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Abstract  
Data Documentation Initiative-Lifecycle (DDI-L) introduced a robust metadata model to support the 
capture of questionnaire content and flow, and encouraged through support for versioning and 
provenancing, objects such as BasedOn for the reuse of existing question items. However, the dearth 
of questionnaire banks including both question text and response domains has meant that an 
ecosystem to support the development of DDI ready Computer Assisted Interviewing (CAI) tools has 
been limited. Archives hold the information in PDFs associated with surveys but extracting that in an 
efficient manner into DDI-Lifecycle is a significant challenge.  

While CLOSER Discovery has been championing the provision of high-quality questionnaire metadata 
in DDI-Lifecycle, this has primarily been done manually. More automated methods need to be 
explored to ensure scalable metadata annotation and uplift.  

This paper presents initial results in engineering a machine learning (ML) pipeline to automate the 
extraction of questions from survey questionnaires as PDFs. Using CLOSER Discovery as a ‘training and 
test dataset’, a number of machine learning approaches have been explored to classify parsed text 
from questionnaires to be output as valid DDI items for inclusion in a DDI-L compliant repository.  

The developed ML pipeline adopts a continuous build and integrate approach, with processes in place 
to keep track of various combinations of the structured DDI-L input metadata, ML models and model 
parameters against the defined evaluation metrics, thus enabling reproducibility and comparative 
analysis of the experiments. Tangible outputs include a map of the various metadata and model 
parameters with the corresponding evaluation metrics’ values, which enable model tuning as well as 
transparent management of data and experiments. 
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Introduction 
DDI-Lifecycle (DDI-L) (DDI Alliance, 2014) introduced a robust metadata model to support the capture 
of questionnaire content and flow and encouraged through support for versioning and provenancing 
objects such as ‘BasedOn’ for the reuse of existing question items. However, the dearth of 
questionnaire banks including both question text and response domains has meant that an ecosystem 
to support the development of DDI ready Computer Assisted Interviewing (CAI) tools is limited. 
Archives hold the information in PDFs associated with surveys but extracting that in an efficient 
manner into DDI-Lifecycle is a significant challenge.  

Survey specification and development tools for standards-compliant questionnaire development 
using DDI-L require scalable and effective methods to enable automation of CAI. With a range of social 
sciences and biomedical domains’ longitudinal studies forming part of CLOSER Discovery 
(https://discovery.closer.ac.uk), it offers a rich collation of questionnaire construct definitions and 
measurement approaches employed over a period, as well as scope for cross-study research. Due to 
the increased volume of data, with more questionnaires getting added to CLOSER Discovery, the ease, 
efficiency, and robustness of metadata extraction of question items are crucial considerations in 
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questionnaire processing, and ultimately, scaling to provide a high-quality question bank hosting 
survey questions for reuse by studies and data collection agencies. Use of question banks would have 
both a utility for discovery and through the accurate reuse of questions between studies, encouraging 
study and analyses reproducibility. 

CLOSER has been annotating metadata from the study questionnaires in DDI-L. However, much of this 
has been done manually or semi-manually, making the extraction of structured metadata for data 
management purposes burdensome. To move away from manual processing of questionnaires and 
enable efficiencies in the survey process, automated methods are needed for questionnaire item 
metadata extraction.  

Computational methods such as machine learning (ML) techniques, especially, supervised learning 
algorithms are an intuitive candidate approach for automating the extraction of valid DDI items from 
the survey questionnaires in PDF format that form part of CLOSER Discovery. The existing processed 
and marked-up (in XML) questionnaires form the training and validation dataset for applying 
supervised ML models. The extraction of the questionnaire items can be modelled as a text 
classification problem, distinguishing the questions, responses and instructions etc. as specific 
categories. Thus, this paper adopts a supervised ML approach for automated questionnaire item 
extraction from PDF survey questionnaires for inclusion in a DDI-L compliant repository. 

Given a set of inputs and labelled outputs, supervised ML algorithms are geared towards allowing a 
model to learn over time, adjusting to minimise the error through a loss function. This necessitates a 
continuous build and integrate approach, with the different combinations of input data, feature 
engineering methods, model parameters and their resultant outputs being attached to an ML pipeline. 
This also requires capturing the various combinations experimented with, and the corresponding 
outputs, as metadata attached to the experiments, to ensure reproducibility, comparative analysis, 
and provenance of the pipelines. However, tracking the data and model transformations manually is 
time consuming and error prone. Existing initiatives such as IBM’s PROV-ML schema (Souza, Azevedo, 
et al., 2019), that incorporate ML model aspects into the W3C PROV-O Recommendation (W3C, 2013), 
is a promising development in this regard. The open-source ProvLake (Souza, Mattoso, et al., 2019) 
Python library enables collection of provenance data related to function calls, with input arguments 
and output values captured. It provides a data tracker API which can be integrated into the machine 
learning workflow source code. 

Thus, this paper also showcases the integration of the abstraction of model parameters through 
pipelines (through Data Version Control (DVC) (Kuprieiev et al., 2021)) and automating the process of 
attaching metadata related to each model experiment (through ProvLake). The process is illustrated 
with an implementation of the Naïve Bayes ML model which is an instantiation of a probabilistic 
classification algorithm. Tracking of model parameters, input data and output metrics is implemented 
in the hyperparameter tuning of the Naïve Bayes model where the DVC pipeline execution outputs a 
set of evaluation matrices, each corresponding to an individual variation in the hyperparameters. The 
different evaluation metrics for each parameter variation are then captured in a structured format, as 
a ProvLake log file. Other metadata recorded are the runtime information such as start time and end 
times of each data transformation execution.  

Longitudinal Survey Questionnaires Dataset  
Dataset Source 
The dataset source was CLOSER Discovery (https://discovery.closer.ac.uk). The content is generated 
by a collaboration between CLOSER and its partner studies (Johnson, 2021) and contains metadata in 
DDI Lifecycle 3.2 for the questionnaires, datasets, study and data collection level information and a 
set of topics which are assigned to each question and resultant variable.  
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Training dataset preparation 
The training dataset was extracted using Python 3 (van Rossum & Drake, 2009) code (Li, 2021) from 
CLOSER Discovery utilising the Colectica Repository REST API (Colectica, 2021). 

The dataset included the DDI-L 3.2 items:  

● question item, question text (QuestionName, QuestionLiteral),  
● response domain items (CodeDomain, TextDomain, NumericDomain, and DateTimeDomain)  
● conditionals (IfConditional, LoopWhile) 
● interviewer instructions (InstructionText) 
● statements (Literal) 
● associated URNs for all of the above 

The URNs allow the tracking and subsequent analysis of predicted values from different models. 

The extracted train and test dataset was output as a tab-separated-value (TSV) file, to serve as input 
into the machine learning program. The entire process is illustrated in Figure 1 below. 
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Figure 1: A schematic view of the training dataset generation from the CLOSER Discovery metadata 
store and model training. 

Dataset Description 
The dataset used as input into the machine learning models contains 187,105 rows, with the following 
item types (and their respective distributions), as shown in Table 1 below. 
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Table 1: Distribution of Items in Training Dataset 

Item Type Count 

QuestionName 40,546 

Question literal 40,545 

Interviewer Instruction 3,051 

Statement 7,551 

Response Domain - Codelist 85,547 

Response Domain - DateTime 486 

Response Domain - Text 613 

Conditional 8,414 

Loop 352 

Total 187,105 

 

CLOSER ML pipeline  
Git (Git, 2021) is used for version control of the underlying code used to pre-process input data, 
generate features for training from the data and for model training and evaluation. Additionally, text 
outputs of experiments and basic plots are versioned with Git. In this structure, each broad model 
family occupies a branch, with individual experiments represented by a directory containing output 
files following model training and evaluation. 

The ML pipeline relies upon DVC to perform both dataset versioning and experiment tracking. In this 
context, an experiment refers to the model training process: from the choice of input parameters to 
the performance of the trained model on validation data according to several metrics of interest, such 
as accuracy, precision, recall, f1-score and the area under the receiver operating characteristic curve, 
referred to here as AUC score and ROC curve. Datasets versioned by DVC are referenced in the version-
controlled codebase, managed by Git, and transferred via Secure Shell (SSH) to remote storage on the 
University College London (UCL) Research Data Storage Service (UCL, 2021). 

Experimental Setup, ML Model and Code Versioning  
DVC is used to version the state of the input data as it evolves and associate that with a specific git 
commit hash. DVC is also used within this work to transfer the versioned data over SSH to remote 
storage, from which it is accessible to other authorised users on the general-purpose high-
performance computing (HPC) cluster at UCL. Model training is performed using a node on the UCL 
HPC cluster with a 36 core Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz and attached NVIDIA V100 GPU. 
A local environment with one AMD Ryzen 5 3600 CPU and one NVIDIA RTX 3070 GPU was additionally 
used for development purposes.  
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Datasets and trained models are stored, under DVC versioning, on the UCL Research Data Storage 
Service (RDSS). The RDSS is a petabyte-scale storage facility intended for research data storage in 
ongoing projects, includes data backup and is accessible via the HPC cluster described previously. 

Dataset versioning is handled by DVC, which calculates a 32-character MD5 hash for each file within a 
directory and uses a JSON format file to record the relative locations of files within directories. The 
resulting hashes are stored in DVC configuration (.dvc) files, which are added to Git commits in order 
to pair input datasets to the relevant version of the codebase. An overview of the model, dataset and 
code versioning is provided below in Figure 2. 

 

 
Figure 2: A schematic view of the relationship between Git and DVC version control and the local code 
repository. All code, documentation, input parameters, and DVC configuration files are version-
controlled via Git and stored in a remote repository. Input datasets and trained models are versioned 
by DVC and are stored in a separate remote repository. 

The codebase is entirely Python-based, relying on the PyTorch and scikit-learn machine learning 
libraries, and is broadly structured as follows, with some differences occurring between different 
model choices. In the top level of the repository, steering code exists to launch the relevant workflow 
via function calls and relies upon the correct setting of values in the parameters YAML (YAML Ain't 
Markup Language) file. The YAML file dictates the type of dataset to process, model type, output 
directory and file names and a range of hyperparameters for model training.  
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Hyperparameter tuning is concerned with choosing a set of optimal parameters which define the 
model architecture.  In contrast with model parameters, hyperparameters cannot be directly trained 
from the data. The performance of a model can significantly vary according to the hyperparameters’ 
values. Since finding the ideal hyperparameter can be time-consuming, search algorithms such as grid 
search and random search are typically employed. The key distinction between these two methods is 
the requirement to test all parameters. RandomSearchCV works with a few 'random' combinations 
(though typically with a set number of iterations) out of all the available combinations, whereas 
GridSearchCV scans all possible combinations. Both GridSearchCV and RandomSearchCV feature are 
functions available in Scikit-learn’s model selection package and fit the model to the training set by 
looping through predefined hyperparameters. Both functions use the cross-validation method which 
divides the train data further into two parts - the train data and validation data to test the model for 
all possible combinations of the values given in the dictionary.  

Once the correct workflow and initial arguments are provided, raw data consisting of text content and 
an item type category is read and stored as a pandas (Reback et al. 2021) DataFrame object. Input raw 
data is cleaned by removing underscores, renaming labels via regular expression matching and the 
removal of entries containing null entries for either text content or item type label. Following data 
cleaning, output directories for the experiment are created and the cleaned data is saved. Cleaned 
data is then passed as an argument to a function specific to each model type. At this stage, the model 
family is determined, and features are generated from the cleaned dataset in a specific manner for 
that model type. Data is split into ‘train’, ‘validation’ and ‘test’ sets, with a ratio defined in the input 
YAML. Text data is then tokenized and encoded, a process that converts individual words in the 
dataset into integer indices from a vocabulary used by the model. The data is further converted into 
a relevant format in the case of neural network-based models before commencing model training, 
using the model type defined in the input parameters YAML file. Following model training for a user-
defined number of iterations, model performance is evaluated against the validation dataset. Output 
metrics and plots from model evaluation are saved to the output directory of the model along with a 
record of the input parameters used to obtain results. 

Model runs are initiated via the DVC ‘project’ feature. Input parameters are provided by a YAML file 
(params.yaml) in a nested format, with the top level representing a ‘stage’ of the DVC project. By 
providing the DVC API with a project name, python file dependencies, expected output files, a file 
defining input parameters and a python script to run, DVC configuration files are produced following 
model training that records all of the above information and associates it with the project name, 
enabling reproducibility of results. In addition, when output metrics are tracked under DVC, running 
the same ‘experiment’ with differing parameters will display the effect on performance. 

The results of model training and inference are stored either via Git on a remote GitHub repository or 
in the case of trained models, via DVC on the UCL RDSS. This project utilises the Git branch structure 
to separate different model families within the project, with separate output directories denoting 
different experiments. A pytest (Krekel et al. 2004) test suite is provided with the code to ensure 
changes to the code are error-free and can reproduce expected results after model training on a small 
test dataset. Changes to the code in the remote repository are performed using a Continuous 
Integration service via GitHub, which sets up a typical environment with which to run code tests and 
notifies the user if changes to the code will introduce breaking changes. In this way, it is also possible 
to check if changes to the code which at first may appear to be error-free in fact introduce changes to 
model behaviour. 

Model Experiments 
An example of the entire ML pipeline for the case of the Multinomial Naïve Bayes classifier follows, 
with an overview given below in Figure 3. Multinomial Naïve Bayes is a supervised learning 
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classification method that can be applied for categorical text data analysis. It is based on the 
assumption that each feature being classified is independent of all others and works by calculating the 
probability of each tag for any given text input, with the tag with highest probability forming the 
output. 

 
Figure 3: A schematic view of the stages of arbitrary model training from data ingest and cleaning to 
output of model results and their storage under version control via Git and DVC. 

Input parameters, the dataset of choice and the ‘MultinomialNaïveBayes’ model are selected in the 
YAML file. Steering code is called which reads the parameters YAML file, performs data cleaning and 
sets up the directory structure to store model outputs. The cleaned data and parameters are passed 
as arguments to a specific Naïve Bayes classifier function, which handles feature generation, 
transformation of each text item into term frequency–inverse document frequency (TFIDF) vector 
representations and splits the data into training and test subsets. Multinomial Naïve Bayes classifiers 
are used in a one-vs-rest strategy, fitting one classifier per class. Performance is assessed during model 
training using a k-folds cross validation approach, where ‘k’ is the number of ‘folds’. This approach 
defines a different subset of the training data as validation data in each ‘fold’ which is then used to 
assess the loss of the trained model. After validating model performance over all k-folds, the model is 
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then trained on the entire training dataset and its performance evaluated with the held-back test 
dataset.  

Model metrics such as the accuracy, precision, recall, f1-score, AUC score, ROC curve plot and 
confusion matrix plot are saved to the output directory. Metrics scores are saved as nested JSON files, 
a per-class report and confusion matrix are saved as CSV files while ROC curve and confusion matrix 
plots are saved as SVG files. The trained model is exported as a Python joblib file and added to DVC 
version control, before manually being sent over SSH by the user to the RDSS. All other outputs are 
version controlled via Git and pushed to the remote GitHub repository. 

Hyperparameter tuning is performed for the parameter var_smoothing which is a parameter added 
to the distribution’s variance in the Gaussian Naïve Bayes model using GridSearchCV. Since the Naïve 
Bayes algorithm, with its Gaussian distribution assumption essentially gives more weights to the 
samples closer to the distribution mean, var_smoothing adds a user-defined value to the distribution’s 
variance to account for more samples that are further away from the mean. The algorithm cross 
validates the model using each value for the parameter and outputs the best parameter combination 
with the help of the best_params_ built-in function.  

The accuracy, precision, recall and f1 score are calculated for each hyperparameter adjustment, and 
the ideal value is calculated. Provenance tracking is included in the hyperparameter tuning code, 
which keeps track of the parameter list and its associated evaluation metrics. This information is 
encoded in a ProvLake standard JSON format and is saved in a Prov ML log file. The ProvML log file is 
stored in the DVC directory with a standard naming pattern of ‘prov’ followed by the workflow name 
and the workflow execution start time.  

The prov log file includes runtime details, input, and output data values in a standard format for every 
function in a workflow; additionally, we can keep separate prov log files for separate workflows, 
making analyzing data variation after each function execution much easier. For example, the log 
details of hyperparameter tuning function includes information such as unique id for that function, 
start time, generated time, end time, function name, the status of the run, Input parameters (list of 
hyperparameter value used), and output parameters (list of evaluation metrics for each 
hyperparameter variation). The structured format of the provenance log file is illustrated in Figure 4. 
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Figure 4: A snippet of the input and output data values as captured in a ProvLake JSON log file. Each 
row of the evaluation metrics’ values map to the corresponding var_smoothing hyperparameter 
value. 

The prov log file can be examined to gain a general understanding of the major functions used, the 
data variation they produce, as well as their particular runtime and fundamental run characteristics. 
In summary, these prov log files assist in keeping track of data and can be shared across team members 
to gain a thorough understanding of data flow.   

Conclusions 
Source code versioning, through tools such as Git, is well established in the software engineering 
community. But there are additional challenges in machine learning and data science, which require 
data version control as well as managing changes to models and datasets. Towards meeting this 
challenge, this paper has showcased a reproducible ML model training and execution method, which 
also generates logging metadata in a structured format, enabling tracking of various combinations of 
input data, model features and hyperparameter tuning with the obtained output values. 

The developed ML pipeline is applied to automate the extraction of data and metadata from 
longitudinal survey questionnaires through a supervised machine learning pipeline approach. The 
pipeline approach employs Git for code versioning, DVC for model and data files versioning and links 
these proprietary methods in ML model versioning to an open provenance standard (ProvLake). 
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In addition to the aggregate measures, the rich provenance structure of the DDI-Lifecycle schema, 
allow the analysis of prediction of specific item types (e.g. question text) through the URNs linked to 
each input, which are inked to the specific questionnaire, study or if tagged to an ontology from which 
it originated, to give insights into where the predictions are more or less robust. These insights can be 
used to inform improvements in the models being used, and the potential need for more training data 
of specific types, the effects of different hyperparameter tuning approaches across both the whole 
training dataset and within specific subsets. 

This further enables future comparative analyses, transparent data management, effective execution 
of experiments as well as provenance of the ML experiment settings.  
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