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A B S T R A C T

The increasing penetration of electric vehicles (EV) and fast charging stations (FCS) is tightly coupling
the operation of power and transportation systems. In this context, the characterization of the EV flows
and charging demand in response to varying traffic conditions and coordinated optimization strategies
play a vital role. Previous work on the computation of stochastic traffic user equilibrium (TUE) involve
non-linearities in the traffic link and FCS congestion representations and are generally inefficient in
dealing with the multi-source uncertainties associated with the operating conditions of the traffic
network (TN) and power distribution network (PDN). To address this, this paper proposed a novel
deep learning (DL) based surrogate modeling method, leveraging the strength of edge-conditioned
convolutional network (ECCN) and deep belief network (DBN). ECCN enables automatic extraction
of spatial dependencies, taking into account both node and edge features characterizing the operation
of TN. DBN leverages the value of the extracted features and achieves an accurate mapping between
the latter to the EV charging demand and EV flows in the TUE, while adaptively generalizing to the
multi-dimensional uncertainties. Case studies on three test systems of different scales (including a
real-world case involving the matched TN and PDN of Nanjing city) demonstrate that the proposed
surrogate model achieves a higher solution accuracy with respect to the state-of-the-art DL-based
methods, and exhibits favourable computational performance. Quantitative results also corroborate the
benefits brought by the proposed coordinated spatial optimization of EV flows and charging demand
on the operation of both TN and PDN.

Nomenclature
A. Indices and Sets
𝑗 ∈ 𝐽 Index and set of O-D pairs.
𝑖 ∈ 𝐼 Index and set of paths.
𝑎 ∈ 𝐴 Index and set of transportation network (TN)

links.
𝑧 ∈ 𝑍 Index and set of fast charging stations (FCS).
𝑥, 𝑦 ∈ 𝑋 Index and Set of power distribution network

(PDN) nodes.
𝑙 ∈ 𝐿 Index and Set of PDN lines.
𝑋𝐶 ⊂ 𝑋 Subset of PDN nodes with carbon capture stor-

age (CCS).
𝑋𝑥 Set of PDN nodes which connect to node 𝑥.
B. Parameters
𝜆𝑧 Locational electricity price at FCS 𝑧.
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𝛿𝑖,𝑗,𝑎, 𝜋𝑖,𝑗,𝑧 Binary indicators of whether link 𝑎 or FCS 𝑧 is
in path 𝑖 of O-D pair 𝑗 or not.

𝑐𝑎, 𝑐𝑧 Capacity of link 𝑎 and FCS 𝑧.
𝑡0𝑎 Free traveling time of EV flows on link 𝑎.

𝑡0𝑧 Average charging time of EV flows at FCS 𝑧.
𝑑𝑗 EV traveling demand of O-D pair 𝑗.
𝑎𝑥, 𝑏𝑥 Quadratic and linear cost coefficients of dis-

tributed generator (DG) at node 𝑥.
𝑟𝑙𝑥𝑦, 𝑥

𝑙
𝑥𝑦 Resistance and reactance of line 𝑙.

𝑧𝑙𝑥𝑦 Impedance of line 𝑙.

𝐼
𝑙

Maximum current limit of line 𝑙.
𝑈,𝑈 Minimum and maximum voltage limits.

𝑃𝐺
𝑥 , 𝑃

𝐺
𝑥 Minimum and maximum active power limits of

DG at node 𝑥.

𝑄𝐺
𝑥
, 𝑄

𝐺
𝑥 Minimum and maximum reactive power limits

of DG at node 𝑥.
𝑃𝐷
𝑥 , 𝑄𝐷

𝑥 Real and reactive power demand at node 𝑥.
𝛽 Carbon emission intensity.
𝜖 Carbon capture efficiency.
C. Variables
𝑓𝑖,𝑗 EV flow on path 𝑖 of O-D pair 𝑗.
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𝑠𝑎, 𝑠𝑧 EV flow on link 𝑎 and at FCS 𝑧.
𝑡𝑎 EV traveling time on link 𝑎.
𝑡𝑧 EV charging waiting time at FCS 𝑧.
𝑃𝐺
𝑥 , 𝑄𝐺

𝑥 Active and reactive power output of DG at node
𝑥.

𝑃𝐶
𝑥 Active power consumed by CCS at node 𝑥.

𝐶𝐸𝑥, 𝐶𝐶𝑥 Carbon emission/captured by CCS at node 𝑥.
𝑃𝐸𝑉
𝑧 Charging demand of EVs at FCS 𝑧.

𝑃 𝑙
𝑥𝑦, 𝑄

𝑙
𝑥𝑦 Active and reactive power flows on line 𝑙.

𝑖𝑙𝑥𝑦 Squared current magnitude on line 𝑙.
𝑈𝑥 Squared voltage magnitude at node 𝑥.

1. Introduction
Environmental and economic concerns have paved the

way for the deep decarbonization of energy systems through
large-scale integration of renewable generation and trans-
portation electrification, in China and beyond [1]. However,
this paradigm shift introduces significant challenges to the
operation and development of future power systems. At the
generation side, the proliferation of uncertain and intermit-
tent renewable generation challenges the system balancing.
At the demand side, since transportation sector accounts
for almost one third of the global energy demand, and
more than 20% carbon footprint, its electrification has be-
come an inevitable trend. However, the latter not only in-
tensifies the overall electrical energy consumption, but also
disproportionately increases the demand peaks, driven by
the temporal patterns of users’ driving requirement. Large-
scale integration of electric vehicles (EV) and fast charging
stations (FCS), coupes more seamlessly the operation of the
transportation network (TN) and power distribution network
(PDN) [2]. Latest statistics report that over 3.3 million FCS
were built by 2020, and the EV stock is projected to expand
from 4.92 million in 2020 to almost 50 million by 2030, with
an annual growth of nearly 30% in China [3].

In this setting, the charging options for EVs generally
include fast and slow charging. In the former, EVs are
charged at home or workplace while they park for a long
period of time. In this case, EVs are generally recognized as
a representative type of shiftable loads that can participate
in different demand response programs, and contribute to
filling the gap between peak and valley demands, as well
as offering auxiliary services to the upstream electricity
system [4, 5]. Although these previous studies contribute
to the optimal temporal management of EV charging loads
in the PDN, the influence of the traffic condition on the
EV navigation and subsequently its charging behaviors is
neglected. The latter charging option is characterized by
higher range anxiety and thus higher charging power, where
EVs charge at the FCS built along the roads in TN. This
option is primarily linked to the travel plan or the commuting
behavior of EV users and thus the spatial distribution of EV
charging loads. In this case, the optimization of EV charging

demand necessitates to account for influencing factors in the
TN such as traffic congestion, EV users’ traveling demand
as well as factors in the PDN, predominately the (locational)
electricity prices which signal financial incentives for EV
users [6, 7].

Previous works on the EV charging demand modeling
considering fast charging can be broadly divided into two
categories. The first category evaluates the charging demand
from the perspective of a single EV driver. Given its origin-
destination (O-D) pair, departure time, and specific traffic
condition, an optimization problem is solved to select the
optimal path corresponds to minimum driving distance or
traveling time [8, 9, 10, 11]. However, self-interested be-
haviours of EV users may aggravate the traffic congestion
and charging congestion (high queuing time) [12]. Con-
versely, the second category aims at determining the steady-
state distribution of traffic flows, which is known as the traf-
fic assignment problem (TAP). It considers congestions in
traffic links and nodes caused by the aggregated movement
of EVs and the selfish behavior of individual EV in route
selection from the perspective of the transportation system.
Striving at competing against each other for available road
resources, the solution of the TAP is called an traffic user
equilibrium (TUE) [13, 14, 15, 16], which signifies a condi-
tion that no EV owner can reduce its cost by changing the
route or charging plan unilaterally.

However, the convectional solution procedure of the
TAP faces the following challenges. First of all, in order
to account for the congestion effect, the traveling time is
commonly modeled as a latency function (such as the most
widely used Bureau of Public Roads (BPR) function) of EV
flows. This, however, introduces non-linearities in the TAP
[7, 14, 16, 17], for which off-the-shelf solvers are available
to guarantee convergence or global optimality. Furthermore,
although authors in [17, 18, 19, 20], extend the deterministic
TAP model to include random components in the travel
cost functions to account for variations in the travelers’
perception of travel cost and routing preferences presuming
probability distributions. However, the examined TAP does
not consider EV users’ participation and thus the waiting
time cost at the FCS and the cost of purchasing electrical
energy from the PDN (and the involved uncertainties) are not
considered in the objective of the TAP. Furthermore, it poses
significant challenges to identify appropriate probability dis-
tributions and obtain a set of representative scenarios that
captures all significant realizations of the multi-dimensional
uncertainties involved in the TAP [21]. In view of the afore-
mentioned computational challenges, alternative approaches
need to be devised to address stochastic TAP with sufficient
accuracy and efficiency.

Driven by the rapid advancements in artificial intelli-
gence, deep learning (DL) has attracted increasing research
interest in the industry and academic community and has
emerged as a promising alternative to their model-based
counterparts in solving large-scale optimization problems
[22, 23, 24, 25, 26]. In a model-free way, DL methods
facilitate to automatic feature extractions from provided
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datasets and accurate model regression. Well-trained DL
models exhibit high generalization capabilities which can
be directly applied to new cases without costly numerical
computation. Driven by these desirable properties, previous
work has witnessed a increasing application of various DL
methods in various challenging problems in power systems
[27] and beyond.

Aims at addressing the limitations of previous approaches,
this paper proposes a novel DL-based surrogate model for
the stochastic TAP, combining the strength of graph convo-
lutional network (GCN) and deep belief network (DBN). The
novel contribution of this paper can be outlined as follows:

- Since the transportation system is intrinsically embed-
ded with graph structure and the convolution layer has been
the primary means of modeling spatial dependencies, an
enhanced version of the GCN, namely the edge conditioned
convolutional (ECCN) is adopted to extract features on spa-
tial dependencies from raw graph data of the TN described
by both edge and node features.

- Although previous work have employed GCN for fore-
casting the spatial distribution of traffic flows [28], the fore-
casted outcome fail to describe the steady-state distribution
of EV flows as expressed in the TUE, since the regression
task is carried out without taking inputs from the TAP. To
this end, we leveraged the value of the extracted features and
construct a surrogate model to map them to the EV charging
demand and EV flows in the TUE.

- Previous study [29] demonstrated that when the net-
work architecture gets deeper, it becomes more challenging
to obtain good generalization performance using deep neural
networks (DNN). However, much better results could be
achieved using DBN when each layer is pre-trained [30].
Driven by this property, DBN is employed to construct a
surrogate model to map the extracted features to the optimal
EV charging demand and EV flows in the TUE solution. Em-
powered by the excellent generalization capability of DBN,
the surrogate model copes well with the multi-dimensional
uncertainties in the TAP.

- Case studies on an 6-node system, 24-node system, and
a real-world 124-node system of Nanjing city comprehen-
sively highlight the superior performance of the proposed
surrogate modeling approach by comparing it against the
state-of-the-art DL-based supervised learning approaches.
Results also confirm the benefits brought by the proposed
spatial optimization of EV flows and charging demand on
the operation of the TN and PDN.

The rest of this paper is organized as follows. Section
2 provides the detailed mathematical formulation of TAP-
TUE. Section 3 details the proposed DL-based surrogate
modeling framework of the EV TUE, orchestrating the work-
ing principals of ECCN and DBN. Section 4 outlines the
optimal operation model of a low-carbon PDN considering
the participation of renewable generation, EV and carbon
capture storage. Section 5 carries out comprehensive case
studies to validate the effectiveness of the proposed method.
Finally, Section 6 discusses conclusions of this work.

2. Formulation of EV Traffic Assignment
Problem-Traffic User Equilibrium
The TN can be abstractly described by a connected graph

𝐺 = [𝑁,𝐴]. Each EV traveling in 𝐺 departs from an origin
𝑂 and arrives at a destination 𝐷. A path is composed of
multiple end-to-end connected links, while a link can be
shared by multiple different paths. Each O-D pair can be
connected by different paths, where the EV flows will be
distributed to.

The TAP-TUE problem can be formulated as follows:

min
∑

𝑎∈𝐴
𝜔∫

𝑠𝑎

0
𝑡𝑎(n)dn+

∑

𝑧∈𝑍

(

𝜔∫

𝑠𝑧

0
𝑡𝑧(n)dn+𝜆𝑧𝑃𝑧𝑡

0
𝑧𝑠𝑧

)

(1)

subject to:
𝑠𝑎 =

∑

𝑗∈𝐽

∑

𝑖∈𝐼𝑗

𝑓𝑖,𝑗𝛿𝑖,𝑗,𝑎,∀𝑎 (2)

𝑠𝑧 =
∑

𝑗∈𝐽

∑

𝑖∈𝐼𝑗

𝑓𝑖,𝑗𝜋𝑖,𝑗,𝑧,∀𝑧 (3)

𝑡𝑎(𝑠𝑎) = 𝑡0𝑎
(

1 + 0.15(𝑠𝑎∕𝑐𝑎)4
)

,∀𝑎 (4)

𝑡𝑧(𝑠𝑧) = 𝑡0𝑧
(

1 + 𝜇𝑠𝑧∕(𝑐𝑧 − 𝑠𝑧)
)

,∀𝑧 (5)

𝑓𝑖,𝑗 ≥ 0,∀𝑖,∀𝑗 (6)

∑

𝑖∈𝐼𝑗

𝑓𝑖,𝑗 = 𝑑𝑗 ,∀𝑗 (7)

𝑃𝐸𝑉
𝑧 =

∑

𝑗∈𝐽

∑

𝑖∈𝐼𝑗

𝑓𝑖,𝑗𝜋𝑖,𝑗,𝑧𝑃𝑧,∀𝑧 (8)

The objective function (1) is composed of three cost compo-
nents: i) total travel time cost on the links, ii) total waiting
time cost at FCS, and iii) total electricity purchasing cost
from PDN at FCS. 𝜔 denotes the value of time. Constraints
(2) and (3) describe the relationships between the path
flow 𝑓𝑖,𝑗 and flows on link 𝑎 and at FCS 𝑧. Driven by the
congestion effect, the traveling time of EVs on link 𝑎 is
represented as an BPR latency function of the EV flows,
following the commonly adopted practice in [14, 15, 16].
Essentially, constraint (4) suggests that the flow on link 𝑎
is not strictly bounded by its capacity 𝑐𝑎, congestion will
be penalized through a sharp increase in the traveling time.
The Davidson function [16] based on the queuing theory is
employed to model the queuing time of EV flows at FCS 𝑧,
as expressed in constraint (5). Constraints (6) and (7) ensure
that all path flows are non-negative, and the summation of
flows over all connecting paths for an O-D pair 𝑗 equals to
the EV traveling demand of the same O-D pair. Constraint
(8) bridges the connection between the EV charging demand
at FCS 𝑧 and EV flow 𝑓𝑖,𝑗 .

The sources of nonlinearities in the TAP-TUE formula-
tion include the nonlinear BPR latency function and David-
son function. These nonlinear functions can be approxi-
mated by piece-wise linear (PWL) functions and integrated
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in TAP-TUE problem as linear constraints with integer vari-
ables, such as the method in [31]. In this paper, the PWL
approximation is performed by introducing type 2 special
ordered set variables (SOS2), which promises more efficient
branching strategies, and is desirable for branch-and-bound
solvers [32]. To perform SOS2 linearization on constraint (4)
for example, we partition the feasible interval of 𝑠𝑎 is into
smaller segments. In each segment, 𝑡𝑎(𝑠𝑎) is approximated
by a linear function, and constraint (4) can be re-expressed
as:

𝑠𝑎 =
∑

𝑚
𝑠𝑚𝑎 𝜂

𝑚
𝑎 , 𝑡𝑎 =

∑

𝑚
𝑡𝑎(𝑠𝑚𝑎 )𝜂

𝑚
𝑎 ,∀𝑎

∑

𝑚
𝜂𝑚𝑎 = 1, 0 ≤ {𝜂𝑚𝑎 ,∀𝑚} ∈ SOS2,∀a

(9)

where 𝑠𝑚𝑎 denotes the break point of each segment, and 𝜂𝑚𝑎
denotes continuous weights of each segment. The SOS2
linearization of (5) can be carried out in the same logic.

It can be observed from the formulation of TAP-UE
problem that the source of stochasticity comprises the ones
associated with the FCS nodes of the TN, including param-
eters 𝜆𝑧, 𝑃𝑧, 𝑐𝑧, 𝑡0𝑧, the ones associated with the links of the
TN, including parameters 𝑡0𝑎 and 𝑐𝑎, as well as parameter 𝑑𝑗
which is associated with the O-D pairs. It is constructive to
highlight that previous works [14, 17] largely focused only
on the stochastic O-D demand while they neglect the ones
associated with the operation status of the TN links and FCS.
As discussed in Section I, in view of such multi-dimensional
uncertainties, it is not possible to accurately characterize
such uncertainties using probabilistic modeling approaches
and in addition, the computational performance of model-
based optimization method deteriorates when the scale of
the problem increases. To purse higher generalization perfor-
mance and higher computational efficiency at the same time,
we propose a novel DL-based methodological framework to
tackle this challenging problem.

3. Proposed DL-based Surrogate Modeling of
EV Traffic User Equilibrium
To properly derive an effective data-driven DL-based

modeling framework to replace the process of repeated solv-
ing TAP-TUE for different uncertain scenarios, we identify
the following two main objectives to achieve. First, it neces-
sitates excellent data perception capabilities in order to char-
acterize the spatial dependencies of the high-dimensional
uncertainties. Upon extracting these meaningful features, it
then calls for a suitable model which can accurately map the
former to the EV charging demand with excellent general-
ization capability. In the following subsections, we propose
tailor-designed DL-based techniques to achieve these two
objectives.

3.1. Edge Conditioned Convolution Network
Perception and interpreting raw TN features/parameters

in terms of real-world spatial dependencies is challenging.
A growing effort therefore has been witnessed in recent

years in forecasting EV distribution with extraction of spa-
tial features. In [33, 34], the convolutional neural networks
(CNN) are employed to extract spatial dependencies. Al-
though CNNs promise benefits for extracting spatial rela-
tionships in the Euclidean space as represented by two-
dimensional images, they are inherently ineffective in deal-
ing with the topological structure and the physical attributes
of the TN. To this end, the convolution operators have been
extended to noneuclidean data using graph convolutional
networks (GCN) [28].

GCN utilizes the adjacency matrix to depict the structure
of a graph. Provided an adjacency matrix𝑨, GCN constructs
a filter in the Fourier domain. The filter, acting on the nodes
of a graph, captures the spatial features between the nodes by
its first-order neighborhood, then GCN is formed by stacking
multiple convolutional layers, as expressed by:

𝑯 (𝒍+𝟏) = 𝜎(𝑫̂− 1
2 𝑨̂𝑫̂− 1

2𝑯 (𝒍)𝜽(𝒍)) (10)

where 𝑯 (𝒍) constitutes the feature matrix in layer 𝑙; the
trainable weight matrix of layer 𝑙 is denoted by 𝜽(𝒍), rep-
resenting a linear transformation to map the feature space;
𝜎(⋅) represents the sigmoid activation function; 𝑨̂ = 𝑨 + 𝑰
denotes the adjacent matrix with a self-loop connection, 𝑫̂ is
the diagonal degree matrix (the number of edges terminating
at each node) which aims to normalize 𝑫 for re-scaling the
aggregated information of a specific node from its neighbors.

It can be observed that the graph convolution operation
requires only the input of the node features from the pre-
vious layer, and therefore cannot capture the impact of the
edge features of the previous layer in the extracted spatial
dependencies. To address this, the edge conditioned filters
[35] are employed. Let 𝑭𝑵 and 𝑭𝑨 represent the node
and edge feature matrix, respectively. At the input layer,
𝑭 (𝟎)
𝑵 encapsulates the raw node features comprising the EV

charging power 𝑃𝑧, average charging time 𝑡0𝑧, locational
electricity price signals 𝜆𝑧, and the capacity 𝑐𝑧 defined at
each FCS 𝑧 of the TN; while 𝑭 (𝟎)

𝑨 describes the raw edge
features comprising the free traveling time 𝑡0𝑎 and capacity 𝑐𝑎
of each link 𝑎. Note that the dimension of the node feature
varies with the layer index, while the dimension of the edge
feature stays constant. Let us define neighborhood 𝐵(𝑛) =
{𝑚; (𝑚, 𝑛) ∈ 𝑨} ∪ {𝑛} of node 𝑛 to contain all adjacent
nodes (predecessors in directed graphs) including 𝑛 itself
(self-loop).

The structure of ECCN is illustrated in Fig. 1, the node
features 𝑭 (𝒍)

𝑵 (𝑛) at node 𝑛 is defined as a weighted sum of
features 𝑭 (𝒍−𝟏)

𝑵 (𝑛) in its neighborhood 𝑚 ∈ 𝐵(𝑛). The edge-
conditioned convolution operation can be expressed as:

𝑭 (𝒍)
𝑵 (𝑛) = 1

|𝐵(𝑛)|
∑

𝑚∈𝐵(𝑛)
𝚯(𝒍)

𝒎𝒏𝑭
(𝒍−𝟏)
𝑵 (𝑚) + 𝒃(𝒍) (11)

where 𝚯(𝒍)
𝒎𝒏 and 𝒃(𝒍) are trainable weights and bias.

As such, it can be observed that both node and edge
features are utilized by the ECCN to extract the spatial
dependencies, resulting in better perception of the multi-
dimensional uncertainties of the TN.
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Figure 1: Schematic representation of ECCN-based spatial
dependencies extraction.

3.2. Deep Belief Network
Despite previous effort in applying GCN for spatial

traffic flows forecasting [28], the regression process does not
reflect the individual rationalities of EV owners and thus fail
to characterize a stable traffic flow pattern in a congested
TN. To this end, and having established excellent perception
capability empowered by ECCN of the multi-dimensional
uncertainties of the TN, a novel surrogate modeling method
based on deep belief network (DBN) is proposed to map the
extracted spatial features to the optimal EV charging demand
at each FCS and the EV flow at each link in the TUE.

DBNs are generally characterized as probabilistic gen-
erative models constructed by stacking up Restricted Boltz-
mann Machines (RBMs) [30] (Fig. 2). DBN has received
huge success in power system forecasting applications [27],
such as short-term load [36], wind [37], and PV [38]. In this
paper, we leverage its performance to forecast the optimal
solution of the TUE problem based on the extracted discrim-
inative features from the ECCN.

The training of DBN is illustrated in Fig. 2, which
comprises the following two steps:

Step 1: This step involves a layer-wise pre-training
procedure for each RBM, which consists of a visible layer
and a hidden layer. The first RBM is trained by feeding in
the data (in our case the extracted features from ECCN, 𝒗(𝟏))
and fixing the parameters of this RBM. As the network gets
deeper, the relationship between the RBM input and hidden
layers can be defined as an energy function:

𝐸(𝑙)(𝒗,𝒉|𝝓(𝒍)) = −(𝒂T𝒗 + 𝒃T𝒉 + 𝒗T𝒘𝒉) (12)

Figure 2: Structure of DBN-based regression model.

where 𝒗 and 𝒉 denote the visible units and hidden units
for layer 𝑙, respectively. 𝒂 and 𝒃 denote the bias of the
visible and hidden units, and 𝒘 denotes the weights of the
connection between the visible and hidden units, and 𝝓(𝒍) =
[𝑎𝑣, 𝑏ℎ, 𝑤𝑣ℎ] denotes the collection of all trainable weights
of RBM 𝑙.

The joint probability distribution over 𝒗 and 𝒉 can be
defined as:

𝑃 (𝑙)(𝒗,𝒉|𝝓(𝒍)) = 1
𝑍(𝝓(𝒍))

e−𝐸(𝑙)(𝒗,𝒉|𝝓(𝒍)) (13)

where 𝑍(𝝓(𝒍)) =
∑

𝒗
∑

𝒉 e𝐸(𝑙)(𝒗,𝒉|𝝓(𝒍)) is a normalization
factor to purse unity probability.

Connections between RBMs are bi-directional and sym-
metric, which suggests that both directions share the com-
mon weights (i.e. 𝒉(𝒍) = 𝒗(𝒍+𝟏)) and information flows in
both directions. In order to ensure that the feature infor-
mation is retained when it is mapped to different feature
spaces, each RBM needs to be trained separately. Given the
learning sample set 𝑺, the task of pre-training RBM is to
identify suitable weights 𝝓 which maximize the probability
likelihood function of𝑺, the corresponding loss function can
be expressed as:

min 𝐿(𝝓,𝑺) = −
∑

𝒗∈𝑺
log

∑

𝒉

e𝐸(𝒗,𝒉|𝝓)

𝑍(𝝓)
(14)

By pre-training each RBM, the connection relation be-
tween each RBM can be learned without any label informa-
tion, through a unsupervised learning algorithm [39].

Step 2: This step involves a fine-turning process. The
back-propagation (BP) algorithm is employed to adjust the
weights of the pre-trained model for further performance
improvement. The output layer of the DBN produces the EV
charging demand and EV flow, and the loss function is the
mean square error (MSE) between the forecasted output and
the label generated by solving the TAP-TUE problem.
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Figure 3: Structure of the proposed surrogate model.

MSE = 1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
(𝒚𝑛(𝑚) − 𝒚∗𝑛 (𝑚))

2 (15)

where 𝑁 is the number of test output samples, and 𝑀 is the
dimension of output. 𝒚𝑛(𝑚) and 𝒚∗𝑛 (𝑚) are respectively the
real output and forecasted output for 𝑚-th output of the 𝑛-th
sample.

The BP process adjusts the parameters of DBN, and
finally the parameters 𝑾 (𝒍) = 𝝓(𝒍) + 𝚫(𝒍),∀𝑙 of DBN are
obtained, where 𝚫(𝒍) represents the amount of learned fine-
tuning on weights of layer 𝑙 based on the label information.

The overall framework of the proposed DL-based surro-
gate model is illustrated in Fig. 3.

4. Modeling Low-Carbon Power Distribution
Network with EV Charging Demand
The FCS of TN are served by a PDN, which is usually

a radial network, and can be represented by a tree topology.
Having established a generalizable mapping between the TN
uncertainties to the EV charging demand through the surro-
gate model, the PDN is modeled by the alternating current
optimal power flow (ACOPF). Since this problem is non-
convex and NP-hard, to pursue computational tractability,
convex relaxation is performed, which transfers the ACOPF
problem to a second order conic program (SOCP) [15]. In
addition to the beneficial impact promised by mobile flexible
resources such as EVs (such as directing EV flows to FCS
connected by abundant wind resources) in decarbonization
of the distribution system, we further explore the beneficial
impact from non-mobile resources such as carbon capture
storage (CCS) in reducing carbon emissions of co-located
distributed generators (DG) [40]. The modified SOCP con-
sidering the integration of DG, photovoltaics (PV), EV and
CCS can be formulated as:

min
∑

𝑥

(

𝑎𝑥(𝑃𝐺
𝑥 )2 + 𝑏𝑥𝑃

𝐺
𝑥
)

(16)

subject to:

𝑃 𝑙
𝑥𝑦 + 𝑃𝑁𝐺

𝑦 − 𝑟𝑙𝑥𝑦𝑖
𝑙
𝑥𝑦 =

∑

𝑟∈𝑋𝑦

𝑃 𝑙
𝑦𝑟 + 𝑃𝐷

𝑦 ,∀𝑙 (17)

𝑄𝑙
𝑥𝑦 +𝑄𝐺

𝑦 − 𝑥𝑙𝑥𝑦𝑖
𝑙
𝑥𝑦 =

∑

𝑟∈𝑋𝑦

𝑄𝑙
𝑦𝑟 +𝑄𝐷

𝑦 ,∀𝑙 (18)

𝑈𝑦 = 𝑈𝑥 − 2(𝑟𝑙𝑥𝑦𝑃
𝑙
𝑥𝑦 + 𝑥𝑙𝑥𝑦𝑄

𝑙
𝑥𝑦) + (𝑧𝑙𝑥𝑦)

2𝑖𝑙𝑥𝑦,∀𝑙 (19)

𝑖𝑙𝑥𝑦𝑈𝑥 ≥ (𝑃 𝑙
𝑥𝑦)

2 + (𝑄𝑙
𝑥𝑦)

2,∀𝑙 (20)

𝑖𝑙𝑥𝑦 ≤ (𝐼
𝑙
)2, 𝑃 𝑙

𝑥𝑦 ≥ 0, 𝑄𝑙
𝑥𝑦 ≥ 0,∀𝑙 (21)

𝑃𝐺
𝑥 ≤ 𝑃𝐺

𝑥 ≤ 𝑃
𝐺
𝑥 , 𝑄

𝐺
𝑥
≤ 𝑄𝐺

𝑥 ≤ 𝑄
𝐺
𝑥 ,∀𝑥 (22)

(𝑈 )2 ≤ 𝑈𝑥 ≤ (𝑈 )2,∀𝑥 (23)

𝐶𝐸𝑥 = 𝛽𝑃𝐺
𝑥 − 𝐶𝐶𝑥,∀𝑥 ∈ 𝑋𝐶 (24)

𝐶𝐸𝑥 = 𝛽𝑃𝐺
𝑥 ,∀𝑥 ∈ 𝑋 ⧵𝑋𝐶 (25)

𝐶𝐶𝑥 = 𝜖𝑃𝐶
𝑥 ,∀𝑥 ∈ 𝑋𝐶 (26)

𝑃𝑁𝐺
𝑥 = 𝑃𝐺

𝑥 − 𝑃𝐶
𝑥 ,∀𝑥 ∈ 𝑋𝐶 (27)

The objective function (16) of the SOCP lies in minimizing
the total generation costs in the PDN. Constraints (17)-(18)
express the nodal active and reactive power balance for the
PDN. Constraints (19)-(23) are associated with the SOCP
relaxation for optimal power flow [15]. Constraints (24)-(25)
represent the carbon emission for DGs with and without
CCS, respectively. Constraints (26)-(27) represent the net
power output of DGs with CCS, in which the latter consumes
power generated by the DGs for carbon capture.
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Figure 4: Topology of the 6-node test system.

Table 1
Mean 𝜇, standard deviation 𝜎 and range 𝑅 correspond to the
truncated normal distributions of uncertain parameters

𝜆𝑧(CNY/kWh) 𝑡0𝑎(h) 𝑡0𝑧(h) 𝑃𝑧(kW) 𝑑𝑗(veh)
𝜇 {0.75,1,0.75} 0.25 0.5 100 1000
𝜎 0.2 0.1 0.2 30 200
𝑅 [0.5,1.5] [0.1,0.4] [0.1,1] [50,200] [800,1200]

5. Case Studies
5.1. Test case 1: 6-node System

The topology of the 6-node system with 9 traffic links
is shown in Fig. 4. Three FCS with 600veh/h capacity and
100kW charging power are located at nodes 2, 3, and 4,
unity power factor for EV charging demand is assumed. The
parameter of Davidson function is set as 𝜇 = 0.05. The O-
D demand is set to 1,000veh/h from node 1 to node 6. The
capacity of each link in TN is 400veh/h, and the value of
unit time is set as 𝜔 = 30CNY/h. Distribution lines are
omitted in this small case for the sake of brevity. DGs are
located at nodes 2, 4, and 5, while PV generators are located
at nodes 2 and 5. DG share the same set of cost parameters:
𝑎 = 1,000CNY/(kWh)2 and 𝑏 = 65,000CNY/kWh.

For the data generating process, we first simulate differ-
ent scenarios to characterize the variation of the core influ-
encing uncertain parameters in the TN (Section 2) including
the locational electricity prices, free traveling time, average
charging time, charging power, and the O-D travel demand.
Their values are generated by sampling the respective trun-
cated normal distributions with the mean, standard devia-
tion, and range for each of the parameters shown in Table
1. Next, the linearized TAP-TUE problem is solved for each
of these scenarios to generate the associated label, namely
the EV charging demand and the EV flow in each link. A
total of 1,000 samples are generated, of which 100 samples
are employed for performance evaluation. To validate the
effectiveness of the proposed surrogate modeling method
(ECCN-DBN), we benchmark its performance against a
number of DL-based methods including DNN, ECCN-DNN
and DBN. Each of these methods is trained for 100 epochs,
and their performance are assessed every 20 epochs during
training by evaluating it on the test set.
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Figure 5: Training and test MSE for different DL-based
methods.

Table 2
Training and test MSE at convergence and average TAP-TUE
cost (in CNY) for different DL-based methods

Method DNN ECCN-DNN DBN ECCN-DBN
Training MSE 0.0550 0.0086 0.0105 0.0075
Test MSE 0.0570 0.0094 0.0113 0.0076
TAP-TUE cost 62,250 41,532 42,570 40,968

Fig. 5 illustrates the training and test MSE for the inves-
tigated four DL-based methods, and their values at conver-
gence are presented in Table 2. Our first observation is that
DBN outperforms DNN with regard to both the training and
test MSE. The rationale behind this performance superiority
lies in the pre-training process in the DBN training. A greedy
learning algorithm is utilized to find a fairly good set of
initial parameters quickly, and later the model’s fitting ability
can be enhanced through a supervised fine-tuning procedure.
This proves to be particular beneficial in leveraging the
generalization capability of the model with deeper network
architectures [29]. As discussed in Section III-A, both node
and edge features of the TN can be effectively utilized by
the ECCN to extract the spatial dependencies. As such, it
can be observed that ECCN contributes significantly to the
reduction of both training and test losses. Overall, the pro-
posed ECCN-DBN method exhibits the best performance.
In relative terms, the proposed method achieves 86.67%,
19.15%, and 32.74% lower test MSE and 34.19%, 1.36%, and
3.76% lower average TAP-TUE cost (over the test set) com-
pared to DNN, ECCN-DNN and DBN, respectively. This
corroborates the high accuracy and excellent generalization
capability of the proposed DL-based methods in uncertain
scenarios of TN which are not encountered in the training
process.
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Figure 6: Topology of the coupled 20-node TN and 21-node
PDN system.

5.2. Test case 2: 20-node TN and 21-node PDN
System

Having established the superior performance of the pro-
posed ECCN-DBN method, the aim of this subsection lies
in uncovering the beneficial impact of the proposed co-
ordinated optimization of EV charging demand against a
uncoordinated case where all EV users select the shortest
path between O-D and the FCS with lowest charging price
employing the Dijkstra’s algorithm [41].

The topology of the 20-node TN and 21-node PDN is
shown in Fig. 6. The TN involves 54 traffic links and 6 FCS
located at node T4, T7, T10, T12, T13, T18 (referred to
as FCS 1-6), of which FCS 1, 2, 4 and 5 are characterized
by PV-assisted stations. The connected location of FCS in
the PDN is highlighted in Fig. 6(b) in red font next to the
relevant PDN node. The charging power and capacity of
each FCS are 100kW and 2,800veh/h, respectively, and the
capacity of each link is 1,200 veh/h. The O-D demand is

Table 3
Aggregate EV Charging demand (in MW) at each FCS under
coordinated and uncoordinated scenarios

Aggregate EV charging demand Uncoordinated Coordinated
FCS 1 64.80 134.31
FCS 2 134.73 141.30
FCS 3 131.49 139.95
FCS 4 189.67 170.10
FCS 5 228.02 175.14
FCS 6 151.29 142.20

set to 10,000veh/h. In order to reflect the diversity of EV
users in O-D choice, we partition the TN into three different
regions highlighted with different colors in Fig. 6(a). Nodes
at each region correspond to different probabilities to be
sampled as an EV user’s origin or destination. In this case,
the probability corresponding to pink/yellow/green region
is 0.6/0.25/0.15, resembling a case that the city center is
the most popular choice for EV traveling demand. The
parameters related to the SOCP implementation of the PDN,
associated with DG, fixed demand, PV, CCS are organized
in a dataset uploaded to an online database [42]. The loca-
tional prices are computed by solving the SOCP problem
without considering the charging demand of EVs. Following
a similar data generating process for test case 1, the com-
puted prices are used as mean values to further generate
scenarios of prices using a truncated normal distribution.
The scenarios of the rest of the uncertain parameters in the
TN is generated analogously. A total of 10,000 samples are
generated and a 90%/10% train/test split ratio is adopted.

Let us first demonstrate the benefits of the proposed
method associated with the operation of TN. Table 3 com-
pares the aggregate EV charging demand at each FCS 𝑃𝐸𝑉

𝑧
under the coordinated and uncoordinated scenarios. It can be
observed that the EV charging demand mostly concentrate
at FCS 4 and 5 in the uncoordinated scenario. As a result,
the EV flow on link 14, 15, 16, 17, 21, 23, 24, 27, 28, 31,
33, 34 and 45 has exceeded the link capacity of 1,200veh/h,
contributing to traffic congestions (Fig. 7). Furthermore, the
charging waiting time at FCS 4 and 5 is significantly higher
in the uncoordinated scenario with respect to the coordinated
one, as depicted in Fig. 8. In contrast, traffic congestions
are eliminated under the coordinated scenario where the
aggregated EV charging demand is distributed more evenly
across all FCS (Table 3) in the TN, and as a result, the
charging waiting time adheres to the same trend. Driven by
these benefits, the TAP-TUE cost in the coordinated scenario
is reduced by 20.26% with respect to the uncoordinated
scenario.

Let us next demonstrate the benefits of the proposed
method associated with the operation of PDN. Fig. 9 high-
lights the thermal DG dispatch, PV absorption and carbon
captured under uncoordinated (indicated in black font) and
coordinated (indicated in red font) scenarios. Table 4 sum-
marizes the relevant statistics associated with the operation
of the PDN under these two scenarios.
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Figure 7: EV flow on each link under coordinated and uncoor-
dinated scenarios.
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Figure 8: Charging waiting time at each FCS under coordinated
and uncoordinated scenarios.

Figure 9: DG dispatch, PV absorption and carbon captured
under uncoordinated and coordinated scenarios.

Table 4
Statistics associated with the operation of the PDN under
uncoordinated and coordinated scenarios

Item Uncoordinated Coordinated
DG output (MW) 27,134 25,635

PV absorption (MW) 5,506 7,003
Generation cost (mil. CNY) 752 674

Net loss (MW) 565.2 378
Carbon capture (ton) 4,105 4,569
Carbon emission (ton) 19,202 17,733

According to Table 4, it can be determined that a more
evenly distributed EV charging demand (Table 3) con-
tributes to the reduction of the thermal DG outputs overall
by 5.52%, the increase of PV absorption overall by 27.19%,
by scheduling EV flows to PV-assisted FCS as well as to
nodes close to PV generators. This leads to the reduction in

Table 5
Hyperparameters of ECCN and DBN in three test cases

Hyperparameter Case 1 Case 2 Case 3
Dimension of ECCN input 33 134 896
Dimension of DBN output 15 74 524
Number of RBM layers 10 20 100
Number of RBM neurons 16 32 128
Learning rate 0.005 0.005 0.01
Batch size 16 64 256
Epoch 100 1,000 10,000
Optimizer Adam
Activation function ReLU

the total generation cost and net loss of the PDN by 10.37%
and 2.5%, respectively. The optimized spatial distribution of
mobile EV resources, combined with the beneficial impact
of CCS in capturing carbon emissions locally (an overall
increase of 11.30% carbon captured is achieved), contributes
to an overall reduction of 7.65% in carbon emission.

5.3. Test case 3: 124-node TN and 118-node PDN
System of Nanjing City

In this section, we further validate the benefits of the
proposed coordinated optimization method of EV flows and
charging demand on a real-world case involving the 124-
node TN and 118-node PDN System of Nanjing City [11].
Furthermore, we analyze the scalability of the proposed
method considering different scales of the test systems (Sec-
tions 5.1-5.3).

The topology of this test system is depcited in Fig. 10.
It should be highlighted that this paper is the first piece of
work which showcases the performance of a coordination
method of EV flows and charging demand on a real-world
scale test system with a size of both TN and PDN far larger
than the test systems involved in the previous studies. The
examined TN involves 24 FCS, and the red lines refer to the
links located at central area of Nanjing, a region of particular
interest to our study. The charging power and capacity of
each FCS are set as 100kW and 2,800veh/h, respectively, and
the capacity of each link is 1,200 veh/h. The O-D demand is
set to 30,000veh/h. In this case, the probability to be sampled
as an EV user’s origin or destination in the central and non-
central region is set to 0.7 and 0.3, respectively, following
a similar logic as in the test case 2 (Section 5.2). The
parameters related to the SOCP implementation of the PDN
are reward in the online datasheet [42]. Following a similar
data generating process for test case 2, the computed prices
are used as mean values to further generate scenarios of
prices using a truncated normal distribution. The scenarios
of the rest of the uncertain parameters in the TN is generated
in a similar fashion. A total of 50,000 samples are generated
and a 90%/10% train/test split ratio is adopted.

The hyperparameters of ECCN and DBN in the three test
cases are listed as Table 5.

Fig. 11 depicts the spatial distribution of EV charging
demand over the 24 FCS in the TN. A similar trend can be
observed in the coordinated scenario that the EV charging
demand is more smoothly distributed to FCS. This effect is
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Figure 10: Topology of the 124-node TN and 118-node PDN
system.

Figure 11: Aggregate EV Charging demand at each FCS under
coordinated and uncoordinated scenarios.

prominent in the central region, which in turn, reduces the
TAP-TUE cost in the coordinated scenario by 9.49% with
respect to the uncoordinated scenario.

The associated benefits to the operation of the PDN are
highlighted in Table 6. In relative terms, the DG output is
reduced overall by 3.79% and the PV absorption is increased
overall by 12.84%. This contributes to the reduction in the
total generation cost and net loss of the PDN by 7.40% and
21.08%, respectively. The flexibility exploited from mobile
and local CCS contributes to an overall reduction of 5.54% in
carbon emission. The carbon captured increased by 11.36%.

Table 7 summarizes the results of the scalability analysis
by presenting the solution quality (assessed through the
percentage increase difference of TAP-TUE cost obtained

Table 6
Numerical results in PDN under coordinated and uncoordi-
nated scenarios

Item Uncoordinated Coordinated
DG output (MW) 64,706 62,254

PV absorption (MW) 8,964 10,115
Generation cost (mil. CNY) 4,229 3,916

Net loss (MW) 1,570 1,239
Carbon capture (ton) 5,830 6,492
Carbon emission (ton) 50,464 47,669

Table 7
Scalability Analysis of proposed method considering different
system scales.

Case TN cost difference Execution time (ms)
6 nodes 0.75% 37.89
20 nodes 0.92% 39.05
124 nodes 0.95% 44.31

by ECCN-DBN with respect to the theoretical optimum
obtained by solving the model-based TAP-TUE optimization
for all the test data samples) and the computational perfor-
mance (assessed through the execution time) for each of the
examined test cases (Sections 5.1-5.3).

It can be observed that the proposed surrogate method
exhibits excellent generalization capability as the average
achieved TAP-TUE cost is very close to the theoretical opti-
mum regardless of the scale of the test systems. Furthermore,
the proposed surrogate method also merits computational
efficiency, since after off-line training, the execution time
(i.e. the computational time to map a real-world TN and
PND operation condition to the TUE EV flows and charging
demand) of ECCN-DBN is always on timescales of millisec-
onds irrespective of the scale of the test systems.

6. Conclusions
In the context of harvesting the significant EV flexibility

potential in electricity-transportation nexus, this paper has
proposed a novel DL-based surrogate method to tackle the
challenges of accurate and efficient identification of TUE in
stochastic TAP. The proposed method combines the strength
of the ECCN and DBN. ECCN, leveraging the performance
of GCN, promises automatic feature extraction functionality,
facilitating more accurate perception and interpretation of
both node and edge features of TN in terms of their spatial
dependencies; while DBN contributes to an accurate map-
ping of the extracted features to the EV charging demand
and EV flows in the TUE. Case studies on three test systems
of different scales (including a real-world test system of
Nanjing city) have demonstrated the superior performance
of the proposed surrogate method against the state-of-the-art
DL-based methods in accurately forecasting the EV charging
demand and EV flows in the TUE, while coping with the
multi-dimensional uncertainties of the TAP, as well as its
computational superiority. Qualitative results also revealed
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the beneficial impact of the proposed coordinated optimiza-
tion of EV flows and charging demand on the operation of
both TN and PDN.

Future work aims at enhancing the proposed ECCN-
DBN method in two directions. The first one lies in applying
discharging facility during the charging process to consider
the diversity of charging demand and the associate opera-
tional cost of PDN. The second one lies in making the multi-
period charging/discharging decisions using the proposed
surrogate model to minimize the cost of EV users as well
as the total cost of TN and PDN systems, going beyond the
settings examined in this paper, where the charging period
of each EV is fixed.
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