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Abstract

Multi-state models describe a process where individuals move among a series of

states over time. They are increasingly popular in a wide range of applications in

biostatistics. For instance, breast cancer, HIV and ageing problems. There are two

types of effects when describing the hazards for change of status: fixed effects and

random effects. For the fixed-effects multi-state model, the characteristics of indi-

viduals are usually considered as covariates, such as age and gender. However,

there is still some unobserved heterogeneity, which can be taken into account as

random effects. Models with both fixed effects and random effects in survival

analysis are called frailty models. A large number of papers discusses paramet-

ric univariate frailties in multi-state models. This study presents both parametric

and non-parametric frailty models. For the parametric frailty model, both uni-

variate and bivariate frailties in multi-state models are discussed, in which frail-

ties follow several common distributions. In particular, the contribution of this

study is to apply a bivariate gamma-distributed frailty in the multi-state model

for the interval-censored data, in order to describe the unobserved heterogeneity

and investigate the correlation between two transition hazards. Model validation

and prediction are discussed as well. In the application, we illustrate both fixed-

effect models and frailty models for a cardiac allograft vasculopathy study and a

cognitive impairment process.
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Chapter 1

Introduction

The multi-state model, regarded as an extension of a survival model, describes

a process where individuals move among a series of states over time. It can be

called a multi-state survival model if there is an absorbing state. Usually, the

absorbing state is death. Multi-state models are broadly applied to analyse lon-

gitudinal data, where the change of state over time is of interest. The start time

in this kind of multi-state survival process should be specific and clearly defined.

The exact times when the status of individuals change are sometimes impossible

or unnecessary to measure and record, especially for long-term studies. Consider

an example of a dementia study, in which the process can be described by a four-

state survival model. State 1 is healthy, state 2 is mild dementia, state 3 is severe

dementia and state 4 is death. An example to demonstrate transitions between

states is: A patient was firstly observed at state 1 at age 70. The second obser-

vation of this patient was at state 2 and age 72. After a set of observations, this

patient was observed to die at age 80. Here we know the state of this patient

changed from state 1 to state 2 during these two years, but we do not know the

exact point in time of change.

Usually not all times in survival analysis are observed exactly, and censoring

is common. We assume Ti as the exact time that the event of interest occurs for

individual i, consider the situation where Ti is unknown. Say t1 and t2 are two
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known time points and t1 < t2. Left-censoring indicates that the event of inter-

est happens before a point in time t1, where Ti < t1. Right-censoring indicates

the event of interest happens after a point in time t2, where Ti > t2. Interval-

censoring indicates the event of interest happens between two exact time points

(t1 < Ti < t2), see more details in Collett (2015).

The multi-state model can have back and forth transitions, resulting in a more

complex censoring of time. An example of this situation for the above dementia

study: for an individual who is observed at state 2 at time t1, all other states

(state 1, state 3 and state 4) can be considered as the next potential state. If this

individual is next observed at state 1 at time t2 6= t1, the exact time of transition

te is interval-censored, where t1 < te < t2. If state 4 is observed at time t3 6=

t1, examples of possible trajectories are 2 → 4, 2 → 3 → 4 or 2 → 1 → 4.

The censoring is severe if potential trajectories include 2 → 1, because there are

potentially multiple times of transitions between state 1 and state 2.

The death time is usually observed. Therefore, in many applications, the

transition times between living states are interval-censored, unlike the dead time

which is right-censored or exact.

Another important concept for a multi-state model is the distinction of con-

tinuous time and discrete time. Discrete models describe the processes step by

step, the time unit in this model is fixed on a uniform grid. For the continuous-

time model, the transition process can take place at any time. It is more prac-

tical and realistic in a wide range of applications. This thesis will consider the

continuous-time models with data in which times of transitions between living

states are interval-censored but times of death (transitions to the absorbing state)

are observed exactly.

1.1 Overview literature for the multi-state model

The multi-state survival model has widespread use in many areas of applica-

tion. We would like to give some examples in biostatistics for both exact-time data
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and interval-censored data. Details of modelling interval-censored data will be

introduced in Chapter 3. Although we will mainly focus on the interval-censored

data in our study, some previous studies for exact time data are good references

for the basic idea of the multi-state model. For exact time data, Anderson and

Keiding (2002) discuss several multi-state models to deal with event history anal-

ysis. They investigate the mortality and bleeding episodes in a liver cirrhosis trial.

Both parametric and non-parametric methods are discussed. Putter et al. (2006)

implement a multi-state model for analysing data of thousands of early breast

cancer patients. They restricted the attention to the non-parametric hazards in the

framework of the Cox model. Escolano et al. (2000) build a multi-state model and

emphasize the prediction of the occurrence of hospital-acquired infections in ICU.

Similar approaches are also used in many other kinds of papers, see Kay (1986),

Marshall and Jones (1995) and Rickayzen and Duncan (2002). The non-parametric

method is typically used for the exact time data, such as the Kaplan-Meier esti-

mate (Kaplan and Meier (1958)). For more details of non-parametric methods,

please see Collett (2015), Chapter 2. The parametric method is more common to

use for interval-censored data, since the time of transition is unknown and the

parametric models are better at dealing with the uncertainty with respect to the

exact time.

Commenges (2002) give a comprehensive inference for multi-state models

from interval-censored data. Transition probabilities and likelihood are discussed.

Foucher et al. (2010) fit a four-state model to analyse the deterioration process of

kidney transplant recipients, a goodness-of-fit for the model is also discussed.

Buter et al. (2008) analyse dementia and survival in Parkinson disease by fit-

ting a three-state model, and also show the difference in survival time between

women and men. Machado et al. (2009) review several modelling methods for

multi-state models and illustrate them by using two interval-censored datasets.

The multi-state model is also useful in other areas, such as social statistics. For

instance, Uhlendorff (2006) uses working in low paid jobs, higher paid jobs, and

not working as the three states to apply a multi-state model. See Wu et al. (2009),
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Nicolas (1995), Li (2012) for other applications.

Multi-state models are often based on the Markov assumption. For a multi-

state process, define the variable Yt as the state of the process at time t, the state

space is the set S of all possible values of Yt. S usually is a finite discrete space

{1, 2, 3..., D}, where D is an integer. First, we assume that the continuous-time

stochastic process {Yt|t ∈ (0, ∞)} is a Markov chain, for which we have

P(Yu+t = s|Yu = r, Yv, 0 ≤ v ≤ u) = P(Yu+t = s|Yu = r), (1.1.1)

for all states r, s ∈ S and u, t ≥ 0 in the multi-state process. This indicates that

only the current state determines the future.

If the movements between states in the future are affected by the duration

which the process has stayed in a state, the process is called a semi-Markov

model. There are plenty of studies that discuss this model, such as Foucher et

al. (2007) and Ramezankhani et al. (2020). Moreover, if the future state depends

on two or more preceding states in the past, it is called the second or higher or-

der Markov model. Note that the ”higher order” is only used for the discrete time

model, and not for the continuous time Markov model. Please see Cox and Miller

(1965) and Kulkarni (2011) for more information on the Markov process.

The Markov chain is time homogeneous if

P(Yu+t = s|Yu = r) = P(Yt = s|Y0 = r), (1.1.2)

for t, u ≥ 0.

As will be shown, the time-homogeneous Markov chain can be defined by the

constant transition hazard. Please see Section 3.4.1 for details. The assumption

of the continuous-time Markov model was discussed in Kalbfleisch and Law-

less (1985), in order to facilitate the computation process of the multi-state model

when maximising the likelihood function. Gentleman et al. (1994) illustrate the

usefulness of this Markov model for disease history data. Both the advantages
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and disadvantages are well discussed. One of the advantages is that it can make

more efficient use of incomplete information when only fairly short portions of

individual’s disease histories are available. However, the model is quite restric-

tive under the Markov assumption, since only the current state is related to the

next state.

For the computation of multi-state Markov models for panel data, Jackson

(2011) presents the msm package in R, introducing the usages and examples of

fitting a wide range of multi-state models and the hidden Markov models. Ex-

tensions and limitations of msm are also well discussed. Hidden Markov models

are used for multi-state processes which are subject to misclassification of states

or where states are not observed. The hidden Markov model is not discussed

in this thesis, please see Satten and Longini (1996) and Bureau et al. (2003) for

details. There is also a tutorial about statistical methods for multi-state models

provided by Putter et al. (2007). It details both concepts and practices from data

preparation to estimation. It also shows examples with the R software. Please

note that the event times of data in this tutorial are observed exactly or right-

censored. Therefore, some concepts cannot be used for interval-censored data,

such as the likelihood function of transition probabilities.

1.2 Overview literature for the frailty model

A multi-state model can be specified through transition hazards, which are

instantaneous risks of transitioning from one state to another. The details of the

hazard and hazard models will be introduced in Chapter 3. This study discusses

two types of effects when describing hazards for moving across states: fixed ef-

fects and random effects. For the fixed-effect multi-state model, the variety of

hazards for different individuals are explained by the observed explanatory vari-

ables, such as gender, ages or educational levels. However, there might be some

unobserved heterogeneity that affects the hazard, even if all the explanatory vari-

ables are considered (Collett (2015)). For example, some factors do affect the sur-
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vival, but were not measured in the data. Therefore, under the same value of

covariates, some individuals are more likely to move to severe disease states or

death than others, and some individuals are more likely to remain in a healthier

state. In survival analysis, if such unobserved effects are modelled by a random

effect, such a random effect in survival analysis is called frailty.

The main reason for adding a frailty term to the fixed-effect multi-state model

is to describe the unobserved susceptibility for illness and death. Frailty can be

defined either at the individual or group level. The former implies individual-

specific transition hazards, the latter implies that groups of individuals share

the group-specific frailty. Adding a group-specific frailty can investigate peo-

ple from different groups without adding the dummy covariates. For example,

people from different hospitals or countries can share a hospital- or country- spe-

cific frailty. If the number of hospitals or countries are large, the model will be

overly complex by adding many dummy variables, which is not a good choice,

especially if researchers do not aim to analyse the effects of individual hospitals

or countries (Van Den Hout (2016)).

Except for the main advantage of adding a frailty term (to describe the un-

observed heterogeneity), another advantage is that the frailty can model the as-

sociation between transitions. As discussed in Section 1.1, it is assumed that the

continuous-time multi-state model is a Markov process, which means only the

current state determines the future. However, the Markov assumption could fail

to hold because of the association between transition times. For example, indi-

viduals who have been longer in a specific state, are more likely to move to death.

This kind of effect might be addressed by fitting a frailty model, where the frailty

can be used to model such associations.

There is a large volume of published studies describing the role of frailty in

survival analysis. The book The Frailty Model (Duchateau and Janssen (2007) in-

troduced various types of frailty models and copula models to analyse clustered

survival data. Many studies started with adding frailty as an extension for sur-

vival models, for example, see Anderson (1995) and Hougaard (1995) for details.
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Some discussed multi-state frailty models with different distributions. For ex-

ample, Bijwaard (2014) considered a Cox model in continuous time with frailties

in univariate survival models and semi-Markov multi-state models. This study

also gave an application for the labour market and migration dynamics of recent

immigrants to the Netherlands. Putter and van Houwelingen (2015) discussed

the way to identify frailties in multi-state models. They suggested considering

whether we need frailties because they come with some disadvantages: firstly

the effect of covariates might be more difficult to quantify since the computa-

tion is more complex due to the frailty parameters; secondly, frailty models are

more difficult to fit; thirdly, sometimes frailties are not easy to understand and

may lead to an unexpected result. In our study, we admit that the frailty model

is not easy to fit because of the complexity of modelling and computation, but

it is a good method for describing the unobserved heterogeneity and investigat-

ing the association between transitions. Therefore, we would like to fit both the

multi-state fixed-effect model and the frailty model and compare their results.

The question of whether we need frailty can be considered by comparing the pa-

rameter estimation, the assessment of goodness-of-fit and the AIC value of these

two models.

Furthermore, a number of studies presented frailty models for multivariate

survival data. For instance, Xue et al.(1996) fit a bivariate frailty model to analyse

the bivariate survival data, to overcome the limitations of the univariate frailty

model when analysing the multivariate survival data. Hougaard (2012) present

four approaches to handle multivariate survival data. Many other papers discuss

multivariate frailty models as well, such as Pickles et al.(1995) and O’Keeffe et al.

(2018).

Lognormal and gamma distributions are widely used for frailties in the model.

For example, the bivariate lognormal-distributed frailty is used in Lindeboom

and Van Den Berg (1994). Joly et al. (2012) and Pak et al. (2017) both used the

multivariate lognormal-distributed frailty in the multi-state model for interval-

censored data. For the gamma frailty model, various types of multivariate gamma
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distributions were defined in previous studies. For example, Mckay’s bivariate

gamma, Kibble and Moran’s bivariate gamma and Sarmanov’s bivariate gamma,

and so on. These were introduced in Chapter 48 of Kotz et al. (2004). Some

studies illustrate multivariate gamma frailty models, please see Wassell and Ze-

len (1993), Yashin (1995), Hens et al. (2009) and Martins et al. (2019). The gamma

distribution is one of the most widely used frailty distributions in the standard

survival model. The reason is that it is a very convenient distribution both from

the analytical and computational view (Bijwaard (2014)). In the standard survival

model, it has a closed-form expression for the hazard. But the situation of multi-

state models is more complex, and we cannot get a closed-form of the likelihood

for the gamma frailty. Details of the hazard and likelihood will be introduced in

Chapters 3-5. An advantage for the gamma distribution for the multi-state model

is that the mean of the gamma distribution refers to the mean of the frailty. How-

ever, when using a loglinear model, the mean of the normal distribution is zero

do not imply the mean of the lognormal-distributed frailty is one, because there

is a non-linear exponential transformation in the model. Details of modelling and

this advantage will be discussed in Chapter 4.

In the multi-state process, the multivariate frailty model is a good approach to

investigate the correlation of hazards between multiple transitions. In this study,

we will mainly focus on bivariate frailty models. For the bivariate frailty model,

the lognormal distribution and gamma distribution will both be discussed. Since

there are many types of the bivariate gamma distribution, we aim to explore a

bivariate gamma frailty model, which is relatively easy to fit and allows sim-

ple computation, in order to describe the unobserved heterogeneity and anal-

yse the correlation between different transition hazards. Therefore, the Cheriyan

and Ramabhadran’s bivariate gamma distribution in Kotz (2004) is selected to fit

frailty models. The correlated frailty models with this distribution was first pro-

posed by Yashin et al.(1995) for univariate survival data on related event times.

For example, the event times for twins or family members. The novelty of this

thesis is that we use this distribution to define a bivariate gamma multi-state
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frailty model for the interval-censored data. The correlation is defined in differ-

ent transitions rather than paired-individuals.

1.3 Overview thesis

Chapters 2-6 provide an overview of fixed-effect multi-state models and frailty

models. Chapter 2 introduces the Cardiac allograft vasculopathy (CAV) data and

the Origins of Variance in the Oldest-Old (OCTO-Twin) data. Details of these

datasets are shown in tables and graphs. Chapter 3 gives an overview and sta-

tistical modelling of multi-state fixed-effect models. In particular, we contribute

the analytic expression of the transition probability for the four-state progressive

model, the details are illustrated in Section 3.2. The comparison of this method

and the piecewise constant approximation is investigated in Section 3.6. In Chap-

ter 4 and 5, univariate multi-state frailty models and bivariate multi-state frailty

models are discussed, respectively. The main contribution in these two chapters

is proposing the bivariate frailty multi-state model for interval-censored data.

Chapter 6 describes non-parametric frailty models. In this chapter, we also extend

the general non-parametric frailty model by adding a covariate-specific frailty

term. Chapter 7 analyses the data introduced in Chapter 2 and presents the re-

sults. Comparison of different models and the assessment of goodness of fit are

discussed as well. Moreover, there might be some issues for identifiability and

sensitivity of the proposed model regarding misspecifications These will be in-

vestigated in a simulation study, which is shown at the end of this chapter. In

Chapter 8, we discuss both the contributions and limitations of this thesis.
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Chapter 2

Data

2.1 Cardiac allograft vasculopathy data

To illustrate the approaches to fixed-effect multi-state models and frailty mod-

els mentioned in Chapter 1, the longitudinal data about cardiac allograft vascu-

lopathy are used in this thesis. Cardiac allograft vasculopathy (CAV) commonly

happens after heart transplantation. The CAV progress of patients is monitored

by coronary angiography. Sharples et al. (2003) defined the process by three liv-

ing states and one death state, the living states are distinguished by the grades

of CAV. The states and transitions of this multi-state process are shown in Figure

2.1: State 1 to 3 are defined by no CAV, moderate CAV, severe CAV, respectively.

State 4 is an absorbing state representing the dead. The process can transit be-

tween the living states. The CAV data were collected at Papworth Hospital in the

United Kingdom and are also included in msm package in the R software (Jackson

(2011)). Note that the transition times here for CAV data are interval-censored for

three living states and are exact or right-censored for death. The time is given in

unites of years, all the individuals are observed from time t = 0, which is time of

transplantation.
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State 1
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Figure 2.1: Transitions in the four-state model for cardiac allograft vasculopathy
(CAV) data.

Table 2.1 depicts the data information: The data frame contains 2846 records

which are derived from 622 individuals. There are 87 females and 535 males.

Information on the reason for transplantation is also available. 313 individuals

have the ischaemic heart disease(IHD) and 309 individuals have the idiopathic

dilated cardiomyopathy(IDC).

The minimum and maximum ages (years) of observations in this study are

6.30 and 74.33. The frequencies of age at baseline and during the follow-up are

more specifically shown on the top left and top right of Figure 2.2: The highest fre-

quency of age interval of recipients for their first observations is 50yrs-55yrs. The

majority of people have their first records during 40yrs-60yrs. Only a few people

join this study when they are young. The histograms of age at baseline and age

during follow-up show that there are data throughout the whole age range. The

baseline age denotes the age of individuals at the first observation. For the time

interval of observations, the minimum, median and maximum lengths (years) are

0.003, 1.32 and 16.48 years, respectively. The individual who has the time interval

0.003 years is a male, he only has two observations at time 0 in state 1 and 0.002739

(round to 0.003 in Table 2.1) in state 4. The time 0.003 years is approximately one

day, which indicates that this individual died in a very short time after the trans-

plant. The frequencies are shown on the middle left of Figure 2.2. Length as 2-3

years is the most common time interval between two observations. Although it is
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Table 2.1: The summary of CAV data

Number of records 2846

Sample size 622 individuals

Gender 87 females and 535 males

Reason for transplant 313 for IHD and 309 for IDC

Minimum age =6.30
Maximum age = 74.33

Description of age and age interval (years) Min length of intervals = 0.003
Median length of intervals = 1.32
Max length of intervals = 16.48

Frequencies number of states 1 2 3 4
2039 351 205 251

State table

to
f rom 1 2 3 4

1 1367 204 44 148
2 46 134 54 48
3 4 13 107 55

a yearly examination for this study, some recipients skipped one or more of this

examination. Commonly, the time intervals between two observations are during

0-5 years. Also, there are a few numbers of individuals whose time intervals are

more than 10 years between two records. There might be some informative obser-

vation in the data. Informative observation means that the fact that an individual

is observed potentially informative with respect to his or her health condition

(Sisk et al. (2021)). If informative observation is included in the data, there might

be some biased likelihood inference if it is not taken into account. For further

discussion, please see Barrett (2011). The middle right of Figure 2.2 shows the

years of follow-up for each individual until death or right-censoring. As we can

see, the most frequent follow-up time is around 3-6 years. The longest follow-up

time is around 18 years. The bottom left of Figure 2.2 shows the number of times

of each individual. The most frequent number of times is two, there is only a few

people are observed more than ten times in this study.
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Figure 2.2: The histograms of age at baseline, age during follow-up, length of
the interval between observations, follow-up years until death or right-censoring
and times of observation for each individual for cardiac allograft vasculopathy
(CAV) data on the top left, top right, middle left, middle right and bottom left,
respectively. The units of ages and time intervals are years.

Table 2.1 lists how often the different states were observed to be occupied

by individuals in the sample during the complete follow-up. The frequencies

number of states 1, 2, 3, 4 are 2039, 351, 205 and 251, respectively. It illustrates

that 251 individuals have died by the end of this study. The state table is shown

in the last row of this table. It is obvious that the majority of frequencies are in
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Figure 2.3: Progressive transitions in the four-state model for cardiac allograft
vasculopathy (CAV) data.

the diagonal, which indicates that given the time between observations, most of

people tend to stay in their current states between two observations. Also, there

are only a few observations that go backwards, such as 4 observed in transition

(3, 1) and 13 observed in transition (3, 2). This demonstrates the CAV is more

likely a progressive process.

In the paper by Sharples et al. (2003), it is assumed that CAV is a deteriorat-

ing process with no recovery, which means there is no backward transitions in

the model and all the backward transitions (2,1) (3,2) (3,1) are seen as misclassi-

fications. Here for our study, we also assume that CAV is a progressive process

with no backward transitions, and set individuals who have backward transitions

(2,1) (3,2) and (3,1) to stay at states 2, 3 and 3, respectively. See Figure 2.3 for the

progressive CAV process, the transitions of the process are (1,2), (1,4), (2,3), (2,4),

(3,4). The frequencies number of states and state table are given by Table 2.2.
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Table 2.2: The frequencies number of states and state table of CAV observed his-
tory data

Frequencies number of states 1 2 3 4
1958 405 232 251

State table

to
f rom 1 2 3 4

1 1336 185 40 139
2 0 220 52 49
3 0 0 140 63

2.2 Origins of Variance in the Oldest-Old data

The Origins of Variance in the Oldest-Old (OCTO-Twin) data includes the

twin pairs, dizygotic or monozygotic, who are 79 years old or older. The sample

was selected from older adults in the population-based Swedish Twin Registry

(Robitaille et al. (2018)). Five cycles of longitudinal data were collected at 2-year

intervals. The initial sample consisted of 702 participants (351 same-sex pairs),

the final analysis included 694 participants. The permission for using this data

was given by Dr. Boo Johansson.

In the study, participants were tested by nurses in their residence at two years

time intervals for five cycles. The process of interest of OCTO-Twin data is cogni-

tive function. Mini-mental state examination (MMSE) is a known clinical method

for grading the cognitive state of patients, see Folstein et al. (1975). In this paper,

three living states are defined by cutoff scores of MMSE: state 1 is defined as no

cognitive impairment (27 ≤MMSE ≤ 30), state 2 is a mild cognitive impairment

(23 ≤ MMSE ≤ 26), state 3 is a severe cognitive impairment (MMSE≤ 22). This

scoring method was discussed in Robitaille et al.(2018).

In this study, we assume that severe cognitive impairment (state 3) is an irre-

versible process. It means if individuals have been recorded in state 3, they are

not allowed to move back to state 2 or state 1. The process is shown in 2.4. Ad-

ditionally, we dismiss some individuals with missing values. The OCTO-Twin
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Figure 2.4: Transitions in the four-state model for the Origins of Variance in the
Oldest-Old (OCTO-Twin) data.

data frame using in this study is shown in Table 2.3. There are totally 692 indi-

viduals with 461 females and 231 males. As we introduced at the beginning of

this section, there are 694 individuals in the start of the analysis. We remove two

individuals, since both of them only have two observations (state 1 and censor-

ing). The minimum age (years) of participants is 79.37 and the maximum age is

104.205. 662 participants were recorded as dead at the end of the study. The state

table shows the details of the transitions of individuals. Notice that the minimum

length of intervals (years) is 0.003, which is the same as the one for CAV data. The

individual who has the time interval 0.003 in OCTO-Twin data is a male, he was

observed in state 3 at age 95.32329, and died at 95.32603. This time interval is

0.002739 year (round to 0.003 in the table), which is one day.

Figure 2.5 indicates that the baseline age of majority people is between 80 and

85. According to the length of time intervals, it demonstrates that participants are

usually tested by two years. More specifically, 75.4% of time intervals between

observations are between 1.5 and 2.5 years, which is consistent with the study

design. The histogram of the years of follow up shows that most individuals are
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Table 2.3: The Summary of OCTO-Twin data. The state table is a frequency table
counting the number of times each pair of states were observed in successive
observation times

Number of records 2876

Sample size 692 individuals

Gender 461 females and 231 males

Minimum age = 79.37
Maximum age = 104.21

Description of age and age interval (years) Min length of intervals = 0.003
Median length of intervals = 1.99
Max length of intervals = 13.86

Frequencies number of states 1 2 3 4
1170 374 670 662

State table

to
f rom 1 2 3 4

1 710 130 79 229
2 66 98 100 104
3 0 0 339 329

observed in 2-10 years, some participants are recorded over 15 years. The times of

observation shows that all the people are seen two to six times during this study.

The process time of this study is age. People enter the study at different ages,

which is shown in the first picture of Figure 2.5. There are 18 people entering

this study between ages 79-80 (first column), and 3 people entering this study

between ages 97-98 (last column), nobody entered the study between ages 94-

96. Therefore, there is left truncation in OCTO-Twin data. As we discussed in

Section 1.1, the multi-state model in this study is based on the Markov assump-

tion, so we would not consider the left truncation for the fixed-effect multi-state

model. However, for the frailty model, the frailty distributions may vary for peo-

ple entering the study at different ages. For example, an individual who enters

the study at age 85 in a healthy state may have a lower frailty than people who

enter at age 80 in an illness state. The left truncation of frailty will be discussed

in the simulation study and Conclusion in Section 7.4 and Chapter 8.
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Figure 2.5: The histograms of age at baseline, age during follow-up, length of the
interval between observations, follow-up years until death or right-censoring for
OCTO-Twin data and times of observation of each individual respectively. The
units of ages and time intervals are years.
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Chapter 3

Fixed-effect multi-state model

3.1 Introduction of survival analysis

The fixed-effect multi-state model can be seen as an extension of the survival

model. Therefore, we would like to introduce some basic terminology and in-

formation through a survival model. As it is shown in Figure 3.1, the survival

model has only two states. It describes the process that people transit from state

1 (alive) to state 2 (death). In medical research, the time origin often corresponds

to the recruitment of individuals into the study or the beginning of the treatment.

The transition time from state 1 to state 2 is called the time to event, other com-

mon names are event time, survival time, failure time, and so on. Materials of the

standard survival analysis mentioned in this section are partly based on Collett

(2015).

State
1

Alive

State
2

Dead

Figure 3.1: The process of univariate survival model.

Let T be the time to event, the cumulative distribution function of T is given
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by

F(t) = P(T ≤ t) =
∫ t

0
f (u)du, (3.1.1)

where T is a continuous variable with time space [0, ∞), f is the probability den-

sity function.

The survival function is given by

S(t) = P(T > t) = 1− F(t). (3.1.2)

The hazard function is defined as the infinitesimal risk of death occurring at

some time t, conditional on an individual’s survival time T beyond t.

h(t) = lim
4→0

P(t ≤ T ≤ t +4|T > t)
4

= lim
4→0

P(t ≤ T ≤ t +4)

P(T > t)4

= lim
4→0

F(t +4)− F(t)
S(t)4

= lim
4→0
{F(t +4)− F(t)

4 } 1
S(t)

=
f (t)
S(t)

,

(3.1.3)

where h(t) ≥ 0 for all t.

According to Equations (3.1.1), (3.1.2) and (3.1.3), the hazard can be deduced

as

h(t) = − d
dt

log(S(t)). (3.1.4)

Therefore, the survival function can be derived from the hazard

S(t) = exp(−H(t)), (3.1.5)
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where H(t) =
∫ t

0 h(u)du is the cumulative function of h(t).

The probability of time T in time interval (t1, t2] is given by

P(t1 ≤ T ≤ t2) = F(t2)− F(t1) =
∫ t2

t1

f (u)du =
∫ t2

t1

h(u)S(u)du. (3.1.6)

More details about the survival function, hazard function and the cumulative

hazard function can be found in Section 1.3 of Collett (2015).

The hazard as defined above for standard survival analysis can be used for

multi-state models as well. Several transitions are possible in a multi-state model

and each of them should have its own transition hazard. We present an example

of the four-state progressive CAV model introduced in Chapter 2. Let t denotes

the time in this continuous-time model, the random variable Yt ∈ {1, 2, 3} de-

notes the state occupied at time t. For each transition (r, s), the hazard at time t is

defined as hrs(t). As a consequence, the cumulative hazard functions for leaving

state 1 (no CAV), state 2 (moderate CAV), and state 3 (severe CAV) during the

time interval (t1, t2] are followed, respectively.

H1(t1, t2) =
∫ t2

t1

h12(u) + h14(u)du, (3.1.7)

H2(t1, t2) =
∫ t2

t1

h23(u) + h24(u)du, (3.1.8)

and

H3(t1, t2) =
∫ t2

t1

h34(u)du. (3.1.9)

Van Den Hout (2016) discussed the transition probabilities for a three-state

model. In our study, we will discuss the transition probabilities for a progressive
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four-state model according to his approach. To the best of our knowledge, this

has not been discussed in the literature before. Based on the Equations 3.1.5 and

3.1.6, the transition probabilities Prs(t1, t2) = P(Yt2 = s|Yt1 = r) are given by

p11(t1, t2) = exp(−H1(t1, t2))

p12(t1, t2) =
∫ t2

t1

exp(−H1(t1, u))h12(u) exp(−H2(u, t2))du

p13(t1, t2) =
∫ t2

t1

∫ t2

u1

exp(−H1(t1, u1))h12(u1)

× exp(−H2(u1, u2))h23(u2) exp(−H3(u2, t2))du2du1

p14(t1, t2) = 1− p11(t1, t2)− p12(t1, t2)− p13(t1, t2)

p21(t1, t2) = 0

p22(t1, t2) = exp(−H2(t1, t2))

p23(t1, t2) =
∫ t2

t1

exp(−H2(t1, u))h23(u) exp(−H3(u, t2))du

p24(t1, t2) = 1− p22(t1, t2)− p23(t1, t2)

p31(t1, t2) = 0

p32(t1, t2) = 0

p33(t1, t2) = exp(−H3(t1, t2))

p34(t1, t2) = 1− p33(t1, t2).

(3.1.10)

The transition probabilities are used to calculate the likelihood function. This

will be introduced in Section 3.4.

3.2 Parametric distribution of time

The models in this chapter are parametric. We have briefly mentioned non-

parametric methods in Section 1.1. Please see Akritas (2004) and Collett (2015) for

details. In many studies for survival data, supplementary information will also

be investigated for individuals, such as age, gender and dietary habits. These

may all affect the time an individual survives. Therefore, we would like to fit
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parametric models instead of non-parametric ones, since the former can take into

account the effect of covariates.

We will introduce three different distributions in this section: Exponential,

Weibull and Gompertz distribution. For each of them, we contribute an analytic

expression of transition probabilities during the time interval (t1, t2) for a four-

state progressive model. The transition probabilities are derived by using the

method discussed in Section 3.1. A major advantage of this method is that it can

simplify the computation of transition probabilities. The result of this method can

be directly used in the progressive four-state model. However, there are certain

drawbacks if there are backward transitions or a large number of states in multi-

state models. For these kinds of models, it is hard to get the analytic expression

of transition probabilities, so a method called piecewise-constant approximation

is usually used, which will be discussed in Section 3.4. Although this analytic

expression will not be used for the application of CAV and OCTO-Twin data, it

is still good to show the expression. On the one hand, it is a direct solution for

the progressive four-state models, which typically leads to a fast computation

time, on the other hand, such a closed-form expression is helpful for readers to

understand the transition probability for each transition in the multi-state model.

Moreover, we compare the results and speed of computations of these two meth-

ods, see Section 3.6 for the example.

3.2.1 Exponential distribution

A continuous random variable T follows an exponential distribution (i.e. T ∼

Exp(λ)), if the probability density function is

f (t) =

 λ exp(−λt) t ≥ 0

0 t < 0,
(3.2.1)

where the parameter λ > 0.
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The cumulative distribution function is given by

F(t) = P(T ≤ t) = 1− exp(−λt) f or t ≥ 0, (3.2.2)

the hazard function is

h(t) = λ f or λ > 0, (3.2.3)

the survival function is

S(t) = exp(−λt) f or t ≥ 0. (3.2.4)

The expectation is E(T) = 1
λ , the variance is Var(T) = 1

λ2 .

Equation 3.2.3 shows that the transition hazards are constants in the exponen-

tial model. Let the transition hazards hrs(t) for each transition (r, s) are λrs at time

t, the transition probabilities for four-state progressive model are given by

p11(t1, t2) = exp(−H1(t1, t2)) = exp(−(λ12 + λ14)(t2 − t1))

p22(t1, t2) = exp(−H2(t1, t2)) = exp(−(λ23 + λ24)(t2 − t1))

p33(t1, t2) = exp(−H3(t1, t2)) = exp(−(λ34)(t2 − t1))

p12(t1, t2) =
∫ t2

t1

exp(−H1(t1, u))h12(u) exp(−H2(u, t2))du

=
∫ t2

t1

exp(−H1(t1, u))λ12 exp(−H2(u, t2))du

= exp((λ12 + λ14)t1 − (λ23 + λ24)t2)

×
∫ t2

t1

λ12 exp(−(λ12 + λ14 − λ23 − λ24)u)du

=
λ12

λ23 + λ24 − λ12 − λ14

× (exp((λ12 + λ14)(t1 − t2))− exp((λ23 + λ24)(t1 − t2)))

p13(t1, t2) =
∫ t2

t1

∫ t2

u1

exp(−H1(t1, u1))h12(u1)

× exp(−H2(u1, u2))h23(u2) exp(−H3(u2, t2))du2du1
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=
λ12λ23

(λ34 − λ23 − λ24)(λ23 + λ24 − λ12 − λ14)

× (exp((λ12 + λ14)(t1 − t2))− exp((λ23 + λ24)(t1 − t2)))

− λ12λ23

(λ34 − λ23 − λ24)(λ34 − λ12 − λ14)

× (exp((λ12 + λ14)(t1 − t2))− exp(λ34(t1 − t2)))

p23(t1, t2) =
∫ t2

t1

exp(−H2(t1, u))h23(u) exp(−H3(u, t2))du

=
λ23

λ34 − λ23 − λ24
(exp((λ23 + λ24)(t1 − t2))− exp(λ34(t1 − t2)))

p21(t1, t2) = p31(t1, t2) = p32(t1, t2) = 0

p14(t1, t2), p24(t1, t2), p34(t1, t2) can be derived from other probabilities by

Equation (3.1.10)

3.2.2 Weibull distribution

A continuous random variable T follows a Weibull distribution (i.e. T ∼

Weibull(λ, τ)), if the probability density function is defined as

f (t) =

 λτtτ−1 exp(−λtτ) t ≥ 0

0 t < 0,
(3.2.5)

where the scale parameter λ > 0 and shape parameter τ > 0.

The cumulative distribution function is given by

F(t) = P(T ≤ t) = 1− exp(−λtτ) f or t ≥ 0, (3.2.6)

the hazard function is

h(t) = λτtτ−1 f or t ≥ 0, (3.2.7)
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the survival function is

S(t) = exp(−λtτ) f or t ≥ 0. (3.2.8)

The expected value and variance are

E(T) = λ
−1
τ Γ(1 + τ−1) (3.2.9)

and

Var(T) = λ
−2
τ (Γ(1 +

2
τ
)− Γ(1 +

1
τ
)2), (3.2.10)

respectively, where Γ is the gamma function.

The transition hazards are time-dependent in the Weibull model. Let the tran-

sition hazards hrs(t) for each transition (r, s) are hrs(t) = λrsτrstτrs−1 at time t, the

transition probabilities for the four-state progressive model are given by

p11(t1, t2) = exp(−H1(t1, t2)) = exp(−λ12(t
τ12
2 − tτ12

1 )− λ14(t
τ14
2 − tτ14

1 ))

p22(t1, t2) = exp(−H2(t1, t2)) = exp(−λ23(t
τ23
2 − tτ23

1 )− λ24(t
τ24
2 − tτ24

1 ))

p33(t1, t2) = exp(−H3(t1, t2)) = exp(−λ34(t
τ34
2 − tτ23

1 ))
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For the transition probabilities in transition (1, 2), (1, 3), (2, 3), they follow that

p12(t1, t2) =
∫ t2

t1

exp(−H1(t1, u))h12(u) exp(−H2(u, t2))du

=
∫ t2

t1

exp(−H1(t1, u))λ12τ12uτ12−1 exp(−H2(u, t2))du

p13(t1, t2) =
∫ t2

t1

∫ t2

u1

exp(−H1(t1, u1))h12(u1)

× exp(−H2(u1, u2))h23(u2) exp(−H3(u2, t2))du2du1

=
∫ t2

t1

∫ t2

u1

exp(−H1(t1, u1))λ12τ12uτ12−1
1

× exp(−H2(u1, u2))λ23τ23uτ23−1
2 exp(−H3(u2, t2))du2du1

p23(t1, t2) =
∫ t2

t1

exp(−H2(t1, u))h12(u) exp(−H3(u, t2))du

=
∫ t2

t1

exp(−H2(t1, u))λ23τ23uτ23−1 exp(−H3(u, t2))du

For other transition probabilities,

p21(t1, t2) = p31(t1, t2) = p32(t1, t2) = 0

p14(t1, t2), p24(t1, t2), p34(t1, t2) can be derived from other probabilities by

Equation (3.1.10)

Generally, there are no numerical-specific expressions for the integrations of

p12(t1, t2), p13(t1, t2) and p23(t1, t2). Omar et al. (1995) discussed closed-form

expressions for models with specific restrictions.

3.2.3 Gompertz distribution

A continuous random variable T follows a Gompertz distribution (i.e. T ∼

(λ, ξ)), if the probability density function is

f (t) =

 λ exp(−ξt) exp(−λξ−1(exp(ξt)− 1)) t ≥ 0

0 t < 0,
(3.2.11)
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where λ > 0, ξ > 0. The distribution function is therefore given by

F(t) = P(T ≤ t) = 1− exp(−λξ−1(exp(ξt)− 1)), (3.2.12)

the hazard function is given by

h(t) = λ exp(ξt) f or t ≥ 0, (3.2.13)

the survival function is given by

S(t) = exp(−λξ−1(exp(ξt)− 1)) f or t ≥ 0. (3.2.14)

There is no closed form expression of expectation and variance for Gompertz dis-

tribution, for more details about Gompertz distribution, please also see Porllard

et al. (1992).

The transition hazards are time-dependent in the Weibull model. Let the tran-

sition hazards hrs(t) for each transition (r, s) are hrs(t) = λrs exp(ξrst) at time t,

the transition probabilities for four-state progressive model are given by

p11(t1, t2) = exp(−H1(t1, t2)) = exp(−
∫ t2

t1

λ12 exp(ξ12u) + λ13 exp(ξ13u))

= exp(−(λ12

ξ12
(exp(ξ12t2)− exp(ξ12t1))

+
λ13

ξ13
(exp(ξ13t2)− exp(ξ13t1))))

p22(t1, t2) = exp(−H2(t1, t2)) = exp(−
∫ t2

t1

λ23 exp(ξ23u) + λ24 exp(ξ24u))

= exp(−(λ23

ξ23
(exp(ξ23t2)− exp(ξ23t1))

+
λ24

ξ24
(exp(ξ24t2)− exp(ξ24t1))))

p33(t1, t2) = exp(−H3(t1, t2)) = exp(−
∫ t2

t1

λ34 exp(ξ34u))

= exp(−λ34

ξ34
(exp(ξ34t2)− exp(ξ34t1)))
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For the transition probabilities in transition (1, 2), (1, 3), (2, 3), they follow that

p12(t1, t2) =
∫ t2

t1

exp(−H1(t1, u))h12(u) exp(−H2(u, t2))du

=
∫ t2

t1

exp(−H1(t1, u))λ12 exp(ξ12u) exp(−H2(u, t2))du

p13(t1, t2) =
∫ t2

t1

∫ t2

u1

exp(−H1(t1, u1))h12(u1)

× exp(−H2(u1, u2))h23(u2) exp(−H3(u2, t2))du2du1

=
∫ t2

t1

∫ t2

u1

exp(−H1(t1, u1)))λ12 exp(ξ12u1)

× exp(−H2(u1, u2)))λ23 exp(ξ23u2) exp(−H3(u2, t2))du2du1

p23(t1, t2) =
∫ t2

t1

exp(−H2(t1, u))h12(u) exp(−H3(u, t2))du

=
∫ t2

t1

exp(−H2(t1, u))λ23 exp(ξ23u) exp(−H3(u, t2))du

For other transition probabilities,

p21(t1, t2) = p31(t1, t2) = p32(t1, t2) = 0

p14(t1, t2), p24(t1, t2), p34(t1, t2) can be derived from other probabilities by

Equation (3.1.10)

3.3 Hazard function

In general, additional to the time of event, other information on the individ-

uals is available. This information can be included as covariates in the model.

Therefore, we can define a regression model to combine the effect of time and

covariates. The general expression for transition (r, s) is given by

hrs(t|x) = hrs.0(t) exp(βT
rsx), (3.3.1)

where βrs = (βrs.1, βrs.2,...,βrs.n)
> is a parameter vector, x = (x1, x2, . . . , xn)> is the

vector of covariates, hrs.0(t) is called baseline hazard, which illustrates how the
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hazard changes with time t. See Equation (3.2.3), (3.2.7) and (3.2.13) for the ex-

pressions of hazard hrs.0(t) when T follows an exponential distribution, Weibull

distribution and Gompertz distribution.

The model in Equation (3.3.1) was introduced by Cox (1972) and is called the

proportional hazards model. This model is widely used in modelling survival

data. The assumption of proportionality indicates that the hazard of the transi-

tion r → s at any given time for an individual is proportional to the hazard at

that time for another individual (Collett (2015)). Alternative models for time-to-

event data that do not require this assumption are the accelerated failure time

model, the proportional odds model, the Cox regression model that includes a

time-dependent covariate and non-proportional hazards. These models are not

discussed in this thesis, please see Chapters 6, 8 and 11 in Collett (2015) for de-

tails.

3.4 Likelihood function

3.4.1 Markov assumption

Mostly, multi-state models are based on the Markov assumption. This idea

was proposed to facilitate the computation process of the multi-state model when

maximising the likelihood function, as in Kalbfleisch and Lawless (1985).

The likelihood function for the Markov multi-state model for interval-censored

data is calculated by using the transition probability matrix P(t). We have intro-

duced the transition probabilities for the time interval (t1, t2) in section 3.2. For

the continuous-time process, we describe a transition probability matrix Prs(u, t+

u), which represents the probability of being in state s at time t + u conditionally

on being in state r at time u. The Kolmogorov differential equations is a method

to derive P matrix by using a generator matrix Q, see Cox and Miller (1965) for

details.

A generator matrix Q collects the transition hazards in a matrix, where the
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off-diagonal elements are qrs = hrs(t) and the diagonal elements are defined as

qrr(t) = −Σr 6=sqrs(t). For example, the Q matrix for the OCTO-Twin data is

Q(t) =


−(h12(t) + h14(t)) h12(t) 0 h14(t)

h21(t) −(h21(t) + h23(t) + h24(t)) h23(t) h24(t)

0 0 −h34(t) h34(t)

0 0 0 0

 .(3.4.1)

The Q matrix for the CAV study is

Q =


−(h12(t) + h14(t)) h12(t) 0 h14(t)

0 −(h23(t) + h24(t)) h23(t) h24(t)

0 0 −h34(t) h34(t)

0 0 0 0

 (3.4.2)

If the generator matrix Q is constant over the time interval (u, t + u), as in a

time-homogeneous process (discussed in Section 1.1), then the transition proba-

bility of this interval can be derived by the matrix exponential of Q scaled by the

time interval, see Jackson (2011).

P(u, t + u) = P(t) =
inf

∑
k=1

(tQ)k

k!
= exp(tQ), (3.4.3)

where the computation of the matrix exponential function exp() is introduced by

Moler and Van Loan (2003). This function is also used in the package msm in R,

please see Jackson (2011) for details. Alternatively, it can be calculated by using

the eigenvalue decomposition of Q. The matrix Q can be deduced by

Q = ABA−1, (3.4.4)

where A is a D × D matrix consist of D eigenvectors in columns of Q, B is a
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diagonal matrix with D eigenvalues of matrix Q. It follows that

P(t) = Adiag(exp(b1t), exp(b2t), . . . , exp(bDt))A−1, (3.4.5)

where b1, b2, . . . , bD are the eigenvalues of Q.

3.4.2 Piecewise-constant approximation

In the time-homogeneous case discussed in the previous section, hazards are

assumed to be constant over time. However, for the time-inhomogeneous pro-

cess, the transition probability matrix cannot be calculated, because the genera-

tor matrix Q is changing over the time interval (u, t + u). This problem can be

dealt with by using a piecewise-constant approximation. This method also can

be found in Van Den Hout (2016). He discussed this method for the survival

model, the progressive three-state model and the general multi-state model. For

this method, the hazard is constant during a time interval but can change between

the intervals. Therefore, a constant Q can be used during a time interval. Here for

the msm package in R software, it defaults that Q = Q(u1) during a time interval

(u1, u2), thus the transition probability matrix P(u1, u2) ≈ exp((u1 − u2)Q(u1)),

see Jackson (2011) for details. There are several other ways to do the piecewise-

constant approximation. For instance, during the time interval (u1, u2), we can

define the time of transition hazards in midway intervals.

Q = Q(
u1 + u2

2
),

therefore, the transition probability matrix

P(u1, u2) ≈ exp((u1 − u2)Q(
u1 + u2

2
)).

Figure 3.2 illustrates these two options of the piecewise-constant approxima-
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Figure 3.2: Two options of the piecewise-constant approximation

tion. If Q matrix is defined as

Q = Q(u2),

then the transition probability matrix

P(u1, u2) ≈ exp((u1 − u2)Q(u2)).

In practice, if we want to model a slow changing process like dementia, it

might be sufficient to observe individuals every six months, perhaps even at

longer intervals. Then different types of piecewise-constant approximation do

not have a large effect on the result. We follow the choice made in msm. On the

other hand, if we want to model a rapidly evolving disease like common cold, the

piecewise-constant approximation can help with it. The sub-interval should be

relative to how quickly the process changes, because we might need more time

intervals if it changes quickly.
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3.4.3 Maximising the likelihood function

The likelihood contribution for an individual i with the observed time t1, t2, . . . , tJ ,

conditional on the first observed state is given by

Li(θ|y, x) = P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x), (3.4.6)

where θ represents the vector of all the model parameters (see Section 3.3 for

the parameters), y = (y1, y2, . . . , yJ) represents the state at times t1, t2, . . . , tJ , and

x = (x1, x2, . . . , xJ) represents the vector of the covariate values. Each element of

the x is a vector represents the covariate value at observed time t1, t2, . . . , tJ .

Under the Markov assumption, the likelihood contribution is

Li(θ|y, x) =
J

∏
j=2

P(Yj = yj|Yj−1 = yj−1, θ, x)

=
J−1

∏
j=2

P(Yj = yj|Yj−1 = yj−1, θ, x) S(yJ |yJ−1, θ, x),

where y = (y1, y2, . . . , yJ), S(yJ |yJ−1, x) represents the contribution of time inter-

val (tJ−1, tJ) with observations yJ−1 and yJ , respectively.

There is an absorbing state for some multi-state models, such as the state 4

(dead) in CAV data and OCTO-Twin data. The time of transition to the absorbing

state YJ denoted by tJ can be either observed exactly or be right-censored.

For a multi-state model with or without an absorbing state, let A denotes the

largest state number. For example, A = 4 for a four-state multi-state process, such

as CAV data and OCTO-Twin data. The probability S(yJ |yJ−1, θ, x) for transition

(YJ−1, YJ) can be classified into three types:

If the time tJ at the transition to state YJ is right-censored, it means that the

individual is alive at time tJ , but it is unknown that which state the individual is
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in.

S(yJ |yJ−1, θ, x) =
A−1

∑
s=1

P(YJ = s|YJ−1 = yJ−1, θ, x), (3.4.7)

here s represents the observed states except for the number of the state= A. For

example, s = 1, 2, 3 for CAV and OCTO-Twin data. This expression can be refer

to Equation (3.1.3), where S(t)h(t) = f (t).

If the state YJ at time tJ is an observed absorbing state,

S(yJ |yJ−1, θ, x) =
A−1

∑
s=1

P(YJ = s|YJ−1 = yJ−1, θ, x) hsA(tJ−1|θ, x), (3.4.8)

where hsA denotes the transition intensity for the transition (s, A).

For the state YJ at time tJ is a living state,

S(yJ |yJ−1, θ, x) = P(YJ = yJ |YJ−1 = yJ−1, θ, x). (3.4.9)

Assuming independence between individuals, the likelihood function for all

N individuals is

L(θ|y, x) =
N

∏
i=1

Li(θ|y, x) (3.4.10)

The expressions discussed in this section also can be found in Van Den Hout

(2016) and Jackson (2011).

As an example consider the likelihood function for the CAV data. There are

622 individuals, three living states and one dead state (state 4), the transitions into

the dead state are exactly observed. Assuming the time in the hazard function is

Gompertz-distributed, the parameter θ consists of β and ξ, y is the sequence of

observed states of individuals. Therefore, the contribution for individual i who
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died is given by

Li(β, ξ|statei, xi) =(
J−1

∏
j=2

P(stateij = stateij|stateij−1 = stateij−1, β, ξ, xi))

×
3

∑
s=1

P(Yi J = s|Yi J−1 = yi J−1, θ, xi) qs4(ti J−1|θ, xi),

(3.4.11)

the contribution for individual i who is alive at the end of the study is given

by

Li(β, ξ|statei, xi) =(
J−1

∏
j=2

P(stateij = stateij|stateij−1 = stateij−1, β, ξ, xi))

×
3

∑
s=1

P(Yi J = s|Yi J−1 = yi J−1, θ, xi).

(3.4.12)

Therefore, the likelihood function is given by

L(β, ξ|state, x) =
622

∏
i=1

Li(β, ξ|statei, xi), (3.4.13)

where x denotes the covariates in the model.

3.4.4 Maximum likelihood estimation in R software

The logarithm of likelihood is maximised in the R software by using the func-

tion optim. General-purpose Optimisation (optim) is based on Nelder-Mead,

quasi-Newton and conjugate-gradient algorithms. The default method is "Nelder-Mead",

which was published by Nelder and Mead (1965). This method is robust but rel-

atively slow for computing. There is another quicker but not robust common

method called "BFGS", which is a quasi-Newton method. It was proposed by

Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno and Kettler (1970),

simultaneously. See the stats package in R software for details and other meth-

ods such as "CG" and "L-BFGS-B".

Other commonly used methods are scoring algorithm, EM algorithm (Baum
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et al. (1970); Dempster et al. (1977)) and Markov chain Monte Carlo (MCMC)

(Ibrahim et al. (2001)). The scoring algorithm needs a function of the first-order

derivative. It is more complex for computation and coding but might be easier

to understand. The EM algorithm only can be used in a very specific situation,

such as data with missing data. The benefits of the EM algorithm are that it is

easier to use in much standard software and robust. Therefore, it is also friendly

for researchers who do not have a strong statistics background. However, there

are certain problems: this method is quite slow to get results, and standard errors

of parameters cannot be calculated directly, it need more steps of computation.

The major advantage of MCMC is that it can be used in multi-dimension frailty

models. The frailty model will be discussed in Chapter 4.

3.5 Model selection

In the analysis of multi-state models, we can define different covariates in dif-

ferent transition hazards. Therefore, it is necessary to compare different models

and select the proper one. This section below will introduce two useful methods

of model comparison.

Akaike’s information criterion (AIC) is a useful method to compare and select

models, see Akaike (1974). This criterion is given by

AIC = −2log(L̂) + 2k, (3.5.1)

where, for the model under consideration, L̂ is the maximum of the likelihood

function and k is the number of independent regression parameters in the model.

AIC is reported in the software R in some functions, like AIC in the package stats.

Since a good model has a high likelihood and hopefully not many parameters, we

look for models with the smallest AIC. The AIC can be seen as a combination of

the likelihood and a penalty term, where the term 2k in the equation (3.5.1) can

be interpreted as a penalty for too large models. The penalty 2k can avoid mod-
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els containing too many parameters. More details about Akaike’s information

criterion are specified by Akaike (1974).

The Bayesian information criterion (BIC) is an alternative method to compare

the models, see Schwarz (1978). It is given by

BIC = −2log(L̂) + log(n) k, (3.5.2)

where, for the model under consideration, n is the sample size of the data, L̂

is the maximum of the likelihood function and k is the number of independent

regression parameters in the model (including the intercept).

BIC has a stronger penalty than AIC for the sample size n ≥ 8, but here for

longitudinal data, it is hard to decide whether the n is the number of individuals

or the number of observations. n as the number of individuals is the common

choice (see Van Den Hout (2016); Muthén and Asparouhov (2008)). However,

n is defined as the total number of independent observations, so neither of the

above methods is optimal. There is a discussion of this problem in Carlin and

Louis (2009). Therefore, we prefer to use AIC to do the model comparison in

this study. Note that Böhnstedt and Gampe (2019) discussed that the standard

AIC is biased in some specific frailty models due to the boundary parameter. The

frailty model in our thesis will be discussed in the next two chapters, and the

AIC of our frailty models are not biased, since we use the one parameter gamma

distribution. Please see Section 4.2.2 for details.

3.6 Comparison of analytic expression and piecewise-

constant approximation

As we discussed in Section 3.2 and 3.4, there are two methods to calculate

transition probabilities. Although we will not use the analytic expression in data

analysis for CAV and OCTO-Twin data, it is a good method for simple three or

four state models because it does not need to use statistical software for the com-
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putation. In this section, we would like to apply these two methods for a pro-

gressive four-state model, and compare their results.

For example, there is a progressive four-state model with five transitions: 1→

2, 1 → 4, 2 → 3, 2 → 4 and 3 → 4. Assuming the time t follows the exponential

distribution and transition hazards are

h12 = λ12 = 0.20

h14 = λ14 = 0.40

h23 = λ23 = 0.30

h24 = λ24 = 0.04

h34 = λ34 = 0.27.

Therefore, the Q matrix is

Q =


0.60 0.20 0 0.40

0 0.34 0.30 0.04

0 0 0.27 0.27

0 0 0 0


According to analytic expressions of transition probabilities in Section 3.2.1, if

we assume t1 = 0 and t2 = 1, then

p11(t1, t2) = exp(−(λ12 + λ14)(t2 − t1)) = 0.549

p22(t1, t2) = exp(−(λ23 + λ24)(t2 − t1)) = 0.712

p33(t1, t2) = exp(−(λ34)(t2 − t1)) = 0.763

p12(t1, t2) =
λ12

λ23 + λ24 − λ12 − λ14

× (exp((λ12 + λ14)(t1 − t2))− exp((λ23 + λ24)(t1 − t2)))

= 0.125

p13(t1, t2) =
λ12λ23

(λ34 − λ23 − λ24)(λ23 + λ24 − λ12 − λ14)
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× (exp((λ12 + λ14)(t1 − t2))− exp((λ23 + λ24)(t1 − t2)))

− λ12λ23

(λ34 − λ23 − λ24)(λ34 − λ12 − λ14)

× (exp((λ12 + λ14)(t1 − t2))− exp(λ34(t1 − t2)))

= 0.020

p23(t1, t2) =
λ23

λ34 − λ23 − λ24
(exp((λ23 + λ24)(t1 − t2))− exp(λ34(t1 − t2)))

= 0.221

p21(t1, t2) = p31(t1, t2) = p32(t1, t2) = 0

p14(t1, t2) = 0.305

p24(t1, t2) = 0.067

p34(t1, t2) = 0.237

Alternatively, we use the function MatrixExp in the package msm in the R soft-

ware to calculate the transition probability matrix, and we get the same results.

Next, Table 3.1 shows the comparison of the speed of these two methods.

Since it is too fast to get a result for this simple example, we set a loop to exe-

cute the computation 10000 times. The time needed for the computation can be

investigated by the function system.time in the R software. The user time is the

CPU time charged for the execution of user instructions of the calling process.

The system time is the CPU time charged for execution by the system on behalf

of the calling process, see R Core Team et al. (2013) for details. As we can see, the

analytic expression is much faster than the piecewise constant approximation. It

is reasonable since the analytic expression can get the results directly. Therefore,

analytic expression is a good choice when we model a simple multi-state process,

like the three-state model and the progressive four-state model.
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Table 3.1: The speed of computation in the R software of analytic expression and
piecewise-constant approximation

Method Speed(in seconds)
User System Elapsed

Piecewise-constant approximation 3.729 0.036 3.852
Analytic expression 0.097 0.001 0.098

49



Chapter 4

Univariate frailty model

4.1 Introduction to frailty

In the previous chapter, we discussed the fixed-effect parametric hazard re-

gression model. However, variations in transition times and survival times are

often found between individuals in the study, even beyond the variation that can

be explained by the covariates. Under the same value of covariates in the model,

some individuals are more likely to move to severe disease states or death than

others, and some individuals are more likely to remain in a healthier state. In

other words, some people may take a shorter time to death than others. These

kinds of individuals can be described as frailer than others. These differences

might be because of many reasons, such as some variables that affect the survival

are not included in the data. In survival analysis, these kinds of unobserved

effects on the hazard are called frailty (Vaupel (1979)). Including a frailty in the

model can help us to describe the unobserved heterogeneity, the estimated spread

of the frailty indicates the amount of unobserved heterogeneity. Frailty is usually

defined as a multiplicative random effect in the hazard function.

There are univariate or multivariate frailties in the multi-state model. The

univariate frailty model can be used to explain the lack of fit (Balan and Putter

(2020)), such as the heterogeneity due to the missing covariates. The multivariate
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frailty model can explain the dependency between different transition hazards,

as we discussed above. This chapter only discusses univariate frailty models,

bivariate frailty models will be discussed in the next chapter. Further multivariate

frailty models (more than two frailties) are outside our scope, but is discussed in

Chapter 8 as a topic for future study.

Furthermore, including frailty may help to explain and quantify the associ-

ation of transition hazards in the multi-state model. This type of association of

transition hazards indicates a violation of the Markov assumption. In this study,

we assume that the continuous-time multi-state model is a Markov process con-

ditional on covariates. In other words, given the covariate values, we assume that

only the current state determines the future. In reality, future transitions between

states are probably affected by other factors, such as the duration of time in the

current state, or the history of states. For example, individuals who have been

in a disease state for a long time, may be more likely to move to the death state

than individuals who just entered the disease state. This type of deviation from

a Markov process might be addressed with fitting a frailty model. For more de-

tailed information, we recommend the paper by Putter and Houwelingen (2011).

Frailties can be defined either at the individual or group level. The former

implies individual-specific transition hazards, the latter implies groups of indi-

viduals share a group-specific frailty. The group-specific frailty can be applied

where the survival time for a group of individuals is not independent. For ex-

ample, individuals in the same hospital may have a common impact factor, their

transition hazard and transition times will therefore be correlated. In this situa-

tion, it is good to assume that all the individuals in this hospital share the same

frailty. This is a major advantage of using frailty instead of the fixed-effect pa-

rameter to represent different groups. For individuals from a large number of

different hospitals, using an indicator variable in the fixed-effect model will in-

crease the number of parameters. It tends to produce a more complicated model

and more complex for estimation.

In our study of multi-state models, we will mainly focus on adding the uni-
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variate and bivariate individual-specific frailty in the hazard of some transitions

to describe the unobserved heterogeneity and investigate the correlation between

transitions. The dependency of individuals is not considered in this study, and

the shared frailty is thereby beyond the scope of our study. In the application,

there is no proper group information in the CAV data for fitting shared frailty.

For the OCTO-Twin data, the participants are identical and same-sex fraternal

twins, but we do not take this genetic dependency into account in the present

study, it is a topic for further work, see more discussion in Chapter 8.

4.2 Parametric frailty model

For the multi-state survival model, the variation of hazards between different

individuals can be defined as individual-specific frailties, which means each in-

dividual has his or her own frailty. This frailty parameter can be multiplied by

the regression hazard function mentioned in Chapter 3.

For the parametric frailty model, the hazard function for individual i in tran-

sition (r, s) is given by

hrs.i(t|x, i) = hrs.0(t) exp(β>rsx)brs.i , (4.2.1)

where x is the vector of fixed-effect covariates, βrs is a parameter vector, hrs.0(t) is

the baseline hazard. Brs.i is the frailty which is assumed to be positive, since the

hazard function Equation (4.2.1) must be positive. Note that Brs.i can be changed

to Brs.g for a group shared random effect.

Several parametric frailty models are discussed in Munda et al. (2012) In this

chapter, we discuss when the frailty Brs.i in Equation (4.2.1) follows lognormal

distribution or gamma distribution.
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4.2.1 Lognormal distribution

The frailty variable Brs.i follows a lognormal distribution:

Brs.i = exp(Vrs.i) ∼ lognormal(σrs), (4.2.2)

where Vrs.i ∼ N(0, σ2
rs).

The expected value of Brs.i is given by

E(Brs.i) = exp(σ2
rs/2),

and variance of Brs.i is given by

Var(Brs.i) = exp(σ2
rs)(exp(σ2

rs)− 1).

It can be derived from Equation (4.2.1) that there is no frailty when Brs.i = 1,

which equals to Vrs.i = 0 from Equation (4.2.2).

4.2.2 Gamma distribution

The gamma distribution is another widely used distribution for frailty. The

probability density function of the gamma distributed frailty B is given by

f (b) =
γα

Γ(α)
bα−1e−γb, for b > 0

where α > 0 is the shape parameter, γ > 0 is the rate parameter, and the gamma

function Γ(α) =
∫ ∞

0 tα−1/ exp(t)dt. The expectation and variance of B in gamma

distribution are E(B) = α/γ, Var(B) = α/γ2.

The gamma distributed frailty is popular used for the standard survival model,

since it leads to a closed form of the likelihood function (Abbring and Van Den

Berg (2007)), but the advantage does not hold in this study because of the com-
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plexity of the likelihood function of multi-state models discussed in Section 3.4.

The advantage of gamma distribution in multi-state model will be discussed be-

low. For the more simple computation in this study, we would like to use the one

parameter gamma distribution, i.e. Brs.i ∼ Gamma(κ), where the shape parame-

ter α = κ and the rate parameter γ = κ. It follows that the probability density of

Brs.i is given by

f (Brs.i) =
κκ

Γ(κ)
Bκ−1

rs.i e−κBrs.i , for Brs.i > 0, (4.2.3)

where the expectation and variance of Brs.i are given by

E(Brs.i) = 1, Var(Brs.i) =
1
κ

.

Except for a more simple computation, an alternative advantage if frailty fol-

lows the one parameter gamma distribution is that the expected value of frailty

will always be 1. By contrast, if the frailty follows the lognormal distribution, the

expected value E(Vrs.i) = 0 does not imply the expected value E(Brs.i) = 1.

4.3 Parametric likelihood function

For fitting parametric frailty models, consider the conditional hazard function

for transition r → s

hrs(t|brs.i, x, i) = hrs.0(t) exp(β>rsx)brs.i. (4.3.1)

Conditionally on brs.i, this hazard function has the fixed-effect format with an ad-

ditional intercept brs.i. Thus, the transition hazard matrix Q and transition prob-

ability matrix P(t) conditional on the frailty term can be calculated in a similar

approach with the fixed-effect model discussed in Chapter 3.

It follows that the likelihood contribution for the frailty model for individual
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i with absorbing state is given by

Li(θ|i, y, x) = P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x)

=
∫

Ωbi

P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x, bi) f (bi|θ)dbi

=
∫

Ωbi

J−1

∏
j=2

P(Yj = yj|Yj−1 = yj−1, θ, x, bi) S(yJ |yJ−1, θ, x, bi)

× f (bi|θ)dbi,

(4.3.2)

where θ is the vector of all the parameters in the model, y = (y1, y2, . . . , yJ) are

the observed states corresponding to observed time t1, t2, . . . , tJ , bi denotes the

frailty of individual i, the Ωbi is the parameter space of frailty bi, multiplicative

term S(yJ |yJ−1) is same defined as the expression in Chapter 3. Note that the

transition probability for the frailty model are conditional independent on the

frailty bi.

Assuming the independence of individuals, the likelihood function for N in-

dividuals is given by

L(θ|y, x) =
N

∏
i=1

Li(θ|i, y, x). (4.3.3)

4.3.1 Common used numerical integration methods

Integrals in the likelihood function of the frailty model in Equation (4.3.2) and

(4.3.3) can be approximately calculated by several numerical integration meth-

ods. The materials in this section also can be found in Davis and Rabinowitz

(2007).

Trapezoidal rule

Trapezoidal rule is a numerical method to be used to approximate an integral.

It is only suitable for one-dimension integral
∫ b

a f (x)dx.

This method is used by dividing the area under the curve of f (x) into many

parts of trapezoids, where the number of trapezoids is n, then approximate the
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total areas. The expression is given by

∫ b

a
f (x)dx ≈ b− a

2n
( f (x0) + 2 f (x1) + 2 f (x2) + . . . + 2 f (xn−1) + f (xn)),

where xi = a + (b−a)i
n for i = 1, 2, . . . , n.

An alternative trapezoidal method is more accurate, it follows

∫ b

a
f (x)dx ≈

N

∑
n=1

f (xn−1) + f (xn)

2
(xn − xn−1).

Simpson’s rule

Simpson’s rule, also called Kepler’s rule, is similar to the trapezoidal rule but

more accurate. It is only used for one-dimension integral as well. The expression

of this method is given by

∫ b

a
f (x)dx ≈b− a

3n
( f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + . . .

+ 2 f (xn−1) + f (xn)),
(4.3.4)

where xi = a + (b−a)i
n for i = 1, 2, . . . , n.

Gauss-Hermite quadrature

The Gauss-Hermite quadrature is a form of Gaussian quadrature, which can

be used to approximate the integrals in the form as follow:

∫ +∞

−∞
e−x2

f (x)dx ≈
n

∑
i=1

wi f (xi),

where n is the number of sample points, the nodes xi (i = 1, 2, . . . , n) is the root

of the physicists’ version of the Hermite polynomial Hn(x), and the associated

56



weight wk is

wi =
2n−1n!

√
π

n2(Hn−1xi)2 .

See Shao et al. (1964) and Oliver et al. (2010) about the details and examples of

Hermite polynomial and Gauss-Hermite formula. The Gauss-Hermite quadra-

ture is a good option when the frailty follows a lognormal distribution.

4.3.2 Other numerical methods

One common approach for approximating the multivariate integral is phras-

ing the multiple integrals as repeated one-dimensional integrals. Alternatively,

there are some methods that are easy to apply for multivariate integrals.

For example, see Press and Farrar (1990), and Weinzierl (2000) for Monte Carlo

integration; See Hilgenfeldt et al. (1995) and Garcke (2012) for sparse grids.

There are also other approaches that can avoid quadrature and are simpler to

evaluate the maximum likelihood function of the frailty model. For instance, the

Laplace approximation and EM algorithm. For the EM algorithm, frailty can be

seen as a missing value.

4.4 Transformation of parameters

When we do the computation in the R software, the fixed-effect model can be

fitted by using msm package in R, the estimation of parameters and the standard

errors can be derived directly. However, for the frailty model, we need to fit it

by using user-written code, since there is no proper package for these models.

Several no restricted parameters are defined when we maximise the likelihood

function for frailty models by using general-purpose optimisation, see the line

3-5 in Appendix A.2. Thus, the frailty parameters σ ≥ 0 and κ ≥ 0 for the log-

normal distribution and one parameter gamma distribution are supposed to be

transformed to σ∗ ∈ R and κ∗ ∈ R, where σ = exp(σ∗) and κ = exp κ∗. The

corresponding standard error for these parameters can be derived by the delta
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method. Please see Appendix B for the details of the delta method. The materials

of this method is partly based on the book Delta Method (Cox (2005)).
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Chapter 5

Bivariate frailty model

Chapter 4 discussed the general concept of frailty models, and presented the

hazard function and likelihood of multi-state models which include univariate

frailties. In this chapter, we will explore the bivariate frailty model.

For bivariate survival analysis, the shared frailty model and the correlated

frailty model are two important approaches, which are widely used in previous

publications, such as Hougaard (2012), Duchateau and Jansen (2007). In a shared

frailty model, the frailty is common for individuals in the same group, and it

can help to describe the dependence between individuals. The correlated frailty

model is usually seen as an extension of the shared frailty model (Hens et al.

(2009)). In the correlated frailty model, frailties are correlated instead of shared

for individuals in the same group. There is an additional correlation parameter,

and all the correlations between group members are equal. For example, Yashin

et al. (1995) introduced statistical modelling for data on twin pairs. They dis-

cussed a shared-frailty model at first, where frailty is defined as a measure of the

relative risk, and both twins in a pair shared the same frailty value. Next, they

defined two different frailties for each individual in a twin pair, but these values

are correlated. This is called a bivariate correlated frailty model. The association

was described by a correlation coefficient between the two frailties of the twin

pair.
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Both methods mentioned above are used for survival models. In this chapter,

we would like to investigate the correlation between different transition hazards

in a multi-state model. Therefore, the correlated frailty models are discussed.

The main contribution in this chapter is that we will use Cheriyan and Ramab-

hadran’s bivariate gamma distribution (Kotz (2004)) to fit a frailty model. The

correlated frailty model with this distribution was first proposed by Yashin et

al. (1995) for univariate survival data on related event times. Thereafter this ap-

proach was used in a number of papers, such as Hens et al. (2009) and Martins et

al.(2018). The novelty of our study is that we consider a bivariate gamma multi-

state frailty model for the interval-censored data based on this distribution. The

correlation is defined for two different transitions rather than paired individuals.

5.1 Parametric frailty model

In order to investigate the correlation between two transitions in the multi-

state model, we are able to consider an extension of the frailty model in Equation

(4.2.1): use the bivariate frailty distribution to describe frailties in two transition

hazards for an individual. For example, for an individual i who makes transitions

from r → s and p→ q:

hrs.i(t|x, Brs.i) = hrs.0(t) exp(β>rsx)Brs.i

hpq.i(t|x, Bpq.i) = hpq.0(t) exp(β>pqx)Bpq.i

(5.1.1)

where Brs.i and Bpq.i follow a bivariate distribution which can be correlated or

independent.

5.1.1 Lognormal distribution

The bivariate lognormal distribution that may be defined by two univariate

lognormal variables B1 and B2. The materials in this section also can be found in

Patel and Read (1996).
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Define B1 = exp(V1), B2 = exp(V2), where V1 ∼ N(µ1, σ2
1 ) and V2 ∼ N(µ2, σ2

2 ),

the joint probability density function for V1, V2 is

f (v1, v2) =
1

2πσ1σ2
√

1− ρ2
exp

 (v1−µ1)
2)

σ2
1
− 2ρ(v1−µ1)(v2−µ2)

σ1σ2
+ (v2−µ2)

2

σ2
2

−2(1− ρ2)

 .

Thus, the conditional probability density function for (V2|V1) is

f (v2|v1) =
f (v1, v2)

f (v1)

=
1√

2πσ1σ2(1− ρ2)
exp

 (v1−µ1)
2)ρ2σ2

2
σ2

1
− 2ρσ2(v1−µ1)(v2−µ2)

σ1
+ (v2 − µ2)

2

−2σ2
2 (1− ρ2)

 .

Therefore, the probability density function for (V1, V2) is

f (v1, v2) = fV2|V1
(v2|V1 = v1) fV1(v1),

where V2|V1 ∼ N(µ2 + ρ(σ2
σ1
)(v1 − µ1), σ2

2 (1− ρ2)), ρ = Cor(v1, v2) =
Var(V1,V2)

σ1σ2
.

Thus, the correlation coefficient of B1 and B2 (Mostafa and Mahmoud (1964))

is given by

ρB1B2 =
Cov(B1, B2)√

(exp(σ2
1 − 1))(exp(σ2

2 − 1))
.

5.1.2 Gamma distribution

The bivariate gamma distributions are regarded as a generalization of univari-

ate gamma distributions. There are various forms of bivariate gamma distribu-

tions, see Kotz (2004). In this study, we use Cheriyan and Ramabhadran’s bivari-

ate gamma distribution, the advantages are: (1) there are only two parameters,

and (2) the bivariate density function is constructed by three univariate gamma

variables which is convenient when using a marginal likelihood function. Both

advantages reduce the computational challenge of fitting frailty models. Alter-

native bivariate gamma-distributed frailties for survival models as well as their
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advantages and disadvantages can be found in Martins et al. (2019).

For the Cheriyan and Ramabhadran’s bivariate gamma distribution, let Z0, Z1

and Z2 be three independent gamma random variables with probability density

functions

f (zk) =
γ

αk
k

Γ(αk)
zαk−1e−γkz, for zk > 0,

where shape αk > 0, rate γ0 = γ1 = γ2 = γ > 0, k = 0, 1, 2.

We obtain the joint density function of (Z0, Z1, Z2)
> as

f (z0, z1, z2) =
e−γ(z0+z1+z2)

Γ(α0)Γ(α1)Γ(α2)
zα0−1

0 zα1−1
1 zα2−1

2 γα0+α1+α2 ,

where zk > 0, αk > 0 (k = 0, 1, 2).

Let B1, B2 be the correlated gamma frailties,

B1 = Z0 + Z1, B2 = Z0 + Z2,

then the joint density function of (Z0, B1, B2)
> is given by

f (z0, b1, b2) =
e−γ(b1+b2−z0)

Γ(α0)Γ(α1)Γ(α2)
zα0−1

0 (b1 − z0)
α1−1(b2 − z0)

α2−1γα0+α1+α2 , (5.1.2)

where b1, b2 ≥ z0 ≥ 0.

In order to obtain the joint density function of (B1, B2)
>, it is necessary to

integrate out Z0 in Equation (5.1.2)

∫ min(b1,b2)

0
zα0−1

0 (b1 − z0)
α1−1(b2 − z0)

α2−1eγz0dz0
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Therefore, the bivariate gamma density function is given by

f (b1, b2) =
γα0+α1+α2e−γ(b1+b2)

Γ(α0)Γ(α1)Γ(α2)

∫ min(b1,b2)

0
zα0−1

0 (b1 − z0)
α1−1(b2 − z0)

α2−1eγz0dz0.

(5.1.3)

Since E(B1) =
α0+α1

γ = 1, E(B2) =
α0+α2

γ = 1, we obtain that α1 = α2, γ = α0 +

α1. Therefore, frailties B1 and B2 follow the same marginal gamma distribution:

B1 ∼ Gamma(α0 + α1, α0 + α1), B2 ∼ Gamma(α0 + α1, α0 + α1), (5.1.4)

The correlation coefficient is

ρB =
Cov(B1, B2)√

Var(B1)Var(B2)
=

α0

α0 + α1
> 0. (5.1.5)

Since ρ > 0, this method is only suitable for adding frailties when transition

hazards are positively correlated transition hazards. For example, we can not

define frailties in transition 2 → 3 and 2 → 1 for OCTO-Twin data in this study,

see Figure 2.4 in Chapter 2 for the transition information.

5.2 Parametric likelihood function

The likelihood contribution for frailty model for individual i is given by

Li(θ|i, y, x) = P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x)

=
∫∫∫

Ωbi

P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x, bi) f (bi|θ)dbi
(5.2.1)

where y = (y1, y2, . . . , yJ) are the observed states corresponding to observed time

t1, t2, . . . , tJ , bi = (b1i, b2i, . . . , bni) denotes a vector of random effects for individ-

ual i for n-dimensional frailty models. In this thesis, we only discuss the bivariate

frailty model, so bi = (b1i, b2i).
∫∫∫

Ωbi
denotes the integration for 2-dimensional

frailty models.
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Similar to the fixed-effect model in Chapter 4, the likelihood for an individual

with no observed death time is

Li(θ|i, y, x) =
∫∫∫

Ωbi

J

∏
j=2

P(Yj = yj|Yj−1 = yj−1, θ, x) f (bi|θ)dbi, (5.2.2)

and the likelihood for an individual with observed death time is

Li(θ|i, y, x) =
∫∫∫

Ωbi

J−1

∏
j=2

P(Yj = yj|Yj−1 = yj−1, θ, x, bi)

×
A−1

∑
s=1

P(YJ = s|YJ−1 = yJ−1, θ, x) hsA(tJ−1|θ, x) f (bi|θ)dbi,

(5.2.3)

where s and A are defined the same as for the univariate likelihood function in

Chapter 4. Note that the transition probability for the frailty model are condi-

tional independent on frailty Bi.

Assuming the independence of individuals, the likelihood function for N in-

dividuals is given by

L(θ|y, x) =
N

∏
i=1

Li(θ|i, y, x). (5.2.4)

As an example, the likelihood contribution of individual i for the bivariate
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gamma frailty model in Equation (5.1.3) is given by

Li(θ|i, y, x)

=P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x)

=
∫

b1

∫
b2

P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x, b1, b2) f (b1, b2)db1db2

=
∫

b1

∫
b2

∫
z0

P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x, b1, b2)

× γα0+α1+α2e−γ(b1+b2)

Γ(α0)Γ(α1)Γ(α2)
zα0−1

0 (b1 − z0)
α1−1(b2 − z0)

α2−1eγz0db1db2dz0

=
∫

z1

∫
z2

∫
z0

P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x, z0, z1, z2)

× γα0+α1+α2e−γ(z0+z1+z2)

Γ(α0)Γ(α1)Γ(α2)
zα0−1

0 (z1)
α1−1(z2)

α2−1dz1dz2dz0

=
∫

z0

∫
z1

∫
z2

P(Y2 = y2, . . . , YJ = yJ |Y1 = y1, θ, x, z0, z1, z2) f (z0) f (z1) f (z2)dz0dz1dz2.

(5.2.5)

Cook and Lawless (2018) also discussed the marginal likelihood function for

multi-state frailty models, see Chapter 6 in that book for details.

Some parameters in the likelihood function are defined on restricted domains.

Such as αi > 0, γi > 0 for bivariate gamma frailty and −1 < ρ < 1 for bivariate

lognormal frailty. For the likelihood maximization in the R software, all these

parameters with restricted domain can be replaced by unrestricted parameters.

For example, αi > 0, γi > 0 and −1 < ρ < 1 are estimated by maximizing α∗i ∈ R

γ∗i ∈ R and ρ∗ ∈ R, where

αi = exp(α∗i ), γi = exp(γ∗i ), ρ = 2
exp(ρ∗)

1 + exp(ρ∗)
− 1. (5.2.6)

The corresponding standard errors for these parameters are computed by using

the Hessian matrix and the delta method.
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Chapter 6

Non-parametric frailty model

6.1 Introduction to non-parametric frailty model

The frailty models discussed in previous chapters assumes that the frailty is

parametrically distributed, such as the gamma and lognormal. Alternatively, the

non-parametric frailty model can be desirable, because it can improve the flexi-

bility of the model by allowing a less restricted form of distributions. The non-

parametric model fits data well no matter whether the frailty has a parametric

distribution or not.

Non-parametric frailty models were discussed in some applications before.

For instance, dos Santos et al. (1995) discuss the non-parametric hazard versus

the non-parametric frailty distribution. Li et al. (1998) use a Cox proportional

hazards model with a non-parametric frailty with a two-points support. Caroni

et al. (2010) use a Weibull baseline hazard function and an individual-specific

non-parametric frailty. There are other papers that discuss the non-parametric

frailty models in Bayesian approaches. For example, using the Dirichlet Process

prior (Manda (2011)) and the Polya tree prior (Walker and Mallick (1997)) for the

frailty term.

In this study, we will only look at the univariate non-parametric frailty model.

For the univariate non-parametric model, define that there are a number of frailty
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parameters Bk according to the classes Ck, where k = 1, 2, . . . , K. For each indi-

vidual (i ∈ Ck), the probability distribution πk of frailties Bk is unknown.

Except for the less restricted form of the distribution, another advantage of

the non-parametric frailty model is that there is no need for integration since

the number of Bk is countable. Therefore, it has a simplified computation when

maximising the loglikelihood. The details of the loglikelihood estimation will be

introduced in Section 6.2.

However, there is no proper way to determine the optimal K when we fit the

model. A good approach to solve this problem is fitting several models with dif-

ferent K and using model selection criteria, such as Akaike information criterion

(AIC) and Bayesian information criterion (BIC) that we introduced in Chapter 3.

With regard to this approach, it may be hard to interpret the reason for a certain

classification after we select the proper K by comparing different models. How-

ever, the aim of the non-parametric maximum likelihood estimation is to describe

the underlying heterogeneity, which means it is not necessary to interpret the

classes.

6.2 Non-parametric maximum likelihood

For the non-parametric frailty model with K classes Ck, where k = 1, 2, . . . , K,

the likelihood contribution for individual i under the Markov assumption is given

by

Li(θ|i, y, x) = P(YJ = yJ , . . . , Y2 = y2|Y1 = y1, i, θ, x)

=
K

∑
k=1

P(YJ = yJ , . . . , Y2 = y2|Y1 = y1, i ∈ Ck, θ, x)πk,

=
K

∑
k=1

J

∏
j=2

P(Yj = yj|Yj−1 = yj−1, i ∈ Ck, θ, x)πk,

(6.2.1)

where θ = (θ0, θ1, . . . , θK) is a vector which combines the fixed-effects parame-

ters and class-specific parameters. θ0 denotes the fixed-effect parameters, θ1 =

67



{B1, π1}, θ2 = {B2, π2}, . . . , θK = {BK, πK}. πk = P(i/ ∈ Ck) for each individ-

ual i. Here the class-specific parameters Bk are called the mass points, and the

probability πk are called the masses.

Therefore, the likelihood for N individuals is given by

L(θ|y, x) =
N

∏
i=1

Li(θ|i, y, x).

Computationally, it is easier to optimise over an unrestricted parameter space

when maximising the loglikelihood function. Given the probabilities ∑K
k=1 πk =

1, we use the logit link for probability πk for class k.

For example, for a model with K = 2, the two probabilities πk can be repre-

sented by a parameter η, where η ∈ R.

π1 =
1

1 + exp(η)

π2 = 1− π1.
(6.2.2)

For a model with class K = 3, the three probabilities πk can be represented by

two independent parameter π∗1 and π∗2 , where π∗1 , π∗2 ∈ R,

π1 =
1

1 + exp(π∗1) + exp(π∗2)

π2 =
exp(π∗1)

1 + exp(π∗1) + exp(π∗2)

π3 =
exp(π∗2)

1 + exp(π∗1) + exp(π∗2)
.

(6.2.3)

There are also other methods to maximise the likelihood function, such as the

EM algorithm. See Aitkin (1999) for details.
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6.3 Extensions of the non-parametric frailty model

We have introduced the univariate non-parametric frailty model and its like-

lihood function. It is possible to fit the non-parametric frailty model for clus-

tered survival data, such as the healthcare data in which individuals are grouped

by their healthcare provider. The most common method for this kind of data

is the parametric shared-frailty model, which was briefly introduced in Section

4.1 and 5.1. Fitting the non-parametric frailty model for this kind of data is an

alternative. The non-parametric model is more flexible in the choice of the dis-

tribution of the frailty in order to account for arbitrary multimodality and un-

predictable skewness types (Walker and Mallick (1997)). For example, Manda

(2011) investigates the non-parametric frailty model in a Bayesian framework to

analyse community-clustered child survival in sub-Saharan Africa. Gasperoni et.

al (2020) present a survival model with both a non-parametric discrete shared

frailty, and a non-parametric baseline hazard. In these studies, individuals share

the same non-parametric frailty in the same group, and it can explore the hetero-

geneity between groups.

In this thesis, we do not fit a non-parametric shared frailty model for clustered

data, but explore covariate-specific frailties for people with different values of

covariates. We have not seen this method used in the multi-state frailty model in

the literature.

As we can see, the probabilities defined in Equation (6.2.2) and (6.2.3) do not

define different probabilities πk for different people. The model will be more use-

ful if the probabilities of each frailty are related to the characteristic of people.

Bartolucci and Farcomeni (2015) proposed an approach to consider parameteriz-

ing η with a linear predictor,

η = δTx, (6.3.1)

where δ is a vector of parameters, x is a vector of covariates including an inter-

cept.

By using this method, the probabilities πk are related to the value of covari-
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ates. For example, if we add gender as the covariates in Equation (6.3.1), then the

mass probabilities for females and males with frailty Bk are not the same, they are

π f emale.k and πmale.k, respectively. Moreover, we would like to explore using same

covariates both for the fixed-effect part of hazard and for the frailty. This is illus-

trated in data analysis in the next chapter, where we plan to fit three models and

compare their results: (1) adding gender as the covariate for the fixed-effect part

of the hazard. (2) Adding gender as the covariate for the non-parametric frailty.

(3) Adding gender as the covariate both for the fixed-effect part of hazard and for

the non-parametric frailty. Please see Chapter 7.1.3 for details.
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Chapter 7

Data analysis

In this chapter, we would like to explore the datasets to extend the fixed-effect

analysis with frailty models. We will investigate our ideas of frailty models, and

see whether we can get better fitting models and get a better insight into the

process of cardiac allograft vasculopathy (CAV data) and cognitive impairment

(OCTO-Twin data).

7.1 Cardiac allograft vasculopathy data

7.1.1 Fixed-effect model

We want to model a disease progression in our study. We fit five different

fixed-effect models for CAV data with different covariates and distributions. As

we discussed in Chapter 2, there are totally five transitions for progressive CAV

data: 1 → 2, 1 → 4, 2 → 3, 2 → 4, 3 → 4. We define r and s as two states which

describe a transition r → s. The first model we fit is an intercepts-only model

with no covariates. Next, we fit four Gompertz models with various covariates

for different transitions. The Gompertz hazard increases exponentially with time

and has been widely used to model adult mortality. The Weibull hazard is an

alternative, which increases as a power function of time. In our study, we would

like to use Gompertz distribution rather than Weibull distribution, since the latter
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has a more complex computation w.r.t the power function of time, which some-

times lead to numerical problems in estimation. And these two distributions are

quite similar, shapes of them are not very different. Since we are not focusing on

the parametric time-dependent distributions but more focusing on the frailties,

we would like to use Gompertz distribution for the data analysis. There are sev-

eral other choices for the distribution of hazards which are not discussed in this

thesis, please see Thatcher et al. (1998) and Rodrıguez (2010) for details. Specifi-

cally, Model 2 defines the effect of years of follow-up for all transitions. Model 3

defines the effect of donor’s age and years of follow-up for all five transitions. For

Model 4, the donor’s age are defined for all the transitions as well, but years of

follow-up are only defined for transition 1 → 2. For Model 5, individuals’ base-

line age are considered as a covariate for transition 1 → 2 and 1 → 4, since we

would like to investigate the effects of individuals’ baseline age for people from

the healthy state to others. Details of hazard functions are showed below. Models

with restricted covariates are able to reduce the number of parameters, resulting

in a simpler computation when maximising the likelihood function.

Model 1. Intercepts-only model

This model assumes that the years of follow-up t follows the exponential dis-

tribution (i.e. T ∼ exp(λ)), where the transition-specific hazards can be repre-

sented as a constant, i.e. h(t) = λ, where λ > 0. The hazard models for all the

five transitions r → s are given by

hrs(t) = exp(βrs.0), (7.1.1)

where t is the time scale represents the years of individuals during follow-up.
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Model 2. Consider the effect of years of follow-up for all transitions

This model assumes that the years of follow-up t follows the Gompertz dis-

tribution, where the transition-specific hazards can be represented as h(t) =

λ exp(ξt) for t ≥ 0, where t ≥ 0, λ > 0. The parameters of the effect of time are

defined for all the five transitions. Hazard models for these transitions are:

hrs(t) = exp(βrs.0 + ξrs.1t), (7.1.2)

Model 3. Consider donor’s age and years of follow-up as covariates for all tran-

sitions

This model defines the donor’s age as the covariate for all transitions, since

it is a reasonable variable that may affect the transition hazards. The years of

follow-up t follows the Gompertz distribution as well. Hazard models for all the

transitions r → s are given by

hrs(t) = exp(βrs.0 + ξrs.1t + βrs.2dage), (7.1.3)

where dage represents the age of heart donor for the heart transplant.

Model 4. Consider the effect of years of follow-up for specific transitions

Since the AIC value is quite large of Model 3 (please see Table 7.1), we would

like to fit a model that still contains the effect of years of follow-up and donor’ age

as the covariate, but with a lower AIC value. Therefore, we define the effect of the

years of follow-up in transition 1 → 2, in order to investigate more specifically

when people move from the healthy state to the moderate CAV state. Hazard

model for transition 1→ 2 is given by

h12(t) = exp(β12.0 + ξ12.1t + β12.2dage), (7.1.4)
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hazard models for transition 1→ 4, 2→ 3, 2→ 4, 3→ 4 are given by

hrs(t) = exp(βrs.0 + βrs.2dage). (7.1.5)

Model 5. Consider donor’s age and participants’ baseline age as covariates for

restricted transitions

This model is based on Model 4, and newly include the participants’ baseline

age as the covariate for transition 1 → 2 and 1 → 4. This restriction is defined

in order to investigate how the participants’ baseline age affect their movement

from a healthy state. The hazard model for the transition 1→ 2 is given by

h12(t) = exp(β12.0 + ξ12.1t + β12.2bage + β12.3dage), (7.1.6)

the hazard model for the transition 1→ 4 is given by

h23(t) = exp(β14.0 + β14.2bage + β14.3dage), (7.1.7)

hazard models for transition 2→ 3, 2→ 4, 3→ 4 are given by

hrs(t) = exp(βrs.0 + βrs.3dage), (7.1.8)

where bage is the baseline age for individuals.

Table 7.1: The model covariates, distributions of baseline hazard, number of
parameters, −2× maximum loglikelihood function and Akaike’s information
criterion of four fixed-effect multi-state models for the CAV data

Model Baseline hazard Number of −2log(L̂) AIC
parameters

1 exponential 5 3519.4 3529.4
2 Gompertz 10 3450.5 3480.5
3 Gompertz 15 3490.0 3510.0
4 Gompertz 11 3463.6 3485.6
5 Gompertz 13 3446.7 3472.7

74



Table 7.1 shows the results of these four models. As we discussed in Chapter

3, AIC is used to select the best one among these four models. It is clear that

Model 5 performs best according to the AIC value. Table 7.2 shows the parame-

ters estimation and standard errors for Model 5. The covariate effect ξ̂12.1 = 0.12

illustrates that the hazard for the transition from state 1 to state 2 increases when

time goes. β̂12.2 = 0.002 and β̂14.2 = 0.051 indicates that people with higher base-

line ages would have higher hazards for transition 1 → 2 and 1 → 4. Further-

more, conditional on the same years of follow-up, hazards for people moving to

death from state 1 would increase more rapidly than them moving to state 2, since

β̂14.2 > β̂12.2. Effects for donor’s age are positive for transitions 1→ 2 and 1→ 4.

It illustrates a positive relationship between higher hazards and higher donor’s

age. For the rest of the three transitions, the standard errors are either greater

or approximately equal to the absolute value of estimates. The large value of

standard errors implies that we do not have enough information to estimate the

parameter of interest. Therefore, it is hard to assess whether the effects are posi-

tive or negative. It is one of the reasons to explore the frailty model: if we allow

more flexible models (e.g. different frailty models), we can compare the results

of these frailty models with fixed-effect models fitted in this section, and check

whether frailty models have lower AIC values and more reasonable estimations.

Table 7.2: The estimation (standard errors) of parameters for the model 5 for
CAV data

Transitions Intercept t bage dage

1→ 2 −3.484(0.331) 0.12(0.023) 0.002(0.006) 0.026(0.006)
1→ 4 −6.369(0.778) 0 0.051(0.015) 0.022(0.009)
2→ 3 −1.255(0.287) 0 0 −0.006(0.009)
2→ 4 −1.848(0.946) 0 0 −0.043(0.037)
3→ 4 −1.059(0.34) 0 0 −0.007(0.011)

According to AIC values, Model 5 is the best one among all these four models.

However, this does not indicate that this model is a good-fitting model. The best

model according to likelihood-ratio tests can still be a bad-fitting model. There-
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fore, the assessment of goodness-of-fit is a necessary approach to check whether

the model fits well. Since the msm package only works for time-independent mod-

els, where the time is restricted to be Trs ∼ exp(λrs). Figure 7.1 shows the com-

parison of observed prevalence and expected prevalence in percentage for all the

states for CAV data. From the graph, we can see that the model fits well for states

1, 2 and 3. However, there is some misfit with respect to state 4, where the preva-

lence of death is underestimated.

Figure 7.1: The comparison of observed prevalence (blue solid line) and expected
prevalence (red dash line) for the CAV data. The observation is an approxi-
mated value due to the unknown information between two observed time points
of interval-censored living states in CAV data. The expectation is based on the
intercept-only model.

7.1.2 Parametric frailty model

As we mentioned in the previous section, it is good to fit frailty models to

take into account the unobserved heterogeneity, and compare the results of fixed-

effect models and frailty models.
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In our study, we fit frailty models where the individual-specific frailty Brs.i

follows a lognormal distribution, one parameter gamma distribution and non-

parametric distribution. This section shows the result of two parametric models,

results of non-parametric models and the comparison of these models will be

shown in the next section.

The lognormal distribution and gamma distribution are two common choices

for parametric frailty models. For the lognormal distribution, Gauss-Hermite

quadrature can be used to do the integration when maximising the likelihood

function. The approximation of Gauss-Hermite quadrature is more accurate com-

pared with other numerical integration methods discussed in Chapter 4 (Van den

Hout (2016)). The advantage of one parameter gamma distribution is that there

is only one parameter for this distribution. It can simplify the computation, be-

cause in that case we only have one-dimensional integration when maximising

the likelihood function. The frailty is defined in transition 1→ 2 for all the mod-

els, because we would like to investigate the latent information from healthy to

not healthy. The fixed-effect parts of frailty models are derived from Model 5

discussed in the Section 7.1.1, and this model has the lowest AIC value

Table 7.3 and 7.4 shows the results for the lognormal distribution frailty model

and one parameter gamma distribution frailty model, respectively. Comparing

the estimation of intercept and the effects of the years of follow-up t of the log-

normal frailty model and one parameter gamma frailty model, the differences

are quite small. For the estimation of the effects of participants’ baseline age

bage: they are both positive in two transitions for these two models, though

β12.2 > β14.2 in the lognormal model but β12.2 < β14.2 in the one parameter

gamma model. This difference might be caused by the different frailty values.

Comparing the results of these two frailty models and the best fixed-effect model

(Model 5), the estimates are a little bit different. These changes are expected, since

a role of the frailty can be to model the heterogeneity so that the fixed effects can

be more accurately estimated. These changes of estimates might be because of

some misfit of the fixed-effect model, e.g. some missing covariates.
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Table 7.3: The estimation (standard errors) of parameters for the lognormal
distribution frailty model for CAV data

Transitions Intercept t bage dage

1→ 2 −3.415(0.390) 0.127(0.036) 0.028(0.007) −0.002(0.01)
1→ 4 −6.326(0.786) 0 0.019(0.010) −0.042(0.032)
2→ 3 −1.555(0.351) 0 0 −0.004(0.011)
2→ 4 −1.684(0.795) 0 0 −0.001(0.007)
3→ 4 −1.208(0.347) 0 0 0.052(0.015)

Frailty σ = 0.539(0.216) .

7.1.3 Non-parametric frailty model and model comparison

As the non-parametric frailty model described in Chapter 6, the number of

classes is uncertain. A better approach is to fit several models with the different

number of classes and select the best fitted one according to AIC values. Alter-

natively, state an explicit reason for choosing the number of classes. For exam-

ple, we fit a non-parametric frailty model with K = 2 for CAV data, because we

would like to distinguish movers (with higher frailties) from stayers (with lower

frailties).

In this study, we fit three different non-parametric frailty models. (i) is a two-

class non-parametric frailty model without parameterizing η. The frailty is de-

fined in transition 1→ 2. (ii) is a two-class gender-specific non-parametric frailty

model with the gender-specific frailty defined in transition 1 → 2. (iii) is a two-

Table 7.4: The estimation (standard errors) of parameters for the one parameter
gamma distribution frailty model for CAV data

Transitions Intercept t bage dage

1→ 2 −3.941(0.377) 0.218(0.026) 0.011(0.007) 0.028(0.007)
1→ 4 −5.646(0.670) 0 0.038(0.013) 0.021(0.010)
2→ 3 −1.267(0.343) 0 0 −0.008(0.010)
2→ 4 −2.409(0.917) 0 0 −0.018(0.029)
3→ 4 −0.636(0.341) 0 0 −0.022(0.012)

Frailty κ = 3.367(0.227) .
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class non-parametric frailty model with gender as the covariate both for the fixed-

effect part of hazard and the frailty. The fixed effect of gender and gender-specific

frailty are both defined in transition 1 → 2. (iiii) is a fixed-effect model with the

same covariates definition as Model (iii), in order to have a clearer comparison.

Tables 7.5, 7.6, 7.7 and 7.8 shows the results for these three non-parametric frailty

models and one fixed-effect model, respectively.

Regarding Model (i), the frailty parameters illustrate that the probability of a

random patient being a mover is 61.8% (b1 > 1) and 38.2% (b2 < 1) chance to be

a stayer during transition 1→ 2. In Model (ii), female patients are more likely to

be stayers than movers during transition 1 → 2, since π1(35.9%) < π2(64.1%).

In contrast, males have a higher probability to be a mover rather than a stayer

(π1(61.3%) > π2(38.7%)).

For the results of Model (iii) in Table 7.6, the effect of gender in transition

1 → 2 is -0.818, which means females (gender=1) have a lower hazard than

males (gender=0). However, the probability of female patients being a mover

(b1 = 3.177) is 76.5% in the transition 1 → 2, which is higher than males (69.0%).

This result is contrary to the effect of gender in the fixed-effect part of the es-

timation (β̂12.gender = −0.818 < 0). Moreover, the standard errors of both the

estimation β̂12.gender (1.14) and estimation of the probability of females (0.757)

are quite large. This indicates that there might be a identifiability problem. To

compare with Model (iii), Model (iiii) has a better result, where the estimation

β̂12.gender = −0.548 has a small standard error (0.255). Therefore, we do not rec-

ommend including the same covariate both in the fixed-effect part and the non-

parametric frailty part of the model.

In the previous section, we have discussed the fixed-effect model Model 5,

which is the one that has the lowest AIC value. It is a fixed-effect Gompertz-

distributed model with donor’s age and participants’ baseline age as covariates.

We restricted the effect of time only in transition 1 → 2 and the effect of partici-

pants’ baseline age in transition 1→ 2 and 1→ 4.

Table 7.9 compares the best fitted fixed-effect model (Model 5), the fixed-effect
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Table 7.5: The estimation (standard errors) of parameters for two-class non-
parametric frailty model (i) without parameterizing η for CAV data

Transitions Intercept t bage dage

1→ 2 −3.876(0.532) 0.177(0.047) 0.002(0.007) 0.031(0.008)
1→ 4 −6.190(0.751) 0 0.047(0.014) 0.023(0.009)
2→ 3 −1.445(0.501) 0 0 −0.017(0.011)
2→ 4 −1.97(0.941) 0 0 −0.037(0.038)
3→ 4 −1.042(0.342) 0 0 −0.009(0.011)

Frailty b1 = 2.237(0.539) b2 = 0.447(0.539) .
π1 = 0.618(0.108) π2 = 0.382(0.175) .

Table 7.6: The estimation (standard errors) of parameters for two-class non-
parametric frailty model (ii) with the gender-specific frailty defined in transition
1→ 2 for CAV data

Transitions Intercept t bage dage

1→ 2 −4.618(0.618) 0.268(0.046) 0.001(0.009) 0.041(0.009)
1→ 4 −6.312(0.774) 0 0.053(0.015) 0.018(0.010)
2→ 3 −1.390(0.280) 0 0 −0.002(0.008)
2→ 4 −1.315(1.061) 0 0 −0.068(0.052)
3→ 4 −1.153(0.334) 0 0 −0.005(0.011)

Frailty b1 = 3.411(0.798) b2 = 0.293(0.069) .
For female: .
π1 = 0.359(0.023) π2 = 0.641(0.023) .
For male: .
π1 = 0.613(0.084) π2 = 0.387(0.084) .

model (iiii) (adding gender as the covariate in transition 1→ 2), two parametric

frailty models and three non-parametric frailty models. In this table, the fixed-

effect parts of the models 2-5 are the same as the 1st model (fixed-effect Model 5),

the fixed-effect part of the 6th model (Model (iii)) is the same as the 7th model

(Model (iiii)). The AIC value for the lognormal frailty model, one parameter

gamma frailty model, two-class non-parametric model (i), (ii) and (iii) and fixed-

effect model (iiii) are 3470.5, 3472.1, 3468.5, 3464.8, 3468.8 and 3469.3, respectively.

The AIC value for the one parameter gamma model is larger than the lognormal

model. This might be caused by using different methods of integration when
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Table 7.7: The estimation (standard errors) of parameters for two-class non-
parametric frailty model (iii) with the gender as a covariate and a gender-specific
frailty defined in transition 1→ 2 for CAV data

Transitions Intercept t bage dage gender

1→ 2 −4.466(0.705) 0.225(0.082) 0.002(0.008) 0.032(0.010) −0.818(1.14)
1→ 4 −5.512(0.621) 0 0.035(0.012) 0.024(0.009) 0
2→ 3 −1.159(0.281) 0 0 −0.009(0.009) 0
2→ 4 −1.887(1.195) 0 0 −0.051(0.050) 0
3→ 4 −1.005(0.337) 0 0 −0.009(0.011) 0

Frailty b1 = 3.177(1.166) b2 = 0.315(0.116) .
For female: .
π1 = 0.765(0.757) π2 = 0.235(0.757) .
For male: .
π1 = 0.690(0.125) π2 = 0.310(0.125) .

Table 7.8: The estimation (standard errors) of parameters for the fixed-effect
model (iiii) with gender as a covariate in transition 1→ 2 for CAV data

Transitions Intercept t bage dage gender

1→ 2 −3.317(0.338) 0.118(0.023) 0.001(0.007) 0.026(0.006) −0.548(0.255)
1→ 4 −6.238(0.752) 0 0.049(0.014) 0.023(0.009) 0
2→ 3 −1.254(0.286) 0 0 −0.006(0.009) 0
2→ 4 −1.847(0.977) 0 0 −0.044(0.038) 0
3→ 4 −1.058(0.338) 0 0 −0.007(0.011) 0

maximising the likelihood functions: we use Gauss-Hermite quadrature for log-

normal model and use the trapezoidal rule for one parameter gamma model.

Different methods of integration and their usages of frailty models have been dis-

cussed in Section 4.3.1. The AIC value for both two-class non-parametric models

are better than the fixed-effect model, and the two-class non-parametric model

(ii) is the best among these four frailty models. Model (iii) has a AIC value close

to that of Model (i), but estimation of the effect of gender and frailty in Model

(iii) is problematic. Model (iiii) is fitted as a fixed-effect model, in order to com-

pare with Model (ii) and Model (iii), we can see that the AIC value of Model (iiii)

is larger than all of the non-parametric models, but lower than the fixed-effect
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Table 7.9: The −2log(L̂) and AIC values for fixed-effect Model 5 (t in 1 → 2 bage
in 1 → 2, 1 → 4 dage in all transitions), lognormal frailty model, one parameter
gamma frailty model, two classes non-parametric frailty model (i), (ii), (iii) and
fixed-effect model (iiii) with gender as a covariate

Model Number of −2log(L̂) AIC
parameters

1. Fixed-effect Model 5 13 3446.7 3472.7
2. Lognormal frailty model 14 3442.5 3470.5
3. One parameter gamma frailty model 14 3444.1 3472.1
4. Two classes non-parametric frailty model (i) 15 3438.5 3468.5
5. Two classes non-parametric frailty model (ii) 16 3432.8 3464.8
6. Two classes non-parametric frailty model (iii) 17 3434.8 3468.8
7. Fixed-effect model (iiii) with gender as a covariate 14 3441.3 3469.3

Model 5. Therefore, it is worthwhile to consider gender as the covariate for the

fixed-effect model. Likewise it is also good to define gender as the covariate in

the non-parametric parameterizing frailty model, if gender is not included as the

fixed-effect covariate and we would like to explore the difference of frailties for

different genders.

More comparison for movers (b > 1) and stayers (b < 1) for non-parametric

frailty models can be illustrated by transition probabilities. They are the probabil-

ities for each transition during a certain time interval. In the application, transi-

tion probabilities can be presented in a 4× 4 matrix, where rows represent current

states and columns represent the next states. Conditional on the mean of baseline

age 47.1 and donor’s age 30.6, transition probabilities for movers (b1 = 3.411) and

stayers (b2 = 0.293) in Model (ii) in 2 years after transplant are

P(t|b1) =


0.688 0.188 0.043 0.081

0 0.586 0.272 0.142

0 0 0.578 0.422

0 0 0 1


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P(t|b2) =


0.902 0.019 0.004 0.075

0 0.586 0.272 0.142

0 0 0.578 0.422

0 0 0 1


where t = 2, hazards are fixed midway the interval. It is easy to see the difference

in transition probabilities from the matrix above. For example, for individuals

who get the transplant at age 47.1 with the donor at age 30.6, the probabilities of

staying in state 1 (healthy) are 68.8% (movers) versus 90.2% (stayers).

7.2 Origins of Variance in the Oldest-Old data

7.2.1 Fitting models

In this study, we fit seven models to the OCTO-Twin data using different ef-

fects and different frailty distributions. The time-scale of OCTO-Twin data is age,

and individuals enter this study at different ages. We assume that individuals are

independent in the OCTO-Twin data and do not take the genetic dependency of

twins into account in the present thesis.

In the CAV data, we have investigated the difference of fixed-effect models

with different effects of covariates and compare them with the univariate frailty

models. In this section about OCTO-Twin data, we would like to pay more at-

tention to frailty models, especially to the bivariate frailty models. Therefore, we

only fit two fixed-effect models as the standard for comparison. We start with the

most simple model: intercepts-only model (Model I). Next, we add age as a co-

variate to fit hazard models: Model II - VII. We would like to summarize models

first, and then specify them.

• Model I: Intercepts-only model.
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• Model II: Fixed-effect model with age in restricted transitions as a covariate.

• Model III: Univariate lognormal distributed frailty model. Frailty is defined

for transition 1→ 2

• Model IV: Univariate one parameter gamma distributed frailty model. Frailty

is defined for transition 1→ 2

• Model V: Bivariate lognormal distributed frailty model. Two frailties are

correlated defined for transition 1→ 2 and 1→ 4.

• Model VI: Bivariate gamma distributed frailty model. Two frailties are in-

dependently defined for transition 1→ 2 and 1→ 4.

• Model VII: Bivariate gamma distributed frailty model. Two frailties are cor-

related defined for transition 1→ 2 and 1→ 4.

Model II - VII share the same fixed-effect terms: define age as the covariate

with restricted parameters βage.rs for transition r → s: βage.14 = βage.24 = βage.34 =

βage.r, βage.21 = 0. Specifically, Model II is a fixed-effect model, which is a stan-

dard for the comparison of fixed-effect models and frailty models. Model III and

IV are univariate frailty models with two common frailty distributions that we

discussed in Chapter 4. The frailty is defined for transition 1 → 2, because we

focus the investigation on people moving from the healthy state (state 1) to the

mild cognitive impairment (state 2). Model V is a bivariate lognormal-distributed

frailty model, this is one of the bivariate frailty model that introduced in Chapter

5. Both Model VI and Model VII are bivariate gamma frailty models. The differ-

ence is that two frailties are independent in the former model, but correlated in

the latter. Fitting these two models is good to investigate whether the correlated

gamma frailty model will be better (lower AIC value) than the independent one.

We add frailties in transitions 1→ 2 and 1→ 4 for all these three bivariate mod-

els (Model V-Model VII), because we are interested in the correlation between

hazards of people moving from the healthy state (state 1) to the mild cognitive

impairment (state 2) and from the healthy state (state 1) to death (state 4).
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Next, we specify the model equations. The event time t of Model I follows an

exponential distribution (i.e. T ∼ exp(λ)), where the transition-specific hazards

can be represented as a constant, i.e. h(t) = λ, where λ > 0. This hazard model

during the transition r → s is given by

hrs(t) = exp(βrs.0), (7.2.1)

where t is the time during follow-up.

The event time t of Model II - Model VII follows a Gompertz distribution (i.e.

T ∼ (λ, ξ)), where the transition-specific hazards can be represented as h(t) =

λ exp(ξt) for t ≥ 0, where t ≥ 0, λ > 0. Table 7.10 shows the hazard functions for

Model VII as an example.

Similar to the CAV data, we use Akaike’s information criterion (AIC) to com-

pare model performance. In Table 7.11, it is clear that all the models that in-

clude restricted age as covariates have lower AIC than the intercepts-only model.

Univariate and bivariate lognormal distributed frailty models have similar AIC

values, that are a bit higher than the fixed-effect model (Model II). For gamma-

distributed frailty models, Model VII has the lowest AIC value, which is 5333.8.

Although the difference between the two lowest AIC values (Model IV and Model

VII) is quite minimal, there is a small improvement for the bivariate correlated

gamma frailty model (Model VII).

Given the AIC values shown in Table 7.11, Model VII is selected as the best-

Table 7.10: For OCTO-Twin data: The hazard functions for Model VII where frail-
ties follow a bivariate gamma distribution.

Transition Hazard Function

1→ 2 h12(t|b12.i, x) = exp(β0.12 + βt.12t)b12.i
1→ 4 h14(t|b14.i, x) = exp(β0.14 + βt.rt)b14.i
2→ 1 h21(t|x) = exp(β0.21)
2→ 3 h23(t|x) = exp(β0.23 + βt.23t)
2→ 4 h24(t|x) = exp(β0.24 + βt.rt)
3→ 4 h34(t|x) = exp(β0.34 + βt.rt)
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Table 7.11: The model covariates, distributions of time in hazard, number of
parameters, −2× maximum loglikelihood function and Akaike’s information
criterion of seven models for the OCTO-Twin data

Model Distribution
of

Distribution
of

Number
of

−2log(L̂) AIC

time in hazard the frailty parameters

I Exponential No frailty 6 5456.7 5468.7
II Gompertz No frailty 9 5349.0 5367.0
III Gompertz Univariate

lognormal
frailty

10 5352.0 5372.0

IV Gompertz Univariate
gamma frailty

10 5316.5 5336.5

V Gompertz Bivariate
correlated
lognormal
frailty

12 5348.3 5372.3

VI Gompertz Bivariate in-
dependent
gamma frailty

10 5356.8 5376.8

VII Gompertz Bivariate
correlated
gamma frailty

11 5311.8 5333.8

fitting model for the OCTO-Twin data. Therefore, we will mainly focus on this

model in the following sections.

7.2.2 Interpretation

Table 7.12 shows the parameter estimation and standard errors for Model VII.

The unrestricted parameters α̂∗0 and α̂∗1 are mentioned in Equation (5.2.6), α̂0 and

α̂1 are the parameters for bivariate gamma distribution in Equation (5.1.3). Stan-

dard errors of α̂0 and α̂1 are derived by using the delta method. Bivariate frailties

B1 and B2 ∼ Gamma(10.362, 10.362), and the correlation coefficient is ρ̂ = 0.499.

Figure 7.2 displays the density of bivariate gamma frailties B1 and B2. The graphs

illustrate the density from two directions. The left one shows that the mean of
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Table 7.12: The estimation (standard errors) of parameters for Model VII for
OCTO-Twin data

transitions intercept t

1→ 2 −2.369 (0.146) 0.137 (0.021)
1→ 4 −3.031 (0.127) 0.070 (0.010)
2→ 1 −1.432 (0.138) 0
2→ 3 −1.259 (0.142) 0.072 (0.020)
2→ 4 −3.210 (0.351) 0.070 (0.010)
3→ 4 −1.781 (0.105) 0.070 (0.010)

α̂∗0 = 1.642 (0.055) α̂∗1 = 1.648 (0.039)
α̂0 = 5.165 (0.284) α̂1 = 5.197 (0.203)

frailty equals 1, which is assumed in Equation (5.1.3). The right one shows the

symmetry of the density because B1 and B2 follow the same gamma distribution.

Most of the estimates are as expected. For instance, the hazard of deteriora-

tion of cognitive impairment increases with increasing age, i.e. β̂t.12 and β̂t.23 > 0.

Concerning the onset of cognitive impairment, the hazard ratio of people at age

t + 1 versus people at age t is B1 exp(β̂t.12). This hazard ratio is 1.147 when as-

suming B1 = E(B1) = 1. Furthermore, all the standard errors of estimates are

relatively small. The estimation of the fixed-effect model (Model II) is slightly

different from the frailty model (Models III-VII). Details of these estimations are

not shown, see Section 7.1.2 for similar comparison and discussion of this aspect

for CAV data.

Figure 7.3 shows the transition hazards for individuals. The graphs are help-

ful to understand the differences between hazards for the estimated model. It

clearly illustrates that the hazards for moving forward between living state (1→

2 and 2 → 3) are higher than those moving to death (1 → 4, 2 → 4 and 3 → 4).

Given a simple example: assume there is an individual who is observed in state

1, then she or he is more likely to move to state 2 rather than death directly. For

different frailties in the top two graphs, it is obvious that a larger frailty is associ-

ated with a higher risk of moving. For example, there are two individuals j and

k both observed in state 1 but with different frailties: b1j = 1.5, b1k = 0.5. Then,
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Figure 7.2: The fitted density of bivariate gamma frailty in Model VII for OCTO-
Twin data in two viewing directions.

individual j will be more likely to move to state 2, compared with individual k

who is more likely to stay in state 1. Therefore, we can call people like j and k

movers and stayers, respectively.

More detailed interpretation and comparison can be illustrated by the tran-

sition probabilities. These are the probabilities for each transition during a cer-

tain time interval. In the application for OCTO-Twin data, transition probabili-

ties can be presented in a 4 × 4 matrix, where rows represent current states and

columns represent the next states. Consider individuals who are at age 85 and 90,

two-year transition probabilities for them as movers (b1 = b2 = 1.5) and stayers

(b1 = b2 = 0.5) in Model VII are given by

P(∆t = 2|b1 = b2 = 1.5, age = 85) =


0.518 0.200 0.097 0.184

0.172 0.287 0.342 0.199

0 0 0.620 0.380

0 0 0 1


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Figure 7.3: Six transition hazards in Model VII for OCTO-Twin data. Fixed effect
hazard (solid line) for all transitions, frailty b=0.5 (dashed line) and b=1.5 (dotted
line) for transition 1→ 2 and 1→ 4.

P(∆t = 2|b1 = b2 = 0.5, age = 85) =


0.800 0.087 0.038 0.075

0.223 0.262 0.334 0.181

0 0 0.620 0.380

0 0 0 1


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P(∆t = 2|b1 = b2 = 1.5, age = 95) =


0.307 0.244 0.189 0.260

0.106 0.216 0.381 0.297

0 0 0.507 0.493

0 0 0 1



P(∆t = 2|b1 = b2 = 0.5, age = 95) =


0.665 0.131 0.085 0.119

0.170 0.188 0.366 0.276

0 0 0.507 0.493

0 0 0 1

 .

We define the time of hazard as the start time of the interval, and the P matri-

ces are calculated by using the piecewise constant approximation introduced in

Section 3. The matrices above clearly show the transition probabilities for people

with different frailties and ages. For example, probabilities of people at age 85

staying in state 1 are 51.8% (movers) versus 80.0% (stayers). Probabilities for peo-

ple as movers staying in state 2 are 28.7% (age 85) and 21.6% (age 95). Overall,

people with lower frailties are more likely to stay rather than move, older people

are more likely to move than younger.

For visualization of transition probabilities, Figure 7.4 and 7.5 shows the change

of two-year transition probabilities for people during age 80 to 110 for transition

1→ 2 and 1→ 4, respectively. From Figure 7.4, we can see that both movers and

stayers have marked rises in the first 10-20 years, and then have dropped. Al-

though they have similar trends, movers (peaked at 0.25 at age 90) tend to have

higher transition probabilities than stayers (peaked at 0.17 at age 97) during age

80 to 105. In contrast to transition 1→ 2, the graph of 1→ 4 shows very different

trends. Both movers and stayers in Figure 7.5 have steady increases over age 80

to 110.

90



Figure 7.4: The two-year transition probabilities for transition 1 → 2 for movers
(b1 = b2 = 1.5) and stayers (b1 = b2 = 0.5) during age 80 to 110, respectively.

7.2.3 Goodness of fit

For assessing the goodness of fit for frailty models, the estimation of individ-

ual frailties need to be derived from estimation results. The estimates of frail-

ties are sometimes called predictors in survival analysis, see Laird (1982). In this

study, we apply an empirical Bayes approach for this estimation, which is dis-

cussed in O’Keeffe et al. (2018) as well. It follows that

b̂i = E(bi|θ̂, i, y, x)

=
∫∫∫

Ωbi

bi f (bi|θ̂, i, y, x)dbi

=

∫∫∫
Ωbi

biLi(θ̂, i, y, x|bi) f (bi)dbi

Li(θ̂, i, y, x)

=

∫∫∫
Ωbi

biLi(θ̂, i, y, x|bi) f (bi)dbi∫∫∫
Ωbi

Li(θ̂, i, y, x|bi) f (bi)dbi
.

(7.2.2)
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Figure 7.5: The two-year transition probabilities for transition 1 → 4 for movers
(b1 = b2 = 1.5) and stayers (b1 = b2 = 0.5) during age 80 to 110, respectively.

Here bi is the n-dimensional frailty, where n = 2 for Model VII. θ̂ is the

fixed-effect estimates for the corresponding parameter estimations of the model.

Li(θ̂, y, x) represents the contribution for the model likelihood function of indi-

vidual i.

The assessment of the goodness of fit for models in OCTO-Twin data is re-

stricted by the interval censoring of the transitions between living states. How-

ever, as the death state is known at an exact time, it is good to compare estimated

model-based survival with Kaplan-Meier curves. For Model VII, a baseline-state

specific comparison between model-based survival and Kaplan-Meier estimates

of survivor functions over time is shown in Figure 7.6. Individual survival curves

start from years of baseline because each individual has different age at baseline.

Sample sizes (N) are different for each state at baseline. There is some misfit for

survival from state 3 and the Kaplan-Meier curve, but overall, the fit of Model

VII is quite good. Possible reasons for this misfit: firstly, individuals in state 3 at

baseline may be less frail when compare to individuals observed in state 3 during
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the follow-up. This can be checked by adding covariate information to the model

for transition-specific hazard h34(t) only, this was done in Van den Hout (2016)

Section 4.10. Secondly, we define frailties in transition 1 → 2 and 1 → 4, but

no frailty is related to state 3. This can be investigated by adding a frailty that is

related to state 3 specifically. Yet another option, would be to consider different

baseline hazard functions, such as the Weibull distribution. These options would

be of interest in thorough data analysis, but within the current context, we focus

on the methodology of the frailty model, and would not try these options since it

does not give us an extra scope for our interests.

Figure 7.6: Comparison between mean of model-based survival (grey line) and
Kaplan-Meier curves (black line) for Model VII for OCTO-Twin data. State-
specific graphs for the three living states at baseline (with sample size 394, 146
and 152 for state 1, 2 and 3, respectively). Black dashed lines denotes the 95%
confidence boundaries.

The empirical Bayes estimates can also be applied in predictions. For ob-

served individuals in OCTO-Twin data and new individuals with observed state

trajectories, estimates of individual-frailties can be illustrated by Equation (7.2.2).

Therefore, predicted transition probabilities can be derived. Another way for pre-
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diction is to calculate transition probabilities conditional on a fixed frailty, such

as b1 = b2 = 1.

7.3 Computation in the R software

All the results including tables and graphs we have discussed in this chapter

are produced using the R software. Here we would introduce some usages of

packages and functions when we analysed CAV and OCTO-Twin data. For more

details of the R code, please see Appendix A.

For all the fixed-effect models, we can use the package msm directly. It is quite

easy and fast. For example, we have fitted four different fixed-effect models

for CAV data. For fitting these models by using msm package, we choose the

method of "BFGS" introduced in Chapter 3, and the max iteration ”maxit” is 1000

for avoiding the failure of convergence.

However, msm can not be used for frailty models, since we need to integrate

out the frailty B when we maximising the likelihood function, see Chapter 5 for

computation details. Therefore, frailty models in this study are implemented by

user-written code. We use "Nelder-Mead" in the function optim when maximis-

ing the likelihood function for all the frailty models, and use Gauss-Hermite and

trapezoidal rule for quadrature for lognormal frailty models and gamma frailty

models, respectively. For the non-parametric frailty model, there is no integration

in the likelihood function.

Details of likelihood functions and quadrature for user-written code are shown

in Appendix A.4, A.5 and A.6.

7.4 Simulation

In the previous section, we have fitted several fixed-effect models and frailty

models for the OCTO-Twin data. The bivariate gamma-distributed frailty model

is the best one among them, and has an overall good assessment of the goodness-
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of-fit. This model is our main contribution. Therefore, we would like to per-

form a simulation study to investigate the performance of the bivariate gamma-

distributed frailty multi-state model (BGF model in what follows).

We try to mimic the process of the OCTO-Twin data: a four-state process with

backward transition 2 → 1. The parameter estimates for Model VII (shown in

Table 7.12) are set as the true values for the simulation. Note that all the true

values are round to two decimal places. The number of replications is 20 in the

simulation for each scenario. The model computation is quite time-consuming,

so we only do a small simulation study.

7.4.1 Sample size and interval width

First, we would like to investigate the BGF model performance for data with

different sample sizes and follow-up times (censoring). We use scenarios with

respect to the follow-up times that are similar to the studies in the applications

for CAV and OCTO-Twin data, where the follow-up times are usually 1-3 years.

Simulations are designed as follows:

• We consider four different scenarios:

(1) Sample size =100, time length=15 years, people are observed every 3

years.

(2) Sample size =200, time length=15 years, people are observed every 3

years.

(3) Sample size =100, time length=9 years, people are observed every 1.5

years.

(4) Sample size =200, time length=9 years, people are observed every 1.5

years.

• All the individuals enter the study at the same age (80 years old) in state 1.

The delayed entry will be investigated in Section 7.4.2.

• The model we fit for each scenario is the same as Model VII in Section 7.2,
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where age is the covariate with restricted parameters βage.rs for transition

r → s: βage.14 = βage.24 = βage.34 = βage.r, βage.21 = 0 and frailties are defined

for transitions 1→ 2 and 1→ 4.

• Frailty terms are generated from the bivariate gamma distribution and ran-

domly allocated to each individual.

Sample sizes in all the scenarios are relatively small because of computational

demands. Also, once it works on the small sample size, we believe that it will

work on the bigger sample size as well. Table 7.13 shows the simulation results

for the four scenarios. The SD and R.bias are the empirical stand deviation and

the relative bias of parameter estimates. Considering the number of replications

is 20, the bias of parameter estimates are relatively small in all scenarios. Com-

paring data with different sample sizes, we can see that some of the estimates in

Scenarios (2) and (4) are a little bit better than (1) and (3), but some of them are

worse. Comparing data with different time intervals, we can see that almost all

the estimates in Scenarios (3) and (4) are better than (1) and (2). In particular, the

means of frailty estimates α∗0 and α∗1 are all around 1.53 and 1.54 for all these four

scenarios.

The result indicates that the estimation of frailty parameters might be biased

in our model. The estimates are exactly same numbers because we round them,

but there are small differences across the estimation in each scenarios. Moreover,

if we use the mean estimates of α∗0 and α∗1 to compute the correlation coefficient of

the two frailties, we get ρe = exp(1.53)/(exp(1.53)+ exp(1.54)) ≈ 0.498, which is

the same as the true value of the correlation coefficient, see Section 3.3. Figure 7.7

shows the probability density of the frailty B1 or B2 with true values of parameters

and mean of estimates of parameters in Scenario (1). These two curves are similar.

Therefore, there seems to be slight underestimations of two frailties, but they do

not affect the value of the correlation coefficient of two transitions, and the picture

shows that the difference is negligible. We will see the similar pattern in other

simulations in the following subsections.
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Figure 7.7: The probability density function of frailty B1(B2) with different values
of parameters. The red curve is the density of frailty B1(B2)∼ Gamma(3.29, 3.29),
where α∗0 = 1.64 and α∗0 = 1.65. The blue curve is the density of frailty B1(B2)∼
Gamma(3.06, 3.06), where α∗0 = 1.53, α∗0 = 1.53. Frailties B1 and B2 has the same
distribution.

In conclusion, the results are better when the time intervals are smaller, i.e.

people are observed more often. The sample size does not affect the results sub-

stantially in this simulation.

7.4.2 Left truncation of frailty

Left truncation of individuals in the data is not explicitly modelled in our ap-

proach, but is accounted for by using the Markov assumption. Because of the as-

sumption, only transition probabilities P(Yj = yj|Yj−1 = Yj−1, θ, x) are modelled.

Nevertheless, the combination of left-truncation of frailty terms is an interesting

aspect to be explored. Individuals entering the study at different ages may have

different frailties. For example, an individual entering the study at age 80 in state

1 may be less frail than an individual entering the study at age 70 in the same

state. Therefore, we would like to investigate the BGF model performance in this
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situation. Simulations are designed as follows:

• For all the scenarios: Sample size =100, time length=9 years, people are

observed every 1.5 years.

• People are allocated in five groups equally, individuals in groups 1-5 enter

the study at age 80, 82, 84, 86, 88, respectively.

• We consider two different scenarios:

(5) People enter the study at different ages. Frailties are generated from the

bivariate gamma distribution and randomly allocated to each individual.

(6) People enter the study at different ages. Frailties are generated from the

bivariate gamma distribution and randomly allocated to people in groups 1

and 2. For people in groups 3− 5, only frailties with value less than 0.5 are

randomly allocated. The choice of 0.5 is a little bit arbitrary to some extent,

but it means that people in groups 3− 5 are defined with low frailties, given

the mean of the frailty distribution is 1.

• The model we fit for each scenario is the same as Model VII in Section 7.2.

Table 7.14 shows the simulation results for these two scenarios. We do not

consider the left-truncation of frailties when generating the data in Scenario (5),

and define lower frailties for individuals who enter the study at greater ages for

data in Scenario (6). This design is in order to define a baseline age-specific frailty.

The motivation is to investigate whether there is a left truncation due to the com-

bination of age dependency and frailty. Thus, the comparison of these two sce-

narios can indicate whether the left-truncation of the frailty affects the parameter

estimation.

The first two rows in Table 7.14 are for the intercepts for transitions 1 → 2

and 1 → 4. As we can see, the biases of estimates of βint.12 and βint.14 are -0.18

and -0.13 in Scenario (5), but they are -0.32 and 0.29 in Scenario (6), respectively.

We can see the increases in biases for these two estimates from Scenario (5) to

Scenario (6), and the differences for these estimates in Scenarios (5) and (6) are
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Table 7.14: Parameter estimation in the Scenario (5) and (6)
Parameter True Scenario (5) Scenario (6)

value Mean(SD) Bias R.bias Mean(SD) Bias R.bias

βint.12 -2.37 -2.55(0.45) -0.18 0.08 -2.69(0.35) -0.32 0.13
βint.14 -3.03 -3.16(0.26) -0.13 0.04 -3.32(0.32) 0.29 0.09
βint.21 -1.43 -1.43(0.36) 0.00 0 -1.50(0.34) 0.07 0.05
βint.23 -1.26 -1.34(0.36) -0.08 0.06 -1.16(0.47) 0.10 0.08
βint.24 -3.21 -3.05(0.61) 0.16 0.05 -3.35(0.66) -0.14 0.04
βint.34 -1.78 -1.59(0.35) 0.19 0.11 -1.64(0.46) 0.14 0.08
βage.12 0.14 0.12(0.04) 0.02 0.14 0.13(0.03) 0.01 0.07
βage.r 0.07 0.06(0.01) 0.01 0.14 0.05(0.02) 0.02 0.29
βage.23 0.07 0.07(0.01) 0.00 0 0.06(0.02) 0.01 0.14

α∗0 1.64 1.53(0.01) 0.11 0.07 1.68(0.11) -0.04 0.02
α∗1 1.65 1.53(0.02) 0.12 0.07 1.54(0.14) 0.11 0.07

quite substantial. Since the bivariate frailties are defined in transitions 1→ 2 and

1 → 4 as well, our model may not be good at dealing with left truncation when

the frailty depends on the age of entry. Entry time-related frailty as a topic for

future study will be further discussed in Chapter 8.

Moreover, we would like to compare the estimates of Scenario (5) with Sce-

nario (3). The only difference between these two scenarios is that people enter

the study at the same ages in Scenario (3) and at different ages in Scenario (5).

As we can see, some biases are smaller in Scenario (3), but some are smaller in

Scenario (5). Considering that there are only 20 replications in this simulation,

we infer that parameter estimation in Scenario (3) and Scenario (5) is similar. It

indicates that the identifiability of the BGF model is not affected by the varia-

tion of observed entry times, i.e. people enter the study at different times. This is

based on the assumption that there is not left truncation in the frailty distribution.

However, if different times of observation at baseline induce the left truncation

for frailty distributions, then the model may not be adequate.
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7.4.3 Degree of heterogeneity and correlation of frailties

Next, we would like to investigate parameter estimation for data with a dif-

ferent degree of heterogeneity (i.e. different variance of frailties B1 and B2) and

different correlation between frailties. These differences can be generated by dif-

ferent values of frailty parameters α∗0 and α∗1 . Note that Var(B1) = Var(B2) =

(α0+α1)
(α0+α1)2 , and Corr = ρB = α0

α0+α1
> 0, where α0 = exp(α∗0), α1 = exp(α∗1). Simula-

tions are designed as follows:

• We consider four additional different scenarios (7)-(10). In Scenarios (7) and

(8), we have the same variance (0.04), this small variance is similar to Scenar-

ios (1)-(6). In Scenarios (9) and (10), we have the same correlation coefficient

(0.5), and larger variances :

(7) α∗0 = 1, α∗1 = 3, then Var ≈ 0.04, Corr ≈ 0.12.

(8) α∗0 = 3, α∗1 = 1, then Var ≈ 0.04, Corr ≈ 0.88.

(9) α∗0 = α∗1 = 0.5, then Var ≈ 0.3, Corr = 0.5.

(10) α∗0 = α∗1 = 0, then Var = 0.5, Corr = 0.5.

• For all the scenarios: Sample size =100, time length=9 years, people are

observed every 1.5 years.

• All the individuals enter the study at the same age (80 years old) in state 1.

• The model we fit for each scenario is the same as Model VII in Section 7.2.

• Frailty terms are generated from the bivariate gamma distribution and ran-

domly allocated to each individual.

Figure 7.8 shows the probability density of Scenarios (1)-(6), (7)-(8), (9) and

(10), respectively. In Scenarios (1)-(6), α∗0 = 1.64, α∗1 = 1.65, Var ≈ 0.1, Corr ≈

0.498. These values are similar to the results of Model VII of the OCTO-Twin data,

so it can be seen as a good standard to compare the variance in Scenarios (7)-(10).

As we can see, The top two graphs in Figure 7.8 have similar shapes: there is no
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Figure 7.8: The probability density function of frailty B1(B2) with true value in
Scenarios (1)-(6), (7)-(8), (9) and (10). The distribution of B1 is the same as it of B2,
the frailty distribution in Scenario (7) is the same it in Scenario (8).

obvious skewness, and they peak around 1. The most obvious difference between

them is that the top right one is narrower, since it has a smaller variance. The

shapes of the bottom two graphs are quite different from the first two graphs.

They are both right skewed and the peak at values smaller than 1. The shapes of

them are obviously wider than the top two graphs. Compared with variances in

Scenarios (1)-(8), variances in Scenarios (9) and (10) are quite large, which should

be enough to investigate the heterogeneity of the data.

Table 7.15 shows the simulation results for these four scenarios. Firstly, we

would like to examine the β-related parameters, which are the fixed-effect pa-

rameters. Considering the small number of replications in our study, the biases

of these parameter estimates are relatively small, and there are no big differences

for each scenario. However, the estimates of frailty parameters α∗0 and α∗1 are

not as good as for the fixed-effect parameters. There biases are quite large, espe-

cially for Scenarios (9) and (10). The variances of estimated frailties in Scenarios
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(7)-(10) are 0.03, 0.04, 0.20, 0.11, respectively. The estimated correlation coeffi-

cient between frailties in Scenarios (7)-(10) are 0.11, 0.89, 0.50, 0.50, respectively.

Clearly, the frailty parameter estimation in Scenarios (7) and (8) are better than

Scenarios (9) and (10). Moreover, it is interesting that although there are biases in

the estimated frailty parameters, the estimated correlation coefficients are close

to the true values. Meanwhile, the estimates of the fixed-effect parameters (β-

related parameters) are relatively good as well. Therefore, it can be concluded

that data with a smaller degree of heterogeneity (i.e. small variance of frailty)

will lead better estimates, and data with a large degree of heterogeneity will still

lead good estimates of fixed-effect parameters. Moreover, the biases of the esti-

mates of frailty parameters would not affect the value of correlations between the

hazards of two transitions, only the estimated frailty variance will be biased.

7.4.4 Incorrect model specification

This section investigates model misspecification. We would like to explore

the BGF model with respect to missing covariates. There are many other situa-

tions of misspecification that can be explored as well, such as misspecifying the

distribution of the hazard function, the frailty distribution. We did not investi-

gate all the possible misspecifications, but we could use the similar approach to

investigate them. For example, Gompertz versus Weibull distributions for the

hazard function, lognormal versus gamma distributions for the frailty. These are

good topics for future study. For investigating missing covariates, we add gen-

der effect in the simulated process, where βgender.14 = βgender.24 = βgender.34 6= 0,

βgender.12 = βgender.21 = βgender.23 = 0. Simulations are designed as follows:

• We consider two different scenarios:

(11) Add a gender effect in the simulated process, and fit the model without

gender as the covariate.

(12) Add a gender effect in the simulated process, and fit the model with

gender as the covariate.
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Table 7.16: Parameter estimation in the Scenario (11) and (12)
Parameter True Scenario (11) Scenario (12)

value Mean(SD) Bias R.bias Mean(SD) Bias R.bias

βint.12 -2.37 -2.31(0.17) 0.06 0.03 -2.20(0.14) 0.17 0.07
βint.14 -3.03 -3.21(0.40) -0.18 0.06 -3.10(0.14) -0.07 0.02
βint.21 -1.43 -1.51(0.24) -0.08 0.06 -1.44(0.30) -0.01 0.01
βint.23 -1.26 -1.05(0.33) 0.21 0.17 -1.31(0.22) -0.05 0.04
βint.24 -3.21 -3.69(0.57) -0.48 0.15 -3.43(0.42) -0.22 0.07
βint.34 -1.78 -2.00(0.41) -0.22 0.12 -1.77(0.17) 0.01 0.01
βage.12 0.14 0.16(0.04) -0.02 0.14 0.13(0.03) 0.01 0.07
βage.r 0.07 0.08(0.05) -0.01 0.14 0.08(0.03) -0.01 0.14
βage.23 0.07 0.05(0.01) 0.02 0.29 0.08(0.01) -0.01 0.14
βgender -0.35 - - - -0.33(0.09) 0.02 0.06

α∗0 1.64 1.53(0.03) 0.11 0.07 1.53(0.01) 0.11 0.07
α∗1 1.65 1.53(0.04) 0.12 0.07 1.53(0.02) 0.12 0.07

• For all the scenarios: Sample size =100, time length=9 years, people are

observed every 1.5 years.

• All the individuals enter the study at the same age (80 years old) in state 1.

• Frailty terms are generated from the bivariate gamma distribution and ran-

domly allocated to each individual.

Table 7.16 shows the simulation results for these two scenarios. For Scenario

(11), we can see that biases of estimates are relatively small, except for parameters

βint.14, βint.24 and βint.34. The biases of these three estimates are -0.18, -0.48 and

-0.22, respectively. In contrast, results in Scenario (12) are good, all the biases are

relatively small. The difference between Scenarios (11) and (12) is that gender is

not defined as a covariate in the transitions 1 → 4, 2 → 4 and 3 → 4 in Scenario

(11) but is defined in Scenario (12). The results indicate that the misspecification

of the model by omitting covariates does affect the model performance and in-

duces bias. We hope the frailty term in transition 1 → 4 would account for the

misspecification to some extents. We see some hopefully evidence, since the bias

in βint.14 seems a little better than βint.24 and βint.34, but it is not conclusive. For the

estimates of α∗0 and α∗1 , there are slight differences across these two frailty values
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in Scenarios (11) and (12), where α∗0(11) = 1.529, α∗1(11) = 1.530, α∗0(12) = 1.534

and α∗1(12) = 1.533, respectively. It is not shown in the table since parameter

estimates are round to two decimal places.
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Chapter 8

Conclusion

In this thesis, we have discussed both fixed-effect multi-state models and

frailty models, and their application to two datasets. For the fixed-effect model,

we introduced the parametric hazard function, the likelihood function and model

selection. In particular, we have contributed an analytic expression of the pro-

gressive four-state model. This closed-form expression is helpful for readers to

understand the transition probability for each transition in the multi-state model.

Moreover, we have compared the speed of calculation when using this analytic

expression with the piecewise-constant approximation, which is a commonly-

used method. The result shows that the former is a direct solution, which leads

to a fast computation time.

For the frailty model, both the univariate frailty model and the bivariate frailty

model are discussed. For the parametric univariate frailty model, we introduced

two common distributions: the lognormal distribution and the gamma distri-

bution. A novel method is presented when we introduced the univariate non-

parametric frailty model. This method is used to define covariate-specific masses

πk, in order to investigate the probabilities of different individuals being movers

(larger frailty values) or stayers (smaller frailty values).

For the bivariate frailty model, we discussed frailties that follow either a bi-

variate lognormal or a bivariate gamma distribution. The latter distribution can
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be defined in more than one way, and we use Cheriyan and Ramabhadran’s def-

inition presented by Yashin et al. (1995) in the context of the correlated-frailty

model. This is also the main contribution of this thesis, i.e. present an approach

for including bivariate gamma-distributed frailties in the multi-state model for

interval-censored data. Data analysis is challenging in this approach because of

interval censoring, the multiplicity of healthy and unhealthy states and compu-

tational complexities.

The advantages of Cheriyan and Ramabhadran’s definition of the bivariate

gamma distribution: (1) there are only two parameters, and (2) the bivariate den-

sity function is constructed by three univariate gamma variables which is con-

venient when using a marginal likelihood function. Both advantages reduce the

computational challenge of fitting frailty models. An important disadvantage of

this approach is that the correlation of two frailties for an individual has to be

positive due to the restricted range of parameters. Therefore, it is not possible to

include frailties in transitions that are correlated negatively. For example, we did

not define frailties in transition 2 → 3 and 2 → 1. Negatively correlated frailties

are of course possible when using lognormal frailty distributions. In Section 7.2,

we fit two bivariate gamma frailty models: one with independent gamma frail-

ties (Model VI) and one with correlated gamma frailties (Model VII). Model VII

has the lower AIC value. This approach is helpful for cases where it is hard to

judge whether the correlation is positive and negative.

Left truncation of data for multi-state survival models is briefly discussed in

our study, but not explicitly modelled in our approach, since it is accounted for

by using the Markov assumption. Because of the assumption, only transition

probabilities P(Yj = yj|Yj−1 = Yj−1, θ, x) are modelled. An alternative way to

deal with the left truncation is to extend the model by modelling the prevalence

of individuals being in the first state, this method has been discussed in previous

literature, e.g. Van Den Hout (2016). When left truncation is considered, it is

important to determine the time scale. For example, for the CAV data introduced

in Chapter 2, all the individuals are observed after the transplant. The time scale
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in our study is years since transplant, so the left truncation can be ignored in the

data analysis. However, if the time scale is chosen to be the age of individuals,

then the left truncation should be considered. The context we discussed above

is about left truncation for the fixed-effect multi-state model. There are many

papers that discussed the left truncation for multi-state models, see Commenges

(1999), Andersen and Keiding (2002) and Niessl et al. (2020).

In our study of the frailty model, left truncation of frailty could be considered

as well. If individuals enter the study at different times, their frailty distribu-

tions may not be the same. For example, if the time scale of the study is age,

an individual entering the study at age 80 in state 1 is probably less frail than

an individual entering the study at age 70 in state 1. For the frailty model, there

are some publications that discussed the left truncation for the univariate sur-

vival data and clustered survival data, such as Van Den Berg and Drepper (2016)

and Eriksson et al. (2015). However, few publications discuss the left truncation

of frailties in the multi-state model. Therefore, the combination of left trunca-

tion and frailty terms is an interesting aspect to be explored further. An idea of

this future work is to define frailty values or distributions conditional on the left

truncation times. For example, define a age-dependent frailty, where the frailty is

constant for an individual over time but different with individuals having differ-

ent baseline ages. Individuals who enter the study at younger ages have larger

frailties and individuals who enter the study older have smaller frailties.

Another aspect for frailties that can be explored further is to relax the time-

constant heterogeneity assumption and consider frailty models with a time-varying

frailty term. The frailty in the current study is assumed to be time-constant, but

the unobserved heterogeneity might change over time. There are several ap-

proaches that discussed the time-varying frailty model for survival data. Yau and

McGilchrist (1998) and Munda et al. (2016) discussed the time-dependent frailty

following lognormal distribution and gamma distribution, respectively. Manton

and Yashin (1997) modelled the frailty with diffusion processes. Paik et al. (1994)

and Wintrebert et al. (2004) discussed the piecewise constant frailty models.
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A limitation of our study is with respect to using the OCTO-Twin data. Par-

ticipants in this dataset are identical and same-sex fraternal twins, but we do not

take this genetic dependency into account in the present study and assume they

are independent. A reason for this assumption is that the motivation of fitting

our bivariate frailty models is to investigate the correlation between two transi-

tion hazards, we do not aim for describing the dependence of individuals in the

model, e.g. the twin structure. We admit that our model might not be appro-

priately optimised for the OCTO-Twin data. Unfortunately, we do not have the

access to the complete data, which allows us to identify the twins. So we can-

not fit any additional models to investigate the dependence of individuals at this

moment. There are publications that are in a similar situation. For example, Ro-

bitaille et al. (2018) and Machado (2018) fit multi-state models for OCTO-Twin

data, but both of them do not take into account the twin structure in the model.

Although it is a shortcoming that not taking this twin structure into account, we

think the effect of this on our data analysis is rather minor.

The simulation study illustrates data with different sample sizes, follow-up

times, degree of heterogeneity and correlation of frailties. We found that the pa-

rameters in most of the designed scenarios are identified. The biases of estimates

are relatively small. Specifically, results are better with shorter follow-up times

and smaller degrees of heterogeneity. Moreover, we have checked the model per-

formance for left-truncated data, and found that our bivariate gamma-distributed

model may not be good at dealing with it. Therefore, we suggest using our model

for data without left truncation.

For further study, there are some aspects that we have discussed above: firstly,

we would like to take into account the left truncation of frailty in the model; sec-

ondly, defining a time-varying frailty in the model would also be good to explore;

thirdly, we should get access to the complete OCTO-Twin data to investigate the

twin structure. Next, we can explore the approach to describe the dependence of

individuals in the univariate and bivariate frailty models.

Moreover, some other further aspects can be considered as well. Firstly, we
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could extend the number of covariates in the model for the data analysis. In the

current study, our aim is not to provide a comprehensive analysis of the data,

but to use the data to illustrate how our frailty models work. So only several

covariates in some transitions are defined in the data analysis, especially for the

OCTO-Twin data. In further work, it is better to consider other covariates in the

model, such as gender.

Secondly, fitting the proposed bivariate gamma-distributed frailty model in

the R software is very time-consuming. It may take hours to days to run depend-

ing on the sample size and complexity of models. This is a problem, which will

limit the scope of applications. In further study, it will be good to explore more

time-saving approaches. For example, we could simplify the code, explore differ-

ent functions and packages in the R software, or try to use other software. In the

simulation study, there are only 20 replications for each of the scenarios because

of the time-consuming computation as well. We should take more iterations in

the further study, to see whether the model results will be more stable.

Thirdly, there is a restriction on the bivariate gamma-distributed frailty model

we proposed: the correlation of two frailties must be positive. Therefore, it is

good to explore different bivariate gamma distributions. A good source to start is

Martins et al. (2019), who compared several bivariate frailty models for survival

data. Fourthly, the multivariate frailty model is a good option to be explored as

well. Frailties can be defined for more than two transitions, and then the resulting

model can investigate the correlation between them.

In conclusion, this thesis discussed the fixed-effect model and frailty model

for particular multi-state survival model and interval-censored data. The appli-

cations show that the proposed bivariate gamma distribution is an interesting

and useful addition to the current multi-state model research. It is often reason-

able to assume that the frailties for the two transitions out of state 1 are positively

correlated, and the data analysis and simulation study shows that using a gamma

distribution can lead to a good model fit.
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Appendix A

Some code for the R software

The R software is a free environment for statistical computing and graphics

(Team, R Core and others, 2013). All the computation, analysis and graphs in this

study are produced by the R software. We will show some basic R code for the

analysis mentioned in previous chapters for people who are interested in it.

A.1 Code for Chapter 3

Fixed-effect multi-state models can be implemented in the R software by us-

ing the package msm. Here is an example of Model II for OCTO-Twin data. Other

fixed-effect models can be illustrated using similar code.

1 # Generator matrix Q:

2 q <- 0.1

3 Q <- rbind(c(0,q,0,q), c(q,0,q,q),c(0,0,0,q),c(0,0,0,0))

4 qnames <- c("q12","q14","q21","q23","q24","q34")

5

6 # Model formulation:

7 # Covariates:

8 covariates <- as.formula("~age")

9 constraint <- list(age=c(1,2,3,4,2,2))

112



10 fixedpars <- c(9)

11 # Control:

12 method <- "BFGS"

13

14 # Modelling:

15 model <- msm(state~age , subject=case , data=dta , center=FALSE ,

qmatrix=Q, death=TRUE , covariates=covariates , constraint=

constraint , fixedpars=fixedpars , method=method , control=

list(fnscale =50000 , maxit =100000))

For the code above, Q is the starting value, dta is the name of OCTO-Twin data

and case is the subject id of individuals for OCTO-Twin data.

This msm function is involved in the package of same name. Please see Jackson

(2011) for more usages and examples.

The output information can be derived by

1 cat("\nModel with covariates: ")

2 print(model$covariates)

3 cat("and constraints :\n")

4 print(model$constraint)

5 cat("and fixedpars :\n")

6 print(model$fixedpars)

7 cat("\n-2 loglik =", model$minus2loglik ,"\n")

8 conv <- model$opt$convergence

9 cat("Convergence code =", conv ,"\n")

10 # paramter estimation and standard errors:

11 p <- model$estimates

12 p.se <- sqrt(diag(model$covmat))
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A.2 Code for Chapter 4

The likelihood function for frailty models can not be implemented using msm

package, since the frailty parameters need to be integrated out. The following R

code is the likelihood function of univariate lognormal distributed frailty model

(Model III) for OCTO-Twin data.

1 loglikelihood <-function(p){

2 # Model parameters:

3 beta0 <-p[1:6]

4 beta1 <-c(p[7],p[8],0,p[9],p[8],p[8])

5 theta <-p[10]

6 sigma <-exp(theta)

7 loglik <-0

8 # Data for individual i:

9 for(i in 1:N){

10 data.i<-dta.split[[i]]

11 o<-data.i$state

12 t<-data.i$age

13 # Integrate out frailty parameter vi:

14 integrand <-function(vi){

15 contri <-1

16 # Hazard generator matrix Q:

17 for(j in 2: length(o)){

18 Q<-matrix (0,4,4)

19 Q[1,2] <-exp(beta0 [1]+ beta1 [1]*t[j-1]+vi)

20 Q[1,4] <-exp(beta0 [2]+ beta1 [2]*t[j-1])

21 Q[1,1] <--sum(Q[1,])

22 Q[2,1] <-exp(beta0 [3]+ beta1 [3]*t[j-1])

23 Q[2,3] <-exp(beta0 [4]+ beta1 [4]*t[j-1])

24 Q[2,4] <-exp(beta0 [5]+ beta1 [5]*t[j-1])

25 Q[2,2] <--sum(Q[2,])

26 Q[3,4] <-exp(beta0 [6]+ beta1 [6]*t[j-1])
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27 Q[3,3] <--sum(Q[3,])

28 P <- MatrixExp(mat=Q,t=t[j]-t[j-1])

29 if(o[j]!=dead){

30 contri <-contri*P[o[j-1],o[j]]

31 }

32 else{

33 contri <-contri*(P[o[j-1] ,1:3]%*%Q[1:3, dead])

34 }

35 }

36 pdfvi <-dnorm(vi ,mean=0,sd=sigma)

37 contri*pdfvi

38 }

39 # Likelihood contribution:

40 contri <-myintegrate(integrand ,mu=0, sigma=sigma)

41 loglik <-loglik+log(contri)

42 }

43 cat("-2*Loglik = ", -2*loglik ,"\n") cat("sigma",round(sigma

,3),"\n")

44 -loglik

45 }

Piecewise-constant approximation is applied in this code. t is the time scale,

and the generator matrix Q is constant for each time interval t[j]-t[j-1], see

line 28. The function MatrixExp is a method to calculate the transition probability

matrix, see Section 3.4 for details. This function is included in msm. max is a R ob-

ject includes the parameter estimation when the maximum of likelihood function

is reached.

myintegrate in line 40 is a user-written function, it can be any proper inte-

gration methods as we discussed in Section 4.3. The following code shows two

common used methods: Trapezoidal rule and Gauss-Hermite quadrature.
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1 # Trapezoidal rule:

2 myintegrate <- function(integrand ,lower ,upper ,l){

3 nnodes <- (l-1)

4 grid <- seq(lower ,upper ,length.out=l)

5 int <- 0

6 h <- (upper -lower) / nnodes

7 int <- rep(NA ,l)

8 for ( i in 1:l ){

9 int[i] <- integrand(grid[i])

10 }

11 return (0.5*h*(int [1]+2*sum(int [2:(l-1)])+int[l]))

12 }

13

14 # Gauss -Hermite quadrature:

15 nnodes <- 5

16 cat("\nNumber of nodes in Gauss -Hermite quadrature = ",

nnodes ,"\n")

17 quad <- gauss.quad(nnodes ,"hermite")

18 nodes <- quad$nodes

19 weights <- quad$weights

20 myintegrate <- function(integrand ,mu,sigma){

21 x <- sqrt (2)*sigma*nodes+mu

22 f <- rep(NA ,nnodes)

23 for(i in 1: nnodes){f[i] <- integrand(x[i])}

24 (1/sqrt(pi))*weights%*%f

25 }

To derive the parameter estimation, we need to maximising the likelihood

function. It can be implemented using the function optim. The default algorithm

method of optim is Nelder-Mead, which is robust and often used in this study.

1 # Starting value:
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2 p0 <- c(rep(-1,6),rep (0.01 ,6) ,0)

3

4 # Maximaise:

5 max <- optim(par=p0 , fn=loglikelihood , method="Nelder -Mead",

control=list(maxit =5000) , hessian=TRUE)

6

7 # Results:

8 p <- max$par

9 p.se <- sqrt(diag(solve(max$hessian)))

A.3 Code for Chapter 5

The likelihood function is more complicated for bivariate frailty model, since

there are multiple frailty parameters need to be integrated out. The following

shows the code for bivariate correlated gamma distributed frailty model (Model

VII).

1 loglikelihood <-function(p){

2 # Model parameters:

3 beta0 <-p[1:6]

4 beta1 <-c(p[7],p[8],0,p[9],p[8],p[8])

5 # frailty parameters:

6 theta1 <-p[10]

7 theta2 <-p[11]}

8 alpha0 <-exp(theta1)

9 alpha1 <-exp(theta2)

10 # Boundary of frailty parameters when integrating out

11 UB0 <-qgamma (0.99, shape=alpha0 ,rate=alpha0+alpha1)

12 UB1 <-qgamma (0.99, shape=alpha1 ,rate=alpha0+alpha1)

13 # Contribution for each individuals:

14 loglik <-0
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15 for(i in 1:N){

16 # Data for individual i:

17 data.i<-dta.split[[i]]

18 o<-data.i$state

19 t<-data.i$age

20 # Integral funcion

21 integrand <-function(x0 ,x1,x2){

22 contri <-1

23 # Generator matrix Q

24 for(j in 2: length(o)){

25 Q<-matrix (0,4,4)

26 Q[1,2] <-exp(beta0 [1]+ beta1 [1]*t[j-1])*(x0+x1)

27 Q[1,4] <-exp(beta0 [2]+ beta1 [2]*t[j-1])*(x0+x2)

28 Q[1,1] <--sum(Q[1,])

29 Q[2,1] <-exp(beta0 [3]+ beta1 [3]*t[j-1])

30 Q[2,3] <-exp(beta0 [4]+ beta1 [4]*t[j-1])

31 Q[2,4] <-exp(beta0 [5]+ beta1 [5]*t[j-1])

32 Q[2,2] <--sum(Q[2,])

33 Q[3,4] <-exp(beta0 [6]+ beta1 [6]*t[j-1])

34 Q[3,3] <--sum(Q[3,])

35 P <- MatrixExp(mat=Q,t=t[j]-t[j-1])

36 if(o[j]!=dead){

37 contri <-contri*P[o[j-1],o[j]]

38 }

39 else{

40 contri <-contri*(P[o[j-1] ,1:3]%*%Q[1:3, dead])

41 }

42 }

43 # probability density function for each variable

44 pdfx0 <-dgamma(x0,shape=alpha0 ,rate=alpha0+alpha1)

45 pdfx1 <-dgamma(x1,shape=alpha1 ,rate=alpha0+alpha1)
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46 pdfx2 <-dgamma(x2,shape=alpha1 ,rate=alpha0+alpha1)

47 contri*pdfx0*pdfx1*pdfx2

48 }

49 contri <- myintegrate(function(x0){

myintegrate(function(x1) {

50 myintegrate(function(x2) {

51 integrand(x0 ,x1 ,x2)},0,UB1 ,6)},0,UB1 ,6)},0,UB0 ,6)

52 # Update likeihood function

53 loglik <-loglik+log(contri)

54 }

55 cat("-2*Loglik = ", -2*loglik ,"\n")

56 cat("alpha0",round(alpha0 ,3),"\n")

57 cat("alpha1",round(alpha1 ,3),"\n")

58 cat("p",round(beta0 ,3),"\n")

59 cat("rou",round(rou ,3),"\n")

60 -loglik

61 }

Note that alpha0 and alpha1 in line 8 and 9 are the parameters for the bivari-

ate gamma distribution, see Section 5.1.2 for details.

A.4 Code for Chapter 6

The following code is the non-parametric frailty model with gender-specific

frailty defined in transition 1→ 2, which we have discussed in Section 7.1.2.

1 loglikelihood <-function(p){

2 # Model parameters:

3 beta0 <-p[1:5]

4 beta1 <-p[6]

5 beta2 <-p[7:8]; beta3 <-p[9:13]

6 b1<-p[14]
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7 b2<- -b1

8 b<-c(b1,b2)

9 # Contribution for each individual:

10 loglik <-0

11 for(i in 1:N){

12 data.i<-dta.split[[i]]

13 o<-data.i$state

14 t<-data.i$years

15 g<-data.i$sex[1]

16 # Gender -specific parameters:

17 pi1.i<-exp(p[15]+p[16]*g)/(1+exp(p[15]+p[16]*g))

18 pi2.i<-(1-pi1.i)

19 bage <-data.i$bage [1]

20 dage <-data.i$dage [1]

21 contri <-c(1,1)

22 for(k in 1:2){

23 # Generator matrix Q

24 for(j in 2: length(o)){

25 Q<-matrix (0,4,4)

26 Q[1,2] <-exp(beta0 [1]+ beta1 [1]*t[j-1]+ beta2 [1]*

bage+beta3 [1]*dage+b[k])

27 Q[1,4] <-exp(beta0 [2]+ beta2 [2]*bage+beta3 [2]*dage)

28 Q[1,1] <--sum(Q[1,])

29 Q[2,3] <-exp(beta0 [3]+ beta3 [3]*dage)

30 Q[2,4] <-exp(beta0 [4]+ beta3 [4]*dage)

31 Q[2,2] <--sum(Q[2,])

32 Q[3,4] <-exp(beta0 [5]+ beta3 [5]*dage)

33 Q[3,3] <--sum(Q[3,])

34 P <- MatrixExp(mat=Q,t=t[j]-t[j-1])

35 if(o[j]!=dead){

36 contri[k]<-contri[k]*P[o[j-1],o[j]]
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37 }

38 if(o[j]== dead){

39 contri[k]<-contri[k]*(P[o[j-1] ,1]*Q[1,dead

]+P[o[j-1] ,2]*Q[2,dead]+P[o[j-1] ,3]*Q[3,

dead])

40 }

41 }

42 }

43 loglik <-loglik+log(contri [1]*pi1.i+contri [2]*pi2.i)

44 }

45 cat("-2*Loglik = ", -2*loglik ,"\n")

46 cat("b1",round(b1 ,3),"\n")

47 cat("pi1", round(pi1 ,3),"\n"))

48 -loglik

49 }

A.5 Code for Chapter 7

The following code shows how to draw the bivariate frailty distribution. The

graph of the fitted density of bivariate gamma frailty in Model VII for OCTO-

Twin data in two viewing directions is shown in Figure 7.2 in Section 7.2.2.

1 den3dp <- kde2d(B1 , B2)

2 persp(den3dp , box=TRUE , theta=-15,phi=0,

3 xlab="B1", ylab="B2",zlab="density of bivarite gamma",

4 d=1,col="grey",border="blue" ,axes=TRUE ,ticktype="detailed")

Note that B1 and B2 in the above code are the estimated frailties for each indi-

vidual in OCTO-Twin data.
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Appendix B

Delta method

The delta method is generally used to calculate the approximate probability

distribution of a function of the asymptotically normal distributed estimator with

a known limiting variance. Here the univariate delta method can be used to cal-

culate the standard error of frailty parameters σ, κ through σ∗, κ∗ as mentioned

in Section 4.2, as well as the parameter π through π∗, which will be introduced

in Chapter 6. Define a consistent estimator Xn converges in probability to its true

value µ when n→ ∞, then the uncertainty of Xn is asymptotic normality,

√
n(Xn − µ)

D→ N(0, σ2),

where n is the number of observations and σ is the variance, D→ means the con-

vergence in distribution. For the estimation of the variance of a function g of the

estimator,
√

n(g(Xn)− g(µ)) D→ N(0, σ2 · (g′(µ))2),

where g′(µ) is the differentiation of g(µ). Therefore,

Var(g(Xn)) ≈ σ2 · (g′(µ))2/n
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