W) Check for updates

-
D i
Journal of Child Psychology and Psychiatry **:* (2022), pp **—** doi:10.1111/jcpp.13611

Research Review: A guide to computing and
implementing polygenic scores in
developmental research

Andrea G. Allegrini,l’2 Jessie R. Baldwin,!'? (/) Wikus Barkhuizen,! (") and
Jean-Baptiste Pingault'-?
'Division of Psychology and Language Sciences, Department of Clinical, Educational and Health Psychology,
University College London, London, UK; %2Social, Genetic and Developmental Psychiatry Centre, Institute of
Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

The increasing availability of genotype data in longitudinal population- and family-based samples provides
opportunities for using polygenic scores (PGS) to study developmental questions in child and adolescent psychology
and psychiatry. Here, we aim to provide a comprehensive overview of how PGS can be generated and implemented in
developmental psycho(patho)logy, with a focus on longitudinal designs. As such, the paper is organized into three
parts: First, we provide a formal definition of polygenic scores and related concepts, focusing on assumptions and
limitations. Second, we give a general overview of the methods used to compute polygenic scores, ranging from the
classic approach to more advanced methods. We include recommendations and reference resources available to
researchers aiming to conduct PGS analyses. Finally, we focus on the practical applications of PGS in the analysis of
longitudinal data. We describe how PGS have been used to research developmental outcomes, and how they can be
applied to longitudinal data to address developmental questions. Keywords: Polygenic scores; developmental
research; longitudinal models.

Definition and calculation of polygenic scores snpy; -~ snpy,] [P,
Since their conception and first application in .

human studies (Janssens et al., 2006; Purcell PGS = : : : =

et al., 2009; Wray, Goddard, & Visscher, 2007), the snp,; - SNp,, By

use of polygenic scores in developmental research

has become widespread. Polygenic scores (PGS) have snpyp* Py+ o+ snpg, x B, PGS,

become a standard downstream analysis in genome-
wide association studies (GWAS), and are widely
employed by researchers in the behavioural, social SNP, % Py+ -+ snp,, * B, PGS,
and life sciences to predict complex traits and to
infer genetic overlap between them. Different terms
are typically used for PGS, including genetic (risk)
scores (GRS), genome-wide polygenic scores (GPS),
polygenic indexes (PGI), or polygenic risk scores
(PRS). These, however, broadly refer to individual
scores based on measured genetic data [usually
single nucleotide polymorphisms (SNPs)] conceptu-
alized as indexes of the genetic predisposition, or
burden, that an individual carries for a particular
trait, disease or condition.

A basic stepwise process for calculating PGS is
presented in Figure 1, key definitions are reported in
Box 1. Formally PGS are defined as the linear
combination PGS = Xb, where X is an n X p matrix
of n people by p SNPs, and b is a vertical vector of
beta estimates for all SNPs, b= (B;,f,,...B,),
obtained (typically) from external GWAS summary

That is, in their simplest form PGS are formu-
lated as the weighted sum of trait-associated alleles
for a number of SNPs within an individual,
PGS; = le(xijﬁj), where x;€{0, 1,2} effect alleles
for the jth SNP of the ith individual, that is, one row
of the PGS matrix above (snpqq* By + - +snpq, * By).

By this definition of PGS, we assume that SNP
effects act additively. This is a reasonable assump-
tion, given that additive effects of common variants
explain a substantial proportion of heritability in
common complex traits (Yang et al., 2010). However,
widespread epistatic effects (interactions between
SNPs) are also likely to be at play (Huang & Mackay,
2016; Mackay & Moore, 2014). For disease risk
models, we expect a nonlinear relationship between
polygenic scores and the risk of disease, as the
disease occurs only in the presence of a combined
(high) load of risk variants at the individual level

statistics. (Wray et al., 2021).

PGS are approximately normally distributed in
the population with people varying on a continuum
from low to high polygenic burden for a particular
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1. Discovery GWAS summary statistics

SNP1 SNP2 SNP3 SNP4
Effect allele C A C T
Weight 0.2 -03 0.1 0.2
2. Target sample genotypes
IID SNP1 SNP2 SNP3 SNP4
1 CT AA CA TG
2 CT AA CA GG
3 TT TT CC TT
4 CC AT AA TG
3. Polygenic score
IID SNP 1 SNP2 SNP 3 SNP 4 PGS
1 1*0.2 + 2*-0.3 + 1*0.1 + 1*0.2 = -0.1
2 1*%0.2 + 2*-0.3 + 1*0.1 + 0*0.2 = -03
3 0*0.2 + 0*-0.3 + 2*0.1 + 2*0.2 = 06
4 2*0.2 + 1*-0.3 + 0*0.1 + 1*0.2 = 03

Figure 1 Basic stepwise process for calculating PGS. Effect sizes (weights) of single nucleotide polymorphisms (SNPs) are obtained from
genome-wide association studies (GWAS) in (large) discovery samples (Step 1). Based on the number of effect alleles carried by each
genotyped individual in the target set (Step 2), a weighted sum is computed using the standardized estimate for each SNP in the discovery
set multiplied by the number of effect alleles. A polygenic score can be computed based on just a few or on millions of SNPs, as in the case
of genome-wide polygenic scores. Computing a polygenic score results in a single value per individual and in a single variable per trait

per sample

the central limit theorem, as they reflect the sum-
mation of a large number of random variables. That
is allele counts weighted by SNP effects for a
particular trait.

From GWAS to PGS

SNP weights used to derive PGS are typically
obtained from external GWAS (discovery) samples.
In GWAS, a phenotype vector y containing values for
each ith individual in the sample is regressed on
each measured j™ SNP, additively coded for the
number of minor alleles an individual carries (for
example as 0 = CC, 1 =CT and 2 =TT, where T is the
minor allele, that is, with the lowest frequency in the
population), usually in the order of millions. For an
n X p mean-centered genotype matrix X containing
genotype vectors of individual SNPs (x) for each
person, the regression equation can be expressed as
follows:

y=xp;+e

where x; is a vector of genotype values for individuals
at the j* SNP, p; is the marginal effect for the j™ SNP

and ¢ the error term. This relationship is usually
adjusted for demographic covariates such as age and
sex, and a number of genetic principal components,
to account for confounders such as population
stratification and cryptic relatedness. In addition,
depending on the cohort, technical confounders are
accounted for, such as the version of genotyping chip
used if different chip arrays were used to screen the
cohort.

The marginal effects for the mean-centered geno-
types are given by:

c xjt'y B cov(x;, y)
T xlx o var(x)

where x{y/n = cov(x;, y) and x}x;/n = var(x;). Addi-
tive genetic variance at each locus is defined as
a? =2 pqﬁf, where 2pq is the variance of the genetic
locus (the heterozygosity; with p and g the allele
frequencies of a biallelic locus), and f; is the effect
size obtained from the regression of the phenotype
on the genotype as stated above. The proportion of
variance explained in the phenotype can be calcu-
lated as R? = 2pqﬁj2 /Ys2, where y. is the variance of
the phenotype (R?2=2pgp? for a standardized
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Box 1 Definitions

Single nucleotide polymorphism (SNP): Common
variation between individuals at a single position
in the genetic code happening in at least 1% of the
population.

Cryptic relatedness: Distant relationships
between individuals that make people genetically
similar, confounding associations in observa-
tional studies such as GWAS.

Dominance: Interaction between alleles within a
genetic locus, that is, deviation from additivity
within a locus.

Epistasis: Interaction of alleles across different
genetic loci, that is, SNP-SNP interactions.
Linkage disequilibrium: the correlation between
nearby variants on the same chromosome.
Clumping: Pruning of variants in linkage disequi-
librium above a certain threshold (e.g. a correla-
tion r > .1), prioritizing variants depending on a
statistic of interest, typically p-values in GWAS.
Overfitting: When a statistical model matches the
data too closely modelling noise instead of the
actual signal. This makes the model too optimistic
and thus not generalizable well to independent
data.

Cross-validation: Resampling method used to
evaluate a model within a unique dataset. The
model parameters are learned in part of the
dataset and performance is tested in a hold-out
set (e.g. with a 9 to 1 split for training and testing
respectively).

SNP-heritability (SNPh?): Proportion of phenotypic
variation explained jointly by all tagged SNPs.

phenotype). Hence, the power to detect single SNP
effects is a function of both the average genetic effect,
and allele frequencies (Visscher & Goddard, 2019).
Importantly, SNP-trait associations are typically very
small for common complex traits, with an inverse
relationship between allele frequencies and SNP
effect sizes (Park et al., 2011). Thus, the sample size
of GWAS is of central importance for the discovery
and estimation of SNP effects and, in turn, for the
predictive power of PGS (Appendix S1) (Dudbridge,
2013).

While we test for the effects of millions of variants on
a phenotype, in practice, those tests are not indepen-
dent due to linkage disequilibrium (LD). LD refers to
the nonrandom association between nearby SNPs on
a chromosome and is the reason for the typical
association peaks in a ‘Manhattan plot’ (Figure 2B),
which depicts association signals across the genome
(i.e. the peak includes the causal SNP(s) and nearby
SNPs in LD). Hence, the estimated GWAS marginal
effects need to be adjusted for LD (depictedasap X p
correlation matrix in Figure 2D, more below).

We are thus conducting the equivalent of 1 million
independent tests (Risch & Merikangas, 1996),
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leading to the typical genome-wide significance
threshold of 5 x 1072 (i.e. 0.05/1 million; red thresh-
old in Figure 2B). However, even if we impose such a
stringent threshold to avoid false positives in a
GWAS we do not need information about putative
(causal) associations between SNPs and phenotypes
to construct PGS. PGS including only GWAS signif-
icant variants are typically less powerful than PGS
constructed using more lenient inclusion criteria.
That is, PGS can handle false positives and up to a
point there is a positive trade-off, in terms of predic-
tive power, between variants included in the score
and noise added by the inclusion of false positives.

Approaches to compute polygenic scores
The traditional approach

Until recently, the standard way of constructing PGS
was the clumping and thresholding (C + T) approach.
It consists of performing an informed LD-pruning
(clumping) using p-values from GWAS summary
statistics to obtain a set of quasi-independent SNPs
prioritizing those most highly associated with the
discovery trait. In a second step, SNPs above a
particular GWAS p-value threshold, for example,
above the GWAS significant threshold of 5 x 1075,
are removed and a score is calculated with the
remaining SNPs as described. The operation can be
repeated with different thresholds generating different
PGS including a different number of SNPs (e.g. using
nominal significance, the blue line in Figure 2B).

The reason to perform clumping is that if SNPs in
LD are included in the PGS without accounting for
their correlation, the individual contribution of the
specific loci included will be overestimated (Mak,
Porsch, Choi, Zhou, & Sham, 2017). More sophisti-
cated approaches (below) also need to deal with
nonindependence of SNPs, usually by retaining all
SNPs in the score while adjusting for LD in some
way. Typically, LD is estimated from an external
ancestry-matched (as close as possible to the origi-
nal GWAS super-population; Figure 2C) reference
panel (such as the 1000 genomes reference panel,
Siva, 2008). However, the target sample can be used
as the LD reference panel if the sample size is large
enough (e.g. N> 1000; Vilhjalmsson et al., 2015)
and provided it is representative of the GWAS super-
population.

C + T can be performed in PLINK (Purcell et al.,
2007), but dedicated software, PRSice2, also exists
(Choi & O’Reilly, 2019) that streamlines the proce-
dure in memory and computationally efficient way.
In addition, PRSice2 offers a ‘high-resolution scoring’
option that permits to finetune PGS calculation
across potentially hundreds of p-value thresholds.
Other methods to optimize C + T have been devel-
oped (Privé, Vilhjalmsson, Aschard, & Blum, 2019)
extending the high-resolution option idea of PRSice2
to other parameters (e.g. optimizing also with respect
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Figure 2 Figure PGS workflow. Marginal effects are obtained in the discovery set, either from individual-level data (A) of large biobank-
scale studies, or from large GWAS metaanalyses (top panel). In a typical GWAS setting, weights are obtained by a series of regressions of a
phenotype y on column vectors of a (in this case, mean-centered) genotype matrix X, an n x p matrix of n observations by p SNPs (A). If
sufficient sample size is available, a leave-one-out cross-validation-like approach (cross-prediction) can be employed to obtain PGS in the
discovery set by iteratively splitting the sample in k-folds and leaving one part out for testing (B). Alternatively, researchers can leverage
GWAS summary statistics from curated repositories, such as Open GWAS (C). Adjustment for ancestry matched linkage disequilibrium (LD;
correlations between SNPs, X'X/N for a scaled genotype matrix, in Figure 2D) and optimization of tuning parameters (such as
thresholding, or shrinkage parameters) versus a phenotype of interest (C and D) is then performed in the validation set. Here, (cross)
validation is conducted to select the best combination of parameters to construct PGS (parameter tuning), before testing the
performance of the optimal PGS in the target set. PGS are obtained by the linear combination of the (reweighted) vector of betas b with
the genotype matrix X (D). Already calculated PGS from repositories (F), for example, LDpred-based weights for a particular score, can be
employed in this step instead of calculating the score from scratch (although validation will still need to be performed if multiple scores
for a particular trait are available). Optimization can be performed in the target set directly via cross-validation and holding-out data for
testing (G), or using split validation (). Alternatively, pseudovalidation, single-score methods (Table S1), or PGS weights from repositories,
can be employed to directly obtain PGS in the target set where developmental models are fitted (H)

to clumping parameters). Advantages of the stan-
dard C + T method over others are computational
efficiency, ease of use, and straightforward interpre-
tation of the calculated score as the sum of included The standard GWAS threshold to select SNPs is often
SNPs above a particular p-value threshold, weighted too restrictive for the purpose of PGS construction,
by GWAS marginal effects. and typically more lenient thresholds for SNPs

Polygenic score optimization — which SNPs to
include

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.



inclusion in the score will lead to higher predictive
power, depending on genetic architecture. This is
often the case with highly polygenic traits, where a
more liberal inclusion of SNPs in the score improves
prediction. However, a PGS derived from all SNPs
(i.e. with a p-value threshold <1) could also be
suboptimal due to added noise across many false
positives SNPs included.

In practice, the optimal threshold for inclusion is
unknown a priori and optimization with respect to p-
value thresholds (or tuning parameters for advanced
approaches) should be performed to maximise accu-
racy. This, however, cannot be performed on the
same sample where PGS effects are evaluated (i.e.
the target set) because of overfitting. That is, the
selected score will result in a prediction that will be
too optimistic and will tend to underperform if
applied to an external independent sample. Instead,
an independent validation set (Figure 2D) will need
to be used to select the best threshold (or tuning
parameters of interest), which will then be employed
in the external target set (or in the hold-out set;
Figure 2E).

Alternatively, tuning parameters can be optimized
in the target set directly via cross-validation, such as
k-fold repeated cross-validation. However, to ensure
generalizability, the performance of PGS should be
tested in an external (or hold-out) target set as the gold
standard (Choi, Mak, & O’Reilly, 2020). Note that any
bias in the sample (e.g. attrition), will reduce the
performance of the (cross)validated model in inde-
pendent data. That is, the validated model will not
generalize well if the data used for validation is not
representative of the target data. Finally, when large-
scale individual level-data are available, solutions
have been proposed to deal with the overlap between
discovery-target and validation-target sets (Mak,
Porsch, Choi, & Sham, 2018). Overlap between dis-
covery and target sets can be addressed by cross-
prediction consistingin splitting the sample in Nfolds,
estimating SNP effects in V — 1 folds, and conducting
PGS analyses in the left-out fold (Figure 2B). Overlap
between the validation and target sets can be
addressed by split validation, consisting in splitting
the target sample into two parts, both of which are
used in turn for validation and testing of the PGS.

In practice, often researchers may not have avail-
able samples large enough to validate their PGS in
this way. Additionally, these PGS validation methods
can be computationally expensive, a challenge that
can be exacerbated especially when conducting
already sophisticated longitudinal models. A solu-
tion to this problem can be to preselect one threshold
(in the case of C + T) a priori. This can be done either
based on previous evidence in a similar sample, or
on prior assumptions such as the polygenicity of a
trait (i.e. number of causal SNPs involved in the
trait of interest). However, in practice, the optimal
threshold is often not known a priori, and using a
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preselected threshold is likely to lead to underper-
formance of the PGS.

It is commonplace for researchers to report PGS
results across an array of p-value thresholds. How-
ever, interpretation based on the optimal PGS will be
biased upwards and correction for multiple testing
will need to be performed. One solution implemented
in PRSice2 is to perform permutation tests and to
use empirical p-values as evidence for association.
While this is appropriate to establish if an associa-
tion exists, it will not correct for the aforementioned
bias in effect sizes. Therefore, for PGS studies that
involve interpretation of coefficients or assessing
predictive accuracy, an independent out-of-sample
or hold-out set is recommended. An alternative
solution consists of taking the first principal compo-
nent out of a number of calculated PGS thresholds
(Coombes, Ploner, Bergen, & Biernacka, 2020). By
obtaining a unique score capturing the most vari-
ance across PGS thresholds, this approach gets
around the validation/overfitting problem since
PCA is an unsupervised method (i.e. it does not take
into account the outcome of interest).

Advanced methods for constructing PGS

Discussing all available methods to compute PGS is
outside the scope of the present review, and we refer
the reader to previous work comparing different PGS
approaches across settings (Ni et al., 2021; Pain
et al., 2021) and to the original PGS papers (Table
S1). Here, we limit the review to the main features of
PGS methods and their relative advantages.
Methods to construct PGS tend to vary depending
on two broad themes: which SNPs are included in the
scores, and the distribution from which SNP effect
sizes are drawn. Depending on these, (re)weighting of
SNP effect sizes from GWAS summary statistics is
performed along with some form of shrinkage (the
penalization of parameter estimates to improve
accuracy, for example, based on LD between
included SNPs). More generally, methods can be
divided into Bayesian and frequentist approaches
that differ in terms of how they attempt to model
genetic architecture to improve prediction accuracy.
In practice, this translates into shrinking param-
eter estimates which typically improves predictions
over marginal effects from GWAS because it reduces
the total variance/noise in the estimates of the
summed-up SNPs. For example, thresholding in
C+ T can be thought of as a type of shrinkage,
where certain effect sizes are shrunk exactly to O.
Different methods apply different types of shrinkage,
and they will tend to perform favourably compared to
others depending on the true underlying mixture of
distributions of the trait of interest (Choi et al.,
2020). The underlying trait distributions are in
practice unknown, hence the optimal tuning param-
eters will need to be validated, as discussed above.
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For example, methods such as SBLUP (Robinson
et al., 2017), assume an infinitesimal model (akin to
the ‘infinitesimal’ option in the method LDpred/
LDpred?2), where all SNPs are included in the scores
and effect sizes are drawn from a normal distribu-
tion. This performs uniform shrinkage of the esti-
mates across SNPs, adjusting for (local) linkage
disequilibrium from a reference panel, effectively
assuming that all SNPs have nonzero effects. That is,
by assuming a uniform prior, effect sizes of causal
variants are spread across neighbouring SNPs. This
assumption may be problematic if the true underly-
ing genetic architecture is sparse, for example, if
only 5% rather than all the SNPs are causal
(Vilhjalmsson et al., 2015). By contrast, the popular
LDpred method and its extension, LDpred2, can
accommodate noninfinitesimal genetic architectures
by assuming a point-normal mixture distribution for
SNP effect sizes (Vilhjalmsson et al., 2015). Here,
only a specific fraction of markers is assumed to be
involved in the trait and drawn from a normal
distribution, while the rest is fixed to O.

Other Bayesian regression methods vary in terms
of the shrinkage applied to SNP effect sizes and how,
in turn, they handle different genetic architectures.
Two examples of such methods are PRScs, which
assumes a continuous shrinkage prior, robust to
varying genetic architectures (Ge, Chen, Ni, Feng, &
Smoller, 2019), and SbayesR (Lloyd-Jones et al.,
2019) which assumes that SNP effects sizes are
drawn from a mixture of four distributions with
mean O and different variances, whilst assuming
varying contributions of SNPs coming from the
different distributions (Ni et al., 2021).

Another type of shrinkage comes from the frequen-
tist penalization method lassosum (Mak et al., 2017),
where either a lasso (or L1 penalty, || B ||1), or elastic
net penalty, is applied on GWAS effect sizes. Fre-
quentist penalization methods can be likened to
Bayesian priors. For example, the lasso penalty can
be likened to drawing effect sizes from a double
exponential distribution effectively introducing spar-
sity, retaining only one effect size from a set of
correlated SNPs, and shrinking the rest towards or
exactly to O (Tibshirani, 1996).

All these approaches differ in terms of the assumed
contribution of SNPs to the trait of interest. However,
each approach implements a specific heritability
model (Appendix S1) in that the same parameters
(e.g., infinitesimal prior) are applied to every SNP. A
novel prediction tool, MegaPRS (Zhang, Privé,
Vilhjalmsson, & Speed, 2021), re-implements a range
of methods discussed above (with different software),
but allows specifying parameters of prior distributions
directly at the level of single SNPs (i.e. using different
heritability priors for different SNPs). This allows for
more realistic heritability models, in turn increasing
the predictive power of PGS (Zhang et al., 2021).

Most of these methods require validation to opti-
mize tuning parameters, with the exception of single

score methods (e.g. infinitesimal models, Table S1).
However, several approaches also offer a pseudoval-
idation (or automatic) option that discovers the
optimal combination of tuning parameters automat-
ically from the data, without an external validation
sample. This can be advantageous for issues of
sample splitting and power, as mentioned above,
although pseudovalidated scores tend to perform
less well compared to the optimized version using a
validation sample (Yang & Zhou, 2022).

What method works best. In general, all advanced
methods that directly account for LD tend to perform
better than C + T (and variations thereof, Table S1) as
less information is discarded across the genome.
However, it is not entirely clear which of these meth-
ods performs best in different settings. Their perfor-
mance is likely to depend on several factors including
genetic architectures of discovery and target traits,
tuning parameters, LD reference sample employed
and statistics used to assess performance. To date,
two studies have systematically benchmarked the
prediction accuracy of PGS methods across a number
of complex traits in either child or clinical samples.

One study comparing 10 PGS methods and focus-
ing on the adult case-control psychiatric disorders
from the Psychiatric and Genetic Consortium (PGC),
including major depressive disorder (MDD) and
Schizophrenia (SCZ) (Ni et al., 2021), highlighted
the performance of SBayesR across settings. A
second study comparing 8 methods focused instead
on 4 continuous traits in adolescence and early
adulthood from the Twin Early Development Study
(Rimfeld et al., 2019), as well as 11 adult binary and
continuous traits from the UKbiobank (Pain et al.,
2021). In this study, LDpred2 performed best when
parameter tuning was performed (but similarly to
Lassosum and PRScs), while PRScs tended to per-
form best across scenarios in both adolescent and
adult cohorts when using pseudovalidation. How-
ever, no dramatic differences were observed (on
average) between advanced methods across different
settings in both studies, although more nuanced
results emerged depending on specific applications
and settings (e.g. diverse genetic architectures).

While it remains difficult to choose an optimal
method above all others, within specific settings
more guided decisions can be made based on avail-
able evidence. If a validation cohort is available, then
lassosum, PRScs, LDpred2 and MegaPRS are a good
bet, with lassosum being the fastest computation-
ally. If a validation cohort is not available, then
SBayesR, PRScs, MegaPRS and LDpred2-auto have
comparable performance, with SbayesR being the
fastest method computationally.

More recently a study comprehensively bench-
marked the performance of 12 PGS methods across
50 adult complex traits (25 quantitative and 25
dichotomous) in the UKbiobank, extending PGS
comparisons to different settings including cross-
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ancestry performance (Yang & Zhou, 2022). Here,
analyses showed that DBLSM (Yang & Zhou, 2020)
tended to perform best across all settings, with the
other two best-performing methods (depending on
the setting) being lassosum and LDpred2. In Table
S1, we provide a comprehensive list of available
methods and related tutorials.

Multitrait extensions. To improve the predictive
power of PGS, the PGS framework can be extended
to multitrait methods. In multitrait methods, the
genetic correlation across traits are leveraged to
improve the accuracy of SNP effect sizes and, hence,
the predictive power of PGS. Generally speaking,
multitrait approaches can be GWAS-based methods
where the focus is on detection of trait-associated
variants (e.g. MTAG and GenomicSEM, Grotzinger
etal., 2019; Turley et al., 2018), and prediction-based
methods (e.g. SMTpred, Maier et al., 2018) where
either GWAS summary statistics or PGS are combined
in a weighted index. In both cases, the improved
predictive power of PGS is achieved by obtaining
optimal SNP weights from the combination of (genet-
ically) correlated traits. We note that equivalent
individual-level methods exist (e.g. Maier et al.,
2015; Pritikin, Neale, Prom-Wormley, Clark, & Ver-
hulst, 2021), with the caveat that for GWAS-based
methods relying on individual-level data it is difficult
to reach sample sizes as those based on summary-
level data. Previous work focusing on cognitive related
traits across development showed that there might be
optimal combinations between PGS approaches and
multitrait methods in terms of predictive power (e.g. a
combination between MTAG to obtain summary
statistics and lassosum to compute the PGS, Allegrini
et al., 2019). However, systematic evidence in this
regard with respect to novel PGS methods and across
different traits is currently lacking. Finally, it is
possible to combine PGS for different traits in multi-
variable models, for example in penalized regression,
to improve predictive power (Krapohl et al., 2018). This
can be done also at the level of single PGS traits by
combining different PGS thresholds, or PGS calcu-
lated using different tuning parameters, in the same
model (Pain et al., 2021).

Incorporating external (biological) information

As previously detailed, and further discussed in
Appendix S1, the inaccurate estimation of SNP
effects hampers PGS prediction. When added up to
form a score, noise in estimated SNP effects builds
up, yielding suboptimal PGS. We do not have infor-
mation on the full set of causal variants involved in
any given complex trait, but we can tag (some of)
them with correlated genotyped and imputed SNPs.
However, due to LD it is difficult to pinpoint causal
variants as well as accurately estimate their effects
(Hu, Lu, Powles, et al., 2017).

Polygenic scores in developmental research 7

PGS can be extended to include external informa-
tion, such as functional annotations, to improve
prediction accuracy by prioritizing likely causal
variants in the scores (Hu, Lu, Liu, et al., 2017;
Hu, Lu, Powles, et al., 2017; Shi et al., 2016).

For example, LDpred-func (Marquez-Luna et al.,
2021) builds on LDpred to include functional anno-
tations in the prior used to reweight SNP effect sizes.
This in turn yields improved PGS performance over a
number of other PGS approaches (both annotation-
informed and not) for a number of traits (e.g. college
education; Marquez-Luna et al., 2021).

Another approach that has recently been pro-
posed, PRS-set (Choi et al., 2021), extends PRSice2
to include information on specific biological path-
ways (for example pathways implicated in neuronal
function in individuals diagnosed with schizophre-
nia; Ripke, Walters, & O’Donovan, 2020). Where
other approaches assume that people vary on a
continuum from low to high polygenic burden for a
particular trait, PRSset aims to capture heterogene-
ity in the polygenic signal by mapping SNPs to
different biological pathways and functions. In prac-
tice, instead of creating one genome-wide polygenic
score for a particular trait, PRSset creates separate
pathway-PGS reflecting different biological pro-
cesses or functions, which in turn can be employed
for (disease) stratification and attempt to investigate
biological relevance in complex traits. For example,
schizophrenia-based pathway-PGS have been
employed to uncover putative molecular mecha-
nisms driving the association between schizophrenia
polygenic risk and social behaviour in a child and
adolescent sample (Schlag et al., 2021).

Repositories and resources. Several publicly
available resources, including atlases, repositories
and workflows, exist that can help researchers
develop and implement PGS within a standardized
framework (Table S2 provides references for a list of
relevant resources). For example, GWAS summary
statistics used to derive PGS can be retrieved from
curated repositories such as the GWAS catalog
(MacArthur et al., 2017), or Open GWAS (Elsworth
et al.,, 2020), while atlases of GWAS and PGS
results can be explored to inform analytical deci-
sions. For example, the GWAS atlas (Watanabe
et al., 2019) provides results of downstream anal-
yses including SNP heritability and genetic correla-
tions, that can be used to select appropriate
summary statistics for particular PGS-trait associ-
ations (e.g., screening summary statistics with
highest genetic correlations with the trait of inter-
est). The PGS atlas (Richardson, Harrison, Hemani,
& Smith, 2019) reports phenome-wide analyses of
PGS for a wide array of traits that can be screened
to, for example, prioritize certain traits in further
analyses. Finally, GenoPred (Pain et al., 2021)
provides a workflow for PGS analyses that can be
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employed to benchmark PGS performance across
different methods and target sets.

There are also repositories of already developed
PGS which allow researchers to construct PGS
within a reproducible framework. For example, the
PGS catalog (Lambert et al., 2021) reports SNPs, PGS
weights and relevant metadata, including perfor-
mance metrics, of published PGS. As such, research-
ers can employ PGS constructed in previously
published research on their target sample, without
having to use dedicated software to develop the score
from scratch (Figure 2F). In a similar fashion, the
PGI Repository (Becker et al., 2021) provides LDpred
PGS weights for a number of complex traits in either
single score or multitrait (MTAG) versions from a
reference standardized pipeline. Furthermore, for a
set of cohorts (https://www.thessgac.org/pgi-
repository) the PGI Repository provides already cal-
culated single and multitrait scores based on GWAS
including data from 23andMe, which is typically
excluded from most PGS studies due to access
restrictions.

Applications to longitudinal designs
Genetic continuity

In a typical setting, researchers test associations
between PGS for adult traits with child phenotypes
to infer continuity of genetic risk longitudinally.
Equivalently, a recent study employed a PGS derived
from a GWAS of childhood aggression to demon-
strate genetic continuity of aggressive behaviour
throughout the lifespan (Van der Laan et al., 2021).
While the genetic code does not change throughout
the lifespan, beta estimates used to construct PGS
will capture average genetic effects on a phenotype
that was collected at, and therefore is related to, a
specific time and context. As such, the meaning of
the PGS is heavily reliant on the phenotypic defini-
tion employed in GWAS. In this regard, different
facets of the polygenic contribution (or liability) to a
trait can be captured depending on the developmen-
tal period of interest, and on the SNP-phenotype
associations from which beta estimates to construct
PGS are derived.

For example, by testing for an association between
a PGS for adult body mass index (BMI) with child-
hood BMI, it is possible to infer genetic continuity of
risk across the lifespan. However, the adult BMI PGS
will likely become more predictive of the BMI pheno-
type at later stages in life, likely because the target
trait becomes closer to the phenotype assessed in the
original GWAS used to construct the PGS. Another
plausible and nonmutually exclusive reason for this
is (active) gene-environment correlation (Plomin,
2014; see Pingault et al., in press). However, the
adult BMI PGS is unlikely to capture the full com-
plexities of childhood BMI across development, as
highlighted in recent work (Helgeland et al., 2021).

Based on a stratified BMI GWAS conducted across
different developmental stages, BMI PGS were devel-
oped and tested for association with the correspond-
ing developmental phenotypes. The predictive
accuracy of PGS reflecting genetic influences on
BMI at specific developmental stages was substan-
tially greater compared to the PGS for adult BMI, and
the pattern of associations highlighted developmen-
tal changes in the genetics of BMI. In a similar
fashion, a PGS based on child case-control diagnosis
of ADHD can improve our understanding of ADHD
across child development, but misses the full (ge-
netic) complexity of the disorder across the lifespan
(Agnew-Blais et al., 2021).

Developmental stability and change

Stability and change across development can be
investigated with latent growth curve (LGC) mod-
elling techniques, by which we attempt to model
between-person (interindividual) differences and
within-person (intraindividual) changes over time
(Curran, Obeidat, & Losardo, 2010). We can estimate
LGC in a structural equation modelling (SEM)
framework where we specify a latent (random) inter-
cept and slope to capture, respectively, mean stable
effects and mean change over time, as well as the
variability around these (individual trajectories
around linear or nonlinear changes). This is akin to
fixed and random effects in a multilevel model. That
is, we aim to measure random variability at the
starting point (the intercept) and random variability
in change (the slope).

Developmental stability and change have been
extensively investigated in behavioural genetics,
particularly with the use of twin studies. Studies
employing PGS to investigate developmental ques-
tions inevitably build upon the rich behavioural
genetics literature in this regard. With twin data, it
is possible to estimate the contributions of genetics
and the environment across development, including
using LGC modelling (Neale & McArdle, 2000). For
example, investigations of ADHD symptoms and
conduct problems (Pingault, Rijsdijk, Zheng, Plomin,
& Viding, 2015; Pingault, Viding, et al., 2015) have
highlighted how different genetic factors contribute
to baseline levels versus developmental change in
these traits.

Findings from such twin studies can be followed
up and expanded upon with the use of PGS. In
conditional growth curve models, we can look at
specific PGS predictors of this stability and change
over time. Here, PGS can be modelled as time-
invariant covariates to predict the random variability
component of the model. That is, whether a partic-
ular genetic predisposition for some trait associates
with specific trajectories, the stable component or
the rate of change over time. Recent work (Kwong
et al., 2021) for example employed a multilevel
random intercept and slope growth curve model to

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for

Child and Adolescent Mental Health.


https://www.thessgac.org/pgi-repository
https://www.thessgac.org/pgi-repository

(D) (E)

(@) (H)

rI1”I>2j‘rl3v!vl4j‘l51‘v|6‘:l7w‘fl8ﬂ I9"

® © ©

Polygenic scores in developmental research 9

(F)

2
P é / x 7/
AT AL N ’ x|

- ~
by SO AR B AN B PR TN

1] [21]  |&1]

U]

(1 {[2]3 14|15 e|[17|] 18 19

® o e @

Figure 3 Different implementations of PGS in developmental models. Panels A to F, represent conditional latent growth curve models
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examine how PGS for adult psychiatric disorders is
associated with developmental trajectories of depres-
sive scores. Here, all psychiatric PGS were found to
be associated with greater levels of depression
throughout adolescence (i.e. with the intercept).
However, only the depression-related, and neuroti-
cism PGS were found to be associated with a linear
change of depression over time (the slope), as
opposed to the schizophrenia and anxiety PGS for
which no, or weak, evidence was found in this
regard.

It is intuitive to conceptualize PGS as time-
invariant predictors since the DNA code does not
change throughout the lifespan of an individual. It
also makes sense in practice because often ade-
quately powered GWAS are based on samples of
adults (and often with restricted characteristics:
limited to a particular ancestral, geographical, cul-
tural and socioeconomic background). We can in
turn ask whether PGS associate with some trait of
interest via systematic developmental processes
(prediction of latent growth factors — that is, intercept
and slope) or age-specific processes (prediction of
age-specific residuals) (Figure 3A,B). It is important
to keep in mind, however, that such PGS reflect

genetic influences on a trait that depends upon a
specific phenotype definition, measured within a
restricted age range and context.

As discussed, an alternative approach is to con-
duct repeated measures GWAS across development
and in turn, construct PGS for specific developmen-
tal stages. These can be implemented as time-
varying covariates in longitudinal models such as
LGC models, as shown in Figure 3C. For example,
PGS for traits at specific developmental stages might
differentially explain variability at certain occasions
above and beyond the effects of the underlying
trajectory, at the level of both contemporaneous
and lagged effects. We can extend this idea in many
interesting ways. For example, time-varying predic-
tors (e.g. lifestyle or risk factors) could be included in
the model to investigate interactions between the
PGS and such time-varying covariates. In the case of
the time-varying PGS, we could impose equality
constraints to test whether these PGS effects are
constant over time, or whether their influence
increases or decreases across development. Finally,
we could conceptualize an ‘unspecific’ PGS as a time-
invariant predictor influencing the trajectories, and
time-specific PGS as time-varying predictors
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contributing to the residual variation at each specific
occasion (Figure 3D).

This framework can be extended to examine the
association between PGS and joint trajectories,
using a multivariate LGC (Figure 3E). Similarly,
latent class trajectory models (LCGC) can capture
putative latent groups in the trajectories, for exam-
ple, an early onset vs late-onset group (see Herle
et al., 2020 for a review of such methods). For
example, Hannigan et al. (2018) modelled the code-
velopment of conduct and emotional problems in
childhood using a joint trajectory latent class growth
model. After identifying distinct joint trajectory
classes of codeveloping emotional and conduct prob-
lems, PGS were used to predict membership to such
classes. Specifically, the PGS for depression and
educational attainment were found to predict respec-
tively increased and decreased likelihood of belong-
ing to the higher severity classes (Figure 3F).

Heterogeneity and specificity across development

Polygenic scores can also be used to examine the
specificity of genetic influences on developmental
outcomes. That is, do PGS effects vary depending on
particular domains, such as the age of assessment? A
multivariate metaanalysis can answer such questions
by testing for heterogeneity of effects across different
domains. For example, Nivard et al. (2017) imple-
mented a metaregression to demonstrate that the
effects of a polygenic score for schizophrenia on
measures of child psychopathology increased with
age. However, the strength of association and the age-
related increases depended on the specific disorder
considered. Similarly, Schlag et al. (2021) found
differential effects of PGS for psychiatric traits on
social behavioural phenotypes (e.g. peer problems), as
well as age-moderated effects, depending on the
behavioural problem subtype considered. This type
of analysis can shed light on differences in polygenic
contributions to complex traits across development.

Phenotypic stability and specificity

Twin studies have shown how substantial genetic
effects underlie trait stability over time (e.g. Lubke
et al., 2016). It has recently been shown (Cheesman
et al., 2017; Gidziela et al., 2021) that by modelling
stability it is possible to improve polygenic prediction
of psychopathology traits across development as well
as (and as a consequence of) increasing SNP-h?
(Appendix S1). To investigate phenotypic stability,
an SEM framework can be used to create (latent)
composites of traits across different domains (e.g.,
measures, raters and/or time) reducing error and
capturing shared variance across domains. Twin
and family studies have highlighted how a single
genetic dimension partly underlies diverse disorders
(Lichtenstein et al., 2009; Pettersson, Anckarséter,
Gillberg, & Lichtenstein, 2013; Pettersson, Larsson,

& Lichtenstein, 2016). Similar investigations across
childhood have pointed to substantial genetic con-
tributions to the general psychopathology factor (P),
as well as substantial genetic stability of P across
time (Allegrini et al., 2020; Avinun, Knafo-Noam, &
Israel, 2021). Such investigations rely on modelling
common and specific psychopathology dimensions
with hierarchical models, such as second-order and
bifactor models (Figure 2G-H). Initial findings from
the twin literature can be enriched by PGS-based
investigations, as detailed below.

The factors obtained in hierarchical models can in
turn be related to PGS for an array of traits, either in
univariate or multivariable modelling such as in
multiple indicator and multiple causes models (Fig-
ure 3I). This allows investigation into whether the
genetic liability of particular traits acts via common
or specific factors, or whether these uniquely con-
tribute to some indicators. Some of the work dis-
cussed in this area 1is cross-sectional, but
hierarchical methods can be naturally extended to
the longitudinal case (Caspi et al., 2014). For exam-
ple, an investigation of genetic contributions to
psychopathology in childhood found that PGS effects
over child behaviour problems were largely non-
specific, mediated by both general and specific, or
only general, dimensions (Neumann et al., 2020;
Riglin et al., 2020). A different, but related way to
investigate polygenic risk and phenotypic specificity
is to test for association with a PGS after adjusting
for latent factors, for example, by testing associa-
tions of specific factors with a PGS after adjusting for
the common factor (Waszczuk et al., 2021).

Anotherway tolook at stability is by combining PGS in
a unique measure of polygenic liability via PCA, and
relating it to latent scores of (general) psychopathology
(Allegrini et al., 2020). This can be employed in multiple
ways to investigate specificity. For example, Morneau-
Vaillancourtetal. (2021) looked at associations between
different PGS for mental health traits and a general
mental health PGS with trajectories of social with-
drawal. The general mental health PGS and the PGS for
loneliness differentially predicted class membership to
social withdrawal trajectories, uncovering specificity at
the level of polygenic predisposition. Finally, an elegant
way to look into the problem of specificity of PGS effects
in childhood psychopathology has been proposed by
Hannigan et al. (2021). Here, a model fit comparison of
nested bifactor models allowing for effects of an SCZ
PGS on respectively common (general) vs (domain)
specific dimensions vs item-level (residual) indicators
was conducted. This allowed uncovering symptom-
specific effects of the SCZ PGS, in turn highlighting
substantial heterogeneity in polygenic contributions
within psychopathology dimensions.

Summary
The increasing availability of genotype data in pop-
ulation and family based longitudinal samples
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allows for powerful applications of PGS to investigate
and expand on developmental questions tradition-
ally addressed by twin designs. Furthermore, ongo-
ing efforts to standardize workflows and data
repositories allow for a reproducible open-science
framework, fostering replicability.

We provided a general overview of PGS methodol-
ogy, from theory to implementation in longitudinal
designs, highlighting avenues and relevant
resources. We highlighted applications of PGS in
developmental models as they are most commonly
employed in the literature, and how it can be further
extended in future work. However, this is not an
exhaustive list of all possible applications of PGS to
developmental, longitudinal, designs. A number of
longitudinal models not discussed here hold promise
for future PGS work (Herle et al., 2020; Mund &
Nestler, 2019). Of particular interest is the imple-
mentation of PGS in cross-lagged designs allowing
for longitudinal relationships between measurement
occasions while modelling stability and change
(Mund & Nestler, 2019).

Future work should also focus on modelling sta-
bility, change and specificity directly at the GWAS
level by leveraging multivariate GWAS approaches.
This can be done both in terms of individual-level
data, as genotype data from large longitudinal
cohorts becomes available, or summary-level data,
as stratified GWAS become increasingly available
(e.g. Ipetal., 2021; Jami et al., 2021). For example, a
LGC model could be fit to the data to then conduct a
GWAS of the slope (Pritikin et al., 2021), reflecting
changes in developmental traits. Summary statistics
thus obtained could in turn be employed to con-
struct a polygenic score to be implemented in longi-
tudinal designs.

Advances in PGS methods are especially important
for childhood (psychopathology) phenotypes where
the power of PGS is typically reduced, given that
large GWASSs are generally based on adult outcomes.
Performance of different methods is variable, espe-
cially depending on the trait of interest if misspec-
ification of underlying architecture occurs, but often
not dramatic. Workflows, and atlases benchmarking
performance of PGS and PGS methods across an
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array of traits, have an important role to guide
researchers in the choice of methods.

Finally, the rapid advancement of the behavioral
genetics field, both in terms of methods and (GWAS)
results, is one challenge faced by repositories and
other open resources, such as online tools, which, if
not continuously maintained, run the risk of becom-
ing rapidly outdated. One solution is afforded by
community-based repositories (e.g., PGS repository),
and platforms (e.g., github), which can rely on users
to stay up to date. Capitalizing on these advances
will enable powerful and novel research applications
to better integrate polygenic scores in child develop-
mental psychology and psychopathology.

Supporting information

Additional supporting information may be found online
in the Supporting Information section at the end of the
article:

Appendix S1. Assessing the predictive power of PGS.
Table S1. PGS methods and related tutorials.
Table S2. General resources for PGS workflow.
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analysis in their cohorts.

* Polygenic scores (PGS) have become widely employed research tools in the behavioural, social and life

* We provide a comprehensive overview of PGS, discussing assumptions and methodology side-by-side with
applications in developmental psycho(patho)logy, with a focus on longitudinal designs.
* We include recommendations and reference resources available to researchers looking to conduct PGS

* We discuss avenues of PGS work in developmental research, and how PGS can be applied to longitudinal data
to address developmental questions in future research.

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for

Child and Adolescent Mental Health.



12 Andrea G. Allegrini et al.

References

Agnew-Blais, J.C., Belsky, D.W., Caspi, A., Danese, A., Moffitt,
T.E., Polanczyk, G.V., ... & Arseneault, L. (2021). Polygenic
risk and the course of attention-deficit/hyperactivity disor-
der from childhood to young adulthood: Findings from a
nationally representative cohort. Journal of the American
Academy of Child & Adolescent Psychiatry, 60, 1147-1156.

Allegrini, A.G., Cheesman, R., Rimfeld, K., Selzam, S., Pin-
gault, J.B., Eley, T.C., & Plomin, R. (2020). The p factor:
Genetic analyses support a general dimension of psy-
chopathology in childhood and adolescence. Journal of Child
Psychology and Psychiatry, 61, 30-39.

Allegrini, A.G., Selzam, S., Rimfeld, K., von Stumm, S.,
Pingault, J.-B., & Plomin, R. (2019). Genomic prediction of
cognitive traits in childhood and adolescence. Molecular
Psychiatry, 24, 819-827.

Avinun, R., Knafo-Noam, A., & Israel, S. (2021). The general
psychopathology factor from early to middle childhood:
Longitudinal genetic and risk analyses. medRxiv.

Becker, J., Burik, C.A.P., Goldman, G., Wang, N., Jayashan-
kar, H., Bennett, M., ... & Okbay, A. (2021). Resource profile
and user guide of the Polygenic Index Repository. Nature
Human Behaviour, 5, 1744-1758.

Caspi, A., Houts, R.M., Belsky, D.W., Goldman-Mellor, S.J.,
Harrington, H.L., Israel, S., ... & Moffitt, T.E. (2014). The p
factor: one general psychopathology factor in the structure
of psychiatric disorders? Clinical Psychological Science, 2,
119-137.

Cheesman, R., Selzam, S., Ronald, A., Dale, P.S., McAdams,
T.A., Eley, T.C., & Plomin, R. (2017). Childhood behaviour
problems show the greatest gap between DNA-based and
twin heritability. Translational Psychiatry, 7, 1284.

Choi, S.W., Garcia-Gonzalez, J., Ruan, Y., Wu, H.M., Johnson,
J., Hoggart, C. & O'Reilly, P. (2021). The power of pathway-
based polygenic risk scores.

Choi, S.W., Mak, T.-S.-H., & O'Reilly, P.F. (2020). Tutorial: a
guide to performing polygenic risk score analyses. Nature
Protocols, 15, 2759-2772.

Choi, S.W., & O'Reilly, P.F. (2019). PRSice-2: Polygenic Risk
Score software for biobank-scale data. Gigascience, 8,
giz082.

Coombes, B.J., Ploner, A., Bergen, S.E., & Biernacka, J.M.
(2020). A principal component approach to improve associ-
ation testing with polygenic risk scores. Genetic Epidemiol-
ogy, 44, 676-686.

Curran, P.J., Obeidat, K., & Losardo, D. (2010). Twelve
frequently asked questions about growth curve modeling.
Journal of Cognition and Development, 11, 121-136.

Dudbridge, F. (2013). Power and predictive accuracy of poly-
genic risk scores. PLoS Genetics, 9, e1003348.

Elsworth, B.L., Lyon, M.S., Alexander, T., Liu, Y., Matthews, P.,
Hallett, J., ... & Smith, G.D. (2020). The MRC IEU Open-
GWAS data infrastructure. bioRxiv.

Epskamp, S. (2015). semPlot: Unified visualizations of struc-
tural equation models. Structural Equation Modeling: A
Multidisciplinary Journal, 22, 474-483.

Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C.-A., & Smoller, J.W.
(2019). Polygenic prediction via Bayesian regression and
continuous shrinkage priors. Nature Communications, 10,
1-10.

Gidziela, A., Rimfeld, K., Malanchini, M., Allegrini, A.G.,
McMillan, A., Selzam, S., ... & Eley, T. (2021). Using DNA
to predict behaviour problems from preschool to adulthood.
medRxiv.

Grotzinger, A.D., Rhemtulla, M., de Vlaming, R., Ritchie, S.J.,
Mallard, T.T., Hill, W.D., ... & Tucker-Drob, E.M. (2019).
Genomic structural equation modelling provides insights
into the multivariate genetic architecture of complex traits.
Nature Human Behaviour, 3, 513.

Hannigan, L.J., Askeland, R.B., Ask, H., Tesli, M., Corfield, E.,
Ayorech, Z., ... & Havdahl, A. (2021). Genetic liability for

schizophrenia and childhood psychopathology in the general
population. Schizophrenia Bulletin, 47, 1179-1189.

Hannigan, L.J., Pingault, J.-B., Krapohl, E., McAdams, T.A.,
Rijsdijk, F.V., & Eley, T.C. (2018). Genetics of co-developing
conduct and emotional problems during childhood and
adolescence. Nature Human Behaviour, 2, 514-521.

Helgeland, O., Vaudel, M., Sole-Navais, P., Flatley, C., Juo-
dakis, J., Bacelis, J., ... & Magnus, P. (2021). Characteri-
zation of the genetic architecture of BMI in infancy and early
childhood reveals age-specific effects and implicates path-
ways involved in Mendelian obesity. medRxiv.

Herle, M., Micali, N., Abdulkadir, M., Loos, R., Bryant-Waugh,
R., Hubel, C., ... & de Stavola, B.L. (2020). Identifying
typical trajectories in longitudinal data: Modelling strategies
and interpretations. European Journal of Epidemiology, 35,
205-222.

Hu, Y., Lu, Q., Liu, W., Zhang, Y., Li, M., & Zhao, H. (2017).
Joint modeling of genetically correlated diseases and func-
tional annotations increases accuracy of polygenic risk
prediction. PLoS Genetics, 13, €e1006836.

Hu, Y., Lu, Q., Powles, R., Yao, X., Yang, C., Fang, F., ... &
Zhao, H. (2017). Leveraging functional annotations in
genetic risk prediction for human complex diseases. PLoS
Computational Biology, 13, €1005589.

Huang, W., & Mackay, T.F. (2016). The genetic architecture of
quantitative traits cannot be inferred from variance compo-
nent analysis. PLoS Genetics, 12, e1006421.

Ip, H.F., van der Laan, C.M., Krapohl, E.M.L., Brikell, I.,
Sanchez-Mora, C., Nolte, .M., ... & Boomsma, D.I. (2021).
Genetic association study of childhood aggression across
raters, instruments, and age. Translational Psychiatry, 11,
1-9.

Jami, E.S., Hammerschlag, A.R., Ip, H.F., Allegrini, A.G.,

Benyamin, B., Border, R., ... & Lu, Y. (2021). Genome-
wide association meta-analysis of childhood and adolescent
internalising symptoms. medRxiv, 2020.2009.

2011.20175026.

Janssens, A.C.J., Aulchenko, Y.S., Elefante, S., Borsboom,
G.J., Steyerberg, E.-W., & van Duijn, C.M. (2006). Predictive
testing for complex diseases using multiple genes: Fact or
fiction? Genetics in Medicine, 8, 395-400.

Krapohl, E., Patel, H., Newhouse, S., Curtis, C.J., von Stumm,
S., Dale, P.S., ... & Plomin, R. (2018). Multi-polygenic score
approach to trait prediction. Molecular Psychiatry, 23, 1368—
1374.

Kwong, A.S., Morris, T.T., Pearson, R.M., Timpson, N.J., Rice,
F., Stergiakouli, E., & Tilling, K. (2021). Polygenic risk for
depression, anxiety and neuroticism are associated with the
severity and rate of change in depressive symptoms across
adolescence. Journal of Child Psychology and Psychiatry, 62,
1462-1474.

Lambert, S.A., Gil, L., Jupp, S., Ritchie, S.C., Xu, Y.U.,
Buniello, A., ... & Inouye, M. (2021). The Polygenic Score
Catalog as an open database for reproducibility and sys-
tematic evaluation. Nature Genetics, 53, 420-425.

Lichtenstein, P., Yip, B.H., Bjork, C., Pawitan, Y., Cannon,
T.D., Sullivan, P.F., & Hultman, C.M. (2009). Common
genetic determinants of schizophrenia and bipolar disorder
in Swedish families: A population-based study. The Lancet,
373, 234-239.

Lloyd-Jones, L.R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G.,
Kemper, K.E., ... & Visscher, P.M. (2019). Improved poly-
genic prediction by Bayesian multiple regression on sum-
mary statistics. Nature Communications, 10, 1-11.

Lubke, G.H., Miller, P.J., Verhulst, B., Bartels, M., van
Beijsterveldt, T., Willemsen, G., ... & Middeldorp, C.M.
(2016). A powerful phenotype for gene-finding studies
derived from trajectory analyses of symptoms of anxiety
and depression between age seven and 18. American Journal
of Medical Genetics Part B: Neuropsychiatric Genetics, 171,
948-957.

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for

Child and Adolescent Mental Health.



MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P.,
Hastings, E., ... & Parkinson, H. (2017). The new NHGRI-
EBI Catalog of published genome-wide association studies
(GWAS Catalog). Nucleic Acids Research, 45, D896-D901.

Mackay, T.F., & Moore, J.H. (2014). Why epistasis is important
for tackling complex human disease genetics. Genome
Medicine, 6, 1-3.

Maier, R., Moser, G., Chen, G.-B., Ripke, S., Coryell, W,
Potash, J.B., ... & Zollner, S. (2015). Joint analysis of
psychiatric disorders increases accuracy of risk prediction
for schizophrenia, bipolar disorder, and major depressive
disorder. The American Journal of Human Genetics, 96, 283—
294.

Maier, R.M., Zhu, Z., Lee, S.H., Trzaskowski, M., Ruderfer,
D.M., Stahl, E.A., ... & Robinson, M.R. (2018). Improving
genetic prediction by leveraging genetic correlations among
human diseases and traits. Nature Communications, 9, 1-17.

Mak, T.S.H., Porsch, R.M., Choi, S.W., & Sham, P.C. (2018).
Polygenic scores for UK Biobank Scale Data. bioRxiv,
252270.

Mak, T.S.H., Porsch, R.M., Choi, S.W., Zhou, X., & Sham, P.C.
(2017). Polygenic scores via penalized regression on sum-
mary statistics. Genetic Epidemiology, 41, 469-480.

Marquez-Luna, C., Gazal, S., Loh, P.-R., Kim, S.S., Furlotte, N.,
Auton, A., ... & Price, A.L. (2021). Incorporating functional
priors improves polygenic prediction accuracy in UK Bio-
bank and 23andMe data sets. Nature Communications, 12,
1-11.

Morneau-Vaillancourt, G., Andlauer, T.F.M., Ouellet-Morin, I.,
Paquin, S., Brendgen, M.R., Vitaro, F., ... & Boivin, M.
(2021). Polygenic scores differentially predict developmental
trajectories of subtypes of social withdrawal in childhood.
Journal of Child Psychology and Psychiatry, 62, 1320-1329

Mund, M., & Nestler, S. (2019). Beyond the cross-lagged panel
model: Next-generation statistical tools for analyzing inter-
dependencies across the life course. Advances in Life Course
Research, 41, 100249.

Neale, M.C., & McArdle, J.J. (2000). Structured latent growth
curves for twin data. Twin Research and Human Genetics, 3,
165-177.

Neumann, A., Jolicoeur-Martineau, A., Szekely, E., Sallis,
H.M., Odonnel, K., Greenwood, C.M., ... & Evans, J. (2020).
Combined polygenic risk scores of different psychiatric traits
predict general and specific psychopathology in childhood.
medRxiv.

Ni, G., Zeng, J., Revez, J.A., Wang, Y., Zheng, Z., Ge, T., ... &
Pedersen, N.L. (2021). A comparison of ten polygenic score
methods for psychiatric disorders applied across multiple
cohorts. Biological Psychiatry, 90, 611-620.

Nivard, M.G., Gage, S.H., Hottenga, J.J., van Beijsterveldt,
C.E.M., Abdellaoui, A., Bartels, M., ... & Middeldorp, C.M.
(2017). Genetic overlap between schizophrenia and devel-
opmental psychopathology: Longitudinal and multivariate
polygenic risk prediction of common psychiatric traits
during development. Schizophrenia Bulletin, 43, 1197-1207.

Pain, O., Glanville, K.P., Hagenaars, S.P., Selzam, S., Furtjes,
A.E., Gaspar, H.A,, ... & Lewis, C.M. (2021). Evaluation of
polygenic prediction methodology within a reference-
standardized framework. PLoS Genetics, 17, €1009021.

Park, J.-H., Gail, M.H., Weinberg, C.R., Carroll, R.J., Chung,
C.C., Wang, Z., ... & Chatterjee, N. (2011). Distribution of
allele frequencies and effect sizes and their interrelation-
ships for common genetic susceptibility variants. Proceed-
ings of the National Academy of Sciences of the United States
of America, 108, 18026-18031.

Pettersson, E., Anckarsater, H., Gillberg, C., & Lichtenstein, P.
(2013). Different neurodevelopmental symptoms have a
common genetic etiology. Journal of Child Psychology and
Psychiatry, 54, 1356-1365.

Pettersson, E., Larsson, H., & Lichtenstein, P. (2016). Common
psychiatric disorders share the same genetic origin: A

Polygenic scores in developmental research 13

multivariate sibling study of the Swedish population. Molec-
ular Psychiatry, 21, 717-721.

Pingault, J.-B., Allegrini, A.G., Odigie, T., Frach, L., Baldwin,
J.R., Rijsdijk, F., & Dudbridge, F. (in press). Research
Review: How to interpret associations between polygenic
scores, environmental risks, and phenotypes. Journal of
Child Psychology and Psychiatry.

Pingault, J.-B., Rijsdijk, F., Zheng, Y., Plomin, R., & Viding, E.
(2015). Developmentally dynamic genome: Evidence of
genetic influences on increases and decreases in conduct
problems from early childhood to adolescence. Scientific
Reports, 5, 1-9.

Pingault, J.-B., Viding, E., Galéra, C., Greven, C.U., Zheng, Y.,
Plomin, R., & Rijsdijk, F. (2015). Genetic and environmental
influences on the developmental course of attention-deficit/
hyperactivity disorder symptoms from childhood to adoles-
cence. JAMA Psychiatry, 72, 651-658.

Plomin, R. (2014). Genotype-environment correlation in the era
of DNA. Behavior Genetics, 44, 629-638.

Pritikin, J.N., Neale, M.C., Prom-Wormley, E.C., Clark, S.L., &
Verhulst, B. (2021). GW-SEM 2.0: Efficient, flexible, and
accessible multivariate GWAS. Behavior Genetics, 51, 343—
357.

Privé, F., Vilhjalmsson, B.J., Aschard, H., & Blum, M.G.
(2019). Making the most of clumping and thresholding for
polygenic scores. The American Journal of Human Genetics,
105, 1213-1221.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,
M.A.R., Bender, D., ... & Sham, P.C. (2007). PLINK: a tool set
for whole-genome association and population-based linkage
analyses. The American Journal of Human Genetics, 81,
559-575.

Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O’Dono-
van, M.C., Sullivan, P.F., Sklar, P., & The International
Schizophrenia Consortium (2009). Common polygenic vari-
ation contributes to risk of schizophrenia and bipolar
disorder. Nature, 460, 748.

Richardson, T.G., Harrison, S., Hemani, G., & Smith, G.D.
(2019). An atlas of polygenic risk score associations to
highlight putative causal relationships across the human
phenome. eLife, 8, e43657.

Riglin, L., Thapar, A.K., Leppert, B., Martin, J., Richards, A.,
Anney, R., ... & Thapar, A. (2020). Using genetics to examine
a general liability to childhood psychopathology. Behavior
Genetics, 50, 213-220.

Rimfeld, K., Malanchini, M., Spargo, T., Spickernell, G.,
Selzam, S., McMillan, A., ... & Plomin, R. (2019). Twins
Early Development Study: A genetically sensitive investiga-
tion into behavioral and cognitive development from infancy
to emerging adulthood. Twin Research and Human Genetics,
22, 508-513.

Ripke, S., Walters, J.T., O’'Donovan, M.C. & Consortium, S. W.
G. O.T. P. G. (2020). Mapping genomic loci prioritises genes
and implicates synaptic biology in schizophrenia. medRxiv.

Risch, N., & Merikangas, K. (1996). The future of genetic
studies of complex human diseases. Science, 273, 1516—
1517.

Robinson, M.R., Kleinman, A., Graff, M., Vinkhuyzen, A.A.E.,
Couper, D., Miller, M.B., ... & Visscher, P.M. (2017). Genetic
evidence of assortative mating in humans. Nature Human
Behaviour, 1, 1-13.

Schlag, F., Allegrini, A.G., Buitelaar, J., Verhoef, E., van
Donkelaar, M., Plomin, R., ... & St Pourcain, B. (2021).
Polygenic risk for psychiatric disorder reveals distinct asso-
ciation profiles across social behaviour in the general
population. medRxiv.

Shi, J., Park, J.-H., Duan, J., Berndt, S.T., Moy, W., Yu, K., ...
& Chatterjee, N. (2016). Winner’s curse correction and
variable thresholding improve performance of polygenic risk
modeling based on genome-wide association study
summary-level data. PLoS Genetics, 12, e1006493.

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for

Child and Adolescent Mental Health.



14 Andrea G. Allegrini et al.

Siva, N. (2008). 1000 Genomes project. Nature Biotechnology,
26, 256-257.

Tibshirani, R. (1996). Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58, 267-288.

Turley, P., Walters, R.K., Maghzian, O., Okbay, A., Lee, J.J.,
Fontana, M.A., ... & Benjamin, D.J. (2018). Multi-trait
analysis of genome-wide association summary statistics
using MTAG. Nature Genetics, 50, 229-237.

van der Laan, C.M., Morosoli-Garcia, J.J., van de Weijer,
S.G.A., Colodro-Conde, L., Ip, H.F., van der Laan, C.M., ...
Boomsma, D.I. (2021). Continuity of genetic risk for aggres-
sive behavior across the life-course. Behavior Genetics, 51,
592-606.

Vilhjalmsson, B., Yang, J., Finucane, H., Gusev, A., Lindstrom,
S., Ripke, S., ... & Zheng, W. (2015). Modeling linkage
disequilibrium increases accuracy of polygenic risk scores.
The American Journal of Human Genetics, 97, 576-592.

Visscher, P.M., & Goddard, M.E. (2019). From RA Fisher’s
1918 paper to GWAS a century later. Genetics, 211, 1125-
1130.

Waszczuk, M., Miao, J., Docherty, A., Shabalin, A., Jonas, K.,
Michelini, G., & Kotov, R. (2021). General v. specific vulner-
abilities: Polygenic risk scores and higher-order psy-
chopathology dimensions in the Adolescent Brain Cognitive
Development (ABCD) Study. Psychological Medicine, 1-10.
https://doi.org/10.1017/S0033291721003639

Watanabe, K., Stringer, S., Frei, O., Mirkov, M.U., de Leeuw,
C., Polderman, T.J., ... & Posthuma, D. (2019). A global
overview of pleiotropy and genetic architecture in complex
traits. Nature Genetics, 51, 1339-1348.

Wray, N.R., Goddard, M.E., & Visscher, P.M. (2007). Prediction
of individual genetic risk to disease from genome-wide
association studies. Genome Research, 17, 1520-1528.

Wray, N.R., Lin, T., Austin, J., McGrath, J.J., Hickie, [.B.,
Murray, G.K., & Visscher, P.M. (2021). From basic science to
clinical application of polygenic risk scores: a primer. JAMA
Psychiatry, 78, 101-109.

Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders,
AK., Nyholt, D.R., ... & Visscher, P.M. (2010). Common
SNPs explain a large proportion of the heritability for human
height. Nature Genetics, 42, 565-569.

Yang, S., & Zhou, X. (2020). Accurate and scalable construc-
tion of polygenic scores in large biobank data sets. The
American Journal of Human Genetics, 106, 679-693.

Yang, S., & Zhou, X. (2022). PGS-server: accuracy, robustness
and transferability of polygenic score methods for biobank
scale studies. Briefings in Bioinformatics, 23, 39.

Zhang, Q., Privé, F., Vilhjadlmsson, B., & Speed, D. (2021).
Improved genetic prediction of complex traits from
individual-level data or summary statistics. bioRxiv,
2020.2008.2024.265280.

Accepted for publication: 4 March 2022

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for

Child and Adolescent Mental Health.


https://doi.org/10.1017/S0033291721003639

