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20 Abstract

21 Climate-driven geographic range shifts have been associated with transitions 

22 between dietary specialism and generalism at range margins. The mechanisms 

23 underpinning these often transient niche breadth modifications are poorly 

24 known, but utilisation of novel resources likely depends on phenological 

25 synchrony between the consumer and resource. We use a climate-driven range 

26 and host shift by the butterfly Aricia agestis to test how climate-driven changes 

27 in host phenology and condition affect phenological synchrony, and consider 

28 implications for host use.

29 Our data suggest that the perennial plant which was the primary host before 

30 range expansion is a more reliable resource than the annual Geraniaceae upon 

31 which the butterfly has become specialised in newly colonised parts of its range. 

32 In particular, climate-driven phenological variation in the novel host Geranium 

33 dissectum generates a narrow and variable ‘window of opportunity’ for larval 

34 productivity in summer. Therefore, although climatic change may allow species 

35 to shift hosts and colonise novel environments, specialisation on phenologically-

36 limited hosts may not persist at ecological margins as climate change 

37 continues. We highlight the potential role for phenological (a)synchrony in 

38 determining lability of consumer-resource associations at range margins, and 

39 the importance of considering causes of synchrony in biotic interactions when 

40 predicting range shifts.

41 Keywords: brown argus, Lepidoptera, host shift, specialisation, asynchrony

42 Introduction

43 Climate change is causing widespread shifts in species’ geographic range limits 

44 [1–3]. The extent of such shifts depends on species’ life histories, potential for 

45 plastic responses and the quality of available habitat at the expanding margin 

46 [4–6]. Habitat availability may itself be determined by the process of range 

47 expansion: range shifts have recently been identified as a cause, rather than 

48 consequence, of increased dietary generalism at poleward range margins in 

49 herbivorous insects [7,8]. However, dietary generalism and incorporation of 

50 novel host plants can be transient in such systems, and the mechanisms 

51 underlying gain or loss of hosts from insect diets is poorly known [7–9]. Here, 
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52 we highlight phenological (a)synchrony between insects and unpredictable host 

53 resources as a potential mechanism for lability in insect-host associations at 

54 range margins.

55 The phenology of many consumers is closely synchronised with the 

56 development and availability of their resources, and their interactions occur 

57 within an often narrow ‘window of opportunity’ for the consumer defined by the 

58 phenology of both partners [10–14]. For herbivorous insects, the length of the 

59 phenological window of opportunity will be partly determined by the specificity of 

60 its interaction with the host, the host’s growth form, and the broader 

61 environmental context. For example, the window of opportunity for herbivory is 

62 typically longer on perennials than on short-lived annual plants, the availability 

63 of which may be defined by environmental drivers of their germination and 

64 senescence [15,16]. The window is also typically longer for polyphagous than 

65 obligately monophagous species (which can exploit fewer distinct phenological 

66 windows), and for populations inhabiting topographically variable landscapes in 

67 which heterogeneous microclimates provide diverse phenological windows 

68 [16,17]. Differences in synchrony among nearby microclimates may also cause 

69 local variation in host condition, quality and profitability for the herbivore, 

70 thereby influencing local patterns of host selection and opportunities for dietary 

71 change [7,8,18–20].

72 Robust evidence is therefore required on the drivers and vulnerability of host-

73 herbivore phenological synchrony (which may scale up to emergent patterns of 

74 herbivore range and host shifts  [10,19,21]), including the role of microclimate in 

75 consumer persistence by potentially buffering asynchrony in biotic interactions 

76 [18,20]. Here we address this knowledge gap, using as an exemplar the brown 

77 argus butterfly (Aricia agestis; Lepidoptera: Lycaenidae) at its range margin in 

78 the UK. In doing so, we highlight how phenological (a)synchrony could provide 

79 an underlying mechanism for apparently high rates of host shifting near range 

80 margins [7,22]. Brown argus butterflies have two generations per year; larval 

81 offspring of the second generation emerge from mid-August and feed on leaves 

82 of the host plant before overwintering [23]. The brown argus’ UK range was 

83 historically largely restricted to calcareous grassland where its host, the 

84 perennial Helianthemum nummularium (Malvales: Cistaceae; hereafter 

85 Helianthemum), grows. However, since the 1990s, the brown argus has 
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86 undergone a climate-driven range expansion associated with rapid evolution of 

87 biotic interactions, including specialisation on annual Geraniaceae species 

88 (Erodium cicutarium, Geranium dissectum and G. molle; Geraniales: 

89 Geraniaceae) mainly in regions beyond the former range limit [21,24–27]. 

90 In this study, we test expectations of (a) greater temporal variation in the 

91 condition of the annual versus perennial host plants, and (b) more opportunity 

92 for asynchrony between the consumer and its annual hosts than its perennial 

93 host, as a consequence of (a). We expect asynchrony with the less-predictable 

94 hosts to be more pronounced under warm, dry summer conditions, and we test 

95 for such effects on the condition and phenology of the annual Geraniaceae 

96 hosts that have enabled the range expansion. We conduct these tests (c) 

97 across sites and years, and (d) across microclimates within a site. We then 

98 consider the implications of asynchrony for host use, shifting host associations 

99 at range margins, and the range dynamics of host-limited herbivores.

100 Methods

101 Study system

102 Brown argus butterflies prefer to lay their eggs on Geraniaceae, on which larvae 

103 grow 10% larger and faster, than on Helianthemum (the ancestral host at the 

104 range margin in Britain), and prefer to lay on better condition leaves regardless 

105 of host species [19,21,24–26,28,29]. However, the annual, more ephemeral 

106 growth form of the Geraniaceae host plants may make them less reliable as a 

107 food source than the evergreen perennial Helianthemum, especially under more 

108 variable climatic conditions at the range margin [16]. To investigate this, we 

109 surveyed ten sites fortnightly–monthly between July 2016 and October 2017, to 

110 monitor phenology and condition of three host plant species. Helianthemum 

111 was the dominant host at five calcareous grassland sites, while Geraniaceae 

112 (G. dissectum and E. cicutarium; hereafter Geranium and Erodium) were 

113 dominant at five grassland/ dune sites (Figure 1). The number of sites and 

114 quadrats was chosen to maximise spatial coverage and replication within 

115 logistical constraints. See SI-1.1 and SI-1.2 for survey dates and site profiles. 
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116 Quadrat surveys and analyses

117 Using an average of 33.7 (0.25 m2) quadrats per survey (SI-1.3 for quadrat 

118 placement), we recorded percentage cover (SI-1.3.2), phenophase 

119 (phenological stage) and condition of each host species. Host phenophase and 

120 condition underpin brown argus egg-laying site choice in the field [19,30]. 

121 Phenophase was estimated on a four-point scale (in leaf L, bud B, flower F, or 

122 had set seed S). Condition was visually assessed on a scale of 0–3 (poor–high 

123 quality for egg-laying, following [19,26]; see SI-1.3.3 for details and justification). 

124 We also measured mean sward height and percentage cover of bare ground 

125 (SI-1.3) which can alter local microclimates [31,32]. 

126 Quadrat-level phenophase and condition were estimated based on the average 

127 for each host species in each quadrat. This approach can mask fine-scale 

128 changes in phenophase and host condition, particularly for the annual hosts, so 

129 we also recorded plant-level phenophase and condition of the smallest, earliest 

130 phenophase Geraniaceae plant in each quadrat. This approach allows 

131 inference as to whether new germination has occurred, and of the age/condition 

132 of the plant material likely to be available to overwintering larvae. By 

133 September, Geraniaceae plants in later phenophases are typically senescent, in 

134 poor condition and expected to die before the autumn, making them a poor 

135 resource for larvae [30]. 

136 Quantifying variation in host plant condition and phenophase

137 To test expectation (a), for greater temporal variation in the condition of the 

138 annual than perennial hosts, we used a Kruskal-Wallis (KW) test for each 

139 sampling period to compare quadrat-level condition between host species. 

140 Bonferroni-corrected Dunn’s tests were then used to identify which hosts 

141 differed significantly from one another in condition score within each sampling 

142 period. We then conducted interannual comparisons of Geraniaceae host 

143 condition (Mann-Whitney U tests, MWU) and phenophase (Χ2 tests): these 

144 compared 2016 data with 2017 data, separately for each month between July to 

145 October. These months are the most relevant for host choice and larval feeding 

146 by second generation brown argus and their offspring.
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147 Assessing plant-herbivore (a)synchrony

148 To contextualise host condition with reference to herbivore phenology, and 

149 address question (b), we overlaid plots of site-specific host condition indices 

150 (calculated using survey data, SI-1.5.1) from all July–October surveys with 

151 emergence phenology curves of adult second generation brown argus and their 

152 larval offspring. Adult phenology was described as site-specific Gaussian 

153 curves for 2016 and 2017, based on output of phenomenological models 

154 following [30,33] (below and SI-1.6). The larval phenology curves track the adult 

155 curves, with an estimated 11-day lag to account for mating and egg-laying (four 

156 days post-emergence) and larval emergence (one week) [24]. Therefore, the 

157 larval emergence curves are presented as indicators rather than precise 

158 evaluations of appearance or abundance at each site.

159 The overlap between plotted condition indices and brown argus phenology 

160 curves was used to generate an area under the curve (AUC) metric of site- and 

161 year-specific synchrony between brown argus and the host plants (SI-1.7). 

162 These AUC metrics were then modelled in a beta regression (logit link; SI-1.7) 

163 to test for effects of site latitude, host plant, year and a host-year interaction on 

164 synchrony.

165 The phenomenological models used to generate phenology estimates account 

166 for variation in phenology between sites and years based on differences in 

167 latitude and temperature (SI-1.6). In summary, brown argus second brood 

168 phenology in Britain varies with latitude (earlier further north) and between-

169 brood temperature (earlier under warmer conditions between the first and 

170 second brood), and is related to the (latitude-dependent) phenology of the first 

171 brood [30,33]. See SI-1.6 for more information. 

172 Testing climatic predictors of Geraniaceae recruitment and condition

173 To address our third question (c), using data on the youngest host within each 

174 quadrat, we tested for climatic drivers of recruitment and condition of each 

175 Geraniaceae species in early September, when most larval offspring were 

176 expected to have emerged to feed. We defined recruitment as the presence of 

177 at least one young, leaf-stage host plant in the focal quadrat. Plants in condition 

178 categories 1 and 2 were rarely observed during September surveys. We 
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179 therefore reclassified condition 0/1 plants as poor condition (0) and condition 

180 2/3 plants as good condition (1). 

181 To test predictors of recruitment and condition, we used logistic regression with 

182 the following putative predictors: year, site, northing, easting, vegetation height, 

183 bare ground cover, and (linear and quadratic terms for) local weather estimates 

184 based on the UK Meteorological Office’s 5 km gridded weather data [34]. Using 

185 daily weather data [34], we calculated the minimum, mean and maximum 

186 temperature and mean rainfall for three periods in each year (justified in SI-1.7): 

187 July, July–September and August–September (only including weather data up 

188 to the day of quadrat sampling at each site in early September). We also used 

189 daily weather data to calculate the Gaussen Aridity Index (GAI; 

190 precipitation/(2 × temperature)) for each period (e.g. [35]). Higher GAI values 

191 indicate cooler, wetter conditions. Day of year was tested both as a putative 

192 fixed effect predictor and as an offset term to account for day of sampling.

193 All continuous predictors were standardised and site (n ≤ 5 per host plant) was 

194 included as a fixed effect (following [36]). We constructed candidate models by 

195 considering all plausible parameter combinations (including temperature-rainfall 

196 interactions), estimated parameters using maximum likelihood, and used AIC-

197 based model selection to establish the most parsimonious model(s) (see 

198 SI-1.9–1.10 for details of model selection, validation and diagnostics).

199 Testing microclimate effects on Geraniaceae phenology and condition

200 In September 2017, we calculated condition and phenophase indices (SI-1.5.2) 

201 for each of 31 quadrats at site G1, using the phenophase (L, B, F and S) and 

202 condition (0–3) of all Geranium plants in each quadrat. The indices range 

203 between 0 (quadrats contain only plants at condition 0/seed set stage) and 1 

204 (plants at condition 3/leaf stage). To test expectation (d), we modelled the 

205 indices (logistic regression) as a function of putative quadrat-specific predictors: 

206 microclimate (mean, maximum and minimum temperature and soil moisture; 

207 SI-1.11), percentage cover of bare ground and mean sward height. We also 

208 considered plausible temperature-moisture interactions.
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209 Results

210 Variation in host plant condition and phenophase

211 There was a substantial decline in quadrat-level condition of the annual host 

212 Geranium over summer 2016 that was not observed in the perennial 

213 Helianthemum or to the same extent in Erodium (Figure 2a; KW tests, Table 

214 S4). However, by early November 2016, senesced Geranium had mostly been 

215 replaced by recently-germinated, better condition recruits, and the quadrat-level 

216 condition was at least as high as that of Helianthemum (Figure 2a-c; KW tests, 

217 Table S4). 

218 Overall, in summer 2016 both Geraniaceae species showed substantial 

219 evidence of leaf senescence, including wilting and abscission, and little 

220 germination or seedling establishment until early October (pers. obs.) 

221 (Geranium, Figure 2b-c; Erodium, Figure S3). By contrast, in 2017, there were 

222 many more seedlings and good condition plants throughout the summer months 

223 and into the main sampling period in September (pers. obs.) (Geranium, Figure 

224 2b-c; Erodium, Figure S3).

225 The condition of the youngest Geranium in each quadrat was significantly 

226 higher in all 2017 survey periods compared to 2016 (Figure 2b; MWU tests, 

227 Table S5). Geranium phenophases differed significantly between years (Χ2 

228 tests, Table S5): in 2016, the youngest plant in each Geranium quadrat was 

229 typically an older plant in the seed set stage (Figure 2c) and new plants in the 

230 leaf stage did not dominate until October; however, this younger form was 

231 dominant throughout summer 2017 (Figure 2c). 

232 Erodium showed similar patterns, though condition was approximately 

233 equivalent between years for the August and September surveys (Figure S3; 

234 Mann-Whitney U tests, Table S5). Erodium quadrats were also dominated by 

235 young, leaf-stage plants in 2017: significantly more so than in 2016 during July 

236 and August (Figure S3; Χ2 tests, Table S5). Similar patterns of Geraniaceae 

237 phenophase and condition were observed at quadrat-level as these plant-level 

238 assessments (Figures S4 and S5).
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239 Plant-herbivore (a)synchrony

240 We assessed potential for asynchrony between the butterfly and its hosts 

241 (question (b)) by overlaying plots of site-specific host condition indices with 

242 curves representing brown argus phenology (Figure 3), and performing beta 

243 regressions on derived synchrony estimates. The beta regressions of AUC 

244 synchrony estimates demonstrate that synchrony was lowest for brown argus 

245 on Geranium in 2016 (low AUC overlap: AUC range 0.51–0.73), but very high 

246 for other hosts and for Geranium in 2017 (high AUC overlap: AUC range 0.92–

247 1.00) (Figure 3, Tables 1 and S6). Synchrony was lower for larvae than adults, 

248 especially on Geranium in 2016 (Table S6). There was no detectable effect of 

249 site latitude on adult or larval AUC overlap (SI-1.12.4).

250 In 2016, Geranium condition declined over the peak of adult brown argus 

251 emergence, and was lowest during the period in which most larvae would be 

252 beginning to feed (Figure 3a–c). By contrast, at their respective sites, good-

253 condition Erodium and Helianthemum hosts were available throughout egg-

254 laying and early larval feeding periods of the brown argus butterfly, with little 

255 variation between two climatically different years (2016 and 2017), or among 

256 sites at each sampling period (Figure 3d–j). Among-site variation in condition is 

257 more pronounced for Geranium, but this does not mask the temporal variation 

258 within and between years (Figure 3; Table S4). Among-site variation likely 

259 results from local variation in temperature and water relations linked to factors 

260 including weather, topography and geology.

261 Climatic predictors of Geraniaceae condition and recruitment 

262 We integrated climate data with in-field host plant surveys to investigate 

263 potential drivers of condition and phenology across the Geranium sites, 

264 addressing question (c). The probability of the youngest Geranium plants being 

265 in good condition increased with summer rainfall (MCfinal; Figure 4a, Table 2a). 

266 There was limited evidence that moister, cooler conditions in areas with shorter 

267 vegetation were associated with better condition (Table S8). Forcing models of 

268 Geranium condition to include an effect of year resulted in higher AIC values, 

269 and inflated parameter estimates and standard errors by several orders of 

270 magnitude, so these are reported only in the Supplementary Information for 

271 context (SI-1.12.5 , Table S8), and there are no effects of year in the final model 
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272 set. The evidence suggests that probability of new Geranium recruitment was 

273 higher in 2017 (MRbest; SI-1.12.5, Table S9), and lower following higher mean 

274 daily temperatures during August–September (MRfinal; Figure 4b, Table 2b). 

275 There were no detectable effects of site northing or easting, or day of sampling 

276 on condition or recruitment.

277 We had low statistical power to detect relationships between weather and the 

278 condition and recruitment of Erodium, models for which are outlined in 

279 SI-1.12.5.

280 Microclimate effects on Geraniaceae phenology and condition

281 To address question (d), we assessed Geranium phenology and condition 

282 across a range of microclimates at site G1 in September 2017. At this site, 

283 areas of moister soil (where plants are less likely to dry out) were associated 

284 with Geranium plants in better condition and earlier phenophases (Figure 4c,d; 

285 Table 3). Candidate models suggested such plants were also more prevalent in 

286 areas with warmer, moister microclimates (SI-1.12.6). 

287 Discussion

288 Here, we describe temporal variation in condition and phenology of three plant 

289 species and highlight the implications for their use as larval host plants by a 

290 butterfly species that has recently expanded its geographic range. Our data, 

291 from multiple sites across two years, suggest that the annual host Geranium 

292 dissectum varies more in condition and availability than both Erodium 

293 cicutarium and Helianthemum nummularium, the species that have been used 

294 as long-standing hosts at the range margin, and does so in a way that differs 

295 between years and with (micro-)climatic conditions. Such variation in condition 

296 and availability likely generates narrow and unpredictable phenological 

297 ‘windows of opportunity’ for exploitation of ephemeral annual species that vary 

298 among sites and years under the conditions of variable population sizes or 

299 phenology observed near the limits of species’ geographic ranges [37]. Though 

300 we recognise differences in the hosts other than their perennation strategy, in 

301 this case the perennial plant that was used as the main pre-expansion host 

302 appears to be a more reliable resource, where present, than the more 

303 widespread annual Geranium species that has acted as a primary host during 
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304 the climate-associated range expansion. Erodium, is typically found on sandy 

305 soils, is relatively drought-tolerant compared to other Geraniaceae hosts, and 

306 appears to respond to a wider range of phenological cues than Geranium, 

307 which may improve its relative condition and availability as a host under the 

308 conditions we observed [30]. Our results suggest that climatic effects on the 

309 phenological synchrony of biotic interactions could act as a mechanism 

310 generating transient patterns of host associations at range margins, and 

311 consequently of habitat availability in the landscape and patterns of range 

312 shifting. 

313 (Micro-)climatic variation and host plant phenology

314 Our data indicate that the phenology of Geranium, a widespread annual host 

315 plant used by the brown argus butterfly, is sensitive to weather variability. 

316 Greenhouse experiments and field observations suggest that summer 

317 temperatures and moisture thresholds are crucial to dormancy breaking and 

318 germination in Geranium [38,39]. A complementary interpretation of these data 

319 is that Geranium plants may germinate early following a cool spell and early 

320 summer rain, but will suffer high seedling mortality where the summer is 

321 subsequently hot and dry (e.g. [40,41]). For example, our data show that hot, 

322 dry conditions in 2016 were associated with early and pronounced senescence 

323 of plants in July, as well as delayed germination and/or early seedling mortality. 

324 By contrast, our study sites received relatively high rainfall throughout summer 

325 2017 [30], which is likely to have overcome moisture-dependency in dormancy 

326 breaking and/or promoted seedling survival. Geranium condition was also 

327 higher following wetter (2017) summer conditions, which supports evidence that 

328 drought and thermal stress cause premature senescence and declines in the 

329 quality (for consumers) of herbaceous plants [42,43]. A higher proportion of 

330 younger and better-condition Erodium were available in 2017 than in 2016, 

331 although we lacked statistical power to associate this with climatic variables (SI-

332 1.12.5). However, our data support previous observations that reduced soil 

333 water availability advances the reproductive stage and the end of the growing 

334 season in Erodium, and reduce its investment in leaf biomass [44,45].
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335 Trophic interactions at range margins

336 Host condition and phenological synchrony in biotic interactions appear to be 

337 mediated by local (micro-)climatic variation, and are major determinants of 

338 spatiotemporal variation in fecundity and population size of host-specialist 

339 herbivores such as the brown argus [19,22,26,46,47]. By reducing temporal 

340 overlap between suitable resources and key herbivore life stages (e.g. adult 

341 egg-laying and early larval stages), adverse (micro-)climatic conditions may limit 

342 egg-laying and feeding opportunities and reduce larval survival, particularly 

343 where plants with limited temporal availability (such as the annual Geraniaceae 

344 studied here) are the main hosts [18,48]. Climatic conditions that are set to 

345 become more common (i.e. variable rainfall and longer, hotter summers 

346 [49,50]), may therefore narrow or close the phenological window of opportunity 

347 for this host-specialist herbivore to exploit these ephemeral annual resources in 

348 late summer [46,47].

349 Our analysis was unable to detect a clear geographic gradient in (a)synchrony, 

350 which may limit the predictability of the window of opportunity for brown argus to 

351 interact with Geraniaceae across its range. The widespread annual 

352 Geraniaceae are the hosts primarily used by brown argus at the expanding front 

353 of its recent range in Britain, whereas Helianthemum represents the apparent 

354 ancestral host at most sites where the species has been present for the past 

355 century or longer [26,30]. Therefore, while there is variation among sites, 

356 variation in butterfly-host synchrony (and the success of this relatively novel 

357 interaction) may be especially pronounced and unpredictable near the range 

358 limits, particularly if abiotic conditions are marginal and population sizes small 

359 [22]. In this respect, our results suggest that the range limit may be set not via 

360 broad environmental gradients in synchrony, but via shifting availability of sites 

361 where herbivore-host synchrony is sufficient. Through a process of ecological 

362 fitting at the novel range margin, populations interact with the resources that 

363 they happen to be synchronous with [51].

364 The relationships between weather, plant condition and phenology, which we 

365 identify here for Geranium, are therefore crucial in mediating how climate 

366 change, variability and unpredictability will affect synchrony in biotic 

367 interactions. Given that climate change is causing widespread changes in 
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368 phenological synchrony, both existing and novel host interactions may be 

369 vulnerable under climate change. However, recent evidence suggests that at 

370 least as many biotic interactions are becoming more synchronous as are 

371 becoming less synchronous [22]. This evidence therefore also highlights the 

372 potential for novel biotic interactions to emerge, and further supports a role for 

373 spatiotemporal variation in synchrony underlying transient host interactions.

374 Spatiotemporal variation in the synchrony of biotic interactions is likely to 

375 generate transient mosaics of selection pressures for different diets, and 

376 thereby influence patterns of dietary specialisation/generalisation that recent 

377 research has shown to be an emergent and surprisingly common property of 

378 range dynamics [7,8,21,24]. In range expansions, many new consumer-

379 resource interactions form and some may be lost [7,8]. For example, diet 

380 breadths in populations of Edith’s checkerspot butterfly (Euphydryas editha) 

381 increased after colonisation events as individual host preferences diversified, 

382 but populations subsequently reverted to monophagy [8]. 

383 Spatiotemporal variation in phenological synchrony may prove to be an 

384 underlying mechanism not only for lability in insect-host associations at range 

385 margins, but also for range limit stability under scenarios of temporal 

386 environmental variability. In particular, existing phenological plasticity can 

387 increase fitness costs where environments become more unpredictable [52], 

388 and range limits are more stable (expansions less likely) where environmental 

389 variance is too large for adaptation and colonisation [53]. Therefore, increasing 

390 environmental variance may preclude colonisation events that depend on 

391 predictably synchronous biotic interactions.

392 Evolution during range expansion

393 Following the recent range expansion and incorporation of Geraniaceae into the 

394 diet of the brown argus, Geraniaceae-feeding populations that were able to 

395 persist became specialised on the novel hosts, losing the adaptive capacity to 

396 use Helianthemum [21,24]. Though specialisation on Geraniaceae appears to 

397 have become more reliable on average [29], our data suggest that interannual 

398 variation in phenology could still alter the success of this interaction, which may 

399 prove to be locally transient in the face of phenological asynchrony. In a 

400 comparable example from Scandinavia, narrow oviposition preferences of the 
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401 Glanville fritillary (Melitaea cinxia) for phenologically-limited hosts risks high 

402 larval mortality under severe drought conditions in some years [20,54]. 

403 Conversely, phenological asynchrony at recently colonised Geraniaceae sites 

404 could lead to variable population dynamics, and selection favouring continued 

405 dispersal from the natal site in search of suitable egg-laying locations [55,56]. 

406 During the range expansion, selection has apparently favoured more dispersive 

407 phenotypes which have increased flight capacity and more readily accept the 

408 geographically widespread Geraniaceae hosts [24,27,28]. Consequently, under 

409 certain (micro-)climatic conditions, the dispersive, Geraniaceae-favouring 

410 phenotype may represent an alternative life history strategy that drives 

411 expansion at range margins and in-filling of the core range. Subsequent 

412 migrants that colonise Helianthemum sites may need to regain the ability to use 

413 Helianthemum (as shown in [21]; cf. [8]) in order to benefit from stability of (and 

414 phenological synchrony with) the host resource.

415 Conservation and management implications

416 Understanding constraints and opportunities for species’ distributions is central 

417 to successful conservation practices. Our results highlight the importance of 

418 considering drivers of synchrony and the outcomes of biotic interactions when 

419 examining climate-driven range shifts, and recognising the crucial roles of 

420 microclimate and individual behaviour in mediating these interactions [19]. 

421 Conservation strategies could seek to maximise habitat and microclimatic 

422 heterogeneity to promote diversity in local phenologies across trophic levels 

423 [57,58]. In some cases, microclimatic variation may generate sufficient fine-

424 scale spatial heterogeneity in relative phenology and host condition to buffer 

425 local herbivore populations against phenological asynchrony [10,18,59,60]. 

426 However, to improve our predictions of ecological responses to climate change, 

427 and of the critical levels of environmental change likely to cause rapid loss of 

428 ecosystem outputs, more empirical data are needed on shifts in biotic 

429 interactions across populations, climates and species ranges, their effects on 

430 demography, and their rates and patterns of evolution. In the present case, we 

431 have highlighted what might be typical variation in phenological synchrony 

432 across two years, which emphasises the potentially large indirect impacts of 

433 climate change on herbivore success. However, it would be beneficial to 
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434 expand sampling across both time and space to better understand general 

435 patterns of interannual variation and gain a more holistic understanding of the 

436 phenomena discussed. 

437 Conclusions

438 Our results place a novel emphasis on the interactions between phenology, 

439 resource use and climate change in a range-expanding herbivore whose 

440 sensitivity to small changes in temperature might otherwise predict a positive 

441 range expansion response under future climates. Instead, small changes in 

442 temperature and moisture regime have the potential to disrupt the range 

443 expansion, mediated by phenological and physiological changes in the 

444 herbivore’s larval resource that essentially fragment the herbivore’s potential 

445 range. This suggests that novel host interactions may only remain as transient 

446 resources at shifting range margins. The mechanisms underlying insect-plant 

447 interactions, and their responses to climate change, are likely to be more 

448 complex than they appear, and we need more detailed knowledge of these 

449 mechanisms to understand and predict species’ interactions and responses to 

450 climate change.
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657 Table 1. Parameter estimates (with errors) for Bayesian beta regression of adult 

658 and larval AUC synchrony metrics, also showing the lower (L95) and upper 

659 (U95) credible intervals for each estimate. Predictors include year, host and 

660 host-year interaction. 

Adults Larvae
Estimate L95 U95 Estimate L95 U95

Intercept 2.89 (0.44) 2.03 3.77 2.8 (0.4) 1.99 3.55
Year2017 1.61 (0.65) 0.38 2.93 1.69 (0.65) 0.46 3.01
HostGeranium -2.01 (0.48) -2.94 -1.07 -2.23 (0.45) -3.07 -1.32
HostHelianthemum 0.02 (0.48) -0.94 0.97 0.01 (0.37) -0.7 0.73
Year2017:HostGeranium 2.87 (0.73) 1.43 4.29 3.06 (0.74) 1.58 4.5

Estimates for Erodium and Year2016 are not shown here as they are the base level for each 
predictor and are therefore included in the intercept term.

661

662 Table 2. Parameter estimates (with standard errors) for the final (final; selected, most 

663 parsimonious) and null (N) logistic regression models investigating drivers of (a) the 

664 condition of the youngest Geranium (MC), and (b) the probability of new recruitment of 

665 Geranium (MR) in each quadrat during September surveys (2016–2017). Also 

666 presented for comparison are the restricted models (MXR) used to check for class bias 

667 in MXfinal. All models bar the null contain a subset of fixed effects from: site (S, using 

668 sum contrasts: see SI-1.9), daily mean rainfall (R) or daily mean temperature (T) in the 

669 period between August 1st–September sampling date. Other terms and time periods 

670 were tested and detected in the final candidate set of models (Table S8 and S9). β0 is 

671 the intercept, which accounts for the mean of site effects in all but the null models, k is 

672 the number of parameters, LL is the log-likelihood of the model and ΔAIC is the ΔAIC 

673 relative to the model with the lowest AIC in each case (Table S8 and S9).

Model parameters
Model

β0 𝑺𝟏 𝑺𝟐 𝑹 𝑻 k LL ΔAIC

(a) Condition of youngest G. dissectum 

MCfinal
2.053 

(0.535)
5.749 

(0.985)
-1.590 
(0.551)

5.871 
(0.891)

– 4 -61.17 0.13

MCN
0.545 

(0.141)
– – – – 1 -143.30 168.38

MCR
1.565 

(0.622)
5.071 

(1.116)
-1.305 
(0.630)

5.611 
(1.128) – 4 * *

(b) Probability of G. dissectum recruitment

MRfinal
0.310 

(0.354)
4.366 

(0.794)
-3.558 
(0.718)

– -3.872 
(0.555) 4 -49.07 1.43

MRN
0.352 

(0.138)
– – – – 1 -147.78 192.84

MRR
-0.044 
(0.495)

4.770 
(1.126)

-4.120 
(1.017) – -4.096 

(0.792) 4 * *

674
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675 Table 3. Parameter estimates (with standard errors) for the final (final; selected, most 

676 parsimonious) and null (N) logistic regression models investigating microclimatic drivers 

677 of (a) quadrat-specific condition indices (MCI), and (b) quadrat-specific phenophase 

678 indices (MPI) of Geranium at site G1 in September 2017. Also presented for 

679 comparison are the associated null models (MXN). All models bar MXN contain a subset 

680 of fixed effects from: bare ground cover (G), soil moisture (M), mean (T) and minimum 

681 temperature (t). Other terms were tested and detected in the final candidate sets of 

682 models (Tables S9–10). β0 is the intercept, k is the number of parameters, LL is the 

683 log-likelihood of the model and ΔAIC is the ΔAIC relative to the model with the lowest 

684 AIC in each case (Tables S9–10).

Model parametersModel β0 G M T t k LL ΔAIC

(a) Quadrat-specific condition indices
MCIfinal

0.496 
(0.413) – 0.810 

(0.448) – – 2 -15.59 1.88

MCIN
0.428 

(0.380) – – – – 1 -19.69 8.07

(b) Quadrat-specific phenophase indices
MPIfinal

0.366 
(0.412) – 0.889 

(0.453) – – 2 -14.84 1.57

MPIN
0.307 

(0.376) – – – – 1 -19.98 9.85

685

686 Figure Captions

687 Figure 1. Map of study sites in England. + denotes Helianthemum sites (H1–H5, Table 

688 S1), × denotes Geraniaceae sites (Geranium, G1–G3; Erodium, E1–E2; Table S1). 

689 Figure 2. (a) Mean (± SD) of site-averaged quadrat-level host plant condition 

690 categorisations (0–3). Starred brackets indicate significant differences in condition 

691 between hosts (Table S4). Condition (0–3; b) and phenophase (c) of the youngest G. 

692 dissectum plant in each quadrat across all sites visited during late July–early October 

693 in both 2016 and 2017. Phenophase L: leaf; B: in bud; F: in flower; S: set seed. 

694 Equivalents of (b) and (c) for Erodium are available as Figure S3.

695 Figure 3. Plant condition index in 2016 and 2017 for Geranium at sites G1–G3 (a–c), 

696 Erodium at sites E1–E2 (d–e), and Helianthemum at sites H1–H5 (f–j), indicating timing 

697 of host condition changes relative to the year- and site-specific emergence of second 

698 generation brown argus adults and their larvae. Butterfly phenology curves typically 

699 overlap at each site. (k) summarises larval AUC synchrony metrics for each host-year 

700 combination, summarised from site-specific metrics each calculated as the full area of 

701 the phenology curve minus that which lies above the corresponding host condition line. 

702 The equivalent plot for adults is shown in SI-1.12.4.
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703 Figure 4. (a,b) Predicted probabilities with 95% confidence intervals (dashed lines) of 

704 (a) a state of good condition in the youngest Geranium in each quadrat, and (b) 

705 recruitment of Geranium in each quadrat. The probabilities (a) increase as a function of 

706 late summer rainfall and (b) decrease as a function of late summer temperature 

707 (MRfinal, Table 1). Some points offset in x and y planes to show the raw data; mean 

708 daily rainfall ranges between -1.76 and 2.18 (1.29–2.87 mm), and temperature ranges 

709 between -1.16 and 1.85 (15.61–18.11 °C). The condition (c) and phenophase (d) 

710 indices of Geranium at site G1 increase as a function of soil moisture. Quadrats with 

711 higher soil moisture are more likely to contain high proportions of good condition new 

712 recruits, and low proportions of poor-condition, reproductive Geranium. Soil moisture 

713 ranges between -1.58 and 1.83 (14.6–34.4 %). 
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Figure 1. Map of study sites in England. + denotes Helianthemum sites (H1–H5, Table S1), × denotes 
Geraniaceae sites (Geranium, G1–G3; Erodium, E1–E2; Table S1). 
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Figure 2. (a) Mean (± SD) of site-averaged quadrat-level host plant condition categorisations (0–3). Starred 
brackets indicate significant differences in condition between hosts (Table S43.1, Appendix 3). Condition (0–
3; b) and phenophase (c) of the youngest G. dissectum plant in each quadrat across all sites visited during 

late July–early October in both 2016 and 2017. Phenophase L: leaf; B: in bud; F: in flower; S: set seed. 
Equivalents of (b) and (c) for Erodium are available as Figure S3. 
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Figure 3. Plant condition index in 2016 and 2017 for Geranium at sites G1–G3 (a–c), Erodium at sites E1–E2 
(d–e), and Helianthemum at sites H1–H5 (f–j), indicating timing of host condition changes relative to the 

year- and site-specific emergence of second generation brown argus adults and their larvae. Butterfly 
phenology curves typically overlap at each site. (k) summarises larval AUC synchrony metrics for each host-
year combination, summarised from site-specific metrics each calculated as the full area of the phenology 
curve minus that which lies above the corresponding host condition line. The equivalent plot for adults is 

shown in SI-1.12.4. 
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Figure 4. (a,b) Predicted probabilities with 95% confidence intervals (dashed lines) of (a) a state of good 
condition (q = 2 or 3) in the youngest Geranium in each quadrat, and (b) recruitment of Geranium in each 

quadrat. The probabilities (a) increase as a function of late summer rainfall (MRfinal; Table 1) and (b) 
decrease as a function of late summer temperature (Table 1). Some points have been offset in the x and y 
planes to show the raw data; mean daily rainfall ranges between -1.76 and 2.18 (1.29 mm–2.87 mm), and 
temperature ranges between -1.16 and 1.85 (15.61 °C–18.11 °C). The condition (c) and phenophase (d) 

indices of Geranium at site G1 increase as a function of soil moisture. Quadrats with higher soil moisture are 
more likely to contain high proportions of good condition new recruits, and low proportions of poor-
condition, reproductive Geranium. Soil moisture ranges between -1.58 and 1.83 (14.6–34.4 %). Soil 
moisture was recorded at a different time of year to plant condition, so is used as a relative measure 

between quadrats. 
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