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Summary
Background In primary cardiovascular disease prevention, early identification of high-risk individuals is crucial. 
Genetic information allows for the stratification of genetic predispositions and lifetime risk of cardiovascular disease. 
However, towards clinical application, the added value over clinical predictors later in life is crucial. Currently, this 
genotype–phenotype relationship and implications for overall cardiovascular risk are unclear.

Methods In this study, we developed and validated a neural network-based risk model (NeuralCVD) integrating 
polygenic and clinical predictors in 395 713 cardiovascular disease-free participants from the UK Biobank cohort. The 
primary outcome was the first record of a major adverse cardiac event (MACE) within 10 years. We compared the 
NeuralCVD model with both established clinical scores (SCORE, ASCVD, and QRISK3 recalibrated to the UK 
Biobank cohort) and a linear Cox-Model, assessing risk discrimination, net reclassification, and calibration over 
22 spatially distinct recruitment centres. 

Findings The NeuralCVD score was well calibrated and improved on the best clinical baseline, QRISK3 (∆Concordance 
index [C-index] 0·01, 95% CI 0·009–0·011; net reclassification improvement (NRI) 0·0488, 95% CI 0·0442–0·0534) 
and a Cox model (∆C-index 0·003, 95% CI 0·002–0·004; NRI 0·0469, 95% CI 0·0429–0·0511) in risk discrimination 
and net reclassification. After adding polygenic scores we found further improvements on population level 
(∆C-index 0·006, 95% CI 0·005–0·007; NRI 0·0116, 95% CI 0·0066–0·0159). Additionally, we identified an interaction 
of genetic information with the pre-existing clinical phenotype, not captured by conventional models. Additional high 
polygenic risk increased overall risk most in individuals with low to intermediate clinical risk, and age younger than 
50 years. 

Interpretation Our results demonstrated that the NeuralCVD score can estimate cardiovascular risk trajectories for 
primary prevention. NeuralCVD learns the transition of predictive information from genotype to phenotype and 
identifies individuals with high genetic predisposition before developing a severe clinical phenotype. This finding 
could improve the reprioritisation of otherwise low-risk individuals with a high genetic cardiovascular predisposition 
for preventive interventions.

Funding  Charité–Universitätsmedizin Berlin, Einstein Foundation Berlin, and the Medical Informatics Initiative.
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Introduction 
Cardiovascular diseases, such as coronary heart disease, 
are consistently among the leading causes of death world
wide. A personalised risk assessment is fund amental to 
targeted prevention, intervention, and therapy. The early 
identification of highrisk individuals is crucial to 
reducing the disease burden on the population and 
increasing the effectiveness of interventions.1

Current prognostic models focus on prevalent classical 
cardiovascular risk factors, such as age, sex, blood 
pressure, cholesterol measurements, lifestyle factors 
such as smoking status, and medical history, which are 
analysed by linear models such as the semiparametric 

Cox model.2–4 Beyond these risk factors, many genetic 
variants have been associated with cardiovascular 
disease5 and leveraged in polygenic scores (PGSs),6 
summarising genetic predisposition for cardiovascular 
disease at the time of birth. It has been shown that 
genetic risk captured in PGSs is associated with disease 
frequency for coronary heart disease and stroke.7,8 The 
promise of PGSs to leverage genetic information in 
primary prevention for early disease detection has 
sparked the interest of regulatory authorities.1,9

However, the general applicability and benefit of PGSs 
for preventive cardiovascular medicine remain disputed.10 
One objection against a broad application of PGSs in 
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primary prevention is the low information content for 
most individuals in the population. In the longtailed 
PGS distribution, only the individuals in the top 
percentiles show big changes in the associated disease 
frequencies. Five groups recently investigated the 
potential benefits of combining PGSs with conventional 
cardiovascular disease risk factors for cardiovascular risk 
prediction. Mosley and colleagues11 found no additional 
benefit in adding a PGS against coronary heart disease to 
the features of the American Heart Association/ 
Atherosclerotic Cardiovascular Disease (AHA/ASCVD) 
pooled cohort equation in two cohorts of US adults. Elliot 
and colleagues12 found significant, yet modest 
improvements in discrimination (ie, the ability to 
differentiate individuals at low and high risk) and 
reclassification (ie, correct reclassification of predicted 
cases and noncases based on the known ground truth 
compared with a baseline model) after adding their score 
against coronary artery disease to the features of the 
AHA/ASCVD pooled cohort equation and the QRISK3 
score in the UK Biobank cohort. Sun and colleagues13 
found only incremental improvements in discrimination 
over the population, but notable reclassification after 
adding two PGSs against coronary heart disease stroke, 
respectively, to conven tional predictors. With the 
additional information of genetic predisposition, the 
authors estimate prevention of additional 7% cardio
vascular disease events compared with conventional 
scores based on the altered treatment recommendations.13 
Most recently, McKay and colleagues14 developed a novel 
integrative risk tool com bining a novel coronary artery 
disease PGS with the Pooled Cohort Equations (PCE) 
and QRISK3 score, respectively. The authors report a 
benefit in coronary artery disease prediction and estimate 

a net reclassification improvement of 0·137 at the 7·5% 
10year risk threshold for PCE, and 0·035 at the 10% 
10year threshold for QRISK3, and propose an effect of 
age and sex on reclassification. 

Although PGSs bear an enormous potential for preven
tive medicine and risk modelling, their relationship to 
clinical phenotypes and known predictors remains 
elusive.15 PGSs incorporate a wide range of variants over 
an individual’s genome, distinguishing variants solely by 
effect size and dose, not by the mechanism of action. The 
incorporation of single nucleo tide polymorphisms 
(SNPs) acting on known risk factors in PGSs has raised 
concerns about potential biases emerging from joint 
analysis with those same risk factors.15 This concern calls 
for tools to model complex interactions to correct for 
these shortcomings in integrating PGSs and clinical 
predictors.

Neural networks represent stateoftheart survival 
analysis.16–19 If applied to realworld medical data, the 
model’s increased complexity could facilitate the inte
gration of polygenic information for primary prevention 
of cardiovascular disease by inherently accounting for 
the interaction of the polygenic information and the 
clinical parameters.

This study presents the development and validation of 
a novel neural networkbased cardiovascular disease risk 
model, NeuralCVD, based on Deep Survival Machines,19 
for primary prevention based on a set of established 
cardiovascular disease risk factors. Comparing our model 
against existing risk scores and a Cox proportional 
hazards model20 trained on the same data over the entire 
study population, we first demonstrated its discriminative 
capabilities. We subsequently assessed the integration of 
PGSs in risk modelling for primary cardiovascular 

Research in context 

Evidence before this study
In primary cardiovascular risk prediction, genetic predictors 
have already been added to traditional risk prediction models. 
Although neural networks have been applied previously on 
clinical variables, to date, no study has investigated their 
application for modelling the interaction of clinical and genetic 
predictors. We gathered evidence before this study using 
Google Scholar, searching all entries from the beginning of the 
database records until April 16, 2021, with no language 
restrictions. Relevant work identified by the Google Scholar 
search was considered the current state-of-the-art (thus 
reference material) for this study. To identify eligible studies, we 
used the keywords “cardiovascular disease”, “polygenic scores”, 
“survival analysis”, and “neural networks”.

Added value of this study
Neural network-based survival models represent the state-of-
the art in time-to-event modelling. This study is, to our 
knowledge, the first to assess the applicability of these 

approaches for cardiovascular risk modelling in primary 
cardiovascular disease prevention. Furthermore, it is the first 
study to directly model the interaction of clinical risk and 
polygenic risk. We show that neural networks can model this 
genotype–phenotype relationship which could have direct 
consequence in the prioritisation of preventive interventions. 

Implications of all the available evidence
Our proposed NeuralCVD score demonstrates that neural 
network-based survival models can learn expressive 
multimodal patient representations. Consequently, this paves 
the way for integrative models for cardiovascular primary 
prevention leveraging both clinical and polygenic information 
and for a clinical application of neural network-based risk 
models in general. Furthermore, this study motivates research 
in genetic variants and polygenic scores which maximise the 
residual information content over commonly assessed clinical 
predictors.
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disease prevention by building on six well established 
PGSs against coronary artery disease and stroke.7,8,21–24 
After retraining our NeuralCVD risk score and the Cox 
model on clinical covariates and the PGSs, we 
demonstrate that our model can integrate the genetic 
information and learns the residual predictive 
contribution of the poly genic information over the 
manifested clinical phenotype.

Methods
Data source and outcome
We used data from the UK Biobank—a cohort of 
273 383 women and 229 122 men aged between 37 years 
and 73 years at the time of their baseline assessment. The 
cohort is a sample of the UK’s general population; 
participants were enrolled in 22 recruitment centres 
across the UK. Patients with preexisting myocardial 
infarction, stroke, or lipidlowering therapy were 
excluded from the analysis, but retained as auxiliary 
training data for our NeuralCVD score. 

The outcome was 10year cardiovascular disease risk 
defined by the earliest recorded event of fatal or nonfatal 
myocardial infarction (International Classification of 
Diseases [ICD]10 codes I21, I22, I23, I24, I25) or fatal or 
nonfatal transient ischaemic attack or ischaemic stroke 
(ICD10 codes G45, I63, I64) either in the primary care 
records, the hospital episode statistics, or death records. 
The study adhered to the transparent reporting of a 
multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) state ment for reporting.25 The 
completed checklist can be found in the appendix (p 17).

Covariate selection
Predictors were selected to reflect traditional primary 
prevention risk models2–4 (appendix p 16). Demographic 
information was extracted from primary care records and 
confirmed at the study’s recruitment interview. Lifestyle 
information was extracted from the questionnaire at 
recruitment. Physical measurements and laboratory 
measures were taken at recruitment. Preexisting 
medical conditions were extracted from the questionnaire 
or interview at recruitment, primary care records, and 
hospital episode statistics. Medications were extracted 
from the recruitment interview. PGSs (PGS000011,21 
PGS000018,7 PGS000057,22 PGS000058,23 PGS00005924) 
for coronary artery disease and PGS0000398 for stroke 
were selected from the PGS catalog26 and calculated for 
all participants.

Dataset partitions and imputation
For model development and testing, we split the dataset 
into 22 spatially separated partitions based on the  
location of the assessment centre at recruitment. We 
analysed the data in 22fold nested crossvalidation, 
setting aside one of the spatially separated partitions as a 
test set, aggregating the remaining partitions and 
randomly selecting 10% of the aggregated data as the 

validation set. Within each of the 22 crossvalidation 
loops, the individual test set (ie, the spatially disjunct 
partition) remained untouched throughout model 
development, while the validation set was used to validate 
the fitting progress and checkpoint selection. All 
22 obtained models were then evaluated on their 
respective test sets. We assumed missing data occurred 
at random depending on the clinical variables and the 

Data for 502505 people available in complete UK Biobank 

395 713 included in 22-times nested cross-validation with 
spatially separated test sets by UK Biobank assessment
centre

106792 excluded
16 withdrew consent

1 sex not available
106775 earlier records available for myocardial

infarction, stroke, or lipid-lowering
treatment
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Figure 1: Selection and characteristics of study population
(A) Individuals in the UK Biobank population who withdrew consent, with 
missing information about their sex or with earlier records of incident 
myocardial infarction or stroke or lipid-lowering treatment at baseline were 
excluded. The remaining set was split into training, validation, and test sets in 
22-fold nested cross-validation based on the assigned UK Biobank assessment 
centre. (B) Distribution of observation times for the derived study population. 
The median observation time was 11·7 years (IQR 11·0–12·3). (C) Kaplan-Meier 
estimates for the disease-free survival function stratified by sex. (D) Numbers at 
risk in 5-year intervals stratified by sex.

See Online for appendix
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cardiovascular events and performed multiple impu
tations using chained equations with random forests.27 
Continuous variables were standardised and mean 
centred; categorical variables were onehot encoded. 
Imputation models were fitted on the training sets and 
applied to the respective validation and test set.

Model development and evaluation
We developed models on two distinct covariate sets, one 
including 29 cardiovascular risk factors in existing  risk 
scores (table 1), the other with the addition of the 
computed values for the six PGSs. We constructed three 
models for each covariate set: a linear Cox model, a Cox 
model with interaction terms for age and each PGS, and 
our NeuralCVD score. The Cox model with the interaction 
terms allows to assess potential nonlinear effects 
between age and the genetic information. For each 
assessment centre, and thus each crossvalidation split, 
models were trained on the respective training set, and 
checkpoints selected on the respective validation set. For 

the final evaluation, predictions were then made for all 
participants in the test set. Harell’s Cindex was calculated 
with the lifelines package,28 for both the aggregated test 
set and individual assessment centres. The net 
reclassification improvement was calculated with the 
nricens package.29 95% CIs were calculated based on 
1000 bootstrapping runs and report the 2·5% and 97·5% 
quantile borders. For details on the implementation of 
NeuralCVD, the Cox models and the calibration, please 
refer to the appendix (pp 1–2).

Calculation of PGSs and the PGSMETA score
The PGSs were developed on multiple external cohorts 
and covered a diverse set of patients. Detailed information 
is available in the appendix (p 2). PGSs were calculated 
with the published weights from the PGS catalog,26 the 
imputed genotype information from the UK Biobank, 
and the R package PRSice2.30 To analyse and visualise 
our model predictions by overall genetic risk, we sum the 
individual percentile ranks for each of the six PGS scores 
and calculate a new aggregated percentile rank over the 
sum to construct a polygenic meta score (PGSMETA). All 
models are trained by adding the six individual PGS 
scores, not the PGSMETA score. 

Relative risk differences
To investigate the impact of the PGSs on individual 
predictions, we calculate relative risk differences between 
models trained with and without the polygenic information. 
By subtracting the clinical risk estimate from the model’s 
prediction, which was trained on the clinical and polygenic 
information, we obtained an absolute risk difference. It is 
positive if the PGSs resulted in a higher risk estimate and 
negative if they lead to a lower risk estimate. Next, we 
normalised the absolute risk difference by dividing it by the 
clinical risk estimate to calculate the relative risk differences. 
Because absolute risk differences for individuals with 
clinical risk below 1% are close to zero and resulting relative 
risk differences in this group are thus prone to numerical 
instabilities in calibration, we did not calculate relative risk 
differences for these individuals. All patient data used 
throughout this study has been subject to patient consent 
as covered by the UK Biobank. All patient data used 
throughout this study was covered by the general patient 
consent of the UK Biobank, which applies to this study 
through the Material Transfer Agreement (MTA) of 
application 51157.Calibration was evaluated graphically by 
comparing predicted and observed risks.

Role of the funding source
The funders had no role in data collection, analysis, 
interpretation, writing, and the decision to submit. 

Results 
Participants were enrolled from March 13, 2006, to 
Oct 1, 2010. We extracted information on the demo
graphics, clinical records, and outcomes of the complete 

Male (n=169 081) Female (n=226 632) Overall (N=395 713)

Age at recruitment 56 (48 to 62) 56 (49 to 62) 56 (49 to 62)

Ethnicity ·· ·· ··

Asian 3523 (2·1%) 3588 (1·6%) 7111 (1·8%)

Black 2782 (1·7%) 3871 (1·7%) 6653 (1·7%)

Chinese 491 (0·3%) 866 (0·4%) 1357 (0·3%)

Mixed 892 (0·5%) 1624 (0·7%) 2516 (0·6%)

White 158 761 (95%) 213 464 (96%) 372 225 (95%)

Missing 2632 3219 5851

Townsend deprivation 
index

–2·16  
(–3·67 to 0·53)

–2·19  
(–3·67 to 0·37)

–2·18  
(–3·67 to 0·44)

Missing 230 276 506

Overall health rating ·· ·· ··

Excellent 30 892 (18%) 42 310 (19%) 73 202 (19%)

Good 98 290 (59%) 136 866 (61%) 235 156 (60%)

Fair 32 890 (20%) 39 057 (17%) 71 947 (18%)

Poor 5813 (3·5%) 6970 (3·1%) 12 783 (3·3%)

Missing 1196 1429 2625

Smoking status ·· ·· ··

Current 21 454 (13%) 20 012 (8·9%) 41 466 (11%)

Previous 58 717 (35%) 69 074 (31%) 127 791 (32%)

Never 87 924 (52%) 136 326 (60%) 224 250 (57%)

Missing 986 122 2206

Body-mass index, mg/
kg2

26·9 (24·7 to 29·5) 25·8 (23·2 to 29·3) 26·4 (23·8 to 29·4)

Missing 1161 118 2341

Weight, kg 84 (76 to 93) 68 (61 to 78) 75 (66 to 86)

Missing 1026 1105 2131

Standing height, cm 176 (172 to 181) 163 (158 to 167) 168 (162 to 175)

Missing 1017 959 1976

Systolic blood pressure, 
mm Hg

138 (128 to 150) 132 (120 to 146) 135 (124 to 148)

Missing 10 193 13 679 23 872

(Table 1 continues on next page)
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UK Biobank cohort.31,32 16 participants who withdrew 
their participation consent agreement; one participant 
without information on sex; and 106 775 participants 
with earlier records of myocardial infarction, stroke, or 
lipidlowering treatment were excluded (figure 1). The 
remaining 395 713 participants had a median age of 
56 years (IQR 49–62), with 95% being  of  White or 
British ethnicity, a median Townsend deprivation index 
of –2·18 (–3·67 to 0·44). 60% of the study population had 
good selfreported overall health (table  1; appendix p 10). 
The median followup time was 11·7 years 
(IQR 11·0–12·3). 28 083 (7·1%) participants had a major 
cardiovascular adverse event (MACE; defined as included 
fatal and nonfatal myocardial infarction, fatal and non
fatal transient ischaemic attack or stroke, and cardio
vascular death; figure 1). Based on Deep Survival 
Machines,19 we developed the NeuralCVD score (figure 2; 
appendix p 1) on a set of 29 cardiovascular risk factors 
used in well established scores, the ESC score,2 the AHA/
ASCVD score,3 and the QRISK3 score4 (table 1).  

To determine whether neural networks improved risk 
discrimination over conventional approaches, we 
compared the NeuralCVD against established clinical 
baselines and a linear Cox20 model trained on the same 
29 cardiovascular risk factors. All scores were evaluated 
independently on all 22 assessment centres of the UK 
Biobank cohort with the Concordance Index and the 
categorical netreclassificationimprovement at the 10% 
threshold (following the NICE guidelines33) as metrics for 
the risk discrimination. We found that the NeuralCVD 
score outperformed SCORE with a difference in Cindex 
of 0·037 (95% CI 0·034–0·039), ASCVD with 0·024 
(0·023–0·026), and QRISK3 with 0·010 (0·009–0·011). At 
the 10% risk threshold the NRI over SCORE was 0·1043 
(95% CI 0·0981–0·1103), resulting in an additional 4828 
of 23 786 cases correctly identified as highrisk and 1106 
cases incorrectly down classified. For noncases, 14 572 of 
371 889 were correctly downclassified, while 33 972 were 
incorrectly identified as high risk. The NRI of NeuralCVD 
over ASCVD was 0·0704 (0·0648–0·0765) and 0·0488 
(0·0442–0·0534) over QRISK3 (figure 2; table 2). Absolute 
reclassification counts are provided in the appendix (pp 
11, 15). Improvements were smaller over a linear Cox 
model fitted with the same set of covariates with a 
difference in Cindex of 0·003 (0·002–0·004) and NRI of 
0·0469 (0·0429–0·0511). The discrimination is stable 
over all 22 distinct assessment centres (appendix pp 4, 
12). All models were well calibrated over the observed risk 
spectrum (figure 2; appendix p 4). 

To assess the composite of clinical and genetic predictors, 
we rebuilt the model on an extended covariate set with six 
established PGS. We evaluated it against the occurrence of 
the first recorded MACE in the observation window. 

To ensure the validity of the PGS in our cohort, we first 
confirmed the association of the applied PGS with the 
observed frequency of the MACE endpoint (appendix 
p 6). To test the potential of the NeuralCVD model to 

integrate polygenic information, we added six well 
established PGSs against coronary artery disease7,21–24 and 
stroke8 to the covariate set used in the previous analysis. 
The coefficients of the Cox model that included the PGS 
can be found in the appendix (p 14). Furthermore, to 
allow the Cox model to assess potential nonlinear effects 
between age and the genetic information we additionally 
tested interaction terms between age and the PGSs. 
Additionally, we compared our models with the ASCVD
based model previously published by Sun and colleagues.13

Integrating PGSs in the NeuralCVD model improved 
risk discrimination over the clinical covariates alone with 
a difference in Cindex of 0·006 (95% CI 0·005–0·007) 
and NRI of 0·0116 (95% CI 0·0066–0·0159; figure 2; 
table 3; appendix pp 11, 15). Although we observed 
improvements in discriminative performance for the Cox 
model after addition of the PGSs as well, the NeuralCVD 
model remained superior in Cindex (COX plus PGS 
0·002, 95% CI 0·002–0·003; COX plus PGS*age 0·002, 
0·002–0·003) and NRI (COX plus PGS 0·0424, 
95% CI 0·0383–0·0464; COX plus PGS*age 0·0359, 

Male (n=169 081) Female (n=226 632) Overall (N=395 713)

(Continued from previous page)

Diastolic blood 
pressure, mm Hg

84 (78 to 91) 80 (74 to 87) 82 (75 to 89)

Missing 10 192 13 678 2387

Total cholesterol, 
mmol/L

5·72 (5·07 to 6·41) 5·93 (5·24 to 6·68) 5·84 (5·16 to 6·56)

Missing 1048 15 514 25 994

HDL cholesterol, mmol/L 1·26 (1·08 to 1·47) 1·57 (1·34 to 1·83) 1·43 (1·20 to 1·70)

Missing 22 622 34 937 57 559

LDL cholesterol, 
mmol/L

3·67 (3·17 to 4·20) 3·66 (3·13 to 4·25) 3·67 (3·15 to 4·23)

Missing 10 835 15 858 206 693

Triglycerides, mmol/L 1·68 (1·16 to 2·43) 1·30 (0·94 to 1·84) 1·44 (1·02 to 2·09)

Missing 10 659 15 634 26 293

Familial history of heart 
disease

57 025 (34%) 90 847 (40%) 147 872 (37%)

Antihypertensive 
treatment

1697 (1·0%) 1610 (0·7%) 3307 (0·8%)

Aspirin 1456 (0·9%) 935 (0·4%) 2391 (0·6%)

Atypical antipsychotics 2086 (1·2%) 3865 (1·7%) 5951 (1·5%)

Glucocorticoids 122 (<0·1%) 233 (0·1%) 355 (<0·1%)

Type 1 diabetes 795 (0·5%) 586 (0·3%) 1381 (0·3%)

Type 2 diabetes 3379 (2·0%) 2440 (1·1%) 5819 (1·5%)

Chronic kidney disease 6052 (3·6%) 8253 (3·6%) 14 305 (3·6%)

Atrial fibrillation 2687 (1·6%) 2303 (1·0%) 4990 (1·3%)

Migraine 7027 (4·2%) 20 879 (9·2%) 27 906 (7·1%)

Rheumatoid arthritis 6052 (3·6%) 16 916 (7·5%) 22 968 (5·8%)

Systemic lupus 
erythematosus

186 (0·1%) 725 (0·3%) 911 (0·2%)

Severe mental illness 14 303 (8·5%) 28 902 (13%) 43 205 (11%)

Erectile dysfunction 7731 (4·6%) 0 (0%) 7731 (2·0%)

Data are median (IQR) or n (%).

Table 1: Study population 
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0·0321–0·0394). Compared with the model proposed by 
Sun and colleagues,13 we see improvements in the Cindex 
of 0·022 (95% CI 0·021–0·024) and in NRI of 0·0740 
(95% CI 0·0687–0·0790). All models were well calibrated 
over the full spectrum of risk (figure 2), and the 
differences were consistent in the spatially separated 
assessment centres (appendix pp 4, 12). 

To investigate the individual impact of the additional 
genetic information in both the Cox and the NeuralCVD 
models, we calculated relative risk differences with and 
without genetic information. The neural risk model 
predicted relative risk differences of up to 805% and 
–84% compared with up to 152% and –63% (249% and 
–72% with PGS*age interaction) for the Cox model in 
our study cohort (figure 3). 

To examine these sizable risk differences in the 
NeuralCVD model, we investigated associations between 
the information added by the PGS (ie, the relative risk 
difference) and the observed clinical phenotype. Although 
we did not find pronounced associations of individual 
conventional risk factors with relative risk differences at 
10 years (appendix p 7), we observed an association with 
the overall clinical risk (figure 3) and an association with 

age (figure 3). For high genetic risk individuals (top 5% 
PGSMETA), we saw pronounced risk differences in the 
predicted risk in younger individuals with low to 
intermediate clinical risk. With increasing clinical risk and 
age, the risk difference was diminished. This effect was 
predicted to be most pronounced for individuals with high 
genetic risk, decreasing with lower genetic predisposition 
(appendix p 8). These differences were nonexistent in the 
linear Cox model without interaction terms, but observable 
in the Cox model with the PGS*age interaction terms. 

Furthermore, the effect reflected the predicted cardio
vascular risk trajectories stratified by clinical risk and 
age (figure 3). Young and lowrisk individuals were 
predicted to have the highest relative risk increase from 
high genetic predisposition (RR[t10] 2·64, 95% CI 
2·52–2·76). Patients between 50 years and 60 years at 
intermediate clinical risk were predicted to have a lower 
impact (RR[t10] 1·81, 1·78–1·85) and individuals older 
than 60 years at already high clinical risk see the smallest 
effect on their overall risk with the additional high 
genetic risk information 1·40 (1·37–1·42). To substantiate 
these findings, we calculated the number of events 
stratified by clinical risk and age at the end of the 
observation window for different genetic risk strata 
(appendix p 9). The relative risk for high genetic risk (top 
5%) was 1·93 (95% CI 1·62–2·25) in the young and low 
risk subgroup, 1·65 (1·43–1·94) in the middle and 
intermediate risk supgroup, and 1·49 (1·34–1·63) in the 
older and highrisk subgroup at the end of the 
observation window. 

These findings suggest that the additional predictive 
polygenic information depends on the clinical phenotype 
(ie, clinical risk) and that our NeuralCVD score can 
model this residual contribution. High genetic risk did 

SCORE vs NeuralCVD clinical AHA/ASCVD vs NeuralCVD 
clinical

QRISK3 vs NeuralCVD clinical Cox clinical vs NeuralCVD 
clinical

NRI 0·1043 (0·0981 to 0·1103) 0·0704 (0·0648 to 0·0765) 0·0488 (0·0442 to 0·0534) 0·0469 (0·0429 to 0·0511)

Cases (n=23 786) 15·65% (15·06 to 16·23) 11·41% (10·86 to 12·01) 9·62% (9·17 to 10·06) 10·75% (10·35 to 11·17)

Non-cases (n=371 889) –5·22% (–5·33 to –5·11) –4·38% (–4·47 to –4·27) –4·74% (–4·83 to –4·65) –6·06% (–6·14 to –5·98)

Data are NRI (95% CI) or % (95% CI). We assessed the categorical net reclassification improvement of our NeuralCVD score at the clinically relevant 10% risk threshold 
compared with the clinical baselines SCORE, ASCVD, QRISK3, and the linear Cox model. The NeuralCVD score substantially improves net reclassification and is particularly 
sensitive in detecting high-risk cases. NRI=net reclassification improvement. AHA/ASCVD=American Heart Association/ Atherosclerotic Cardiovascular Disease. 

Table 2: Categorical net reclassification improvement of NeuralCVD clinical at the 10% threshold

Cox Sun PGS vs NeuralCVD 
clinical plus PGS

Cox clinical PGS vs NeuralCVD 
clinical plus PGS

Cox clinical vs NeuralCVD clinical 
plus PGS

Cox clinical PGS*age vs 
NeuralCVD clinical plus PGS

NeuralCVD clinical vs 
NeuralCVD clinical plus PGS

NRI 0·0740 (0·0678 to 0·0795) 0·0424 (0·0383 to 0·0464) 0·0585 (0·0538 to 0·0625) 0·0359 (0·0321 to 0·0394) 0·0116 (0·0066 to 0·0159)

Cases (n=23 790) 12·92% (12·39 to 13·47) 10·34% (9·89 to  10·76) 11·87% (11·42 to 12·27) 9·00% (8·65 to 9·34) 1·12% (0·62 to 1·54)

Non-cases (n=371 909) –5·52% (–5·64 to –5·42) –6·10% (–6·16 to –6·00) –6·01% (–6·11 to –5·92) –5·41% (–5·48 to –5·34) 0·05% (–0·03 to 0·12)

Data are NRI (95% CI) or % (95% CI). Categorical net reclassification improvement of the NeuralCVD score with PGS at the 10% 10-year risk threshold compared with the American Heart Association/ 
Atherosclerotic Cardiovascular Disease-based model proposed by Sun and colleagues,13 the linear Cox model with and without PGS addition, the non-linear Cox model with PGSs, and the NeuralCVD score 
without PGS addition. The NeuralCVD score with PGS improves net reclassification over all other scores. PGS=polygenic scores. NRI=net reclassification improvement.

Table 3: Categorical net reclassification improvement of NeuralCVD clinical plus PGS at the 10% threshold

Figure 2: Comparison of the NeuralCVD score with established risk scores and 
after addition of PGSs
(A) Our NeuralCVD score builds on the architecture of Deep Survival Machines,19 
learning a patient representation from the input features to parameterise a 
mixture of Weibull distributions to model the incidence function over a 
continuous time scale. (B) Our NeuralCVD score outperformed existing 
approaches in discrimination of major adverse cardiac event risk at 10 years 
measured by bootstrapped C-index. Over the entire population, this 
corresponded to an increment of 0·01 compared with the best-performing 
baseline model, the QRISK3 score (appendix p 4). (C–E) Calibration curves at 
10 years. PGS=polygenic score. SELU=scaled exponential linear unit.
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not significantly affect the overall risk in older individuals 
when their clinical risk was already high. In contrast, the 
risk in young individuals at low to intermediate clinical 
risk sharply increased.

Discussion
PGSs have been shown to inform on an individual’s 
genetic predisposition for many common diseases. Their 
application in primary cardiovascular disease prevention 
suggests great potential for early identification of high
geneticrisk individuals and timely intervention before a 
clinical phenotype is developed. However, PGSs are 
approximations of the lifetime genetic risk and thus, to 
be applied clinically, it is imperative to understand the 
relationship between the information provided by PGSs, 
the observed clinical phenotype, and the overall risk later 
in life. Similarly, although neural networks represent the 
stateoftheart performance in survival modelling to 
date, few medical studies exploit this potential. 

In this study, we presented NeuralCVD, a novel neural
networkbased cardiovascular disease risk model for 
primary cardiovascular disease prevention. On data from 
the UK Biobank cohort, we show that an application of 
NeuralCVD on phenotypic data improves discrimination 
and reclassification at the 10% risk threshold over 
currently available clinical scores and a Cox baseline 
model. These findings encourage the use of neural 
survival models in primary cardiovascular disease 
prevention, as this improvement in discrimination does 
not require any additional predictors. In agreement with 
previous studies,12,13 we subsequently show that adding 

genetic information further improves discrimination 
and categorical reclassification at the 10% risk threshold 
resulting in more highrisk cases detected. 

Established methods integrate clinical predictors and 
the polygenic information additively, irrespective of 
biological mechanisms of action and mediatory effects on 
the observed phenotype.13,14 Although the effect of PGS 
addition on risk discrimination is small at the population 
level, it is greater at the individual level. Through further 
investigation of relative risk differences, we found that our 
NeuralCVD score accounted for the transition of predictive 
information from the genotype to the composite clinical 
phenotype by learning higher order interactions between 
clinical risk factors and PGS variables. Thereby, 
NeuralCVD captured an attenuating effect of observed 
phenotypes with increasing clinical risk on information  
gained  by  the  PGS  addition  in  the  high genetic risk 
strata. We found a similar but weaker interaction with age, 
which could be modelled by interaction terms between 
age and the PGS in the Cox model. These findings imply 
that substantial parts of the genetic risk captured by PGS 
act through phenotypic manifestation, and age alone is 
not a sufficient approximation. It is the residual 
contribution of PGS information over the clinical risk 
factors (figure 3), which is relevant in an applied clinical 
setting.15 This transition of the predictive information 
from the genotype to the clinical phenotype was first 
hypothesised by Jannsen and colleagues.15 In their article, 
the central idea was that, although independent at birth, 
the effects of SNPs in the PGSs are mediated through 
clinical factors (eg, LDL cholesterol, blood pressure, and 
weight) and reduce the residual genetic risk contribution 
later in life. Analysing event rates in the UK Biobank, we 
can confirm this heterogeneity in residual genetic 
information (appendix pp 9, 13). 

The implications of the findings are twofold. First, 
PGSs allow for the identification of individuals who are 
still most susceptible to their genetic predisposition 
before developing a severe clinical phenotype. Second, 
when the predictive information has already transitioned 
from the genotype to the phenotype (ie, clinical risk), the 
future overall risk trajectory is just modestly informed by 
PGS. 

Nevertheless, this study is subject to several limitations. 
First, as shown previously,13 the UK Biobank study cohort 
is of generally lower risk for cardiovascular events than 
the general primary care population and recalibration 
with a relevant data source—eg, the UK Clinical Practice 
Research Datalink, should be performed before public 
application. Second, although the model was validated in 
spatially separated samples from the individual 
assessment centres, and we did not observe any signs of 
overfitting, the NeuralCVD model is yet to be evaluated 
in an entirely independent cohort. This is of particular 
importance for every model incorporating PGSs, as 
generalisation to ancestrally distinct populations is 
controversial.34

Figure 3: Differences in relative and overall risk as modelled by NeuralCVD 
and the Cox models when stratified by age and clinical risk
(A) Distributions of the RRD for three genetic strata (bottom, median, and top 
5% PGSMETA). Higher genetic risk increases the RRD for all models. The 
distributions of RRDs for the NeuralCVD model are wide, with RRDs of up to 
805% for the top 5% genetic stratum compared with the predicted risk based on 
the clinical factors. (B) RRDs within the two Cox models and the NeuralCVD 
score on PGS addition for the bottom, median, and top 5% of PGSMETA. 
Increasing genetic risk yields positive RRDs for both the Cox models and the 
NeuralCVD score. RRDs for the Cox model are constant over the spectrum of 
clinical risk. In contrast, the NeuralCVD learned the residual contribution of the 
polygenic risk over the clinical risk. In the high genetic risk group, RRDs were the 
highest for the low-to-intermediate clinical risk group and declined with clinical 
risk of more than 15%. (C) RRDs plotted against patient age at baseline. 
(D) 25-year risk ratios stratified by genetic risk (bottom, median, and top 5% 
PGSMETA), age, and clinical risk. Additional genetic information increased risk 
most in individuals with low-to-intermediate clinical risk, and age younger than 
50 years. (E) 25-year overall risk stratified by genetic risk (bottom, median, and 
top 5% PGSMETA), age, and clinical risk. Risk ratios from (D) are reflected in the 
cardiovascular disease risk trajectories and in the proportion of polygenic risk in 
the overall risk. The difference in trajectories is most pronounced in individuals 
with low-to-intermediate clinical risk and age younger than 50 years. 
(F) Proposed mechanism for impact of polygenic information on overall risk, 
adapted from Janssens.15 Parts of the SNPs included in PGS mediate through the 
manifestation of a clinical phenotype. As conventional risk factors contain this 
information, the information gained by PGS addition is the residual 
information. RRD=relative risk difference. PGSMETA=polygenic meta score as 
defined in methods. MACE=major adverse cardiac event. SNPs=single nucleotide 
polymorphisms. 
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Third, although discrimination, reclassification, and 
calibration are crucial criteria for evaluating predictive 
models and allow comparison over the established 
baselines, they are not quantifying an absolute clinical 
impact at the population level (eg, lifeyears saved by 
identifying the correct individuals for early intervention). 
This is relevant for primary prevention, because most 
individuals in a population are not expected to show 
strong risk modifications after adding PGSs to the 
predictors. Here prospective studies are required to show 
clinical utility. Additionally, clinical acceptance of genetic 
risk modification could be facilitated by further validation 
with phenotypic markers of subclinical disease.35

In summary, we introduced a clinically applicable 
neuralnetworkbased risk model for primary cardio
vascular disease prevention that outperformed conven
tional scores and learnt the residual genetic contribution 
to identify individuals at the highest risk of cardiovascular 
events. This opens up new opportunities for targeted 
primary cardiovascular disease prevention, integrating 
both clinical and genetic risk factors.
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