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Abstract

Argumentative discourse rarely consists of opin-
ions whose claims apply universally. As with logi-
cal statements, an argument applies to specific ob-
jects in the universe or relations among them, and
may have exceptions. In this paper, we propose
an argumentation formalism that allows associating
arguments with a domain of application. Appropri-
ate semantics are given, which formalise the notion
of partial argument acceptance, i.e., the set of ob-
jects or relations that an argument can be applied
to. We show that our proposal is in fact equiva-
lent to the standard Argumentation Frameworks of
Dung, but allows a more intuitive and compact ex-
pression of some core concepts of commonsense
and non-monotonic reasoning, such as the scope of
an argument, exceptions, relevance and others.

1 Introduction
The production and evaluation of argumentative discourse
rarely consists of opinions whose claims can precisely be
judged as either true or false. There are almost always shades
of truthfulness, which make a statement hold in certain situa-
tions and not in others. Non-monotonic, case-based, context-
aware, defeasible and other forms of reasoning are based, to a
smaller or larger extent, on this need to specify the conditions
under which a proposition holds or, similarly, to refine the
scope within which it can be accounted true. This paper pro-
poses a formal method to support such a refinement process
using an argumentative formulation.

Both abstract [Dung, 1995] and structured argumentation
frameworks [Besnard et al., 2014] enable the revision of the
acceptability status of arguments in the light of new evidence
or stronger counter-arguments. There is a rich literature on
different semantics for deciding the acceptance of arguments,
even for evaluating their strength. Yet, these frameworks are
challenged when one does not need to decide whether an ar-
gument is generally valid or not, but rather to argue on the
specific cases where it should be accepted.

Consider the following argument taken from a typical ex-
ample of commonsense reasoning: “This fruit is an apple,
and since apples are typically red, this fruit is red”. The

claim is based on a premise about apples that constitutes com-
mon knowledge. Apparently, there are numerous exceptions
to this knowledge, such as Granny Smiths, rotten apples etc;
nevertheless, an attack on the original argument with the po-
sition “This apple is a Granny Smith and Granny Smiths are
green, therefore this apple is green” should not be read as
an attempt to invalidate the argument altogether, but rather to
limit the domain of its applicability: apples may still be red
in general, and the same argument should still be considered
valid in most cases, but when apples belong to a given culti-
var, things may be different. Apart from commonsense rea-
soning, a similar need can be found in other domains, as for
instance in negotiation dialogues, especially for multi-party
quid pro quo conversations, or in the legal domain, where the
organisation of similar cases within the same argument is a
typical practice for modeling legislation.

The representation of exceptional cases can be accommo-
dated by non-monotonic logics, but not by argumentation
frameworks, in which arguments are atomic entities. Thus,
unless one creates one argument for each different element
of the argument’s domain, argumentation frameworks cannot
distinguish between an argument about a specific entity and
one referring to a set of entities of the same type, and can-
not accommodate a notion of “partial acceptance”, where an
argument is acceptable for some entities only.

To address this, we introduce a novel argumentation frame-
work called “Abstract Argumentation Framework with Do-
main assignments” (AAFD), in which arguments are abstract,
but have a domain of application describing the cases that
each argument can be applied to. As with other abstract
frameworks, AAFD includes a binary attack relation, whose
role however is different: instead of invalidating an argument
or reducing its strength, it limits its domain of application.

In the rest of the paper, following a discussion of related
work (Section 2), we define the semantics for AAFDs (Sec-
tion 3), which amounts to determining the applicability of
each argument (called scope) taking into account its domain
of application and that of its attackers. We show how an
AAFD can be mapped to Abstract Argumentation Frame-
works (AAFs), establishing in this way a connection between
AAFDs and several types of non-monotonic reasoning, and
exploit this mapping to prove various properties of the AAFD
semantics (Section 4). We then consider various methods to
support the modeller in defining the domain of application of
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arguments in a more intuitive and expressive manner, using
predicates (Section 5), and conclude (Section 6).

2 Related Work
Formal argumentation employs a simple model to capture
various types of non-monotonic and commonsense reasoning
that cannot be easily captured by standard logics, such as rea-
soning about trust or preferences. Since Dung’s seminal pa-
per on AAFs [Dung, 1995], various extensions have been pro-
posed, enabling attacks to be directed towards attacks [Baroni
et al., 2011], adding support [Cayrol and Lagasquie-Schiex,
2009], preference [Amgoud and Vesic, 2014] or other types
of relations [Martı́nez et al., 2006], adding weights to argu-
ments [Amgoud et al., 2017] or attacks [Dunne et al., 2011],
associating arguments with values [Bench-Capon, 2003], or
imposing hierarchies on arguments [Modgil, 2009]. How-
ever, little attention has been paid to what we call the scope
of an argument, i.e., the class of entities that an argument can
be applied to, despite the fact that it has been studied in other
related areas, such as discourse analysis [Sillince, 1995], lin-
guistic argumentation [Zubizarreta, 1992] and political argu-
mentation [Zarefsky, 2008].

A recently proposed extension allows associating argu-
ments with topics [Budán et al., 2020]. Topics and arguments
are semantically interrelated and the acceptability of an ar-
gument depends on the semantic proximity of the arguments
that defend it. An important difference with our work is that
acceptability is defined in terms of sets of arguments that sat-
isfy certain conditions, so each argument is either accepted
or not; in AAFDs, arguments may be partially accepted, i.e.,
accepted only for a set of entities.

Structured argumentation frameworks provide ways to rep-
resent and reason with domain knowledge. For example,
Hunter [2018] investigates various ways to support non-
monotonic reasoning in deductive argumentation [Besnard
and Hunter, 2008]. This enables constructing arguments
based on the (possibly defeasible) domain knowledge ex-
pressed in the base logic. However, while some of these
logics enable the representation of general knowledge using
variables, arguments can only support literals as their conclu-
sions. Moreover, the commitment to a specific logic restricts
the types of knowledge that we can reason about, which was
one of our motivations for basing our work on AAFs.

Non-monotonic inheritance networks [Horty et al., 1990],
which consist of nodes representing individuals or classes,
and directed links, representing taxonomic relations, capture
the idea of attacks that restrict the scope of arguments. How-
ever, they only enable reasoning with taxonomic relations and
can be translated to AAFs [Dung and Son, 1995].

3 Definitions
3.1 Domain Assignments
In this paper, we equip arguments with a domain of applica-
tion, which corresponds to the elements of a given universe
that the argument applies to; for example, an argument about
apples refers to a specific set of elements, namely apples, and
its validity does not extend to other elements of the universe,
e.g., other fruits. The domain of application can be viewed,

intuitively, as a way of breaking down an argument into a pos-
sibly infinite number of tiny pieces, one for each element of
its domain. These pieces do not refer to a logical part of the
argument, e.g., a premise, but rather to the elements that the
argument (as a whole) applies to, which can be accepted or re-
jected independently from the rest. This breakdown allows an
argument to be attacked only for a specific part of its domain,
i.e., some of its pieces, as in the introductory example, where
an argument about Granny Smith apples only attacks the ar-
gument about apples on the specific sub-domain of Granny
Smith apples, without affecting its validity for other apples.
This idea has the consequence that an attack does not nec-
essarily invalidate an argument totally, and thus an argument
can be partially accepted, i.e., accepted for only some of the
elements of its domain.

To formalise these ideas, we use domain assignments,
which are functions that associate each argument to a prior
and posterior domain of application. The prior domain of ap-
plication (or simply domain) represents the elements of the
universe that the argument applies to. Attacks among argu-
ments limit the applicability of the attacked argument, result-
ing in the argument’s posterior domain of application (or sim-
ply scope), which represents the elements for which the argu-
ment is accepted as valid. Formally:

Definition 1 (Domain Assignment) Consider a non-empty
set U , called the universe, and a set of arguments A. A
domain assignment of A to U is a function that maps each
argument to a subset of U , i.e., DU : A 7→ 2U .

For simplicity, we fix some universe U , and omit reference to
it in the following.

Recall that Abstract Argumentation Frameworks (AAFs)
are defined in [Dung, 1995] as a pair consisting of a set of
arguments and a set of attacks (binary relation) among them.
Abstract Argumentation Frameworks with Domain Assign-
ments are AAFs equipped with a domain assignment:

Definition 2 (AAFDs) An Abstract Argumentation Frame-
work with Domain assignments, or AAFD for short, is a
triple 〈A,R, DU 〉, such that A is a set of arguments, R ⊆
A2 is a binary relation among arguments, andDU : A 7→ 2U

is a domain assignment ofA to U , called the prior domain as-
signment (or simply domain).

3.2 Semantics for AAFDs: Intuition, Desiderata
In Abstract Argumentation Frameworks [Dung, 1995], se-
mantics are defined through extensions, which are subsets
of the original set of arguments that satisfy specific proper-
ties. To allow partial acceptance, our analysis needs to be
more fine-grained, and should concern the arguments’ do-
mains, rather than the arguments themselves. In particular,
the semantics of an AAFD is defined as a domain assignment
(the scope) that determines the subsets of the arguments’ do-
mains that satisfy certain properties, giving rise to semantics
analogous to the classical ones (admissible, complete, etc.).

Before defining formally how the semantics of an AAFD
is computed, we provide some relevant desiderata, inspired
by postulates and principles defined in other related contexts
(e.g., [Baroni et al., 2019; Dung et al., 2010]).
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The first requirement is about the relationship between the
domain and the scope of the argument. In particular, we argue
that the scope of an argument must always be a subset of its
domain. This is reasonable, because the applicability of an
argument is an inherent property of the argument, determined
by the modeller based on its logical content; therefore, the
argumentation framework (and its attacks) cannot increase it.
This gives rise to the domain capping constraint (DC).

Further, the domain of an argument should not be arbitrar-
ily reduced. For every element “missing” from the domain
of an argument, there should be a valid reason, i.e., some ex-
ternal attack. In other words, if a subset of the domain of
an argument receives no attack, it should be part of the argu-
ment’s scope. This gives rise to the scope maximality con-
straint (SM). Note that a corollary of (DC) and (SM) com-
bined is that an argument receiving no attack should be fully
accepted, i.e., its scope should be equal to its domain.

The third requirement ensures that arguments are consis-
tent to each other with respect to their scope. For example, if
a attacks b, and u is in the domain of both a, b, then u cannot
be in the scope of both arguments. This is called the scope
consistency constraint (SC).

Another interesting intuition stems from considering ele-
ments that always appear “together” in the arguments’ do-
mains. Such elements are, in a sense, “indistinguishable”,
and there seems to be no reason to differentiate among them.
In other words, elements that always appear together in the ar-
guments’ domains, should also appear together in their scope.
This is the equal treatment constraint (ET).

These four constraints are formally expressed as follows:

DC ∀a ∈ A, DU (a) ⊆ DU (a)

SM ∀a ∈ A and ∀u ∈ DU (a) \DU (a),

∃b ∈ A such that (b, a) ∈ R and u ∈ DU (b)

SC ∀a, b ∈ A and ∀u ∈ U , (a, b) ∈ R implies that u /∈
DU (a) ∩DU (b)

ET ∀a ∈ A, u1 ∈ DU (a) if and only if u2 ∈ DU (a), implies
∀a ∈ A, u1 ∈ DU (a) if and only if u2 ∈ DU (a)

3.3 Semantics for AAFDs: Formal Definitions
To define our semantics, we first introduce the notion of lim-
iting the domain of application: given a set of arguments
A, and two domain assignments DU

1 , D
U
2 for A, we say

that DU
1 limits DU

2 , denoted by DU
1 v DU

2 , if and only if
DU

1 (a) ⊆ DU
2 (a) for all a ∈ A. Informally, DU

1 v DU
2

when DU
1 assigns arguments to “smaller sets” compared to

DU
2 .
In the following, we define various classes of scope, which

give rise to the respective semantics. In all of the following
definitions, we assume a fixed AAFD F = 〈A,R, DU 〉, and
some scope DU : A 7→ 2U .

We start with the notion of compliant scope:

Definition 3 (Compliant scope) The scopeDU is compliant
if and only if DU v DU .

A scope that is compliant simply guarantees that no ar-
bitrary assignments are made as described by the DC re-

quirement (see also Proposition 5). As an example, con-
sider Figure 1, which shows a simple AAFD 〈A,R, DU 〉,
where U = {x, y, z}, A = {a, b}, R = {(a, b), (b, a)}
and DU (a) = {x, y}, DU (b) = {x, y, z}. Then, the scope
DU

1 (a) = {x, y}, DU
1 (b) = {y, z} is compliant.

Definition 4 (Conflict-free) The scope DU is conflict-free if
and only if it is compliant, and for any a, b ∈ A, u ∈ U , if
(a, b) ∈ R then u /∈ DU (a) ∩DU (b).

Conflict-freeness ensures that the SC requirement is satis-
fied (see Proposition 5). Returning to the example of Figure
1, we note that DU

1 is not conflict-free, but DU
2 (a) = {x},

DU
2 (b) = {y, z} is. Acceptability is defined as follows:

Definition 5 (Acceptability) For a ∈ A, u ∈ U , such that
u ∈ DU (a), the pair (a, u) is acceptable with respect to DU

if and only if, whenever (b, a) ∈ R and u ∈ DU (b), there
exists some c ∈ A such that (c, b) ∈ R and u ∈ DU (c).

An argument a ∈ A is called fully acceptable with re-
spect to DU iff (a, u) is acceptable with respect to DU for
all u ∈ DU (a) and DU (a) 6= ∅. It is called non-acceptable
with respect to DU iff there is no u ∈ DU (a) such that (a, u)
is acceptable with respect toDU . It is called partially accept-
able with respect to DU if it is neither fully acceptable, nor
non-acceptable with respect to DU . Using Definition 5, we
can now define admissibility in AAFDs as follows:

Definition 6 (Admissible) The scope DU is admissible if
and only if it is conflict-free, and (a, u) is acceptable with
respect to DU , for all a ∈ A, u ∈ DU (a).

Continuing the example of Figure 1, we note that the scope
DU

3 (a) = {x}, DU
3 (b) = {z} is admissible, as can be easily

verified.

Definition 7 (Complete) The scope DU is complete if and
only if it is admissible, and for any a ∈ A, u ∈ DU (a), if
(a, u) is acceptable with respect to DU , then u ∈ DU (a).

In the AAFD of Figure 1, the scope DU
4 (a) = {x, y},

DU
4 (b) = {z} is complete. Complete scopes satisfy the SM

requirement (see Proposition 5).

Definition 8 (Grounded) The scope DU is grounded if and
only if it is a minimal (with respect to v) complete scope.

Definition 9 (Preferred) The scope DU is preferred if and
only if it is a maximal (with respect to v) admissible scope.

Definition 10 (Stable) The scopeDU is a stable scope if and
only if it is conflict-free, and for any a ∈ A, u ∈ U , if u ∈
DU (a)\DU (a), then there exists b ∈ A such that (b, a) ∈ R
and u ∈ DU (b).

a
〈x, y〉

b
〈x, y, z〉

Figure 1. An example AAFD
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To illustrate the above definitions, let us consider again the
AAFD in Figure 1, and the following assignments:

• DU
5 (a) = {x, y}, DU

5 (b) = {z}.
• DU

6 (a) = {x}, DU
6 (b) = {y, z}.

• DU
7 (a) = ∅, DU

7 (b) = {z}.
• DU

8 (a) = ∅, DU
8 (b) = {x, y, z}.

We can easily show that all the above assignments are com-
plete. The only grounded one is DU

7 , whereas DU
5 , D

U
6 , D

U
8

are preferred and stable.
None of the above types of scope captures the ideas behind

the ET requirement described in Section 3.2. To formalise
this intuition, we first define the concept of elements that al-
ways appear “together”:

Definition 11 (Indistinguishable) Two elements u1, u2 ∈ U
are called indistinguishable, if and only if, for all a ∈ A,
u1 ∈ DU (a) if and only if u2 ∈ DU (a). We write u1 ∼ u2 to
denote that u1, u2 are indistinguishable.

It is trivial to see that the relation ∼ is an equivalence rela-
tion (i.e., reflexive, symmetric and transitive), and thus breaks
down U into disjoint equivalence classes. This equivalence
relation is used in the following definition:

Definition 12 (Canonical) The scopeDU is canonical if and
only if it is compliant, and for all a ∈ A, u1, u2 ∈ U , when-
ever u1 ∼ u2 and u1 ∈ DU (a), it follows that u2 ∈ DU (a).

Looking at the previous examples, we note
that DU

4 , D
U
5 , D

U
7 and DU

8 are canonical, whereas
DU

1 , D
U
2 , D

U
3 , D

U
6 are not. Note that canonical seman-

tics are orthogonal to other semantics, so any scope that is,
e.g., admissible, complete, etc., may also be canonical.

In the following, we use the following shorthands for
the semantics introduced above: cm for compliant, cf for
conflict-free, ad for admissible, co for complete, pr for pre-
ferred, gr for grounded, st for stable and ca for canonical.
We use σ as a catch-all symbol to indicate any of the above;
for example, we write co-scope to refer to a complete scope,
and σ-scope to refer to a scope of the type denoted by σ.

4 Results for AAFDs
4.1 Mapping AAFDs to AAFs
Interestingly, it can be shown that the semantics of AAFDs
are fully compatible with the classical semantics of AAFs
[Dung, 1995], i.e., an AAFD can be viewed as an AAF (and
vice-versa, of course, e.g., when U is a singleton set). On the
other hand, AAFDs provide a much more compact and intu-
itive representation. Below, we describe two different ways
to map AAFDs to AAFs.

For the first mapping, we assume that each element in the
domain of an argument is spawning an argument in the AAF
(creating also attacks in the natural way). In other words, each
element u ∈ DU (a), along with the argument a itself (as a
pair, au) are mapped into an argument in the AAF (see also
Figure 2). Formally, the natural mapping is a mapping Φnat,
which maps an AAFD 〈A,R, DU 〉 to an AAF 〈A∗,R∗〉 =

Φnat(〈A,R, DU 〉), as follows:

ax bx ay by bz

Figure 2. Applying Φnat on the AAFD of Figure 1

• A∗ = {au | a ∈ A, u ∈ DU (a)}
• R∗ = {(au, bu) | au, bu ∈ A∗, (a, b) ∈ R}
For simplicity, we abuse notation, and denote by

Φnat(D
U ) = {au | a ∈ A, u ∈ DU (a)}, where DU is a

compliant scope. In words, Φnat(D
U ) returns all elements

au such that u is in the scope of a (according to DU ).
The assumption for DU being a compliant scope is cru-

cial for defining Φnat(D
U ). Indeed, if DU was not compli-

ant, then it would force us to spawn elements of the form au,
where u /∈ DU (a); such elements do not appear in A∗.

The following proposition shows the equivalence in the se-
mantics of the two representations1:

Proposition 1 Take an AAFD 〈A,R, DU 〉, the AAF
〈A∗,R∗〉 = Φnat(〈A,R, DU 〉), and a compliant scope DU

in 〈A,R, DU 〉. Then, for σ ∈ {cf ,ad, co,gr,pr, st}, DU

is a σ-scope in 〈A,R, DU 〉 if and only if Φnat(D
U ) is a σ-

extension in 〈A∗,R∗〉.
Although Φnat achieves the required effect of mapping an

AAFD into an AAF with equivalent semantics, it is not effi-
cient because the size of the resulting AAF is highly depen-
dent on the size of U , which is expected to be large (or even
infinite). We show here a more sophisticated mapping which
leads to an AAF whose size only depends on the number of
arguments in AAFD, but not on the size of U . The idea stems
from the notion of indistinguishable elements (Definition 11),
and applies only for canonical scopes. To simplify presenta-
tion below, we denote by C = {Ci} the equivalence classes
generated by ∼.

The natural mapping with equivalences Φ[nat] is very sim-
ilar to Φnat, except that it creates, for each a ∈ A and for
each equivalence class Ci, just one argument in the AAF. In
other words, if a ∈ A, u1 ∼ u2 (say u1, u2 ∈ C1) and
u1, u2 ∈ DU (a), then, instead of creating two arguments
in the AAF (namely au1 , au2 ), Φ[nat] creates just one (aC1 ).
Figure 3 shows the application of Φ[nat] on the AAFD of Ex-
ample 1, for the equivalence classes C1 = {x, z}, C2 = {y}.

Formally, we define a mapping Φ[nat], which
maps an AAFD 〈A,R, DU 〉 to an AAF 〈A∗,R∗〉 =

Φ[nat](〈A,R, DU 〉), as follows:

• A∗ = {aC | a ∈ A, C ∈ C, C ∩DU (a) 6= ∅}
• R∗ = {(aC , bC) | aC , bC ∈ A∗, C ∈ C, (a, b) ∈ R}
Again, we abuse notation, and denote by Φ[nat](D

U ) =

{aC | a ∈ A, C ∩ DU (a) 6= ∅}, where DU is a canonical
scope. As before, this allows us to model the scope of AAFD
arguments in the AAF representation.

1All proofs are simple and omitted due to lack of space.
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aC1 bC1 bC2

Figure 3. Applying Φ[nat] on the AAFD of Figure 1

Note that the assumption for DU being a canonical scope
is crucial. Indeed, suppose that DU is not canonical and take
some C ∈ C, u1, u2 ∈ C, such that u1 ∈ DU (a), u2 /∈
DU (a). Then, it is not clear whether aC (which essentially
represents both u1 and u2 as candidates for inclusion in the
scope of a) should be in Φ[nat](D

U ).
The following result shows that Φ[nat] does not mess with

the semantics during the mapping of an AAFD to an AAF;
note, however, that this result applies only when we restrict
ourselves to the realm of canonical scopes:

Proposition 2 Take an AAFD 〈A,R, DU 〉, the AAF
〈A∗,R∗〉 = Φnat(〈A,R, DU 〉), and a canonical scope DU

in 〈A,R, DU 〉. Then, for σ ∈ {cf ,ad, co,gr,pr, st}, DU

is a σ-scope in 〈A,R, DU 〉 if and only if Φ[nat](D
U ) is a

σ-extension in 〈A∗,R∗〉.

4.2 Complexity Results
We first address the problem of how to represent an AAFD.
Let us consider an AAFD F = 〈A,R, DU 〉. Set NA,
NR, ND, NU the size of A, R, DU , U respectively. Then:
NR = O(N2

A), ND = O(NANU ) and |F| = O(NA +NR +
ND) = O(N2

A + NANU ). For an AAF, FA = 〈A,R〉, the
respective size is |FA| = O(NA +NR) = O(N2

A).
Another interesting consideration is the size of C (sayNC).

It can be shown that NC = O(2NA). Indeed, suppose that
A = {a1, . . . , aNA

}, and set Si = DU (ai). Then, each el-
ement u ∈ U is related to a membership relation (∈ or /∈)
to each Si, which gives a total of 2NA different combinations
related to these membership relations. Moreover, u1 ∼ u2
if and only if u1, u2 have the same membership relations to
all Si. Therefore, there are at most 2NA equivalence classes.
Proposition 3 shows the worst-case size of an AAF that cor-
responds to an AAFD (under Φnat, Φ[nat]):

Proposition 3 Consider an AAFD 〈A,R, DU 〉, such that
|A| = NA, |U | = NU . Set F1 = 〈A1,R1〉 =

Φnat(〈A,R, DU 〉), F2 = 〈A2,R2〉 = Φ[nat](〈A,R, DU 〉).
Then |F1| = O(N2

A ·N2
U ), |F2| = O(N2

A · 2NA).

The most important consequence of Proposition 3 is that
the size of Φ[nat](〈A,R, DU 〉) does not depend on the size
of U . Thus, the most efficient representation depends on the
relative size among A, U . If we expect |A| << |U |, as is
usually the case, Φ[nat] is more efficient, in terms of space,
otherwise Φnat is more efficient. Also, the following corol-
lary holds:

Corollary 1 Take some F = 〈A,R, DU 〉. If A, U are finite,
then Φnat(F) is finite. If A is finite, then Φ[nat](F) is finite.

Let us now consider time complexity. As implied by
Proposition 3, we can map (in linear time, using Φnat) an

AAFD to an AAF of the same size and reason with that.
Therefore, complexity of reasoning with an AAFD cannot
be worse than the complexity of reasoning with an AAF of
the same size. However, it cannot be better either, as can be
observed by noticing that the AAFD, where U = {u} and
DU (a) = {u} for all a ∈ A, cannot be reasoned upon faster
than the respective AAF (i.e., without the domains).

It should be noted that the above analysis regarding the
space and time complexity applies for the simple represen-
tation of AAFDs, where domains are represented through the
enumeration of their elements. More sophisticated represen-
tations (e.g., through predicates or other methods – see Sec-
tion 5) may have a much smaller representational footprint,
but may incur additional computational overheads (to deter-
mine the domains, as needed). Further analysis would require
specific assumptions on the type of predicates/formulas used
for the representation, and is omitted.

4.3 Properties of AAFD Semantics
The equivalence between the semantics of AAFDs and AAFs
(Proposition 1) means that most of the results that have ap-
peared in the literature regarding AAFs can be trivially ap-
plied to AAFDs as well (e.g., on the existence, multiplicity
and relation of different types of scope). With regards to cm
and ca-scopes, the following can be shown:
Proposition 4 In any AAFD, there exists at least one cm-
scope and at least one σ-scope that is also a ca-scope, for
σ ∈ {cf ,ad, co,gr,pr}. Also, if there exists a st-scope,
then there exists a st-scope that is also a ca-scope.

The following proposition shows how the various seman-
tics defined in Section 3.3 meet the requirements described in
Section 3.2:
Proposition 5 Consider an AAFD 〈A,R, DU 〉 and a scope
DU . Then:

• For σ ∈ {cm, cf ,ad, co,pr,gr, st}, if DU is a σ-
scope, then it satisfies DC.

• For σ ∈ {co,pr,gr, st}, if DU is a σ-scope, then it
satisfies SM.

• For σ ∈ {cf ,ad, co,pr,gr, st}, if DU is a σ-scope,
then it satisfies SC.

• If DU is a ca-scope, then it satisfies ET.
A corollary of Propositions 4, 5 is that a scope that is ca-

co, ca-gr, or ca-pr always exists, and it satisfies all require-
ments set in Subsection 3.2. Thus, although suitability of se-
mantics is application-dependent, we argue that ca-co, ca-gr
and ca-pr-scopes seem more plausible for most applications.
The same is true for ca-st-scopes, when they exist.

5 AAFDs with a Background Theory
The modelling method presented so far manages to deliver a
more refined argumentation framework for reasoning about
the domain and scope of arguments, in addition to the argu-
ments themselves. In this section, we briefly explain how we
can enhance the expressiveness of AAFDs by using predi-
cates to describe the domain of arguments, rather than indi-
viduals. This can be important in several settings. Consider
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for instance the following argument: “all doctors are licensed
to practice general medicine”. Assume also that it so happens
that in our universe all doctors are female, e.g., in the context
of a specific hospital. If we represent the domain of this argu-
ment by spelling out the individuals, we lose the information
that it is the profession of the individuals that this argument
relies on, and not their gender.

A possible approach for lifting the expressive power of ar-
gumentation frameworks, especially abstract ones, is to rely
on a background theory. This idea can be applied to AAFDs,
in order to talk abstractly about attributes, categories, or
classes of individuals when modelling the domain of argu-
ments. According to the expressive power of the background
theory, the resulting abstract framework can be structured to
a lighter or heavier degree.

We define an AAFD enhanced with a simple background
theory that relies on n-ary predicates to represent the domain
of arguments, by adapting the definitions of Section 3. We
assume an infinite set of n-ary predicate symbols P , where n
is fixed (i.e., for simplicity in presentation, we allow our uni-
verse to be described with unary, binary etc. predicates, but
not with combinations of predicates having different arity).
We use this set to define the predicate assignmentDP of a set
of arguments A as follows:
Definition 13 (Predicate Assignment) Given an infinite
supply of predicate symbols P of fixed arity n and a set of
arguments A, a predicate assignment DP : A 7→ 2P is a
function that maps each argument to a subset of P.

We define, in the usual manner, an interpretation I that
assigns meaning to predicates:
Definition 14 (Interpretation) An interpretation I that as-
signs meaning to the predicates in P is a pair 〈U, I〉, where
U is any nonempty set of objects, called the universe, and
I is a mapping, called the interpretation mapping from the
predicate symbols to relations over U , such that I(P ) ⊆ Un.

For example, for the unary predicate symbol Apple,
I(Apple) would be some subset of U , presumably the set of
apples in that interpretation. We adjust Definition 1 so that
domain assignments are described in terms of predicates:
Definition 15 (Domain Assignment, v2) A domain assign-
ment DU of a set of arguments A over U is a mapping
DU : A 7→ 2U such that: DU (a) =

⋃
P∈DP (a) I(P ).

Finally, we revisit the definition of an AAFD (Definition
2) to take into account background knowledge. Intuitively, an
argument talking about apples and pears is talking about any
element in the universe of fruits that has either the property
Apple or the property Pear. Formally:
Definition 16 (AAFDB) An AAF with domain assignments
and background theory, or AAFDB for short, is a quadruple
〈A,R, DP , I〉, such that 〈A,R〉 is an AAF, DP : A 7→ 2P

is the prior domain of A over P , and I an interpretation of
the symbols in P.

We can then adapt the notions of acceptability, admissibil-
ity, completeness, etc. described in Section 3.1, to take advan-
tage of the background theory, in order to define the seman-
tics in an alternative way, using predicates; e.g., the following

definition of acceptability takes into consideration a context
(set of predicates) within which attacks are considered:
Definition 17 (Acceptable, v2) Given an AAFDB
〈A,R, DP , I〉, an argument a ∈ A and an element
u ∈

⋃
P∈DP (a)

I(P ), the pair (a, u) is acceptable with
respect to a predicate assignment DP and a set of predicates
S ⊆ P if and only if, ∀b ∈ A such that (b, a) ∈ R and
u ∈

⋃
P∈S∩DP (b)

I(P ), ∃c ∈ A such that (c, b) ∈ R and
u ∈

⋃
P∈S∩DP (c) I(P ).

The idea is to focus only on attacks that concern specific
predicates. Informally, an argument a is acceptable for an
element of its domain u with respect to a predicate assign-
ment DP and a set of predicates S if, whenever there is an
argument b that attacks a on u in the given context, there is
another argument c that defends a on u. Note that attacks and
defenses only consider elements that satisfy the predicates in
S. This definition is similar to Definition 5, except that, here,
the acceptability additionally takes into account the context
of the framework, described as the set of predicates S.

One can further extend this approach with a more elaborate
background theory for the domain of arguments that specifies,
for instance, a taxonomy of concepts, or an ontological repre-
sentation of the relations of concepts, or even a full first-order
logic or a non-monotonic logic theory. The more expressive
the background theory is, the more the framework will depart
from its abstract notions and will approach the rationale of
structured argumentation frameworks.

6 Conclusion and Future Work
We propose a novel argumentation framework, AAFD, where
each argument has a domain of application that describes the
entities that it refers to and can be applied on. This way, at-
tacks essentially restrict an argument’s domain of application.
This framework provides a formal computational method to
support a refinement process using an argument-based for-
malisation that is rooted in argumentation theory, and can
represent exceptions as arguments, essentially connecting the
notions of classic argumentation (which supports atomic ar-
guments) with non-monotonic reasoning.

For future work, we will define and implement algorithms
for computing AAFD extensions, thereby exhibiting better
average-case complexity compared to a naive approach map-
ping the AAFD to an AAF and reasoning using standard AAF
algorithms. Moreover, an alternative mapping of AAFDs into
AAFs based on a domain-based partitioning of arguments
will be considered and explored. We will also further investi-
gate the extension of AAFDs with a background theory, and
develop AAFDs into dialectical frameworks, in order to use
the expressiveness of AAFDs to approach commonsense rea-
soning problems.

Acknowledgments
This work has received funding from the Hellenic Foundation
for Research and Innovation (HFRI) and the General Sec-
retariat for Research and Technology (GSRT), under grant
agreement No 188. We would like to thank Anthony Hunter
for his valuable feedback on a previous version of this work.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2081



References
[Amgoud and Vesic, 2014] Leila Amgoud and Srdjan Vesic.

Rich preference-based argumentation frameworks. Inter-
national Journal of Approximate Reasoning, 55(2):585 –
606, 2014.

[Amgoud et al., 2017] Leila Amgoud, Jonathan Ben-Naim,
Dragan Doder, and Srdjan Vesic. Acceptability Semantics
for Weighted Argumentation Frameworks. In Proceedings
of the 26th International Joint Conference on Artificial In-
telligence (IJCAI-17), page 56–62. AAAI Press, 2017.

[Baroni et al., 2011] Pietro Baroni, Federico Cerutti, Massi-
miliano Giacomin, and Giovanni Guida. AFRA: Argu-
mentation framework with recursive attacks. International
Journal of Approximate Reasoning, 52(1):19–37, 2011.

[Baroni et al., 2019] Pietro Baroni, Antonio Rago, and
Francesca Toni. From fine-grained properties to broad
principles for gradual argumentation: A principled spec-
trum. International Journal of Approximate Reasoning
(IJAR), 105:252–286, 2019.

[Bench-Capon, 2003] Trevor J. M. Bench-Capon. Persua-
sion in Practical Argument Using Value-based Argumen-
tation Frameworks. Journal of Logic and Computation,
13(3):429–448, 06 2003.

[Besnard and Hunter, 2008] Philippe Besnard and Anthony
Hunter. Elements of Argumentation. MIT Press, 2008.

[Besnard et al., 2014] Philippe Besnard, Alejandro Gar-
cia, Anthony Hunter, Sanjay Modgil, Henry Prakken,
Guillermo Simari, and Francesca Toni. Introduction to
structured argumentation. Argument & Computation,
5(1):1–4, 2014.

[Budán et al., 2020] Maximiliano C.D. Budán, Maria Laura
Cobo, Diego C. Martinez, and Guillermo R. Simari. Prox-
imity semantics for topic-based abstract argumentation.
Information Sciences, 508:135 – 153, 2020.

[Cayrol and Lagasquie-Schiex, 2009] Claudette Cayrol and
Marie-Christine Lagasquie-Schiex. Bipolar abstract argu-
mentation systems. In Guillermo Ricardo Simari and Iyad
Rahwan, editors, Argumentation in Artificial Intelligence,
pages 65–84. Springer, 2009.

[Dung and Son, 1995] Phan Minh Dung and Tran Cao Son.
Nonmonotonic inheritance, argumentation and logic pro-
gramming. In V. Wiktor Marek, Anil Nerode, and
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