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Abstract 

Introduction 

A number of genes have been identified in which rare variants can cause obesity. Here we analyse a 
sample of exome sequenced subjects from UK Biobank using BMI as a phenotype with the aim of 
identifying genes in which rare, functional variants influence BMI and characterising the effects of 
different categories of variant. 

Methods 

There were 199,807 exome sequenced subjects for whom BMI was recorded. Weighted burden 
analysis of rare, functional variants was carried out, incorporating population principal components 
and sex as covariates. For selected genes, additional analyses were carried out to clarify the 
contribution of different categories of variant. Statistical significance was summarised as the signed 
log 10 of the p value (SLP), given a positive sign if the weighted burden score was positively 
correlated with BMI. 

Results 

Two genes were exome-wide significant, MC4R (SLP = 15.79) and PCSK1 (SLP = 6.61). In MC4R, 
disruptive variants were associated with an increase in BMI of 2.72 units and probably damaging 
nonsynonymous variants with an increase of 2.02 units. In PCSK1, disruptive variants were 
associated with a BMI increase of 2.29 and protein-altering variants with an increase of 0.34. Results 
for other genes were not formally significant after correction for multiple testing, although SIRT1, 
ZBED6 and NPC2 were noted to be of potential interest. 

Conclusion 

Because the UK Biobank consists of a self-selected sample of relatively healthy volunteers, the effect 
sizes noted may be underestimates. The results demonstrate the effects of very rare variants on BMI 
and suggest that other genes and variants will be definitively implicated when the sequence data for 
additional subjects becomes available. 

This research has been conducted using the UK Biobank Resource. 

Keywords 

mailto:d.curtis@ucl.ac.uk


BMI; exome; MC4R; PCSK1; SIRT1; ZBED6; NPC2. 

 

Introduction 

Genome wide association studies (GWAS) detect large numbers of common variants showing 
statistically significant association with obesity although it can be difficult to interpret the biological 
processes underlying these signals (1). Additionally, a small number of genes have been identified in 
which very rare variants can have a major effect on body mass index (BMI) and their contribution 
and mechanisms have recently been reviewed (2). In some of these, such as LEP, LEPR, PCSK1 and 
SIM1, recessively acting variants cause deficiency of the gene product and this can result in obesity. 
In others, including POMC and MC4R, heterozygous variants have been reported to be causative. 
Dominantly and recessively acting MC4R variants together constitute the commonest causes of 
inherited early-onset obesity, with a prevalence of 0.5-0.6%. It is also recognised that other 
nonsynonymous variants in MC4R can be associated with lower BMI and can be protective against 
obesity (3,4). 

As sequence data becomes available for larger numbers of subjects it is possible to explore the 
contribution of rare genetic variants to traits in the general population and we recently reported 
results obtained from analysing the association between rare variants and BMI in 50,000 exome-
sequenced UK Biobank subjects (5). Although no gene was exome wide significant, the analysis did 
highlight some which were potentially of interest, including LYPLAL1 and NSDHL. Since then, 
additional data has been released meaning that exome sequence data is now available for 200,000 
of the 500,000 UK Biobank subjects to approved researchers (6). Analyses of this larger dataset 
shows that it is better powered to detect rare variant effects and such analyses were successful in 
implicating, at exome-wide significance, genes previously recognised as risk factors for both 
hyperlipidaemia and type 2 diabetes (7,8). Here, we apply the same approach as previously, using 
BMI as the phenotype in the enlarged sample. 

Early access to exome sequence data from the remaining UK Biobank subjects was granted to 
Regeneron Pharmaceuticals Inc. and their collaborators and a study using data from 429.000 UK 
Biobank subjects of European origin along with 217,000 from other samples has recently been 
published (9). This study of over 640,000 exomes used BMI as a phenotype and performed burden 
analyses of rare variants to implicate 16 genes at exome-wide significance: UHMK1, GPR75, ROBO1, 
KIAA1109, PCSK1, GPR151, SPARC, UBR2, CALCR, PDE3B, ANO4, KIAA0586, MC4R, DPP9, ANKRD27 
and GIPR. The approach used in the present study differs in a number of ways. The 640K exome 
study excluded UK Biobank subjects of non-European ancestry, whereas we have previously shown 
that the methods used here are robust against population stratification, allowing the inclusion of 
subjects of all ancestries without inflation of the test statistic (5). The 640K exome study applied a 
simple burden analysis whereby counts of different categories of variant within each gene, such as 
predicted loss of function and missense predicted to be deleterious, were totalled together to test 
for association with BMI. Seven different variant selection models were used, requiring an additional 
correction for multiple testing. By contrast, we apply a weighted burden analysis which incorporates 
all variants in a single analysis but with higher weights assigned to those expected to have a larger 
effect. For example, predicted loss of function variants are given higher weights than missense 
variants predicted to be deleterious, which in turn have a higher weight than other missense 
variants. This removes the requirement to correct for multiple testing and, more importantly, is 
expected to yield higher power. From a statistical point of view, this is because likelihood ratio tests 
have higher power when the model for the alternative hypothesis more closely resembles the real 
situation. Thus, if predicted loss of function variants do in fact have a larger effect on the phenotype 
than missense variants, then one expects to gain power by weighting them differently. We have 



previously shown that predicted loss of function variants in LDLR are associated with a very high 
odds ratio for developing hyperlipidaemia whereas variants annotated as deleterious have a much 
more modest, though still statistically significant, effect (7). Additionally, we assign higher weights to 
variants which are rarer, under the assumption that variants which are extremely rare may have 
larger effect sizes. Work on real world data confirms that weighting on variant annotation and allele 
frequency in this way does indeed yield increased power (10). 

The aims of this study were to identify genes in which rare sequence variants had an effect on BMI 
and to characterise the effect sizes of different categories of variant. Attention was focused on rare 
variants because the effects of common variants would have been well established from previous 
GWASs. 

Methods 

The UK Biobank dataset was downloaded along with the variant call files for 200,632 subjects who 
had undergone exome-sequencing and genotyping by the UK Biobank Exome Sequencing 
Consortium using the GRCh38 assembly with coverage 20X at 95.6% of sites on average (6). UK 
Biobank had obtained ethics approval from the North West Multi-centre Research Ethics Committee 
which covers the UK (approval number: 11/NW/0382) and had obtained informed consent from all 
participants. The UK Biobank approved an application for use of the data (ID 51119) and ethics 
approval for the analyses was obtained from the UCL Research Ethics Committee (11527/001). All 
variants were annotated using the standard software packages VEP, PolyPhen and SIFT (11–13).  To 
obtain population principal components reflecting ancestry, version 2.0 of plink (https://www.cog-
genomics.org/plink/2.0/) was run with the options --maf 0.1 --pca 20 approx  (14,15). The phenotype 
was obtained from data field 21001-0.0, which records BMI at first assessment. Although BMI is an 
imperfect indicator of adiposity it has been widely used in similar investigations and also has the 
advantage that this data field is missing in very few subjects. 

Using the same approach as described previously, the SCOREASSOC program was used to carry out a 
weighted burden analysis to test whether, in each gene, the weighted burden of sequence variants 
which were rarer and/or predicted to have more severe functional effects correlated with BMI (5). 
Attention was restricted to rare variants with minor allele frequency (MAF) <= 0.01. As previously 
described, variants were weighted by overall MAF so that variants with MAF=0.01 were given a 
weight of 1 while very rare variants with MAF close to zero were given a weight of 10 (5). Variants 
were also weighted according to their functional annotation using the GENEVARASSOC program, 
which was used to generate input files for weighted burden analysis by SCOREASSOC (16,17). The 
weights allocated are to some extent arbitrary but took account of the analysis of the effects of 
different categories of variant in LDLR on hyperlipidaemia risk (7). A systematic exploration of 
different weighting schemes has shown than no one scheme is optimal in all circumstances but that 
the one used here has reasonable performance (10). Variants predicted to cause complete loss of 
function (LOF) of the gene were assigned a weight of 100. Nonsynonymous variants were assigned a 
weight of 5 but if PolyPhen annotated them as possibly or probably damaging then 5 or 10 was 
added to this and if SIFT annotated them as deleterious then 20 was added. In order to allow 
exploration of the effects of different types of variant on disease risk the variants were also grouped 
into broader categories to be used in multivariate analyses as described below. The full set of 
weights and categories is displayed in Table 1. As described previously, the weight due to MAF and 
the weight due to functional annotation were multiplied together to provide an overall weight for 
each variant. Variants were excluded if there were more than 10% of genotypes missing or if the 
heterozygote count was smaller than both homozygote counts. If a subject was not genotyped for a 
variant then they were assigned the subject-wise average score for that variant. For each subject a 
gene-wise weighted burden score was derived as the sum of the variant-wise weights, each 



multiplied by the number of alleles of the variant which the given subject possessed. For variants on 
the X chromosome, hemizygous males were treated as homozygotes.  

For each gene, multiple linear regression analysis was carried out including the first 20 population 
principal components and sex as covariates and a likelihood ratio test was performed comparing the 
likelihoods of the models with and without the gene-wise burden score. For convenience, the 
statistical significance is expressed as a signed log p value (SLP), which is the log base 10 of the p 
value given a positive sign if the score is positively correlated with BMI. This means strongly positive 
or negative values for the SLP indicate results which are statistically significant, while the sign 
indicates whether impaired functioning of the gene is positively or negatively associated with BMI. 

Gene set analyses were carried out as before using the 1454 "all GO gene sets, gene symbols" 
pathways as listed in the file c5.all.v5.0.symbols.gmt downloaded from the Molecular Signatures 
Database at http://www.broadinstitute.org/gsea/msigdb/collections.jsp (18). For each set of genes, 
the natural logs of the gene-wise p values were summed according to Fisher’s method to produce a 
chi-squared statistic with degrees of freedom equal to twice the number of genes in the set. The p 
value associated with this chi-squared statistic was expressed as a minus log10 p (MLP) as a test of 
association of the set with BMI. 

For selected genes, additional analyses were carried out to clarify the contribution of different 
categories of variant. As described previously, multiple linear regression analyses were performed 
on the counts of the separate categories of variant as listed in Table 1, again including principal 
components and sex as covariates, to estimate the effect size for each category (7). The mean effect 
on BMI for each category was estimated along with the standard error and the Wald statistic was 
used to obtain a p value. The associated p value was converted to an SLP, again with the sign being 
positive if the mean count was positively correlated with BMI. In these analyses, stop variants and 
frameshift variants were considered jointly as “disruptive variants” and splice site variants were 
considered separately, although all three types of variant might generally be expected to have a 
similar LOF effect. 

Data manipulation and statistical analyses were performed using GENEVARASSOC, SCOREASSOC and 
R  (19). Code availability: Software and scripts used to carry out the analyses are available at 
https://github.com/davenomiddlenamecurtis. 

Results  

There were 199,807 exome sequenced subjects for whom BMI was recorded. There were 11,0092 
male subjects with mean age 56.3 (SD=8.0) and mean BMI 27.0 (SD=5.1). There were 89,715 female 
subjects with mean age 56.7 (SD=8.2) and mean BMI 27.8 (SD=4.2). There were 20,384 genes for 
which there were qualifying variants, meaning that the critical threshold for the absolute value of 
the SLP to declare a result as formally statistically significant is -log10(0.05/20384) = 5.61. This 
threshold was met by two genes, MC4R (SLP = 15.79) and PCSK1 (SLP = 6.61). The quantile-quantile 
(QQ) plot for the SLPs obtained for all genes except MCR4 is shown in Figure 1. This shows that the 
test appears to be well-behaved and conforms fairly well with the expected distribution. Omitting 
the genes with the 100 highest and 100 lowest SLPs, which might be capturing a real biological 
effect, the gradient for positive SLPs is 1.23 with intercept at -0.0005 and the gradient for negative 
SLPs is 1.03 with intercept at 0.02, indicating only moderate inflation of the test statistic for those 
genes showing a positive correlation.  

For the two exome-wide significant genes, MC4R (SLP = 15.79) and PCSK1 (SLP = 6.61), logistic 

regression analysis of different categories of variants was carried out to elucidate their relative 
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contributions. The results are shown in Table 2, which shows differences between the genes relating 

to the implicated pattern of variants. In MC4R, disruptive variants (stop and frameshift) are 

associated with a highly significant (SLP = 6.55) increase in BMI by 2.72 units, equivalent to about 8 

kg for somebody of average height, and carriers have an average BMI of 30.16. These variants occur 

a total of 80 times at 19 separate positions. There are no splice site variants. Additionally, 

nonsynonymous variants annotated by PolyPhen as probably damaging are also significantly (SLP = 

4.29) associated with an average increase in BMI of 2.02 units. These occur in total 425 times at 55 

positions. By contrast, other variants, including those annotated as deleterious by SIFT, are not 

associated with BMI changes. The estimated effect of the probably damaging variants represents an 

average across all the variants in this category and of course it is possible that some have major 

effects whereas other do not. However inspection of the detailed results showed that all of these 

variants were very rare (MAF<0.001) and so it was not possible to reliably assess the effect of any 

individual variant. In PCSK1, disruptive variants are also significantly (SLP=3.28) associated with an 

increase in BMI of 2.29 units and carriers have a mean BMI of 29.66. The estimated effect of splice 

site variants, which are also predicted to cause LOF, is similar, an increase of 2.01 units, but they only 

occur 8 times and this effect is not statistically significant. In contrast with MC4R, there is no 

suggestion that variants in PCSK1 annotated as probably damaging have any effect on BMI. However 

the much larger general category of protein-altering variants is associated with a modest (0.34 units) 

but statistically significant (SLP = 2.74) increase in BMI. In total these occur 2,970 times, meaning 

that there is an average burden per subject of 0.015. 

One would expect that by chance 20 genes would produce SLPs with absolute value greater than 3, 
equivalent to p < 0.001, whereas in fact there are 68, suggesting that some might have an effect on 
BMI while failing to reach exome-wide significance after correction for multiple testing. These genes 
are listed in Table 3 and the SLPs for all genes are listed in Supplementary Table S1. Variant category 
analyses were carried out for those which seemed biologically plausible as well as for genes 
previously reported to be causative of obesity as listed in the introduction. These analyses yielded 
some findings of possible interest, discussed as follows. 

It is perhaps striking that two similar genes, GALNT14 (SLP = 4.72) and GALNT9 (SLP = 4.01), fall 

within the top 13 genes. These enzymes catalyze the transfer of N-acetyl-D-galactosamine (GalNAc) 

to the hydroxyl groups on serines and threonines in target peptides. The GALNT9 intronic SNP 

rs11247009-A has been reported to be associated with BMI (p = 6 x 10-9) (20). A study of broiler 

chickens claimed that in unpublished data one of the six most highly significant variants in a 

genome-wide study of abdominal fat was in GALNT9 and reported that GALNT9 expression in liver 

differed between lean and fat lines (21). However, overall there seems to be little prior evidence to 

implicate these genes as affecting BMI and they have mostly been studied in the context of cancer 

progression, although there is also a report of a homozygous frameshift variant of GALNT14 being 

found in a patient with nonsyndromic keratoconus. The results of variant-wise analysis of these two 

genes are shown in Tables 4A and 4B. This shows that GALNT14 there are 302 disruptive variants 

associated with a significant (SLP = 2.89) increase in BMI of 0.88 units, while in GALNT9 there are 12 

splice site variants associated with an increase in BMI of 3.97 units (SLP = 2.44) and 9 indels 

associated with an increase in BMI of 4.84 units (SLP = 2.65). 36 disruptive variants in GALNT9 are 

also associated with an increase in BMI of 1.14 units but this is not statistically significant (SLP = 

0.86). 

The results for SIRT1 (SLP = 3.16) are potentially of interest because SIRT1 and other sirtuins have 
effects similar to calorie restriction and reduced expression of SIRT1 and SIRT2 promotes 
adipogenesis and accumulation of visceral fat (22,23). From these findings one might well predict 



that genetic variants damaging SIRT1 might lead to increased BMI. The results from variant-wise 
analysis are shown in Table 4C, which shows only weakly significant effects from disruptive (SLP = 
1.34) and possibly damaging (SLP = 1.61) variants. 

ZBED6 (SLP = -3.33) codes for a transcriptional inhibitor of IGF2 which has a major impact on muscle 
development in placental mammals and CRISPR/Cas9 disruption of its binding site is being used 
commercially to produce strains of pigs which are leaner and have enhanced muscle development 
(24,25). The results for variant-wise analysis are shown in Table 4D, showing that disruptive variants 
are associated with a reduction in BMI of 1.59 units (SLP = -2.48) and deleterious nonsynonymous 
variants with a reduction of 0.37 units (SLP = - 1.49). 

The gene with the most negative SLP, BAIAP3 (SLP = -5.01), may have some role in insulin secretion 
but does not in general seem to be an obvious candidate to have effects on BMI (26). Splice site 
variants are associated with a reduction in BMI of 1.41 units (SLP = -3.47). 

It is well established that variants in LEP (SLP = 0.61) and LEPR (SLP = 0.13) can cause obesity but the 
gene-based analyses produced no evidence to implicate them. The results of variant-wise analyses 
are shown in Tables 5A and 5B. It can be seen that disruptive and splice site variants in LEP do 
indeed have substantially higher BMIs but because there are only 6 of them this does not produce a 
statistically significant effect, at least if one corrects for the numbers of categories tested. There is 
no suggestion that any other type of variant has an effect. By contrast, in LEPR there are a total of 88 
disruptive and splice site variants but their effect on mean BMI is negligible, as is also the case for 
other types of variant. 

A common nonsynonymous variant BDNF, rs6265, causes a Val66Met substitution which was 
originally reported to be associated with anorexia nervosa and minimum BMI in anorexia nervosa 
patients and whose effect on BMI was subsequently confirmed in large GWAS samples (27,28). This 
variant shows highly significant association in the current sample (SLP = -21.86). The number of 
subjects with Val/Val, Val/Met and Met/Met genotypes is 132,003, 60,639 and 7,165 with 
uncorrected mean BMIs of 27.47, 27.22 and 26.96. The per-allele effect size on BMI as estimated 
from multiple linear regression analysis including principal components and sex as covariates is -0.19 
(-0.23 – -0.15). However the gene-wise weighted burden analysis of BDNF using rare variants 
produced no evidence for association (SLP = 0.41) and variant-wise analyses likewise failed to show 
any effect from any category of rare variant. The mean effect size for protein-altering variants was 
0.23 but there were only 1,910 of these in total and the result does not approach statistical 
significance.  

Of the remaining genes implicated by the analysis of the 640K exome study, some produced some 
evidence for association which did not survive correction for multiple testing consisting of UHMK1 
(SLP = -1.53), GPR75 (SLP = -2.98), ROBO1 (SLP = 2.21), KIAA1109 (SLP = 1.84), UBR2 (SLP = 2.69), 
PDE3B (SLP = 2.06), ANO4 (SLP = 1.50), DPP9 (SLP = -2.09) and GIPR (SLP = -2.63). However other 
genes showed no overall evidence for association, consisting of GPR151 (SLP = -0.80), SPARC (SLP = 
0.14), CALCR (SLP = 0.41), KIAA0586 (SLP = -0.84) and ANKRD27 (SLP = -0.37). Detailed variant 
category analyses for these genes are presented in Supplementary Table S2. For some genes, it was 
possible to identify particular variant categories which appeared to be associated with BMJ. These 
consisted of disruptive variants in GPR75 (SLP = -4.87), ROBO1 (SLP = 2.91), KIAA1109 (SLP = 3.20), 
GPR151 (SLP = -2.17) and ANO4 (SLP = 1.31) whereas the broad category of protein-altering variants 
produced the strongest signal in two other genes, SPARC (SLP = 4.93) and GIPR (SLP = -4.29). For 
other genes, no category of variant was associated. 



Other genes previously implicated in obesity which likewise failed to show evidence of association in 
either gene-wise analyses or variant category analyses include SIM1 (SLP = 0.89), NTRK2 (SLP = 0.88), 
KSR2 (SLP = 0.17), CPE (SLP = -0.35), SH2B1 (SLP = 0.78), TUB (SLP = -0.08) and FTO (SLP = 1.02). 
Variant category analyses for all genes of interest are presented in Supplementary Table S3. 

In order to see if any additional genes were highlighted by analysing gene sets, gene set analysis was 

performed as described above after first removing all genes with absolute SLP value greater than 3. 

In order to correct for the observed inflation of the positive SLPs, the absolute value of each SLP was 

divided by an average inflation factor of 1.13 before being utilised to contribute to the set-wise chi-

squared statistic. Following this adjustment, no gene set produced a result significant after 

correction for multiple testing. The highest MLP was 2.45, achieved by the set SPECIFIC 

TRANSCRIPTIONAL REPRESSOR ACTIVITY. Out of 1,454 sets, the fifth highest ranked was 

REGULATION OF LIPID METABOLIC PROCESS (MLP = 1.93). This contains 12 genes including NPC2 

(SLP = 2.80), which is involved in cholesterol transport and recessively acting variants in NPC2 are a 

cause of Niemann-Pick C disease in which lipid accumulation causes neurodegeneration (29). NPC2 

presents cholesterol to NPC1 and rare LOF variants in NPC1 are known to cause obesity although 

NPC1 does not demonstrate association with BMI in the current sample (SLP = 0.15)  (30). In a GWAS 

of obesity in F2 pigs a variant within NPC2, rs81396056, produced the most highly significant result 

(p = 10−16) (31). The results of variant category analysis of NPC2 are shown in Table 4E and it can be 

seen that there is significant (SLP = 3.10) association of 3,119 splice site variants, occurring at 3 

different positions, with an average increase in BMI of 0.28. Disruptive variants are also associated 

with higher BMI but there are only 111 of them and this result is not statistically significant. Results 

for all gene sets are presented in Supplementary Table S4. 

Discussion 

These analyses help to elucidate the impact of rare genetic variants on a complex phenotype such as 
BMI and also illustrate some of the challenges of dealing with exome sequence data. The gene-wise 
weighted burden analyses successfully identify two genes already known to impact BMI, MC4R and 
PCSK1, but fail to detect effects of other known obesity genes. In due course sequence data will 
become available for all 500,000 UK Biobank participants and it is reasonable to expect that this 
larger dataset will produce additional results. For example, the subjects with LOF variants in LEP do 
have notably higher BMIs but there are so few of them that they do not produce a statistically 
significant result in this sample. Obviously, the power to detect association depends both on the 
effect size and the frequency of variants, and power will improve with increased sample size. To take 
another example of this issue, although the results for the BDNF Val66Met variant are highly 
statistically significant, other protein altering variants in BDNF are associated with a larger average 
effect size but do not produce a statistically significant result because they are cumulatively so much 
rarer. 

The results provide some indication about the quantitative effects of sequence variants but we 
should first note that the UK Biobank is not completely representative. It consists of volunteer 
participants who are on average older and healthier than the population as a whole. One implication 
of this is that subjects with more severe phenotypes will be less likely to be included and an overall 
effect of this will be to underestimate the effect size of rare variants which can cause morbidity and 
premature mortality. For example, we can observe that LOF variants in MC4R and PCSK1 are 
associated with an average increase of 2 or more BMI units but that this estimate may well 
represent a floor for the real effect size, and indeed much larger effects have been reported in a 
birth cohort characterised at age 18 (32).  

The public health impact of genetic variants depends on their effect and on how many people carry 
them. For those categories of variant which are rare, the proportion of people carrying such a 



variant will be approximated by the average variant load because few people will have more than 
one variant. Thus, we may say that 0.04% of this sample has a LOF variant in MC4R associated with 
an increase of 2.7 in BMI while 0.2% have a variant annotated as probably damaging by PolyPhen 
associated with an average BMI increase of 2.0. Likewise, less than 0.03% of the sample has a LOF 
variant in PCSK1 which tends to increase BMI by 2.3 units whereas 1.5% carry a protein altering 
variant associated with an average BMI increase of 0.3.  

The analyses fail to conclusively implicate novel genes as influencing BMI. The three which are 
arguably biologically the most plausible are SIRT1, ZBED6 and NPC2 but it must be acknowledged 
that the statistical evidence supporting their involvement is fairly weak. Conversely, there are other 
genes with higher statistical significance but whose function, as far as it is known, does not 
immediately suggest that they would have a prominent role in influencing BMI. It is clear that 
additional data will be needed to arrive at definitive solutions, whether it be from the remaining UK 
Biobank subjects or from alternative sources. 

The results from these analyses would seem to point to very rare variants in a fairly small number of 
genes as having detectable effects on BMI but there are some caveats which are worth stating. 
Firstly, the approach used makes the assumption that when variants are considered jointly then they 
will tend to have the same direction of effect on the phenotype. This seems a reasonable 
assumption for LOF variants, expected to reduce the functioning of a gene, but the method would 
fail if some non-synonymous variants reduced function but were balanced out by others which 
produced gain of function. While we may expect that on average a non-synonymous change, 
especially one annotated as damaging or deleterious, will be more likely to impair than improve 
function it is important to acknowledge that if there is a good deal of heterogeneity of effect then 
genes and classes of variant will fail to achieve statistical significance. Thus, these results should not 
be taken to exclude the possibility that there may be very large numbers of individually rare variants 
in many genes which might cumulatively make a substantial contribution to the overall variance of 
BMI in the population. 

Another point to make is that association studies such as this, especially those based on population 
samples, are not expected to necessarily identify genes which affect BMI but rather genes in which 
naturally occurring variation affects BMI. For example, there are large variations in the frequency 
with which LOF variants are observed in different genes, reflecting partly the size of the gene but 
also selection pressures. Only 6 subjects have LOF variants in LEP compared to thousands in NPC2 
and so LEP does not produce a detectable signal. However it may well be that by recognising LEP as 
potentially having a major and direct impact on BMI, functional studies will yield useful 
understanding of the underlying physiology. It should be noted that the selection pressures reducing 
variation in a particular gene may relate to the phenotype under consideration, here BMI, but may 
also involve other biological processes impacting on fitness.  

To conclude, the study of very large, exome-sequenced samples such as the UK Biobank can afford 
us further insights into the relationship between genetic variation and a quantitative, health-related 
phenotype such as BMI. 
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Table 1 

The table shows the weight which was assigned to each type of variant as annotated by VEP, 
Polyphen and SIFT as well as the broad categories which were used for multivariate analyses of 
variant effects (11–13). 

VEP / SIFT / Polyphen annotation Weight Category 

intergenic_variant 0 Unused 

feature_truncation 0 Intronic, etc. 

regulatory_region_variant 0 Intronic, etc. 

feature_elongation 0 Intronic, etc. 

regulatory_region_amplification 1 Intronic, etc. 

regulatory_region_ablation 1 Intronic, etc. 

TF_binding_site_variant 1 Intronic, etc. 

TFBS_amplification 1 Intronic, etc. 

TFBS_ablation 1 Intronic, etc. 

downstream_gene_variant 0 Intronic, etc. 

upstream_gene_variant 0 Intronic, etc. 

non_coding_transcript_variant 0 Intronic, etc. 

NMD_transcript_variant 0 Intronic, etc. 

intron_variant 0 Intronic, etc. 

non_coding_transcript_exon_variant 0 Intronic, etc. 

3_prime_UTR_variant 1 3 prime UTR 

5_prime_UTR_variant 1 5 prime UTR 

mature_miRNA_variant 5 Unused 

coding_sequence_variant 0 Unused 

synonymous_variant 0 Synonymous 

stop_retained_variant 5 Unused 

incomplete_terminal_codon_variant 5 Unused 

splice_region_variant 1 Splice region 

protein_altering_variant 5 Protein altering 

missense_variant 5 Protein altering 

inframe_deletion 10 InDel, etc 

inframe_insertion 10 InDel, etc 

transcript_amplification 10 InDel, etc 

start_lost 10 Unused 

stop_lost 10 Unused 

frameshift_variant 100 Disruptive 

stop_gained 100 Disruptive 

splice_donor_variant 100 Splice site variant 

splice_acceptor_variant 100 Splice site variant 

transcript_ablation 100 Disruptive 

SIFT deleterious 20 Deleterious 

PolyPhen possibly damaging 5 Possibly damaging 

PolyPhen probably damaging 10 Probably damaging 

  



Table 2 

Results from regression analysis showing the effects on BMI of different categories of variant within 
the two exome-wide significant genes, MC4R and PCSK1. For each category of variant, the table 
shows the number of different variants of that category (at different locations) and the total number 
of times a variant of that category occurred. Also shown is the mean and SD of the BMI for all 
subjects carrying at least one variant of that category. The SLP is the signed log10 p value from the 
regression analysis and the estimated effect for each category is the fitted mean change in BMI after 
incorporating principal components and sex as covariates.  

Table 2A 

Results for MC4R. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 0 0      

5 prime UTR 25 286 0.001431 27.82 5.08 1.02 0.47 (-0.09 - 1.03) 

Synonymous 60 883 0.004419 28.14 5.19 -0.66 -0.19 (-0.50 - 0.12) 

Splice region 0 0      

3 prime UTR 7 49 0.000245 27.57 5.26 0.12 0.20 (-1.15 - 1.55) 

Protein altering 140 1,355 0.006782 28.24 5.42 0.03 0.02 (-0.34 - 0.37) 

InDel, etc 1 4 0.000020 28.76 8.08 0.33 1.70 (-3.03 - 6.42) 

Disruptive 19 80 0.000400 30.16 4.93 6.55 2.72 (1.66 - 3.79) 

Splice site variant 0 0      

Deleterious 70 452 0.002262 28.70 5.88 -0.54 -0.50 (-1.44 - 0.44) 

Possibly damaging 23 201 0.001006 28.42 5.51 1.68 0.92 (0.13 - 1.72) 

Probably damaging 55 425 0.002127 28.98 5.86 4.29 2.02 (1.02 - 3.02) 

Subjects with no 
variant  197,329 0.987598 27.37 4.75   

 

  



Table 2B 

Results for PCSK1. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 592 20,821 0.104206 27.67 4.95 0.86 0.04 (-0.01 - 0.08) 

5 prime UTR 21 3,081 0.015420 27.74 5.14 0.05 0.01 (-0.16 - 0.18) 

Synonymous 136 3,616 0.018097 28.22 5.17 0.08 0.02 (-0.15 - 0.18) 

Splice region 35 164 0.000821 27.87 5.21 0.54 0.39 (-0.35 - 1.12) 

3 prime UTR 27 79 0.000395 27.46 4.62 -0.09 -0.12 (-1.19 - 0.94) 

Protein altering 292 2,970 0.014864 27.73 4.96 2.74 0.34 (0.12 - 0.56) 

InDel, etc 4 14 0.000070 26.93 6.16 -0.14 -0.45 (-2.97 - 2.08) 

Disruptive 22 51 0.000255 29.66 6.29 3.28 2.29 (0.97 - 3.62) 

Splice site variant 3 8 0.000040 29.59 8.40 0.64 2.01 (-1.33 - 5.35) 

Deleterious 153 990 0.004955 27.87 5.06 0.56 0.34 (-0.28 - 0.95) 

Possibly damaging 53 451 0.002257 27.44 4.54 -0.41 -0.27 (-0.90 - 0.36) 

Probably damaging 102 602 0.003013 27.85 5.36 -0.21 -0.17 (-0.87 - 0.52) 

Subjects with no 
variant  176,391 0.882807 27.34 4.73   

 

 

 

 

  



Table 3  

Genes with absolute value of SLP exceeding 3 or more (equivalent to p<0.001) for test of association 
of weighted burden score with BMI. 

Gene symbol SLP Gene name 

MC4R 15.79 Melanocortin 4 Receptor 

PCSK1 6.61 Proprotein Convertase Subtilisin/Kexin Type 1 

PTOV1 5.22 PTOV1 Extended AT-Hook Containing Adaptor Protein 

GALNT14 4.72 Polypeptide N-Acetylgalactosaminyltransferase 14 

LOC112268007 4.63 GRM3 Antisense RNA 1 

RNF187 4.57 Ring Finger Protein 187 

LOC102724050 4.48 Uncharacterized LOC102724050 

DYNC1H1 4.21 Dynein Cytoplasmic 1 Heavy Chain 1 

SMARCE1 4.15 SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, 
Subfamily E, Member 1 

SMPD1 4.10 Sphingomyelin Phosphodiesterase 1 

SATL1 4.02 Spermidine/Spermine N1-Acetyl Transferase Like 1 

GALNT9 4.01 Polypeptide N-Acetylgalactosaminyltransferase 9 

ZDHHC17 3.90 Zinc Finger DHHC-Type Palmitoyltransferase 17 

LOC101927911 3.88 Uncharacterized LOC101927911 

CFP 3.85 Complement Factor Properdin 

TRIP12 3.83 Thyroid Hormone Receptor Interactor 12 

FOXK2 3.76 Forkhead Box K2 

SHROOM2 3.70 Shroom Family Member 2 

ADNP 3.66 Activity Dependent Neuroprotector Homeobox 

HSFX1 3.66 Heat Shock Transcription Factor Family, X-Linked 1 

CTAGE1 3.66 Cutaneous T Cell Lymphoma-Associated Antigen 1 

NUDT16L1 3.65 Nudix Hydrolase 16 Like 1 

PRR36 3.59 Proline Rich 36 

BCLAF3 3.56 BCLAF1 And THRAP3 Family Member 3 

DPP8 3.55 Dipeptidyl Peptidase 8 

SRPK2 3.52 SRSF Protein Kinase 2 

ZC3H8 3.52 Zinc Finger CCCH-Type Containing 8 

ACSL3 3.51 Acyl-CoA Synthetase Long Chain Family Member 3 

FAM19A1 3.51 TAFA Chemokine Like Family Member 1 

OCRL 3.50 OCRL Inositol Polyphosphate-5-Phosphatase 

FLJ44635 3.50 TPT1-Like Protein 

OS9 3.41 OS9 Endoplasmic Reticulum Lectin 

UBR3 3.37 Ubiquitin Protein Ligase E3 Component N-Recognin 3 

CPA5 3.36 Carboxypeptidase A5 

OR6C3 3.31 Olfactory Receptor Family 6 Subfamily C Member 3 

PTPRG 3.31 Protein Tyrosine Phosphatase Receptor Type G 

H2AFZ 3.23 H2A.Z Variant Histone 1 

AMOT 3.18 Angiomotin 



SIRT1 3.16 Sirtuin 1 

CRYBG3 3.15 Crystallin Beta-Gamma Domain Containing 3 

RNASE7 3.14 Ribonuclease A Family Member 7 

ATP12A 3.11 ATPase H+/K+ Transporting Non-Gastric Alpha2 Subunit 

SLC17A9 3.11 Solute Carrier Family 17 Member 9 

CITED2 3.11 Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal 
Domain 2 

NMI 3.08 N-Myc And STAT Interactor 

CACNA1I 3.08 Calcium Voltage-Gated Channel Subunit Alpha1 I 

TGIF2LX 3.08 TGFB Induced Factor Homeobox 2 Like X-Linked 

BMP10 3.08 Bone Morphogenetic Protein 10 

FOXD4L1 3.07 Forkhead Box D4 Like 1 

UBE4B 3.05 biquitination Factor E4B 

SCN8A 3.04 Sodium Voltage-Gated Channel Alpha Subunit 8 

AEBP1 -3.04 AE Binding Protein 1 

ANTXRL -3.06 ANTXR Like 

ATP8B2 -3.10 ATPase Phospholipid Transporting 8B2 

ITLN2 -3.16 Intelectin 2 

POPDC3 -3.17 Popeye Domain Containing 3 

MIR6881 -3.24 MicroRNA 6881 

CFAP97D1 -3.24 CFAP97 Domain Containing 1 

USP4 -3.27 Ubiquitin Specific Peptidase 4 

CLUH -3.27 Clustered Mitochondria Homolog 

HS6ST3 -3.33 Heparan Sulfate 6-O-Sulfotransferase 3 

ZBED6 -3.34 Zinc Finger BED-Type Containing 6 

FAM171B -3.37 Family With Sequence Similarity 171 Member B 

PKP4 -3.43 Plakophilin 4 

GIT2 -3.45 GIT ArfGAP 2 

NOP14 -3.93 NOP14 Nucleolar Protein 

DEFB4B -4.63 Defensin Beta 4B 

BAIAP3 -5.01 BAI1 Associated Protein 3 

 

 

  



Table 4 

Results from variant category regression analyses for other genes of possible interest. The tables 
show the numbers of variant of each category, their total numbers and the mean and SD of BMI 
observed in variant carriers along with the SLP and estimated effect size. 

Table 4A 

Results for GALNT14. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 877 20,167 0.100932 27.73 4.98 -0.02 -0.00 (-0.07 - 0.06) 

5 prime UTR 38 697 0.003488 28.16 5.27 0.05 0.02 (-0.34 - 0.38) 

Synonymous 121 5558 0.027817 27.49 4.79 -0.66 -0.08 (-0.22 - 0.05) 

Splice region 46 1204 0.006026 28.94 5.02 -0.33 -0.10 (-0.38 - 0.18) 

3 prime UTR 22 243 0.001216 27.22 4.71 -0.25 -0.17 (-0.78 - 0.43) 

Protein altering 299 9,851 0.049303 27.47 4.80 0.03 0.00 (-0.10 - 0.11) 

InDel, etc 5 6 0.000030 24.72 3.11 -0.81 -2.74 (-6.59 - 1.12) 

Disruptive 30 302 0.001511 28.24 5.35 2.89 0.88 (0.33 - 1.42) 

Splice site variant 13 50 0.000250 27.76 4.82 0.22 0.35 (-0.99 - 1.69) 

Deleterious 176 2,302 0.011521 27.72 4.91 1.00 0.32 (-0.07 - 0.71) 

Possibly damaging 46 695 0.003478 27.93 4.84 0.26 0.15 (-0.36 - 0.66) 

Probably damaging 140 1,335 0.006681 27.58 5.04 -0.18 -0.09 (-0.52 - 0.34) 

Subjects with no 
variant  171,281 0.857232 27.34 4.73   

 

  



Table 4B 

Results for GALNT9. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 613 25,032 0.125281 27.69 4.99 -1.08 -0.05 (-0.10 - 0.01) 

5 prime UTR 34 132 0.000661 28.21 4.57 -0.24 -0.22 (-1.01 - 0.57) 

Synonymous 183 10,134 0.050719 27.90 5.20 0.69 0.06 (-0.04 - 0.17) 

Splice region 44 231 0.001156 27.45 4.87 0.24 0.17 (-0.45 - 0.79) 

3 prime UTR 228 11,273 0.056419 27.82 5.00 -0.12 -0.01 (-0.10 - 0.08) 

Protein altering 362 2,952 0.014774 27.66 4.95 0.43 0.13 (-0.16 - 0.41) 

InDel, etc 5 9 0.000045 32.21 10.83 2.65 4.84 (1.68 - 8.01) 

Disruptive 19 36 0.000180 28.17 7.12 0.86 1.14 (-0.40 - 2.68) 

Splice site variant 7 12 0.000060 31.20 12.28 2.44 3.97 (1.24 - 6.70) 

Deleterious 207 1,626 0.008138 27.63 4.99 -0.08 -0.04 (-0.45 - 0.37) 

Possibly damaging 83 951 0.004760 27.68 4.79 0.46 0.21 (-0.24 - 0.66) 

Probably damaging 109 736 0.003684 27.69 5.05 0.50 0.25 (-0.25 - 0.75) 

Subjects with no 
variant  172,467 0.863168 27.34 4.73   

 

  



Table 4C 

Results for SIRT1. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 590 12,438 0.062250 27.35 4.81 0.10 0.01 (-0.08 - 0.10) 

5 prime UTR 43 777 0.003889 27.39 4.75 -1.16 -0.31 (-0.65 - 0.03) 

Synonymous 168 3064 0.015335 27.64 4.98 0.62 0.10 (-0.07 - 0.27) 

Splice region 29 54 0.000270 28.04 4.19 0.44 0.56 (-0.68 - 1.80) 

3 prime UTR 21 376 0.001882 28.69 4.97 -0.04 -0.03 (-0.53 - 0.47) 

Protein altering 320 8,020 0.040139 27.48 4.79 0.13 0.03 (-0.14 - 0.19) 

InDel, etc 19 432 0.002162 27.81 5.32 0.85 0.33 (-0.12 - 0.79) 

Disruptive 16 26 0.000130 29.44 6.52 1.34 1.79 (0.00 - 3.57) 

Splice site variant 2 3 0.000015 31.03 6.93 0.84 3.99 (-1.47 - 9.44) 

Deleterious 130 4,552 0.022782 27.43 4.76 0.11 0.03 (-0.19 - 0.25) 

Possibly damaging 33 98 0.000490 28.54 5.35 1.61 1.08 (0.12 - 2.04) 

Probably damaging 57 257 0.001286 27.62 4.76 0.33 0.22 (-0.38 - 0.83) 

Subjects with no 
variant  177,451 0.888112 27.37 4.75   

 

  



Table 4D 

Results for ZBED6. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 0 0      

5 prime UTR 0 0      

Synonymous 145 1,316 0.006586 28.12 5.36 0.39 0.11 (-0.15 - 0.37) 

Splice region 0 0      

3 prime UTR 19 104 0.000521 28.26 4.34 1.24 0.88 (-0.05 - 1.81) 

Protein altering 322 4,785 0.023948 27.44 4.80 -0.07 -0.02 (-0.18 - 0.15) 

InDel, etc 11 102 0.000510 27.13 4.54 -0.17 -0.20 (-1.13 - 0.74) 

Disruptive 40 74 0.000370 25.72 3.48 -2.48 -1.59 (-2.68 - -0.51) 

Splice site variant 0 0      

Deleterious 121 914 0.004574 27.36 4.92 -1.49 -0.37 (-0.72 - -0.02) 

Possibly damaging 69 410 0.002052 27.68 4.57 0.25 0.14 (-0.35 - 0.63) 

Probably damaging 99 451 0.002257 27.44 4.61 -0.01 -0.01 (-0.48 - 0.47) 

Subjects with no 
variant  193,605 0.968960 27.37 4.75   

 

  



Table 4E 

Results for NPC2. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 118 2,755 0.013788 27.50 4.81 0.41 0.08 (-0.10 - 0.26) 

5 prime UTR 41 361 0.001807 27.75 4.57 -1.54 -0.55 (-1.05 - -0.05) 

Synonymous 35 299 0.001496 26.68 4.53 -1.51 -0.59 (-1.14 - -0.04) 

Splice region 11 907 0.004539 27.79 4.98 -0.10 -0.04 (-0.36 - 0.28) 

3 prime UTR 85 1,461 0.007312 27.91 4.89 0.46 0.12 (-0.13 - 0.37) 

Protein altering 72 1,573 0.007873 27.69 4.96 -0.43 -0.18 (-0.58 - 0.22) 

InDel, etc 1 1 0.000005 23.91  -0.28  
Disruptive 10 111 0.000556 28.94 5.74 1.27 0.87 (-0.03 - 1.76) 

Splice site variant 3 3,119 0.015610 27.63 4.95 3.10 0.28 (0.11 - 0.45) 

Deleterious 41 742 0.003714 28.45 5.10 0.96 0.40 (-0.10 - 0.90) 

Possibly damaging 12 525 0.002628 26.97 4.56 -0.68 -0.33 (-0.86 - 0.19) 

Probably damaging 19 68 0.000340 27.51 4.59 -0.08 -0.13 (-1.33 - 1.07) 

Subjects with no 
variant  189,490 0.948365 27.36 4.75   

 

  



Table 4F 

Results for BAIAP3. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 1486 30454 0.152417 27.47 4.82 -1.44 -0.05 (-0.10 - -0.00) 

5 prime UTR 29 272 0.001361 27.39 4.29 0.35 0.22 (-0.35 - 0.79) 

Synonymous 390 4376 0.021901 27.70 4.96 0.09 0.02 (-0.12 - 0.16) 

Splice region 144 1224 0.006126 27.75 5.09 0.18 0.06 (-0.21 - 0.33) 

3 prime UTR 79 3417 0.017102 27.72 5.09 0.20 0.04 (-0.12 - 0.20) 

Protein altering 700 14175 0.070943 27.37 4.77 -0.90 -0.10 (-0.23 - 0.03) 

InDel, etc 6 26 0.000130 26.15 4.84 -0.87 -1.39 (-3.24 - 0.46) 

Disruptive 59 293 0.001466 27.08 4.69 -0.61 -0.32 (-0.87 - 0.23) 

Splice site variant 25 145 0.000726 26.02 3.99 -3.47 -1.41 (-2.19 - -0.62) 

Deleterious 355 7254 0.036305 27.32 4.79 -0.01 -0.00 (-0.17 - 0.16) 

Possibly damaging 139 1475 0.007382 27.32 4.60 -0.19 -0.06 (-0.32 - 0.20) 

Probably damaging 178 3773 0.018883 27.12 4.56 -0.96 -0.15 (-0.33 - 0.04) 

Subjects with no 
variant  157851 0.790017 27.37 4.75   

 



Table 5 

Results from variant category regression analyses for LEP and LEPR. The tables show the numbers of 
variant of each category, their total numbers and the mean and SD of BMI observed in variant 
carriers along with the SLP and estimated effect size. 

Table 5A 

Results for LEP. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 58 7,313 0.036600 27.61 5.00 -0.16 -0.02 (-0.13 - 0.09) 

5 prime UTR 4 13 0.000065 29.44 5.61 1.00 2.16 (-0.46 - 4.78) 

Synonymous 45 1,153 0.005771 27.77 5.13 1.71 0.32 (0.05 - 0.60) 

Splice region 2 4 0.000020 30.91 6.67 0.83 3.41 (-1.31 - 8.14) 

3 prime UTR 10 2,486 0.012442 27.63 4.85 -0.20 -0.05 (-0.24 - 0.14) 

Protein altering 50 1,235 0.006181 28.62 5.34 -0.21 -0.07 (-0.37 - 0.22) 

InDel, etc 1 1 0.000005 27.70  -0.01 -0.14 (-9.59 - 9.30) 

Disruptive 4 5 0.000025 32.05 3.90 1.64 4.80 (0.58 - 9.03) 

Splice site variant 1 1 0.000005 33.46  0.68 5.91 (-3.54 - 15.35) 

Deleterious 18 59 0.000295 27.10 4.00 -0.48 -0.96 (-2.95 - 1.03) 

Possibly damaging 8 91 0.000455 27.30 4.91 0.01 0.01 (-1.06 - 1.09) 

Probably damaging 15 49 0.000245 27.27 4.05 0.42 0.95 (-1.21 - 3.11) 

Subjects with no 
variant  188,116 0.941489 27.36 4.74   

 

  



Table 5B 

Results for LEPR. 

Category Number 
of 
different 
variants 

Total 
number 
of 
variants 

Average 
variant 
load per 
subject 

BMI 
mean in 
carriers 

BMI SD in 
carriers 

SLP Effect on mean BMI 
(95% CI) 

Intronic, etc 2,481 51,218 0.256337 27.43 4.80 -0.65 -0.02 (-0.06 - 0.02) 

5 prime UTR 48 3,200 0.016015 27.25 4.73 -0.01 -0.00 (-0.17 - 0.17) 

Synonymous 145 4,298 0.021511 27.67 4.96 -0.13 -0.02 (-0.18 - 0.13) 

Splice region 43 147 0.000736 27.11 4.57 -0.22 -0.20 (-0.98 - 0.58) 

3 prime UTR 19 117 0.000586 28.26 5.55 1.24 0.83 (-0.05 - 1.70) 

Protein altering 396 3,862 0.019329 27.64 4.82 -0.26 -0.07 (-0.32 - 0.17) 

InDel, etc 3 4 0.000020 27.31 4.59 0.02 0.14 (-4.58 - 4.86) 

Disruptive 25 53 0.000265 27.49 5.13 0.06 0.11 (-1.19 - 1.40) 

Splice site variant 8 35 0.000175 26.47 5.69 -0.47 -0.77 (-2.37 - 0.83) 

Deleterious 159 1,950 0.009759 27.76 4.96 0.11 0.05 (-0.30 - 0.40) 

Possibly damaging 77 990 0.004955 27.55 4.77 0.57 0.21 (-0.17 - 0.60) 

Probably damaging 83 1,189 0.005951 27.96 4.99 0.31 0.14 (-0.27 - 0.55) 

Subjects with no 
variant  153,180 0.766640 27.36 4.74   

 

 

 

 

 

  



Figure 1 

QQ plot of SLPs obtained for weighted burden analysis of association with BMI showing observed 
against expected SLP for each gene, omitting results for MC4R, which has SLP = 15.79.  

 

 

 

 


