B3801951s1

	Towards fast weak adversarial training to solve high dimensional parabolic partial differential equations using XNODE-WAN
	1 Introduction
	2 Weak Adversarial Network (WAN) framework
	2.1 The weak formulation
	2.2 WAN framework

	3 The XNODE-WAN method
	3.1 The neural ODE (NODE) model
	3.2 XNODE-WAN
	3.2.1 Time-independent domain
	3.2.2 Time-dependent domain

	4 Numerical results
	4.1 Experimental setup
	4.2 Time-independent domains
	4.3 Scalability analysis
	4.4 Sensitivity analysis
	4.5 Time-varying domain

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Universality of XNODE model
	Appendix B Pseudocode of XNODE-WAN algorithm
	Appendix C Numerical results summary
	References

