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A B S T R A C T

Cosmology is going through an exciting period characterized by increasingly large and diverse

surveys of the Universe. The resulting datasets contain both cosmological and astrophysical

information, and provide many different perspectives on the components of the Universe and its

evolution. Despite this wealth of data, there are still many open questions and unknowns. These

vary from broad questions about the nature of dark energy and dark matter, to more concrete ones,

such as how fast exactly is the Universe expanding. In this thesis, we will focus on spectroscopic

surveys of the large-scale structure (LSS) in the Universe, and how they are used to study these

problems.

We begin in Chapters 1-4 with an introduction of modern cosmology, focusing on the topics

relevant to LSS surveys and the analysis tools used to extract cosmological information from these

datasets. After that, in Chapter 5 we use the latest baryon acoustic oscillation (BAO) measurements

and baryon density constraints based on big bang nucleosynthesis (BBN) to measure the expansion

rate of the Universe, through the Hubble constant. This is an independent measurement that

contributes to the ongoing Hubble tension debate. In Chapter 6, we perform for the first time a

Bayesian analysis of the Lyman-α (Lyα) forest correlation functions in order to measure BAO.

Finally, in Chapter 7 we study the possibility of an analysis of the full shape of the Lyα forest

correlation functions. This would expand on BAO analyses by providing cosmological information

from a broader range of scales. The next generation of cosmological surveys is just starting with

the Dark Energy Spectroscopic Instrument (DESI). Throughout this thesis, we performed multiple

studies that are relevant for future cosmological analyses with DESI. These analyses will advance

our physical understanding of the Universe by precisely mapping its evolution to higher redshifts

than ever before.

5





I M PA C T S TAT E M E N T

This thesis presents novel work in the field of observational cosmology. It is designed to pave the

way for future spectroscopic surveys, such as the Dark Energy Spectroscopic Instrument (DESI).

The methods presented here will be helpful in robustly extracting cosmological information from

future analyses of the Lyman-α (Lyα) forest.

The work in Chapter 5 contributes directly to the ongoing Hubble tension, by providing an

estimate of the Hubble constant that is independent of cosmic microwave background (CMB)

anisotropy measurements and cosmic distance ladder analyses. Our measurement is consistent with

CMB measurements from the Planck satellite, reinforcing the robustness of that result.

The Bayesian analysis we performed in Chapter 6 represents a novel approach to extracting

baryon acoustic oscillations (BAO) information from Lyα forest correlations. We have also

implemented an interface to the PolyChord sampler in the community code picca. This allows

Bayesian sampling to be used by future Lyα forest analyses. The work in Chapters 5 and 6

has already been directly relevant to the final extended Baryon Oscillation Spectroscopic Survey

(eBOSS) analysis as outlined in Chapter 8.

The work in Chapter 7 is directly relevant to future analyses of the 3D distribution of the Lyα

forest as it provides techniques for extracting more cosmological information from existing datasets.

As we have shown, this could lead to the first measurement of the growth rate of cosmic structure

at redshifts z > 2.

The work in this thesis has led to three first-author publications, and has been presented at

multiple collaboration meetings relating to eBOSS and DESI. As part of the work presented here, I

have developed the Vega library for modelling and fitting Lyα forest correlation functions. This

package is public, and is meant to replace the old fitting tool used in eBOSS.

Beyond academia, the discussion on Bayesian versus frequentist statistics from Chapter 6 is

relevant not only for science at large, but for other fields as well. The Bayesian framework and
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many associated tools have become mainstream in the field of machine learning, with wide-ranging

applications in all parts of society. Furthermore, the work in this thesis is meant to advance the tools

used to study and understand the Universe we live in and its physical laws. This has the potential to

inspire the next generation of physicists, and lead to increased interest in science.
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PA R T I

I N T R O D U C T I O N A N D

B A C K G R O U N D





C H A P T E R 1

G R AV I T Y A N D T H E

H O M O G E N E O U S U N I V E R S E

We begin the introduction with an overview of the basis of the standard cosmological model,

known as Λ Cold Dark Matter (ΛCDM). In Section 1.1, I introduce general relativity and the core

assumptions used in modern cosmology. After that, I introduce the components of the Universe

and the equations that govern them in Section 1.2. Finally, in Section 1.3 I give an overview of how

distances behave and how to measure them in an evolving Universe.

1 . 1 G E N E R A L R E L AT I V I T Y

The theory of General Relativity (GR) was constructed by Albert Einstein (Einstein, 1915), starting

from the equivalence principle. The weak version states that: the motions of freely-falling particles

are the same in a gravitational field and a uniformly accelerated frame, in small enough regions

(Carroll, 2004). This means that we cannot locally distinguish between the effect of gravity and that

of uniform acceleration. This led Einstein to formulate a more general version of the equivalence

principle, stating that: In small enough regions of spacetime, the laws of physics reduce to those of

special relativity (Carroll, 2004).

The equivalence principle leads us to look for a geometry that has curvature but appears locally

flat. A manifold is an object from the mathematical field of topology that describes a space that

may be curved, but locally resembles Euclidean space. We also need the structure of the manifold
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Chapter 1. Gravity and the homogeneous Universe

to be differentiable in order to be able to use calculus. Therefore, spacetime is defined as a four-

dimensional (4D) differentiable manifold. Further, we define the metric gµν which allows us to

measure distances by converting a set of coordinates X µ 1 into the line element:

ds2 = gµνdX µdXν , (1.1)

where we use the Einstein summation convention.

A general metric for the Universe can be created by using the cosmological principle. This is

based on the a priori expectation that we are not in a special location in the Universe. Firstly, our

inferences about the large-scale structure of the Universe should not change by moving to a different

position which is arbitrarily far away. This means that the Universe should be homogeneous on

large scales. Secondly, our inferences should not depend on which area of the sky we survey, which

means the Universe should be isotropic.

Robertson and Walker showed that a metric first used by Friedman (Friedman, 1922) and

Lemaı̂tre (Lemaı̂tre, 1931) is the most general metric with a time-dependent spatial component

under the constraints of homogeneity and isotropy (Robertson, 1935; Robertson, 1936a; Robertson,

1936b; Walker, 1937). The Friedman-Lemaı̂tre-Robertson-Walker (FLRW) metric using a metric

signature (+,−,−,−) is given by:

ds2 = dt2−a2(t)dσ
2, (1.2)

where a(t) is the scale factor and dσ2 is a metric of a 3D spatial slice with uniform curvature. We

also use the convention where we set the speed of light c = 1 throughout this introduction. In polar

coordinates, the most general dσ2 (assuming homogeneity and isotropy) is given by:

dσ
2 =

dr2

1− kr2 + r2dθ
2 + r2 sin2

θdφ
2, (1.3)

where k is a constant that sets the curvature of space. Negative values of k correspond to an

open Universe, positive values correspond to a closed Universe, and k = 0 corresponds to a flat

(Euclidean) Universe.

Having introduced the metric, which describes the geometry of spacetime, we turn our attention

to the contents of the Universe. On large scales we use the concept of a perfect fluid, that is, a fluid

completely characterized by its rest frame energy density ρ and isotropic pressure P. Imposing

1For example in Cartesian space: X µ =(t,x,y,z)
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1.1. General relativity

homogeneity and isotropy allows us to define the energy-momentum tensor in the frame of a

comoving observer:

T µ

ν =


ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 . (1.4)

In General Relativity the conservation of energy-momentum is expressed as:

∆µT µ

ν = 0, (1.5)

with the covariant derivative defined as:

∆µFν
γ = ∂µFν

γ +Γ
ν
σ µFσ

γ −Γ
σ
γµFν

σ , (1.6)

where ∂α ≡ ∂

∂Xα and the Christoffel symbols are given by:

Γ
µ

αβ
=

gµν

2
(∂β gαν +∂αgβν −∂νgαβ ). (1.7)

Using equations 1.4-1.7 and the FLRW metric, we arrive at the conservation equation:

ρ̇ +3
ȧ
a
(ρ +P) = 0, (1.8)

where the dot notation represents derivatives with respect to the time coordinate (ȧ = ∂a/∂ t). Note

that Equation 1.8 can also be derived in a more direct way from the mass continuity equation.

Finally, in order to study the evolution of the Universe, we need the Einstein field equations

which tie together the geometry of spacetime with its contents (in our case a perfect fluid). These

are given by:

Gµν +Λgµν = 8πGTµν ,

with Gµν = Rµν −
1
2

Rgµν ,
(1.9)

where Gµν is the Einstein tensor, Rµν and R are the Ricci curvature tensor and scalar respectively,

G is the Newtonian gravitational constant and Λ is the cosmological constant.

It is common to absorb the Λ term into the energy-momentum tensor, by interpreting it as an

energy density. This is preferred when interpreting Λ as the quantum energy of vacuum, or as an

extension to known physics meant to explain the observed accelerated expansion of the Universe.
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Chapter 1. Gravity and the homogeneous Universe

However, it is important to mention that the cosmological constant appears naturally when using

the principle of least action to derive the Einstein field equations (Lovelock, 1971; Lovelock, 1972).

The Einstein field equations using the FLRW metric and the energy-momentum tensor described

above give us only two equations (with the others vanishing due to homogeneity and isotropy),

known as the Friedman equations:

( ȧ
a

)2
=

8πG
3

ρ− k
a2 , (1.10)

ä
a
=−4πG

3
(ρ +3P). (1.11)

The first Friedman equation relates density and curvature to the speed of expansion. The second

equation gives us the acceleration. At first glance, it may appear that ä is always negative as the

density and pressure should be positive, leading to a decelerated expansion. However, as we shall

see, the cosmological constant Λ behaves as a perfect fluid with negative pressure, leading to

accelerated expansion when it becomes dominant. Finally, the Hubble parameter is defined as:

H ≡ ȧ
a
. (1.12)

The Friedman equations (Equations 1.10 and 1.11) combined with the conservation equation

(Equation 1.8) describe the evolution of the Universe under the assumptions of homogeneity and

isotropy. The perfect fluid we considered has multiple ingredients that behave in qualitatively

different ways, so we next turn our attention to the components of the Universe.

1 . 2 C O S M I C I N G R E D I E N T S

We have introduced the contents of the Universe as a perfect fluid that is homogeneous and isotropic.

However, this fluid has different components that come to dominate at different times and have

different impacts on the evolution of the Universe. Before introducing these cosmic ingredients, we

introduce a common framework to describe them, based on the equation of state:

P = wρ, (1.13)

where the state parameter w is assumed to be uniform. Plugging the equation of state into Equation

1.8 and integrating leads to:

ρ ∝ a−3(1+w). (1.14)
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1.2. Cosmic ingredients

This simple formalism combined with the Friedman equations allows us to study the behaviour and

evolution of different components based on their state parameter w.

When describing the components of the Universe, we generally use their density parameter Ωi,

instead of their physical density ρi. The density parameter is given by:

Ωi =
8πG
3H2 ρi =

ρi

ρc
, (1.15)

with ρc =
3H2

8πG
, (1.16)

where ρc is the critical density. This allows us to express the first Friedman equation in a very

compact form:

∑
i

Ωi(a)+Ωk(a) = 1, (1.17)

where the sum is performed over the different components i, and the density parameter of curvature

is given by:

Ωk(a)≡−
k

a2H2(a)
. (1.18)

We will also use the notation Ωi,0 = Ωi(t0) to refer to the present value of the density parameters.

Finally, we have the tools necessary to describe the components of the Universe, and their

impact on its evolution:

• Radiation: A majority of the radiation contribution today is made up of free-streaming

photons that are part of the cosmic microwave background (CMB). They have an equation

of state wr = 1/3, meaning they exert a positive pressure, Pr = ρr/3. When compared to

the total energy budget today, photons make up a very small fraction Ωr,0 ≈ 10−5. However,

from Equation 1.14 we can see that their density evolves as ρr ∝ a−4, meaning that they

used to have a much bigger contribution in the past. In the early Universe, radiation was a

dominant component and was coupled to baryons due to scattering by charged particles. This

led to an oscillatory behaviour between the opposing forces of radiation pressure and gravity

(see Chapter 3), that were left imprinted in the CMB.

• Baryons: It is standard in cosmology to refer to all ordinary matter (i.e. protons, neutrons

electrons) as baryons. Even though electrons are actually leptons, they are included for

simplicity, as their mass is tiny compared to nucleons. Today, baryons can be found either

in collapsed objects such as stars and planets, or in diffuse gas in (interstellar medium),

around (circum-galactic medium) or between (inter-galactic medium) galaxies. They make

29



Chapter 1. Gravity and the homogeneous Universe

up a relatively small percentage of the cosmic energy budget, with Ωb,0 ≈ 0.05. On the

other hand, in the early Universe baryons were part of the primordial plasma and coupled

to radiation. This coupling led to an oscillatory behaviour that gave rise to baryon acoustic

oscillations (BAO; see Chapter 3). At recombination the first atoms formed, which led to

a drastic decrease in the number of free charged particles and thus the decoupling from

radiation. Since then, the only large-scale interaction relevant for baryons is due to gravity,

leading to an equation of state wb = 0, and a density evolution ρb ∝ a−3.

• Neutrinos: Neutrinos were initially thought to be massless. However, neutrino oscillation

experiments (Fukuda et al., 1998) showed that they do have a total mass of at least 0.06 eV2.

In the early Universe, neutrinos were relativistic and can be treated similarly to radiation.

They turn non-relativistic around redshift ∼ 100, which is after the emission of the CMB,

but well before the low redshift (z < 4) measurements discussed in this thesis. Once that

happens, neutrinos become pressureless, with wν = 0. The interactions of neutrinos with

other particles are very weak, and therefore the strongest constraints on their masses come

from their gravitational interaction with the rest of the Universe. Neutrinos are an active area

of research, with only upper bounds on their masses currently available from cosmology (e.g.

Planck Collaboration et al., 2018; eBOSS Collaboration et al., 2021).

• Dark Matter: We have known for a long time that there is a type of matter in the Universe

that we do not see directly, yet it dominates the gravitational potential on scales from the

size of a galaxy to that of the entire Universe. Strong observational evidence for dark

matter started to appear in the 1970s from galaxy rotation curves (Rubin and Ford, 1970),

however, there were earlier hints of is existence (e.g. Kapteyn, 1922; Zwicky, 1933; Zwicky,

1937). Today, the best evidence for the existence of matter beyond the familiar baryonic

type comes from the CMB and large-scale clustering (e.g. Planck Collaboration et al., 2018;

eBOSS Collaboration et al., 2021; DES Collaboration et al., 2021). Dark matter either does

not interact with other standard model particles (except through gravity), or interacts so

weakly we have not yet detected any such events. In the early Universe, dark matter was

free to collapse gravitationally in a period when baryons were still coupled to radiation,

meaning they dominated early gravitational potential wells and left a strong imprint in CMB

anisotropies. Therefore, the best current estimate of the total matter density comes from

the CMB: Ωm,0 = 0.315± 0.007 (Planck Collaboration et al., 2018). When compared to

2Oscillation experiments only measure mass differences, not the absolute masses, so we can only get a lower bound.

30



1.2. Cosmic ingredients

the best measurements of the total baryon density given above, dark matter accounts for

approximately 80% of the total matter in the Universe. After recombination, baryons were

free to collapse into the dark matter potential wells, and today the two components behave

similarly on large scales with wm = 0 and ρm ∝ a−3. Because the CMB points to dark matter

being able to collapse gravitationally in the early Universe, it must have been cold. This

means that dark matter particles had small velocities that allowed them to efficiently clump

together. Therefore, we generally refer to this component as cold dark matter (CDM).

• Dark Energy: The final component we consider is also the most abundant one in the Universe

today, with ΩΛ,0 ≈ 0.7. Dark energy is the most recent addition to the standard cosmological

model, only becoming an established component about twenty years ago when two groups

independently showed that the expansion of the Universe is accelerating (Riess et al., 1998;

Perlmutter et al., 1999). The simplest explanation for this comes from the cosmological

constant we have introduced in Section 1.1. The cosmological constant can be described by

an equation of state wΛ =−1, and its energy density is constant: ρΛ ∝ const. However, we

still use the term dark energy to refer to this mysterious component because Λ is just the

simplest possibility, but by no means the only one. A common generalization considers dark

energy as a scalar field with a constant equation of state w 6=−1, or a time evolving equation

of state. Furthermore, there have been attempts to identify dark energy as the quantum

energy of vacuum, however, this led to the famous 120 orders of magnitude difference

between theory and cosmological measurements (Carroll, 2001). The best observational

constraints currently available (see Figure 1.1) are consistent with a value of wΛ =−1 (i.e. a

cosmological constant; e.g. Scolnic et al., 2018; Planck Collaboration et al., 2018; eBOSS

Collaboration et al., 2021), however, this is still an active area of research.

I have not included curvature in the list above because it is a geometric property of spacetime

rather than a physical component of the Universe (it is on the left-hand side of the Einstein field

equations). This may also be true for dark energy if it is described by the cosmological constant,

however, that has not been clearly established yet. Current observational evidence (Figure 1.1) is

consistent with the Universe being flat (i.e. k = 0, e.g. Planck Collaboration et al., 2018; eBOSS

Collaboration et al., 2021).

The model presented in Section 1.1 together with the components described here form the

basis for the currently accepted standard model of Cosmology, referred to as Λ cold dark matter
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Figure 1.1. Constraints of the dark energy density parameter (left) and the dark energy
equation of state (right) versus the matter density parameter from various cosmological
probes. These measurements overlap at ΩΛ,0 ≈ 0.7,Ωm,0 ≈ 0.3,w =−1, consistent with
a flat Universe (dashed line on the left) and a cosmological constant (dashed line on the
right). From eBOSS Collaboration et al. (2021).

(ΛCDM)3. Finally, we reformulate the Friedman equation to explicitly include the components

described above in terms of their density parameters today:

H2 = H2
0

(
Ωr,0a−4 +Ωm,0a−3 +Ωk,0a−2 +ΩΛ,0

)
, (1.19)

where H0 = H(t0) is the Hubble constant. The matter density parameter Ωm,0 is the sum of the

density parameters of all non-relativistic species today, which includes baryons, dark matter and

neutrinos. Note however, that when neutrinos were relativistic, their density parameter is included

in Ωr because they behave like radiation. While so far we have used Ωi,0 to denote the density

parameter of species i at the present time, from now we will simplify the notation. Therefore,

whenever we refer to Ωi, we mean the value of the density parameter at the present time.

1 . 3 D I S TA N C E S

In order to tie the theoretical understanding of the structure of spacetime to observations, we

need the ability to measure distances across the Universe. However, this is non-trivial due to the

expansion of the spatial component of the metric and also due to curvature. In general relativity

free-falling particles move along geodesics, with paths X µ(τ) obeying the geodesic equation:

d2X µ

dτ2 +Γ
µ

αβ

dXα

dτ

dXβ

dτ
= 0, (1.20)

3The final key ingredient of ΛCDM is inflation, which we discuss in Section 2.1.
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1.3. Distances

where τ is an affine parameter (monotonically increases along the path).

Photons, our main way of observing the Universe, are massless, and thus their four momentum

pµ = (E, pi) has zero magnitude: pµ pµ = 0. Combined with the Friedman equations, this means

that the energy of photons evolves as E ∝ a−1, or equivalently, the wavelength λ ∝ a(t). This

matches with the evolution of their energy density, ρ ∝ a−4, that we found in Section 1.2. Besides

the dilution due to the expansion of space which gives an a−3 term, photons also have redshift

effect a−1. Therefore, we introduce the cosmological redshift, z, to track the redshift due to the

expansion of the Universe. It is given by:

z≡ λ0−λe

λe
=

a(t0)
a(te)

−1, (1.21)

where the photon was emitted at time te with wavelength λe and observed at time t0 with wavelength

λ0. Very often, the wavelength of the emitted photons is known due to their relation to known

features in an object’s spectrum. This makes the redshift one of the most important quantities in

observational cosmology. It is convention in cosmology to set the scale factor at the present time to

equal 1: a(t0) = 1. This means we can directly relate the redshift to the scale factor of the Universe

at the time when the photon was emitted:

1+ z =
1

a(te)
. (1.22)

As the scale factor is the only unknown function in the metric, in the absence of peculiar velocities

the redshift acts as both a measure of time and distance.

A very useful concept for measuring distances in an evolving Universe is that of a comoving

distance. This is a rescaling of physical distance by the scale factor, meaning two objects initially at

rest with respect to each other remain equidistant in comoving coordinates. An object that emitted

light at time te, is today at a comoving distance given by4:

DC(te) =
∫ t0

te

dt ′

a(t ′)
=
∫ ze

0

dz
H(z)

, (1.23)

where ze = z(te).

Besides the comoving distance, cosmologists often use the angular diameter distance and the

luminosity distance.

The angular diameter distance is used when we want to relate the physical size, s, of an object

4Where we keep to the convention of c = 1.
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Chapter 1. Gravity and the homogeneous Universe

to its observed angular size θ . The angular size is commonly assumed to be small, such that the

angular diameter distance can be expressed as DA = s/θ . In terms of the comoving distance, this is

given by:

DA(ze) =
Sk(DC)

1+ ze
, (1.24)

where the function Sk depends on the curvature parameter Ωk, and is given by:

Sk(DC) =


sinh(DCH0

√
Ωk)/(H0

√
Ωk), Ωk > 0

DC, Ωk = 0

sin(DCH0
√
|Ωk|)/(H0

√
|Ωk|), Ωk < 0

. (1.25)

An often used closely related quantity is the comoving angular diameter distance, given by:

DM(ze) = (1+ ze)DA(ze) = Sk(DC). (1.26)

Finally, we consider observations of a distant object with absolute luminosity, L. If the

Universe was flat and static, the observed flux at a distance d from the source would be given

by F = L/(4πd2). When translating this into the FLRW spacetime, we first have to change the

area of the spherical shell to comoving coordinates such that it is given by 4πD2
M. Furthermore,

photons are redshifted on their way to us, and their rate of arrival changes due to the expansion of

the Universe, each giving an extra term of a−1. Therefore, the observed flux is given by:

F =
L

4πD2
M(1+ z)2 ≡

L
4πD2

L
, (1.27)

where we have defined the luminosity distance:

DL(ze) = (1+ ze)DM(ze) = (1+ ze)Sk(DC). (1.28)

The distances introduced in this section allow us to work with familiar physical quantities

such as flux, angles and the physical size of objects. Therefore, they allow us to tie cosmological

observables to theory and study the geometry of a constantly evolving Universe.
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C H A P T E R 2

T H E I N H O M O G E N E O U S U N I V E R S E

So far we have relied on the cosmological principle, by assuming homogeneity and isotropy, to

build the framework of ΛCDM. However, the Universe around us is clearly inhomogeneous and has

plenty of structure. Therefore, in this chapter we turn our attention to the formation of this structure.

We start in Section 2.1 by introducing a mechanism to seed small primordial inhomogeneities while

still maintaining the homogeneous background. After that, in Sections 2.2 and 2.3 we will study

the evolution of these perturbations through the different epochs and show how they lead to the

Universe we observe today.

2 . 1 I N F L AT I O N

The FLRW framework we introduced in Chapter 1 has a singularity as a −→ 0. This Big Bang

singularity points to either the model being incorrect in the very early Universe, or at best incomplete.

Cosmic inflation was introduced to solve some of the perceived problems with the standard Big

Bang cosmological model. Here we will briefly mention these problems, however our main focus

in this chapter is on the inhomogeneities in the Universe. As we shall see, one of the main features

of inflation is that it provides a framework for the Universe to be very homogeneous on large scales,

and yet have small deviations from homogeneity that will act as the seeds for the formation of

cosmic structure.

The problems that motivated the development of cosmic inflation are:
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Chapter 2. The inhomogeneous Universe

• Flatness problem: We have previously defined the curvature density parameter Ωk =

−k/(a2H2). As far as we know, the early Universe was first dominated by radiation and

after that by matter. Both of these have a Hubble radius, rH = 1/(aH), that grows with time,

leading to any small deviations from Ωk = 0 being amplified. In other words, Ωk = 0 is an

unstable equilibrium. Therefore, if the Universe we observe today is very close to being flat,

it must have been even closer in the distant past. This fine-tuning issue can only be addressed

if the early Universe underwent an epoch of accelerated expansion such that rH shrinks over

time (similar to the effect of dark energy today).

• Horizon problem: The Universe appears to be very homogeneous on large scales. The CMB

is isotropic to about one part in 105. For two different patches of the CMB to have the same

temperature, they must have been in causal contact in the distant past. In the standard big

bang cosmology, the comoving horizon, that is the largest distance between two points such

that they had time to communicate since the big bang, is growing monotonically. Therefore,

regions that are currently entering the horizon appear to have never been in causal contact

before, and yet the Universe still appears homogeneous on the largest scales. This leads

us to assume that these patches must have been in causal contact in the early Universe, but

there was a mechanism that pushed them out of causal contact. As with the last point, the

only way to explain this would be for the early Universe to undergo a period of accelerated

expansion, such that the comoving horizon shrinks, pushing regions that were previously in

causal contact outside the horizon.

• Magnetic-monopole problem: The final problem has to do with the absence of magnetic

monopoles in the Universe today. A majority of Grand Unified Theories (GUT) predict that a

large number of stable magnetic monopoles should have been produced in the early Universe.

As we have not detected any such particles, a mechanism to explain their absence is required.

We note that for of all of these problems, one could make the case that the Universe is just

the way it is. Especially with the last problem, introducing a theory to explain the absence of

hypothetical particles appears dubious 1. However, the attraction of inflation is that it simultaneously

provides an explanation to all of these problems, and furthermore has some predictive power, as we

shall see.

In order to address the problems described above, we need the early Universe to undergo an

1As was eloquently put by Martin Rees: Skeptics about exotic physics might not be hugely impressed by a theoretical
argument to explain the absence of particles that are themselves only hypothetical. Rees (1997)
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2.1. Inflation

epoch of exponential expansion, such that the Hubble radius and the comoving horizon shrink.

Such an expansion would also dilute magnetic monopoles in the Universe, potentially making them

extremely rare. This is achieved if the Universe is effectively dominated by a fluid with equation of

state w <−1/3. To achieve this, we start by assuming that the accelerated expansion is driven by a

scalar field ϕ called the inflaton. The energy momentum tensor for a scalar field is given by:

T µ

ν = gµβ
∂β ϕ∂νϕ−δ

µ

ν

(1
2

gλα
∂αϕ∂λ ϕ−V (ϕ)

)
, (2.1)

where V (φ) is the potential. Assuming homogeneity, we can derive the energy density and pressure

for this field:

ρϕ =
1
2

ϕ̇
2 +V (ϕ), (2.2)

Pϕ =
1
2

ϕ̇
2−V (ϕ), (2.3)

where the first term represents the kinetic energy, and ϕ̇ = ∂tϕ . Therefore, the equation of state is

given by:

w =
1
2 ϕ̇2−V (ϕ)
1
2 ϕ̇2 +V (ϕ)

. (2.4)

This means that we can obtain accelerated expansion (w < −1/3) if the potential energy

dominates over the kinetic energy: V (ϕ)� ϕ̇2. This is known as the slow-roll limit. We also want

this condition to be maintained long enough for inflation to solve the problems we discussed (Liddle

and Lyth, 2000). Therefore, we also require the second derivative of φ to be small: |ϕ̈| � |3Hϕ̇|
and |ϕ̈| � |∂φV |. These conditions are usually expressed by requiring two slow roll parameters be

small. The parameters are given by (Peacock, 1999):

εV =
m2

P

16π

(
∂ϕV
V

)2
, (2.5)

ηV =
m2

P

8π

∂ϕ∂ϕV
V

. (2.6)

As long as these conditions are satisfied, the field is slowly rolling down the potential V, and

the Universe undergoes accelerated expansion. When the field reaches the minimum potential, it

enters a period of reheating when it oscillates away its energy into Standard Model fields (Dodelson,

2003). The equation of motion for ϕ in the slow-roll limit is given by (Peacock, 1999):

3Hϕ̇ =−∂ϕV. (2.7)
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Chapter 2. The inhomogeneous Universe

When building an inflation model, we generally require two important conditions. The first is

that inflation stops at some point, while the second is that it must go on for a certain amount of

e-folds2. In particular, scales that enter the horizon today, ∼ 60 e-folds after the end of inflation,

must have been in causal contact before inflation started. This puts a lower limit of ∼ 60 e-folds on

the duration of inflation. There is no required upper limit for the duration of inflation, and in the

limit of infinite duration there are models of eternal inflation that provide a possible answer to the

problem of the initial singularity.

Finally, inflation provides a mechanism for the creation of initial perturbations from homo-

geneity that go on to act as the seeds of structure formation in the Universe. This is achieved

by magnifying quantum fluctuations to macroscopic scales, by pushing them outside the horizon

during inflation (effectively freezing them). After inflation, these perturbations re-enter the horizon

and begin evolving.

We can represent the statistics of these perturbations through the variance of their harmonic

modes, given by the power spectrum. For a homogeneous and isotropic overdensity field δ (~x)≡
ρ(~x)/ρ̄−1 (where ρ̄ is the mean density) the power spectrum is given by:

〈δ̂ (~k)δ̂ (~k′)∗〉= (2π)3
δD(~k−~k′)P(k), (2.8)

where δ̂ (~k) is the Fourier transform of δ (~x).

These perturbations are generally assumed to be very close to Gaussian, as predicted by most

inflationary models. However, there are also models which predict deviations from a Gaussian

random field (e.g. Allen, Grinstein, and Wise, 1987; Kofman and Pogosyan, 1988). The search for

non-gaussianities is an active area of research due to its potential to distinguish between different

inflation models.

Inflation predicts a primordial power spectrum that is very close to scale invariant. This can be

expressed as (Dodelson, 2003):

PR(k) = 2π
2k−3As

( k
kp

)ns−1
, (2.9)

whereR represents curvature perturbations, ns is the scalar spectral index, kp is the pivot scale and

As is the amplitude of scalar perturbations. The prediction of a nearly scale-invariant spectrum

corresponds to a value of ns that is close but not equal to 1. Currently, the best measurements of this

parameter come from the CMB: ns = 0.9649±0.0042 (Planck Collaboration et al., 2018), and thus

2One e-fold is expansion by a factor of e.
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2.2. Scalar perturbations

verify the prediction. The parameters As and ns are a core part of the standard ΛCDM cosmological

model.

2 . 2 S C A L A R P E RT U R B AT I O N S

In general relativity we have three types of perturbations: scalar, vectorial and tensorial. In linear

theory these evolve independently (Dodelson, 2003). This is an important result because it means

that we can study them separately, without having to consider e.g. tensor perturbations initiating

scalar perturbation during their evolution. Scalar perturbations are the most studied as they are the

main driver of structure formation in the Universe. Vector perturbations only have decaying modes

and are not sourced in appreciable amounts in most cosmological scenarios (Dodelson, 2003). On

the other hand, tensor perturbations form gravitational waves, which are an important topic in

cosmology. However, they are not directly relevant to this thesis. Therefore, we will only focus on

scalar perturbations as these are the primary cause of structure formation.

In order to study the evolution of perturbations, we have to introduce deviations from homo-

geneity in our formalism. We do this by introducing small perturbations (inhomogeneities) to the

FLRW metric. The perturbed metric is given by:

gµν = ḡµν +hµν , (2.10)

where ḡµν is the FLRW metric and hµν represents perturbations, assumed to be small. In particular,

we assume that the perturbative part of the metric does not change the global evolution of the

background described by ḡµν . The choice of coordinates, known as gauge, is very important when

it comes to perturbation theory as certain gauges can significantly simplify the solutions. Here, we

will work in the Newtonian gauge, and write the perturbed line element:

ds2 = a2(η)[(1+2Ψ)dη
2− (1−2Φ)δi jdX idX j], (2.11)

where Φ and Ψ define our perturbations, and η(t) =
∫ t

0 dt ′/a(t ′) is the conformal time. We can

identify Ψ with the Newtonian gravitational potential while Φ represents the perturbation to the

spatial curvature. In the absence of anisotropic stress, we have Φ = Ψ.

Perturbation modes behave differently depending on the cosmological era. In the early Universe,

we have two relevant epochs, that of radiation domination and that of matter domination, while in

the late Universe we have dark energy domination. Furthermore, modes also behave differently
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Chapter 2. The inhomogeneous Universe

depending on their scale relative to the horizon at that time. In the early Universe, perturbations

are super-horizon (pushed there by inflation), meaning their length is much larger than the Hubble

radius 2π/k� rH . As the horizon expands, perturbations transition to the sub-horizon regime

(2π/k� rH).

At early times, large-scale and small-scale modes behave differently depending on when they

enter the horizon, while at late times, all modes evolve the same. As we observe these perturbations

in the late Universe, it is useful to break down the potential into three different components, as

shown by Dodelson (2003):

Φ(k,a)∼R(k)×{Transfer Function(k)}×{Growth Factor(a)}. (2.12)

The first component represents the primordial curvature perturbations R that we introduced in

Section 2.1. The second component is a scale dependent transfer function that encapsulates the

evolution of different modes in the early Universe, defined as:

T (k)≡ Φ(k,alate)

Φlarge-scale(k,alate)
, (2.13)

where alate is an epoch well after the matter-radiation equality, and the large-scale solution denotes

modes that enter the horizon deep into matter domination. The third component is a time dependant

growth factor that describes the evolution of all modes in the late Universe, defined by:

Φ(k,a)
Φ(k,alate)

≡ D+(a)
a

, with a > alate. (2.14)

Precise descriptions on how to build the transfer function and growth factor can be found in Peacock

(1999) and Dodelson (2003). Here we will only give a qualitative description of the evolution of

the potential and different density modes which are used to build the two objects.

2 . 2 . 1 T H E E V O L U T I O N O F T H E P O T E N T I A L

Assuming a perfect fluid with adiabatic perturbations, the evolution of the gravitational potential is

described by:

Φ
′′+3(1+w)HΦ

′+wk2
Φ = 0, (2.15)

whereH= aH and ′ denotes a derivative with respect to η . For super-horizon modes, the potential

is constant during both radiation and matter domination, Φ = Φ(0). However, during the transition
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2.2. Scalar perturbations

through the epoch of matter-radiation equality, the potential for these modes drops by a factor of

9/10 such that Φ−→ (9/10)Φ(0) (Dodelson, 2003).

For sub-horizon modes we start with the era of radiation domination where w = 1/3 and the

potential is described by:

Φ
′′+

4
η

Φ
′+

k2

3
Φ = 0. (2.16)

This has solutions of the form Φ ∝ cos(kη/
√

3)/(kη)2, corresponding to decaying oscillations.

Therefore, modes that enter the horizon during radiation domination oscillate and decay away.

On the other hand, during matter domination w = 0 and we have Φ′′+3HΦ′ = 0. This leads to

solutions Φ = const, meaning that during matter domination the potential is constant on all scales.

Note that this assumes negligible curvature. If the Universe has negative curvature, or dark energy

starts to become important, structure growth will be suppressed and the potential starts to decay

(Peacock, 1999).

2 . 2 . 2 T H E E V O L U T I O N O F S I N G L E F L U I D S

Having considered the evolution of the potential, we turn our attention to density perturbations. We

formally define the overdensity:

δi =
δρi

ρ̄i
, (2.17)

where δρi is a (small) perturbation to the mean energy density ρ̄i of fluid i. Combining the

continuity and Euler equations in Fourier space with the Poisson equation, we can describe the

evolution of density perturbations by:

δ̈i +2Hδ̇i +
(c2

s k2

a2 −4πGρ̄

)
δi = 0, (2.18)

where the speed of sound is given by c2
s = dP̄i/dρ̄i. This equation includes the Hubble drag,

fluid pressure and the effect of gravity. It has a critical scale called the Jeans scale, given by

kJ =
√

4πGρ̄/c2
s . On large scales, k� kJ and modes have growing solutions. On small scales,

k� kJ and the solutions describe a damped oscillator. Therefore, on small scales, perturbations

cannot grow due to the effect of pressure. The transition between growth and oscillations is

determined by the properties of the fluid through w and cs. In the case of radiation, only the largest

scales grow because cs is very large. On the other hand, dark matter has a small cs, and most

perturbations grow.

For pressureless dark matter, w = 0 and we can ignore cs. We can use the substitution y = a/aeq,
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Chapter 2. The inhomogeneous Universe

where aeq is the scale factor at the matter-radiation equality, to obtain the Mészáros equation

(Meszaros, 1974):
d2δc

dy2 +
2+3y

2y(y+1)
dδc

dy
− 3

2y(y+1)
δc = 0. (2.19)

The dominant solution during radiation domination is logarithmic growth, δc ∝ lna. This means

that dark matter can collapse, but this is significantly slowed by the dominant radiation component,

which cannot collapse on most scales. During matter domination, y� 1, dark matter can collapse

freely and the dominant solution is δc ∝ a ∝ t2/3. On the other hand, when dark energy becomes

dominant in the late Universe, growth is suppressed again on all scales and δc ∝ const.

2 . 2 . 3 P H O T O N - B A RY O N P E RT U R B AT I O N S

Before the epoch of recombination photons and baryons were tightly coupled due to photon

scattering on charged particles. We therefore have to treat these two components with different

properties as a single fluid in order to understand their evolution. Again using the Euler equation,

we can describe the evolution of a Fourier mode of the baryon density perturbation as (Peebles and

Yu, 1970; Doroshkevich, Zel’dovich, and Syunyaev, 1978; Hu and White, 1996):

d
dη

[(1+R)δ ′b]+
k2

3
δb =−k2(1+R)Ψ− d

dη
[3(1+R)Φ′], (2.20)

where R = 3ρb/4ργ with the photon density ργ . This is the equation of a driven oscillator with fre-

quency csk, where the speed of sound in the photon-baryon fluid is cs = 1/
√

3(1+R). The acoustic

waves produced by these oscillations leave an imprint in the baryon and photon distributions, known

as baryon acoustic oscillations (BAO).

Qualitatively, we can understand this behaviour by considering an initial overdensity which

corresponds to a region that is overpressured compared to its surroundings (Eisenstein, Seo, and

White, 2007). A spherical sound wave is driven out in order for the fluid to equilibrate. Dark matter

is left behind at the centre of the perturbation because it is pressureless. The wave travels outwards

at the speed of sound cs, which is determined by the opposing forces of gravity and pressure. After

recombination, photons are allowed to free-stream, and the baryons lose the pressure driving force.

The wave becomes frozen in the baryon distribution at a radius of:

rd =
∫

∞

zd

cs(z)
H(z)

dz, (2.21)

where zd ' 1060 is the redshift of the drag epoch, when the baryons decouple from radiation. This
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2.2. Scalar perturbations

is slightly later than the epoch of recombination which is at a redshift of zr ' 1090. In Chapter 5

we will go in more detail into how rd depends on cosmological parameters, and its usefulness for

observational cosmology.

Once the baryons are free from the effects of pressure, perturbations can grow again as δb ∝ a,

similarly to dark matter perturbations. However, we are left with a dark matter overdensity at the

centre and an echo of baryons at radius rd . As these two evolve together due to gravity, baryons fall

into the central dark matter overdensity and dark matter falls into the baryon acoustic overdensity.

Over the whole Universe, we have many such perturbations overlapping, which leads to increased

clustering at a typical separation of rd ' 150 Mpc. This appears as a peak in the correlation function

and a harmonic sequence in the power spectrum. See Figure 2.1 for a visualization of the evolution

of BAO.

On small scales the acoustic oscillations are damped due to photon-baryon diffusion which

leads to a broadening of the acoustic peak. This effect is known as Silk damping (Silk, 1968).

Furthermore, the peak is distorted by small-scale non-linear evolution in the late Universe. We will

discuss the effect of this in Section 2.3.

2 . 2 . 4 T H E G R O W T H F A C T O R

In order to build the growth factor in the late Universe we have to take into account the effect

of dark energy on the evolution of matter perturbations. As baryons and dark matter behave

similarly after recombination, we treat them as one component with the total matter perturbation

ρ̄mδm = ρ̄cδc + ρ̄bδb. Neglecting the effect of massive neutrinos, their evolution can be described

by:
d2δm

da2 +
d ln(a3H)

da
dδm

da
− 3ΩmH2

0
2a5H2 δm = 0. (2.22)

In general this has to be solved numerically, however, we can obtain an analytic solution by assuming

that dark energy is the cosmological constant, Λ, and ignoring the small radiation component. The

growth factor is then given by (Dodelson, 2003):

D+(a) =
5Ωm

2
H(a)
H0

∫ a

0

da′

[a′H(a′)/H0]3
. (2.23)

This describes the growth of all matter perturbations at late times. When matter dominates, the

overdensity grows as δc ∝ D+. Once Λ starts to become relevant, the growth slows down due to

accelerated expansion.
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Chapter 2. The inhomogeneous Universe

Figure 2.1. The evolution of the mass profile of a perturbation in different components.
In the top plots, the baryon-photon acoustic wave is propagating outwards, while the
dark matter perturbation grows towards the centre, with a wake following the acoustic
wave. In the middle plots, the photons decouple from the gas after recombination and
are free-streaming away. The acoustic peak becomes frozen in the gas distribution at
around 150 Mpc. In the bottom two plots, gravitational collapse takes over, and all matter
follows the gravitational potentials set by the dark matter perturbation in the centre and
the baryonic perturbation in a shell. Figures from Eisenstein, Seo, and White (2007).
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2.3. Non-linear growth

Finally, we define the growth rate, f , as the logarithmic derivative of the growth factor:

f (a)≡ d lnD+(a)
d lna

(2.24)

This has an empirical fitting under GR, f (a)' Ωm(a)0.55, which is remarkably precise even for

dynamical models of dark energy (Dodelson, 2003). In linear theory, the growth rate relates the

velocity field, θ(k), to the density field: θ(k) =− f δ (k). This makes it useful when working with

galaxy surveys in redshift space as we shall see in Chapter 3.

2 . 3 N O N - L I N E A R G R O W T H

After recombination all matter is free to collapse under gravity. The initial small perturbations we

observe in the CMB grow into the stars, galaxies and clusters of galaxies we observe today. During

this evolution, the linear theory approximation we have used so far starts to break down, especially

on small scales. In the late Universe the effects of small-scale non-linear evolution have an impact

even on large-scale features. Here, we briefly describe some of the methods used to study and

model non-linear growth, and we focus on its impact on the BAO feature.

A natural extension to the linear theory framework is to go beyond first order in perturbation

theory. These techniques are especially useful on large scales in the late Universe, the so-called

quasi-linear regime. On these scales, we can use modifications to linear theory that account for the

impact of non-linear growth. For a review of such techniques, see Bernardeau et al. (2002) or the

more recent Desjacques, Jeong, and Schmidt (2018).

On small scales, perturbation theory approaches are generally not sufficient, and so we must

rely on numerical simulations of structure formation. Due to recent advances in computational

power, we can now simulate the behaviour of large-scale structure. These simulations are typically

seeded with a large number of particles distributed as a Gaussian random field that matches the

initial conditions of our Universe (as best as we currently understand them). In N-body simulations,

the evolution of structure under the effect of gravity is simulated (we do not distinguish between

baryons and dark matter). These simulations are very useful, especially on medium to large scales

as dark matter makes up ∼ 85% of matter in the Universe (for a review see Dehnen and Read,

2011). In hydrodynamic simulations, we model baryons more accurately by simulating their

hydrodynamic behaviour, which allows us to study the evolution of gas and its properties such as

pressure and temperature. Furthermore, we can simulate the complex interaction of galaxies with

their surrounding environment, which is composed of a large range of astrophysical effects. This
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Chapter 2. The inhomogeneous Universe

allows simulations to be accurate down to small scales, and therefore incredibly useful for both

cosmology and astrophysics.

When it comes to cosmological analyses, both higher order perturbation theory and simulations

have been used to inform simple empirical models of non-linear effects, for example in the case of

BAO (Eisenstein, Seo, and White, 2007). We already described the broadening of the acoustic peak

due to pre-recombination effects, however, another major source of broadening is the non-linear

evolution of structure. Even though this is a small scale effect, it has an impact on a large scale

feature. A common approach in the literature is to perform a reconstruction of the density field by

either directly smoothing the density, or by using the linear velocity field to approximately reverse

the growth (Eisenstein et al., 2007). This results in sharper measurements of the peak, and thus

tighter constrains on its scale. A slightly simpler approach is to just model the broadening of the

peak. Eisenstein, Seo, and White (2007) used a simple theoretical argument and simulations to

show that this broadening can be modelled as a simple Gaussian smoothing given by:

P(k) = Plin(k)exp
(
−

k2
||

2σ2
||
− k2

⊥
2σ2
⊥

)
, (2.25)

where Plin(k) is the linear theory power spectrum, k is the wavenumber with components (k||,k⊥)

along and across the line of sight respectively and (σ||,σ⊥) are two parameters that correspond

to the smoothing scales along and across the line of sight respectively. Perturbation theory can

be used to infer the expected values of these parameters, and simulations to test how realistic the

model is. We will use this simple model in Chapter 7.

Another non-linear effect that appears in large-scale structure surveys are fingers-of-god (FOG).

This effect appears because we generally build our maps in redshift space (see Chapter 3). Non-

linear structure formation leads to large peculiar velocities that induce red and blue-shifts compara-

ble or even larger than the one from the Hubble flow. This only affects line-of-sight correlations,

but leads to very prominent elongated features known as fingers-of-god. These can generally

be modelled using simple analytical formulas (see e.g. Percival and White, 2009) informed by

simulations.
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C H A P T E R 3

C O S M O L O G I C A L P R O B E S

Over the last few decades, cosmology has entered an era of unprecedented precision. We now have

many different observables that probe different epochs and regimes through the evolution of the

Universe. These measurements allow us to test the theoretical framework we have introduced in

the last two chapters, and search for missing components. Much of the interest in observational

cosmology is focused on studying the elusive dark matter and dark energy, as well as understanding

the origins of the Universe and its evolution. Here we introduce some of the major probes currently

used in cosmology, focusing on the ones directly relevant to this thesis.

3 . 1 T H E C O S M I C M I C R O WAV E BA C K G R O U N D

Described as the first light in the Universe, the Cosmic Microwave Background (CMB) is composed

of the photons that were finally allowed to free-stream once the first atoms formed at the epoch of

recombination. Before that epoch, scattering of photons on charged particles effectively coupled

the baryon fluid to the photon fluid. After the charged particles were locked into the first atoms,

the mean free path of CMB photons grew larger than the size of the horizon. This happened at a

redshift of zr ' 1090.

The CMB is currently the most powerful cosmological probe to which we have access, in the

sense that it provides the most precise measurements on most cosmological parameters in ΛCDM

and extensions. This is due to the fact that the CMB probes an epoch before the formation of

non-linear structure, when the Universe was remarkably uniform and its physics relatively easy
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Figure 3.1. Map of CMB temperature anisotropies measured by the Planck space mission
(Planck Collaboration et al., 2020a). The gray lines show the region around the Milky
Way galaxy which has been in-painted.

to derive analytically. In fact, the framework we discussed in Section 2.2 accurately describes the

core features observed in the CMB, with just a few modifications necessary to account for the

interactions of CMB photons after recombination.

We currently observe CMB photons arriving from an apparent 2D surface with a radius

determined by the distance travelled by photons after decoupling. This signal was famously

discovered by accident in 1964 (Penzias and Wilson, 1965; Dicke et al., 1965). The Cosmic

Background Explorer (COBE) satellite accurately measured the current temperature of the CMB at

T = 2.72548±0.00057 K (Fixsen et al., 1996; Fixsen, 2009), as well as detecting for the first time

anisotropies at the 10−5 level (Smoot et al., 1992; Bennett et al., 1996). These anisotropies were

measured with increasing precision by subsequent space missions, first the Wilkinson Microwave

Anisotropy Probe (WMAP; Bennett et al., 2003) and then the Planck space satellite (Planck

Collaboration et al., 2014a).

In order to constrain cosmology, the CMB anisotropy maps (Figure 3.1) are generally used

to measure the angular power spectrum. The primary features observed in this spectrum are the

acoustic oscillations of the baryon-photon fluid we described in Section 2.2.3. These features

allow us to precisely constrain the baryon and dark matter densities. This is because the relative

densities of baryons and radiation affects the relative amplitudes of the peaks due to baryon drag,

and dark matter acts as an extra source of gravitational potential. Furthermore, observing the large

scales in the CMB from full-sky maps allows us to measure the scalar spectral index ns, and the
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3.2. Galaxy clustering

pristine nature of the perturbations gives us the amplitude of primordial perturbations As. Finally,

we can use BAO as a standard ruler to get precise measurements of Ωm, Ωb and H0. For a recent

summary of current constraints see Planck Collaboration et al. (2020b) and Planck Collaboration

et al. (2020c).

After recombination, CMB photons still have a few interactions with the rest of the Universe.

These interactions have to be taken into account when modelling the CMB power spectrum, but

they also provide an extra source of information on structure in the Universe and its evolution.

The most important of these interactions is due to gravitational potentials. Firstly, the photons are

red or blue-shifted depending on their position in an overdensity or underdensity at decoupling,

which is known as the Sachs-Wolfe effect (Sachs and Wolfe, 1967). Secondly, they are affected by

time-varying gravitational potentials in the late Universe (especially due to dark energy), which

is known as the integrated Sachs-Wolfe effect (Rees and Sciama, 1968). CMB photons can also

interact with high-energy electrons via inverse Compton scattering, which is known as the Sunyaev-

Zel’dovich effect (Sunyaev and Zeldovich, 1970; Sunyaev and Zel’Dovich, 1980). Finally, photons

are gravitationally lensed by intervening matter, leading to a lensing signal in the CMB that allows

us to study the evolution of structure (Lewis and Challinor, 2006).

3 . 2 G A L A X Y C L U S T E R I N G

The structures we observe in the CMB anisotropies form the seeds for structure formation in the

Universe. Therefore, mapping the large-scale structure of the Universe provides a rich source of

information on its evolution and components. The simplest way to map this structure is to build

maps of galaxies. Measuring the position of galaxies on the sky is a relatively easy endeavour,

however, measuring how far away they are is much harder (especially for large data sets).

Spectroscopic surveys are the most common way to build three-dimensional (3D) maps of

galaxies. They measure spectra for each object and use the features in the spectra, such as emission

lines, to infer the redshift to the galaxy. These redshift maps can then be used to constrain cosmology,

based on the fact that galaxies trace the dark underlying density field. The relationship between

the density field and the galaxy field is a biased one (Peacock, 1999; Dodelson, 2003). This is

due to the fact that only peaks in the density distribution go on to collapse into galaxies. At linear

order, we can express this relationship as (Bardeen et al., 1986; Dekel and Lahav, 1999; Sheth and

Tormen, 1999):

δg(x) = bδ (x), (3.1)
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where b is the linear bias parameter. In general this bias could be a function of both redshift and

scale, however, we usually assume it is only a function of redshift.

Beyond the bias, we build the galaxy map in redshift space, not in real space. This means that

peculiar velocities may change the position of galaxies, an effect known as redshift space distortions

(RSD). The position in redshift space, s, can be related to the position in real space, x, through:

s = x−uz(x)ẑ, (3.2)

where uz(x) is the galaxy velocity along the line-of-sight (which is taken to be the z direction).

Assuming an irrotational velocity field, we write uz = ∂/∂ z∇−2θ where ∇−2 is the inverse Laplacian

and θ ≡ ∇ ·u is the velocity divergence. In the linear regime, we can express the galaxy density

field in the Fourier space as (Percival and White, 2009):

δ
s
g(k) = δg(k)−µ

2
θ(k), (3.3)

where µ is the cosine of the line-of-sight angle. Again assuming linear theory for the velocity field,

we have θ(k) =− f δ (k), where f is the linear growth rate defined in Equation 2.24. Using this and

the linear bias above, we can express the linear power spectrum of galaxies as (Kaiser, 1987):

Ps
g(k,µ) = (b+ f µ

2)2Pm(k) = b2(1+β µ
2)2Pm(k), (3.4)

where Pm(k) is the isotropic linear power spectrum of matter, and we have defined β ≡ f/b.

This relation can be used to confront theory with data, because we can measure Ps
g from galaxy

redshift maps, and we can compute a model Pm(k) based on the framework introduced in Chapter

2. Libraries such as CAMB (Lewis, Challinor, and Lasenby, 2000) and CLASS (Lesgourgues,

2011; Blas, Lesgourgues, and Tram, 2011) are used to solve the Boltzmann equations and compute

accurate theoretical power spectra. The bias parameter is generally treated as a nuisance and

marginalized out.

The problem with this simple linear approach is that galaxies form in the strongly non-linear

regime, which means that the linear bias approach is not a very good description of the relationship

between the galaxy and density fields (Gaztanaga, 1992). Instead, higher order perturbation theory

approaches have been employed. For a recent review on this topic see Desjacques, Jeong, and

Schmidt (2018). However, this simple description can be useful for tracers that are still in the

quasi-linear regime, for example the Lyman-α forest which we discuss in the next section.
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Even though we can use a model power spectrum to fit cosmological parameters given a model

(e.g. ΛCDM) directly from the measured data, that is not the approach favoured in the literature so

far. Instead, the template fitting approach is taken, where we use a template P(k) to fit for a few

well-defined physical quantities which tend to be useful in testing a large variety of cosmological

models. The most commonly used such quantity is the size of the acoustic peak, which as we

have seen in Section 2.2 can be used as a standard ruler. The BAO feature was first detected in the

distribution of galaxies by Cole et al. (2005) and Eisenstein et al. (2005), although there were earlier

hints (Percival et al., 2001). Since then, it has turned into one of the most robust cosmological

measurements, with the latest results from the Baryon Oscillation Spectroscopic Survey (BOSS)

and extended BOSS (eBOSS) at below 2% precision (Alam et al., 2017; eBOSS Collaboration

et al., 2021).

Another commonly used feature are redshift space distortions. As we have seen above, RSD

are caused by peculiar velocities because we construct our maps in redshift space. The quantity

measured in RSD analyses is f σ8, where the rms overdensity in a sphere of comoving radius R is

given by (Dodelson, 2003):

σ
2
R ≡ 〈δ 2

m,R(x)〉, (3.5)

with δm,R(x)≡
∫

d3x′δm(x′)WR(|x−x′|), (3.6)

where WR(x) is a tophat window function with radius R equal to 8 h−1Mpc by convention. Note that

σ8 is a linear-theory extrapolation. The f σ8 term appears as the normalization of the velocity power

spectrum, and we effectively write Pθ = f σ8Pt
θ
/( f σ8)

t , where Pt
θ

and ( f σ8)
t are the template

velocity power spectrum and its normalization respectively. In linear theory Pθ = f 2Pm, therefore,

when performing an RSD analysis we effectively measure bσ8 and f σ8, with only the second

quantity being of cosmological interest. This type of analysis has also established itself as a standard

cosmological tool (see e.g. Peacock et al., 2001; Blake et al., 2012; Alam et al., 2017; eBOSS

Collaboration et al., 2021).

The next generation of spectroscopic surveys is spearheaded by the Dark Energy Spectroscopic

Instrument (DESI; DESI Collaboration et al., 2016), which began survey operations in May 2021.

DESI is aiming to measure the spectra of roughly 33 million objects over 14000 square degrees.

The objects are split in a few different target classes. These are luminous red galaxies (LRGs) at

redshifts 0.4 < z < 1.0, emission line galaxies (ELGs) at 0.6 < z < 1.6, quasars at 0.6 < z < 4.0

and bright galaxies at 0 < z < 0.5. The last class is meant to take advantage of the times when the
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sky is not fully dark (e.g. due to moonlight) and it is hard to observe faint targets.

Besides spectroscopic surveys, galaxies can also be mapped by photometric surveys. These

surveys take images of the sky in a few different bands, which are used to compute very rough

estimates of the redshifts of the galaxies observed. Even though the redshift measurements are

less accurate, these surveys are very powerful because they map a much larger number of galaxies.

For example, while DESI will precisely measure the redshifts of about 33 million objects, the next

generation of photometric surveys, spearheaded by the Euclid satellite (starting in 2022; Laureijs

et al., 2011) and the Vera C. Rubin Legacy Survey of Space and Time (LSST, starting in 2023;

LSST Science Collaboration et al., 2009) will map approximately one billion galaxies.

3 . 3 LY M A N -α F O R E S T

Over the last decade, the Lyman-α (Lyα) forest became an important cosmological tracer at high

redshift (z > 2). First observed in the 1960s (Schmidt, 1965; Scheuer, 1965; Bahcall and Salpeter,

1965; Gunn and Peterson, 1965), the Lyα forest consists of a series of absorption features in spectra

of high redshift quasars (QSO).

These features can be qualitatively understood by considering photons with rest-frame wave-

length λrest ≤ λα , with the Lyα transition at λα = 1215.67Å, that are emitted by a QSO at redshift

zq. As the Universe is expanding, these photons are redshifted while they travel towards us, meaning

their wavelength increases. At some point their wavelength will be equal to λα , and they may be

absorbed by a hydrogen atom (H I) in the inter-galactic medium (IGM). A fraction of these photons

will be absorbed depending on the interaction probability. This probability depends on the density

and kinematics of the neutral hydrogen gas in that region. Once the remaining photons reach us, we

will observe an absorption line at λobs = λrest(1+ zq). If we can measure the redshift of the quasar

through other features in the spectrum (e.g. the Lyα emission line), we can compute the redshift of

the gas that leads to the absorption line through its relation to the observed wavelength of the Lyα

line.

Extrapolating to an entire spectrum of photons with different wavelengths, we will observe a

series of such absorption lines blue-ward of the Lyα line (see Figure 3.2). These features trace the

underlying density field between us and the quasar. We can express the Lyα optical depth through

gas at a fixed density by (McQuinn, 2016):

τα(z) = 1.3δb

( xH I

10−5

)(1+ z
4

)3/2( dv/dx
H(z)/(1+ z)

)−1
, (3.7)
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Figure 3.2. Quasar spectrum showing the absorption forest blue-ward of the Lyman-α
emission line. The colours represent the different parts of the forest, with blue being
the section between the Lyman-α and Lyman-β emission peaks, and orange being left
of the Lyman-β peak. The solid lines are the fitted mean transmission times the quasar
continuum. The dotted lines show the extrapolated quasar continuum, assuming a mean
transmission function. Figure from du Mas des Bourboux et al. (2020).

where xH I is the fraction of hydrogen that is neutral, and we have assumed a smooth line-of-sight

velocity gradient, dv/dx. This shows that the optical depth is directly proportional to the baryon

density and the neutral hydrogen fraction. However, it also depends on the peculiar velocities of

the absorbing gas. This will shift the inferred redshift of the absorption lines from their nominal

values given by the Hubble flow, the same RSD effect we have discussed in Section 3.2.

The relevant tracer for us is the transmitted flux fraction, F , which is related to the optical depth

via the non-linear mapping F ∝ exp(−τα). We can compute fluctuations in the transmitted flux

fraction from the directly observed absolute flux, f (λ ), through:

δF(λ ) =
f (λ )

F̄(λ )C(λ )
−1, (3.8)

where F̄(λ ) is the mean transmitted flux fraction, and C(λ ) is the quasar continuum. F̄(λ ) and

C(λ ) are generally unknown and have to be measured from the data, which can be a very difficult

process, especially for low signal-to-noise spectra. Any error made in the continuum estimation

will cause large-scale fluctuations (of the size of the forest) to be erased along the line-of-sight, and
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Chapter 3. Cosmological probes
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Figure 3.3. Plots of the 3D Lyα forest auto-correlation function in bins of the cosine
of the line-of-sight angle, µ , along with the best-fit model. The BAO feature can be
seen at separations of about 100 h−1Mpc. The other visible peaks in the bins close to
the line-of-sight are due to contamination by metal absorbers. Figure from du Mas des
Bourboux et al. (2020).

will introduce correlated errors in the inferred δF from the same spectrum. Therefore, we generally

ignore correlations within the same spectrum, and only use correlations between pixels in different

spectra.

The 3D correlation of the Lyα forest was first measured from Sloan Digital Sky Survey (SDSS)

data by Slosar et al. (2011). The most recent measurement from SDSS data release 16 (DR16)

along with the best-fit model are shown in Figure 3.3. As the correlation function is the Fourier

transform of the power spectrum, we can use a framework similar to the one we introduced for

galaxies, in order to build a model of the correlation. However, in this case the tracer goes through

a non-linear transformation, which introduces more complexity (McDonald et al., 2000; McDonald,

2003). In linear theory, the power spectrum of the Lyα transmitted flux fraction is given by:

Ps
F(k,µ) = (bF +bη ,F f µ

2)2P(k), (3.9)

where we now have an extra velocity divergence bias bη ,F which multiplies the growth rate f . This

extra bias appears because we work with the two-point statistics of transmitted flux, which has a

non-linear mapping to the directly distorted field of optical depth (Seljak, 2012; Arinyo-i-Prats

et al., 2015). As this new bias is also unknown, it means we cannot use the auto-correlation of the

forest to directly measure f because the two are degenerate. We will study this issue in Chapter 7.
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Beyond this simple prescription, there are a number of more complex processes that affect the

forest, which must be taken into account. For example, not all the absorption we measure is caused

by neutral hydrogen. Some of it is due to heavier elements, which we refer to as metals1. Another

source of complexity are regions with high column density, which leave broad absorption features

in the spectra. Even though these processes are of interest for astrophysics (e.g. Pieri et al., 2014;

Pérez-Ràfols et al., 2018a; Pérez-Ràfols et al., 2018b), for the purposes of cosmological analyses

they are treated as systematics.

For cosmology, the 3D distribution of the Lyα forest has so far only been used to measure BAO.

The first analyses to detect the BAO feature in the Lyα auto-correlation used SDSS data release 9

(DR9; Slosar et al., 2013; Busca et al., 2013; Kirkby et al., 2013). Since then, it has been measured

multiple times, with major improvements in the analysis, especially through improved modelling of

contaminants and other systematic effects (Delubac et al., 2015; Bautista et al., 2017; de Sainte

Agathe et al., 2019; du Mas des Bourboux et al., 2020). Furthermore, BAO has also been measured

in the cross-correlation of the forest with quasar positions (Font-Ribera et al., 2014; du Mas des

Bourboux et al., 2017; Blomqvist et al., 2019; du Mas des Bourboux et al., 2020).

The next generation of Lyα forest large-scale structure analyses will also come from DESI.

The quasar sample measured by DESI will include roughly 0.7 million quasars at high redshift

(z > 2.1), where we can measure the Lyα forest.

3 . 4 OT H E R P R O B E S

There are many other cosmological probes, with even more constantly being developed. Here I will

list some of them, and add a few details that are relevant for this thesis. We start with one of the

first probes to be used in cosmology, supernovae (SNe) explosions of type Ia. These are termed

standardizable candles because we can relate their peak luminosity to their luminosity distance

(Whelan and Iben, 1973), with some corrections (see e.g. Betoule et al., 2014; Scolnic et al., 2018).

They are thought to be caused by mass transfer onto a white dwarf star from a companion (Whelan

and Iben, 1973). Once the white dwarf reaches a critical mass, it explodes as a SNe Ia. These events

were famously used for the first detection of the accelerated expansion of the Universe (Riess et al.,

1998; Perlmutter et al., 1999), and have remained one of the best probes of dark energy and the

late Universe (e.g. Scolnic et al., 2018; Abbott et al., 2019). However, SNe Ia cannot be used

to measure the Hubble constant directly because it is degenerate with their absolute magnitude.

1Following the convention in astronomy to refer to all elements besides hydrogen and helium as metals.
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Chapter 3. Cosmological probes

Therefore, they have to be combined with other probes in order to directly measure the speed of

expansion.

A cosmic distance ladder is commonly used to calibrate SNe Ia in order to measure H0. This

generally uses another type of standardizable candles called cepheid variables, a type of pulsating

stars (Leavitt and Pickering, 1912; Eddington, 1917). A small number of cepheids are close

enough that we can measure their distance directly through parallax, or other geometric means.

The period-luminosity relation of these cepheids is then calibrated and used to infer the distance

to other nearby galaxies where we can observe cepheids and also happened to have had a SNe Ia

explosion. This allows us to calibrate the absolute magnitude of SNe Ia and by using a large sample

of these infer H0 (see e.g. Freedman et al., 2001; Riess et al., 2016).

Over the last decade, an apparent Hubble tension has appeared primarily between H0 measure-

ments from the distance ladder (Riess et al., 2009; Riess et al., 2011; Riess et al., 2016; Riess

et al., 2018; Riess et al., 2019), and those from the CMB (Planck Collaboration et al., 2014b;

Planck Collaboration et al., 2016; Planck Collaboration et al., 2020c). The latest local measure-

ment gives H0 = 73.2±1.3 km s−1 Mpc−1(Riess et al., 2021), while the best CMB constraint is

H0 = 67.36±0.54 km s−1 Mpc−1(Planck Collaboration et al., 2020c), ∼ 4.2σ away. This tension

is the topic of Chapter 5.

Jumping to the beginning of the Universe, another useful cosmological probe termed Big Bang

Nucleosynthesis (BBN) uses known nuclear physics to model the relative abundances of different

elements produced in the early Universe (see Cyburt et al., 2016 for a recent review). By measuring

some of these abundances in the late Universe, we can infer the primordial baryon density, as well

as the properties of neutrinos (see e.g. Cooke et al., 2016; Cooke, Pettini, and Steidel, 2018; Grohs

et al., 2019).

The final probe we consider is weak gravitational lensing (WL). The gravitational lensing effect

was predicted by general relativity and first discovered by Dyson, Eddington, and Davidson (1920).

Weak lensing involves small changes in the shapes (shear) and sizes (magnification) of background

galaxies due to intervening gravitational potentials. The shear power spectrum of background

galaxies is the most commonly used way of detecting this effect. WL is a very powerful probe

because it probes the gravitational potential directly, without having to deal with galaxy biasing

(Weinberg et al., 2013). Over the last decade, a number of photometric surveys have been used to

perform weak lensing analyses, with the most recent results coming from the Dark Energy Survey

(DES; DES Collaboration et al., 2021), the Kilo-Degree Survey (KiDS; Heymans et al., 2021) and

the Hyper Suprime-Cam Subaru Strategic Program (HSC; Hikage et al., 2019).
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C H A P T E R 4

I N F E R E N C E

The precision era of cosmology was brought about by increasingly large surveys of the Universe,

facilitated by an increase in computational power and technological advancement. However, with

these large data sets came renewed interest into the statistical tools used to distil vast amounts of

astronomical data into a few cosmological parameters. In Chapter 6 we will take an in-depth look

at different statistical frameworks used in cosmology today. Here, I will give a brief overview of

Bayesian inference, which provides a unified framework for quantifying belief and uncertainty. We

will start in Section 4.1 with an introduction of this framework. After that, in Section 4.2 I will

introduce the Nested Sampling algorithm, which is the most commonly used computational tool

throughout this thesis.

4 . 1 T H E BAY E S I A N F R A M E W O R K

The foundations of Bayesian statistics were set by Bayes (Bayes, 1763) and Laplace (Laplace,

1820). They built a framework for dealing with uncertainty by quantifying degrees of belief through

the mathematical concept of probability. For a long time this framework was ignored in favour

of the frequentist approach where probabilities are defined in terms of the frequency of an event

in repeated experiments. This view is often perceived as being more objective compared to the

Bayesian approach because of the common misconception that degrees of belief are inherently

subjective (Sivia and Skilling, 2006). In fact, the power of Bayesian statistics comes from the fact

that it provides a coherent framework for quantifying beliefs based on all available information.
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Chapter 4. Inference

Differences only appear when the background assumptions are not clearly stated. However, this is

an issue for all types of inference, even if they are often not as obvious as in the Bayesian case.

Both frameworks are still in use today across different sciences, however, modern cosmology

is largely performed using the Bayesian framework. This is firstly due to the inherently limited

nature of experimentation in this field. We only have one Universe, and we do not have the luxury

of running it again and again in order to measure frequencies of different events. Secondly, we

have a limited perspective as observers, which often makes it very hard to disentangle different

effects across the evolution of the Universe. This means we often have to build a coherent model

for different complex phenomena and test it with limited data. An important point to note is that

the use of the Bayesian framework in this field was only made possible by the recent advancements

in computational power over the last few decades.

In order to introduce the Bayesian framework, we start with two simple rules, the sum rule and

product rule. These were derived by Richard Cox (Cox, 1946) from the rules of logic and algebra,

based on two simple assertions. The first is that belief in the probability of an event X implies belief

in its opposite, that is, the probability of not observing X , denoted X̄ . The second is that knowing

about X , and given that X is true knowing about a second event Y , implies knowledge of the joint

probability of X and Y . The two rules can be expressed as:

P(X |M)+P(X̄ |M) = 1, (4.1)

P(Y,X |M) = P(Y |X ,M)P(X |M), (4.2)

where we always condition probabilities on the assumed model,M, which encompasses all relevant

background information. Note that from the very start we refer to these probabilities as measures of

belief or knowledge, rather than frequencies of events (see Chapter 6 for a more detailed comparison

with the frequentist approach).

Using the sum and product rules, we can derive two important results in Bayesian statistics:

P(X |Y,M) =
P(Y |X ,M)P(X |M)

P(Y |M)
, (4.3)

P(Y |M) = ∑
Xi

P(Xi,Y |M), (4.4)

where the sum is performed over the set of possible Xi outcomes. The first equation is known as

Bayes’ theorem, and the second is marginalization.

The usefulness of these equations becomes apparent if we identify Y with the observed experi-
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4.1. The Bayesian framework

mental data, D, and X with the parameters ~θ = (θ1, ...,θn) of the theoretical model we wish to test

(M). We can then express Bayes’ theorem as:

P(~θ |D,M) =
P(D|~θ ,M)P(~θ |M)

P(D|M)
. (4.5)

The probability distribution of the parameters given experimental data, P(~θ |D,M), is known as

the posterior distribution (denoted P), while the probability of observing a data set given some

parameter values, P(D|~θ ,M), is known as the likelihood (denoted L). The power of Bayes’

theorem is that it allows us to compute the object of interest, the posterior distribution, from the

object we have much better chances of being able to assign, the likelihood (Sivia and Skilling,

2006).

The prior probability of the parameters, P(~θ |M) (denoted π), is a common source of criticism

of Bayesian statistics, because it encompasses the prior knowledge of the parameters values.

Different choices of priors may lead to different posterior results, which makes it crucial to clearly

state them in any inference. Jeffreys (1946) pioneered the use of so-called uninformative priors,

which are designed to have minimal impact on the inference when we do not want to include any

concrete prior knowledge.

The final term in Equation 4.5 is the marginal likelihood or the evidence, P(D|M) (denoted Z).

This is obtained by marginalizing over the parameter values:

P(D|M) =
∫

P(D,~θ |M)d~θ =
∫

P(D|~θ ,M)P(~θ |M)d~θ , (4.6)

which is the continuous version of Equation 4.4. This term is the normalization of the posterior and

is often ignored when performing inferences due to it being very difficult to compute in general.

However, if it can be computed, it is very useful in Bayesian model selection. We can derive this by

plugging the evidence back into Bayes’ theorem to compute the posterior probability of the model

given the data, P(M|D). If we have two models,M1 andM2, we can compute how much more

likelyM1 is compared toM2 in light of experimental data, using the ratio of the two posterior

probabilities:
P(M1|D)

P(M2|D)
=

P(D|M1)

P(D|M2)

P(M1)

P(M2)
. (4.7)

If we then assign equal prior probabilities to the two models,1 P(M1) = P(M2), this is simply

1Note that we do not have to assign equal priors to the two models. This choice can be made on a case by case basis.
However, the preference for equal priors comes from a desire to not interfere with the analysis through an arguably
subjective choice.
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Chapter 4. Inference

given by the ratio of the two evidences. As we shall see in Chapter 6, the evidence also has other

uses, however, we now turn our attention to the problem of computing the quantities presented

here.

4 . 2 C O M P U TAT I O N

In cosmology, we generally have high dimensional parameter spaces, with ΛCDM having 6 free

parameters, and many more being added in extensions or as nuisance parameters for different

analyses. As most posterior distributions are analytically intractable due to the complexities of the

model, we most often have to infer them by sampling over the multidimensional parameter-space.

See Trotta (2008) and Hobson et al. (2010) for reviews of Bayesian methods used in cosmology.

Markov Chain Monte Carlo (MCMC) methods (e.g. Metropolis et al., 1953; Hastings, 1970)

have proved very successful at sampling these spaces and inferring the shape of the posterior.

Therefore, they are commonly used in cosmology (e.g. Lewis and Bridle, 2002; Audren et al.,

2013). However, here we will discuss a second class of algorithms, called Nested Samplers, that

can compute both the shape of the posterior and its normalization (the evidence).

Nested sampling was first introduced by Skilling (2004). Its main purpose is to compute the

evidence, given by Equation 4.6, which for simplicity we re-label as:

Z =
∫
L(~θ)π(~θ)d~θ . (4.8)

This multidimensional integral quickly becomes infeasible to compute through brute force integra-

tion, and therefore a change of variables is used to cast it into a one-dimensional problem.

We define X(λ ) to be the fraction of the prior contained within the iso-likelihood contour

L(~θ) = λ . This can be expressed as:

X(λ ) =
∫
L(~θ)>λ

π(~θ)d~θ , (4.9)

where the element of prior mass is dX = π(~θ)d~θ . This is a strictly decreasing function of the

likelihood, with extremes at X = 1 when the iso-likelihood contour encompasses the entire prior

(λ ≥ 0), and at X = 0 when λ = Lmax. See Figure 4.1 for a visualization. Casting the likelihood as

a function of X , we have L(X(λ ))≡ λ , which means we can write the evidence as:

Z =
∫ 1

0
L(X)dX . (4.10)
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4.2. Computation
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Figure 4.1. Visualization of the change of variables performed in Nested Sampling. The
N-dimensional parameter space is transformed into a one dimensional space, where the
points are ordered by the value of their likelihood. The new parameter X (x-axis in the
right-hand plot) corresponds to the prior volume encased by the iso-likelihood contour of
the corresponding L in the plot on the left. Figure from Sivia and Skilling (2006).

This is a one dimensional integral that can be computed numerically.

The sampling algorithm starts by generating N random samples, called live points, from the

full prior distribution. New points are then randomly sampled from the prior under an evolving

constraint L(~θ) > L∗. Initially, L∗ = 0 corresponding to X∗ = 1, and therefore the points are

generated under the constraint X < X∗. At each step of the iteration, the point with the worst

likelihood L, corresponding to the largest volume X , is discarded and (X ,L) becomes the new

constraint (X∗,L∗). A new point is then generated from the now smaller volume X∗, hence each

new domain is nested within the old.

If the new random samples are uniformly generated from the prior volume X∗, at iterate k, the

volume Xk will have mean and standard deviation:

logXk = (−k±
√

k)/n. (4.11)

Therefore, at each step, the volume shrinks approximately by a factor exp(1/N). The evidence

integral is computed by summing the thin area strips, A = wL, of each point. The simplest way to
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define the width is wk = Xk−1−Xk
2. Therefore, the evidence is given by:

Z ≈∑
k

Ak = ∑
k

wkLk, (4.12)

and the iteration is usually stopped when most of Z has been found. This is based on the fact that

after we find the region that contains most of the posterior volume, each new element of the Z sum

will be an increasingly smaller fraction of the total (see Sivia and Skilling, 2006 for more details).

Finally, we note that the set of samples produced by this method also gives us the shape of the

posterior distribution, by weighting each sample as:

pk =
wkLk

Z . (4.13)

Therefore, nested sampling is an efficient algorithm both for computing the evidence and for

performing parameter estimation.

The last detail needed is a method to uniformly generate new samples from the prior under

the constraint L(~θ) > L∗. This is a non-trivial problem, especially in high-dimensional spaces.

The solution to this problem is what differentiates the many implementations of nested sampling

algorithms available in the literature.

Originally, Skilling (2004) proposed a simple MCMC method using the Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970). Feroz and Hobson (2008) introduced the

popular Multinest package (subsequently improved in Feroz, Hobson, and Bridges, 2009 and

Feroz et al., 2019), which uses D-dimensional ellipsoids to define the iso-likelihood contours. The

package used throughout this thesis, called Polychord (Handley, Hobson, and Lasenby, 2015a;

Handley, Hobson, and Lasenby, 2015b), uses slice sampling to generate new points. This method

takes each dimension separately and generates a new sample from a proposal distribution across

a slice of the likelihood. More complex methods have also been recently proposed, for example

using a varying number of live points (Higson et al., 2019) or deep learning (Moss, 2020).

2In practice, this is often computed using the trapezoid rule.
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C H A P T E R 5

BAO A N D T H E H U B B L E

C O N S TA N T : PA S T, P R E S E N T A N D

F U T U R E

We investigate constraints on the Hubble constant (H0) using Baryon Acoustic Oscillations (BAO)

and baryon density measurements from Big Bang Nucleosynthesis (BBN). We start by investigating

the tension between galaxy BAO measurements and those using the Lyman-α forest, within a

Bayesian framework. Using the latest results from eBOSS DR14, we find that the probability

of this tension being statistical is ' 6.3% assuming flat ΛCDM. We measure H0 = 67.6± 1.1

km s−1 Mpc−1, with a weak dependence on the BBN prior used, in agreement with results from

Planck Cosmic Microwave Background (CMB) results and in strong tension with distance ladder

results. Finally, we forecast the future of BAO + BBN measurements of H0, using the Dark Energy

Spectroscopic Instrument (DESI). We find that the choice of BBN prior will have a significant

impact when considering future BAO measurements from DESI.

The work shown in this chapter is presented in Cuceu et al. (2019). The BBN computation mentioned

in Section 5.3.2, which was used to turn our measured baryon density into a constraint on the

deuterium abundance, was performed by collaborators. The rest of the work presented here was

led by myself.
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5 . 1 I N T R O D U C T I O N

Over the last twenty years, a clear picture of the Universe has started to emerge, with Lambda Cold

Dark Matter (ΛCDM) becoming the standard cosmological model. However, with the improved

precision of the latest surveys, tensions between different measurements of some parameters have

also started to appear. Perhaps none have been debated more than the discrepant values of the

Hubble constant, H0, that measures the expansion rate of the Universe. The cosmic distance ladder

has long been used to directly measure H0 (e.g. Riess et al., 2009; Riess et al., 2011; Riess et al.,

2016; Riess et al., 2018; Riess et al., 2019), and the latest value from the Supernova, H0, for the

Equation of State of Dark energy (SH0ES) program is H0 = 74.03±1.42 km s−1 Mpc−1(Riess

et al., 2019). On the other hand, indirect constraints using Cosmic Microwave Background (CMB)

anisotropy measurements from the Planck satellite (Astropy Collaboration et al., 2013; Planck

Collaboration et al., 2016; Planck Collaboration et al., 2018) give a significantly different value:

H0 = 67.36±0.54 km s−1 Mpc−1(Planck Collaboration et al., 2018) (assuming ΛCDM).

Possible explanations for this tension are systematic errors in one or both datasets, or problems

with the standard model and the need for new physics. Reanalyses of the distance ladder data (e.g.

Cardona, Kunz, and Pettorino, 2017; Zhang et al., 2017; Feeney, Mortlock, and Dalmasso, 2018;

Follin and Knox, 2018) still prefer high values of H0, while using most subsets of the Planck data

yields lower values (e.g. Planck Collaboration et al., 2018; Bernal, Verde, and Riess, 2016). The

4.4σ difference between the two H0 measurements is also hard to reconcile with extensions to

the standard ΛCDM model. A promising prospect is a higher value of the effective number of

neutrinos, Neff. However, the tension is only slightly reduced (∼ 3.9σ ), as CMB constraints rule

out very high values for this parameter (Planck Collaboration et al., 2018).

Baryon Acoustic Oscillations (BAO) provide a standard ruler, which has been evolving with the

Universe since recombination. As such, probing the BAO scale at different times is a powerful tool

in constraining cosmology. The best measurements of the BAO scale come from CMB anisotropy

measurements at redshift z≈ 1100 (e.g. Planck Collaboration et al., 2018). BAO are also present

in the distribution of matter, and there are measurements at low redshifts using the clustering of

galaxies (e.g. Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017). It has also been detected

in the correlation function of the Lyα forest at z ∼ 2.4 and in its cross-correlation with quasar

positions (e.g. Delubac et al., 2015; Font-Ribera et al., 2014; Bautista et al., 2017; du Mas des

Bourboux et al., 2017; Blomqvist et al., 2019; de Sainte Agathe et al., 2019).

BAO data can only constrain a combination of the size of the sound horizon and the expansion
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rate of the Universe (H0). Therefore, a constraint on H0 requires extra data to calibrate the size

of the sound horizon; usually CMB anisotropy measurements are used. Recently, Addison et al.

(2018) used an alternative method, introduced by Addison, Hinshaw, and Halpern (2013), that uses

deuterium abundance measurements and the Big Bang Nucleosynthesis (BBN) theory. This BAO +

BBN method assumes standard pre-recombination physics and gives a value of H0 consistent with

the Planck value using a flat ΛCDM model. Addison et al. (2018) emphasized the importance of

this method in providing a constraint on H0 independent of CMB anisotropy measurements and the

distance ladder. The focus of this work is to discuss past results of this data combination, compute

the latest constraints, and investigate future implications.

The BAO measurements used by Addison et al. (2018) come from galaxy clustering analyses

(Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017), and the Lyα forest (Delubac et al., 2015;

Font-Ribera et al., 2014). Questions arise, however, when considering the ∼ 2.5σ tension between

Galaxy BAO and Lyα BAO in the 11th and 12th data release of the Sloan Digital Sky Survey

(SDSS DR11 and DR12, e.g. du Mas des Bourboux et al., 2017; Bautista et al., 2017; Aubourg

et al., 2015). The question of consistency between datasets, especially when it comes to combining

them, has long been debated (e.g. Inman and Jr, 1989; Charnock, Battye, and Moss, 2017; Nicola,

Amara, and Refregier, 2019; Adhikari and Huterer, 2019; Raveri and Hu, 2019). Recently, a new

method was proposed by Handley and Lemos (2019b) to quantify tension using a new statistics they

call suspiciousness. As such, in Section 5.2 we use this method to investigate the tension between

Galaxy BAO and Lyα BAO for the purpose of testing the reliability of their combined results.

In Section 5.3 we update the constraint from BAO + BBN using the latest BAO and BBN

results. Compared to Addison et al. (2018), we add the latest BAO measurements from the Extended

Baryon Oscillation Spectroscopic Survey (eBOSS) using QSO clustering and the Lyα forest (Ata

et al., 2018; de Sainte Agathe et al., 2019; Blomqvist et al., 2019). We also use the latest primordial

deuterium abundance results (Cooke, Pettini, and Steidel, 2018). In Section 5.4, we forecast future

BAO + BBN measurements of H0 using the Dark Energy Spectroscopic Instrument (DESI), and

discuss the role of BBN priors on future results.

5 . 2 G A L A X Y BAO V S LY α F O R E S T BAO

When combining different BAO measurements, Addison et al. (2018) split the data in two types:

Galaxy BAO and Lyα BAO, that includes both the Lyα auto-correlation and its cross-correlation

with quasars. BOSS DR11 Lyα BAO measurements were in ≈ 2.3σ tension with CMB predictions
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BAO Measurement Dataset Reference Tracer zeff

6dFGS 6dFGS Beutler et al. (2011) galaxies 0.106
SDSS MGS SDSS DR7 Ross et al. (2015) galaxies 0.15
BOSS Gal SDSS DR12 Alam et al. (2017) galaxies 0.38,0.51,0.61

eBOSS QSO SDSS DR14 Ata et al. (2018) QSO 1.52
eBOSS Lyα×Lyα SDSS DR14 de Sainte Agathe et al. (2019) Lyα×Lyα 2.34
eBOSS Lyα×QSO SDSS DR14 Blomqvist et al. (2019) Lyα×QSO 2.35

Table 5.1. Datasets measuring the BAO peak that are used in our Hubble constant
analysis. We have also used other past results such as Lyα DR11 and DR12 for our
tension analysis. We assume Gaussian likelihoods for the galaxy BAO measurements, but
we use the full χ2 tables provided by the Lyα forest analyses (see Section 5.6).

from the Planck Collaboration (Font-Ribera et al., 2014; du Mas des Bourboux et al., 2017), while

the samples that go into Galaxy BAO were all consistent with CMB predictions. This translated

into a tension between Lyα BAO and Galaxy BAO that can clearly be seen in the bottom panel of

Figure 5.1 (red dashed contours).

Recently, the eBOSS collaboration published the latest Lyα BAO measurements using DR14

data (de Sainte Agathe et al., 2019; Blomqvist et al., 2019). They use ∼ 15% more quasar spectra

than the previous DR12 results, and, for the first time, Lyα absorbers in the Lyβ region are used.

With these new measurements, the tension with CMB predictions has gone down to ∼ 1.7σ . In this

section, we discuss the internal tensions of the latest BAO results, listed in Table 5.1.

5 . 2 . 1 BAO C O S M O L O G Y

Studies of the BAO feature in the transverse direction provide a measurement of DM(z)/rd , while

BAO studies along the line of sight measure the combination DH(z)/rd = c/H(z)rd , where DM is

the comoving angular diameter distance, c is the speed of light in vacuum, z is the redshift and

rd ≡ rs(zd) is the size of the sound horizon at the drag epoch (zd).

In a flat ΛCDM cosmology, DM is given by:

DM(z) = c
∫ z

0

dz′

H(z′)
. (5.1)

Some of the datasets we include (6dFGS, SDSS MGS and eBOSS QSO) measure DV (z)/rd , which

is a combination of the BAO peak coordinates above. DV (z) is defined as:

DV (z)≡ [zDH(z)D2
M(z)]1/3. (5.2)
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The Friedman equation in flat ΛCDM completes our model:

H(z)2

H2
0

= Ωr(1+ z)4 +Ωm(1+ z)3 +ΩΛ, (5.3)

where Ωr, Ωm and ΩΛ are the fractional densities of radiation, matter and dark energy today

(at redshift z = 0). Furthermore, in flat ΛCDM, the dark energy fraction can be computed as:

ΩΛ = 1−Ωm−Ωr. In the late universe, at the redshifts probed by BAO, the radiation fraction is

very small. Nevertheless, we model it assuming a fixed neutrino sector with Neff = 3.046 and 2

massless species (the third one is massive with mν = 0.06 eV and contributes to Ωm), and a CMB

temperature of TCMB = 2.7255K. This has been measured by COBE/FIRAS (Fixsen et al., 1996;

Fixsen, 2009), and we consider this measurement independent of Planck. Therefore, the only free

parameters in H(z) are H0 and Ωm.

As previously mentioned, when we measure BAO we are measuring a combination of H0 and rd ,

which means the two parameters are fully degenerate. As such, we sample their product: H0rd . We

will discuss ways to break this degeneracy in the next section, but for the purpose of investigating

possible internal tensions in BAO measurements we will work in the Ωm−H0rd plane.

5 . 2 . 2 Q U A N T I F Y I N G T E N S I O N

The aim of this section is to quantify the tension between the different Lyα BAO measurements

and Galaxy BAO measurements. This tension is clear when looking at the posteriors (see bottom

panel of Figure 5.1), but quantifying it is a non-trivial problem, due to the non-Gaussianity of the

posteriors. There is a large number of available approaches in the literature to quantify tension

between datasets (e.g. Inman and Jr, 1989; Charnock, Battye, and Moss, 2017; Nicola, Amara,

and Refregier, 2019; Adhikari and Huterer, 2019; Raveri and Hu, 2019). One of the most widely

used methods is the evidence ratio R (Marshall, Rajguru, and Slosar, 2006; Trotta, 2008; Verde,

Protopapas, and Jimenez, 2013):

R≡ ZAB

ZAZB
, (5.4)

where Z are evidences, A and B denote the two datasets on their own, and AB denotes the joint

results. The Bayesian evidence (the probability of the data D given a model M: P(D|M)) is the

normalization term in Bayes’ theorem, and is usually ignored if one is only interested in the shape

of the posterior. However, it has useful applications, e.g. in Bayesian Model Selection (e.g. Sivia

and Skilling, 2006), and as mentioned in quantifying concordance between datasets.

As highlighted in Handley and Lemos (2019b), the R-statistic can hide tension when the priors
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Figure 5.1. (Top) Parameter constraints in a flat ΛCDM cosmology from each BAO
dataset individually. The different contour orientations are due to the different redshifts
of separate datasets. The box represents the boundaries of the plot on the right with the
combined BAO measurements. (Bottom) Comparison of BAO constraints from galaxy
clustering and different Lyα forest measurements. The recently released eBOSS DR14
Lyα BAO measurements are visibly more consistent with galaxy BAO than previous
results from DR11 and DR12. This is quantified in Table 5.2.
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are arbitrarily chosen, since it is proportional to the prior volume shared by both datasets. In

this work, we will use the method introduced in Handley and Lemos (2019b): We calculate the

‘suspiciousness’ S as the ratio between the evidence ratio R, and the information ratio I: S≡ R/I.

The information ratio is defined as:

log I ≡DA +DB−DAB, (5.5)

where D is the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951):

D ≡
∫

dθ P(θ) log
P(θ)
π(θ)

, (5.6)

with P the posterior, π the prior, and θ the parameters. The KL divergence is also called the relative

entropy because it quantifies the information difference between two distributions (in this case, the

information gain between the prior and the posterior).

The suspiciousness S can be seen as an evidence ratio R from which the dependence on prior

volume has been subtracted, in the form of the information ratio I. Therefore, it preserves the

qualities that make R a desirable statistic for dataset comparison (such as its Bayesian interpretation

and its independence in the choice of parameters), but it is no longer proportional to the prior

volume, and therefore it does not hide tension when wider priors are chosen.

As described in Handley and Lemos (2019b), the suspiciousness can be calibrated using the

fact that, for Gaussian posteriors, it follows a χ2
d distribution, where d is the number of parameters

simultaneously constrained by the combination of the datasets. From this distribution, a tension

probability p of two datasets being discordant by chance can be assigned as the ‘p-value’ of the

distribution. The remaining problem is the calculation of the number of dimensions simultaneously

constrained by both datasets. This is done using the Bayesian model dimensionality (BMD)

introduced in Handley and Lemos (2019a). It is worth mentioning that the BMD can be smaller

or larger than the number of constrained parameters in our model if the posterior is significantly

non-Gaussian. While it is clear by looking at the bottom panel of Figure 5.1 that the posteriors are

non-Gaussian in the case of Lyα BAO, this method will give us an estimate of the tension between

the datasets.1 We use Polychord (Handley, Hobson, and Lasenby, 2015a; Handley, Hobson, and

Lasenby, 2015b) to sample our posteriors and compute evidences.

We use the three Lyα BAO measurements published by the BOSS and eBOSS collaborations

1In addition, as discussed in Handley and Lemos (2019b), these posteriors can be ‘Gaussianised’ using Box-Cox
transformations (Schuhmann, Joachimi, and Peiris, 2016), which preserve the value of logS.
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datasets logR log I logS d p(%) σ

Gal - DR11 Lyα 0.35±0.19 4.04±0.18 −3.68±0.05 2.43±0.15 1.20±0.15 ' 2.5
Gal - DR12 Lyα 0.26±0.19 3.79±0.18 −3.53±0.05 2.34±0.15 1.31±0.16 ' 2.5
Gal - DR14 Lyα 1.93±0.19 3.78±0.19 −1.85±0.05 2.19±0.14 6.30±0.61 ' 1.9

Table 5.2. Tension statistics for combining Galaxy BAO and different Lyα BAO mea-
surements. We show results for the R-statistic, the Bayesian information and the ‘suspi-
ciousness’. The Bayesian model dimensionality (d) introduced by Handley and Lemos
(2019a) is used to compute a p-value for the suspiciousness, and we use this to compute
the approximate number of standard deviations for this tension. The older DR11 and
DR12 Lyα results give small p-values, indicating a small probability of this tension being
statistical in nature. On the other hand, the recent DR14 results show better agreement
with the Galaxy BAO results.

using SDSS data releases 11, 12 and 14. We compare each of these with the combined Galaxy BAO

sample within a flat ΛCDM cosmology, and present the tension statistics in Table 5.2. We compute

probability values of ' 1.2% and ' 1.3% for the consistency between the Galaxy BAO sample and

the DR11 and DR12 Lyα results respectively, indicating that there is a very small probability that

this tension appears purely by chance. On the other hand, using the latest DR14 results we compute

p' 6.3%, consistent with the tension being statistical in nature.

5 . 3 BAO A N D T H E H U B B L E C O N S TA N T

BAO data must be combined with other measurements in order to break the H0− rd degeneracy

and obtain a constraint on H0. The sound horizon at the drag epoch is given by:

rd =
∫

∞

zd

cs(z)
H(z)

dz, (5.7)

where cs(z) = c[3+ 9
4 ρb(z)/ργ(z)]−1/2 is the speed of sound in the baryon-photon fluid (Aubourg

et al., 2015), ρb(z),ργ(z) are the baryon and photon densities respectively, and zd is the redshift

of the drag epoch. Precise computations of rd require a full Boltzmann code, however, following

Aubourg et al. (2015), we use a numerically calibrated approximation to avoid the additional

computational cost:

rd ≈
55.154exp[−72.3(ων +0.0006)2]

ω0.25351
m ω0.12807

b
Mpc, (5.8)

where ωX = ΩX h2, and X = m,ν ,b are matter, neutrinos and baryons respectively, and h = H0/100

with H0 in [km s−1 Mpc−1]. This approximation is accurate to 0.021% (Aubourg et al., 2015) for a

fixed neutrino sector with Neff = 3.046 and ∑mν < 0.6 eV. Our main results are also benchmarked

against independent runs using CosmoMC (Lewis and Bridle, 2002), which uses the Boltzmann
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solver CAMB (Lewis, Challinor, and Lasenby, 2000), to validate the approximation.

BAO measurements provide a good constraint on Ωm, and, as discussed, the neutrino sector is

fixed to the minimal mass2. Therefore, to compute rd , only a measurement of the baryon density,

Ωbh2, is still needed. Planck results currently provide the best constraints on Ωbh2, however, the

goal of this work is to constrain H0 without using CMB anisotropy information. As such, we

instead use primordial deuterium abundance measurements and BBN to put a constraint on the

baryon density.

5 . 3 . 1 B B N M E A S U R E M E N T S

Deuterium is one of the most widely used primordial elements for constraining cosmology because

of its strong dependence on the baryon density (Cyburt et al., 2016). Most of the primordial

deuterium was processed into helium during BBN, however, trace amounts remain because the

reaction is not completely efficient (Dodelson, 2003). If there are more baryons, this reaction is

more efficient, and more deuterium gets processed into helium before freeze-out. Therefore, the

deuterium abundance depends strongly on the baryon density. An upper bound can easily be placed

on the primordial deuterium abundance because there are no known astrophysical sources that can

produce significant quantities of deuterium (Epstein, Lattimer, and Schramm, 1976; Prodanović

and Fields, 2003). Deuterium can, however, be destroyed, and as such a lower bound on the

abundance requires finding pristine systems with the lowest possible metallicities. These systems

have undergone only modest chemical evolution, so they provide the best available environments

for measuring the primordial deuterium abundance (see Cyburt et al., 2016 for a review). Recently,

Cooke, Pettini, and Steidel (2018) reported a one percent measurement of the primordial deuterium

abundance using 7 near-pristine damped Lyα systems (DLAs). However, the sample size should be

greatly improved upon with the next generation of 30m telescopes (Grohs et al., 2019).

To obtain a constraint on Ωbh2, the deuterium abundance must first be converted to the baryon

to photon ratio, η (Cooke et al., 2016). The required calculations (Cooke et al., 2016) need precise

measurements of the cross-sections of reactions happening in BBN (see Adelberger et al., 2011 for

a review of measurements of these reaction rates). The radiative capture of protons on deuterium

to produce 3He: d(p,γ)3He, is one reaction whose cross-section is proving difficult to determine

in the energy range relevant to BBN. Current laboratory measurements have an uncertainty of

& 7%, and as such theoretical estimates are mostly used as they provide about ∼ 1% precision

2Small deviations from the minimal neutrino mass, within the range allowed by current CMB constraints, would not
have a large impact on our results.
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Datasets Ωbh2 prior Ωm rd [Mpc] H0 [km s−1 Mpc−1]
DR14 BAO + BBN theoretical 0.302+0.017

−0.020 149.0±3.2 67.6±1.1
DR14 BAO + BBN empirical 0.300±0.018 148.0±3.1 68.1±1.1
DR12 BAO + BBN empirical 0.290±0.018 150.0±3.5 67.5±1.2
DR11 BAO + BBN empirical 0.289+0.016

−0.021 150.3+3.7
−3.3 67.4±1.2

Planck 2018 - 0.3153±0.007 147.09±0.26 67.4±0.5
SH0ES - - - 74.0±1.4

Table 5.3. Latest DR14 BAO + BBN constraints using either theoretical or empirical
d(p,γ)3He reaction rate. We add results using the Lyα DR11 and DR12 measurements
to show the consistency in H0 results. Results from the Planck Collaboration (Planck
Collaboration et al., 2018) and the SH0ES collaboration (Riess et al., 2019) are included
for comparison.

(Cooke et al., 2016). We will use both theoretical and empirical results and compare them. The

best theoretical estimates of the d(p,γ)3He reaction rate come from Marcucci et al. (2016), and

lead Cooke, Pettini, and Steidel (2018) to compute:

100Ωbh2 = 2.166±0.015±0.011 (BBN theoretical), (5.9)

where the first error comes from the deuterium abundance measurement, and the second from the

BBN calculations. Using the empirical value for the reaction rate computed by Adelberger et al.

(2011), the baryon density is:

100Ωbh2 = 2.235±0.016±0.033 (BBN empirical). (5.10)

These two results are in mild ∼ 1.7σ tension with each other, but more importantly, the first

measurement (using the theoretical rate) is in ∼ 2.9σ tension with the latest CMB results from the

Planck Collaboration3:

100Ωbh2 = 2.237±0.015 (Planck 20184). (5.11)

There are some prospects for solving this tension by allowing the effective number of neutrinos

Neff to vary (see Figure 7 of Cooke, Pettini, and Steidel, 2018). A slightly larger value of Neff would

reconcile BBN and CMB measurements of Ωbh2 (Cooke, Pettini, and Steidel, 2018). However, for

the purposes of the present work, we use both values Ωbh2 from BBN with the standard Neff = 3.046

in order to study the impact of this tension on H0 measurements.

3We use the results from Planck 2018 TT,TE,EE + lowE + lensing likelihoods
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5 . 3 . 2 R E S U LT S

We combine the BAO data presented in Section 5.2 with the two Ωbh2 measurements from BBN

deuterium abundance. Using equation 5.8, we compute the size of the sound horizon at the drag

epoch rd and obtain constraints on H0. The left panel of Figure 5.2 shows results using Lyα BAO

+ BBN and Gal BAO + BBN, as well as their combination. Individually they are both consistent

with higher values of H0 (latest SH0ES results are also plotted), however once we combine Lyα

and Gal BAO, the joint constraint prefers lower, Planck-like values of the Hubble constant.

Our results using both the theoretical and empirical d(p,γ)3He reaction rates are shown in

Table 5.3 and in the right panel of Figure 5.2, together with Planck 2018 CMB results (Planck

Collaboration et al., 2018) and the SH0ES H0 measurement from the distance ladder (Riess et al.,

2019) for comparison. We also add results using past Lyα measurements (DR11 and DR12) to

show the consistency in H0 constraints. Both our H0 measurements are consistent with the results

of the Planck Collaboration. On the other hand, we find that our Hubble constant measurements

are in strong tension with local distance ladder results of H0 from the SH0ES Collaboration. Our

results are in approximately ∼ 3.6σ tension using the theoretical d(p,γ)3He reaction rate, and

∼ 3.3σ tension using the empirical d(p,γ)3He reaction rate.

An interesting result can be obtained by reframing this tension in terms of primordial deuterium

abundance. If we assume the H0 constraint from SH0ES (Riess et al., 2019) is true, and we

combine it with BAO data, we obtain a constraint on the baryon density of Ωbh2 = 0.0310±0.003.

Using BBN (Cooke et al., 2016), we obtain a value for the primordial deuterium abundance of

105(D/H)P = 1.38±0.25 (this assumes ΛCDM and standard BBN). This value is ∼ 4.5σ below

that measured by Cooke, Pettini, and Steidel (2018), and well below the value derived from the

interstellar medium of the Milky Way (Linsky et al., 2006). As we discussed, there are currently no

known astrophysical sources that can produce significant quantities of deuterium (Epstein, Lattimer,

and Schramm, 1976; Prodanović and Fields, 2003). This means D/H measurements have a robust

lower limit, which renders such a low value of the primordial deuterium abundance very unlikely.

We find that the relatively large difference between the two Ωbh2 measurements from BBN has

a small impact on the Hubble constant measurement from current BAO measurements, causing a

shift on the best fit value of H0 of about ∼ 0.5σ . However, with improving BAO data from the next

generation of LSS experiments such as DESI (DESI Collaboration et al., 2016) or Euclid (Laureijs

et al., 2011), this might change. In the next section, we investigate the advances that DESI data

will allow in measuring the Hubble constant independent of CMB data, and the potential impact of
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Figure 5.2. (Left) Current state-of-the-art results for H0 versus Ωm, independent of CMB
anisotropy data. BAO data was combined with a prior on Ωbh2 from BBN deuterium
measurements (using the theoretical reaction rate). (Right) Our main results using all the
BAO samples in Table 5.1, combined with BBN using both reaction rates.

BBN tensions on future results.

5 . 4 I M P L I C AT I O N S F O R D E S I

The next generation of LSS experiments will be spearheaded by the Dark Energy Spectroscopic

Instrument (DESI), starting in 2020. This spectroscopic galaxy survey will cover 14000 square

degrees, and measure BAO using both galaxy clustering and the Lyα forest (DESI Collaboration

et al., 2016). It will target Luminous Red Galaxies (LRGs) at redshifts 0.4 < z < 1.0, Emission

Line Galaxies (ELGs) at redshifts 0.6 < z < 1.6, quasars at redshifts 0.6 < z < 2.1 for clustering

only, and quasars at redshifts 2.1 < z < 3.5 for both clustering and Lyα forest measurements (DESI

Collaboration et al., 2016). DESI will also target bright galaxies at redshifts 0 < z < 0.5 in order to

take advantage of the times when moonlight prevents efficient observation of faint targets. This

wide redshift coverage means that DESI will be able to precisely constrain the evolution of the

Universe up to redshift∼ 3.5. Forecasts for future H0 constraints from DESI combined with baryon

density measurements from the CMB were presented in Wang, Xu, and Zhao (2017). Our objective

in this section is to forecast future DESI BAO + BBN constraints on the Hubble constant, and to

discuss the role of the discrepant values of the d(p,γ)3He reaction rate.

In order to study the impact of BBN tensions on future BAO + BBN measurements of the

Hubble constant, we perform a forecast of the future DESI results using the uncertainties presented

by DESI Collaboration et al. (2016). For our fiducial cosmology, we use the BAO + BBN empirical

results from Section 5.3. We plot results using different components of DESI as well as the
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Figure 5.3. (Left) Forecast for future BAO results within flat ΛCDM using different
components of DESI. (Right) Forecast for Hubble constant results using the full DESI
results combined with the two Ωbh2 priors from BBN, and the Planck 2018 results (Planck
Collaboration et al., 2018) for comparison. The tension in the baryon density between the
BBN theoretical constraint (in blue) and the CMB (in red) can clearly be seen in this plot.
This shows the importance of solving the BBN tension for the future of BAO + BBN H0
measurements.

combined results in the left panel of Figure 5.3. For illustration purposes, we only plot one LRG

bin at z = 0.7 and one ELG bin at z = 1.2. With the big improvement in BAO measurements at

each redshift, DESI also has the potential to give rise to inconsistent results. If this happens, it will

provide a big opportunity to discover unaccounted systematic errors, unforeseen problems with our

methods or potentially new physics.

Finally, we turn our attention to the main goal of this section: to quantify the impact of

discrepant BBN measurements on future Hubble constant results from BAO + BBN. We perform

the forecast described above for DESI and combine it with Ωbh2 measurements from BBN, using

both the theoretical and empirical d(p,γ)3He reaction rates to measure H0. We plot the results in

the right panel of Figure 5.3. The two H0 constraints are ∼ 1.2σ apart. This means that solving the

BBN Ωbh2 discrepancy will play an important role in next generation measurements of H0 using

BAO + BBN. There is hope of better laboratory measurements of the d(p,γ)3He reaction rate from

the Laboratory for Underground Nuclear Astrophysics (LUNA Gustavino, 2014; Kochanek, 2016).

5 . 5 C O N C L U S I O N S

We use the suspiciousness statistic proposed by Handley and Lemos (2019b) to investigate the

tension between galaxy BAO and the different Lyα BAO measurements. When using the DR11

and DR12 Lyα results, we find probabilities of ' 1.2% and ' 1.3% for the tension being statistical

77



Chapter 5. BAO and the Hubble Constant: Past, Present and Future

in nature. On the other hand, the DR14 results show better agreement, with probability of ' 6.3%.

We put an independent constraint on H0 using BAO results with the sound horizon calibrated by

baryon density measurements from BBN deuterium abundance studies. One of the BBN reaction

rates has very poor laboratory constraints, so we have to rely on either theoretical or empirical

estimates (Cooke et al., 2016; Cooke, Pettini, and Steidel, 2018). We obtain two H0 constraints:

H0 = 67.6± 1.1 km s−1 Mpc−1 using the theoretical reaction rate and H0 = 68.1± 1.1 km s−1

Mpc−1 using the empirical one. These results are consistent with each other and with CMB results,

as can be seen in Figure 5.2. They are also consistent with past BAO + BBN results (Aubourg

et al., 2015; Addison et al., 2018), showing that the tension in DR11 and DR12 did not have a large

impact on the H0 constraint. However, they are both in strong (> 3σ ) tension with H0 results from

the distance ladder. Our results again highlight that the tension is not caused by systematic errors in

the Planck analysis.

Starting in 2020, DESI will accurately measure BAO over a wide redshift range. We use the

two BBN Ωbh2 measurements and forecast future DESI BAO + BBN results. As can be seen in

the right panel of figure 5.3, the choice of BBN reaction rate estimate will have a significant impact

on the H0 constraints. Improved measurements of the d(p,γ)3He reaction rate (e.g. from LUNA)

will be required in order to obtain accurate constraints of the Hubble constant using BAO + BBN.

5 . 6 A P P E N D I X : LY α BAO M O D U L E S

For Lyα forest datasets, we use the provided χ2 tables5. These tables give the value of the χ2 as a

function of the two BAO peak coordinates scaled using a fiducial cosmology:

α⊥ =
[DM(zeff)/rd ]

[DM(zeff)/rd ] f id
and α‖ =

[DH(zeff)/rd ]

[DH(zeff)/rd ] f id
. (5.12)

We use these tables to interpolate the value of the χ2 at the points we need for our analysis. For

all the other measurements, we use Gaussian likelihoods with the measured means and standard

deviations (6x6 covariance matrix for BOSS). We used the Astropy6 package (Astropy Collaboration

et al., 2013; Astropy Collaboration et al., 2018) for the theoretical modelling of the BAO peak

coordinates.

Methods to interpolate the χ2 tables are now available as part of the popular MCMC packages

CosmoMC (Lewis and Bridle, 2002) and MontePython (Audren et al., 2013). As such, Lyα BAO

5https://github.com/igmhub/picca/tree/master/data
6http://www.astropy.org
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results can now be easily included by the community in cosmological analyses.
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C H A P T E R 6

BAY E S I A N M E T H O D S F O R F I T T I N G

BAO I N T H E LY M A N -α F O R E S T

We study and compare fitting methods for the Lyman-α (Lyα) forest 3D correlation function.

We use the nested sampler PolyChord and the community code picca to perform a Bayesian

analysis, which we compare with previous frequentist analyses. By studying synthetic correlation

functions, we find that the frequentist profile likelihood produces results in good agreement with

a full Bayesian analysis. On the other hand, Maximum Likelihood Estimation with the Gaussian

approximation for the uncertainties is inadequate for current data sets. We compute for the first time

the full posterior distribution from the Lyα forest correlation functions measured by the extended

Baryon Oscillation Spectroscopic Survey (eBOSS). We highlight the benefits of sampling the full

posterior distribution by expanding the baseline analysis to better understand the contamination by

Damped Lyα systems (DLAs). We make our improvements and results publicly available as part

of the picca package.

The work shown in this chapter is presented in Cuceu, Font-Ribera, and Joachimi (2020).

6 . 1 I N T R O D U C T I O N

Over the last few decades, cosmology has entered a data driven era, with large surveys providing

rich data sets. These data sets encode a vast amount of information, which most of the time is
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non-trivial to extract. Performing such large surveys is very expensive and time-consuming, which

puts even more emphasis on efficient and accurate extraction of meaningful information. Over

the last two decades, the Λ Cold Dark Matter (ΛCDM) model has become widely accepted as the

standard cosmological model, however, it has 6 free parameters with extensions adding even more.

On top of this, most analyses need extra nuisance parameters to create good models of their data,

leading to very high-dimensional parameter spaces (e.g. Planck Collaboration et al., 2018; Abbott

et al., 2018). It has become essential to have reliable analysis tools, and this has lead to an increased

focus on statistical methods and interpretation.

The efficient and reliable extraction of Baryon Acoustic Oscillation (BAO) information from

large scale structure (LSS) data has been a very active topic of research over the last 15 years.

Since the first detections of BAO, using the distribution of galaxies (Eisenstein et al., 2005; Cole

et al., 2005), there has been much attention given to optimizing statistical methods used on data of

discrete tracers (e.g. Vargas Magaña et al., 2013; Anderson et al., 2014; Chan et al., 2018; Hinton,

Howlett, and Davis, 2020). However, the newer method of measuring BAO using the Lyman-α

(Lyα) forest has received comparatively less attention.

The first detection of the BAO scale in the Lyα forest auto-correlation (Lyα×Lyα) function

was done by the Baryon Oscillation Spectroscopic Survey (BOSS) using Data Release 9 (DR9) of

the Sloan Digital Sky Survey (SDSS; Busca et al., 2013; Slosar et al., 2013; Kirkby et al., 2013).

It was also detected in the cross-correlation of Lyα absorbers with quasar positions (Lyα×QSO)

using BOSS DR11 (Font-Ribera et al., 2014). A physical model for the contaminations was first

used by Bautista et al. (2017) and du Mas des Bourboux et al. (2017), however, it has a large number

of parameters that model the contamination by Damped Lyα systems (DLAs) and different metal

absorption lines. Recent analyses have introduced yet more effects (de Sainte Agathe et al., 2019;

Blomqvist et al., 2019), and these have led to a large parameter space and potentially complex

behaviour. However, as the main aim has always been the measurement of the BAO peak position,

these astrophysical parameters have received little attention.

The BAO scale can be measured using just two parameters: α|| and α⊥. These measure the size

of the BAO scale relative to a fiducial cosmology along and across the line of sight, respectively.

Because of the focus on measuring BAO, the high-dimensional parameter spaces have so far been

investigated only using a frequentist methodology. In particular, the profile likelihood (e.g. Planck

Collaboration et al., 2014b; Chan et al., 2018; Algeri et al., 2019) has been used to extract the

relevant information. This method approximates the probability at some value of α|| and α⊥ by the

maximum likelihood over the nuisance parameters at that point. In this work we use a Bayesian
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approach to fit the Lyα forest 3D correlation function, and we provide a tool for studying this large

parameter space and for extracting all the relevant information. While Bayesian methods have been

used in Lyα forest analyses before (e.g. Pichon et al., 2001; Kitaura, Gallerani, and Ferrara, 2012;

Horowitz et al., 2019; Porqueres et al., 2019), they were never used in BAO analyses of the Lyα

correlation function.

The principal difference between the Bayesian (Bayes, 1763; Laplace, 1820) and frequentist

(Neyman, 1937) methodologies is their interpretation of the concept of probability. In the Bayesian

framework, probability is a degree of belief in an event, while in the frequentist framework, the

probability of an event is the limit of its relative frequency in many trials. In the limit of infinite

data, the two approaches produce the same results. Our focus, however, is not on philosophical

interpretations, but on the practical consequences of the two frameworks when working with real

data. One of the reasons for the widespread use of Bayesian methods is the availability of samplers

such as Monte Carlo Markov Chain (MCMC; Metropolis et al., 1953; Hastings, 1970) which

facilitate the efficient exploration of the complex high-dimensional posterior distributions that often

appear in cosmology. It is the efficiency and accuracy of such tools that we want to compare with

equivalent frequentist approaches within the context of fitting the Lyα forest correlation function.

The purpose of this work is to investigate the methods used so far and compare them with a

Bayesian framework. In particular, we use for the first time a sampler to obtain the full posterior

distribution of all parameters. We begin in Section 7.2, where we discuss the frequentist methods

used so far, and compare them with the Bayesian methodology. In Section 6.3, we use synthetic

correlation functions to showcase the similarities and differences of the two approaches when fitting

the BAO parameters. Finally, in Section 6.4, we use a Bayesian framework to analyse the latest

extended BOSS (eBOSS) DR14 correlation functions (de Sainte Agathe et al., 2019; Blomqvist

et al., 2019), and highlight some potential uses and advantages of the full posterior distribution.

6 . 2 BAY E S I A N V S . F R E Q U E N T I S T M E T H O D S

We first discuss some of the theoretical differences between the Bayesian and frequentist approaches

to statistical data analysis. We include this discussion for completeness and also because, as we

will see, the two frameworks answer fundamentally different questions when it comes to the

quantification of uncertainties. As such, we believe that these theoretical considerations are

important to the interpretation of our results. We also discuss some practical differences and their

implications for cosmology, and we conclude with a simple toy example.
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6 . 2 . 1 T H E B E S T F I T M O D E L

The difference in the interpretation of probability between the Bayesian and frequentist approaches

leads to a difference in their principal object of study. The frequentist approach treats parameters

as fixed quantities and the data as the random variable. The object of study is the probability of

obtaining the data, D, given a model,M, and some parameters, ~θ = (θ1, ...,θn); this is also known

as the likelihood: P(D|~θ ,M). For normally distributed data, the likelihood takes the form:

P(D|~θ ,M) =
exp
[
− 1

2

(
D−M(~θ)

)T
Σ−1
(
D−M(~θ)

)]√
(2π)n|Σ|

, (6.1)

where Σ is the covariance matrix of the data. We will also refer to the logarithm of the likelihood,

which we denote by L ≡ logP(D|~θ ,M).

The object of interest for a Bayesian is the posterior distribution of the parameters ~θ , given

the data, and a model: P(~θ |D,M). This fully encapsulates our knowledge of the probability of

possible values of the parameters of interest, by treating these parameters as random variables. The

posterior distribution can be computed through Bayes’ Theorem (Bayes, 1763; Laplace, 1820):

P(~θ |D,M) =
P(D|~θ ,M)P(~θ |M)

P(D|M)
, (6.2)

where P(~θ |M) is the prior probability, and P(D|M) is a constant (for a model M) known as

the Bayesian evidence. The evidence is the normalization of the posterior and requires an n-

dimensional integral to be computed. It can be used to perform Bayesian model selection (see e.g.

Liddle, Mukherjee, and Parkinson, 2006; Trotta, 2007; Trotta, 2008 for applications in cosmology),

however, when the only goal is inference this quantity is not necessary.

If we work with wide flat priors, we can deduce from Equations 6.1 and 6.2 that the two

frameworks will produce the same best fit ~θbest, given by the frequentist maximum likelihood

Pmax(D|~θ ,M), and by the Bayesian maximum posterior probability Pmax(~θ |D,M).

6 . 2 . 2 Q U A N T I F Y I N G U N C E RTA I N T I E S

The two approaches diverge again when it comes to finding the uncertainty on ~θbest. In this case, it

is not only a difference in methodology, but also a fundamental difference in the object of interest.

Frequentists quantify uncertainty through confidence intervals1 (CI), which are defined by the

1For n-dimensional distributions these are referred to as confidence regions, however we chose to only talk about
intervals to clearly distinguish them from Bayesian credible regions
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proportion (frequency) of intervals, measured from the ensemble of possible data sets, that contain

the true values of the parameters (~θtrue). On the other hand, Bayesian uncertainty is quantified

through credible regions (CR), defined as the smallest region of the posterior that encompasses a

certain probability (most often 68% and 95% CRs are quoted).

The two questions asked by Bayesians and frequentists are very different. A Bayesian CR is

telling us that, given our data and prior, we are e.g. 95% confident that the true values ~θtrue are

within that region. Meanwhile, the frequentist CI is telling us that if we repeat our experiment

many times, the confidence intervals we obtain will contain the true values ~θtrue in e.g. 95% of

the cases. Note that the frequentist CI that we obtain from our data does not state anything about

the probability that it contains ~θtrue (this is a common misconception). In fact, there are extreme

cases in the literature where a frequentist CI has 0% probability of containing the truth2 (Jaynes

and Kempthorne, 1976; Welch, 1939). This behaviour is due to the fact that in the frequentist

methodology, one never conditions a result on the actually observed data D, but instead on its

distribution of possible realizations, which we do not always fully understand given limited data.

This issue is fundamental in cosmology, because we only have one Universe to observe. Bayesian

CRs can also cause problems because of prior choices. For example, flat priors are only flat for the

specific parametrization they are defined on.

We now turn to the computation of these uncertainty intervals and regions. In a frequentist

framework, we usually start by computing the best fit parameters ~θbest by maximizing the likelihood.

This is called Maximum Likelihood Estimation (MLE). After that, we can compute a covariance

matrix for the parameters by taking the second derivative of the likelihood in parameter space

around this peak. However, this covariance matrix is only accurate in general if the errors on the

data are normally distributed and the model is linear in all parameters (which would correspond to

a Gaussian posterior in a Bayesian framework). If this is not the case, it can still be applied around

the peak, but a better approach is to compute the likelihood on a grid in parameter space (we will

call this a scan).

The confidence intervals can be computed using regions of equal likelihood around ~θbest. To

find these regions, we need ∆Lp ≡Lp−Lmin values such that the region defined by Lp corresponds

to a certain CI of probability p. In the Gaussian case, these values can be computed analytically. In

the general case, a large number of Monte Carlo simulations of the data are needed to compute

∆Lp values. This procedure is outlined in Section 6.6. Using these ∆Lp values, frequentists can

2We must stress, however, that even in such extreme cases the frequentist CIs are not wrong. They are just answering
a different question.
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draw constant likelihood contours using a scan of the parameters and obtain the correct confidence

intervals.

We must stress that from a Bayesian perspective, the best fit and the credible regions are just

special values computed from the posterior. It is this full posterior distribution that is the real object

of interest because it contains all the information about the probable values of the parameters. The

computation of the posterior distribution can however be a very demanding task. When dealing with

low-dimensional spaces, Bayesians can compute the posterior on a grid, similar to the frequentist

method. The scan can be used to compute the Bayesian credible regions by finding the smallest

region of the scan that contains a certain probability p. This is usually done by ordering the scan in

decreasing order of probability and computing their running sum until the result is a fraction p of

the total probability of the grid:

M

∑
j=1

P(~θ j|D,M) = p
N

∑
j=1

P(~θ j|D,M), (6.3)

where N is the total number of points on the grid, and the M points obtained through this method

cover the CR of probability p. Note that the integral of the posterior over a region is normally

required to do this, however, this can be approximated by a sum if the grid is equally spaced

because the probability density at each point is proportional to the probability mass for that region.

As we will show in the next section, these two interpretations of the same grid results often

produce identical results. However, the scan quickly becomes infeasible with increasing number of

parameters, and Bayesians move on to using more effective methods, such as MCMC.

Bayesians can deal with high-dimensional spaces by efficient and accurate sampling, using

tools such as MCMC (Metropolis et al., 1953; Hastings, 1970; see e.g. Press et al., 2007; Gelman

et al., 2013 for detailed introductions). Furthermore, the efficient computation of the Bayesian

evidence has also become possible with the introduction of Nested Sampling (Skilling, 2004). The

underlying principle of such methods is the creation of samples from continuous random variables

with probability density proportional to a known function, in our case the unnormalized posterior

distribution. Once a sufficient number of samples have been generated, they can be used to compute

summary statistics. For example, computing the credible regions amounts to finding the smallest

region containing a certain fraction of samples. This fraction corresponds to the probability that,

given the data and the prior, the true values of the parameters are within that region.
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6 . 2 . 3 N U I S A N C E PA R A M E T E R S

The handling of nuisance parameters is also an intense topic of debate. In a Bayesian framework,

the answer is marginalization. If the parameter vector contains two sets: interesting parameters ~θi

and nuisance parameters ~θn, then the posterior distribution of the interesting parameters is given by:

P(~θi|D,M) =
∫
~θn

P(~θi,~θn|D,M) d~θn. (6.4)

We partition the full posterior by integrating over the nuisance parameter space. This ensures that

all the probability mass contained in the nuisance parameters is accounted for. On the other hand,

nuisance parameters are a major problem of non-Bayesian statistical theories (Ghosh, 1988). There

is no consensus frequentist way of addressing this problem (see Basu, 1977 for a discussion of

some of the methods).

One of the most common frequentist methods is the profile likelihood (e.g. Planck Collaboration

et al., 2014b; Chan et al., 2018; Algeri et al., 2019), which involves computing the likelihood of ~θi

on a grid, while conditioning on special values of the nuisance parameters, e.g. the best fit values

~θn,best . In practice, this is done by maximizing the likelihood over all nuisance parameters at every

point on the grid of interesting parameters:

P(D|~θi,M) ∝ max
~θn

P(D|~θi,~θn,M). (6.5)

For a Gaussian distribution this is equivalent to marginalization because low dimensional cuts from

a high dimensional Gaussian are also Gaussian and their volume scales exactly the same as their

peak. However, this method can go wrong when a lower dimensional cut changes shape depending

on the position of the cut (we show an example of this in Section 6.2.4), because it effectively

ignores any possibility that the nuisance parameters can have other values.

The profile likelihood is also useful for computing confidence levels when there are many

interesting parameters. The scanning method presented in Section 6.2.2 becomes infeasible if we

have too many parameters, and as such, the recursive application of the profile likelihood can be a

useful approximation. We can scan a small subset of the parameters (usually one or two at a time)

and treat the other parameters as nuisance by applying the profile likelihood at every point on the

grid. If we apply this method recursively, we can compute an approximation of the full CIs. The

profile likelihood is the method used so far in analyses of the Lyα forest correlation function by

BOSS and eBOSS (Slosar et al., 2013; Delubac et al., 2015; Font-Ribera et al., 2014; Bautista et al.,
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Figure 6.1. Toy model of a bivariate distribution P(α,β ) used to illustrate the profile
likelihood, a common frequentist approximation for dealing with high-dimensional
problems. A scan over α conditional on the best fit value of β at each point gives identical
results to the marginal distribution (right panel). On the other hand, an equivalent scan
over β gives the wrong result (top panel), because the conditional distribution P(α|β )
changes shape depending on the value of β .

2017; du Mas des Bourboux et al., 2017; Blomqvist et al., 2019; de Sainte Agathe et al., 2019).

6 . 2 . 4 T OY E X A M P L E

We illustrate the profile likelihood using a toy example in Figure 6.1. We chose a bivariate

distribution P(α,β ) used in Wang, Broccardo, and Song (2017), which, depending on the parameter

of interest, shows where the profile likelihood works perfectly as well as where it fails. If the

interesting parameter is θi = α , a scan over α conditional on the best fit value of β at each point

gives a result identical to the marginal distribution (bottom right panel of Figure 6.1). On the other

hand, if θi = β , the equivalent procedure gives the wrong result because on the right-hand side of

the β grid, the conditional distribution P(α|β ) is multimodal. This means the shape of P(α|β )
changes depending on the value of β , resulting in a failure of the profile likelihood approximation.

This behaviour is not due to the difference in interpretation between a Bayesian and a frequentist.

In fact, for this bivariate case, a simultaneous scan of both parameters would produce frequentist
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results identical to the Bayesian ones, but this is infeasible in high dimensional spaces. If such

pathological cases are correctly identified, frequentists can rely on reparametrizations to Gaussianize

the problem. However, such cases could appear over arbitrarily many dimensions and be easily

missed because usually we can only investigate 1 and 2 dimensional projections.

6 . 3 T E S T I N G BAO M E A S U R E M E N T S O N M O C K D ATA S E T S

We begin our investigation by applying the different methods introduced above to the problem

of efficient and accurate extraction of BAO information from the Lyα forest correlation function.

To this end, we use a baseline model of the correlation function to create synthetic data sets.

The baseline model is based on the Lyα correlation functions measured by the extended Baryon

Oscillation Spectroscopic Survey (eBOSS) using SDSS DR14 data (de Sainte Agathe et al., 2019;

Blomqvist et al., 2019), and the publicly available modelling package picca3. Their main analysis

follows the frequentist methods introduced in Section 6.2. We perform a Bayesian analysis of

the synthetic data sets and compare the different methodologies, with a focus on accurate BAO

measurement.

6 . 3 . 1 S Y N T H E T I C C O R R E L AT I O N F U N C T I O N S

In order to compare different fitting methods, we produce 100 Monte Carlo simulations of the Lyα

forest flux 3D correlation function. This allows us to investigate the differences over the entire

population of possible correlation functions given a data set such as SDSS DR14. For simplicity, in

this section we focus only on the Lyα×Lyα auto-correlation function using Lyα absorbers only

in the Lyα region, and leave the analysis using the full DR14 data for the next section. We use

the measured Lyα correlation function from SDSS DR14 (shown in Figure 8 of de Sainte Agathe

et al., 2019). We fit this using the full model from de Sainte Agathe et al. (2019), including metal

contaminations.

The mock data sets are drawn randomly from a multivariate normal distribution with mean

ξ (~θbest) and covariance C, where ξ (~θ) is the best fit model of the correlation function measured

in the DR14 analysis (de Sainte Agathe et al., 2019) and C is the covariance matrix of ξ . A new

simulated correlation function is then given by:

ξ̃ = ξ (~θbest)+A~y, (6.6)

3Available at https://github.com/igmhub/picca
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where the matrix A comes from the Cholesky decomposition C = AAT , and~y is a vector of N (the

size of the C) independent standard normal variates.

The model used to fit the Lyα×Lyα correlation function in the DR14 analyses has 11 free

parameters, of which nine are considered nuisance parameters and two (α||, α⊥) are the parameters

of interest (de Sainte Agathe et al., 2019). We follow this distinction and leave the analysis and

description of the nuisance parameters for the next section. We fit our mocks using this model and

the four methods introduced above. We use large flat priors for most parameters, but we follow de

Sainte Agathe et al. (2019) and set tight Gaussian priors for two of the nuisance parameters that

are less constrained by the data (see Table 6.1). The choice of uninformative priors means that the

shape of the posterior is given only by the likelihood. This means that any differences between

Bayesian and frequentist results will be produced by the differences discussed in Section 6.2, and

will not be influenced by prior choices.

6 . 3 . 2 F I T T I N G M E T H O D S

Following the discussion in Section 6.2, we choose four fitting methods to compare over the

population of synthetic data sets:

1. Frequentist MLE: The likelihood is maximized over all parameters and the uncertainties

are given by the covariance around ~θbest, using the Gaussian ∆Lp values.

2. Frequentist scan: A scan over α|| and α⊥ using the profile likelihood, with the uncertainties

given by confidence intervals which are set using MC simulations.

3. Bayesian scan: A scan over α|| and α⊥ using the profile likelihood, with the uncertainties

given by credible regions, computed using Equation 6.3.

4. Bayesian sampler: The full posterior distribution is computed, and the uncertainties on (α||,

α⊥) are given by credible regions after marginalization over the nuisance parameters.

Lyα BAO analyses have so far been frequentist, and used the first two methods. The Bayesian

interpretation of the scan was also used whenever scan results were combined with other cosmolog-

ical probes (e.g. Cuceu et al., 2019) as part of popular packages such as CosmoMC or MontePython

(Lewis and Bridle, 2002; Audren et al., 2013; Brinckmann and Lesgourgues, 2018). However,

the two interpretations of the scan were never tested together. This method is also a good middle

ground between the frequentist scan and the Bayesian sampler, because the contrast with the first is
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Figure 6.2. Comparison of BAO parameter constraints on mock correlation functions
using the frequentist MLE and frequentist scan confidence intervals, and the Bayesian
scan and Bayesian sampler credible regions. We showcase two mocks, one where
the constraints are very close to Gaussian (left), and one where the constraints are
strongly non-Gaussian (right). Note the different scaling. The last three methods produce
remarkably similar results, considering they use different methods and very different
quantification of uncertainties. On the other hand, the frequentist MLE can fail to properly
capture the uncertainty in the results, especially in non-Gaussian cases.

only in the interpretation of uncertainty, while a comparison with the second allows us to directly

test the profile likelihood.

The scan requires maximizing the likelihood over all nuisance parameters at each point on the

grid. As this operation can be performed independently for each point, we implemented a parallel

version of the scan code in picca to speed up our analysis. The frequentist analysis also requires a

large number of MC simulations in order to compute the ∆L2
p as described in Section 6.2. We also

implemented a parallel version of this step, which is now available in picca.

In order to sample the full posterior distribution, we implemented an interface to the popular

Nested Sampler PolyChord4 (Handley, Hobson, and Lasenby, 2015a; Handley, Hobson, and

Lasenby, 2015b) in picca. Nested samplers were designed to efficiently compute the Bayesian

evidence (Skilling, 2004), but they also provide accurate sampling of the posterior. In particular,

nested samplers are very good at dealing with multimodal and highly degenerate posteriors.

6 . 3 . 3 R E S U LT S

Noise on the correlation function can conspire to improve or smear the BAO peak. This means

that a population of simulated correlation functions produced from the same covariance gives rise

to a range of possible BAO constraints, from very tight, closely Gaussian fits, to very degenerate,

4Available at https://github.com/PolyChord/PolyChordLite
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multimodal ones where the peak is barely detected. In Figure 6.2, we showcase two examples

of results from this population. The one on the left is one of the best BAO constraints in the

population, and is very close to Gaussian. On the other hand, the one on the right gives one of the

worst constraints and is very non-Gaussian. We note that in the case of DR14-like errors on the

correlation function, roughly 70% of constraints (computed using visual inspection of the mock

fits) are close to Gaussian, similar to the one on the left. On the other hand, 4% are catastrophic

failures, where the constraints are multimodal and strongly non-Gaussian in both parameters (BAO

not detected).

Results of the four methods described above are presented in Figure 6.2. The last three methods

agree very well with each other, even in the non-Gaussian case. This agreement is remarkable,

because as discussed in Section 6.2, they answer fundamentally different questions. The frequentist

scan uses confidence intervals to quantify uncertainty, while the two Bayesian methods use credible

regions. The agreement between the frequentist scan and the Bayesian scan shows us that BAO

results are robust to different interpretations of uncertainty. On the other hand, the agreement

between the Bayesian scan and the Bayesian sampler shows us that the profile likelihood is a good

approximation for fitting the BAO peak from the Lyα forest correlation function.

The Frequentist MLE, which assumes Gaussianity, does not fare as well. It produces results

that are close to the ones obtained using the other three methods in the Gaussian mock, although

slightly smaller. On the other hand, it completely fails to capture the uncertainty in the results for

the non-Gaussian mock. As these non-Gaussian posteriors make up roughly 30% of the population

of possible results, this approximation is inadequate for dealing with current data sets.

The comparison of specific posterior results such as in Figure 6.2 is Bayesian in nature. However,

we can also compare them using a frequentist approach by computing the fraction of the interval

population that contains the truth ~θtrue within the 68% and 95% regions. We find that the frequentist

scan, the Bayesian scan and the Bayesian sampler are again in remarkable agreement, with roughly

55−60 mocks containing the truth within their 68% regions, and roughly 92 of them containing

the truth within their 95% regions. On the other hand, the MLE fails this test as well, with only 44

of the 68% intervals, and 74 of the 95% intervals containing the truth. These numbers are affected

by sample noise because we only have 100 simulations, and as such are very rough. In particular, if

the profile likelihood works perfectly, by construction the fractions for the frequentist scan will

tend to 68% and 95% for a large number of samples.

These results do, of course, rely on the large uniform priors assumed for most parameters.

Non-uniform or overly restrictive priors would have an impact on our conclusions, as some of the
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differences could come from the choice of priors. In a study similar to our work, Chan et al. (2018)

arrive at a different conclusion when tight priors are used on the BAO parameters. We discuss the

similarities and differences between our study and Chan et al. (2018) in Section 6.7.

Another relevant question that distinguishes these methods is that of the computational cost.

MLE is by far the fastest method, with computation times of order 10−1−100 CPU hours. However,

as we just showed, MLE alone is inadequate for current Lyα forest BAO analyses. For the scan,

we find computation times of order 102−104 CPU hours using typical grid sizes of 30×30 up

to 50× 50. Furthermore, the frequentist interpretation of the scan requires a large set of MC

simulations to compute the ∆Lp necessary for setting the right CIs. In the best case, these require

an extra 103 CPU hours for 10000 MC mocks. PolyChord with a typical setup (nlive = 25×
number of parameters, numrepeats = 3× number of parameters) performs over a timescale similar

to the scan (102−104 CPU hours), and not only computes the full posterior distribution, but also

its integral (the Bayesian evidence).

6 . 4 T H E F U L L P O S T E R I O R O F E B O S S D R 1 4

We now turn our attention to the full posterior distribution. As we have shown above, when the only

interest is measuring the BAO peak position, both the scan and the sampler produce very similar

results. However, the sampler also computes accurate distributions for all the other parameters.

This wealth of information is generally ignored. Some of these are astrophysical parameters, such

as the bias of high column density (HCD) absorbers (bHCD). These parameters tend to be very

correlated with each other and have proved to be very sensitive to modelling choices, which makes

their measurement less robust compared to that of the BAO peak.

The computation of the full posterior distribution allows us to access this previously ignored

information. It allows us to study the complex high-dimensional distribution of these parameters,

and to better understand how our modelling choices affect their measurement. Furthermore, our

use of the Nested Sampler PolyChord means that we can deal with very degenerate and even

multimodal distributions. This sampler also computes the Bayesian evidence, thus providing an

accurate tool for model comparison even for strongly non-Gaussian posteriors. As such, it allows

us to test possible extensions to the baseline model that may have previously appeared daunting

due to their complex interaction with other parameters.
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Parameter Description Prior
α||, α⊥ BAO peak position Π[0.1,2]
bηLyα Lyα velocity bias Π[−0.5,0]
βLyα Lyα RSD parameter Π[0.1,5.0]
βQSO Bias of HCDs Π[−0.2,0]

∆r||[h−1Mpc] Shift due to QSO redshift errors Π[−10,10]
σv[h−1Mpc] Smoothing parameter for QSO non-linear ve-

locities and redshift precision
Π[2,15]

ξ T P
0 Amplitude parameter of quasar radiation Π[0,2]

bHCD Bias of HCDs Π[−0.2,0]
βHCD RSD parameter of HCDs N (0.5,0.22)

bηCIV (eff) Velocity bias of metal absorber N (−0.005,0.00262)

bηSiII(1190) Velocity bias of metal absorber Π[−0.2,0]
bηSiII(1193) Velocity bias of metal absorber Π[−0.2,0]
bηSiIII(1207) Velocity bias of metal absorber Π[−0.2,0]
bηSiII(1260) Velocity bias of metal absorber Π[−0.2,0]

Table 6.1. Sampled parameters and their prior limits. We use flat priors Π[a,b] for most
parameters, with limits a and b chosen such that the prior is uninformative. Following de
Sainte Agathe et al. (2019) and Blomqvist et al. (2019), we use Gaussian priorsN (µ,σ2)
with mean µ and standard deviation σ for βHCD and bηCIV (eff),.
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Figure 6.3. Projected posterior distributions of the BAO parameters (α||, α⊥), versus the
other model parameters, using the full eBOSS DR14 Lyα forest data. There are no major
correlations between α||/α⊥ and any of the other parameters, which shows the robustness
of BAO parameters to different modelling choices.
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6 . 4 . 1 T H E BA S E L I N E A N A LY S I S

We start by using PolyChord to analyse all Lyα forest eBOSS DR14 correlation functions. In

contrast to the last section, we include the correlation of Lyα absorbers in the Lyα region with

Lyα absorbers in the Lyβ region, Lyα(Lyα)×Lyα(Lyβ ), and the cross-correlation with quasars

Lyα×QSO. We use the models presented in de Sainte Agathe et al. (2019) and Blomqvist et al.

(2019) to model the auto-correlation and the cross-correlation with quasars, respectively. Our

analysis follows the same steps, but we do not include relativistic effects, and we use only one

parameter to model the bias of HCDs (instead of three). As in the previous section, we use broad

flat priors on all parameters (except βHCD and the bias of foreground CIV absorption (bCIV ) which

have Gaussian priors). The model parameters used and their priors are presented in Table 6.1.

In Figure 6.3 we show the projected posterior distributions of α|| and α⊥ versus the other

parameters. This shows the robustness of BAO measurements, as none of the parameters are

correlated with (α||, α⊥). The only exception is the bias of the SiII(1260) absorbers (bSiII(1260))

which has a small correlation with α||. This is due to the line causing an increased correlation along

the line of sight at a separation of r|| ≈ 105h−1Mpc, which is very close to the BAO peak. However,

this metal contamination is barely detected (at ∼ 2σ ).

6 . 4 . 2 A S I M P L E E X T E N S I O N

We now use PolyChord to illustrate the advantages of sampling the full posterior. We do this by

sampling LHCD as an extension to the baseline analysis. This is a parameter used to describe the

contamination by HCDs, and it corresponds to a typical length scale. HCDs with a length scale

above ∼ 14h−1Mpc are efficiently identified and masked before computing the correlation function.

This means unidentified systems are expected to have a typical length scale below this value, but

above the bin width of the correlation function (4h−1Mpc). This parameter has so far been fixed

to a value of LHCD = 10h−1Mpc following the study by Rogers et al. (2018). Different values for

this parameter were tested by de Sainte Agathe et al. (2019) and Blomqvist et al. (2019) to confirm

there are no biases when measuring the BAO position, however, completely freeing this parameter

proved challenging for the minimizer to deal with. We set a flat prior given by: Π[2,30]h−1Mpc.

As the full projected posterior is too large to show, we chose a subset of parameters and plot

their posteriors in Figure 6.4. We show α|| and α⊥ to study the impact of LHCD on measurements

of the BAO peak position. From the other parameters, we chose those whose posterior is affected

by LHCD. We also plot the posterior using the basic model, where LHCD is fixed for comparison.

Plots of the full posterior are available as part of a Jupyter Notebook at https://github.com/
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Figure 6.4. Triangle plot showing projected posteriors of DR14 Lyα forest results using
the baseline analysis versus an extension where the typical scale of high column density
absorbers, LHCD, is sampled. The best fit results for the baseline analysis are given by the
dashed lines. The first two columns show that the measurement of the BAO scale is very
robust to this change. However, the other parameters plotted are correlated with LHCD,
and as such, their posteriors are significantly affected by this parameter.
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andreicuceu/eBOSS-Lya-Posteriors.

The first two columns in Figure 6.4 show that even though the posterior is significantly affected

by the choice of LHCD, the BAO peak position is very robust to it. In particular, the α||−α⊥ posterior

of the extended model is in excellent agreement with the results from the baseline analysis. LHCD is

constrained within the expected region: LHCD = 6.6±1.2, +2.5
−2.3 h−1Mpc (68%,95%). As can be

seen in the bottom row, the other parameters shown in Figure 6.4 are correlated with LHCD, and as

such their posterior is significantly affected. The constraints on the biases and RSD parameters of

the Lyα forest and HCDs are all wider than in the baseline analysis, showing the fragility of these

parameters to modelling choices. Interestingly, the bias of the SiIII(1207) absorption is also very

correlated with LHCD.

Comparisons such as the one presented in Figure 6.4 are beneficial because they visually show

us how model parameters behave, and how our modelling choices influence our results.

6 . 5 C O N C L U S I O N S

Analyses of the Lyα forest 3D correlation function have so far focused on measuring the position

of the BAO peak, at the expense of analyses of other parameters and their interaction. A frequentist

methodology has been used so far, despite the BAO results being subsequently used as part of

Bayesian analyses when combined with other probes. In this work, we performed for the first time

a Bayesian analysis of the Lyα forest correlation function, and we computed the full posterior using

the Nested Sampler PolyChord.

We started by discussing the different approaches to fitting the correlation function in Section

7.2, and in particular we focused on the methods used and the difference in the quantification

of uncertainty. Frequentists use Confidence Intervals computed from the population of possible

data sets, while Bayesians use credible regions computed from the posterior distribution of the

parameters given the data and the prior. Furthermore, when dealing with high-dimensional model

spaces, Bayesians have access to tools such as MCMC. On the frequentist side, approximations

such as the profile likelihood are used. A scan is performed over a few parameters (usually anything

above 2 or 3 is computationally infeasible), and the likelihood is maximized over other parameters

at each point. This is generally a good approximation, however, it can fail in some cases, such as in

the toy example presented in Section 7.2.

We compared the different methodologies on synthetic correlation functions of eBOSS DR14

in Section 6.3. We used both a Bayesian and a frequentist interpretation of scan results. This allows
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us to test potential differences from the quantification of uncertainty by comparing the two. We

can also test the profile likelihood approximation by comparing the Bayesian scan with Bayesian

sampler results. We showed that the three methods agree remarkably well on both a mock with

a tight BAO constraint, and one with a large non-Gaussian one. We also plotted results using

the frequentist Maximum Likelihood Estimation, where the uncertainties are set using the second

derivative around the peak likelihood. This method fails to capture the uncertainty in non-Gaussian

cases. Considering these make up roughly ∼ 30% of the population, the MLE is inadequate for

current data sets.

By computing the Bayesian interpretation of the scan and showing it agrees very well both with

the frequentist scan and the Bayesian sampler, we have confirmed that scan results can safely be

combined with other probes as part of Bayesian packages commonly used in cosmology.

In Section 6.4 we turned our attention to the full posterior distribution of eBOSS DR14 Lyα

forest correlation functions. We showed that the BAO peak position parameters, α|| and α⊥, do

not have any strong correlation with any of the other parameters, and as such, they are very robust

to modelling choices. We extended the baseline analysis by sampling the typical length scale of

HCD systems, which was previously fixed to LHCD = 10h−1Mpc. We compared the projected

posteriors of the two models, and showed that it has no impact on the measured BAO position. We

measured LHCD = 6.6±1.2 h−1Mpc (68%), and find that this parameter is correlated with many

other astrophysical parameters and as such has a significant impact on their posteriors. Plots of the

full posterior are available at https://github.com/andreicuceu/eBOSS-Lya-Posteriors.

Comparisons such as the one presented in Section 6.4.2 are now easy and fast to perform.

Furthermore, this benefit does not come at a major computational cost. As discussed in Section

6.3, PolyChord requires similar computational time compared to a 2D scan using the profile

likelihood. Beyond constraining the BAO peak parameters, PolyChord also computes the full

posterior distribution of all parameters and the Bayesian evidence.

Our improvements are freely available as part of the community code picca. We hope that

these tools will be used to improve future Lyα forest analyses by using the full posterior distribution

to study complex parameter distributions and inform modelling choices.

6 . 6 A P P E N D I X A : C O M P U TAT I O N O F C I S

If the model is not a linear function of the parameters, then the ∆Lp values, necessary for setting

confidence intervals from grid results, usually cannot be computed analytically. In general, these
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6.7. Appendix B: Comparison with Chan et al. 2018

values must be computed from the population of the possible realizations of the data. However,

this population is inaccessible if we can only perform the experiment once, and we must rely on

simulated populations of data sets instead of the real one (Press et al., 2007). In cosmology this could

be achieved by running the full analysis many times on simulations, however as these are extremely

expensive computationally, we usually rely on Monte Carlo (MC) simulations instead. The idea

behind MC is to use the measured correlation functions and their covariance matrices together with

a model of the data to produce random realizations of our data. See Chapter 15.6 of Press et al.

(2007) for a detailed discussion of this algorithm. Note that the χ2 is generally used instead of

the log-likelihood, and ∆χ2 values are computed, however, we use the log-likelihood to maintain

consistency and because the two are proportional if the likelihood is Gaussian: χ2 ∝−2logL.

We want to produce samples from the distribution of possible data sets given the true model

and the true parameter values: P(D|~θtrue,Mtrue). However, finding this distribution is the goal

of our experiment, and as such it is inaccessible at this point. Therefore, we start by assuming

that the shape of P(D|~θtrue,Mtrue) is similar to the shape of P(D|~θ0,M0), where we are using our

particular modelM0, and the best fit parameters given that model and our data: ~θ0. This means

that we can use ~θ0 as a surrogate for ~θtrue and create a population of synthetic data sets from a

multivariate normal with meanM0(~θ0) and covariance matrix given by the measurement errors of

the data (again assuming our data is normally distributed).

For each mock data set created using this method, we find the best fit parameter values and

call them ~θα . If we compute the quantity ∆L ≡ L(~θ0)−L(~θα) for each mock data set, we obtain

a chi-square distribution with n degrees of freedom, where n is the number of parameters. By

analysing a large population of mocks and computing this quantity, the ∆Lp is easily obtained by

looking at the ∆L value that contains the fraction of mocks corresponding to p for that chi-square

distribution.

If we are only interested in a subset of ν parameters, then the quantity of interest is ∆Lν ≡
Lν −L(~θα), where Lν is found by fixing the parameters of interest to their best fit values from ~θ0

and maximizing over the other parameters for each mock. ∆Lν is a chi-square distribution with ν

degrees of freedom, and the same procedure as above is used to find ∆Lp.

6 . 7 A P P E N D I X B : C O M PA R I S O N W I T H C H A N E T A L . 2 0 1 8

The Dark Energy Survey (DES) collaboration performed a study similar to the one presented in this

work, testing different fitting methods with the aim of measuring BAO using angular correlation
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functions in tomographic bins (Chan et al., 2018). They also compared the performance using

an MLE approach, the profile likelihood and an MCMC. When they computed the mean and

uncertainty from the profile likelihood, they used the mean and variance across the scan weighted

by the likelihood value at each point. This is in contrast with our method of finding constant χ2

surfaces, and as such it may lead to different results.

The main difference is that they worked with isotropic BAO which means they only need to

measure one parameter, α . Furthermore, they also pruned their population of synthetic data sets to

those where the 68% α constraints are entirely contained within the prior range [0.8,1.2] (where

α = 1 is the true value). The result is that the remaining mocks are the ones where the BAO peak

has a ∆χ2 = 1 region within their prior range on α , which ensures the posterior distribution of

α can be approximated as Gaussian. They found that all three methods perform very well, and

after investigating the population statistics, they conclude that the MLE is the best tool in these

conditions.

In the particular case of isotropic BAO we find similar results. As the model has less freedom,

most constraints are Gaussian and all three methods work very well. However, they found that the

MCMC has a larger bias in estimating α compared to the MLE (although both are very small).

We believe that this is because they used the median to quantify the MCMC result, while we are

using the maximum posterior point. The best fit point given by an MCMC (assuming flat priors)

and MLE should be the same if both are run appropriately, and as such there should not be any

difference in the bias of the peak for an unimodal posterior.

In Appendix A, Chan et al. (2018) worked with a larger range ([0.6,1.4]) and showed that in

this case the MCMC is the best approach, with both the MLE and profile likelihood showing small

biases. This is in line with our results, considering that in this case there are some non-Gaussian

results that are better fit using an MCMC approach. However, we also found the profile likelihood

still works very well in these cases. This difference in results could be either caused by the

difference in quantifying uncertainty as discussed above, or by a failure of the profile likelihood

approximation when dealing with the nuisance parameters.
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C H A P T E R 7

C O S M O L O G Y B E Y O N D BAO F R O M

T H E 3 D D I S T R I B U T I O N O F T H E

LY M A N -α F O R E S T

We propose a new method for fitting the full-shape of the Lyman-α (Lyα) forest three-dimensional

(3D) correlation function in order to measure the Alcock-Paczynski (AP) effect. Our method

preserves the robustness of baryon acoustic oscillations (BAO) analyses, while also providing extra

cosmological information from a broader range of scales. We compute idealized forecasts for

the Dark Energy Spectroscopic Instrument (DESI) using the Lyα auto-correlation and its cross-

correlation with quasars, and show how this type of analysis improves cosmological constraints.

The DESI Lyα BAO analysis is expected to measure H(zeff)rd and DM(zeff)/rd with a precision

of ∼ 0.9%, where H is the Hubble parameter, rd is the comoving BAO scale, DM is the comoving

angular diameter distance and the effective redshift of the measurement is zeff ' 2.3. By fitting the

AP parameter from the full shape of the two correlations, we show that we can obtain a precision of

∼ 0.5−0.6% on each of H(zeff)rd and DM(zeff)/rd. Furthermore, we show that a joint full-shape

analysis of the Lyα auto and cross-correlation with quasars can measure the linear growth rate times

the amplitude of matter fluctuations in spheres of 8 h−1Mpc, f σ8(zeff). Such an analysis could

provide the first ever measurement of f σ8(zeff) at redshift zeff > 2. By combining this with the

quasar auto-correlation in a joint analysis of the three high-redshift two-point correlation functions,
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we show that DESI could be able to measure f σ8(zeff' 2.3) with a precision of 5−12%, depending

on the smallest scale fitted.

The work shown in this chapter is presented in Cuceu et al. (2021).

7 . 1 I N T R O D U C T I O N

The vast amount of cosmological data from spectroscopic surveys is usually compressed into

summary statistics such as the correlation function or power spectrum. These statistics can be

directly used to measure cosmological parameters; however, it is common to split the inference

into two steps (e.g. Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017; eBOSS Collaboration

et al., 2021). A template is first used to model the power spectrum or correlation function, in order

to measure a few relevant quantities that contain most of the cosmological information. These

measurements are then used to fit cosmological parameters for some model, for example flat Λ

Cold Dark Matter (ΛCDM), in combination with other probes, usually the cosmic microwave

background (e.g. from Planck Collaboration et al., 2018). This approach is used because it contains

minimal assumptions, and the full two-point statistic is compressed into a few well understood

physical quantities.

Measuring the scale of the acoustic peak from the baryon acoustic oscillation (BAO) signal is

one of the most widely used compression methods. This is usually done by splitting the template

into a peak and a smooth component for the correlation function, or wiggles and no-wiggles

components for the power spectrum. The coordinates of the peak (or wiggles) component are

then re-scaled in order to fit the BAO scale from the data. This method has been used to measure

the BAO scale using the galaxy distribution at redshifts z . 1 (e.g. Eisenstein et al., 2005; Cole

et al., 2005), the quasar (QSO) distribution at redshifts 0.8 < z < 2.2 (e.g. Ata et al., 2018), and the

Lyman-α (Lyα) forest at redshifts 2 < z < 3 (e.g. Busca et al., 2013; Slosar et al., 2013; Kirkby

et al., 2013; Font-Ribera et al., 2014).

The Lyα forest consists of a series of absorption lines blueward of the Lyα emission peak

in spectra of high-redshift quasars (e.g. Lynds, 1971; Rauch, 1998). The forest appears due to

absorption by neutral hydrogen between the quasar and us, which means it traces the intergalactic

medium. This makes it a great tool for cosmology, as it probes the distribution of matter at

redshifts (z & 2) that are generally hard to access with other probes (see e.g. Croft et al., 1999;

McDonald et al., 2000; Croft et al., 2002; Viel, Haehnelt, and Springel, 2004, for early cosmological

applications).
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A common way to extract more information from the two-point statistics of discrete tracers

is to fit the full shape (instead of just the peak component) in order to measure the growth rate of

structure through redshift space distortions (RSD; e.g Blake et al., 2011; Reid et al., 2012; Beutler

et al., 2012; Samushia et al., 2014). This approach is not possible for the Lyα forest because we

have to marginalize over an unknown velocity gradient bias, which is degenerate with the growth

rate. This bias appears because we work with the two-point statistics of flux, which has a non-linear

mapping to the directly distorted field of optical depth (see e.g. Slosar et al., 2011; McDonald,

2003; Givans and Hirata, 2020; Chen, Vlah, and White, 2021). Therefore, an RSD analysis using

the Lyα forest three-dimensional (3D) correlation function has so far been out of reach.

The analysis of the Lyα 3D auto-correlation function (Lyα×Lyα) and its cross-correlation

with the quasar distribution (Lyα×QSO) has evolved considerably since they were first used to

measure the BAO peak from Baryon Oscillation Spectroscopic Survey (BOSS) data (Busca et al.,

2013; Slosar et al., 2013; Kirkby et al., 2013; Font-Ribera et al., 2014). A physical model for

the correlations was introduced by Bautista et al. (2017) and du Mas des Bourboux et al. (2017).

This model includes the effect of metal line contamination and that of high column density (HCD)

systems. With the extended BOSS (eBOSS) analyses, the Lyα signal from the Lyβ section of the

forest was also used, first through its correlation with Lyα signal in the Lyα section (de Sainte

Agathe et al., 2019), and then through its correlation with the QSO distribution (Blomqvist et al.,

2019; du Mas des Bourboux et al., 2020). Even though major advancements have been made in

modelling and understanding the 3D Lyα×Lyα and Lyα×QSO statistics, so far they have only

been used to measure BAO.

In this work, we investigate the potential for extracting more cosmological information from the

3D distribution of the Lyα forest through the Alcock-Paczynski (AP) effect (Alcock and Paczynski,

1979; Hui, Stebbins, and Burles, 1999; McDonald and Miralda-Escudé, 1999; McDonald, 2003).

This appears due to the choice of fiducial cosmology, which is used to transform the measured

angles and redshifts into comoving coordinates. If this fiducial cosmology is different from the true

cosmology, the measured correlation will have an extra anisotropy. Thus isolating this anisotropic

AP contribution allows us to determine the true background cosmological model. Some of this

AP signal is measured through anisotropic BAO analyses, by measuring two distinct scales along

versus across the line of sight. However, this distortion affects the whole correlation function.

Therefore, the first objective in this chapter is to complement standard Lyα BAO analyses with AP

constraints from a broader range of scales.

The two Lyα forest correlation functions (Lyα×Lyα and Lyα×QSO) are some of our best
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probes of the Universe at redshifts 1.8 < z < 4. However, there is big potential for a third correlation

function in this redshift range: the quasar auto-correlation (QSO×QSO). As mentioned above,

this has already been used to measure both BAO and the growth rate of structure at effective

redshifts zeff ' 1.6. With the start of the Dark Energy Spectroscopic Instrument (DESI) survey,

we will have new quasar catalogues with about 0.7 million expected to be at redshifts z > 2.1

(DESI Collaboration et al., 2016). This opens up the potential of performing a joint analysis of

the three correlation functions (Lyα×Lyα , Lyα×QSO and QSO×QSO) for the first time. Jointly

fitting the full shape of all three correlations would allow us to take full advantage of the synergies

between them, and lead to more precise and robust constraints. Our second goal in this work is to

investigate how such an analysis could be performed and study its benefits, including the potential

for measuring RSD.

We start by introducing our methodology for template-fitting the full shape of the Lyα forest

correlation function in Section 7.2. We also compare our approach with that used in past analyses

of discrete tracers. After that, in Section 7.3 we perform a forecast analysis to demonstrate how

the AP effect can be measured from the full shape of the correlation while preserving the robust

BAO measurement. We also demonstrate the usefulness of such a measurement in constraining

cosmological parameters in a flat ΛCDM model. Finally, in Section 7.4 we forecast a joint analysis

of the three high-redshift two-point (high−z 3×2pt) correlation functions (Lyα×Lyα , Lyα×QSO

and QSO×QSO) in order to study their synergies and showcase the potential benefits of such an

analysis.

7 . 2 M E T H O D

Our model of the 3D correlation function is based on the framework introduced by Kirkby et al.

(2013) and used in all Lyα forest BAO analyses. Our approach is meant to extend these analyses to

also include information from the broadband. We use a template power spectrum and introduce

parameters that re-scale its coordinates. A fit to the data allows us to place constraints on these

scale parameters. The resulting measurements can be transformed into constraints on cosmological

parameters. We start by introducing these scale parameters in Section 7.2.1. After that, we introduce

the components of the template in Section 7.2.2, and compare our approach to BAO analyses and

previous full-shape analyses. In Section 7.2.3, we introduce our models for the Lyα forest auto-

correlation, its cross-correlation with quasars, and the quasar auto-correlation. Finally, in Section

7.2.4 we showcase the effects of our scale parameters on the Lyα forest correlation function.
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7 . 2 . 1 S C A L E PA R A M E T E R S

When computing the 3D correlation function, we transform the observed redshift and angular

separations (∆z,∆θ) into comoving coordinates (r||,r⊥). For positions i and j, at redshifts zi and

z j and separated by an angle ∆θ , we define the radial coordinates as (du Mas des Bourboux et al.,

2020)

r|| = [DC,fid(zi)−DC,fid(z j)]cos
∆θ

2
,

r⊥ = [DM,fid(zi)+DM,fid(z j)]sin
∆θ

2
,

(7.1)

where DM(z) is the comoving angular diameter distance and DC(z) = c
∫ z

0 dz/H(z) is the radial

comoving distance, with c as the speed of light and H(z) as the Hubble parameter. The fid term

indicates that we use a fiducial cosmology to compute these distances. If the true cosmology is

different from the fiducial one, the ratio between the inferred line of sight and transverse distances

will be different from the true ratio. This means we will observe an apparent anisotropy in the

measured correlation, which is the Alcock-Paczynski effect we wish to measure (Alcock and

Paczynski, 1979). Note however, that there are other sources of anisotropy, such as RSD. In order

to measure the AP effect, we have to correctly model and marginalize over all other anisotropies.

When building a model for the correlation function, we follow past Lyα forest BAO analyses

and use a template power spectrum computed using a fixed cosmology. Following Kirkby et al.

(2013), we allow for small differences between the template and measured cosmologies by using

general coordinate transformations of the form r|| −→ r′||(r||,r⊥,z) and r⊥ −→ r′⊥(r||,r⊥,z).

The most commonly used parametrization for anisotropic re-scalings is given by:

r′|| = q||r||, r′⊥ = q⊥r⊥, (7.2)

where (q||,q⊥) re-scale the coordinates along and across the line of sight, respectively. However, we

wish to isolate the AP effect which changes the ratio r⊥/r||. Therefore, we define the parameters:

φ(z)≡ q⊥(z)
q||(z)

and α(z)≡
√

q⊥(z)q||(z), (7.3)

where φ(z) re-scales the ratio: r′⊥/r′|| = φ r⊥/r||, and is meant to measure the AP effect. On the

other hand, α(z) re-scales the product r′⊥r′|| = α2 r⊥r||, which translates into an isotropic re-scaling

of ξ . The effect of these parameters becomes clearer when we consider their impact on the radial
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and transverse coordinates through small deviations around φ = 1,α = 1:

r′|| = αr||−
φ −1

2
r||+O[(φ −1)2,(α−1)2],

r′⊥ = αr⊥+
φ −1

2
r⊥+O[(φ −1)2,(α−1)2].

(7.4)

The α parameter produces the same effect on both r|| and r⊥, which corresponds to isotropic

re-scaling. On the other hand, φ produces small changes that are directly opposite in r|| versus r⊥,

which corresponds to anisotropy in ξ . We study the effect of these parameters on the correlation

function in Section 7.2.4.

These quantities are an intermediate step between fitting the correlation function and con-

straining cosmological parameters. Having defined the scale parameters we will use, we turn our

attention to the template and the application of these parameters.

7 . 2 . 2 T W O - C O M P O N E N T F U L L - S H A P E PA R A M E T R I S AT I O N

We construct our model based on the separation of the BAO feature from the rest of the correlation.

This is achieved by starting with a template isotropic linear power spectrum for an assumed fiducial

cosmology, computed using CAMB (Lewis, Challinor, and Lasenby, 2000). This template power

spectrum is decomposed into a peak (or wiggles) component, Ppeak(k,zeff), and a smooth (or no-

wiggles) component, Psmooth(k,zeff), using the method described in Kirkby et al. (2013). See Figure

2 of Kirkby et al. (2013) for a visualization of the peak and smooth components. The reason for

this separation is that BAO is a clear feature that can be used as a standard ruler; it has been studied

extensively, and we know that for the Lyα forest it is very robust when it comes to contaminants

(e.g. Cuceu, Font-Ribera, and Joachimi, 2020). Therefore, we consider it advantageous to separate

this feature, because it will make it easier to study and understand the information contained in the

rest of the correlation (i.e. in the broadband), and how it is affected by contaminants (e.g. HCDs

and continuum fitting).

The full transformed correlation in the original coordinates (r||,r⊥,z) is given by:

ξfull(r||,r⊥,z) = ξpeak(r′||,r
′
⊥,z)+ξsmooth(r′′||,r

′′
⊥,z), (7.5)

where the transformed coordinates of the peak component (r′||,r
′
⊥) are allowed to be different

from the transformed coordinates of the smooth component (r′′||,r
′′
⊥). For comparison, in BAO

analyses we would fix the smooth component: (r′′||,r
′′
⊥) = (r||,r⊥), whereas past full-shape analyses
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did not use the peak-smooth decomposition, which would be equivalent to fixing the two sets of

transformations to be the same: (r′′||,r
′′
⊥) = (r′||,r

′
⊥).

As we have two sets of coordinate transformations, we will need two sets of (φ ,α) parameters.

The AP effect distorts the entire correlation, and φ is meant to measure this anisotropy. Therefore,

both the smooth and peak components are affected by φ in the same way. This means that we

would ideally sample only one φ parameter that re-scales both components. However, as we wish

to understand the cosmological value added by re-scaling the broadband, and also study how each

parameter is affected by contaminants, we will keep them separate. Going forward, we will use the

notation φs for the smooth component and φp for the BAO peak component. A measurement of φ

corresponds to a measurement of:

AP: φ(z) =
FAP(z)
Ffid

AP(z)
=

DM(z)H(z)
[DM(z)H(z)]fid

, (7.6)

where the AP parameter is defined as the ratio of two distances FAP(z) = DM(z)/DH(z), with

DH(z) = c/H(z).

On the other hand, the α parameter has different interpretations for the peak and smooth

components. We not only need to account for the different expansion histories between the template

and the data, but also for the features that set the scale we measure. We denote the parameter that

isotropically re-scales the peak as αp, and the equivalent parameter for the smooth component as

αs. In the case of the BAO peak, the relevant scale is the size of the sound horizon at the end of the

drag epoch, rd. The isotropic scale of the peak component, αp, corresponds to a measurement of:

BAO: αp(z) =

√
DM(z)DH(z)/r2

d

[DM(z)DH(z)/r2
d]fid

. (7.7)

On the other hand, αs is harder to identify with one clear feature. The scale of matter-radiation

equality (keq) is a feature that contributes to αs, and has successfully been used to constrain

cosmology from the power spectrum (Baxter and Sherwin, 2021; Philcox et al., 2021). However,

it is not clear that it is the only feature that contributes to the isotropic scale of the broadband.

Furthermore, the effect produced by αs is very similar to that of the Lyα flux bias, which could lead

to the two parameters being hard to disentangle. Therefore, we will not focus on the cosmological

interpretation of αs in this work, and leave it to future studies to determine if this parameter could

be useful.

In past galaxy full-shape analyses, there was no smooth/peak decomposition, and the isotropic
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scale parameter was interpreted using rd (e.g. Beutler et al., 2017). This is based on the approxi-

mation that most of the signal comes from the BAO peak. This means we can measure αp very

precisely, but not αs, so the measurement of a parameter α = αp = αs would be dominated by

signal from the peak. By fitting two different parameters, we will be able to test this assumption.

Finally, for clarity, we show how our new set of parameters (φs,αs,φp,αp) would be treated in

BAO and galaxy full-shape analyses:

Standard BAO analyses: (φs,αs) fixed to (1,1),

Galaxy full-shape: (φs,αs) fixed to (φp,αp),

Two-component Lyα

full-shape (this work): (φs,αs,φp,αp) all free.

(7.8)

In the rest of this work, we show the effects of φs and αs on the correlation function, study the

potential for measuring them using the Lyα forest and its cross-correlation with quasars, and show

their usefulness for constraining cosmology. However, we leave it to future work to investigate how

they interact with contaminants and potential systematic errors that may affect them.

7 . 2 . 3 C O R R E L AT I O N F U N C T I O N M O D E L

Our models for the Lyα forest auto-correlation and its cross-correlation with quasars follow du Mas

des Bourboux et al. (2020), however we use simplified versions with no contaminants or distortion

due to the effect of continuum fitting. The Lyα forest analyses of the auto and cross-correlation

have so far only been done using models with linear-order perturbations. For Lyα×Lyα , a small

scale non-linear correction term is also used, with the parameter values calibrated using simulations

(Arinyo-i-Prats et al., 2015). On the other hand, full-shape analyses of QSO×QSO typically use

higher-order perturbation theory (e.g. Taruya, Nishimichi, and Saito, 2010). In this work, we

restrict ourselves to linear-order perturbation theory. Therefore, the full anisotropic power spectra

of Lyα×Lyα (PLyα ), Lyα×QSO (P×) and QSO×QSO (PQSO) are given by:

PLyα(k,µk,z) = b2
Lyα(1+βLyα µ

2
k )

2 F2
nl,LyαPfid(k,z), (7.9)

P×(k,µk,z) = bLyα(1+βLyα µ
2
k )×

× (bQSO + f (z)µ2
k ) Fnl,QSO Pfid(k,z), (7.10)

PQSO(k,µk,z) = (bQSO + f (z)µ2
k )

2 F2
nl,QSO Pfid(k,z), (7.11)
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Figure 7.1. Contour plots of the Lyα forest auto-correlation function (r2ξ ) in terms of
the radial coordinates along and across the line of sight (r||,r⊥). Each plot shows the
correlation function computed using a smaller value of the given parameter on the left and
a higher value on the right. The models here use linear theory (Eq. 7.9) with βLyα = 1.669.
The left column shows the effect of the φ parameters which change the anisotropy of the
correlation (the AP effect). The right column shows the effect of the α parameters which
change the isotropic scale of the correlation. The top row shows the scale parameters
for the peak component (φp and αp). This is what BAO analyses measure. The middle
row shows the parameters that re-scale the smooth component (φs and αs). We aim to
measure both the BAO parameters and the broadband parameters. Finally, the bottom
row shows the effect of changing the parameters for the peak and smooth components at
the same time (φs = φp and αs = αp). This is what past spectroscopic galaxy clustering
analyses (e.g. BOSS and eBOSS) measure when fitting the full shape of the correlation.
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where bLyα and bQSO are the linear biases of the Lyα forest and quasars respectively, f (z) is the

logarithmic growth rate, and µk = k||/k, with the wavenumber k, and its projection along the line of

sight, k||.

The RSD parameter of the Lyα forest is given by:

βLyα =
bη ,Lyα f (z)

bLyα

, (7.12)

where bη ,Lyα is the velocity divergence bias. As bη ,Lyα and f (z) always appear together in the Lyα

forest RSD term, they are completely degenerate. Therefore, we use the parameter βLyα to define

the RSD term of the Lyα forest, and we marginalize over it instead of bη ,Lyα . This is meant to

separate the degeneracies of different parameter combinations, and to clearly differentiate between

nuisance parameters (bLyα ,bQSO,βLyα ) and the parameters of interest (φ , f ). We also note that

the symmetries of Equation 7.10 mean that when fitting only the cross-correlation, bLyα is fully

degenerate with bQSO, and similarly βLyα with f (z)/bQSO.

The small-scale non-linear correction for Lyα , F2
nl,Lyα

, is given by the model introduced by

Arinyo-i-Prats et al. (2015). However, this has only been tested and applied to the Lyα forest auto-

correlation, and not for the cross-correlation. Therefore, we only apply this term for Lyα×Lyα .

On the other hand, the term Fnl,QSO, which models the quasar non-linear velocities, is used for both

the cross-correlation and the quasar auto-correlation. Following Percival and White (2009), this is

given by:

Fnl,QSO(k||) =

√
1

1+(k||σv)2 , (7.13)

where σv is a free parameter representing the rms velocity dispersion.

We also model the non-linear broadening of the BAO peak by applying the term Pnl,peak to the

peak component of the power spectrum, Ppeak(k,zeff), following Eisenstein, Seo, and White (2007).

This term is given by:

Pnl,peak = exp [−k2
||Σ

2
||/2− k2

⊥Σ
2
⊥/2], (7.14)

where k⊥ is the projection of the wavenumber k across the line of sight, and the smoothing scales

(Σ||,Σ⊥) are fixed to the values (6.42,3.26)h−1Mpc (Kirkby et al., 2013).

We use the Vega library1 to compute model correlation functions using the same template

power spectrum (and fiducial cosmology) as in du Mas des Bourboux et al. (2020). Vega is a

1https://github.com/andreicuceu/vega
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new, improved version of the BAO fitter in the picca2 library that was used in eBOSS Lyα BAO

analyses.

7 . 2 . 4 I M PA C T O N T H E C O R R E L AT I O N F U N C T I O N

We investigate how the parameters we introduced (φs,αs,φp,αp) change the Lyα forest auto-

correlation function using the model presented above. We show the effect produced by these

parameters in Figure 7.1, using contour plots of the correlation function. For each plot, we show a

model correlation computed using a 20% smaller value of a given parameter on the left and 20%

higher value on the right, while the other parameters are kept fixed to one (scale parameters) or their

best fit (nuisance parameters) from du Mas des Bourboux et al. (2020). Note that such changes are

extreme, and chosen only to clearly showcase the effect of varying the parameters. The coordinate

re-scalings we use are only approximations that work for values close to the template cosmology

(parameter values around 1).

The first two rows of Figure 7.1 show the effect of the four parameters we introduced, with

the φ parameters on the left and the isotropic scale parameters on the right. The top row shows

the parameters that only affect the BAO peak, φp and αp, while leaving the broadband component

mostly unchanged. The former produces an anisotropy in the BAO scale (top left), leading to a

different position of the peak along versus across the line of sight. The latter isotropically re-scales

the BAO peak (top right). On the other hand, the two plots in the middle row show the parameters

that only affect the smooth component, φs and αs, while leaving the BAO peak unchanged. φs

changes the anisotropy of the smooth component (middle left). Note that ξ is anisotropic even for

φs = 1 due to RSD. We will need to marginalize over this effect if we want to measure φs. The

αs parameter isotropically re-scales the smooth component (middle right) without affecting the

position of the BAO peak.

Finally, the bottom row of Figure 7.1 shows the effect of re-scaling the smooth and peak compo-

nents at the same time by fixing φs = φp (bottom left) and αs = αp (bottom right). This means that

the peak and broadband are entangled, leaving a measurement of α harder to interpret. This is what

past full-shape analyses of discrete tracers have measured, but using different parametrizations.

2https://github.com/igmhub/picca
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Figure 7.2. Forecast constraints on the four scale parameters in our two-component
full-shape analysis from Lyα×Lyα and Lyα×QSO. In the left panel, we compare the
posterior distributions of the BAO peak parameters αp and φp obtained using a BAO only
analysis and our full-shape method. The very good agreement between the two shows
that we can isolate the robust BAO information when performing a full-shape analysis.
In the right panel, we show posterior distributions of the broadband scale parameters
φs and αs for different minimum separations used for the fits. This shows that we can
obtain much better constraints on the Alcock-Paczynski parameter (φ ) from the smooth
component compared to those from the BAO peak.

7 . 3 A P F O R E C A S T S F O R T H E LY α F O R E S T

We start our investigation of a potential full-shape analysis from the Lyα forest by analysing

simulated correlation functions. We use these mock correlations to test our proposed two-component

full-shape analysis, and forecast how well DESI will be able to measure the four scale parameters

we introduced.

7 . 3 . 1 M O C K D ATA

We compute model correlation functions for Lyα×Lyα and Lyα×QSO as described in Sec-

tion 7.2.3. The models are computed using the best fit parameter values from eBOSS DR16

(bLyα=−0.117, βLyα=1.669, bQSO=3.73, f =0.97, σv=6.86h−1Mpc), except for the scale parame-

ters, which are all set to equal one. We use these models as our simulated data. For the purposes

of this work, we wish to perform a forecast analysis, and therefore we do not add noise to the

fiducial data vector. Note that what we refer to as a forecast here is different from the usual Fisher

forecasts commonly used in the literature (e.g. Tegmark, 1997; Tegmark, Taylor, and Heavens,

1997; Heavens, Jimenez, and Verde, 2014). We only analyse a single noiseless realization instead of
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computing the Fisher information matrix.3 This is because our main goal is to study the behaviour

of our model, and its ability to extract more information from the Lyα correlations.

We use covariance matrices computed from mock data sets by Farr et al. (2020). These mocks

were created using the LyaCoLoRe package,4 which uses an initial Gaussian random field to

simulate Lyα forest transmitted flux skewers and adds the relevant small scale power and RSD. The

mocks were used to create full sky quasar catalogues containing ∼ 3.7 million QSOs above redshift

z = 1.8. These simulated data products were used to compute the Lyα forest auto-correlation

function, its cross-correlations with QSOs, the QSO auto-correlation, and the relevant covariance

matrices. In order to compute a covariance matrix relevant for DESI, we use the expected DESI

survey area of 14000 square degrees, and assume it will measure roughly ∼ 1.1 million QSOs

above redshift z = 1.8 (DESI Collaboration et al., 2016). We then compute a factor that re-scales

the covariance matrix ( fcov) to match the expected DESI number density (nDESI) and area (ADESI):

fcov =

(
nMock

nDESI

)2 AMock

ADESI
, (7.15)

where nMock and AMock are the number density and area of the mock correlation computed by Farr

et al. (2020), and the factor we compute is fcov ' 4. This factor is based on the fact that Lyα

forest measurements are still limited by shot noise, and therefore the number density needs to

be accounted for alongside the area, which accounts for cosmic variance. We also validate it by

comparing our cosmological constraints with the forecasts from DESI Collaboration et al. (2016)

in Section 7.3.3. The DESI simulated covariance matrix is then given by CDESI = fcovCMock, based

on the mock covariance, CMock.

We assume that there is no cross-covariance between Lyα×Lyα and Lyα×QSO (du Mas

des Bourboux et al., 2017), as has been standard with Lyα BAO analyses so far. We use a

Gaussian likelihood, and compute posterior distributions using the Nested Sampler PolyChord5

(Handley, Hobson, and Lasenby, 2015a; Handley, Hobson, and Lasenby, 2015b). We use the

recommended setup (live points = 25× number of parameters, num repeats = 3× number of

parameters) when running PolyChord. When fitting each correlation independently, we sample

the parameters: {φp,αp,φs,αs,bLyα ,βLyα} for the auto-correlation, while the cross-correlation has

one extra parameter (σv). For the cross, we do not sample the QSO bias and RSD parameters due

to the degeneracies with the Lyα parameters (see Section 7.2.3). When performing joint fits, we

3Defined as the expected value of the Hessian matrix of the likelihood with respect to the parameters.
4https://github.com/igmhub/LyaCoLoRe
5https://github.com/PolyChord/PolyChordLite
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also sample bQSO and f (z); however, we treat f (z) as a nuisance parameter in this section, and only

focus on measuring φs.

7 . 3 . 2 S C A L E PA R A M E T E R S F R O M A T W O - C O M P O N E N T F U L L - S H A P E A N A LY S I S

When creating our method for a two-component full-shape analysis, our first goal was to preserve

the robust BAO information that we normally measure by re-scaling only the peak component. In

order to check if our method succeeded in isolating this information, we fit the mock data using

a BAO type model where we fix the smooth component, and only re-scale the peak. We then

compare the posterior distributions of the BAO peak scale parameters (φp and αp) to the posteriors

obtained from the full-shape analysis. The results are shown in the left panel of Figure 7.2. We

show the constraints for a joint analysis of Lyα×Lyα and Lyα×QSO. We find that our method

arrives at BAO measurements in very good agreement with classic BAO analyses, which means

that by re-scaling the smooth component we do not influence the measurement of the position of

the acoustic peak.

Our next goal for these forecasts is to understand the constraining power we have on the smooth

component scale parameters, φs and αs. To this end, we consider a few different fitting strategies.

As discussed above, before an actual measurement of these parameters, a full analysis of potential

systematic errors needs to be performed. This study would inform the different analysis choices

that need to be made in order to obtain robust measurements. One of these choices is the smallest

scale that we fit. For past Lyα forest BAO analyses, this has been chosen to be rmin = 10 h−1Mpc.

This choice is not as important for BAO analyses because the BAO peak is a large-scale feature,

and so, is not affected by small-scale contaminants. However, when attempting to measure scale

parameters using the broadband component, these small scales have the potential to provide a lot

of information. This is both because of the extra data points, and also because these data points

at small separations have higher signal-to-noise. Therefore, we test a few different values of rmin

that represent the range of possible options. We showcase the best case scenario where we are

not affected by systematic errors all the way down to 10 h−1Mpc, a worst case scenario where

we have to cut the small scales and rmin = 50 h−1Mpc, and an intermediate case where we cut to

rmin = 30 h−1Mpc. The lower value was chosen based on the value used by Lyα BAO analyses,

however, it might be too optimistic given current understanding of the Lyα correlation functions

(see Section 7.5 for discussion). On the other hand, the choice of the upper value was made because

we might start to lose BAO information when removing scales above 50 h−1Mpc (Kirkby et al.,

2013).
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The forecast broadband scale parameter results (again for Lyα×Lyα and Lyα×QSO) are

shown in the right panel of Figure 7.2 for different rmin. Figure 7.2 also highlights the difference

in constraining power between the AP parameter and the isotropic scale parameter. It shows that,

using the BAO peak, we can obtain very good measurements of the isotropic scale parameter, αp

(the 68% confidence region is at a precision of ∼ 0.5%). However, we do not have very good

constraining power when it comes to the AP parameter, φp, for which the 68% confidence region is

at a precision of ∼ 1.6%. This is in contrast to the AP measurement from the smooth component,

where even in the worst case scenario the 68% confidence region is at a precision of ∼ 0.9%,

and in the best case scenario it is at ∼ 0.3%. This shows the large potential gain in cosmological

information from adding this AP measurement from the broadband.

7 . 3 . 3 C O S M O L O G I C A L F O R E C A S T S

We show the benefits of extracting more information from the Lyα forest 3D correlation functions

by performing a simple cosmological analysis using the forecast measurements obtained above.

We use a flat ΛCDM model, and we first model each of the measured parameters individually, in

order to understand how each of them constrains cosmology. The cosmological interpretations of

the scale parameters in terms of distances are given by Equations 7.6 and 7.7. Therefore, in order

to complete our model, we just need the expressions for DM and H(z) in a flat ΛCDM cosmology.

The comoving angular diameter distance is given by:

DM(z) = c
∫ z

0

dz′

H(z′)
, (7.16)

and the Hubble parameter is given by the Friedman equation:

H(z)2

H2
0

= Ωm(1+ z)3 +ΩΛ +Ωr(1+ z)4. (7.17)

In flat ΛCDM, the dark energy fraction can be computed from the matter and radiation fractional

densities: ΩΛ = 1−Ωm−Ωr. We also model the radiation fraction assuming a CMB temperature

TCMB = 2.7255K (Fixsen et al., 1996; Fixsen, 2009), and a fixed neutrino sector 6. This means the

only free parameters in H(z) are H0 and Ωm.

For the AP parameter, we have a ratio of distances: DM/DH (Equation 7.6), which means the

Hubble constant cancels out. Therefore, in flat ΛCDM, φ corresponds to a measurement of Ωm.

6We use Neff = 3.046, with 2 massless species and one massive with mν = 0.06 eV that contributes to Ωm.
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Figure 7.3. Forecast posterior distributions on cosmological parameters in flat ΛCDM
using different scale parameter measurements from the Lyα forest correlation function.
Measurements of the AP parameter (φ ) only constrain the matter fraction Ωm, while
the isotropic BAO scale measures Ωm and the combination H0rd. The AP measurement
from the broadband (φs) is significantly better compared to the one from the BAO peak
(φp). Therefore, the improved Ωm measurement leads to much tighter constraints when
combined with the BAO measurement.

On the other hand, for αp we have a product of distances divided by the scale of the sound horizon

squared: DMDH/r2
d. As each of the two distances has a factor of 1/H0, we are left with the product

H2
0 r2

d, which means the two parameters are fully degenerate. Therefore, with αp, we measure a

combination of Ωm and the product H0rd.

We use the αp, φp and φs measurements presented above to constrain the relevant cosmological

parameters. For φs we use the result from the fit with rmin = 30 h−1Mpc, and we again use

PolyChord to compute the posterior distributions. The constraints on αp, φp and φs translate

into measuring H(zeff)rd and DM(zeff)/rd with a precision of ∼ 0.5−0.6% each. In contrast, the

DESI Lyα BAO analysis is expected to measure H(zeff)rd and DM(zeff)/rd with a precision of
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∼ 0.9%7 (DESI Collaboration et al., 2016). The cosmological parameter results using the individual

measurements and their combinations are shown in Figure 7.3.

The constraint from the isotropic BAO measurement (αp) leads to an elongated posterior with

a strong degeneracy in the Ωm−H0rd space. This degeneracy is broken when combining with

the Ωm constraint from φp to obtain the usual anisotropic BAO measurement. However, as noted

above, the AP measurement from the broadband is much better than the one measured from the

peak. Therefore, by adding the φs measurement to the BAO constraint, we can break the long

correlation and obtain much better joint constraints. While the BAO measurements constrain Ωm

and H0rd with a precision of 8.9% and 3.3% (68% credible regions) respectively, adding the AP

measurement from the broadband improves these constraints to 2.5% and 1.0%.

7 . 4 A J O I N T A N A LY S I S O F T H E H I G H -z 3× 2 P T

In Sections 7.2 and 7.3 we focused on extracting more information from the full shapes of Lyα×Lyα

and Lyα×QSO through the AP parameter. We now turn our attention to the other source of

cosmological information commonly used in full-shape analyses: redshift space distortions. In

particular, we focus on the ability of joint analyses of the two Lyα correlations to obtain meaningful

measurements from RSD, and on the potential of a joint analysis of the three high redshift two

point (high-z 3×2pt) correlation functions: Lyα×Lyα , Lyα×QSO and QSO×QSO.

7 . 4 . 1 C O N T E X T

As the Lyα forest velocity divergence bias, bη ,Lyα , is fully degenerate with the logarithmic growth

rate, f (z), we have so far treated RSD as a nuisance that we need to marginalize over. In practice,

RSD analyses are sensitive to the combination f σ8, where σ8 is the amplitude of matter perturba-

tions in spheres of 8 Mpc/h. This means that Lyα×Lyα effectively measures the combinations

bLyασ8 and bη ,Lyα f σ8.

The Lyα-QSO cross-correlation could in theory be used to measure f σ8. However, on its own

it cannot constrain all the biases (bLyα ,bη ,Lyα ,bQSO) even for BAO analyses where we fix f σ8 (see

Section 7.2.3 and du Mas des Bourboux et al., 2020). On the other hand, a joint full-shape analysis

of Lyα×QSO and Lyα×Lyα could help break these degeneracies and produce an f σ8 constraint.

Another option for measuring f σ8 at high redshift (1.8 < z < 4) is to use the quasar auto-

correlation, QSO×QSO. The growth rate of structure was first measured from the quasar distribution

7We recover this precision by translating the measurements of αp and φp to H(zeff)rd and DM(zeff)/rd, which
validates our approach of re-scaling the covariance matrix presented in Section 7.3.1
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by the eBOSS collaboration using the SDSS DR14 data (Gil-Marı́n et al., 2018; Zarrouk et al.,

2018; Hou et al., 2018). They performed full-shape analyses on both the 3D power spectrum and

the 3D correlation function. With the last eBOSS analysis using SDSS DR16, these measurements

have been updated and now provide a ∼ 10% constraint on the growth rate at an effective redshift

zeff = 1.48 (Hou et al., 2020; Neveux et al., 2020). The QSO sample contained 343,708 quasars and

spanned a redshift range of 0.8 < z < 2.2. For comparison, DESI will measure about 1.7 million

QSOs at z < 2.1 to be used as tracers only, and another 0.7 million at z > 2.1 to be used both as

tracers and to measure the Lyα forest (DESI Collaboration et al., 2016).

The high redshift QSO×QSO measurement could be combined with the two Lyα forest

correlations in a joint analysis. This could lead to improved f σ8 constraints because of the

information from the cross-correlation, and also due to the potential of the three correlations

helping break parameter degeneracies. Therefore, our goal in this section is to study the potential

of a high-redshift joint analysis of the three two-point (high-z 3× 2pt) correlation functions:

Lyα×Lyα , Lyα×QSO and QSO×QSO.

7 . 4 . 2 M E T H O D S

We use a template linear power spectrum with a fixed normalization, which is proportional to

σ8. The logarithmic growth rate, f (z), and σ8 are completely degenerate in linear theory (Per-

cival and White, 2009), and therefore we are sensitive to the product f (z)σ8(z) for quasars and

bη ,Lyα f (z)σ8(z) for the Lyα forest. As bη ,Lyα is unknown, we will continue sampling over the

βLyα parameter, effectively treating the Lyα forest RSD term as a nuisance to be marginalized over.

We perform our analysis of the high-z 3×2pt using the two-component full-shape method we

introduced in Section 7.2. For the Lyα forest auto and cross correlation, we use the same simulated

data and covariance matrices as described in Section 7.3. For the QSO auto-correlation, we also use

a covariance matrix computed by Farr et al. (2020), re-scaled to the DESI area and number density

as described in 7.3.1. The QSO×QSO simulated correlation function is given by a fiducial model

(no noise) following the best fit parameter values from du Mas des Bourboux et al. (2020), again

with the scale parameters set to unity.

Our effective parameter vector for joint fits is given by: {φp,αp,φs,αs, f σ8,bLyασ8,bQSOσ8,βLyα ,σv}.
When fitting individual correlations, we follow the approach we took in Section 7.3, of fixing the

QSO bias and RSD terms for the cross-correlation.
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Figure 7.4. Posterior distributions of the Lyα forest auto-correlation (green), the Lyα

auto + cross (blue), the QSO auto-correlation (gray), and the joint high-z 3×2pt analysis
of: Lyα×Lyα , Lyα×QSO and QSO×QSO (red). We use a minimum separation rmin =
30 h−1Mpc. The first two rows show the parameters measured only by the Lyα forest,
while the bottom two rows show parameters constrained only by the quasar distribution.
Lyα×Lyα and Lyα×QSO cannot constrain RSD individually, however, a joint full-shape
analysis of both gives us an fσ8(zeff ' 2.3) constraint that rivals the one from the quasar
auto-correlation.
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Figure 7.5. Forecast fractional constraints of the growth rate times the amplitude of
fluctuations ( fσ8), as a function of the minimum separation (rmin) used for the fits. The
black line shows the precision for the quasar auto-correlation, while the blue line shows
the precision for a joint full-shape analysis of Lyα×Lyα and Lyα×QSO. The most
precise and robust fσ8(zeff ' 2.3) measurement is obtained by jointly fitting all three
correlation functions (red line).

7 . 4 . 3 B R E A K I N G PA R A M E T E R D E G E N E R A C I E S

In our parametrization, the BAO parameters (φp,αp) are decoupled from the rest of the analysis.

Therefore, as long as there is negligible cross-covariance between the different correlations, there

is no benefit to (φp,αp) constraints from performing a joint analysis (i.e. fitting the correlations

as one data vector). This has been the case so far with Lyα×Lyα and Lyα×QSO in BOSS and

eBOSS (e.g. Bautista et al., 2017; du Mas des Bourboux et al., 2017; du Mas des Bourboux et al.,

2020), but the cross-covariance for DESI remains to be studied.

The benefits of performing the joint analysis should be most pronounced when it comes to

the parameters we measure from the full-shape analysis: φs, αs and f σ8. This is firstly due to the

fact that these parameters are correlated with some of the nuisance parameters, and therefore, a

joint analysis would allow us to disentangle their effects and lead to improved constraints. This

is illustrated in Figure 7.4 (where we use a minimum separation rmin = 30 h−1Mpc). The top two

rows show parameters that are only measured by the Lyα auto-correlation, while the bottom two

rows show parameters that are only measured by the QSO auto-correlation. Note that the fact

that φs does not seem to be correlated with bη ,Lyα f σ8 in Figure 7.4 for Lyα×Lyα is just due to

the scale of the axes, which is set to display the weak QSO×QSO constraint. AP and RSD are

correlated, however, we do not expect these correlations to be the same for galaxies and the forest
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because the two tracers cluster differently (e.g. βLyα ∼ 1.67 while βQSO ≡ f/bQSO ∼ 0.26).

The cross-correlation requires all four parameters: (bLyασ8,bη ,Lyα f σ8,bQSOσ8, f σ8), however,

the system is degenerate. On the other hand, when we run a joint analysis of the cross-correlation

with the Lyα auto-correlation (blue) we are able to constrain this system, because of the tight

measurements of bLyασ8 and bη ,Lyα f σ8 from Lyα×Lyα . This leads to a constraint on f σ8 of

12.8% (68% confidence region), which is tighter than the one from the QSO auto-correlation of

15.4% (bottom left panel of Figure 7.4).

The second benefit of performing this joint analysis is due to the correlation between RSD and

the AP effect. When measuring f σ8, we have to marginalize over the AP parameter. If we knew the

true background cosmology, i.e. for fixed AP, we would obtain much better measurements of the

growth rate.8 Even though the Lyα auto cannot directly measure the growth rate, it constrains the

AP parameters (especially φs) very precisely. Therefore, including Lyα×Lyα in a joint analysis

with QSO×QSO can help break the correlation between RSD and AP, and improve the f σ8

constraint. This is illustrated in the bottom left panel of Figure 7.4.

The joint high-z 3×2pt analysis appears to work well in breaking parameter correlations when

it comes to f σ8 and φs. However, that is not the case with αs. While performing a joint analysis

does lead to better constraints on this parameter, the posterior remains very correlated with all three

biases (right column of Figure 7.4). This leaves a measurement of αs prone to systematic errors,

and therefore supports our decision from Section 7.2 not to focus on its cosmological interpretation.

So far in this section we used a minimum separation of rmin = 30 h−1Mpc to show how joint

analyses help us break parameter degeneracies. However, we also want to test how these potential

f σ8 measurements would be affected if we could go to smaller scales (e.g. by having better models

for non-linearities), or we had to cut even more data due to systematic effects on these scales. We

show this in Figure 7.5, where we plot the marginalized fractional 68% credible regions on f σ8

from the QSO auto, the Lyα auto + cross, and the joint analysis of all three correlations. We

find that when we can include data at small scales (rmin . 35 h−1Mpc), the Lyα auto + cross

combination (blue line) gives us better constraints compared to the QSO auto (black line). On the

other hand, if we have to cut the small scales (rmin & 35 h−1Mpc), the Lyα measurement degrades

very fast, and the QSO auto becomes comparable and even slightly better at constraining f σ8. This

gives another advantage for performing a joint high-z 3×2pt analysis, because it leads to much

more stable and robust measurements (red line). While the quasar auto-correlation can constrain

8Note that if we mainly wanted to test gravity, adding a tight prior on AP (e.g. from CMB measurements) would be
justified in order to obtain the best possible f σ8 measurement.
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Figure 7.6. The growth rate times the amplitude of fluctuations ( fσ8) as a function of
redshift. The gray line is the best-fit of CMB measurements from Planck. The blue
points are some of the existing fσ8 measurements. All of these measurements are at
redshifts z < 2, with most of them at z < 1. The three points at high redshift are forecast
constraints from DESI for the (high redshift) quasar auto-correlation, Lyα auto and
cross-correlations, and the joint high-z 3×2pt analysis. Note that all three measurements
are at the same effective redshift (given by the middle point), but are plotted at slightly
different redshifts for visualization purposes.

f σ8(zeff ' 2.3) with a precision of 12−20% depending on rmin, the high-z 3×2pt analysis can

achieve a precision of 5−12%.

We have also checked how the two-component full-shape approach affects our results by

comparing it with the approach usually taken in galaxy full-shape analyses of fitting the full

correlation as one component (no peak/smooth decomposition). The f σ8 constraints are larger

when sampling four parameters (our two-component approach) versus two parameters (the one-

component approach used in galaxy full-shape analyses). This is to be expected as the model has

more degrees of freedom. However, the effect is very small when it comes to the high-z 3×2pt

constraints. We found that using a value of rmin = 30 h−1Mpc, we obtain a precision of 7.9% on f σ8

with the two-component approach, while with the one-component approach we obtain a precision

of 7.6%. This does not significantly affect our conclusions in this work, but the two-component

approach might be more advantageous when the effects of contaminants are studied, as it decouples

the peak from the broadband (see Section 7.5).

Finally, in Figure 7.6 we emphasize how useful a full-shape high-z 3× 2pt analysis would

be. We show in blue some of the current f σ8 measurements from different surveys (Ross et al.,

2015; Alam et al., 2017; eBOSS Collaboration et al., 2021; Beutler et al., 2011; Blake et al., 2012;

Okumura et al., 2016; Pezzotta et al., 2017). All of these measurements are at redshifts z < 2, with

most of them at z < 1. The three points on the right show our DESI forecasts of f σ8(zeff) at an

effective redshift zeff ' 2.3. We use a conservative rmin = 30 h−1Mpc. This analysis would allow
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us to study the growth rate of cosmic structures at higher redshifts than ever before.

The results in this section show the potential of a joint full-shape analysis of the three correlation

functions: Lyα×Lyα , Lyα×QSO and QSO×QSO, when it comes to measuring RSD and the AP

effect. The next steps required for such an analysis are to improve the model by adding contaminants

and better non-linear models, and to study the potential systematic errors that would affect this

measurement, especially on the Lyα forest side where a full-shape analysis of the 3D correlation

function has never been done. We discuss these in more detail in the next section.

7 . 5 D I S C U S S I O N A N D N E X T S T E P S

In this work, we have shown the potential for extracting more cosmological information from the

Lyα forest 3D auto-correlation function and its cross-correlation with quasars. We took the template

fitting approach, where we use a template power spectrum to measure a few physically meaningful

quantities that are easy to interpret and translate to cosmological constraints given some model. In

our case, these quantities are the anisotropic scale parameter (φ ), the isotropic scale of the BAO

peak (αp) and the growth rate times the amplitude of fluctuations in spheres of 8 h−1Mpc ( f σ8).

This approach should simplify the study of the impact of contaminants because we only have to

deal with a few parameters whose effect we understand very well.9 Such a study is required before

a full-shape analysis of the Lyα forest correlation functions is performed on real data, however, it

is outside the scope of this work. Here we wish to briefly go over the most important contaminants,

and mention what we can do to minimize their impact. In particular, the most relevant contaminants

for the measurement of AP and RSD are those that introduce anisotropies.

High column density (HCD) systems are a significant contaminant for the Lyα forest due to

their broad absorption profile and long damping wings (Font-Ribera and Miralda-Escudé, 2012;

Rogers et al., 2018). However, they also trace the underlying density field, which means they

can add extra signal if modelled correctly. In past BOSS and eBOSS analyses, large damped

Lyα systems (DLA) that could be identified were masked (e.g. Bautista et al., 2017; du Mas

des Bourboux et al., 2020). However, clustering measurements could potentially be biased by

masking part of the spectrum, as the mask is correlated to the density field. This was not a problem

for BAO analyses, but its impact on a full-shape analysis needs to be tested. On the other hand,

the small HCDs were left in the data and had to be included in the model. Rogers et al., 2018

9This is in contrast to a direct fit of cosmological parameters, where a study of contaminants would be much harder.
This is due to the larger parameter space, but also because it is harder to identify and separate the effects of these
parameters on the correlation function.
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showed that HCDs can be successfully modelled down to the smallest scale considered in this work

(∼ 10 h−1Mpc), by using a simple model in linear theory, with a separate bias and RSD parameter,

convolved with Voigt profiles for the damping wings.

The Lyα forest auto and cross correlation functions are contaminated by metal transitions with

rest-frame wavelength close to that of the Lyα transition, that add correlations between themselves

and the Lyα forest or quasars. They are also contaminated by metal lines that are further away in

rest-frame wavelength through their own auto-correlation. These metal lines have been successfully

modelled for BOSS and eBOSS (Bautista et al., 2017; du Mas des Bourboux et al., 2017; de Sainte

Agathe et al., 2019; Blomqvist et al., 2019; du Mas des Bourboux et al., 2020) by adding extra

correlations with the same form as Lyα×Lyα and Lyα×QSO, and with their own bias and RSD

parameters. However, these still need to be tested at DESI-level precision, and for the full-shape

analysis we also have to test how the metal lines affect the measurement of the AP parameter and

RSD.

Another important source of contamination are QSO redshift errors, which could introduce

a systematic bias if not modelled correctly. Non-linear peculiar velocities also have big impact

on the anisotropy because they create fingers of god. For Lyα forest analyses (and in this work),

these two effects have been modelled using simple damping terms with a Lorentzian or Gaussian

profile based on Percival and White (2009). For a full-shape analysis, we might need to use more

complex models, as was done for past quasar auto analyses (e.g. Hou et al., 2020; Neveux et al.,

2020). Quasar radiation effects (also known as the transverse proximity effect) are also an important

source of contamination for the Lyα-quasar cross-correlation. This is because the quasar radiation

increases the ionization fraction in the surrounding gas, leading to less Lyα forest absorption

(Font-Ribera et al., 2013). This effect has been modelled analytically and was shown to not have

a significant impact on BAO analyses (du Mas des Bourboux et al., 2017; du Mas des Bourboux

et al., 2020); however, this needs to be tested for a full-shape analysis as well.

The final effect we consider is the fitting of the quasar continuum, which removes power on

scales larger than the size of the forest. This produces a distortion in the measured correlations

along the line of sight, and therefore introduces another source of anisotropy. This has been

successfully modelled through a distortion matrix (Bautista et al., 2017) for BOSS and eBOSS.

A similar approach could be sufficient for a full-shape analysis using DESI, but this needs to be

tested.

All the contaminants presented here have been studied before and are modelled in existing

Lyα BAO analyses. However, what still needs to be understood is how they interact with the new
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parameters we wish to study (φs and f σ8). Additionally, du Mas des Bourboux et al. (2020) found

that adding broadband polynomials to the model can improve the fit of the correlations, which

could point to contaminants that are not modelled well enough, or new effects that have not been

considered. The addition of these polynomials was shown not to have a significant impact on

BAO measurements, but they cannot be used for full-shape analyses because we want to extract

broadband information, not marginalize over it. Therefore, a careful analysis on the impact of

contaminants on AP and RSD measurements needs to be performed in order to determine if and on

what scales current models are appropriate for a full-shape analysis of the Lyα forest correlations.

Furthermore, an analysis of potential systematic errors would inform the decisions related to which

scale-parameters to sample (e.g. whether to have two separate φ parameters). We also mention

that even in the worst-case scenario where we have to cut the small scales due to some significant

systematic bias, we have shown that a full-shape analysis of the high-z 3×2pt could still lead to

state of the art cosmological measurements at redshifts 1.8 < z < 4.

7 . 6 C O N C L U S I O N S

The Lyman-α (Lyα) forest 3D auto-correlation function (Lyα×Lyα) and its cross-correlation with

the quasar (QSO) distribution (Lyα×QSO) are currently some of the best cosmological probes of

the Universe at redshifts 1.8 < z < 4. However, so far they have only been used to measure the

BAO scale. In this work, we proposed to expand the cosmological information extracted from these

statistics by fitting the full shape of these correlations in order to measure the Alcock-Paczynski

(AP) parameter.

In Section 7.2 we introduced our model for fitting the correlation function using a two-

component approach, where we decomposed the template power spectrum into a peak component

which contains the BAO information, and a smooth component. We then re-scaled the two compo-

nents independently in order to decouple the measurement of the BAO peak from the rest of the

analysis. In Section 7.3 we studied the potential for measuring the AP effect from the broadband of

the Lyα forest correlations. We used simulated correlation functions and mock DESI covariance

matrices within a simple linear model with no contaminants. We showed that our two-component

full-shape method successfully isolates the measurement of the BAO peak by comparing it to a

BAO only analysis. Furthermore, we showed that using this idealized approach, a joint full-shape

analysis of Lyα×Lyα and Lyα×QSO from DESI could measure the AP parameter at an effective

redshift zeff ' 2.3 with a precision of 0.3%− 0.9% (68% credible regions). Compared to the
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expected DESI Lyα BAO constraint on AP, which is ∼ 1.6%, we were able to obtain roughly

two to four times better precision. In Section 7.3.3 we showed how this measurement would help

constrain cosmological parameters in a flat ΛCDM model. In the conservative case where we fit to

a smallest scale of 30 h−1Mpc, the inclusion of the AP measurement from the broadband gives us

roughly three times better precision on the relevant cosmological parameters compared to the BAO

measurement.

In Section 7.4, we studied the potential for measuring the logarithmic growth rate times the

amplitude of fluctuations in regions of 8 h−1Mpc ( f σ8) at high redshift (1.8 < z < 4) using the

DESI Lyα forest and quasar position measurements. An f σ8 measurement at redshifts z & 1.6 is

unprecedented. Neither the Lyα auto-correlation nor the Lyα-QSO cross-correlation can constrain

f σ8 independently, due to a degenerate system of parameters. However, in Section 7.4.3 we showed

that their combination (Lyα×Lyα + Lyα×QSO) is able to break these parameter degeneracies and

obtain a measurement of f σ8(zeff) at an effective redshift zeff ' 2.3. This joint analysis was able to

obtain constraints of 7%−22% (68% credible regions) depending on the minimum separation used.

For comparison, with the high redshift quasar auto-correlation (QSO×QSO) from DESI, we were

able to obtain a precision of 12%−20%. Furthermore, we showed that combining the two Lyα

correlations with the quasar auto-correlation in a joint analysis of the three high-redshift two-point

correlation functions (high-z 3×2pt) would give us the most precise and robust measurement of

f σ8 at these redshifts. We found that a high-z 3×2pt analysis of the full DESI data could be able

to measure f σ8(zeff ' 2.3) with a precision of 5%−12%, depending on the minimum separation

used.

In this work, we have shown how to extract more information from the 3D distribution of

the Lyα forest through the AP parameter. We have also shown it is possible to measure f σ8

through a joint full-shape analysis of Lyα×Lyα and Lyα×QSO. While the DESI Lyα BAO

analysis is expected to measure H(zeff)rd and DM(zeff)/rd with a precision of ∼ 0.9%, adding the

AP measurement from the broadband could give us constraints of ∼ 0.5%. On the other hand,

performing a high-z 3× 2pt analysis would allow us for the first time to measure f σ8 at high

redshift.
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C H A P T E R 8

C O N C L U S I O N S A N D O U T L O O K

In this final part, I will summarize the work described in Part II and outline plans for ongoing and

future work. I will also talk about some of the new results that appeared after the publication of the

work described in past chapters.

8 . 1 T H E H U B B L E T E N S I O N A N D BAO

In Chapter 5, we used baryon acoustic oscillations (BAO) data and deuterium abundance mea-

surements combined with big bang nucleosynthesis (BBN) to constrain the Hubble constant, H0.

We also studied the apparent tension between past BAO measurements using the Lyman-α (Lyα)

forest and those using the distribution of galaxies (we call this Galaxy BAO). Finally, we performed

forecasts of this BAO+BBN method for the Dark Energy Spectroscopic Instrument (DESI).

The main results of this work are the two H0 constraints, obtained using two different BBN

priors:

H0 = 67.6±1.1 km s−1Mpc−1 (theoretical prior), (8.1)

H0 = 68.1±1.1 km s−1Mpc−1 (empirical prior). (8.2)

The two different priors come from one reaction rate in the BBN calculation. The laboratory

measurements (on which the empirical estimate is based) have a large uncertainty, so we also use

the prior based on a theoretical estimate. We found that the two result in very similar H0 constraints.
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On the other hand, we have also shown that for DESI this will no longer be the case, and the choice

of prior could be very important. This problem has since been solved due to new measurements

from the Laboratory for Underground Nuclear Astrophysics (LUNA), which greatly improved

constraints on the relevant reaction cross-section (Mossa et al., 2020a; Mossa et al., 2020b). The

resulting Ωbh2 constraint improves on the old empirical prior we used, and is also consistent with

Planck cosmic microwave background (CMB) measurements.

Since the publication of the work in Chapter 5 (Cuceu et al., 2019), which was based on eBOSS

DR14 data, the eBOSS collaboration published results using the final eBOSS data release (SDSS

DR16). These results include BAO measurements using luminous red galaxies (Gil-Marı́n et al.,

2020; Bautista et al., 2020), emission line galaxies (Tamone et al., 2020; de Mattia et al., 2021),

quasars (Hou et al., 2020; Neveux et al., 2020) and the Lyα forest (which includes both the auto

and cross-correlation with quasars; du Mas des Bourboux et al., 2020). These results along with

redshift space distortions (RSD) measurements are used to constrain cosmological parameters

across a variety of models in eBOSS Collaboration et al. (2021).

The first result relevant to the work presented here is that the difference between Lyα and

galaxy BAO measurements shrank even more. In Section 5.2 we found a 2.5σ difference between

the two in DR12, and 1.9σ in DR14. This tension is generally reported in terms of a tension

between Lyα BAO and Planck CMB measurements. However, the two ways of framing it are

similar because the BOSS DR12 result, which is the biggest source of constraining power in galaxy

BAO, is consistent with Planck. du Mas des Bourboux et al. (2020) reports the difference between

Lyα BAO and Planck to now be at ∼ 1.5σ using a Gaussian approximation. Furthermore, in

du Mas des Bourboux et al. (2020), we performed a study of the evolution of these BAO results

between DR12 and DR16, and found that these shifts are consistent with random fluctuations.

Our BAO+BBN analysis was updated with the new DR16 data in eBOSS Collaboration et al.

(2021). The new measurement of the Hubble constant is H0 = 67.35±0.97 km s−1 Mpc−1(using

the empirical BBN prior), which is consistent with both of our results. Other new results that are

consistent with Planck include CMB measurements from the Atacama Cosmology Telescope (ACT;

Aiola et al., 2020) and the South Pole Telescope (SPT; Dutcher et al., 2021), and a full-shape direct

fit of the BOSS galaxy power spectra combined with BAO and BBN (Philcox et al., 2021).

On the other hand, the newest distance ladder result gives a value of H0 = 73.0±1.4 km s−1

Mpc−1(Riess et al., 2021), in ∼ 4.2σ tension with Planck. New local measurements of H0 using

the tip of the red giant branch (TRGB) to build a distance ladder have also appeared from the

Carnegie-Chicago Hubble Program (Freedman et al., 2019; Freedman et al., 2020). Interestingly,
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this constraint is currently H0 = 69.6± 1.9 km s−1 Mpc−1, in between the Planck and SH0ES

measurements. However, other TRGB analyses find higher values that are more consistent with

the distance ladder using Cepheids (Reid, Pesce, and Riess, 2019; Soltis, Casertano, and Riess,

2021). Many other H0 measurements have also appeared in the literature in recent years. For more

complete recent reviews, see Di Valentino et al. (2021) and Shah, Lemos, and Lahav (2021).

At this point, the Hubble tension has fully captured the attention of the cosmology community

and beyond. There have been many new measurements, either independent of Planck and SH0ES or

reanalysing the two data sets with new methods. However, the tension still stands. On the distance

ladder side, there are still questions about the photometric calibration or potential astrophysical

bias (e.g. from dust extinction, metallicity dependence etc.). On the CMB side (and other probes

that use early Universe measurements), most discussion now focuses on the reliance on the ΛCDM

model. While there have been many proposals for a theoretical solution by either extending or

replacing ΛCDM, there is no promising candidate so far. For recent reviews of possible solutions,

see Di Valentino et al. (2021) and Schöneberg et al. (2021). Therefore, the hunt for the value of the

Hubble constant is still ongoing.

8 . 2 BAO F R O M T H E LY α F O R E S T

In Chapter 6, we performed a Bayesian analysis of the 3D Lyα forest correlation functions measured

by eBOSS DR14. Using a sample of 100 Monte Carlo simulations, we studied the differences

between the frequentist framework used by past BOSS and eBOSS analyses and the Bayesian

approach. We tested maximum likelihood estimation (MLE), with uncertainties derived from a

Gaussian approximation, and found that this approach fails to fully capture the uncertainty for

current data sets.

We also tested the method of performing a grid scan over the two BAO scale parameters (i.e.

Profile Likelihood), and computed both frequentist confidence intervals and Bayesian credible

regions. We found that when it comes to measuring BAO, these two agree very well both between

themselves and with the posterior distribution computed using the Nested Sampler PolyChord.

However, PolyChord not only measures the BAO scale, but the full posterior distribution and its

normalization (the Bayesian evidence) while having a similar computational cost as the scan.

The main outcome of this work is the introduction of Bayesian sampling in the community code

picca. This has already been used in the eBOSS DR16 Lyα analysis (du Mas des Bourboux et al.,

2020), Chapter 7 (Cuceu et al., 2021), and other ongoing projects within the DESI collaboration. A
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Figure 8.1. Comparison of eBOSS DR16 Lyα BAO results using different methods.
Results from the Lyα auto-correlation are on the left, and those from its cross-correlation
with quasars are on the right. The frequentist χ2 scan, also known as the Profile Likeli-
hood, is compared to Bayesian full posterior sampling and the Gaussian approximation.
From du Mas des Bourboux et al. (2020).

personal contribution that is relevant to this work, was a test of DR16 Lyα BAO measurements

using different methods. This is very similar to the tests on mocks from Section 6.3, and the results

from du Mas des Bourboux et al. (2020) are shown in Figure 8.1. We found that in the case of

DR16, the three methods agree very well.

After the publication of the work in Chapter 6, I started working on a new library for modelling

and fitting Lyα correlation functions. This became the Vega package1 and was used to perform

the work from Chapter 7. It also uses the Nested Sampler PolyChord to compute posterior

distributions, and has all the tools of the old fitting library from picca. This package along with

the lessons learned in Chapter 6 will be used in the upcoming BAO analyses from DESI.

It may seem that improved data sets will inevitably lead to posteriors that are closer and closer

to Gaussianity, thus lessening the importance of the statistical methods used to measure BAO.2

However, with DESI we will most likely have enough data to perform BAO measurements in

different redshift bins (instead of just one). This has the advantage of constraining cosmology at

different times that can complement each other. However, it also means that BAO parameters will

not be as well constrained, especially in the low and high redshift bins. Therefore, the choice of

statistical method will still play an important role.

Beyond BAO, there is also the potential for a full-shape analysis of the Lyα forest correlation

1https://github.com/andreicuceu/vega
2One caveat for this is that with increased statistical precision comes greater risk of systematic effects from both

known unknowns and unknown unknowns. Ways of dealing with these include the use of hyper-parameters that can
result in highly non-Gaussian posteriors (see e.g. Lahav et al., 2000; Hobson, Bridle, and Lahav, 2002; Bernal and
Peacock, 2018).
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functions, which we discussed in Chapter 7. This type of analysis would extend the set of interesting

parameters beyond the two BAO scale parameters, meaning that scanning methods may become

computationally infeasible. The new parameters are also likely to be correlated with the other

nuisance parameters (see Section 7.4), requiring computation of the full posterior in order to study

them.

8 . 3 B E Y O N D BAO W I T H T H E LY α F O R E S T

In Chapter 7, we studied the potential of performing a full-shape analysis of the Lyα forest 3D

correlation functions in order to extract more cosmological information. We started with the Alcock-

Paczynski (AP) effect. We already use some of this information when we measure anisotropic

BAO. However, the AP effect affects the entire correlation. Our approach is different from the one

found in the literature, as we still separate the peak and the smooth components. This allows us to

preserve the robustness of BAO measurements, while also gaining extra information from a broader

range of scales. By performing an idealized DESI forecast, we showed that even in a conservative

case, AP measurements from the full-shape would significantly improve the constraining power of

BAO only results.

Besides the AP effect, full-shape analyses are also used to measure redshift space distortions

(RSD) through the parameter combination f σ8. For the Lyα forest flux, there is an extra velocity

divergence bias that is degenerate with the growth rate f (Slosar et al., 2011; McDonald, 2003;

Givans and Hirata, 2020; Chen, Vlah, and White, 2021). Therefore, without some knowledge

of this bias, we cannot extract the cosmological information from RSD. However, the Lyα-QSO

cross-correlation (Lyα×QSO) has a biased term from Lyα and an unbiased term from QSOs. The

two terms are degenerate, but we can measure the first one from the auto-correlation (Lyα×Lyα).

Therefore, a joint analysis of the Lyα auto and the cross-correlations could constrain f σ8. We have

shown forecasts of such a measurement in Section 7.4.

A full-shape analysis of the two Lyα forest 3D correlations (Lyα×Lyα and Lyα×QSO) would

not only give us the best high-redshift (2 < z < 4) cosmological constraints through the AP effect,

but could also provide the first f σ8 measurements above redshift 2. On the other hand, the quasar

auto-correlation (QSO×QSO) has already been used by the eBOSS collaboration to measure both

effects (Gil-Marı́n et al., 2018; Zarrouk et al., 2018; Hou et al., 2018). These measurements are at

lower effective redshift compared to the Lyα forest, and include quasars in the range 0.8 < z < 2.2.

However, with DESI the QSO auto-correlation could be measured in the same redshift range as the

133



Chapter 8. Conclusions and Outlook

forest, in order to perform a full-shape analysis. Therefore, we also studied the potential of a joint

high redshift analysis of the three two-point correlation functions (high-z 3×2pt).

By breaking parameter correlations between the parameters of interest (AP, f σ8) and nuisance

parameters (e.g. biases), a high-z 3× 2pt analysis could provide the most precise cosmological

measurements at high redshift (2 < z < 4). However, such a measurement still requires some

work. In Section 7.5, we discussed some of the potential systematic errors that could affect such a

full-shape analysis. While we have models for most known relevant contaminants, these models

have not been tested in the context of a full-shape analysis, or to the precision required by DESI. In

the final section, I will present some of the ongoing and future work that is necessary to achieve

this type of analysis.

8 . 4 O N G O I N G A N D F U T U R E W O R K

The focus of my current and near future work is on cosmology from the 3D Lyα forest correlation

functions. This has two components. The first is part of a group effort in the DESI collaboration to

perform a BAO analysis using the first year of data (Y1). The second is to perform the full-shape

analysis on real data from eBOSS and DESI.

The DESI survey officially began in May 2021, after a short period of survey validation (SV).

At the moment of writing, it has already observed about 0.33 million quasars. Out of these, we

expect roughly one third to be at redshifts z > 2.1, where we can measure the Lyα forest (DESI

Collaboration et al., 2016). For comparison, in the final eBOSS analysis, we used Lyα forests from

roughly 0.21 million quasars (du Mas des Bourboux et al., 2020). Furthermore, the surveys of the

other tracers are also progressing very well, with roughly 0.53 million LRGs, 0.33 million ELGs,

and 1.59 million bright galaxies whose redshift has been measured at the time of writing. This

means DESI is well on its way towards becoming the largest spectroscopic galaxy survey.

8 . 4 . 1 P R E PA R I N G F O R T H E F I R S T D E S I A N A LY S I S

Measuring the BAO feature using the Lyα forest correlations is one of the DESI Key Projects for

Y1. All key project analyses that will lead to cosmological results in DESI have to be blinded. This

means that the collaboration does not know the true results (e.g. BAO position) while the analysis

choices are still being decided. A good blinding strategy prevents scientists from introducing their

own personal biases, while also interfering as little as possible with the analysis (see e.g. Muir

et al., 2020; Brieden et al., 2020).
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Figure 8.2. The Lyα forest auto correlation function measured by eBOSS DR16, in four
µ (the cosine of the line-of-sight angle) wedges. The blue points represent the original
correlation. For the orange and green points, the position of the BAO peak has been
shifted left and right respectively, using a fiducial model. This illustrates the method of
blinding that will be used for the DESI Lyα year one BAO analysis.

For the year one DESI Lyα BAO key project, there were 5 proposed strategies, applied at

different stages of the analysis. I was directly involved in developing and testing two of these,

including the one that was ultimately chosen by the Lyα working group in DESI. Here I will only

present this last strategy, and explain why it was chosen.

This blinding strategy consists of shifting the position of the peak in the measured correlation

function. We achieve this by computing a fiducial model based on the best fit parameter values

from eBOSS DR16 (du Mas des Bourboux et al., 2020), but with the BAO parameters fixed to

α|| = 1 and α⊥ = 1. We then create a second model where the BAO parameters take random values3

around (1,1). The difference between these two model correlation functions is then automatically

applied to every measured correlation function that is using main survey data.4 An example of this

applied to eBOSS DR16 data is shown in Figure 8.2.

This blinding strategy is applied much later in the analysis compared to other strategies found

3We use a Gaussian distribution with a standard deviation defined by the constraining power of eBOSS DR16 and a
cutoff at 3σ .

4The blinding is not applied for SV data.
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in the literature (e.g. DES Collaboration et al., 2021; Heymans et al., 2021). While some of the

proposed strategies did blind at earlier stages, these are not as desirable for the Lyα forest forest due

to the strong metal correlation peaks. The most prominent of these can seen in the bottom two plots

of Figure 8.2 at a separation ∼ 60h−1Mpc. This is due to correlations between Lyα absorption and

two metal absorption lines: SiII(1190Å) and SiII(1193Å). Any blinding that changes the position

of this peak can be guessed relatively easily because we know where the peak should be5, and it

is very well constrained. Therefore, we need a blinding strategy that only changes the correlation

around the position of the BAO peak.6

This type of blinding strategy could also be used for a full-shape analysis where we want to

measure the AP effect. This is because the metal correlations are added to the model at the last

step. This means we can add a random coordinate re-scaling to the full Lyα correlation functions

(instead of just the BAO peak), before we add the metal correlations. This brings us to the next

topic, which is a full-shape analysis of Lyα correlations using real data.

8 . 4 . 2 T O WA R D S A F U L L - S H A P E A N A LY S I S

As we have discussed in Section 7.5, before a full-shape analysis can be performed on real data,

we need to study the impact of contaminants on the parameters of interest. Based on the forecast

analysis we performed in Chapter 7, we can break down this type of analysis into different steps.

The end goal is to measure the BAO peak position, the AP effect from the full-shape and RSD

through the f σ8 parameter combination. As we have seen, we can only measure f σ8 through a joint

analysis of the Lyα auto and cross-correlation with quasars. This means we can start by focusing

on the AP effect from the Lyα auto and cross individually. Ultimately, this means measuring

two parameters; the isotropic BAO scale, αp, and the full-shape anisotropic scale parameter, φ .

Here, we also have the option to split φ up into two parameters that re-scale the peak and smooth

components, respectively. This could be desirable in order to better understand the correlations

with contaminants, because we expect the smooth component to be the one that is affected by them.

It would also allow us to quantify the improvement in constraining power over a standard BAO

analysis.

A major component of this analysis will be to decide what is the smallest and largest scale we

should fit. We can study this by measuring the constraining power (statistical error) on the AP
5Its position can be computed from the difference between the Lyα wavelength and the metal wavelength, transformed

into comoving coordinates.
6A strategy that changes the rest of the correlation in a way that is not coherent between metal correlations and the

BAO peak could also work. However, no such strategy has been proposed, and it is hard to imagine one. This is because
we cannot tell the difference between pixels that are dominated by metal absorption and those that are dominated by Lyα .
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parameter as a function of minimum and maximum separation, and comparing it to the expected

systematic bias using mock data sets. To compute the expected systematic bias, we can perform

the analysis on a large number of these mocks, and progressively include different contaminants.

This will allow us to test how well we can model the contaminants and what their impact on the

parameters of interest is.

In terms of performing a full-shape analysis on DESI data, we would have to wait until the

year one Lyα BAO analysis is complete. This is because the BAO measurement is a component

of the full-shape analysis. Therefore, roughly for the next one and a half years, the best options

for this type of analysis are the BOSS and eBOSS data sets. This is also facilitated by the public

availability of the eBOSS DR16 correlation functions, and the set of mock data sets that were used

for that BAO analysis. For this reason, my current focus is on using these eBOSS mocks to prepare

for a full-shape analysis of the eBOSS DR16 Lyα forest correlation functions.

The Lyα forest is now an established cosmological tracer, with the BAO analysis being a key

project in DESI. As we have shown, there is still great potential for more types of cosmological

analyses to be performed with this tracer. Here we have focused on the incremental steps of

measuring AP and RSD. However, it is my hope that by the time we arrive at the final analysis

of the full DESI data, we will have progressed to more advanced techniques. Once we are more

confident in our understanding of the model and contaminants for the Lyα correlation functions,

we could perform a direct fit of cosmological parameters. This would unlock the full potential of

this statistic.
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Friedman, A. (Jan. 1922). “Über die Krümmung des Raumes”. In: Zeitschrift fur Physik 10, pp. 377–

386. DOI: 10.1007/BF01332580 (cit. on p. 26).

Fukuda, Y. et al. (1998). “Evidence for Oscillation of Atmospheric Neutrinos”. In: Phys. Rev. Lett.

81 (8), pp. 1562–1567. DOI: 10.1103/PhysRevLett.81.1562. URL: https://link.aps.

org/doi/10.1103/PhysRevLett.81.1562 (cit. on p. 30).

Gaztanaga, Enrique (1992). “N-point correlation functions in the CfA and SSRS redshift distribution

of galaxies”. In: The Astrophysical Journal 398, pp. L17–L20 (cit. on p. 50).

Gelman, Andrew et al. (2013). Bayesian data analysis. Chapman and Hall/CRC (cit. on p. 86).

Ghosh, JK (1988). Statistical information and likelihood: a collection of critical essays by Dr. D.

Basu. Springer (cit. on p. 87).
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Gil-Marı́n, Héctor et al. (Oct. 2020). “The Completed SDSS-IV extended Baryon Oscillation

Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous

red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0”. In:

MNRAS 498.2, pp. 2492–2531. DOI: 10 .1093 /mnras /staa2455. arXiv: 2007 .08994

[astro-ph.CO] (cit. on p. 130).

148

https://doi.org/10.1088/1475-7516/2014/05/027
https://arxiv.org/abs/1311.1767
https://doi.org/10.1086/320638
https://arxiv.org/abs/astro-ph/0012376
https://doi.org/10.3847/1538-4357/ab2f73
https://arxiv.org/abs/1907.05922
https://doi.org/10.3847/1538-4357/ab7339
https://arxiv.org/abs/2002.01550
https://doi.org/10.1007/BF01332580
https://doi.org/10.1103/PhysRevLett.81.1562
https://link.aps.org/doi/10.1103/PhysRevLett.81.1562
https://link.aps.org/doi/10.1103/PhysRevLett.81.1562
https://doi.org/10.1093/mnras/sty453
https://arxiv.org/abs/1801.02689
https://doi.org/10.1093/mnras/staa2455
https://arxiv.org/abs/2007.08994
https://arxiv.org/abs/2007.08994


BIBLIOGRAPHY

Givans, Jahmour J. and Christopher M. Hirata (July 2020). “Redshift-space streaming velocity

effects on the Lyman-α forest baryon acoustic oscillation scale”. In: Phys.Rev.D 102.2, 023515,

p. 023515. DOI: 10.1103/PhysRevD.102.023515. arXiv: 2002.12296 [astro-ph.CO]

(cit. on pp. 103, 133).

Grohs, Evan et al. (2019). “Big Bang Nucleosynthesis and Neutrino Cosmology”. In: BAAS. Vol. 51,

p. 412. DOI: https://baas.aas.org/wp-content/uploads/2019/05/412_grohs.pdf

(cit. on pp. 56, 73).

Gunn, James E and Bruce A Peterson (1965). “On the Density of Neutral Hydrogen in Intergalactic

Space.” In: The Astrophysical Journal 142, pp. 1633–1636 (cit. on p. 52).

Gustavino, C. (2014). “BBN, Neutrinos and Nuclear Astrophysics”. In: Proceedings of the 52th

International Winter Meeting on Nuclear Physics (Bormio2014). 27 - 31 January, p. 50 (cit. on

p. 77).

Handley, W. J., M. P. Hobson, and A. N. Lasenby (2015a). “polychord: nested sampling for

cosmology.” In: MNRAS 450, pp. L61–L65. DOI: 10.1093/mnrasl/slv047. arXiv: 1502.

01856 [astro-ph.CO] (cit. on pp. 62, 71, 91, 113).

— (2015b). “POLYCHORD: next-generation nested sampling”. In: MNRAS 453.4, pp. 4384–4398.

DOI: 10.1093/mnras/stv1911. arXiv: 1506.00171 [astro-ph.IM] (cit. on pp. 62, 71, 91,

113).

Handley, Will and Pablo Lemos (2019a). “Quantifying dimensionality: Bayesian cosmological

model complexities”. In: arXiv e-prints, arXiv:1903.06682, arXiv:1903.06682. arXiv: 1903.

06682 [astro-ph.CO] (cit. on pp. 71, 72).

— (2019b). “Quantifying tension: interpreting the DES evidence ratio”. In: arXiv e-prints, arXiv:1902.04029,

arXiv:1902.04029. arXiv: 1902.04029 [astro-ph.CO] (cit. on pp. 67, 69, 71, 77).

Hastings, W. K. (Apr. 1970). “Monte Carlo sampling methods using Markov chains and their

applications”. In: Biometrika 57.1, pp. 97–109. ISSN: 0006-3444. DOI: 10.1093/biomet/57.

1.97. eprint: https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/

57-1-97.pdf. URL: https://doi.org/10.1093/biomet/57.1.97 (cit. on pp. 60, 62, 83,

86).

Heavens, Alan, Raul Jimenez, and Licia Verde (2014). “Standard Rulers, Candles, and Clocks from

the Low-Redshift Universe”. In: Phys.Rev.Lett 113.24, 241302, p. 241302. DOI: 10.1103/

PhysRevLett.113.241302. arXiv: 1409.6217 [astro-ph.CO] (cit. on p. 112).

Heymans, Catherine et al. (Feb. 2021). “KiDS-1000 Cosmology: Multi-probe weak gravitational

lensing and spectroscopic galaxy clustering constraints”. In: A&A 646, A140, A140. DOI:

149

https://doi.org/10.1103/PhysRevD.102.023515
https://arxiv.org/abs/2002.12296
https://doi.org/https://baas.aas.org/wp-content/uploads/2019/05/412_grohs.pdf
https://doi.org/10.1093/mnrasl/slv047
https://arxiv.org/abs/1502.01856
https://arxiv.org/abs/1502.01856
https://doi.org/10.1093/mnras/stv1911
https://arxiv.org/abs/1506.00171
https://arxiv.org/abs/1903.06682
https://arxiv.org/abs/1903.06682
https://arxiv.org/abs/1902.04029
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1103/PhysRevLett.113.241302
https://doi.org/10.1103/PhysRevLett.113.241302
https://arxiv.org/abs/1409.6217


BIBLIOGRAPHY

10.1051/0004-6361/202039063. arXiv: 2007.15632 [astro-ph.CO] (cit. on pp. 56,

136).

Higson, Edward et al. (Sept. 2019). “Dynamic nested sampling: an improved algorithm for parame-

ter estimation and evidence calculation”. In: Statistics and Computing 29.5, pp. 891–913. DOI:

10.1007/s11222-018-9844-0. arXiv: 1704.03459 [stat.CO] (cit. on p. 62).

Hikage, Chiaki et al. (Apr. 2019). “Cosmology from cosmic shear power spectra with Subaru Hyper

Suprime-Cam first-year data”. In: PASJ 71.2, 43, p. 43. DOI: 10.1093/pasj/psz010. arXiv:

1809.09148 [astro-ph.CO] (cit. on p. 56).

Hinton, Samuel R., Cullan Howlett, and Tamara M. Davis (2020). “Barry and the BAO Model Com-

parison”. In: MNRAS. DOI: 10.1093/mnras/staa361. arXiv: 1912.01175 [astro-ph.CO]

(cit. on p. 82).

Hobson, M. P., S. L. Bridle, and O. Lahav (Sept. 2002). “Combining cosmological data sets:

hyperparameters and Bayesian evidence”. In: MNRAS 335.2, pp. 377–388. DOI: 10.1046/j.

1365-8711.2002.05614.x. arXiv: astro-ph/0203259 [astro-ph] (cit. on p. 132).

Hobson, Michael P et al. (2010). Bayesian methods in cosmology. Cambridge University Press

(cit. on p. 60).

Horowitz, Benjamin et al. (Dec. 2019). “TARDIS. I. A Constrained Reconstruction Approach to

Modeling the z ∼ 2.5 Cosmic Web Probed by Lyα Forest Tomography”. In: ApJ 887.1, 61,

p. 61. DOI: 10.3847/1538-4357/ab4d4c. arXiv: 1903.09049 [astro-ph.CO] (cit. on

p. 83).

Hou, Jiamin et al. (Oct. 2018). “The clustering of the SDSS-IV extended Baryon Oscillation

Spectroscopic Survey DR14 quasar sample: anisotropic clustering analysis in configuration

space”. In: MNRAS 480.2, pp. 2521–2534. DOI: 10.1093/mnras/sty1984. arXiv: 1801.

02656 [astro-ph.CO] (cit. on pp. 118, 133).

Hou, Jiamin et al. (Oct. 2020). “The completed SDSS-IV extended Baryon Oscillation Spectroscopic

Survey: BAO and RSD measurements from anisotropic clustering analysis of the quasar sample

in configuration space between redshift 0.8 and 2.2”. In: MNRAS 500.1, pp. 1201–1221. DOI:

10.1093/mnras/staa3234. arXiv: 2007.08998 [astro-ph.CO] (cit. on pp. 118, 124,

130).

Hu, Wayne and Martin White (Nov. 1996). “Acoustic Signatures in the Cosmic Microwave Back-

ground”. In: ApJ 471, p. 30. DOI: 10.1086/177951. arXiv: astro-ph/9602019 [astro-ph]

(cit. on p. 42).

150

https://doi.org/10.1051/0004-6361/202039063
https://arxiv.org/abs/2007.15632
https://doi.org/10.1007/s11222-018-9844-0
https://arxiv.org/abs/1704.03459
https://doi.org/10.1093/pasj/psz010
https://arxiv.org/abs/1809.09148
https://doi.org/10.1093/mnras/staa361
https://arxiv.org/abs/1912.01175
https://doi.org/10.1046/j.1365-8711.2002.05614.x
https://doi.org/10.1046/j.1365-8711.2002.05614.x
https://arxiv.org/abs/astro-ph/0203259
https://doi.org/10.3847/1538-4357/ab4d4c
https://arxiv.org/abs/1903.09049
https://doi.org/10.1093/mnras/sty1984
https://arxiv.org/abs/1801.02656
https://arxiv.org/abs/1801.02656
https://doi.org/10.1093/mnras/staa3234
https://arxiv.org/abs/2007.08998
https://doi.org/10.1086/177951
https://arxiv.org/abs/astro-ph/9602019


BIBLIOGRAPHY

Hui, Lam, Albert Stebbins, and Scott Burles (Jan. 1999). “A Geometrical Test of the Cosmological

Energy Contents Using the Lyα Forest”. In: ApJ 511.1, pp. L5–L8. DOI: 10.1086/311826.

arXiv: astro-ph/9807190 [astro-ph] (cit. on p. 103).

Inman, Henry F. and Edwin L. Bradley Jr (1989). “The overlapping coefficient as a measure of agree-

ment between probability distributions and point estimation of the overlap of two normal densi-

ties”. In: Communications in Statistics - Theory and Methods 18.10, pp. 3851–3874. DOI: 10.

1080/03610928908830127. eprint: https://doi.org/10.1080/03610928908830127.

URL: https://doi.org/10.1080/03610928908830127 (cit. on pp. 67, 69).

Jaynes, Edwin T and Oscar Kempthorne (1976). Confidence intervals vs Bayesian intervals.

Springer, pp. 175–257 (cit. on p. 85).

Jeffreys, Harold (1946). “An invariant form for the prior probability in estimation problems”. In:

Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences

186.1007, pp. 453–461 (cit. on p. 59).

Kaiser, Nick (July 1987). “Clustering in real space and in redshift space”. In: MNRAS 227, pp. 1–21.

DOI: 10.1093/mnras/227.1.1 (cit. on p. 50).

Kapteyn, J. C. (May 1922). “First Attempt at a Theory of the Arrangement and Motion of the

Sidereal System”. In: ApJ 55, p. 302. DOI: 10.1086/142670 (cit. on p. 30).

Kirkby, David et al. (2013). “Fitting methods for baryon acoustic oscillations in the Lyman-α forest

fluctuations in BOSS data release 9”. In: JCAP 2013.3, 024, p. 024. DOI: 10.1088/1475-

7516/2013/03/024. arXiv: 1301.3456 [astro-ph.CO] (cit. on pp. 55, 82, 102–106, 110,

114).

Kitaura, Francisco-Shu, Simona Gallerani, and Andrea Ferrara (Feb. 2012). “Multiscale inference of

matter fields and baryon acoustic oscillations from the Lyα forest”. In: MNRAS 420.1, pp. 61–

74. DOI: 10.1111/j.1365-2966.2011.19997.x. arXiv: 1011.6233 [astro-ph.CO]

(cit. on p. 83).

Kochanek, Izabela (2016). “Towards the study of 2H(p, γ)3He reaction in the Big Bang Nucleosyn-

thesis energy range in LUNA”. In: Journal of Physics Conference Series. Vol. 703, p. 012023.

DOI: 10.1088/1742-6596/703/1/012023 (cit. on p. 77).

Kofman, LA and D Yu Pogosyan (1988). “Nonflat perturbations in inflationary cosmology”. In:

Physics Letters B 214.4, pp. 508–514 (cit. on p. 38).

Kullback, S. and R. A. Leibler (Mar. 1951). “On Information and Sufficiency”. In: Ann. Math.

Statist. 22.1, pp. 79–86. DOI: 10.1214/aoms/1177729694. URL: https://doi.org/10.

1214/aoms/1177729694 (cit. on p. 71).

151

https://doi.org/10.1086/311826
https://arxiv.org/abs/astro-ph/9807190
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1086/142670
https://doi.org/10.1088/1475-7516/2013/03/024
https://doi.org/10.1088/1475-7516/2013/03/024
https://arxiv.org/abs/1301.3456
https://doi.org/10.1111/j.1365-2966.2011.19997.x
https://arxiv.org/abs/1011.6233
https://doi.org/10.1088/1742-6596/703/1/012023
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694


BIBLIOGRAPHY

Lahav, O. et al. (July 2000). “Bayesian ‘hyper-parameters’ approach to joint estimation: the Hubble

constant from CMB measurements”. In: MNRAS 315.4, pp. L45–L49. DOI: 10.1046/j.1365-

8711.2000.03633.x. arXiv: astro-ph/9912105 [astro-ph] (cit. on p. 132).
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Tamone, Amélie et al. (Oct. 2020). “The completed SDSS-IV extended baryon oscillation spec-

troscopic survey: growth rate of structure measurement from anisotropic clustering analysis

in configuration space between redshift 0.6 and 1.1 for the emission-line galaxy sample”.

In: MNRAS 499.4, pp. 5527–5546. DOI: 10.1093/mnras/staa3050. arXiv: 2007.09009

[astro-ph.CO] (cit. on p. 130).

Taruya, Atsushi, Takahiro Nishimichi, and Shun Saito (Sept. 2010). “Baryon acoustic oscillations

in 2D: Modeling redshift-space power spectrum from perturbation theory”. In: Phys.Rev.D

82.6, 063522, p. 063522. DOI: 10 . 1103 / PhysRevD . 82 . 063522. arXiv: 1006 . 0699

[astro-ph.CO] (cit. on p. 108).

Tegmark, Max (Nov. 1997). “Measuring Cosmological Parameters with Galaxy Surveys”. In:

Phys.Rev.Lett 79.20, pp. 3806–3809. DOI: 10.1103/PhysRevLett.79.3806. arXiv: astro-

ph/9706198 [astro-ph] (cit. on p. 112).

Tegmark, Max, Andy N. Taylor, and Alan F. Heavens (May 1997). “Karhunen-Loève Eigenvalue
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