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Abstract
We address the one-parameter minmax construction for
the Allen–Cahn energy that has recently lead to a new
proof of the existence of a closed minimal hypersurface
in an arbitrary compact Riemannian manifold 𝑁𝑛+1 with
𝑛 ≥ 2 (Guaraco’s work, relying on works by Hutchinson,
Tonegawa, and Wickramasekera when sending the Allen–
Cahn parameter to 0). We obtain the following result:
if the Ricci curvature of 𝑁 is positive then the minmax
Allen–Cahn solutions concentrate around a multiplicity-
1 minimal hypersurface (possibly having a singular set
of dimension ≤ 𝑛 − 7). This multiplicity result is new for
𝑛 ≥ 3 (for 𝑛 = 2 it is also implied by the recent work by
Chodosh–Mantoulidis). We exploit directly the minmax
characterization of the solutions and the analytic simplic-
ity of semilinear (elliptic and parabolic) theory in𝑊1,2(𝑁).
While geometric in flavour, our argument takes advan-
tage of the flexibility afforded by the analytic Allen–Cahn
framework, where hypersurfaces are replaced by diffused
interfaces; more precisely, they are replaced by sufficiently
regular functions (from𝑁 toℝ), whose weighted level sets
give rise to diffused interfaces. We capitalise on the fact
that (unlike a hypersurface) a function can be deformed
both in the domain 𝑁 (deforming the level sets) and in
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2 BELLETTINI

the target ℝ (varying the values). We induce different geo-
metric effects on the diffused interface by using these two
types of deformations; this enables us to implement in a
continuous way certain operations, whose analogues on
a hypersurface would be discontinuous. An immediate
corollary of themultiplicity-1 conclusion is that every com-
pact Riemannian manifold 𝑁𝑛+1 with 𝑛 ≥ 2 and positive
Ricci curvature admits a two-sided closed minimal hyper-
surface, possibly with a singular set of dimension at most
𝑛 − 7. (This geometric corollary also follows from results
obtained by different ideas in an Almgren–Pitts minmax
framework.)
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1 INTRODUCTION

The close link between Allen–Cahn energy and minimal hypersurfaces has its roots in the ideas
pioneered by De Giorgi in the development of Γ-convergence. The works of Modica–Mortola [25]
and Kohn–Sternberg [20], among many others, testify to the fine suitability of the Allen–Cahn
approximation method for the study of area-minimisers. Moving away from the minimising case,
the Allen-Cahn approximation has seen further success in recent years, starting with the com-
bined works of Guaraco, Hutchinson, Tonegawa, and Wickramasekera [14, 16, 36, 37, 40]: their
outcomewas a new proof (that uses classical PDEminmax techniques) of the existence of a closed
minimal hypersurface in an arbitrary compact Riemannian manifold of dimension 3 or higher.
Moving to higher codimension problems, very recently thework of Pigati–Stern [27]made another
fundamental contribution: after identifying a correct energy (and geometric framework), it carries
out an approximation EPSRC procedure reminiscent in many ways of the Allen–Cahn one; this
leads to a new proof (again via classical PDE minmax) of the existence of stationary integral vari-
folds of codimension 2 (the natural candidates for closed minimal submanifolds of codimension
2) in an arbitrary compact Riemannian manifold.
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 3

The original proof of the existence of stationary integral varifolds in a compact Riemannian
manifold was obtained by Almgren [2] (in arbitrary codimension). In codimension-1, the work
of Pitts [28], together with the regularity and compactness theory of Schoen–Simon–Yau [32] and
Schoen–Simon [33], provided the information that the varifold obtained is in fact a closedminimal
hypersurface (i.e., smooth except for an expected singular set of codimension 7 or higher). In
answering (positively) the above existence question, Almgren and Pitts developed a considerable
amount of machinery, which has been extended and further developed in the past decade, leading
to impressive progress in the field, particularly for codimension-1 questions (starting with the
resolution, by Marques–Neves [22], of the long-standing Willmore conjecture). The power so far
deployed by the Almgren–Pitts minmax method is counterpoised by certain intrinsic difficulties
that make it rather involved: the space of integral varifolds on 𝑁 (or variants of it), on which
the minmax is carried out lacks a linear structure and, moreover, no Palais–Smale condition is
available for the area functional on this space. The Allen–Cahn minmax method looks, on the
other hand, for saddle-type solutions to a semilinear elliptic problem on the Hilbert space𝑊1,2,
and the validity of a Palais–Smale condition permits the use of classical PDEminmax tools, leading
to convenient Morse index bounds.
A common feature in all variational minmax constructions is the fact that the geometric

objects produced are integral varifolds, and as such carry an a.e. integer-valued multiplicity.
Proving that this multiplicity is (a.e.) equal to 1 can lead to further geometric consequences.
The work of Chodosh–Mantoulidis [6] (valid more generally for solutions with bounded Morse
index, not necessarily minmax solutions) implies that the minimal surface obtained by a one- or
multi-parameter Allen-Cahn minmax is two-sided and has multiplicity 1 when the Riemannian
manifold is three-dimensional and the metric is bumpy or has positive Ricci curvature. Combin-
ing this with the result of [10] on the Weyl’s law, [6] obtained the validity of the generic version of
Yau’s conjecture for three-manifolds (on the existence of infinitely many hypersurfaces).1
The multiplicity question is ubiquitous in the field. The work of Zhou [43] proves the

multiplicity-1 conclusion for one- or multi-parameter Almgren–Pitts minmax, when the metric
is bumpy or has positive Ricci and the dimension of the manifold is between 3 and 7, as conjec-
tured by Marques–Neves [23, 1.2] (see also [23, Addendum]). For the recent viscosity approach
to the minmax for surfaces in arbitrary codimension, proposed by Rivière in [30], the work of
Pigati–Rivière [26] established a multiplicity-1 conclusion for the critical points constructed.
Heuristically, and regardless of the specific framework used for the construction, the sought

submanifold (more precisely, integral varifold) is always obtained as a limiting object from a cer-
tain sequence; the relevance of the multiplicity-1 conclusion lies in the fact that it very much
constrains the fashion in which this limit arises. Thanks to it, finer pieces of information that
are available on the sequence can pass to the limit in a straightforward way. Higher multiplicity
hypersurfaces, on the other hand, could arise in many different ways, possibly with degeneration
of certain features and preventing the passage to the limit of certain properties. In the case of
the Allen–Cahn equation, Wang [38] provides a 𝐶1,𝛼-sheeting result (with Allard-type estimates)
under multiplicity-1 convergence.
Our main theorem is the following multiplicity-1 result (new for 𝑛 ≥ 3), which applies to the

Allen–Cahn (one-parameter) minmax construction in Guaraco’s work [14]. The case 𝑛 = 2 also
follows from Chodosh–Mantoulidis’s result [6].

1 Yau’s conjecture was then established in full, for manifolds of dimension between 3 and 7, by Song [35] in combination
with the work of Marques–Neves [24].
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4 BELLETTINI

Theorem 1.1. Let 𝑁 be a compact Riemannian manifold of dimension 𝑛 + 1 with 𝑛 ≥ 2 and with
positive Ricci curvature. Then the Allen–Cahn minmax ([14], see Section 2.1 below) yields on 𝑁 a
multiplicity-1 smooth minimal hypersurface𝑀 with dim(𝑀 ⧵𝑀) ≤ 𝑛 − 7.
Remark 1.2 (Additional consequences). Themultiplicity-1 conclusion immediately implies that𝑀
is two-sided; in fact, 𝑁 ⧵𝑀 is given by two disjoint open sets whose common boundary is𝑀. It
also follows easily that𝑀 is connected and has Morse index 1.

To obtain the multiplicity-1 result of Theorem 1.1 we exploit directly the minmax characteriza-
tion (rather than finite index properties). Recall that the Allen–Cahn energy 𝜀 involves a small
parameter 𝜀 > 0 and the desired minimal hypersurface appears by taking a suitable (subsequen-
tial) limit, as 𝜀 → 0+, of varifolds naturally associated to the minmax critical points 𝑢𝜀 ∈ 𝑊1,2(𝑁)
constructed in [14]. (Heuristically, a diffused interface is constructed from weighted level sets
of 𝑢𝜀, following [16].) The minimal hypersurface is obtained in the 𝜀 → 0+ limit as a stationary
integral varifold. Exploiting the fact that 𝑢𝜀 has Morse index at most 1, the varifold turns out to be
smooth away from a singular set of codimension 7 or higher, ultimately thanks to Tonegawa and
Wickramasekera’s works [36, 37, 40]. We will not directly analyse the Allen–Cahn solutions 𝑢𝜀
constructed in [14] that concentrate on the minimal hypersurface. We will only retain the follow-
ing information on these solutions: the minmax characterisation of 𝑢𝜀, the fact that the minmax
values 𝑐𝜀 = 𝜀(𝑢𝜀) converge to the mass of the varifold as 𝜀 → 0+, and the smoothness properties
of the varifold. We then prove the following result (see Section 1.1 for a sketch of the argument),
from which Theorem 1.1 is easily deduced.

Theorem 1.3. Let 𝑁 be a compact Riemannian manifold of dimension 𝑛 + 1, 𝑛 ≥ 2, and with
positive Ricci curvature. Let𝑀 ⊂ 𝑁 be any smooth minimal hypersurface such that dim(𝑀 ⧵𝑀) ≤
𝑛 − 7, 𝑀 is stationary in 𝑁, and for every 𝑥 ∈ 𝑀 there exists a geodesic ball in 𝑁 centred at 𝑥 in
which𝑀 is stable. Then the minmax value 𝑐𝜀 obtained by [14] (for 𝜀 < 1) satisfies

lim sup
𝜀→0+

𝑐𝜀 < 2𝑛(𝑀).

Remark 1.4. The assumptions on𝑀 in Theorem 1.3 are valid for anyminimal hypersurface whose
closure is the support of a varifold produced by theminmax in [14, 16, 36, 37, 40]). Then it is readily
checked that Theorem 1.1 follows from Theorem 1.3.

Remark 1.5. It is not hard to check that, under the assumptions of Theorem 1.1, the area of the
minmax hypersurface is less than or equal to that of an arbitrary two-sided minimal hypersurface
in 𝑁 that has the properties listed for𝑀 in Theorem 1.3.

Remark 1.6. While Ric𝑁 ≥ 0 on𝑁 would not suffice for ourmultiplicity-1 conclusion, the assump-
tion Ric𝑁 > 0 in Theorems 1.1 and 1.3 can be weakened. Denoting by {Ric𝑁 = 0} the set where the
Ricci curvature is 0 in at least one direction, the curvature hypothesis can be relaxed by assuming
Ric𝑁 ≥ 0 on𝑁 and, additionally, one of the following: (i)𝑛({Ric𝑁 = 0}) = 0 or (ii) {Ric𝑁 = 0} ⊂⋃∞
𝑖=1 𝐴𝑖 where 𝐴𝑖 ’s are pairwise disjoint open sets, each having smooth mean-convex boundary,

with mean curvature pointing towards the interior of 𝐴𝑖 . (See Remark 8.2.)

Remark 1.7. As the assumption Ric𝑁 > 0 is only used at specific points in the proof (summarised
in Remark 8.2), some ideas developed here could be employed more widely. For example, an
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 5

argument in [5] is inspired by the present work, and analogues of Theorem 1.1 and of Theorem 1.8
below are obtained in [4] for 2 ≤ 𝑛 ≤ 6 when 𝑁 is endowed with a bumpy metric.

While the Allen–Cahn and Almgren–Pitts frameworks are different in spirit (see also
Remarks 1.10 and 1.11), Theorem 1.1 could be viewed as an Allen–Cahn counterpart of the
combined results obtained in [19, 29, 41, 42] for the Almgren–Pitts minmax. In [19] Ketover–
Marques–Neves show (relying also on [41]) that, when 𝑁𝑛+1 is orientable with positive Ricci
curvature and 2 ≤ 𝑛 ≤ 6, the minimal hypersurface is two-sided and has multiplicity 1. This
result is extended to 𝑛 ≥ 7 by Ramírez-Luna in [29] (relying on [42]). Recalling Remark 1.2, The-
orem 1.1 provides an alternative route to following the existence result for two-sided minimal
hypersurfaces, also obtained in [19, 29].

Theorem 1.8. In any compact Riemannian manifold of dimension 𝑛 + 1 with 𝑛 ≥ 2 and with pos-
itive Ricci curvature there exists a smooth two-sided minimal hypersurface𝑀 with dim(𝑀 ⧵𝑀) ≤
𝑛 − 7.

Remark 1.9. The curvature hypothesis in Theorem 1.8 can be weakened in one of the ways
described in Remark 1.6.

1.1 Strategy

We now outline the proof of Theorem 1.3. Given𝑀 as in Theorem 1.3, the idea is to produce, for
all sufficiently small 𝜀, a continuous path in𝑊1,2(𝑁) that joins the constant −1 to the constant
+1 and such that the Allen–Cahn energy evaluated along the path stays below 2𝑛(𝑀) by a fixed
positive amount independent of 𝜀 (determined only by geometric properties of𝑀 ⊂ 𝑁). Since this
is an admissible path for the minmax in [14] (see also Section 2.1), the inequality in Theorem 1.3
must hold.
The construction of the path is geometric in flavour and employs classical tools (coarea formula,

semilinear PDE theory). For simplicity, in this introduction we illustrate it mainly in the case
2 ≤ 𝑛 ≤ 6, so that𝑀 is smooth and closed.We think of𝑀 withmultiplicity 2 as an immersed two-
sided hypersurface, namely, its double cover �̃�with the standard projection. This immersion, that
we denote by 𝜄 ∶ �̃� → 𝑁, is minimal and unstable (by the positiveness of the Ricci curvature). It
is possible to find a (sufficiently small) geodesic ball 𝐵 ⊂ 𝑀 such that the lack of stability still
holds for deformations that do not move 𝐵 (this follows by a capacity argument). We then find
a deformation of 𝜄 that is area-decreasing on some time interval [0, 𝑡0] and that does not move
𝐵. This deformation is depicted in the top row of Figure 1. (We can choose the initial speed of
the deformation to be nonnegative on �̃�; therefore the deformation “pushes away from𝑀”.) We
denote by 2𝑛(𝑀) − 𝜏 the area of the immersion at time 𝑡0 for some 𝜏 > 0. If we cut out 𝐵 from
𝑀 we are left with an immersion with boundary, namely 𝜄|�̃�⧵𝜄−1(𝐵). We can restrict the previous
deformation to 𝜄|�̃�⧵𝜄−1(𝐵), obtaining an area-decreasing deformation (at fixed boundary) on the
time interval [0, 𝑡0]. This time the area changes from 2𝑛(𝑀) − 2𝑛(𝐵) to 2𝑛(𝑀) − 2𝑛(𝐵) − 𝜏.
This deformation is depicted in the middle row of Figure 1. Now we proceed to close the hole at 𝐵
continuously (bottom row of Figure 1), reaching, say in time 1, the same immersion depicted in the
top-right picture of Figure 1. It is helpful to think of closing the hole at 𝐵 by inserting a weighted
copy of𝐵 and letting the real-valuedweight increase continuously from 0 to 2. (Abusing language,
wewill talk in this introduction of immersions also to indicate these “weighted immersions”.) The
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6 BELLETTINI

F IGURE 1 Cut, deform, fill in. The path of “immersions” in the second and third row reaches the same
immersion depicted in the top-right picture.

area increases from 2𝑛(𝑀) − 2𝑛(𝐵) − 𝜏 to 2𝑛(𝑀) − 𝜏. Therefore, in going from the middle-
left picture to the bottom-right picture of Figure 1, we have produced a “path of immersions” along
which the area stays strictly below 2𝑛(𝑀), at least by min{𝜏, 2𝑛(𝐵)}, a fixed positive amount
that only depends on the geometry of𝑀 ⊂ 𝑁.
This path of immersions is then “reproduced at the Allen–Cahn level”, that is, replaced

by a continuous path 𝛾 ∶ [0, 𝑡0 + 1] → 𝑊1,2(𝑁). Each function in the image of this curve is a
suitable “Allen–Cahn approximation” of the corresponding immersion. To construct this, one fits
one-dimensional Allen–Cahn solutions in the normal bundle to the immersion, respecting mul-
tiplicities: at points with multiplicity 1 and 2 we will use, respectively, the top and bottom profiles
in Figure 2. The image of the immersion corresponds to points where the function transitions
between −1 and +1, with a double transition for points of multiplicity 2. The operation of closing
the hole at 𝐵 can be reproduced at the Allen–Cahn level thanks to the multiplicity-2 assumption
on 𝐵: in the normal direction to 𝐵, the profile of the function goes from being constantly −1 to
looking like the bottom picture in Figure 2, employing the continuous family of profiles depicted
in Figure 3 (going from the last to the first picture). Moreover, this operation is continuous
in 𝑊1,2(𝑁). (Working in the Allen–Cahn framework, hypersurfaces are replaced by weighted
level sets of functions and are thus naturally diffused, so continuous weights are allowed. This
ultimately permits the geometric operation of closing the hole by increasing the weight of 𝐵
continuously from 0 to 2. The analytic ingredient behind the implementation of such a geometric
operation is the possibility to vary, as in Figure 3, the values of the function whose level sets
give rise to the diffused hypersurface. This geometric effect cannot be obtained by composing
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 7

F IGURE 2 The (smooth) functions ℍ𝜀 (top) and Ψ = Ψ0 (bottom), with Λ = 3|log 𝜀|.

F IGURE 3 The profiles 𝜓𝑡 , depicted for 𝑡 ∈ (0, 4 𝜀 Λ); see (3).

the function with a domain deformation.2) The construction of 𝛾 is done for all sufficiently
small 𝜀 (the parameter of the Allen–Cahn energy) and, moreover, for all sufficiently small 𝜀
the Allen–Cahn energy all along 𝛾 is a close approximation of the area of the corresponding
immersions; therefore, for all sufficiently small 𝜀, the energies stay below 2𝑛(𝑀) by a fixed
“geometric” amount ≈ min{𝜏, 2𝑛(𝐵)}.
We now consider 𝛾(0) and 𝛾(𝑡0 + 1) (respectively, the Allen–Cahn approximations of the

immersions in the middle-left and top-right picture of Figure 1). For the latter, we use a (nega-
tive) Allen–Cahn gradient flow (to which we add a small forcing term, infinitesimal in 𝜀). We
build a mean-convex barrier (by writing a suitable Allen– Cahn approximation of 𝜄), that sits
below 𝛾(𝑡0 + 1). Thanks to this, we show that the flow deforms 𝛾(𝑡0 + 1) continuously into a stable
Allen– Cahn solution, which has to be the constant +1 by the Ricci-positive assumption. Along
this flow, the Allen–Cahn energy is controlled by the initial bound ≈ 2𝑛(𝑀) − 𝜏. The function
𝛾(0) is ≈ +1 close to𝑀 ⧵ 𝐵 and ≈ −1 away from a tube around𝑀 ⧵ 𝐵: we connect this function
explicitly to the constant −1, continuously in𝑊1,2, with approximately decreasing Allen–Cahn
energy. This is again possible thanks to the profiles in Figure 3. (A close geometric operation is
to give weight 2 to 𝑀 ⧵ 𝐵 and let the real-valued weight decrease continuously to 0.) Reversing

2 In a similar spirit, when we will write an Allen–Cahn approximations of an immersion with boundary, there will be no
sharp transition of multiplicity at the boundary: the weight will instead continuously decrease to 0 in a neighbourhood of
the boundary of the hypersurface.
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8 BELLETTINI

the latter path, composing it with 𝛾 and then with the path obtained via the flow, we produce the
promised continuous path in𝑊1,2(𝑁) that joins −1 to +1 and has the desired energy control.
We stress that the functions 𝛾(𝑡), 𝑡 ∈ [0, 𝑡0 + 1], that we call “Allen–Cahn approximations” of

the corresponding immersions, are not solutions of an Allen–Cahn equation, even when they are
built fromminimal hypersurfaces; they only realize the “correct” energy value. In fact, we do not
even analyse the Allen–Cahn first variation of 𝛾(𝑡). The loss of information on the first variation
is compensated by the ad hoc structure of the Allen–Cahn approximation: its level sets are by
construction graphical over the given immersed hypersurface, so that the Allen–Cahn energy is
an effective approximation of area (by the coarea formula) and the geometric information can be
translated to the Allen–Cahn level.
We digress to comment briefly on the operation of connecting 𝛾(0) to the constant −1. We

could in fact use an Allen–Cahn flow for this step, by first slightly deforming 𝛾(0) into another
function (with a similar profile, so that it still approximates 2|𝑀 ⧵ 𝐵|, but with a more effective
first variation) and then running theAllen-Cahn flow,which deforms this function to the constant
−1. We do not argue in this way, since we are able to produce an explicit deformation of 𝛾(0)
to −1, which is elementary and straightforward, thanks to the profiles in Figure 3. We stress,
however, that the deformation that we exhibit mimics the Allen–Cahn flow, and can be viewed
as a regularized version of the Brakke flow that starts at 2|𝑀 ⧵ 𝐵| and vanishes instantaneously.
While the Brakke flow creates a discontinuity in space-time, at the Allen–Cahn level we gain
continuity (and the flow reaches −1 in time 𝑂(𝜀 | log 𝜀 |)). As we mentioned above, an intuitive
geometric counterpart of the deformation connecting 𝛾(0) to −1, is the one that continuously
decreases the weight of𝑀 ⧵ 𝐵 from 2 to 0 in time 𝑂(𝜀 | log 𝜀 |).
A remark in similar spirit can be made for the portion of path that “closes the hole at 𝐵”.

At the Allen–Cahn level we gain continuity for this operation, because the framework allows
(heuristically) to increase the weight of 𝐵 from 0 to 2 continuously. More precisely, with the
parametrization that we employ (that takes time 1), if we were to take the 𝜀 → 0 limit for this
portion of path, we would see indeed a continuous increase of the density on 𝐵 from 0 to 2 (going
from the bottom-left picture to the bottom-right picture of Figure 1). We could have alternatively
parametrized this portion of path by employing the same one-dimensional profiles in the nor-
mal direction to 𝐵, however parametrized at faster speed (as in (3)), in order to mimic a reversed
Allen–Cahn flow on ℝ: in this case this portion of path would take time 𝑂(𝜀 | log 𝜀 |), and if we
were to take the 𝜀 → 0 limit we would see the sudden appearance of 2|𝐵|.
We emphasise the following point of view on the construction of the path (connecting −1 to

+1) that was sketched above. Consider 𝜄 ∶ �̃� → 𝑁: we exhibit two one-sided deformations that
decrease area and that can be reproduced for the Allen–Cahn approximations. One (from the
top-left to the middle-left picture of Figure 1) has the geometric effect of removing 2|𝐵|. The other
(from the top-left to the top-right picture of Figure 1) is a deformation of 𝜄 as an immersion, induced
by an initial velocity compactly supported away from 𝐵. We will denote by 𝐺𝜀0 in Section 4 the
Allen–Cahn approximation of 𝜄. Then, with reference to Figure 4, and using the notation 𝛾(0),
𝛾(𝑡0 + 1), respectively, for the Allen–Cahn approximations of the immersions in the middle-left
and top-right picture of Figure 1, the two deformations just described, implemented at the Allen–
Cahn level, correspond, respectively, to “going from 𝐺𝜀0 to 𝛾(0)” and “going from 𝐺𝜀0 to 𝛾(𝑡0 + 1)”.
The two deformations are linearly independent, as the former acts on a compact set containing 𝐵
while the latter acts in the complement of this compact set. Note that it may well be that 𝜄 is an
immersion with Morse index 1 (e.g., the double cover of an equator ofℝℙ3). The area-decreasing
deformation that removes𝐵 is clearly not a deformation of 𝜄 as an immersion; it can be reproduced
as a continuous deformation at the Allen–Cahn level thanks to the fact that multiplicity is 2 on
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 9

F IGURE 4 Lowering the peak (landscape for the Allen–Cahn energy). The same labels as in Figure 1 are
used, to denote deformations that reproduce those in Figure 1.

𝐵, so that the profile of 𝐺𝜀0 in the normal bundle to 𝐵 looks like the bottom one in Figure 2; this
profile can be connected continuously to the constant −1 with controlled energy, employing the
deformation depicted in Figure 3.
The function 𝛾(0) (that will be denoted by 𝑓 = 𝑔0 in Section 7) can be connected to the constant

−1, and the function 𝛾(𝑡0 + 1) can be connected to the constant +1, as described in the sketch
given earlier. We thus have a “recovery path” for the value 2𝑛(𝑀): this path connects −1 to +1
(passing through 𝐺𝜀0) and the maximum of the Allen–Cahn energy along this path is ≈ 2𝑛(𝑀).
What we achieve is to deform this path in the surroundings of 𝐺𝜀0, exploiting the information that
we have gained on the landscape; specifically, we deform the portion between 𝛾(0) and 𝛾(𝑡0 +
1). From 𝛾(0) we use a deformation that reproduces the one in the middle row of Figure 1. By
doing this we reach a function 𝑔𝑡0 (notation as in Section 7). Now we close the hole continuously,
replicating the deformation in the bottom row of Figure 1, reaching the function 𝛾(𝑡0 + 1) (which
will be denoted by 𝑔𝑡0+1 in Section 7). We have thus found a path 𝛾 ∶ [0, 𝑡0 + 1] → 𝑊1,2(𝑁), from
𝛾(0) to 𝛾(𝑡0 + 1), that lowers the peak, compared to the initial “recovery path”. This follows thanks
to the fact that the Allen–Cahn energy is a close approximation of the area of the corresponding
immersion, so we inherit the estimates that we had for the path of immersions that joins the
middle-left picture to the bottom-right picture of Figure 1.
This shows that the landscape around 𝐺𝜀0 is reminiscent of one where the Morse index is ≥2.

However,𝐺𝜀0 is not a stationary point for theAllen–Cahn energy. In fact, we never need to compute
the Allen–Cahn first or second variation along these deformations; it suffices to know that the
Allen–Cahn energy at 𝛾(0) and 𝛾(𝑡0 + 1) is strictly less than its value at 𝐺𝜀0 (by a fixed amount
independent of 𝜀). Knowledge of the first variation is only needed for 𝐺𝜀0 in order to prove that a
negative gradient flow connects 𝛾(𝑡0 + 1) to +1, for which we employ 𝐺𝜀0 as a barrier.

Remark 1.10. It is natural to ask whether the path from −1 to +1 produced in the earlier sketch
can be imitated (e.g., in an Almgren–Pitts framework) by a one-parameter family of boundaries
in𝑁. For the portion 𝛾 ∶ [0, 𝑡0 + 1] → 𝑊1,2(𝑁), rather than increasing the weight of 𝐵 from 0 to 2
(which cannot be done in the class of boundaries) one can argue by doubling𝑀 ⧵ 𝐵 and inserting
a small cylindrical neck at 𝐵, then pushing this hypersurface away from 𝑀 without moving the
neck (and decreasing the area), then closing the neck. (An operation of this type is analysed in [19].
To avoid confusion, we point out that for our path 𝛾, the nodal sets {𝛾𝑡 = 0}𝑡∈[𝑡0,𝑡0+1] are not cylin-
drical necks.) It is conceivable that one could then use mean-curvature flow to drift away from𝑀
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10 BELLETTINI

until extinction time and thus imitate, by using boundaries, the portion of path from 𝛾(𝑡0 + 1) to
+1. The use of a flow for this purpose does not appear to have been investigated in the literature.
(Gradient flows may be easier to use in the Allen–Cahn framework, since the parabolic problem
is semilinear, has long-time existence, and singularities do not appear. This may be particularly
truewhen 𝑛 ≥ 7with singularities present in the geometric initial condition; see Remarks 1.11 and
1.12.) For the portion of path that goes from 𝛾(0) to the constant −1, the spirit of the Allen–Cahn
deformation is again very different than a deformation of boundaries (comparewith [19, 41]), since
its geometric analogues are either a continuous weight decrease from 2 to 0 or a Brakke flow that
instantaneously makes 𝑀 ⧵ 𝐵 disappear. The Allen–Cahn framework allows a very straightfor-
ward way to produce this portion of path. (Some extra challenges have to be overcome in [19], for
example, the catenoid estimate.)

For 𝑛 ≥ 7, we still employ the idea illustrated in low dimensions. Its implementation, however,
is rendered somewhat harder by the presence of the singular set: standard tubular neighbour-
hoods and Fermi coordinates for𝑀 (that are essential to fit one-dimensional Allen–Cahn profiles
in the normal bundle to 𝑀) are not available. While the geometric ideas remain the same as in
the low-dimensional case, we need to additionally study certain analytic properties. Denote by
𝑑𝑀 ∶ 𝑁 → [0,∞) the distance function to 𝑀. The value 𝑑𝑀(𝑥) is always realized by a geodesic
(possibly more than one) from 𝑥 to a smooth point of𝑀. This allows us to analyse the cut-locus
of 𝑑𝑀 (restricting to {0 < 𝑑𝑀 < inj(𝑁)}), following [21], and obtain 𝑛-rectifiability properties for
it. This leads (for the moment) to the existence of a suitable replacement for Fermi coordinates,
which becomes the usual one on any compact subset of �̃�. Denote by 𝜄 ∶ �̃� → 𝑁 the immer-
sion given by the standard projection from the double cover of 𝑀. We choose 𝐾 ⊂ �̃� compact
(sufficiently large) and a geodesic ball 𝐵 ⊂ 𝜄(𝐾) (sufficiently small) so that 𝜄 ∶ �̃� → 𝑁 admits a
deformation as an immersion that decreases area and only moves 𝐾 ⧵ 𝜄−1(𝐵). (This is analogous
to what we did in the lower-dimensional case, except that this time we additionally need a defor-
mation that does not move 𝑀 close to the singular set.) The set 𝐾 will play the role that was of
�̃� in the low-dimensional case. Around 𝜄(𝐾) we define Allen–Cahn approximations of suitable
immersions by fitting one-dimensional Allen–Cahn profiles in the normal bundle. Away from
𝜄(𝐾), we use the level sets of 𝑑𝑀 to complete the definition of the desired Allen–Cahn approxima-
tions and create (as in the low-dimensional case) a continuous path 𝛾 ∶ [0, 𝑡0 + 1] → 𝑊1,2(𝑁)
with controlled energy. Exploiting further the 𝑛-rectifiability of the cut-locus, we analyse the
singular part of Δ𝑑𝑀 and (using also the Ricci-positive condition) we obtain that, restricting to
{0 < 𝑑𝑀 < inj(𝑁)}, the distributional Laplacian of 𝑑𝑀 is a negative Radon measure. This trans-
lates into a mean-convexity property for the Allen–Cahn approximation 𝐺𝜀0 of 𝜄 ∶ �̃� → 𝑁. With
a (slightly nonstandard) smoothing operation, we obtain from 𝐺𝜀0 a smooth barrier𝑚 that is still
mean-convex for the negative Allen–Cahn gradient flow (as for 2 ≤ 𝑛 ≤ 6, we add an infinitesi-
mal forcing term). By employing𝑚 we produce the part of the path that connects 𝛾(𝑡0 + 1) to the
constant +1.

Remark 1.11. The continuity of the path from 𝛾(0) to 𝛾(𝑡0 + 1), its energy bounds, and the mean-
convexity of 𝐺𝜀0 ultimately rest on the fact that almost every level set of the distance function 𝑑𝑀
is almost everywhere smooth, with mean curvature pointing away from𝑀. These properties only
require classical arguments. The almost everywhere information is sufficient for our purposes,
because in the Allen–Cahn framework hypersurfaces are “diffused”. For contrast, in the case of
boundaries of Caccioppoli sets, all level sets of 𝑑𝑀 have to be analysed; compare [29, prop. 2.2].
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 11

Remark 1.12. The almost everywhere properties at the previous remark are sufficient to set up
a mean-convex Allen–Cahn flow starting at 𝐺𝜀0. For 𝑛 ≥ 7 this initial condition is built from a
singular hypersurface. We expect that the 𝜀 → 0 limit of these Allen-Cahn flows gives rise to an
ancient (mean-convex) mean curvature flow with initial condition (at time −∞) given by the
singular minimal immersion 𝜄 ∶ �̃� → 𝑁.

1.2 Structure of the paper (and remarks for 𝒏 ≤ 𝟔)

Except for properties of the distance function borrowed from [21] (in Section 3 we point out the
relevant modifications needed to handle the singular set), the proof is self-contained.
After the preliminary Section 2, we begin the proof of Theorem 1.3, which we write for 𝑛 ≥ 7,

assuming the existence of a (nonempty) singular set 𝑀 ⧵𝑀 of dimension ≤ 𝑛 − 7. While the
underlying ideas are the same for all dimensions, the proof becomes considerably shorter and
more straightforward in the absence of a singular set, in particular when 𝑛 ≤ 6. In detail, Sec-
tions 3 and 4, in which we study the distance function to𝑀 and its level sets, can be omitted when
𝑀 = 𝑀, and one can use standard facts about tubular neighbourhoods of smooth closed hypersur-
faces. In Section 5 we identify a large unstable region 2|𝐾 ⧵ 𝐵| and in Section 6 the immersions
that will be relevant for the construction of the path. The compact set 𝐾 that we need to work
with in Sections 5 and 6 can be replaced simply by �̃� when𝑀 = 𝑀, and in this case the defini-
tions of the Allen–Cahn approximations of the relevant immersions given in Section 7 become
simpler. In Section 7.5 we construct a barrier 𝑚 by suitably mollifying a Lipschitz function 𝐺𝜀0,
which is defined from the level sets of 𝑑𝑀 and is an Allen–Cahn approximation of 𝜄 ∶ �̃� → 𝑁.
This convolution procedure (described in Appendix A) ensures smoothness and mean-convexity
of 𝑚, which is important for our arguments. If 𝑀 = 𝑀, 𝐺𝜀0 is already smooth and mean-convex
and no smoothing is needed, so Appendix A and part of Section 7.5 can be omitted. In Section 8
we complete the proof of Theorem 1.3, and subsequently of Theorems 1.1 and 1.8.

2 PRELIMINARIES

We give a brief summmary of [14], then introduce the one-dimensional Allen–Cahn profiles that
will be needed for our proof.

2.1 Reminders: Allen–Cahnminmax approximation scheme

We recall the minmax construction in [14]. For 𝜀 ∈ (0, 1) consider the functional

𝜀(𝑢) = 1
2𝜎 ∫𝑁 𝜀

|∇𝑢|2
2

+
𝑊(𝑢)
𝜀

on the Hilbert space𝑊1,2(𝑁). Here𝑊 is a 𝐶3 “double well” potential, with exactly three critical
points, two nondegenerate minima at ±1 and a local maximum at 0, with (exactly) two zeroes
of 𝑊′′ (one between −1 and 0, one between 0 and 1) and with quadratic growth to ∞ at ±∞;
the normalisation constant 𝜎 is 𝜎 = ∫ 1

−1

√
𝑊(𝑡)∕2 𝑑𝑡. A standard choice of potential is 𝑊(𝑥) =

(1−𝑥2)2

2
, suitably modified (to have quadratic growth) outside [−2, 2]. Consider continuous paths
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12 BELLETTINI

in𝑊1,2(𝑁) that start at the constant −1 and end at the constant +1: this is the class of admissible
paths. A “wall” (or “mountain pass”) condition is ensured and yields the existence of a minmax
solution 𝑢𝜀 to 𝜀′(𝑢𝜀) = 0. Moreover, upper and lower energy bounds are established, uniformly
in 𝜀. (We recall that 𝜀′(𝑢) = − 𝜀 Δ𝑢 + 𝑊′(𝑢)

𝜀
, where Δ is the Laplace-Beltrami operator, so the

Euler-Lagrange equation 𝜀′(𝑢) = 0 is elliptic semilinear.)
In order to produce a stationary varifold, one considers 𝑤𝜀 = Φ(𝑢𝜀) as in [16], with Φ(𝑠) =

∫ 𝑠
0

√
𝑊(𝑡)∕2 𝑑𝑡, and defines the 𝑛-varifolds

𝑉𝜀(𝐴) =
1
𝜎 ∫

∞

−∞
𝑉{𝑤𝜀=𝑡}(𝐴)𝑑𝑡.

The analysis in [16] (which only requires the stationarity of 𝑢𝜀 and no assumption on their sec-
ond variation), together with the upper and lower bounds for 𝜀(𝑢𝜀), gives that 𝑉𝜀 converges
subsequentially, as 𝜀 → 0, to an integral 𝑛-varifold 𝑉 ≠ 0 with vanishing first variation.
Thanks to the fact that the Morse index of 𝑢𝜀 is ≤ 1 for all 𝜀, [14] reduces the problem locally in

𝑁 to one that concerns stable Allen– Cahn solutions, as in [36]. For these, the regularity theory
of [37, 40] applies and gives that spt ‖𝑉‖ is smoothly embedded away from a possible singular set
of dimension ≤ 𝑛 − 7; that is, 𝑉 is the varifold of integration over a finite set of minimal hyper-
surfaces, each counted with integer multiplicity: 𝑉 =

∑𝐾
𝑗=1 𝑞𝑗|𝑀𝑗|, with 𝑞𝑗 ∈ ℕ and𝑀𝑗 minimal

and smooth with dim(𝑀𝑗 ⧵ 𝑀𝑗) ≤ 𝑛 − 7 (|𝑀𝑗| denotes the multiplicity-1 varifold of integration
on𝑀𝑗). In the case 𝑛 ≤ 6 all the𝑀𝑗 ’s are closed (and smooth). (In the case Ric𝑁 > 0 there is only
one connected component, 𝐾 = 1; see Remark 8.1.)
We point out that, denoting by 𝜀𝑖 the sequence extracted to guarantee the varifold convergence,𝜀𝑖 (𝑢𝜀𝑖 ) → ‖𝑉‖(𝑁) in this construction, in other words the Allen–Cahn energy of 𝑢𝜀𝑖 converges to

the mass
∑𝐾
𝑗=1 𝑞𝑗𝑛(𝑀𝑗) of 𝑉.

2.2 One-dimensional profiles

Let ℍ(𝑟) denote the monotonically increasing solution to 𝑢′′ −𝑊′(𝑢) = 0 such that
lim𝑟→±∞ ℍ(𝑟) = ±1, with ℍ(0) = 0. (For the standard potential

(1−𝑥2)2

2
we have ℍ(𝑟) = tanh(𝑟).)

Then also ℍ(−𝑟) and ℍ(±𝑟 + 𝑧) solve 𝑢′′ −𝑊′(𝑢) = 0 (for any 𝑧 ∈ ℝ). The rescaled function
ℍ𝜀(𝑟) = ℍ(

𝑟

𝜀
) solves 𝜀𝑢′′ − 𝑊′(𝑢)

𝜀
= 0.

Truncations. The arguments developed here will involve the construction of suitable Allen–
Cahn approximations of certain immersions. For that purpose, we will make use of approxi-
mate versions of ℍ𝜀. While this introduces small errors in the corresponding ODEs, it has the
advantage that the approximate solutions are constant (±1) away from an interval of the form
[−6 𝜀 |log 𝜀|, 6 𝜀 |log 𝜀|]. An Allen–Cahn approximation of a hypersurface in𝑁 requires fitting the
1-dimensional profiles in the normal direction to the hypersurface, and we need to stay inside a
tubular neighbourhood, so it is effective to have one-dimensional profiles that become constant
before we reach the boundary of the tubular neighbourhood.
The cutoff for the heteroclininc ℍ is done as follows (this truncation is also used in [6, 39]): for

Λ = 3|log 𝜀| define
ℍ(𝑟) = 𝜒(Λ−1𝑟)ℍ(𝑟) ± (1 − 𝜒(Λ−1𝑟)),

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22144 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 13

where ± is chosen, respectively, on 𝑟 > 0 and 𝑟 < 0, and 𝜒 is a smooth bump function that
is +1 on (−1, 1) and has support equal to [−2, 2]. With this definition, ℍ = ℍ on (−Λ,Λ),
ℍ = −1 on (−∞,−2Λ], and ℍ = +1 on [2Λ,∞). Moreover, ℍ satisfies (as we check below)‖ℍ′′ −𝑊′(ℍ)‖𝐶2(ℝ) ≤ 𝐶 𝜀3 for 𝐶 > 0 independent of 𝜀. Note that ℍ′′ −𝑊′(ℍ) = 0 away from
(−2Λ,−Λ) ∪ (Λ, 2Λ), so it suffices to compute on (−2Λ,−Λ) ∪ (Λ, 2Λ):

ℍ′′(𝑟) = Λ−2𝜒′′(Λ−1𝑟)(ℍ(𝑟) ∓ 1) + 2Λ−1𝜒′(Λ−1𝑟)ℍ′(𝑟) + 𝜒(Λ−1𝑟)ℍ′′(𝑟).

We have ‖ℍ(𝑟) ∓ 1‖𝐶0 ≤ 𝑐 𝜀𝛼 and ‖ℍ′(𝑟)‖𝐶3 ≤ 𝑐 𝜀𝛼 for some 𝛼 ≥ 6, and 𝑐 > 0 depending only on
𝑊. This can be done by an explicit check for the standard potential (e.g., when 𝑟 > 0 we must
estimate 1 − tanh(𝑟) = 2𝑒−2𝑟

1+𝑒−2𝑟
for 𝑟 > −3 log 𝜀) and is true whenever 𝑊 is quadratic around the

minima by comparison. Therefore on (−2Λ,−Λ) ∪ (Λ, 2Λ) we get ‖ℍ′′‖𝐶2 ≤ 𝑐 𝜀3 for 𝜀 < 1∕2 and
𝑐 > 0 depending only on 𝑊. Similarly, on (−2Λ,−Λ) ∪ (Λ, 2Λ) one checks that ‖ℍ′‖𝐶2 ≤ 𝑐 𝜀3
for 𝜀 < 1∕2 and 𝑐 > 0 depending only on 𝑊. Moreover, since 𝑊′(ℍ) = ℍ′′ and ℍ − ℍ = (1 −
𝜒(Λ−1𝑡))(ℍ ∓ 1), we find on (−2Λ,−Λ) ∪ (Λ, 2Λ)

‖𝑊′(ℍ)‖𝐶2 ≤ ‖𝑊′(ℍ)‖𝐶0 + ‖𝑊′′‖𝐶0‖ℍ − ℍ‖𝐶0
+ 3‖𝑊′′‖𝐶1(‖ℍ′‖𝐶1 + ‖ℍ′‖2

𝐶0
)0 ≤ 𝑐𝜀3.

In conclusion, ‖ℍ′′ −𝑊′(ℍ)‖𝐶2(ℝ) ≤ 𝐶𝜀3 for some 𝐶 > 0 (depending on𝑊).

Notation. For 𝜀 < 1 we rescale these truncated solutions and let ℍ𝜀(⋅) = ℍ( ⋅
𝜀
).

Computation of the Allen-Cahn energy of ℍ𝜀. To compute the energy of �̄�𝜀, following [17], we
have, for any 𝑞 ∶ ℝ → ℝ,

∫(𝑎,𝑏)
𝜀
2
|𝑞′|2 + 𝑊(𝑞)

𝜀
= ∫

𝑏

𝑎

1
2

(√
𝜀𝑞′ −

1√
𝜀

√
2𝑊(𝑞)

)2

+ 𝑞′
√
2𝑊(𝑞).

The first term vanishes when 𝑞 = ℍ𝜀. Let 𝐺 denote a primitive of
√
2𝑊(𝑡). For the second term,

noting that the integrand is 𝐺(𝑞)′, we get 𝐺(𝑞(𝑏)) − 𝐺(𝑞(𝑎)). In particular, ∫
ℝ

𝜀

2
|ℍ′𝜀|2 + 𝑊(ℍ𝜀)

𝜀
=

𝐺(1) − 𝐺(−1) = 2𝜎. Using the fact that ℍ𝜀(−2 𝜀 Λ) = −1 + 𝑂(𝜀2), we get for 𝑞 = ℍ𝜀

∫
−2 𝜀 Λ

−∞

𝜀
2
|𝑞′|2 + 𝑊(𝑞)

𝜀
= 𝐺(−1 + 𝑂(𝜀2)) − 𝐺(−1) = 𝑂(𝜀4) > 0,

and similarly ∫ ∞
2 𝜀 Λ

𝜀

2
|𝑞′|2 + 𝑊(𝑞)

𝜀
= 𝑂(𝜀4) > 0. Therefore

∫
2 𝜀 Λ

−2 𝜀 Λ

𝜀
2
|ℍ′𝜀|2 + 𝑊(ℍ𝜀)𝜀

= 2𝜎 − 𝑂(𝜀4).

Recalling the definition of ℍ𝜀, we have that

�̄�𝜀 − ℍ𝜀 = (1 − 𝜒(𝜀 Λ−1𝑡))(ℍ𝜀 ± 1)
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14 BELLETTINI

which is controlled by 𝑂(𝜀2) in 𝐶2-norm. Therefore

2𝜎 − 𝑂(𝜀2) ≤ ∫
2 𝜀 Λ

−2 𝜀 Λ

𝜀
2
|(ℍ𝜀)′|2 + 𝑊(ℍ𝜀)

𝜀
≤ 2𝜎 + 𝑂(𝜀2). (1)

Families of profiles. Define the function Ψ ∶ ℝ → ℝ

Ψ(𝑟) =

{
ℍ𝜀(𝑟 + 2 𝜀 Λ), 𝑟 ≤ 0,
ℍ𝜀(−𝑟 + 2 𝜀 Λ), 𝑟 > 0.

(2)

This function is smooth thanks to the fact that all derivatives of ℍ𝜀 vanish at ±2 𝜀 Λ. Define the
following evolution for 𝑡 ∈ [0,∞):

Ψ𝑡(𝑟) ∶=

{
4ℍ𝜀(𝑟 + 2 𝜀 Λ − 𝑡), 𝑟 ≤ 0,
ℍ𝜀(−𝑟 + 2 𝜀 Λ − 𝑡), 𝑟 > 0.

(3)

Note thatΨ0 = Ψ andΨ𝑡 ≡ −1 for 𝑡 ≥ 4 𝜀 Λ. For 𝑡 ∈ (0, 4 𝜀 Λ) the functionΨ𝑡 is equal to−1 for |𝑟| ≥
4 𝜀 Λ − 𝑡. The functions Ψ𝑡 form a family of even, Lipschitz functions, and 𝜀(Ψ𝑡) is decreasing in
𝑡. Indeed, the energy contribution of the “tails” (±1) is zero (so the energy is finite), and we have

𝜀(Ψ𝑡) = 𝜀(Ψ) − 1
2𝜎 ∫

𝑡

−𝑡

𝜀
|Ψ′|2
2

+
𝑊(Ψ)
𝜀

.

Note that Ψ and Ψ𝑡 depend on 𝜀; however, we do not make explicit this dependence for
notational convenience. The profiles Ψ𝑡 and profiles of the type ℍ𝜀(⋅ − 𝑡) will be used within
our construction to produce Allen–Cahn approximations of relevant immersions (possibly with
boundary), having multiplicity 1 or 2 on their image.

3 DISTANCE FUNCTION TO𝑴

Let𝑁 be a Riemannianmanifold of dimension 𝑛 + 1with 𝑛 ≥ 2 and with positive Ricci curvature
Ric𝑁 > 0. Let 𝑀 ⊂ 𝑁 be a smooth minimal hypersurface such that dim(𝑀 ⧵𝑀) ≤ 𝑛 − 7, 𝑀 is
stationary in 𝑁, and𝑀 is locally stable in 𝑁, that is, for every point in𝑀 there exists a geodesic
ball centred at the point in which 𝑀 is stable. These properties are true for the 𝜀 → 0 varifold
limit of finite-index Allen–Cahn solutions on 𝑁, thanks to the analysis in [14, 16, 36, 37, 40]. The
stationarity condition implies the existence of tangent cones at every point in𝑀. A consequence of
the deep sheeting theorem in [33, 40] is that any point of𝑀 atwhich one tangent cone is supported
on a hyperplane has to be a smooth point.
Let dist𝑁 denote the (unsigned) Riemannian distance on 𝑁; we will be interested in the func-

tion 𝑑𝑀 ∶ 𝑁 → [0,∞), 𝑑𝑀( ⋅ ) = dist𝑁(⋅,𝑀). Since 𝑁 is complete, for every 𝑥 the value 𝑑𝑀(𝑥) is
realized by at least one geodesic from 𝑥 to𝑀 (Hopf–Rinow). We recall a few facts that are true of
the distance to an arbitrary closed set; see [21, sec. 3].3 The function 𝑑𝑀 is Lipschitz on 𝑁 (with

3 If the closed set is known to be a𝐶1,1 submanifold, then the existence of a tubular neighbourhood is guaranteed, in which
the nearest point projection is a well-defined map; moreover, if 𝐶2 regularity on the submanifold is assumed, Fermi coor-

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22144 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 15

constant 1) and locally semiconcave on𝑁 ⧵𝑀, so that its gradient is𝐵𝑉loc on𝑁 ⧵𝑀 (equivalently,
the distributional Hessian of 𝑑𝑀 on 𝑁 ⧵𝑀 is a Radon measure). We denote by 𝑆𝑑𝑀 the subset of
𝑁 ⧵𝑀 where 𝑑𝑀 fails to be differentiable; 𝑆𝑑𝑀 coincides with the set of points in 𝑝 ∈ 𝑁 ⧵𝑀 for
which there exist at least two geodesics from 𝑝 to𝑀 whose length realizes 𝑑𝑀(𝑝). The function
𝑑𝑀 is 𝐶1 on𝑁 ⧵ (𝑀 ∪ 𝑆𝑑𝑀) and 𝑆𝑑𝑀 is countably 𝑛-rectifiable (this uses [1]). However, rectifiabil-
ity is not necessarily true of its closure unless extra hypotheses on the closed set are available; for
example, 𝑆𝑑𝑀 would be countably 𝑛-rectifiable (even in the 𝐶𝑘−2 sense) if𝑀 were a 𝐶𝑘 subman-
ifold with 𝑘 ≥ 3, thanks to [21, sec. 4]. While this statement does not apply immediately in our
case due to the presence of the singular set𝑀 ⧵𝑀, the proof in [21, sec. 4] can still be carried out
without any change by virtue of the following observation, which can also be found in [13, 42].

Lemma 3.1. Let 𝑥 ∈ 𝑁 ⧵𝑀. For any geodesic from 𝑥 to𝑀 (whose length realizes 𝑑𝑀(𝑥)), we have
that the endpoint 𝑦 on𝑀 actually belongs to𝑀.

Proof. Let 𝛾 be any geodesic from 𝑥 to𝑀, let 𝑦 be its endpoint on𝑀, and fix a point 𝑧 ∈ 𝑁 that lies
in the image of 𝛾 and such that dist𝑁(𝑧, 𝑦) < inj(𝑁). Consider the (open) geodesic ball 𝐵(𝑧) ⊂ 𝑁
centred at 𝑧with radius dist𝑁(𝑧, 𝑦). Then𝑀 ∩ 𝐵(𝑧) = ∅ (otherwise there would be a shorter curve
than 𝛾 joining 𝑥 to𝑀) and 𝑦 ∈ 𝑀 ∩ 𝜕𝐵(𝑧). Since the monotonicity formula holds at all points of
𝑀 (𝑀 is stationary in 𝑁), we can blow up at 𝑦 to obtain tangent cones. Then every tangent cone
to 𝑀 at 𝑦 has to be supported in a (closed) half-space (the complement of the open half-space
obtained by blowing up 𝐵(𝑧) at 𝑦). By [34, chap. 7, theorem 4.5, remark 4.6] every tangent cone
to𝑀 at 𝑦 is the hyperplane tangent to 𝐵(𝑧) at 𝑦, possibly with multiplicity. As pointed out above,
the sheeting theorem in [33, 40] implies that 𝑦 is a smooth point. □

In other words, any geodesic that realizes the distance to𝑀 has to end at a smooth point, that
is, on𝑀 (and it meets𝑀 orthogonally). This is the key fact that allows us to repeat the arguments
in [21, sec. 4] (as we briefly sketch below) and obtain Proposition 3.2. In the rest of this work
we will be interested in the set 𝑇𝜔 = {𝑥 ∈ 𝑁 ∶ dist𝑁(𝑥,𝑀) < 𝜔}, where 𝜔 is chosen in (0, inj(𝑁)),
therefore we restrict to this open set for our analysis (even though not strictly necessary for this
section).

Proposition 3.2 (as in [21]). The set 𝑆𝑑𝑀 ∩ 𝑇𝜔 is countably 𝑛-rectifiable.4 Moreover, ∇𝑑𝑀 ∈

𝑆𝐵𝑉loc(𝑇𝜔 ⧵ 𝑀) and the singular part (with respect to 𝑛+1 (𝑇𝜔 ⧵ 𝑀)) of the Radon measure
𝐷2𝑑𝑀 (𝑇𝜔 ⧵ 𝑀) is supported on 𝑆𝑑𝑀 ∩ (𝑇𝜔 ⧵ 𝑀).

Remark 3.3. Additionally, we have, since𝑀 is smooth, that the absolutely continuous part of𝐷2𝑑𝑀
has a smooth density with respect to 𝑛+1

(
𝑇𝜔 ⧵ (𝑀 ∪ 𝑆𝑑𝑀)

)
. This density coincides with the

pointwise Hessian of 𝑑𝑀 .

Sketch: relevant arguments in [21]. Consider the map 𝐹(𝑦, 𝑣, 𝑡) = exp𝑦(𝑡𝑣) for 𝑦 ∈ 𝑀 and 𝑣 a
unit vector orthogonal to 𝑀 at 𝑦. For fixed (𝑦, 𝑣) the curve 𝐹(𝑦, 𝑣, 𝑡) is a geodesic leaving 𝑀

dinates can be used. In our case, due to the presence of the singular set𝑀 ⧵𝑀, one cannot have a tubular neighbourhood
of𝑀.
4 Even 𝐶𝑘 countably 𝑛-rectifiable for all 𝑘, however we will not need this stronger property.
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16 BELLETTINI

orthogonally.Wewill limit ourselves to 𝑡 ≤ 𝜔, sincewe are only interested in𝑇𝜔. If 𝑡0 is sufficiently
small (depending on (𝑦, 𝑣)) the geodesic 𝑡 ∈ [0, 𝑡0] → 𝐹(𝑦, 𝑣, 𝑡) is the minimizing curve between
its endpoint𝐹(𝑦, 𝑣, 𝑡0) and𝑀; equivalently, its length is 𝑑𝑀(𝐹(𝑦, 𝑣, 𝑡0)). However, for large enough
𝑡0 the geodesic may fail to be minimizing; therefore one can consider 𝜎 = 𝜎𝑦,𝑣 ∈ (0, 𝜔] defined as
follows: 𝜎 = 𝜔 if 𝐹(𝑦, 𝑣, 𝑡) is minimizing (between its endpoint and 𝑀) for all 𝑡 ≤ 𝜔; otherwise,
𝜎 is chosen in (0, 𝜔) so that 𝐹(𝑦, 𝑣, 𝑡) is minimizing (between its endpoint and𝑀) for 𝑡 ≤ 𝜎, and
𝐹(𝑦, 𝑣, 𝑡) is not minimizing if 𝑡 > 𝜎. The set of points

Cut(𝑀) = {𝐹(𝑦, 𝑣, 𝜎(𝑦,𝑣)) ∶ 𝑦 ∈ 𝑀, 𝑣 ∈ (𝑇𝑦𝑀)
⟂, |𝑣| = 1, 𝜎(𝑦,𝑣) < 𝜔}

is the restriction to 𝑇𝜔 of the so-called cut-locus of𝑀, and it is a subset of 𝑇𝜔 ⧵ 𝑀 whose closure
in 𝑇𝜔 does not intersect𝑀. Recall that the unit sphere bundle of𝑀 is just �̃�, the oriented double
cover of𝑀, so we will also write (𝑦, 𝑣) ∈ �̃�.
Standard theory of geodesics (e.g., [31, chap. 2, lemma 4.8, and chap. 3, lemma 2.11], which give

the analogue of [21, prop. 4.7] for𝑀), gives that if 𝑥 ∈ Cut(𝑀), then at least one of the following
two conditions holds: (a) there exist (at least) two distinct geodesics from 𝑥 to 𝑀 that realize
𝑑𝑀(𝑥); (b) the map 𝐹 ∶ �̃� × (0, 𝜔) → 𝑇𝜔 has noninvertible differential at (𝑦, 𝑣, 𝜎(𝑦,𝑣)), where 𝑥 =
𝐹(𝑦, 𝑣, 𝜎(𝑦,𝑣)). Conversely, if (a) or (b) holds, then the geodesic 𝑡 → 𝐹(𝑦, 𝑣, 𝑡) cannot beminimal on
𝑡 ∈ [0, 𝑡0]when 𝑡0 ∈ (𝜎(𝑦,𝑣), 𝜔). Option (a) is equivalent to 𝑥 ∈ 𝑆𝑑𝑀 ∩ (𝑇𝜔 ⧵ 𝑀) (see [21, prop. 3.7]).
Using these facts, the arguments of [21, prop. 4.8] adapt to give that

𝑆𝑑𝑀 ∩ (𝑇𝜔 ⧵ 𝑀) = Cut(𝑀);

therefore in order to prove the rectifiability in Proposition 3.2 it suffices (since 𝑆𝑑𝑀 is countably
𝑛-rectifiable, see above) to show that Cut(𝑀) ⧵ 𝑆𝑑𝑀 is a countably 𝑛-rectifiable set in 𝑇𝜔 ⧵ 𝑀, that
is, the analogue of [21, theorem 4.11]. Note that 𝑆𝑑𝑀 ∩ 𝑀 ⊂ 𝑀 ⧵𝑀 is 𝑛-negligible, so it does
not affect rectifiability. The points in Cut(𝑀) ⧵ 𝑆𝑑𝑀 are characterised by the validity of option (b)
above, and the arguments in [21] are local around the points (𝑦, 𝑣, 𝜎𝑦,𝑣) ∈ �̃� × (0, 𝜔), so they apply
verbatim to our case.
Once the countable 𝑛-rectifiability of 𝑆𝑑𝑀 has been obtained, it follows that∇𝑑𝑀 is 𝑆𝐵𝑉loc(𝑇𝜔 ⧵

𝑀). Indeed, we know to begin with (see above for these statements about the distance to a closed
set) that ∇𝑑𝑀 is in 𝐵𝑉loc(𝑇𝜔 ⧵ 𝑀) and notice that 𝑑𝑀 is 𝐶2 (even 𝐶𝑘 for all 𝑘) on 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀)
thanks to the smoothness of𝑀. The “Cantor part” of the Radon measure 𝐷2𝑑𝑀 gives 0 measure
to countably 𝑛-rectifiable sets (see [3, prop. 3.92 or prop. 4.2]); in particular, it gives 0 to 𝑆𝑑𝑀 . The
smoothness of 𝐷2𝑑𝑀 in 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀) then implies that there is no “Cantor part”, that is, ∇𝑑𝑀
is 𝑆𝐵𝑉loc(𝑇𝜔 ⧵ 𝑀). This concludes the sketch of proof of Proposition 3.2.

Remark 3.4 (on the diffeomorphism 𝐹). We point out a couple of further facts, mainly adapted
from [21], for future reference. The level sets of 𝑑𝑀 are smooth in the open set 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀),
thanks to the implicit function theorem, the smoothness of 𝑑𝑀 , and the invertibility of 𝐹 on this
open set.
The map 𝐹(𝑦, 𝑣, 𝑡) = exp𝑦(𝑡𝑣) for 𝑦 ∈ 𝑀 and 𝑣 a unit vector orthogonal to𝑀 at 𝑦, 𝑡 ∈ (0, 𝜔) is

a map from �̃� × (0, 𝜔) into 𝑇𝜔 (since the oriented double cover �̃� of 𝑀 is defined as the set of
(𝑦, 𝑣) with 𝑦 ∈ 𝑀, 𝑣 unit vector normal to 𝑀 at 𝑦). Arguing as in [21, Prop. 4.8] we see that the
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 17

following restriction of 𝐹 (still denoted by 𝐹)

𝐹 ∶ {((𝑦, 𝑣), 𝑠) ∶ (𝑦, 𝑣) ∈ �̃�, 𝑠 ∈ (0, 𝜎(𝑦,𝑣))} → 𝑇𝜔 ⧵ Cut(𝑀) ⧵ 𝑀 (4)

is a (smooth) diffeomorphism.5 This diffeomorphism extends as a continuous map to �̃� × {0} by
sending ((𝑦, 𝑣), 0) to 𝑦 ∈ 𝑀 (note that it is a 2 − 1 map here, the standard projection from �̃� to
𝑀). The image of this continuous map is then 𝑇𝜔 ⧵ Cut(𝑀) ⧵ (𝑀 ⧵𝑀). Again following verbatim
[21, prop. 4.8], we also have that the function 𝜎(𝑦,𝑣) is continuous on �̃�. The diffeomorpshism 𝐹 in
(4), continuously extended to �̃�, provides the natural replacements for Fermi coordinates around
𝑀 in our situation, where the singular set𝑀 ⧵𝑀 is present. We will write

𝑉�̃� ∶= {((𝑦, 𝑣), 𝑠) ∶ (𝑦, 𝑣) ∈ �̃�, 𝑠 ∈ [0, 𝜎(𝑦,𝑣))},

for the domain of (the extension of) 𝐹.
Let us take a closer look at the level sets Γ𝑡 = {𝑥 ∈ 𝑇𝜔 ∶ 𝑑𝑀(𝑥) = 𝑡} for 𝑡 ∈ (0, 𝜔). By the previ-

ous discussion, the smooth hypersurface Γ𝑡 ⧵ 𝑆𝑑𝑀 can be retracted smoothly, staying in 𝑇𝜔 ⧵ 𝑆𝑑𝑀
onto a subset of𝑀 and at each time the image of the retraction is contained in (a smooth portion
of) a level set of 𝑑𝑀 . In fact, we have a retraction(

𝑇𝜔 ⧵ Cut(𝑀) ⧵ (𝑀 ⧵𝑀)
)
× [0, 1] → 𝑇𝜔 ⧵ Cut(𝑀) ⧵ (𝑀 ⧵𝑀)

explicitly given, using the identification (4), by (here 𝑞 = (𝑦, 𝑣) ∈ �̃� and 𝜎𝑞 = 𝜎(𝑦,𝑣))

𝑅 ∶ {(𝑞, 𝑠) ∶ 𝑞 ∈ �̃�, 𝑠 ∈ [0, 𝜎𝑞)} × [0, 1] → {(𝑞, 𝑠) ∶ 𝑞 ∈ �̃�, 𝑠 ∈ [0, 𝜎𝑞)},

𝑅(𝑞, 𝑠, 𝛼) = (𝑞, (1 − 𝛼)𝑠).

Under the identification (4), the function 𝑠 is just 𝑑𝑀 , so it follows that the retraction preserves
level sets of 𝑑𝑀 .

We will now analyse the jump part of the Hessian of 𝑑𝑀 ∶ 𝑇𝜔 ⧵ 𝑀 → (0,∞); this will lead to
Lemma 3.5 below. To this end, we perform, for 𝑛-a.e. point 𝑥 ∈

(
𝑆𝑑𝑀 ⧵ 𝑀

)
∩ 𝑇𝜔, a blowup of

𝑑𝑀 as follows. Using normal coordinates around 𝑥, for all sufficiently small 𝜌 > 0 consider the
function 𝑑𝜌 ∶ 𝐵𝑛+11 (0) → (0,∞) defined by

𝑑𝜌(𝑦) =
𝑑𝑀(𝑥 + 𝜌𝑦) − 𝑑𝑀(𝑥)

𝜌
.

Then (∇𝑑𝜌)(𝑦) = (∇𝑑𝑀)(𝑥 + 𝜌𝑦). Note that 𝑑𝜌 have Lipschitz-constant 1 and 𝑑𝜌(0) = 0, therefore
we can extract a sequence 𝜌𝑗 → 0 such that 𝑑𝜌𝑗 converge in 𝐶

0,𝛼 (for all 𝛼 < 1) to a 1-Lipschitz
function 𝑑𝑥 ∶ 𝐵𝑛+11 (0) → ℝwith 𝑑𝑥(0) = 0. Recall Proposition 3.2: the rectifiability of 𝑆𝑑𝑀 implies
that at𝑛-a.e. point 𝑥 ∈ 𝑆𝑑𝑀 ⧵ 𝑀 there exists a measure-theoretic unit normal �̂�𝑥 to 𝑆𝑑𝑀 (rather,
two choices of it); moreover, the left and right limits in the Lebesgue sense of the 𝑆𝐵𝑉loc function

5 This diffeomorphism shows, in particular, the following. If 𝑥 ∈ 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀), then we know that there exists a unique
geodesic 𝛾 from 𝑥 to𝑀 and its endpoint 𝑦 is on𝑀 by Lemma 3.1. Then, by the properties (a), (b) discussed above, no point
of 𝛾 is in Cut(𝑀) and therefore all points on 𝛾 except 𝑦 have the property that they lie in 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀).

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22144 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 BELLETTINI

∇𝑑𝑀 are well-defined in the two half-spaces identified by the normal (see [3, theorem 3.77]). This
means that there exists two constant vectors 𝑎 ≠ 𝑏 in ℝ𝑛+1 such that

1

𝜌𝑛+1 ∫{𝑧∈𝐵𝜌(𝑥)∶𝑧⋅�̂�𝑥<0} |∇𝑑𝑀 − 𝑎|→ 0

and
1

𝜌𝑛+1 ∫{𝑧∈𝐵𝜌(𝑥)∶𝑧⋅�̂�𝑥>0} |∇𝑑𝑀 − 𝑏|→ 0

as 𝜌 → 0. This is equivalent, by a change of variables, to

∫{𝑧∈𝐵1(0)∶𝑧⋅�̂�𝑥<0} |∇𝑑𝜌 − 𝑎|→ 0, ∫{𝑧∈𝐵1(0)∶𝑧⋅�̂�𝑥>0} |∇𝑑𝜌 − 𝑏|→ 0

as 𝜌 → 0. Therefore ∇𝑑𝜌𝑗 converge in 𝐿
1(𝐵𝑛+11 (0)) to the function 𝐹𝑎𝑏 defined to be constant on

each of the two half-balls {𝑧 ∈ 𝐵𝑛+11 (0) ∶ 𝑧 ⋅ �̂�𝑥 < 0} and {𝑧 ∈ 𝐵𝑛+11 (0) ∶ 𝑧 ⋅ �̂�𝑥 > 0}, with respec-
tive values 𝑎 and 𝑏. This function must be the (distributional) gradient of 𝑑𝑥. Indeed, for every
𝑣 ∈ 𝐶1𝑐 (𝐵1(0)) we have

∫𝐵1(0) 𝑑𝑥∇𝑣 = lim
𝑗→∞∫𝐵1(0) 𝑑𝜌𝑗∇𝑣

= − lim
𝑗→∞∫𝐵1(0) ∇𝑑𝜌𝑗𝑣 = −∫𝐵1(0) 𝐹𝑎𝑏𝑣,

where we used, in the two limits, respectively, the uniform convergence 𝑑𝜌𝑗 → 𝑑𝑥 and the 𝐿1-
convergence ∇𝑑𝜌𝑗 → 𝐹𝑎𝑏. The equality obtained expresses the fact that 𝐹𝑎𝑏 = ∇𝑑𝑥 and proves
that

𝑑𝜌𝑗 → 𝑑𝑥 in𝑊
1,1(𝐵1(0)) andin𝐶

0,𝛼(𝐵1(0)).

Recall now that 𝑑𝑀 is locally semiconcave, so it has at least an element in the superdifferen-
tial; that is, there exists a 𝐶1 function 𝜛 in a neighbourhood of 𝑥 that is ≥ 𝑑𝑀 and such that
𝜛(𝑥) = 𝑑𝑀(𝑥). Performing the sameblowupon𝜛, we consider the rescalings

𝜛(𝑥+𝜌𝑦)−𝜛(𝑥)

𝜌
. These

functions converge in 𝐶1(𝐵1(0)) to an affine function 𝜛𝑥. By uniform convergence, 𝜛𝑥 ≥ 𝑑𝑥 on
𝐵1(0) and𝜛𝑥(0) = 𝑑𝑥(0) = 0. Recalling that ∇𝑑𝑥 = 𝐹𝑎𝑏, we obtain

(𝑎 − 𝑏) ⋅ �̂�𝑥 ≥ 0. (5)

The jump part of 𝐷(∇𝑑𝑀) is characterized as the measure that is absolutely continuous with
respect to𝑛 𝑆𝑑𝑀 andwith density that is given for𝑛-a.e. 𝑥 ∈ (𝑆𝑑𝑀 ⧵ 𝑀) ∩ 𝑇𝜔 by (𝑏 − 𝑎) ⊗ �̂�𝑥
(see, e.g., [3, (3.90)]). Taking the trace and using (5) this implies the following:

Lemma 3.5. Let Δ denote the Laplace-Beltrami operator on 𝑇𝜔 ⧵ 𝑀. The singular (jump) part of
Δ𝑑𝑀 in 𝑇𝜔 ⧵ 𝑀 is a negative measure (supported on 𝑆𝑑𝑀 ).

Next we analyse the absolutely continuous part (with respect to 𝑛+1) of Δ𝑑𝑀 for 𝑑𝑀 ∶ 𝑇𝜔 ⧵

𝑀 → (0,∞). By Proposition 3.2 it suffices to analyse the smooth functionΔ𝑑𝑀 on 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀).
For this, we will need the Ricci curvature assumption (which has not been used so far).
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 19

Lemma 3.6. The function 𝑑𝑀 satisfies Δ𝑑𝑀 ≤ 0 on 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀).

Proof. Recall Remark 3.4. For 𝑥 ∈ 𝑇𝜔 ⧵ (𝑆𝑑𝑀 ∪ 𝑀), 𝑑𝑀(𝑥) is realized by the length of a unique
geodesic from 𝑥 to a point in 𝑀 that we denote by 𝜋(𝑥), and the level set {𝑦 ∈ 𝑁 ⧵ (𝑆𝑑𝑀 ∪ 𝑀) ∶
𝑑𝑀(𝑦) = 𝑑𝑀(𝑥)} passing through 𝑥 is 𝐶

2, and its scalar mean curvature at 𝑥 (with respect to the
normal that points away from 𝑀) is −Δ𝑑𝑀(𝑥). We are thus in the classical situation in which
we look at level sets of the distance function to a smooth submanifold, in this case a geodesic
ball 𝐵𝑟(𝜋(𝑥)) in 𝑀. This gives the information on the Laplacian in a neighbourhood of 𝑥. By
Riccati’s equation [11, cor. 3.6], using the non-negativity of the Ricci curvature, we get that the
mean curvature of the level sets {𝑦 ∈ 𝑁 ⧵ (𝑆𝑑𝑀 ∪ 𝑀) ∶ 𝑦 = exp𝑧(𝑡𝜈), 𝑧 ∈ 𝐵𝑟(𝜋(𝑥))} (this is a disk
at distance 𝑡 from 𝐵𝑟(𝜋(𝑥))), for either of the choices of unit normal 𝜈 on 𝐵𝑟(𝜋(𝑥)) increases in 𝑡,
hence Δ𝑑𝑀 ≤ 0 on 𝑁 ⧵ (𝑆𝑑𝑀 ∪ 𝑀). □

From Lemmas 3.5 and 3.6, we have Δ𝑑𝑀 (𝑇𝜔 ⧵ 𝑀) ≤ 0 in the sense of distributions.6 We now
analyse Δ𝑑𝑀 at 𝑀. For 𝑝 ∈ 𝑀 take a sufficiently small open ball 𝑈 containing 𝑝 that is disjoint
from (𝑀 ⧵𝑀) and from Cut(𝑀) and such that𝑈 ⧵𝑀 is the union of two disjoint connected open
sets 𝑈+ and 𝑈−. We compute the action of the distribution Δ𝑑𝑀 on an arbitrary test function
𝑢 ∈ 𝐶∞𝑐 (𝑈) and obtain (Δ𝑑𝑀)(𝑢) = − ∫ ∇𝑑𝑀∇𝑢 = − ∫

𝑈+
∇𝑑𝑀∇𝑢 − ∫

𝑈−
∇𝑑𝑀∇𝑢. Note that∇𝑑𝑀

extends to a smooth vector field in a neighbourhood of 𝑈+, so ∫
𝑈+
∇𝑑𝑀∇𝑢 = ∫

𝑈+
div(𝑢∇𝑑𝑀) −∫

𝑈+
𝑢 div(∇𝑑𝑀), where in the last term div(∇𝑑𝑀) = Δ𝑑𝑀 in the classical sense. The unit outer

normal to 𝜕𝑈+ agrees, on supp(𝑢), with −∇𝑑𝑀 (this relevant portion of 𝜕𝑈+ is contained in𝑀).
The divergence theorem then gives ∫

𝑈+
div(𝑢∇𝑑𝑀) = − ∫

𝜕𝑈+
𝑢. Arguing similarly for𝑈−, we find

(Δ𝑑𝑀)(𝑢) = ∫
𝑈+∪𝑈−

𝑢Δ𝑑𝑀 + 2 ∫𝑀∩𝑈 𝑢.
In conclusion,Δ𝑑𝑀 (𝑇𝜔 ⧵ (𝑀 ⧵𝑀)) = Δ𝑑𝑀 (𝑇𝜔 ⧵ 𝑀) + 2𝑛 𝑀. In particular,Δ𝑑𝑀 (𝑇𝜔 ⧵

(𝑀 ⧵𝑀)) is a Radon measure (we have given its Hahn decomposition into negative and positive
parts). We will now extend across𝑀 ⧵𝑀 by a capacity argument.

Proposition 3.7. Let 𝑁 be a closed (𝑛 + 1)-dimensional Riemannian manifold with positive Ricci
curvature and𝑀 a smoothminimal hypersurface as in Theorem 1.3. Denote by 𝑑𝑀 the distance func-
tion to𝑀 and by 𝑇𝜔 = {𝑥 ∈ 𝑁 ∶ 𝑑𝑀(𝑥) < 𝜔}, where 𝜔 < inj(𝑁). Then Δ𝑑𝑀 is a Radon measure on
𝑇𝜔, with positive part 2𝑛 𝑀.

Proof. Let 𝛿 > 0 be arbitrary and choose 𝜒 ∈ 𝐶∞𝑐 (𝑇𝜔) to be a function that takes values in [0,1],
is identically 1 in an open neighbourhood of 𝑀 ⧵𝑀, identically 0 away from a (larger) neigh-
bourhood of 𝑀 ⧵𝑀, and such that ∫

𝑇𝜔
|∇𝜒| < 𝛿 (see [8, 4.7]). Then we have, for 𝑣 ∈ 𝐶∞𝑐 (𝑇𝜔),

(Δ𝑑𝑀 − 2𝑛 𝑀)(𝑣)

= (Δ𝑑𝑀 − 2𝑛 𝑀)((1 − 𝜒)𝑣) + (Δ𝑑𝑀)(𝜒𝑣) − 2∫𝑀 𝜒𝑣

= (Δ𝑑𝑀 − 2𝑛 𝑀)((1 − 𝜒)𝑣) − ∫𝑇𝜔 ∇𝑑𝑀 ∇𝜒 𝑣

− ∫𝑇𝜔 ∇𝑑𝑀∇𝑣 𝜒 − 2∫𝑀 𝜒𝑣.

(6)

6 A distribution is said to be ≤ 0 if for every nonnegative test function the result is ≤ 0. A distribution that is ≥ 0 or ≤ 0 is
necessarily a Radon measure; see, for example [8, theorem 1.39].
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20 BELLETTINI

For the second term recall that the distribution ∇𝑑𝑀 is an 𝐿∞ function with |∇𝑑𝑀| = 1 a.e. and
so ||||∫𝑇𝜔 ∇𝑑𝑀∇𝜒𝑣|||| ≤ ‖𝑣‖𝐿∞(∫𝑇𝜔 |∇𝜒|

)
< 𝛿‖𝑣‖𝐿∞.

This tends to 0 as 𝛿 → 0. As 𝛿 → 0, the corresponding𝜒will go to 0 in 𝐿1(𝑇𝜔) so the third termwill
also tend to 0. For the fourth term, we notice that (by the construction of 𝜒) supp(𝜒) is contained
in {dist𝑁(⋅,𝑀 ⧵ 𝑀) < 𝑑} with 𝑑 → 0 for 𝛿 → 0; as𝑛 𝑀 is a finite measure, we have that

(𝑛 𝑀)
(
{dist𝑁( ⋅ ,𝑀 ⧵ 𝑀) < 𝑑}

)
→ 0;

hence the fourth term also tends to 0 for 𝛿 → 0.
The distribution Δ𝑑𝑀 is a priori of order ≤ 1:

||||∫𝑇𝜔(Δ𝑑𝑀)𝑣|||| = ||||∫𝑇𝜔 ∇𝑑𝑀∇𝑣|||| ≤ 𝑛+1(𝑁)‖𝑣‖𝐶1 .
For the first term in the rightmost side of (6), observe that

(1 − 𝜒)𝑣 ∈ 𝐶∞𝑐 (𝑇𝜔 ⧵ (𝑀 −𝑀))

and Δ𝑑𝑀 − 2𝑛 𝑀 is a negative Radon measure on this open set (by Lemma 3.6 and by the
observation preceding Proposition 3.7), so that

(Δ𝑑𝑀 − 2𝑛 𝑀)((1 − 𝜒)𝑣) ≤ 0
if 𝑣 ≥ 0 (because (1 − 𝜒)𝑣 ≥ 0 by the choice of 𝜒). As (6) holds for all 𝛿, and its last three terms
tend to 0 as 𝛿 → 0, for every 𝑣 ∈ 𝐶∞𝑐 (𝑇𝜔) and 𝑣 ≥ 0 we have

(Δ𝑑𝑀 − 2𝑛 𝑀)(𝑣) = lim
𝛿→0

(Δ𝑑𝑀 − 2𝑛 𝑀)((1 − 𝜒)𝑣) ≤ 0.

The distribution Δ𝑑𝑀 − 2𝑛 𝑀 is therefore a negative Radon measure on 𝑇𝜔. □

4 LEVEL SETS OF 𝒅𝑴

We consider the level sets Γ𝑡 = {𝑥 ∶ 𝑑𝑀(𝑥) = 𝑡}, for 𝑡 ∈ [0, 𝜔∕2] (we fixed an arbitrary 𝜔 ∈
(0, inj(𝑁))); we will obtain that the areas of Γ𝑡 are “essentially” decreasing in 𝑡. Further, we
will consider an “Allen–Cahn approximation” 𝐺𝜀0 ∶ 𝑁 → ℝ of Γ6 𝜀 |log 𝜀| = Γ2 𝜀 Λ defined, for 𝜀
sufficiently small (to ensure 4 𝜀 Λ < 𝜔∕2), as follows:

𝐺𝜀0(𝑥) =

{
−1 for 𝑥 ∈ 𝑁 ⧵ 𝑇𝜔

ℍ𝜀(−𝑑𝑀(𝑥) + 2 𝜀 Λ) for 𝑥 ∈ 𝑇𝜔
. (7)

Sinceℍ𝜀 is constantly−1 on (−∞,−2 𝜀 Λ], the function𝐺𝜀0 is constantly−1 on {𝑥 ∶ 𝑑𝑀(𝑥) > 4 𝜀 Λ}.
Sinceℍ𝜀 is smooth,𝐺𝜀0 has the same regularity of 𝑑𝑀 , that is, it is locally Lipschitz,𝐺

𝜀
0 ∈ 𝑊

1,∞(𝑁).
Moreover, its gradient (which equals−(ℍ𝜀)′(−𝑑𝑀(𝑥) + 2 𝜀 Λ)∇𝑑𝑀(𝑥) in 𝑇𝜔 and 0 otherwise) is in
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 21

𝐵𝑉(𝑁) and its distributional Laplacian Δ𝐺𝜀0 is a Radon measure (as computed within (4) below).
Note that the profile of𝐺𝜀0 in the normal direction at any point of𝑀 is given by the functionΨ = Ψ0
in (3), therefore 𝐺𝜀0 can also be thought of as an Allen–Cahn approximation of 2|𝑀|, or equiva-
lently of the immersion 𝜄 ∶ �̃� → 𝑁 that covers 𝑀 twice. The fact that 𝜀(𝐺𝜀0) is approximately
2|𝑀| will be established later.
The Allen–Cahn first variation of 𝐺𝜀0 (which is clearly 0 outside 𝑇𝜔) can be computed in 𝑇𝜔 as

follows:

−(2𝜎) ′𝜀(𝐺𝜀0) = 𝜀 Δ𝐺𝜀0 −
𝑊′(𝐺𝜀0)

𝜀

= 𝜀 ℍ𝜀′′(−𝑑𝑀 + 2 𝜀 Λ)|∇𝑑𝑀|2 − 𝜀 ℍ𝜀′(−𝑑𝑀 + 2 𝜀 Λ)Δ𝑑𝑀
−
𝑊′(ℍ𝜀(−𝑑𝑀 + 2 𝜀 Λ))

𝜀

= 𝜀 ℍ𝜀′′(−𝑑𝑀 + 2 𝜀 Λ) −
𝑊′(ℍ𝜀(−𝑑𝑀 + 2 𝜀 Λ))

𝜀
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑂(𝜀2)

− 𝜀 ℍ𝜀′(−𝑑𝑀 + 2 𝜀 Λ)
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

0≤ ⋅≤3
Δ𝑑𝑀
⏟⏟⏟
≤0

,

in the distributional sense. SinceΔ𝑑𝑀 a Radonmeasure thanks to Proposition 3.7, wewill think of
− ′𝜀(𝐺𝜀0) as a Radonmeasure. The term𝑂(𝜀2) (first brace) is a Lipschitz function that we interpret
as a density with respect to 𝑛+1. The last term is the measure Δ𝑑𝑀 multiplied by a bounded
Lipschitz function; recall that ℍ𝜀′(2 𝜀 𝜆) = 0. With abuse of notation, we neglect the positive part
of Δ𝑑𝑀 in the third brace, as it is supported on {𝑑𝑀 = 0}.
Denote by 𝜀,𝜇, for a constant 𝜇 > 0, the functional on𝑊1,2(𝑁) given by

𝜀,𝜇(𝑢) = 𝜀(𝑢) − 𝜇

2𝜎 ∫𝑁 𝑢.

The computation in (4) shows that for every 𝜀 there exists 𝜇𝜀 > 0, 𝜇𝜀 → 0 as 𝜀 → 0, such that7 (we
need 𝜇𝜀 > 4𝜎‖𝑂(𝜀2)‖𝐿∞ where 𝑂(𝜀2) is the first term in the last line of (4))

− ′𝜀,𝜇𝜀 (𝐺𝜀0) = − ′𝜀(𝐺𝜀0) + 𝜇𝜀
𝑛+1

2𝜎
≥ 1
2

𝜇𝜀
2𝜎

𝑛+1.

(The inequality means that the Radon measure on the left minus the Radon measure on the right
is a nonnegative measure.) The function 𝐺𝜀0 will form the starting point for the construction of a
barrier for the negative 𝜀,𝜇𝜀 -gradient flow in Section 7.5.
Areas of Γ𝑡. Since 𝑆𝑑𝑀 is countably 𝑛-rectifiable (and thus has Hausdorff dimension ≤ 𝑛 and

vanishing 𝑛+1 measure) we get that, for a.e. 𝑡 > 0, 𝑛(𝑆𝑑𝑀 ∩ Γ𝑡) = 0. We will denote by Ω ⊂
(0, 𝜔) the set with1(Ω) = 0 such that

𝑡 ∈ (0, 𝜔) ⧵ Ω ⇒ 𝑛(𝑆𝑑𝑀 ∩ Γ𝑡) = 0

7 A precise choice of 𝜇𝜀 will be made in (35).
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22 BELLETTINI

(and therefore, for 𝑡 ∉ Ω, Γ𝑡 is a smooth hypersurface away from aℋ𝑛-negligible set). Therefore
for 𝑡 ∈ (0, 𝜔) ⧵ Ωwe have𝑛(Γ𝑡) = 𝑛(Γ𝑡 ⧵ 𝑆𝑑𝑀); that is, we only need to compute the area of the
smooth part of Γ𝑡. Thanks to this, we will compare the area of Γ𝑡 to that of𝑀 for 𝑡 ∈ (0, 𝜔) ⧵ Ω.

Lemma 4.1. Let Γ𝑡 = {𝑥 ∈ 𝑁 ∶ 𝑑𝑀(𝑥) = 𝑡} andΩ ⊂ (0, 𝜔) as above (1(Ω) = 0). Then

1. for 𝑡 ∈ (0, 𝜔) ⧵ Ω the set Γ𝑡 is a smooth hypersurface away from a set of vanishing 𝑛-measure
and𝑛(Γ𝑡) < 2𝑛(𝑀);

2. the function 𝑡 ∈ (0, 𝜔) → 𝑛(Γ𝑡) satisfies for 𝑡1 < 𝑡2, 𝑡2 ∉ Ω (𝑡1 ∈ Ω is allowed), the inequality
𝑛(Γ𝑡2) < 𝑛(Γ𝑡1).

Proof. The first part of (1) has already been discussed above. Recall the diffeomorphism induced
by 𝐹 in Remark 3.4. Endow {(𝑞, 𝑠) ∶ 𝑞 ∈ �̃�, 𝑠 ∈ [0, 𝜎𝑞)} with the pull-back metric (via 𝐹) from
𝑇𝜔 ⧵ Cut(𝑀) ⧵ 𝑀. The metric extends continuously to �̃� × {0} to give the natural metric on �̃�.
Wewill thus work in𝑉�̃� = {(𝑞, 𝑠) ∶ 𝑞 ∈ �̃�, 𝑠 ∈ [0, 𝜎𝑞)}; note that𝐹−1(Γ𝑡0 ⧵ 𝑆𝑑𝑀) = {(𝑥, 𝑠) ∈ 𝑉�̃� ∶
𝑠 = 𝑡0}. Denoting by Π the map Π(𝑞, 𝑠) = (𝑞, 0), recall that from the structure of 𝑉�̃� we obtain
the following. For every 𝑡 < 𝑡0 the set {(𝑥, 𝑠) ∈ 𝑉�̃� ∶ 𝑥 ∈ Π(𝐹−1(Γ𝑡0 ⧵ 𝑆𝑑𝑀)), 𝑠 = 𝑡} is contained in
𝐹−1(Γ𝑡 ⧵ 𝑆𝑑𝑀). It is then enough, for (1) and (2), to prove that, if 𝑡0 ∉ Ω and 𝑡 < 𝑡0, then {(𝑥, 𝑠) ∈
𝑉�̃� ∶ 𝑠 = 𝑡0} has area bounded by {(𝑥, 𝑠) ∈ 𝑉�̃� ∶ 𝑥 ∈ Π({(𝑥, 𝑠) ∈ 𝑉�̃� ∶ 𝑠 = 𝑡0}), 𝑠 = 𝑡}.
Let (𝑥1, … , 𝑥𝑛, 𝑠) be local coordinates on 𝑉�̃� chosen so that 𝜕

𝜕𝑥1
, … ,

𝜕

𝜕𝑥𝑛
form a local frame

around a point 𝑥0 ∈ �̃�, that is orthonormal at 𝑥0 ∈ �̃�, and 𝜕

𝜕𝑠
is the unit speed of the geodesics

{𝑥 = const}. Then the Riemannian metric on 𝑉�̃� induces an area element 𝜃𝑠0 for the level set
{𝑠 = 𝑠0} at the point (𝑥0, 𝑠0). By [11, theorem 3.11] it satisfies the ODE 𝜕

𝜕𝑠
log 𝜃𝑠 = −�⃗�(𝑥0, 𝑠) ⋅

𝜕

𝜕𝑠
,

where �⃗�(𝑥0,𝑠) is the mean curvature of the level set at distance 𝑠 evaluated at the point (𝑥0, 𝑠).
(Note that in [11] 𝜃𝑠 denotes the volume element, but since

𝜕

𝜕𝑠
is a unit vector, the area and vol-

ume elements are the same.) By Riccati’s equation [11, cor. 3.6] we find that𝐻(𝑥0, 𝑠) = �⃗�(𝑥0,𝑠) ⋅
𝜕

𝜕𝑠
is strictly increasing in 𝑠, at least at linear rate, thanks to the positiveness of the Ricci curvature,
𝐻(𝑥0,𝑠) ≥ 𝑠(min𝑁 Ric𝑁). Therefore 𝜕

𝜕𝑠
log 𝜃𝑠 ≤ −𝑠(min𝑁 Ric𝑁) and we find for 𝑠0 ≥ 0, 𝑡 ≥ 0

log

(
𝜃(𝑠0 + 𝑡)

𝜃(𝑠0)

)
≤ −(min

𝑁
Ric𝑁)∫

𝑠0+𝑡

𝑠0

𝑠 𝑑𝑠

and therefore

𝜃𝑠0+𝑡 ≤ 𝜃𝑠0𝑒−
min𝑁 Ric𝑁

2
(2𝑠0𝑡+𝑡

2)
for (𝑥0, 𝑠0 + 𝑡) ∈ 𝑉�̃�.

In particular, 𝜃(𝑡) is decreasing in 𝑡. From this (1) and (2) follow by integrating the area element.
(Recall that ∫

�̃�
𝜃0𝑑𝑥

1 …𝑑𝑥𝑛 = 2𝑛(𝑀).) □

Allen–Cahn energy of 𝐺𝜀0. Thanks to Lemma 4.1 we can control the Allen–Cahn energy of 𝐺
𝜀
0 by

twice the area of𝑀. Indeed, recalling that the energy is 0 in the complement of 𝑇𝜔∕2 and that∇𝐺𝜀0
is parallel to ∇𝑑𝑀 , we use the coarea formula for the slicing function 𝑑𝑀 (for which |∇𝑑𝑀| = 1)
and we get
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 23

∫𝑇𝜔∕2
𝜀
|∇𝐺𝜀0|2
2

+
𝑊(𝐺𝜀0)

𝜀
= ∫

𝜔

0

(
∫Γ𝑠

|∇𝐺𝜀0|2
2

+
𝑊(𝐺𝜀0)

𝜀

)
𝑑𝑠 =
⏟⏟⏟
by(7)

= ∫
2 𝜀 Λ

−𝜔∕2+2 𝜀 Λ

(
∫Γ2 𝜀 Λ−𝑠

𝜀
(ℍ𝜀′(𝑠))2

2
+
𝑊(ℍ𝜀(𝑠))

𝜀

)
𝑑𝑠 ≤

⏟⏟⏟
Lemma4.1

≤ 2𝑛(𝑀)

(
∫ℝ 𝜀

(ℍ𝜀′)2

2
+
𝑊(ℍ𝜀)
𝜀

)
,

where we used Lemma 4.1(a) for a.e. 𝑠, namely 𝑠 ∉ Ω. By the estimates in (1) we get

𝜀(𝐺𝜀0) ≤ 2𝑛(𝑀) (1 + 𝑂(𝜀2)). (8)

5 INSTABILITY PROPERTIES OF𝑴 (CHOICE OF 𝑩)

Let 𝜄 ∶ �̃� → 𝑁 be the (smooth)minimal immersion induced by the standard projection (2–1map)
from the oriented double cover of 𝑀 onto 𝑀. Let 𝜈 be a choice (on �̃�) of unit normal to the
immersion 𝜄. Recall (Remark 3.4) the coordinates ((𝑦, 𝑣), 𝑠) = (𝑞, 𝑠) on𝑉�̃� , which is diffeomorphic
to 𝑇𝜔 ⧵ 𝑆𝑑𝑀 ⧵ (𝑀 ⧵𝑀); here 𝑦 ∈ 𝑀 and 𝑣 a unit vector orthogonal to𝑀 at 𝑦, or, equivalently, 𝑞 =
(𝑦, 𝑣) ∈ �̃�. For every compact set𝐾 ⊂ �̃� there exists 𝑐𝐾 > 0 such that 𝑐𝐾 < 𝜎(𝑦,𝑣) for all (𝑦, 𝑣) ∈ 𝐾.
This follows from the continuity of 𝜎𝑞 on �̃� (Remark 3.4). Choosing 𝐾 even (i.e., such that 𝐾 is
the double cover of a compact set 𝜄(𝐾) in 𝑀) this means that 𝜄(𝐾) admits a two-sided tubular
neighbourhood of semiwidth 𝑐𝐾 .
We will now consider deformations of 𝜄 with initial velocity dictated by a function 𝜑 ∈ 𝐶2𝑐 (�̃�).

For 𝜑 ∈ 𝐶2𝑐 (�̃�), choose 𝑐supp𝜑 as above and consider the following one-parameter family of
immersions 𝜄𝑡 ∶ �̃� → 𝑁 defined for 𝑡 ∈ (−𝛿0, 𝛿0), where 𝛿0 ∈

(
0,
𝑐supp𝜑

max 𝜑

)
:

(𝑦, 𝑣) → exp𝜄(𝑦)(𝑡𝜑((𝑦, 𝑣))𝜈((𝑦, 𝑣))),

for (𝑦, 𝑣) ∈ �̃�. The first variation of area at 𝑡 = 0 is 0 because𝑀 is minimal. The second variation
of area at 𝑡 = 0 is given by

∫�̃� |∇𝜑|2𝑑𝑛 − ∫�̃� 𝜑
2(|𝐴|2 + Ric𝑁(𝜈, 𝜈))𝑑𝑛, (9)

where 𝐴 denotes the second fundamental form of 𝜄, ∇ the gradient on �̃� (with respect to ℊ0,
the Riemannian metric induced by the pull-back from𝑀), Ric𝑁 the Ricci tensor of 𝑁 and 𝑛 is
induced on �̃� by ℊ0 (equivalently, integrate with respect to 𝑑 volℊ0).

Lemma 5.1 (Unstable region). There exist a geodesic ball 𝐷 ⋐ 𝑀 and 𝜙 ∈ 𝐶2𝑐 (�̃�) with 𝜙 ≥ 0, such
that, writing �̃� = 𝜄−1(𝐷), the support of 𝜙 is contained in �̃� ⧵ �̃� and

∫�̃� |∇𝜙|2 𝑑𝑛 − ∫�̃� 𝜙
2(|𝐴|2 + Ric𝑁(𝜈, 𝜈))𝑑𝑛 < 0. (10)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22144 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 BELLETTINI

Proof. The second variation of 𝑀 is only defined for initial velocities induced by a function
with compact support in 𝑀. Fix an arbitrary point 𝑏 ∈ 𝑀. Let 𝛿 > 0 be arbitrary and choose
𝜌 = 𝜌𝛿 ∈ 𝐶

∞
𝑐 (𝑁) such that 0 ≤ 𝜌 ≤ 1, 𝜌 = 1 in an open neighbourhood of {𝑏} ∪ (𝑀 ⧵𝑀), 𝜌 = 0

in the complement of a (larger) open neighbourhood of {𝑏} ∪ (𝑀 ⧵𝑀), and ∫
𝑁
|∇𝜌|2 < 𝛿. This is

possible because {𝑏} ∪ (𝑀 ⧵𝑀) has finite (actually 0 when 𝑛 > 2) 𝑛−2-measure, and the mass
growth is Euclidean around every point of𝑀 (since 2|𝑀| is a stationary integral varifold, which
gives the validity of the monotonicity formula): the previous two facts allow us to conclude that
the two-capacity of {𝑏} ∪ (𝑀 ⧵𝑀) is 0 (see [8, sec. 4.7]), establishing the existence of 𝜌 with the
desired properties.
Then the function 𝜑(𝑞) = 1 − 𝜌(𝜄(𝑞)) is admissible in (9) and the expression becomes

(integrating on𝑀)

2∫𝑀 |∇𝜌|2 𝑑𝑛 − 2∫𝑀(1 − 𝜌)
2(|𝐴𝑀|2 + Ric𝑁(𝜈, 𝜈))𝑑𝑛.

(Note that on 𝑀 the choice of 𝜈 is in general only permitted up to sign; this suffices for
the term Ric𝑁(𝜈, 𝜈) to make sense.) Sending 𝛿 → 0 the second term tends to −2 ∫

𝑀
(|𝐴𝑀|2 +

Ric𝑁(𝜈, 𝜈))𝑑𝑛 and the first term tends to 0, so the above expression converges to a negative
number (recall that Ric𝑁 > 0). Therefore there exists 𝛿 sufficiently small such that

2∫𝑀 |∇𝜌|2 𝑑𝑛 − 2∫𝑀(1 − 𝜌)
2(|𝐴𝑀|2 + Ric𝑁(𝜈, 𝜈))𝑑𝑛 < 0.

We let, for this 𝛿, 𝜙(𝑞) = 1 − 𝜌(𝜄(𝑞)). Since 1 − 𝜌 vanishes in a neighbourhood of 𝑏, there exists a
geodesic ball 𝐷 whose closure is disjoint from supp(1 − 𝜌), and therefore its double cover �̃� is a
positive distance away from supp 𝜙. □

Remark 5.2. This lemma uses 𝑛 ≥ 2 to argue that {𝑏} has codimension ≥ 2 (for 𝑛 = 1 the lemma
fails, e.g., for ℝℙ1 ⊂ ℝℙ2).

Remark 5.3. By the construction of 𝜌 in [8], 𝜌(𝑥) = 0when dist𝑁(𝑥, {𝑏} ∪ (𝑀 ⧵𝑀)) > 𝑑𝛿 for some
𝑑𝛿 → 0 as 𝛿 → 0. This means that for 𝛿 sufficiently small the support of 𝜌 has at least two (com-
pact) connected components one of which contains 𝑏 (and thus �̃�) while the union of the others
contains an open neighbhourhood 𝑂1 of 𝑀 ⧵𝑀. Let 𝑂 ⋐ 𝑂1 be an open set containing 𝑀 ⧵𝑀
(to avoid technical difficulties, we ensure also that 𝜕𝑂 ∩𝑀 is (𝑛 − 1)-dimensional, thanks to the
coarea formula for dist𝑁). For 𝜙 = 1 − 𝜌◦𝜄, we have that the complement of supp 𝜙 has at least
two (open) connected components in �̃�, one containing �̃� while the other contains 𝜄−1(𝑂). Note
that 𝐾 = �̃� ⧵ 𝜄−1(𝑂) is compact. These facts guarantee that 𝜙 vanishes in a neighbourhood of 𝜕�̃�
and of 𝜕(𝜄−1(𝑂)) = 𝜕𝐾, a condition that will be technically useful in Section 6.

Remark 5.4 (Choice of 𝐵). Choose the ball 𝐵 in𝑀 to be concentric with𝐷 and with half the radius.
Denote by 𝑅 > 0 the radius of 𝐵. Let 𝐵 = 𝜄−1(𝐵): this is the union of two geodesic balls in �̃�. The
choices of 𝐵 and 𝜙 will be kept until the end.

Remark 5.5. The geometric counterpart of Lemma 5.1 is that the minimal immersion 𝜄 is unstable
with respect to the area functional also if we restrict to deformations that leave �̃� (and𝐷) fixed and
that do not move𝑀 close to its singular set𝑀 ⧵𝑀. We will be more specific in Section 6 below.
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 25

6 RELEVANT IMMERSIONS (CHOICE OF 𝝉)

Recall Remark 5.3. We will fix the compact subset 𝐾 = �̃� ⧵ 𝜄−1(𝑂) and will denote by 𝐾𝐵 the
compact set 𝐾 ⧵ 𝐵, where 𝐵 is as in Remark 5.4. Note that both 𝐾 and 𝐾𝐵 are even in �̃�; that is,
they are double covers (via 𝜄) of compact subsets of𝑀. We have supp 𝜙 ⊂ 𝐾𝐵 ⊂ 𝐾 for 𝜙 chosen in
Lemma 5.1. Recall that 𝜙 vanishes in a neighbourhood of 𝜕𝐾𝐵 (and of 𝜕𝐾).Wewill define on𝐾 and
𝐾𝐵 suitable two-sided immersions into 𝑁, smooth up to the boundaries 𝜕𝐾 and 𝜕𝐾𝐵 (this means
that there exist open neighbourhoods of 𝐾 and 𝐾𝐵 to which the immersions can be smoothly
extended).
Choose 𝑐𝐾 > 0 such that 𝑐𝐾 < min(𝑦,𝑣)∈𝐾 𝜎(𝑦,𝑣) (by the continuity of 𝜎 > 0 on �̃� the mini-

mum exists and is positive). We therefore have a well-defined one-sided tubular neighbourhood
of 𝐾 in 𝑉�̃� , namely 𝐾 × [0, 𝑐𝐾), with closure contained in 𝑉�̃� . Note that there exists an open
neighbourhood of 𝐾 on which 𝜎(𝑦,𝑣) > 𝑐𝐾 , by continuity of 𝜎 on �̃�.
Recall that 𝑉�̃� is endowed with the Riemannian metric induced by the pull-back from 𝑁. Let

Π𝐾 denote the nearest-point projection onto 𝐾 (in coordinates,Π𝐾(𝑞, 𝑠) = (𝑞, 0)). For future pur-
poses, we ensure that 𝑐𝐾 above is also suitably small to ensure that, for 𝑥 = (𝑞, 𝑠) ∈ 𝐾 × [0, 𝑐𝐾),
then

|||𝐽Π𝐾|(𝑥) − 1|| ≤ 2𝐶𝐾𝑠 and
|||| 1|𝐽Π𝐾|(𝑥) − 1|||| ≤ 2𝐶𝐾𝑠, (11)

where |𝐽Π𝐾| =√
(𝐷Π𝐾)(𝐷Π𝐾)𝑇 , and the constant 𝐶𝐾 > 0 is the maximum of the norm of the

second fundamental form of 𝜄 ∶ �̃� → 𝑁 restricted to 𝐾 ⊂ �̃�. Note that 𝑠 is just the Riemannian
distance of (𝑞, 𝑠) to 𝐾 (and to𝑀).
Choosing 𝑐0 > 0 and 𝑡0 > 0 sufficiently small, we can ensure that(

𝑞, 𝑐 + 𝑡𝜙(𝑞)
)
∈ 𝐾 ×

[
0,
𝑐𝐾
2

)
for all 𝑡 ∈ [0, 𝑡0] and for all 𝑐 ∈ [0, 𝑐0]. For any such 𝑐, 𝑡 we thus have a smooth two-sided
immersion 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦

(
(𝑐 + 𝑡𝜙(𝑞))𝑣

)
from the interior of 𝐾 into 𝑁.

Remark 6.1. Note that, since 𝜙 = 0 in a neighbourhood of 𝜕𝐾, the immersion

𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦
(
(𝑐 + 𝑡𝜙(𝑞))𝑣

)
agrees with 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦(𝑐𝑣) in a neighbourhood of 𝜕𝐾; therefore it extends
smoothly to 𝜕𝐾. Similarly,

𝑞 = (𝑦, 𝑣) ∈ Int(𝐾𝐵) → exp𝑦
(
(𝑐 + 𝑡𝜙(𝑞))𝑣

)
extend smoothly to 𝜕𝐾𝐵 because 𝜙 = 0 vanishes in a neighbourhood of 𝜕𝐾.

Remark 6.2.

(a) Again thanks to the fact that 𝜙 = 0 in a neighbourhood of 𝜕𝐾, we have the following
technically useful fact. For the two-sided immersion

𝑞 = (𝑦, 𝑣) ∈ 𝐾 → exp𝑦
(
(𝑐 + 𝑡𝜙(𝑞))𝑣

)
,
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26 BELLETTINI

with 𝑐 > 0, denote by 𝜈 a choice of unit normal (which extends continuously up to 𝜕𝐾)
and by 𝐾𝑐,𝑡,𝜙 its image. We can find 𝑐 > 0 such that, for any 𝑡 ∈ [0, 𝑡0] and 𝑐 ∈ [0, 𝑐0], the
set {exp𝑥(𝑠𝜈) ∶ 𝑠 ∈ (−𝑐, 𝑐), 𝑥 ∈ 𝐾𝑐,𝑡,𝜙} is contained in 𝐾 × [0, 𝑐𝐾). By making 𝑐 smaller if
necessary, we can also ensure that the set{

exp𝑥(𝑠𝜈) ∶ 𝑠 ∈ (−min{𝑐, 𝑐},min{𝑐, 𝑐}), 𝑥 ∈ 𝐾𝑐,𝑡,𝜙
}

is a tubular neighbourhood of 𝐾𝑐,𝑡,𝜙, in the sense that it admits a well-defined nearest-
point projection Π𝑐,𝑡 onto 𝐾𝑐,𝑡,𝜙. This projection extends smoothly up to the boundary
portion {exp𝑥(𝑠𝜈) ∶ 𝑠 ∈ (−min{𝑐, 𝑐},min{𝑐, 𝑐}), 𝑥 ∈ 𝜕𝐾𝑐,𝑡,𝜙}. In fact, close to {exp𝑥(𝑠𝜈) ∶ 𝑠 ∈
(−min{𝑐, 𝑐},min{𝑐, 𝑐}), 𝑥 ∈ 𝜕𝐾𝑐,𝑡,𝜙}we have thatΠ𝑐,𝑡 agrees with the nearest-point projection
onto Γ𝑐.
These properties essentially say that we can work with tubular neighbourhoods of 𝐾𝑐,𝑡,𝜙

without interfering with the complement of 𝐹(𝐾 × [0, 𝑐𝐾)), and it will be useful when writing
Allen–Cahn approximations of the immersions 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦

(
(𝑐 + 𝑡𝜙(𝑞))𝑣

)
.8

(b) For notational convenience we redefine 𝑐0, by choosing the minimum of 𝑐0 specified above
and 𝑐 specified in (a). Then we have a well-defined nearest point projection

Π𝑐,𝑡 ∶ {exp𝑥(𝑠𝜈) ∶ 𝑠 ∈ (−𝑐, 𝑐), 𝑥 ∈ 𝐾𝑐,𝑡,𝜙} → 𝐾𝑐,𝑡,𝜙

for all 𝑐 ∈ (0, 𝑐0] and all 𝑡 ∈ [0, 𝑡0].

Remark 6.3. Choosing a suitably small 𝑡0 ≤ 𝑡0, 𝑡0 > 0, we can further ensure that the area of the
immersion 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦

(
(𝑡𝜙(𝑞))𝑣

)
is strictly decreasing in 𝑡 on the interval [0, 𝑡0].

This follows upon noticing that the first variation (with respect to area) at 𝑡 = 0 is 0 (byminimality
of𝑀), and the second variation at 𝑡 = 0 is negative by Lemma 5.1 (see Remark 5.5). Note that the
immersions 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾𝐵) → exp𝑦

(
(𝑡𝜙(𝑞))𝑣

)
(the previous family of immersions restricted

to Int(𝐾𝐵)) have the same area-decreasing property, since 𝜙 = 0 on �̃�. For the latter family of
immersions, the area at 𝑡 = 0 is

𝑛(𝐾) −𝑛(𝐵) ≤ 2𝑛(𝑀) − 2𝑛(𝐵).

Lemma 6.4. Let 𝑡0 be as in Remark 6.3 and 𝑐0 as in Remark 6.2(b). There exist 𝑐0 ∈ (0, 𝑐0] and
𝜏 > 0 such that

(i) for all 𝑐 ∈ [0, 𝑐0] and for all 𝑡 ∈ [0, 𝑡0] the area of the immersion

𝑞 = (𝑦, 𝑣) ∈ Int(𝐾𝐵) → exp𝑦
(
(𝑐 + 𝑡𝜙(𝑞))𝑣

)
is ≤ 𝑛(𝐾) −

3

4
𝑛(𝐵) = 𝑛(𝐾) −

3

2
𝑛(𝐵);

(ii) for all 𝑐 ∈ [0, 𝑐0] the area of the immersion

𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦
(
(𝑐 + 𝑡0𝜙(𝑞))𝑣

)
is ≤ 𝑛(𝐾) − 𝜏.

8 More precisely, we can patch the definition of Allen–Cahn approximation given in the tubular neighbourhood of 𝐾𝑐,𝑡,𝜙
(for 𝑐 = 2 𝜀 Λ to be chosen) with the function 𝐺𝜀0 defined in (7).
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 27

Proof. Let us prove that (i) holds for some 𝑐′0 ∈ (0, 𝑐0] (in place of 𝑐0). Argue by contradiction: if not,
then there exists 𝑐𝑖 → 0 and 𝑡𝑖 ∈ [0, 𝑡0] such that the area of 𝑞 ∈ Int(𝐾𝐵) → exp𝑦

(
(𝑐𝑖 + 𝑡𝑖𝜙(𝑞))𝑣

)
is ≥ 2(𝑛(𝑀) −

3

4
𝑛(𝐵)) for all 𝑖. Upon extracting a subsequence we may assume 𝑡𝑖 → 𝑡 ∈

[0, 𝑡0], and by continuity of the area we get that the area of 𝑞 ∈ Int(𝐾𝐵) → exp𝑦
(
(𝑡𝜙(𝑞))𝑣

)
is

≥ (𝑛(𝐾) −
3

2
𝑛(𝐵)). This is however in contradictionwith Remark 6.3, which says that this area

is ≤ 𝑛(𝐾) − 2𝑛(𝐵).
Let us prove that (ii) holds for some 𝑐′′0 ∈ (0, 𝑐0] (in place of 𝑐0) and for some 𝜏 > 0. By

Remark 6.3 the area of 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦
(
(𝑡0𝜙(𝑞))𝑣

)
is strictly smaller than 𝑛(𝐾).

Denote by 2𝜏 the positive difference of the two areas. By continuity, there exists 𝑐′′0 > 0 such that
for all 𝑐 ∈ [0, 𝑐′′0 ] the area of the immersion 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾) → exp𝑦

(
(𝑐 + 𝑡0𝜙(𝑞))𝑣

)
is smaller

than𝑛(𝐾) − 𝜏.
Choosing 𝑐0 = min{𝑐′0, 𝑐

′′
0 } concludes. □

We will write, in Section 7, Allen–Cahn approximations of the immersions in Lemma 6.4. To
that end, we will work in the tubular neighbourhoods specified in Remark 6.2, restricting the
range of 𝑐 and 𝑡 to [0, 𝑐0] and [0, 𝑡0], respectively (in order to exploit the area bounds obtained in
the lemma). We will also make use of the following bounds.

Remark 6.5. There exists a constant 𝐶𝐾,𝑐0,𝑡0 > 0, depending only on 𝑐0, 𝑡0, on the Riemannian
metric and on the 𝐶3 norms of 𝜙 on 𝐾 and of 𝐹, such that for 𝑐 ∈ [0, 𝑐0] and 𝑡 ∈ [0, 𝑡0]

|||𝐽Π𝑐,𝑡|(𝑥) − 1|| ≤ 𝐶𝐾,𝑐0,𝑡0 𝑠 and
||||| 1|𝐽Π𝑐,𝑡|(𝑥) − 1

||||| ≤ 𝐶𝐾,𝑐0,𝑡0 𝑠, (12)

where |𝐽Π𝑐,𝑡| =√
(𝐷Π𝑐,𝑡)(𝐷Π𝑐,𝑡)𝑇 , and 𝑠 is the distance of 𝑥 to 𝐾𝑐,𝑡,𝜙.

Signed distance dist𝐾𝑐,𝑡,𝜙 . To write the Allen–Cahn approximation of the immersions in
Lemma 6.4 we will need to use the following notion of signed distance to 𝐾𝑐,𝑡,𝜙. Recall that 𝜙 ≥ 0
is smooth and 𝜙 = 0 in a neighbourhood of 𝜕𝐾. In the coordinates of 𝑉�̃� , 𝐾𝑐,𝑡,𝜙 is identified with
a graph, namely (for 𝑐 ∈ [0, 𝑐0] and 𝑡 ∈ [0, 𝑡0])

𝐹−1
(
𝐾𝑐,𝑡,𝜙

)
=
{
(𝑞, 𝑠) ∈ 𝐾 × [0, 𝑐𝐾) ∶ 𝑠 = 𝑐 + 𝑡𝜙(𝑞)

}
.

Wedefine, on𝐾 × (0, 𝑐𝐾), the following “signed distance to𝐹−1
(
𝐾𝑐,𝑡,𝜙

)
” for 𝑐 > 0. First, we decide

the sign of the distance: we say that (𝑞, 𝑠) ∈ 𝐾 × (0, 𝑐𝐾) has negative distance to 𝐹−1
(
𝐾𝑐,𝑡,𝜙

)
if

𝑠 < 𝑐 + 𝑡𝜙(𝑞) and positive distance to 𝐹−1
(
𝐾𝑐,𝑡,𝜙

)
if 𝑠 > 𝑐 + 𝑡𝜙(𝑞). Next we define its modulus.

The modulus of the signed distance is the unsigned distance of (𝑞, 𝑠) to 𝐹−1
(
𝐾𝑐,𝑡,𝜙

)
in 𝐾 × (0, 𝑐𝐾)

(recall that 𝐾 × (0, 𝑐𝐾) is endowed with the Riemannian metric pulled back from 𝑁). Note that
if (𝑞, 𝑠) ∈ 𝐹−1

(
𝐾𝑐,𝑡,𝜙

)
0, then the distance extends smoothly at (𝑞, 𝑠) with value 0. Also, note that

we do not define the signed distance on 𝐾 × {0}. The signed distance just defined descends to a
smooth function on 𝐹(𝐾 × (0, 𝑐𝐾)) ⊂ 𝑁 that we will denote by dist𝐾𝑐,𝑡,𝜙 . The set 𝐹(𝐾 × (0, 𝑐𝐾)) is
an open tubular neighbourhood of 𝜄(𝐾) of semiwidth 𝑐𝐾 , with𝑀 removed.
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28 BELLETTINI

7 ALLEN–CAHN APPROXIMATIONS AND PATHS IN𝑾𝟏,𝟐(𝑵)

The overall aim in the sections that follow is to produce, for all sufficiently small 𝜀, a continu-
ous path in 𝑊1,2(𝑁) that starts at the constant −1, ends at the constant +1 and such that 𝜀 is
bounded by ≈ 2𝑛(𝑀) − min

{𝑛(𝐵)

2
,
𝜏

2

}
, where 𝐵 and 𝜏 were chosen respectively in Remark 5.4

and Lemma 6.4 and depend only on geometric data (not on 𝜀). Theorem 1.3 (and Theorems 1.1,
1.8) will follow immediately once this is achieved.

7.1 Choice of 𝜺

Let 𝐵 be as in Remark 5.4 and 𝑐0, 𝑡0, 𝜏 be as in Lemma 6.4. The geometric quantities𝑛(𝐵) and 𝜏
are relevant in the forthcoming construction.
In the following sections we are going to exhibit, for every sufficiently small 𝜀, a continuous

path in 𝑊1,2(𝑁) with 𝜀 suitably bounded along the whole path. We will specify now an initial
choice 𝜀 < 𝜀1 that permits the construction of the𝑊1,2-functions describing the path. When we
will estimate 𝜀 along the path, we will do so in terms of geometric quantities (typically, areas of
certain hypersurfaces, hence independent of 𝜀) plus errors that will depend on 𝜀. For sufficiently
small 𝜀, that is, 𝜀 < 𝜀2 for a choice of 𝜀2 ≤ 𝜀1 to be specified, these errors will be ≤ 𝐶(𝜀 |log 𝜀|)
for some 𝐶 > 0 independent of 𝜀; we will not keep track of the constants and will instead write
𝑂(𝜀 |log 𝜀|). At the very end (Section 8), in order to make these errors much smaller than 𝜏 and
𝑛(𝐵), and thus have an effective estimate on 𝜀 along the path, wemay need to revisit the small-
ness choice: for some 𝜀3, (possibly 𝜀3 ≤ 𝜀2) we will get that for 𝜀 < 𝜀3 the errors can be absorbed in
the geometric quantities. Therefore for 𝜀 < 𝜀3, we will have an upper bound for 𝜀 along the path
that is independent of 𝜀.
Now we choose 𝜀1. The choices of 𝜀2, 𝜀3 will be made as we proceed into the forthcoming

arguments. We restrict to 𝜀1 < 1, so that the 𝑂(𝜀2) controls that we have on the approximated
one-dimensional solutions in Section 2.2 are valid for all 𝜀 < 𝜀1. We then require 𝜀1 <

1

𝑒
so to have

𝜀 |log 𝜀| is decreasing as 𝜀 decreases so that the conditions specified on 𝜀1 hold also for each 𝜀 < 𝜀1
and, moreover,

6𝜀1|log 𝜀1| < 𝑐0
20

(and implicitly < 1

2
𝜔). Since the quantity 6𝜀| log 𝜀| will appear frequently (due to the choice of

truncation in Section 2.2), we will use the shorthand notation Λ = 3|log 𝜀|when working at fixed
𝜀.

7.2 Allen–Cahn approximation of 𝟐(|𝑴| − |𝑩|)

Recall the function𝐺𝜀0 ∶ 𝑁 → ℝ defined in (7), which is anAllen–Cahn approximation of 𝜄 ∶ �̃� →
𝑁, that is, a 𝑊1,2 function with nodal set close to the image of 𝜄 and such that its Allen–Cahn
energy 𝜀(𝐺𝜀0) is approximately9 the area of 𝜄 (i.e., ≈ 2𝑛(𝑀)). Due to the fact that we replace

9 In Section 4 we only established an upper bound for 𝜀(𝐺𝜀0), and most of the time an upper bound is all that will matter
for our Allen–Cahn approximations (although a lower bound in terms of the area of the corresponding immersion is also
going to be always valid). In the case of 𝐺𝜀0, such a lower bound for 𝜀(𝐺𝜀0) will be established later.
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 29

hypersurfaces by nonsharp transitions, the function 𝐺𝜀0 can also be thought of as an Allen–Cahn
approximation of Γ2 𝜀 Λ (that is exactly the nodal set of 𝐺𝜀0).
Definition of𝑓.Wewill now“remove the ball𝐵” from𝐺𝜀0 ∶ 𝑁 → ℝ. In otherwords,wewillwrite

an Allen–Cahn approximation 𝑓 of 2(|𝑀| − |𝐵|), or, equivalently, of 𝜄|�̃�⧵𝐵. Always because we
have nonsharp transitions, we can think of 𝑓 also as an Allen–Cahn approximation of Γ2 𝜀 Λ with
two balls removed. Although 𝑓 = 𝑓𝜀 does depend on 𝜀, we drop the 𝜀 for notational convenience.
What is important to keep in mind is that we can perform the construction of 𝑓 given below for
any 𝜀 < 𝜀1 and that we will obtain estimates on 𝜀(𝑓𝜀) that are uniform in 𝜀.
To this end, we let 𝜒 ∈ 𝐶∞𝑐 (�̃�) be smooth and even (i.e., 𝜒(𝑝) = 𝜒(𝑞) if 𝜄(𝑝) = 𝜄(𝑞)), with 𝜒 = 1

on 𝐵, |∇𝜒| ≤ 2

𝑅
, where 𝑅 is the radius of 𝐵, and supp𝜒 ⋐ �̃�. Then we define, using coordinates

(𝑞, 𝑠) ∈ 𝐾 × [0, 𝑐𝐾) ⊂ 𝑉�̃� ,

𝐺𝜀0,𝐵(𝑞, 𝑠) = Ψ4 𝜀 Λ𝜒(𝑞)(𝑠), (13)

where Ψ𝑡 is as in (3). Since 𝜒 is even, the function 𝐺𝜀0,𝐵 descends to a well-defined function 𝑓 on
𝐹(𝐾 × [0, 𝑐𝐾)) (this is a tubular neighbourhood of semiwidth 𝑐𝐾 around 𝜄(𝐾)). Note that 𝑓 agrees
with 𝐺𝜀0 on 𝐹((𝐾 ⧵ �̃�) × [0, 𝑐𝐾)) and on 𝐹((𝐾 × (𝑐𝐾∕2, 𝑐𝐾)) (on the latter both are equal to −1);
therefore we extend 𝑓 to 𝑁 by setting it equal to 𝐺𝜀0 on 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)),

𝑓(𝑥) =

{
𝐺𝜀0 for 𝑥 ∈ 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)),

𝐺𝜀0,𝐵(𝐹
−1(𝑥)) for 𝑥 ∈ 𝐹(𝐾 × [0, 𝑐𝐾));

(14)

then𝑓 is𝑊1,∞ on the complement of𝐹(�̃� × [0, 𝑐𝐾∕2]). SinceΨ𝑡(𝑥) is even and Lipschitz onℝ (see
(3)), we will in fact conclude that 𝑓 is𝑊1,∞ on𝑁. We only need to check it around points 𝑥 ∈ 𝐷.
Let 𝜒0 ∶ 𝑀 → ℝ be defined by 𝜒0(𝑦) = 𝜒(𝜄−1(𝑦)); this is a smooth function compactly supported
in 𝐷. In a neighbourhood of 𝑥 ∈ 𝐷 we can choose a small geodesic ball 𝐵𝑟(𝑥) ⊂ 𝑀 and use Fermi
coordinates (𝑦, 𝑎) ∈ 𝐵𝑟(𝑥) × (−𝑐𝐾, 𝑐𝐾). Then in this neighbourhood 𝑓(𝑦, 𝑎) = Ψ4 𝜀 Λ𝜒0(𝑦)(𝑎). Since
Ψ𝑡(𝑧) is Lipschitz in (𝑡, 𝑧) ∈ [0,∞) × ℝ, we conclude that 𝑓 is Lipschitz on𝐵𝑟(𝑥) × (−𝑐𝐾, 𝑐𝐾). (The
Jacobian factor that measures the distortion of the Riemannian metric from the product metric
on 𝐵𝑟(𝑥) × (−𝑐𝐾, 𝑐𝐾) is bounded by a constant that only depends on the geometric data 𝐹(𝐾) ⊂
𝑀 ⊂ 𝑁; therefore it suffices to observe that Ψ4𝜀 Λ𝜒0(𝑦)(𝑎) is Lipschitz with respect to the product
metric.) Therefore 𝑓 ∈ 𝑊1,∞(𝑁).
Allen–Cahn energy of 𝑓. To estimate from above the Allen–Cahn energy of 𝑓, since 𝑓 = 𝐺𝜀0 in

the complement of 𝐹(�̃� × [0, 𝑐𝐾)) and we estimated 𝜀(𝐺𝜀0) in (8), we only need to compute the
energy of 𝑓 on𝐹

(
�̃� × [0, 𝑐𝐾)

)
(and, similarly, the energy of𝐺𝜀0 on𝐹

(
�̃� × [0, 𝑐𝐾)

)
. We can therefore

use coordinates (𝑞, 𝑠) on �̃� × [0, 𝑐𝐾) ⊂ 𝑉�̃� as in (13) and apply the coarea formula (for the function
Π𝐾(𝑞, 𝑠) = (𝑞, 0), whose Jacobian determinant |𝐽Π𝐾| is computedwith respect to the Riemannian
metric induced from 𝑁):

∫𝐹(�̃�×[0,𝑐𝐾))
𝜀
|∇𝑓|2
2

+
𝑊(𝑓)
𝜀

= ∫𝐵×(0,𝑐𝐾)
(
𝜀
2
|∇𝐺𝜀0,𝐵|2 + 𝑊(𝐺𝜀0,𝐵)𝜀

)

+∫�̃�⧵𝐵 ∫(0,𝑐𝐾)
1|𝐽Π𝐾|

(
𝜀
2

|||| 𝜕𝜕𝑠𝐺𝜀0,𝐵||||
2

+
𝑊(𝐺𝜀0,𝐵)

𝜀

)
𝑑𝑠 𝑑𝑞

+∫(�̃�⧵𝐵)×(0,𝑐𝐾)
𝜀
2
|∇𝑞𝐺𝜀0,𝐵|2. (15)
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30 BELLETTINI

The notation ∇𝑞 stands for the gradient projected onto the level sets of 𝑠 (recall that 𝜕

𝜕𝑠
is

orthonormal to the level sets of 𝑠). By definition of 𝐺𝜀0,𝐵 we have, at (𝑞, 𝑧) ∈ �̃� × (0, 𝑐𝐾):

𝜕𝐺𝜀0,𝐵
𝜕𝑞𝑖

=
𝑑
𝑑𝑎
(Ψ𝑎)(𝑧)

||||𝑎=4 𝜀 Λ𝜒(𝑞) 4 𝜀 Λ 𝜕𝜒𝜕𝑞𝑖 ,
where, with a slight abuse of notation, 𝜒(𝑞, 𝑧) = 𝜒(𝑞). As a function on �̃�, 𝜒 satisfies |∇𝜒| ≤ 2

𝑅

(where𝑅 denotes the radius of𝐵).Moreover, || 𝑑𝑑𝑎 (Ψ𝑎)(𝑧)|| = |Ψ′(|𝑧| + 𝑎)| ≤ 3

𝜀
. These bounds imply

(Λ = 3|log 𝜀|)
𝜀 |∇𝑞𝐺𝜀0,𝐵|2 ≤ 𝜀 𝐶𝜀2 𝜀2 |log 𝜀|2𝑅2

=
𝐶 𝜀 |log 𝜀|2

𝑅2
. (16)

(Here𝐶 = (8 ⋅ 6)2𝐶′, where𝐶′ > 0 depends on the distortion factor between the Riemannianmet-
ric and the product metric.) Since 𝐵, �̃�, 𝑅, and 𝐶 are independent of 𝜀, (16) implies that the third
term on the right-hand side of (15) can be made arbitrarily small by choosing 𝜀 sufficiently small;
this term is 𝑂(𝜀2 |log 𝜀|3), since the integrand is zero on (�̃� ⧵ 𝐵) × (4 𝜀 Λ, 𝑐𝐾). The first term on the
right-hand side of (15) vanishes because 𝐺𝜀0,𝐵 = −1 on that domain. For the second term on the
right-hand side of (15), note that the inner integral only gives a contribution in [0, 4 𝜀 Λ] (𝐺𝜀0,𝐵 = −1
on 𝑠 ∈ [4 𝜀 Λ, 𝑐𝐾]). Recalling the bounds on the Jacobian factor |𝐽Π𝐾| given in (11) and the energy
estimates on the one-dimensional profiles (see (1) and (3), we find second term on right-hand side
of (15)

≤ (1 + 8 𝜀 Λ𝐶𝐾)∫�̃�⧵𝐵
(
∫

4 𝜀 Λ

0

1
2
𝜀
(
Ψ′
4 𝜀 Λ𝜒(𝑞)

)2
+
𝑊(Ψ4 𝜀 Λ𝜒(𝑞))

𝜀

)
𝑑𝑞

≤ 𝑛(�̃� ⧵ 𝐵) (1 + 8 𝜀 Λ𝐶𝐾) 𝜀(ℍ𝜀)
≤ (𝑛(�̃�) −𝑛(𝐵)) (1 + 8 𝜀 Λ𝐶𝐾)(2𝜎 + 𝑂(𝜀

2)).

We can thus rewrite (15) as a leading term 2𝜎(𝑛(�̃�) −𝑛(𝐵)) plus errors; for a sufficiently small
choice of 𝜀2 ≤ 𝜀1 for 𝜀 < 𝜀2 all errors are of the type 𝑂(𝜀 |log 𝜀|). We therefore conclude that the
following estimate holds for all 𝜀 < 𝜀2:

∫𝐹(�̃�×[0,𝑐𝐾))
𝜀
|∇𝑓|2
2

+
𝑊(𝑓)
𝜀

≤ 4𝜎(𝑛(𝐷) −𝑛(𝐵)) + 𝑂(𝜀 |log 𝜀|).
Going back to𝐺𝜀0, we can give a lower bound to its energy on 𝐹(�̃� × [0, 𝑐𝐾))with a computation

analogous to the one just carried out. With coordinates (𝑞, 𝑠) ∈ 𝐷 × [0, 𝑐𝐾) we have that 𝐺𝜀0 is the
function Ψ(𝑠) and therefore |∇𝐺𝜀0| is given by || 𝜕𝜕𝑠Ψ(𝑠)|| (the gradient is parallel to the 𝜕

𝜕𝑠
). Using
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 31

the coarea formula (again10 with Π𝐾) we get

∫𝐹(�̃�×[0,𝑐𝐾))
𝜀
|∇𝐺𝜀0|2
2

+
𝑊(𝐺𝜀0)

𝜀

= ∫�̃�
(
∫

4 𝜀 Λ

0

1|𝐽Π𝐾|
(
𝜀
2

|||| 𝜕𝜕𝑠Ψ(𝑠)||||
2

+
𝑊(Ψ(𝑠))

𝜀

)
𝑑𝑠

)
𝑑𝑞

≥ 𝑛(�̃�)(1 − 8 𝜀 Λ𝐶𝐾)(2𝜎 + 𝑂(𝜀
2)), (17)

where we used (11), (1), and (3). The result in (17) is of the form 4𝜎𝑛(𝐷) plus errors. The errors
are of the form 𝑂(𝜀 |log 𝜀|) for all 𝜀 < 𝜀2 for some suitably small choice of 𝜀2 ≤ 𝜀1.
Remark 7.1 (On the choice of 𝜀2). We make the choice of 𝜀2 several times along the construction,
always within the scope of making the errors controlled by 𝐶 𝜀 |log 𝜀| with 𝐶 independent of 𝜀 ∈
(0, 𝜀2). The specific value 𝜀2might change fromone instance to the next, but sincewemake finitely
many choices we implicitly assume that the correct 𝜀2 is the smallest of all. From now on, this
remark will apply every time we say that the errors are of the form 𝑂(𝜀 |log 𝜀|) for all 𝜀 < 𝜀2 for
some suitably small choice of 𝜀2.

In conclusion, for all 𝜀 < 𝜀2 we have that

1
2𝜎 ∫𝐹(𝐷×[0,𝑐𝐾))

𝜀
|∇𝐺𝜀0|2
2

+
𝑊(𝐺𝜀0)

𝜀

−
1
2𝜎 ∫𝐹(𝐷×[0,𝑐𝐾))

𝜀
|∇𝑓|2
2

+
𝑊(𝑓)
𝜀

≥ 2𝑛(𝐵) − |𝑂(𝜀 |log 𝜀|)|. (18)

Recall that 𝑓 does depend on 𝜀, although we are not expliciting the dependence for notational
convenience, and thatwe can produce𝑓 (as defined above) for every 𝜀 < 𝜀1. By (8) and (18), and the
fact that 𝑓 = 𝐺𝜀0 on𝑁 ⧵ 𝐹(�̃� × [0, 𝑐𝐾)), we conclude that for a sufficiently small choice of 𝜀2 ≤ 𝜀1,
for all 𝜀 < 𝜀2, the following estimate holds:

𝜀(𝑓) ≤ 2(𝑛(𝑀) −𝑛(𝐵)
)
+ 𝑂(𝜀 |log 𝜀|). (19)

This says that𝑓 is a good11 Allen–Cahn approximation of 2(|𝑀| − |𝐵|). In terms of the immersions
of Lemma 6.4,𝑓 is also anAllen–Cahn approximation of 𝑞 = (𝑦, 𝑣) ∈ Int(𝐾𝐵) → exp𝑦(2 𝜀 Λ𝑣) (the
nodal set of 𝑓 contains the image of this immersion with boundary).

7.3 From 𝜺𝜺𝜺(−𝟏) = 𝟎 to 𝟐(|𝑴| − |𝑩|)

In this section we construct a continuous path in𝑊1,2(𝑁) that joins 𝑓 to the constant−1, keeping
𝜀 along the path controlled by 𝜀(𝑓).

10 It would also be possible to use the coarea formula slicing by the distance to𝑀, as done in (8), making use of Lemma 4.1.
11 We only need the upper bound (19), however a lower bound of the form 𝜀(𝑓) ≥ 2(𝑛(𝜄(𝐾)) −𝑛(𝐷)) − 𝑂(𝜀 |log 𝜀|) is
also easily seen to be valid.
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32 BELLETTINI

We begin by introducing the following one-parameter family of functions: for 𝑟 ∈ [0, 4 𝜀 Λ]
define

𝑌𝜀𝑟(𝑥) =

{
−1 for 𝑥 ∈ 𝑁 ⧵ 𝑇𝜔,

Ψ𝑟(𝑑𝑀(𝑥)) for 𝑥 ∈ 𝑇𝜔,
(20)

where Ψ𝑟 is as in (3). Since ℍ𝜀 is constantly −1 on (−∞,−2 𝜀 Λ], the function 𝑌𝜀𝑡 is constantly
−1 on {𝑥 ∶ 𝑑𝑀(𝑥) > 4 𝜀 Λ − 𝑟}. Moreover, since 𝑑𝑀 is Lipschitz on 𝑁 and Ψ𝑟 is Lipschitz on ℝ,
denoting the Lipschitz constants of Ψ𝑟 and 𝑑𝑀 , respectively, by 𝐶Ψ𝑟 , 𝐶𝑑𝑀 , we have|Ψ𝑟(𝑑𝑀(𝑥)) − Ψ𝑟(𝑑𝑀(𝑦))| ≤ 𝐶Ψ𝑟 |𝑑𝑀(𝑥) − 𝑑𝑀(𝑦)| ≤ 𝐶Ψ𝑟𝐶𝑑𝑀 dist𝑁(𝑥, 𝑦).
Therefore 𝑌𝜀𝑟 ∈ 𝑊1,∞(𝑁).
Notice that 𝑌𝜀0 = 𝐺

𝜀
0. We compute 𝜀(𝑌𝜀𝑟) by using the coarea formula (slicing by the distance

function 𝑑𝑀 , for which |∇𝑑𝑀| = 1) as we did for 𝐺𝜀0 (see (8)). We obtain
𝜀(𝑌𝜀𝑟) ≤ 2𝑛(𝑀)

(
1
2𝜎 ∫

4 𝜀 Λ−𝑟

0

𝜀
(Ψ′𝑟)

2

2
+
𝑊(Ψ𝑟)
𝜀

)
≤ 2𝑛(𝑀)(1 + 𝑂(𝜀2)), (21)

using (1) and the fact that

∫
4 𝜀 Λ−𝑟

0

𝜀
(Ψ′𝑟)

2

2
+
𝑊(Ψ𝑟)
𝜀

≤ ∫
∞

0

𝜀
(Ψ′𝑟)

2

2
+
𝑊(Ψ𝑟)
𝜀

= 2𝜎 + 𝑂(𝜀2).

Note that 𝜀(𝑌𝜀𝑟) → 0 as 𝑟 → 4 𝜀 Λ.
Now we give a lower bound for the energy of 𝑌𝜀𝑟 on the domain 𝐹(�̃� × [0, 𝑐𝐾)) as we did for 𝐺𝜀0

in (17), that is, using the coarea formula for the functionΠ𝐾 . Note that on this domain we can use
the coordinates (𝑞, 𝑠) on �̃� × [0, 𝑐𝐾) and the fact that the gradient of 𝑌𝜀𝑟 is parallel to

𝜕

𝜕𝑠
. We have

∫𝐹(�̃�×[0,𝑐𝐾))
𝜀
|∇𝑌𝜀𝑟|2
2

+
𝑊(𝑌𝜀𝑟)
𝜀

= ∫�̃�
(
∫

4 𝜀 Λ−𝑟

0

1|𝐽Π𝐾|
(
𝜀
2

|||| 𝜕𝜕𝑠Ψ𝑟(𝑠)||||
2

+
𝑊(Ψ𝑟(𝑠))

𝜀

)
𝑑𝑠

)
𝑑𝑞

≥ 2𝑛(𝐷)(1 − 8 𝜀 Λ𝐶𝐾)∫
4 𝜀 Λ−𝑟

0

𝜀
(Ψ′𝑟)

2

2
+
𝑊(Ψ𝑟)
𝜀

, (22)

where we used (11) and the fact that 𝜀
2
|| 𝜕𝜕𝑠Ψ𝑟(𝑠)||2 + 𝑊(Ψ𝑟(𝑠))

𝜀
is independent of 𝑞. We therefore con-

clude, from the first inequality in (21) and from (22), the following estimate for the Allen-Cahn
energy of 𝑌𝜀𝑟 in 𝑁 ⧵ 𝐹(�̃� × [0, 𝑐𝐾)): there exists 𝜀2 ≤ 𝜀1 sufficiently small such that for all 𝜀 < 𝜀2

∫𝑁⧵𝐹(�̃�×[0,𝑐𝐾))
𝜀
|∇𝑌𝜀𝑟|2
2

+
𝑊(𝑌𝜀𝑟)
𝜀

≤ 2(𝑛(𝑀) −𝑛(𝐷))∫
4 𝜀 Λ−𝑟

0

𝜀
(Ψ′𝑟)

2

2
+
𝑊(Ψ𝑟)
𝜀

+ 𝑂(𝜀 |log 𝜀|). (23)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22144 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 33

Definition of the path 𝑓𝑟. We now define a continuous path 𝑟 ∈ [0, 4 𝜀 Λ] → 𝑓𝑟 ∈ 𝑊
1,2(𝑁) as

follows. Recalling the definition of 𝜒 ∈ 𝐶∞𝑐 (�̃�) and using coordinates (𝑞, 𝑠) ∈ �̃� × [0, 𝑐𝐾)we set

𝑌𝑟,𝐵(𝑞, 𝑠) = Ψ4 𝜀 Λ𝜒(𝑞)+𝑟(𝑠),

where Ψ𝑡 is as in (3). The function 𝑓𝑟 ∶ 𝑁 → ℝ is then defined by

𝑓𝑟(𝑥) =

{
𝑌𝜀𝑟(𝑥) if 𝑥 ∈ 𝑁 ⧵ 𝐹(�̃� × [0, 𝑐𝐾)),

𝑌𝑟,𝐵(𝐹
−1(𝑥)) if 𝑥 ∈ 𝐹(�̃� × [0, 𝑐𝐾)).

(24)

Note that 𝑓𝑟 is well-defined on𝐷 since 𝜒 is even. Note also that for 𝑟 = 0 this function is 𝑓 and for
𝑟 = 4 𝜀 Λ it is the constant −1. Moreover, 𝑓𝑟 ∈ 𝑊1,∞(𝑁) for every 𝑟. To see this, notice that 𝑌𝑟,𝐵 is
smooth on �̃� × (0, 𝑐𝐾), so 𝑓𝑟 is smooth on 𝐹(�̃� × (0, 𝑐𝐾)). Moreover,

𝑓𝑟 ∈ 𝑊
1,∞(𝑁 ⧵ 𝐹(�̃� × [0, 𝑐𝐾]))

because it agrees with 𝑌𝜀𝑟 on this open set. The smoothness at 𝐹(�̃� × {𝑐𝐾}) is immediate because
𝑓𝑟 = −1 in a neighbourhood of𝐹(�̃� × {𝑐𝐾}). We thus only need to check that 𝑓𝑟 is Lipschitz locally
around any point 𝑥 ∈ 𝐷. Using Fermi coordinates (𝑦, 𝑎) ∈ 𝐵(𝑥) × (−𝛿, 𝛿), where 𝐵(𝑥) is a small
geodesic ball in𝑀 centred at𝑥 and 𝛿 > 0, we have the following expression for𝑓, thanks to the fact
that Ψ𝑟 ∶ ℝ → ℝ is even for every 𝑟: 𝑓𝑟(𝑦, 𝑎) = Ψ4 𝜀 Λ𝜒0(𝑦)+𝑟(𝑎), where 𝜒0(𝑝) = 𝜒(𝐹

−1(𝑝)). Since
Ψ𝑟(𝑧) is Lipschitz on {(𝑟, 𝑧) ∶ 𝑟 ∈ [0,∞), 𝑧 ∈ ℝ}, and since𝜒0 is smooth, we obtain that𝑓𝑟 ∈ 𝑊1,∞

on the chosen neighbourhood of 𝑥. (As we did in (14), we use the fact that being Lipschitz for the
productmetric on𝐵(𝑥) × (−𝛿, 𝛿) implies Lipschitzwith respect to theRiemannianmetric induced
from 𝑁.) In conclusion, we have 𝑓𝑟 ∈ 𝑊1,∞(𝑁).
The path 𝑟 ∈ [0, 4 𝜀 Λ] → 𝑓𝑟 ∈ 𝑊

1,2(𝑁) is moreover continuous. Let us check the continuity of
∇𝑓𝑟 in 𝑟 (with respect to the 𝐿2-topology on𝑁). The partial derivatives of 𝑓𝑟 on 𝐹(�̃� × [0, 𝑐𝐾)) are
given by, using (𝑞, 𝑠)-coordinates on �̃� × (0, 𝑐𝐾):(

… , 4 𝜀 Λ
𝜕𝜒(𝑞)

𝜕𝑞𝑖
Ψ′0(𝑠 + 4 𝜀 Λ𝜒(𝑞) + 𝑟), … ,Ψ

′
0(4 𝜀 Λ𝜒(𝑞) + 𝑟 + 𝑠)

)
.

By continuity of translations in 𝐿𝑝, and smoothness of 𝜒 and of the Riemannian metric, we get
that ∇𝑓𝑟 is continuous in 𝑟 (with respect to the 𝐿2-topology, or even 𝐿𝑝 for any 𝑝). Similarly, we
can argue for 𝑇𝜔 ⧵ 𝐹(�̃� × [0, 𝑐𝐾)), where 𝑓 = 𝑌𝜀𝑟 and the gradient is Ψ′0(𝑟 + 𝑑𝑀(𝑥))∇𝑑𝑀(𝑥): this
changes continuously with 𝑟 (with respect to the 𝐿2-topology, or even 𝐿𝑝 for any 𝑝). Therefore we
have that 𝑟 ∈ [0, 4 𝜀 Λ] → ∇𝑓𝑟 ∈ 𝐿

2(𝑁) is continuous. The fact that 𝑓𝑟 changes continuously in 𝑟
with respect to the 𝐿2-topology is even more straightforward.
Energy along the path. To estimate 𝜀(𝑓𝑟) we compute the energy on 𝐹(�̃� × [0, 𝑐𝐾)) using

the coarea formula for Π𝐾 , similarly to (19), in the coordinates (𝑞, 𝑠) ∈ �̃� × [0, 𝑐𝐾). Notice that
𝑌𝜀0,𝐵(𝑞, 𝑠) = −1 for 𝑞 ∈ 𝐵. Then we obtain

∫𝐹(�̃�×[0,𝑐𝐾))
𝜀
|∇𝑓𝑟|2
2

+
𝑊(𝑓𝑟)
𝜀

= ∫�̃�⧵𝐵 ∫
𝑐𝐾

0

1|𝐽Π𝐾|
(
𝜀
|Ψ′𝑟(𝑠)|2
2

+
𝑊(Ψ𝑟(𝑠))

𝜀

)
𝑑𝑠 𝑑𝑞 ≤

⏟⏟⏟
(11)
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34 BELLETTINI

≤ (1 + 8 𝜀 Λ𝐶𝐾)∫�̃�⧵𝐵 ∫
𝑐𝐾

0

(
𝜀
|Ψ′𝑟(𝑠)|2
2

+
𝑊(Ψ𝑟(𝑠))

𝜀

)
𝑑𝑠 𝑑𝑞

≤ 2(1 + 8 𝜀 Λ𝐶𝐾)𝑛(𝐷 ⧵ 𝐵)

(
∫

4 𝜀 Λ

𝑟

𝜀
(Ψ′)2

2
+
𝑊(Ψ)
𝜀

)
.

Recalling that 𝑓𝑟 = 𝑌𝜀𝑟 on 𝑁 ⧵ 𝐹(�̃� × [0, 𝑐𝐾)) and by the estimate in (23) we conclude that there
exists 𝜀2 ≤ 𝜀1 such that for all 𝜀 ≤ 𝜀2 the following estimates hold for 𝑟 ∈ [0, 4 𝜀 Λ]:

𝜀(𝑓𝑟) ≤ 2(𝑛(𝑀) −𝑛(𝐵))

(
1
2𝜎 ∫

4 𝜀 Λ

𝑟

𝜀
(Ψ′)2

2
+
𝑊(Ψ)
𝜀

)
+ 𝑂(𝜀 |log 𝜀|),

𝜀(𝑓𝑟) ≤ 2(𝑛(𝑀) −𝑛(𝐵)) + 𝑂(𝜀 |log 𝜀|).
(25)

(The second follows from the first since the energy of Ψ in parentheses is ≤ 1 + 𝑂(𝜀2).) The
second estimate shows the uniformenergy control on 𝑟 ∈ [0, 4 𝜀 Λ]; the first shows that𝜀(𝑓𝑟) → 0
as 𝑟 → 4 𝜀 Λ.

Remark 7.2. At least for 𝑛 ≤ 6 it is possible to produce a continuous path from 𝑓 to −1, with a
similar energy control as in (25), by employing alternatively a negative 𝜀-gradient flow starting at
a suitably constructed function 𝑓2 that is𝑊1,2-close to 𝑓 andwith 𝜀(𝑓2) ≈ 𝜀(𝑓). One can choose
𝑓2 such that the flow is mean convex and converges (decreasingly) to the constant−1, reaching it
in time𝑂(𝜀 |log 𝜀|). The 𝜀 → 0 limit of such paths is then the Brakke flow that starts at 2(|𝑀| − |𝐵|)
and vanishes instantaneously. The family (24) thatwe gave in this sectionmimics exactly this flow;
however, it is more elementary, even for 𝑛 ≤ 6, as we can exhibit the path explicitly (andmoreover
present no additional difficulties for 𝑛 ≥ 7). Note that the path 𝑓𝑟 that we produced also reaches
−1 in time 𝑂(𝜀 |log 𝜀|).
7.4 Lowering the peak

In this section we construct the next portion of our path, starting at 𝑓. The immersions in
Lemma 6.4 are particularly relevant, as they provide the geometric counterpart of this portion
of the𝑊1,2-path: first we use the immersions in (i) of Lemma 6.4, keeping 𝑐 = 2 𝜀 Λ and increas-
ing 𝑡 from0 to 𝑡0; thenwe connect the final immersion just obtained to the one in (ii) of Lemma 6.4
with 𝑡 = 𝑡0 and 𝑐 = 2 𝜀 Λ (in doing so, we “close the hole at 𝐵”). The portion of the path that we
exhibit in this section is made of Allen–Cahn approximations of the immersions just described.
It is this portion of the path that “lowers the peak” of 𝜀 (compare Figure 4), keeping it a fixed
amount below 2𝑛(𝑀) (thanks to the estimates in Lemma 6.4).
Wewill keep using the shorthand notationΛ = 3|log 𝜀|. All the functions that wewill construct

in this section coincide with 𝐺𝜀0 in the complement of 𝐹(𝐾 × [0, 𝑐𝐾)). By construction they will in
fact agree with 𝐺𝜀0 in a neighbourhood of 𝜕𝐹(𝐾 × [0, 𝑐𝐾)) (guaranteeing a smooth patching), and
thanks to Remark 6.2 and since 2 𝜀 Λ < 𝑐0∕20 (Section 7.1) we can use tubular neighbourhoods
of semiwidth 2 𝜀 Λ around 𝐾𝑐,𝑡,𝜙 for every 𝑐 ≥ 2 𝜀 Λ to define Allen–Cahn approximations of the
immersions in Lemma 6.4.
Recall the notation 𝐾𝑐,𝑡,𝜙 from Section 6: it denotes the image via 𝐹 ∶ 𝑉�̃� → 𝑁 of the

graph {(𝑞, 𝑠) ∈ 𝑉�̃� ∶ 𝑞 ∈ 𝐾, 𝑠 = 𝑐 + 𝑡𝜙(𝑞)} for 𝑡 ∈ [0, 𝑡0] and 𝑐 ∈ [0, 𝑐0]. In other words, 𝐾𝑐,𝑡,𝜙 is
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 35

the image of the immersion (smoothly extended up to 𝜕𝐾; see Remark 6.1) 𝑞 = (𝑦, 𝑣) ∈ 𝐾 →
exp𝑦((𝑐 + 𝑡𝜙(𝑞))𝑣). Recall the definition of the signed distance provided in Section 6 and denote by
dist𝐾𝑐,𝑡,𝜙 the signed distance to𝐾𝑐,𝑡,𝜙, well-defined on𝐹(�̃� × (0, 𝑐𝐾)). If 𝑡 = 0, then dist𝐾𝑐,0,𝜙 extends
continuously to 𝐹(�̃� × [0, 𝑐𝐾))with value −𝑐 on 𝐹(�̃� × {0}). With this in mind, the definition of 𝑓
in (13)–(14), can equivalently be given as follows:

𝑓(𝑥) =

⎧⎪⎨⎪⎩
ℍ𝜀
4 𝜀 Λ𝜒0(Π𝐾(𝑥))

(
−dist𝐾2 𝜀 Λ,0,𝜙 (𝑥)

)
for 𝑥 ∈ 𝐹(𝐾 × [0, 𝑐𝐾)),

𝐺𝜀0(𝑥) for 𝑥 ∈ 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)),

where
ℍ𝜀𝑠(⋅) = ℍ

𝜀( ⋅ − 𝑠),

𝜒0 = 𝜒◦𝐹
−1, and, with a slight abuse of notation, Π𝐾(𝑥) is the nearest-point projection of 𝑥 onto

𝑀. (In the coordinates of 𝑉�̃� we have Π𝐾(𝑞, 𝑠) = (𝑞, 0), which is the notation used in Section 6;
themap on 𝐹(𝐾 × [0, 𝑐𝐾)) that we are using above should then be 𝐹◦Π𝐾◦𝐹−1, we however denote
both the map in 𝐾 × [0, 𝑐𝐾) and the map in 𝐹(𝐾 × [0, 𝑐𝐾)) by the same symbol Π𝐾 .)

Remark 7.3. The signed distance dist𝐾2 𝜀 Λ,𝑡,𝜙 (𝑥) is defined on 𝐹(𝐾 × (0, 𝑐𝐾)). We point out the fol-
lowing facts. Let 𝑥 ∈ 𝐹(𝐾 × {0}) and 𝑥𝑗 → 𝑥, 𝑥𝑗 ∈ 𝐹(𝐾 × (0, 𝑐𝐾)) (so that the signed distance is
negative on 𝑥𝑗 for 𝑗 sufficiently large). Then

lim sup
𝑗→∞

dist𝐾2 𝜀 Λ,𝑡,𝜙 (𝑥𝑗) ≤ −2 𝜀 Λ.

Moreover, dist𝐾2 𝜀 Λ,𝑡,𝜙 extends continuously to 𝐹((𝐾 ⧵ supp(𝜙)) × {0}) with value −2 𝜀 Λ. In

particular, the continuous extension is valid on (a neighbourhood of) 𝐷.

Definition of 𝑔𝑡. We construct now the portion of path 𝑡 ∈ [0, 𝑡0] → 𝑔𝑡 ∈ 𝑊
1,2(𝑁) whose geo-

metric counterpart is given by the immersions in (i) of Lemma 6.4 with 𝑐 = 2 𝜀 Λ and 𝑡 ∈ [0, 𝑡0].
These immersions “have a hole at 𝐵”. We set, for 𝑡 ∈ [0, 𝑡0]:

𝑔𝑡(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝐺𝜀0(𝑥)(see(7)) for 𝑥 ∈ 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)),

ℍ𝜀
4 𝜀 Λ𝜒0(Π𝐾(𝑥))

(− dist𝐾2 𝜀 Λ,𝑡,𝜙 (𝑥)) for 𝑥 ∈ 𝐹(𝐾 × (0, 𝑐𝐾)) ∪ 𝐷,

1 for 𝑥 ∈ 𝐹((𝐾 ⧵ 𝐷) × {0}).

(26)

In the second line of (26) we are using the fact that dist𝐾2 𝜀 Λ,𝑡,𝜙 is well-defined and continuous on𝐷,
with value −2 𝜀 Λ (see Remark 7.3). Also note that on 𝐹(𝜕𝐾 × [0, 𝑐𝐾)) the definition in the second
line agrees with the definition of 𝐺𝜀0 (𝜙 vanishes in a neighbourhood of 𝜕𝐾, see Section 6) and
the same is true on 𝐹(𝐾 × {𝑐𝐾}) (𝑔𝑡 = −1 in a neighbourhood). For 𝑡 = 0 we have 𝑔0 = 𝑓, by the
expression of 𝑓 given earlier in this section.
𝑔𝑡 ∈ 𝑊

1,∞(𝑁) for each 𝑡. Let us check first that 𝑔𝑡 is continuous on 𝑁 for each 𝑡. In view of the
comments just made, this needs to be checked only at an arbitrary 𝑥 in 𝐹((Int(𝐾) ⧵ 𝐷) × {0}).
Let 𝑥𝑗 → 𝑥, then for sufficiently large 𝑗 we have 𝑥𝑗 ∈ 𝐹((Int(𝐾) ⧵ 𝐷) × [0, 𝑐𝐾)). Then 𝑥, 𝑥𝑗 ∉
supp𝜒0 × [0, 𝑐𝐾). Therefore by (26) we get 𝑔𝑡(𝑥𝑗) = ℍ𝜀(− dist𝐾2 𝜀 Λ,𝑡,𝜙 (𝑥𝑗)). Recall Remark 7.3. By
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36 BELLETTINI

continuity of ℍ𝜀 and the fact that ℍ𝜀(𝑧) = 1 for 𝑧 ≥ 2 𝜀 Λ, we conclude that 𝑔𝑡(𝑥𝑗) → 1; hence 𝑔𝑡
is continuous at 𝑥.
To check that 𝑔𝑡 ∈ 𝑊1,∞(𝑁), note first that the definition in the second line of (26) is equal to

the one of 𝐺𝜀0 in a neighbourhood of the boundary of 𝐹(𝐾 × [0, 𝑐𝐾)). Moreover, 𝑔𝑡 is smooth on
𝐹(𝐾 × (0, 𝑐𝐾)) and𝐺𝜀0 is𝑊

1,∞(𝑁). These facts imply that 𝑔𝑡 ∈ 𝑊1,∞(𝑁 ⧵ 𝐹(𝐾 × {0})), and actually
even in a neighbourhood of the boundary of 𝐹(𝐾 × [0, 𝑐𝐾)). Moreover, for 𝑥 ∈ 𝐵 we have 𝑔𝑡 = −1
in a neighbourhood of 𝑥, because 𝜒0 = 1 on 𝐵 and ℍ𝜀4 𝜀 Λ(𝑧) ≡ −1 for 𝑧 ≤ 2 𝜀 Λ.
Therefore we only need to check that 𝑔𝑡 is locally Lipschitz around points 𝑥 ∈ 𝐹((Int(𝐾) ⧵ 𝐵) ×

{0}). We distinguish two cases. If 𝑥 ∉ 𝐷, that is, if 𝑥 ∈ 𝐹((Int(𝐾) ⧵ �̃�) × {0}), then 𝑔𝑡 is actually 𝐶1
in a neighbourhood of 𝑥. This is seen by repeating the argument used above (for the continuity of
𝑔𝑡 at such point) to prove that |∇𝑔𝑡(𝑥𝑗)|→ 0 (using the fact thatℍ𝜀′ is smooth onℝ and equal to 0

on [2 𝜀 Λ,∞)). We therefore have 𝑔𝑡 is 𝐶1 on 𝐹((Int(𝐾) ⧵ �̃�) × (0, 𝑐𝐾)), 𝑔𝑡 extends continuously to
𝐹((Int(𝐾) ⧵ �̃�) × {0})with constant value 1 and∇𝑔𝑡 extends continuously to this set with value 0.
From these facts it follows that the 𝐿∞ function equal to ∇𝑔𝑡 on 𝐹((Int(𝐾) ⧵ �̃�) × (0, 𝑐𝐾)) is the
distributional derivative of 𝑔𝑡 in a neighbourhood of 𝑥, and therefore 𝑔𝑡 is 𝐶1 in a neighbourhood
of 𝑥. In the second case, that is, if 𝑥 ∈ 𝐷 ⧵ 𝐵, then for a sufficiently small ball 𝐵𝜌(𝑥) ⊂ 𝑀 we have

𝜙 = 0 on𝐹−1(𝐵𝜌(𝑥)) (because supp(𝜙) and �̃� are disjoint), andwe can use awell-defined systemof
Fermi coordinates (𝑦, 𝑎) ∈ 𝐵𝜌(𝑥) × (−𝑐𝐾, 𝑐𝐾). In these coordinates we have dist𝐾2 𝜀 Λ,𝑡,𝜙 (𝐹(𝑦, 𝑎)) =|𝑎| − 2 𝜀 Λ, and 𝑔𝑡(𝐹(𝑦, 𝑎)) = ℍ𝜀4 𝜀 Λ𝜒(𝑦)(−|𝑎| + 2 𝜀 Λ), which is Lipschitz in the neighbourhood.
The path 𝑡 → 𝑔𝑡 is continuous. It suffices to check that the second line in (26) is continu-

ous in 𝑡. The proof can be carried out using the coordinates on 𝑉�̃� and the fact that the graph
{(𝑞, 𝑠) ∶ 𝑞 ∈ 𝐾, 𝑠 = 2 𝜀 Λ + 𝑡𝜙(𝑞)} changes smoothly in 𝑡, hence so does the function dist𝐾2 𝜀 Λ,𝑡,𝜙 . In
fact, for our purposes it suffices to observe that if 𝑡𝑖 → 𝑡, then 𝐾2 𝜀 Λ,𝑡𝑖 ,𝜙 converges to 𝐾2 𝜀 Λ,𝑡,𝜙 in
the Hausdorff distance, from which it follows that dist𝑁( ⋅ , 𝐾2 𝜀 Λ,𝑡𝑖 ,𝜙) converges pointwise a.e. to
dist𝑁( ⋅ , 𝐾2 𝜀 Λ,𝑡,𝜙). This implies that ∇𝑔𝑡𝑖 converges pointwise a.e. to ∇𝑔𝑡 and, by dominated con-
vergence (since 𝑁 is compact and |∇𝑔𝑡| is uniformly bounded independently of 𝑡) ∇𝑔𝑡𝑖 → ∇𝑔𝑡 in
𝐿2(𝑁). The fact that 𝑔𝑡𝑖 → 𝑔𝑡 in 𝐿2(𝑁) follows easily by checking that 𝑡 → 𝑔𝑡 is a Lipschitz curve
with respect to 𝐿∞(𝑁). Therefore the path 𝑡 ∈ [0, 𝑡0] → 𝑔𝑡 ∈ 𝑊

1,2(𝑁) is continuous.
Energy of 𝑔𝑡. To give an upper bound for 𝜀(𝑔𝑡)we first need a lower bound for the energy of 𝐺𝜀0

on 𝐹(𝐾 × [0, 𝑐𝐾)). This is analogous to the estimate in (17):

∫𝐹(𝐾×[0,𝑐𝐾))
𝜀
|∇𝐺𝜀0|2
2

+
𝑊(𝐺𝜀0)

𝜀

= ∫𝐾
(
∫

4 𝜀 Λ

0

1|𝐽Π𝐾|
(
𝜀
2

|||| 𝜕𝜕𝑠Ψ0(𝑠)||||
2

+
𝑊(Ψ0(𝑠))

𝜀

)
𝑑𝑠

)
𝑑𝑞 ≥

⏟⏟⏟
(11)

≥ (1 − 8 𝜀 Λ𝐶𝐾)∫𝐾
(
∫

4 𝜀 Λ

0

(
𝜀
2

|||| 𝜕𝜕𝑠Ψ0(𝑠)||||
2

+
𝑊(Ψ0(𝑠))

𝜀

)
𝑑𝑠

)
𝑑𝑞

≥ 𝑛(𝐾)(1 − 8 𝜀 Λ𝐶𝐾)

(
∫

2 𝜀 Λ

−2 𝜀 Λ

𝜀
2

||||ℍ𝜀′||||
2

+
𝑊(ℍ𝜀)
𝜀

)
= 𝑛(𝐾)(1 − 8 𝜀 Λ𝐶𝐾)(2𝜎 + 𝑂(𝜀

2)), (27)

where we used (1).
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 37

From (8) and (27) we obtain that, for some suitably small choice of 𝜀2 ≤ 𝜀1, for all 𝜀 < 𝜀2 the
following holds for the energy of 𝐺𝜀0 (and thus also of 𝑔𝑡) in 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)):

1
2𝜎 ∫𝑁⧵𝐹(𝐾×[0,𝑐𝐾))

𝜀
|∇𝐺𝜀0|2
2

+
𝑊(𝐺𝜀0)

𝜀
≤ 𝑛(�̃� ⧵ 𝐾) + 𝑂(𝜀 |log 𝜀|). (28)

We now pass to an estimate for the energy of 𝑔𝑡 in 𝐹(𝐾 × [0, 𝑐𝐾)). For this we will use Fermi coor-
dinates for a tubular neighbourhood of 𝐾2 𝜀 Λ,𝑡,𝜙 of semiwidth 2 𝜀 Λ. Denote by (𝑦, 𝑎) ∈ 𝐾2 𝜀 Λ,𝑡,𝜙 ×
(−2 𝜀 Λ, 2 𝜀 Λ) such coordinates and byΠ2𝜀Λ,𝑡 the nearest-point projection from the chosen tubu-
lar neighbourhood onto 𝐾2 𝜀 Λ,𝑡,𝜙 (see Remark 6.2). Notice that 𝑔𝑡 = −1 on 𝐹(𝐵 × [0, 𝑐𝐾)), so there
is no energy contribution in this open set. The coarea formula (for the function Π2𝜀 Λ,𝑡) then
gives12

∫𝐹(𝐾×[0,𝑐𝐾))
𝜀
|∇𝑔𝑡0+𝑟|2

2
+
𝑊(𝑔𝑡0+𝑟)

𝜀

≤ ∫𝐾2 𝜀 Λ,𝑡0,�̃�

(
∫

2 𝜀 Λ

−2 𝜀 Λ

1|𝐽Π2 𝜀 Λ,𝑡0 |
(
𝜀
2
|||ℍ𝜀′(𝑎)|||2 + 𝑊(ℍ𝜀(𝑎))𝜀

)
𝑑𝑎

)
𝑑𝑦 ≤

⏟⏟⏟
(12)

≤ (1 + 2 𝜀 Λ𝐶𝐾,𝑡0,𝑐0,�̃�)𝑛(𝐾2 𝜀 Λ,𝑡0,�̃�)

(
∫

2 𝜀 Λ

−2 𝜀 Λ

𝜀
2
|||ℍ𝜀′|||2 + 𝑊(ℍ𝜀)𝜀

)
= (1 + 2 𝜀 Λ𝐶𝐾,𝑡0,𝑐0,�̃�)𝑛(𝐾2 𝜀 Λ,𝑡0,�̃�)(2𝜎 + 𝑂(𝜀

2)). (29)

Therefore for some suitably small choice of 𝜀2 ≤ 𝜀1, for all 𝜀 < 𝜀2 the following holds:
1
2𝜎 ∫𝐹(𝐾×[0,𝑐𝐾))

𝜀
|∇𝑔𝑡|2
2

+
𝑊(𝑔𝑡)
𝜀

≤ 𝑛(𝐾2 𝜀 Λ,𝑡,𝜙 ⧵ 𝐹(𝐵 × [0, 𝑐𝐾))) + 𝑂(𝜀 |log 𝜀|).
Note that 𝐾2 𝜀 Λ,𝑡,𝜙 ⧵ 𝐹(𝐵 × [0, 𝑐𝐾)) is the image of 𝐾𝐵 via the immersion in (i) of Lemma 6.4 when
𝑐 = 2 𝜀 Λ. Using Lemma 6.4 in the last estimate and putting it together with (28) we finally obtain
that, for some suitably small choice of 𝜀2 ≤ 𝜀1, for all 𝜀 < 𝜀2 the following estimate holds for all
𝑡 ∈ [0, 𝑡0]:

𝜀(𝑔𝑡) ≤ 2
(
𝑛(𝑀) −

3
4
𝑛(𝐵)

)
+ 𝑂(𝜀 |log 𝜀|). (30)

Definition of 𝑔𝑡0+𝑟: “closing the hole at 𝐵”. We have constructed a continuous path 𝑡 ∈ [0, 𝑡0] →
𝑔𝑡 ∈ 𝑊

1,2(𝑁) with 𝑔0 = 𝑓 and with 𝜀 uniformly controlled by (30), reproducing the middle row
of Figure 1. The next portion of the path will start from 𝑔𝑡0 and will “close the hole at 𝐵”. On the
geometric side, we are starting at the immersion in Lemma 6.4 (i) with 𝑐 = 2 𝜀 Λ and 𝑡 = 𝑡0, and
ending at the immersion in Lemma 6.4 (ii) with 𝑐 = 2 𝜀 Λ and 𝑡 = 𝑡0, reproducing the bottom row

12 In the first inequality that follows we use the fact that for 𝑦 ∈ 𝐾2 𝜀 Λ,𝑡,𝜙 ∩ 𝐹((�̃� ⧵ 𝐵) × [0, 𝑐𝐾)), integration in 𝑎 is in the
domain −2 𝜀 Λ ≤ 𝑎 ≤ 2 𝜀 Λ(1 − 2𝜒(Π𝐾((𝑦, 𝑎)))), and we can bound the top endpoint of this interval by 2 𝜀 Λ.
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38 BELLETTINI

of Figure 1. We define for 𝑟 ∈ [0, 1]

𝑔𝑡0+𝑟(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝐺𝜀0(𝑥)(see(7)) for 𝑥 ∈ 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)),

ℍ𝜀
4 𝜀 Λ(1−𝑟)𝜒0(Π𝐾(𝑥))

(− dist𝐾2 𝜀 Λ,𝑡,𝜙 (𝑥)) for 𝑥 ∈ 𝐹(𝐾 × (0, 𝑐𝐾)) ∪ 𝐷,

1 for 𝑥 ∈ 𝐹((𝐾 ⧵ 𝐷) × {0}).

(31)

Note that 𝑔𝑡0+𝑟 = 𝑔𝑡0 when 𝑟 = 0 (justifying the notation). Moreover, 𝑔𝑡0+𝑟(𝑥) = 𝑔𝑡0(𝑥) for 𝑟 ∈
[0, 1] and 𝑥 ∈ 𝑁 ⧵ 𝐹(supp(𝜒) × [0, 𝑐𝐾)). In other words, we are only making changes to the values
of 𝑔𝑡0 in the set 𝐹(�̃� × [0, 𝑐𝐾)) (equivalently, introducing Fermi coordinates centred at 𝐷, the set
𝐷 × (−𝑐𝐾, 𝑐𝐾)).
The fact that 𝑔𝑡0+𝑟 ∈ 𝑊

1,∞(𝑁) for every 𝑟 ∈ [0, 1] follows by repeating the arguments used
for 𝑔𝑡, where the only part that has to be altered is the local expression of 𝑔𝑡0+𝑟 around
points of 𝐷. Using Fermi coordinates (𝑦, 𝑎) with 𝑦 ∈ 𝐷, 𝑎 ∈ (−𝑐𝐾, 𝑐𝐾) we get 𝑔𝑡0+𝑟(𝐹(𝑦, 𝑎)) =
ℍ𝜀
4 𝜀 Λ(1−𝑟)𝜒(𝑦)

(−|𝑎| + 2 𝜀 Λ), which is Lipschitz. Notice that this is the domain in 𝑁 where we are

“closing the hole”: when 𝑟 = 1 the expression just obtained becomes 𝑔𝑡0+1(𝐹(𝑦, 𝑎)) = ℍ
𝜀
0(−|𝑎| +

2 𝜀 Λ) = Ψ0(𝑎) and so

𝑔𝑡0+1(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝐺𝜀0(𝑥)(see(7)) for 𝑥 ∈ 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)),

ℍ𝜀(− dist𝐾2 𝜀 Λ,𝑡,𝜙 (𝑥)) for 𝑥 ∈ 𝐹(𝐾 × (0, 𝑐𝐾)),

1 for 𝑥 ∈ 𝐹(𝐾 × {0}).

(32)

Note also that 𝑟 ∈ [0, 1] → 𝑔𝑡0+𝑟 ∈ 𝑊
1,2(𝑁) is a continuous path (with a proof as the ones used

earlier for 𝑔𝑡 and 𝑓𝑟).
Energy of 𝑔𝑡0+𝑟. We use the coarea formula as we did to reach (30). We get

∫𝐹(𝐾×[0,𝑐𝐾))
𝜀
|∇𝑔𝑡0+𝑟|2

2
+
𝑊(𝑔𝑡0+𝑟)

𝜀

≤ ∫𝐾2 𝜀 Λ,𝑡0,𝜙

(
∫

2 𝜀 Λ

−2 𝜀 Λ

1|𝐽Π2 𝜀 Λ,𝑡0 |
(
𝜀
2
|||ℍ𝜀′(𝑎)|||2 + 𝑊(ℍ𝜀(𝑎))𝜀

)
𝑑𝑎

)
𝑑𝑦 ≤

⏟⏟⏟
(12)

≤ (1 + 2 𝜀 Λ𝐶𝐾,𝑡0,𝑐0,𝜙)𝑛(𝐾2 𝜀 Λ,𝑡0,𝜙)

(
∫

2 𝜀 Λ

−2 𝜀 Λ

𝜀
2
|||ℍ𝜀′|||2 + 𝑊(ℍ𝜀)𝜀

)
= (1 + 2 𝜀 Λ𝐶𝐾,𝑡0,𝑐0,𝜙)𝑛(𝐾2 𝜀 Λ,𝑡0,𝜙)(2𝜎 + 𝑂(𝜀

2)). (33)

Therefore for some suitably small choice of 𝜀2 ≤ 𝜀1 for all 𝜀 < 𝜀2 the following holds:
1
2𝜎 ∫𝐹(𝐾×[0,𝑐𝐾))

𝜀
|∇𝑔𝑡0+𝑟|2

2
+
𝑊(𝑔𝑡0+𝑟)

𝜀
≤ 𝑛(𝐾2 𝜀 Λ,𝑡0,𝜙) + 𝑂(𝜀 |log 𝜀|).

Note that𝐾2 𝜀 Λ,𝑡0,𝜙 is the image of𝐾 via the immersion in (ii) of Lemma 6.4 when 𝑐 = 2 𝜀 Λ. Using
Lemma 6.4 in the last estimate and putting it together with (28) we finally obtain that for some
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 39

suitably small choice of 𝜀2 ≤ 𝜀1 for all 𝜀 < 𝜀2 the following estimate holds for all 𝑟 ∈ [0, 1]:
𝜀(𝑔𝑡0+𝑟) ≤ 2𝑛(𝑀) − 𝜏 + 𝑂(𝜀 |log 𝜀|). (34)

7.5 Connect to +𝟏

To conclude the construction of our path, we will connect 𝑔𝑡0+1 to the constant +1 by means of a
(negative) gradient flow. To this end, we will produce a suitable barrier 𝑚, constructed from 𝐺𝜀0.
First we check that

𝐺𝜀0 ≤ 𝑔𝑡0+1 on𝑁.

To see this, recall that 𝐺𝜀0 = 𝑔𝑡0+1 on 𝑁 ⧵ 𝐹(𝐾 × [0, 𝑐𝐾)), so we only need to compare the two
functions on 𝐹(𝐾 × [0, 𝑐𝐾)). On this domain we use coordinates (𝑞, 𝑠) ∈ 𝐾 × [0, 𝑐𝐾). Use the fol-
lowing temporary notation:𝐻(𝑥) = ℍ𝜀(−𝑥),𝑇 = {(𝑞, 𝑠) ∶ 𝑞 ∈ 𝐾, 𝑠 = 2 𝜀 Λ + 𝑡0𝜙(𝑞)}, and 𝑑(𝑞, 𝑠) =
dist𝐾2 𝜀 Λ,𝑡0,𝜙

(𝐹(𝑞, 𝑠)). Equivalently, the latter signed distance is sgn(𝑞,𝑠) dist((𝑞, 𝑠), 𝑇), where dist is
the Riemannian distance (induced from 𝑁) and sgn(𝑞,𝑠) = −1 on

{(𝑞, 𝑠) ∶ 𝑞 ∈ 𝐾, 0 < 𝑠 < 2 𝜀 Λ + 𝑡0𝜙(𝑞)}

and sgn(𝑞,𝑠) = +1 on {(𝑞, 𝑠) ∶ 𝑞 ∈ 𝐾, 2 𝜀 Λ + 𝑡0𝜙(𝑞) ≤ 𝑠 < 𝑐𝐾}. Then 𝐺𝜀0(𝑞, 𝑠) = 𝐻(𝑠 − 2 𝜀 Λ) and
𝑔𝑡0+1(𝑞, 𝑠) = 𝐻(𝑑(𝑞, 𝑠)). If sgn(𝑞,𝑠) = −1, then the Riemannian distance to 𝑇 is≥ 2 𝜀 Λ − 𝑠, because
𝑇 lies above {𝑠 = 2 𝜀 Λ}. Similarly, if sgn(𝑞,𝑠) = +1 then the Riemannian distance to𝑇 is≤ 𝑠 − 2 𝜀 Λ.
Therefore in either case we have 𝑑(𝑞, 𝑠) ≤ 𝑠 − 2 𝜀 Λ. This implies (since 𝐻 is decreasing) that
𝐺𝜀0(𝑞, 𝑠) ≤ 𝑔𝑡0+1(𝑞, 𝑠).
We are going to work with the “modified” Allen–Cahn energy

𝜀,𝜇𝜀 (𝑢) = 𝜀(𝑢) − 𝜇𝜀
2𝜎 ∫𝑁 𝑢 𝑑

𝑛+1,

where 𝜇𝜀 > 0 tends to 0 as 𝜀 → 0. The role of 𝜇𝜀 is that of a forcing term to ensure that the flow
“moves in the desired direction” and ismoreover “mean-convex”. There is flexibility on the choice
of 𝜇𝜀; we fix the following (note that in Section 4 we only required 𝜇𝜀 > |𝑂(𝜀2)| in order to obtain
(4)):

𝜇𝜀 = 𝜀 |log 𝜀|. (35)

We are now ready to construct the barrier.

Lemma 7.4. For all sufficiently small 𝜀 there exists a smooth function𝑚 ∶ 𝑁 → ℝ (𝑚 = 𝑚𝜀) such
that𝑚 < 𝑔𝑡0+1 and −(2𝜎) ′𝜀,𝜇𝜀 (𝑚) = 𝜀 Δ𝑚 −

𝑊′(𝑚)

𝜀
+ 𝜇𝜀 > 0.

Proof. In Section 4 we obtained that, for all sufficiently small 𝜀,

−(2𝜎) ′𝜀,𝜇𝜀 (𝐺𝜀0) ≥ 𝜇𝜀
2
𝑛+1

for 𝜇𝜀 > 0 as in (35). Recall that this inequality means that (the positive Radon measure)
−(2𝜎) ′𝜀,𝜇𝜀 (𝐺𝜀0)minus 𝜇𝜀2 𝑛+1 is a positive measure.
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40 BELLETTINI

For 𝜌 > 0 consider the function 𝐺𝜀0 − 𝜌. Then

Δ
(
𝐺𝜀0 − 𝜌

)
= Δ𝐺𝜀0

and 𝑊′(𝐺𝜀0 − 𝜌) converges uniformly on 𝑁 to 𝑊′(𝐺𝜀0) as 𝜌 → 0. Therefore we can find a suf-
ficiently small 𝜌0 ∈ (0, 1) (depending on 𝜀; in fact, we may choose 𝜌0 ≈ 𝜀2) such that for all
sufficiently small 𝜀 we have

−(2𝜎) ′𝜀,𝜇𝜀
(
𝐺𝜀0 − 𝜌0

) ≥ 𝜇𝜀
3
𝑛+1. (36)

Let 𝐶𝑁 be the constant in Lemma A.3. We are going to work with 𝜀 sufficiently small to ensure (in
addition to the previous conditions identified so far in this proof) that 2 𝜀 𝐶𝑁 < 𝜇𝜀∕20. From now
we work at fixed 𝜀 (satisfying the smallness conditions just imposed).
Let 𝜂𝛿 be the mollifiers defined in Appendix A for 𝛿 < 𝛿0, where 𝛿0 > 0 depends only on the

geometry of 𝑁. Then the (smooth) function −(2𝜎) ′𝜀,𝜇𝜀 (𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿 defined in (A6) is positive
for all 𝛿, more precisely for all sufficiently small 𝛿 (one needs 1

12
> |𝑂(𝛿2)|, where 𝑂(𝛿2) appears

in (A1)) (
−(2𝜎) ′𝜀,𝜇𝜀

(
𝐺𝜀0 − 𝜌0

))
⋆ 𝜂𝛿 ≥ 𝜇𝜀

4
. (37)

This follows from (36) and (A1), (A6).We nowmollify (𝐺𝜀0 − 𝜌0) as in (A2).We have |𝐺𝜀0 − 𝜌0| < 2,
since |𝐺𝜀0| ≤ 1. From Lemma A.1, part (i), we obtain that the functions (𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿 converge
uniformly on𝑁 to (𝐺𝜀0 − 𝜌0) as 𝛿 → 0. Therefore (for 𝛿 sufficiently small−2 < (𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿 < 2
since the same bound holds for 𝐺𝜀0 − 𝜌0),‖‖‖𝑊′

((
𝐺𝜀0 − 𝜌0

)
⋆ 𝜂𝛿

)
−𝑊′(𝐺𝜀0 − 𝜌0)

‖‖‖𝐶0(𝑁)
≤ ‖𝑊′′‖𝐶0([−2,2])‖(𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿 − (

𝐺𝜀0 − 𝜌0
) ‖𝐶0(𝑁) → 0 (38)

as 𝛿 → 0. The function𝑊′(𝐺𝜀0 − 𝜌0) belongs to𝑊
1,∞(𝑁); therefore by Lemma A.1, part (i), we get‖𝑊′(𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿 −𝑊

′(𝐺𝜀0 − 𝜌0)‖𝐶0(𝑁) → 0. By the triangle inequality we therefore have

‖‖‖𝑊′((𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿) −𝑊
′(𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿

‖‖‖𝐶0(𝑁) → 0 (39)

as 𝛿 → 0. By Lemma A.3 there exists 𝐶𝑁 (depending only on the geometry of 𝑁) such that for all
𝛿 < 𝛿0 we have

‖Δ((𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿) − Δ(𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿‖𝐿∞(𝑁) ≤ 𝐶𝑁‖𝐺𝜀0 − 𝜌0‖𝐿∞(𝑁) ≤ 2𝐶𝑁.
Therefore the modulus of the difference of the two (smooth) functions

𝜀 Δ((𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿) −
𝑊′((𝐺𝜀0−𝜌0)⋆𝜂𝛿)

𝜀
+ 𝜇𝜀

and
(
−(2𝜎) ′𝜀,𝜇𝜀 (𝐺𝜀0 − 𝜌0)

)
⋆ 𝜂𝛿

(40)

is at most 2 𝜀 𝐶𝑁 + 𝑂𝛿(1), where the infinitesimal of 𝛿 is given by the norm in (39) plus 𝑂(𝛿2)𝜇𝜀.
Recall (37) and the smallness condition imposed on 𝜀. Then for sufficiently small 𝛿, writing
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 41

𝑚 = (𝐺𝜀0 − 𝜌0) ⋆ 𝜂𝛿, we have

𝜀 Δ𝑚 −
𝑊′(𝑚)
𝜀

+ 𝜇𝜀 ≥ 𝜇𝜀
5
. (41)

Finally, note that for sufficiently small 𝛿 we also have𝑚 < 𝑔𝑡0+1, since 𝐺
𝜀
0 − 𝜌0 < 𝑔𝑡0+1 and (𝐺

𝜀
0 −

𝜌0) ⋆ 𝜂𝛿 converges uniformly to 𝐺𝜀0 − 𝜌0 as 𝛿 → 0 (Lemma A.1). □

Remark 7.5 (Choice of 𝜀2, again). Wewill assume that Lemma 7.4 is valid for all 𝜀 < 𝜀2, where once
again we change the choice of 𝜀2 if necessary.

Flow from 𝑚. We consider now the negative gradient flow of (2𝜎)𝜀,𝜇𝜀 , with initial condition
given by the smooth function𝑚, that is, the solution𝑚𝑡 to the PDE{

𝜀
𝜕

𝜕𝑡
𝑚𝑡 = 𝜀 Δ𝑚𝑡 −

𝑊′(𝑚𝑡)

𝜀
+ 𝜇𝜀,

𝑚0 = 𝑚,
(42)

where Δ is the Laplace–Beltrami operator on𝑁. This semilinear parabolic problem has a solution
for 𝑡 ∈ [0,∞) and𝑚𝑡 ∈ 𝐶∞(𝑁) for all 𝑡 > 0, as we will now sketch.
Short-time existence and uniqueness for a weak solution in 𝑊1,2(𝑁) are valid by standard

semilinear parabolic theory (rewrite the problem as an integral equation, then use a fixed point
theorem). To see why we get global existence in our case, integrate (42) on any interval [0, 𝑇] on
which the weak solution is defined: we get

𝜀 ∫
𝑇

0

(
∫𝑁

|||| 𝜕𝜕𝑡𝑚𝑡||||
2
)
𝑑𝑡 +

𝜀
2 ∫𝑁 |∇𝑚𝑇|2

=
𝜀
2 ∫𝑁 |∇𝑚0|2 − 1𝜀 ∫𝑁 (𝑊(𝑚𝑇) − 𝜀 𝜇𝜀𝑚𝑇)
+
1
𝜀 ∫𝑁 (𝑊(𝑚0) − 𝜀 𝜇𝜀𝑚0). (43)

With our choice of𝑊 that is quadratic on (±2, ±∞) we can ensure that 𝑊(𝑢)
𝜀
− 𝜇𝜀𝑢 is bounded

below. Then (43) gives a priori bounds ∫
𝑁
|∇𝑚𝑡|2 ≤ 𝐶𝑚0,𝜀,𝑊 independently of 𝑡 ∈ [0, 𝑇]. Again

from (43), moving the term

1
𝜀 ∫𝑁 (𝑊(𝑚𝑇) − 𝜀 𝜇𝜀𝑚𝑇)

to the left-hand side and recalling |𝑢|2 ≤ 𝐶𝑊,𝜀 max{2, 𝑊(𝑢)𝜀 − 𝜇𝜀𝑢}, we also get an a priori𝐿2-bound
on𝑚𝑡. In conclusion,

‖𝑚𝑡‖𝑊1,2(𝑁) ≤ 𝐶, ∫
𝑇

0

(
∫𝑁

|||| 𝜕𝜕𝑡𝑚𝑡||||
2)

≤ 𝐶, (44)

with𝐶 independent of 𝑡. This first bound in (44) provides the assumption under which short-time
existence can be iterated to lead global existence for a weak solution to (42) in𝑊1,2(𝑁).
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42 BELLETTINI

Writing the PDE in the form 𝜕

𝜕𝑡
𝑚𝑡 − Δ𝑚𝑡 = −

1

𝜀2
𝑊′(𝑚𝑡) +

𝜇𝜀
𝜀
, we treat the right-hand side as

the nonhomogeneous term 𝑓𝑡 of a linear parabolic PDE. Thanks to the quadratic growth of
𝑊, there exists a constant 𝐶𝑊 (depending only on 𝑊) such that ‖𝑓𝑡‖𝑊1,2(𝑁) ≤ 𝐶𝑊‖𝑚𝑡‖𝑊1,2(𝑁)

and ‖ 𝜕𝑓𝑡
𝜕𝑡

‖𝐿2(𝑁) ≤ 𝐶𝑊‖ 𝜕𝑚𝑡
𝜕𝑡

‖𝐿2(𝑁), which are, respectively, 𝐿∞ and 𝐿2 in 𝑡 by (44). From parabolic

regularity 𝑚𝑡 ∈ 𝑊
2,2(𝑁) and 𝜕𝑚𝑡

𝜕𝑡
∈ 𝑊1,2(𝑁) for all 𝑡, with ‖𝑚𝑡‖𝑊2,2(𝑁) and ‖ 𝜕𝑚𝑡

𝜕𝑡
‖𝑊1,2(𝑁)

bounded uniformly in time (see, e.g., [7, sec. 7.2.3, theorem 6]). Bootstrapping gives smoothness
of𝑚𝑡.

Lemma 7.6 (Mean convexity of𝑚𝑡). The positivity condition−(2𝜎) ′𝜀,𝜇𝜀 (𝑚𝑡) = 𝜀 Δ𝑚𝑡 − 𝑊′(𝑚𝑡)

𝜀
+

𝜇𝜀 > 0 holds for all 𝑡 ≥ 0.
Proof. For notational convenience, we write for this paragraph 𝐹𝑡 = 𝜀 Δ𝑚𝑡 −

𝑊′(𝑚𝑡)

𝜀
+ 𝜇𝜀 (right-

hand side of the first line in (42)). By the previous discussion, 𝐹𝑡 is smooth on𝑁 for all 𝑡 ∈ [0,∞).
Differentiating 𝐹𝑡 = 𝜀 Δ𝑚𝑡 −

𝑊′(𝑚𝑡)

𝜀
+ 𝜇𝜀 (and using 𝜀 𝜕𝑡𝑚𝑡 = 𝐹𝑡) we get the evolution of 𝐹𝑡, given

by 𝜕𝑡𝐹𝑡 = Δ𝐹𝑡 −
𝑊′′(𝑚𝑡)

𝜀2
𝐹𝑡. So 𝐹𝑡 solves 𝜕𝑡𝛾 = Δ𝛾 −

𝑊′′(𝑚𝑡)

𝜀2
𝛾, and the constant 𝛾 = 0 is also a solu-

tion to the same PDE. The condition 𝐹𝑡 > 0 is therefore preserved by the maximum principle,
since it holds at 𝑡 = 0 by Lemma 7.4. □

Lemma 7.6 implies in particular that 𝑚𝑡 ∶ 𝑁 → ℝ is increasing in 𝑡 since 𝜕𝑡𝑚𝑡 =

−
2𝜎

𝜀
 ′𝜀,𝜇𝜀 (𝑚𝑡) > 0, therefore lim𝑡→∞𝑚𝑡 = 𝑚∞ is well-defined pointwise on 𝑁. The 𝑊1,2(𝑁)-

norm of 𝑚𝑡 is bounded uniformly in 𝑡 by (44); therefore 𝑚𝑡 → 𝑚∞ in 𝑊1,2-weak. Moreover,‖𝑊′(𝑚𝑡)‖𝑊1,2(𝑁) is also uniformly bounded in 𝑡, since

|∇(𝑊′(𝑚𝑡))| = |𝑊′′(𝑚𝑡)||∇𝑚𝑡| ≤ ‖𝑊′′‖𝐶0([−2,2])|∇𝑚𝑡|
(one can check that −2 ≤ 𝑚𝑡 ≤ 2 for all 𝑡 by the maximum principle). Therefore 𝑊′(𝑚𝑡) →
𝑊′(𝑚∞) in𝑊1,2-weak. By the second bound in (44) we have 𝐿1-summability in time on 𝑡 ∈ (0,∞)
for ‖‖ 𝜕𝜕𝑡𝑚𝑡‖‖𝐿2(𝑁) and therefore there exists 𝑡𝑗 → ∞ such that the function 𝜕

𝜕𝑡
𝑚𝑡 ∶ 𝑁 → ℝ has

𝐿2(𝑁)-norm that tends to 0 along the sequence 𝑡𝑗 . These facts imply that the weak formulation of
the PDE in (42) passes to the limit as 𝑡𝑗 → ∞ and gives that 𝑚∞ solves − ′𝜀,𝜇𝜀 = 0 in the weak
sense. Standard elliptic theory (or passing parabolic estimates for 𝑚𝑡 to the 𝑡 → ∞ limit) then
show that𝑚∞ ∈ 𝐶∞ solves − ′𝜀,𝜇𝜀 (𝑚∞) = 0 in the strong sense.
Lemma 7.7 (Stability of𝑚∞). The limit𝑚∞ of the flow𝑚𝑡 (as 𝑡 → ∞) is a stable solution of ′𝜀,𝜇𝜀 =
0.

Proof. This is a consequence of themean-convexity of𝑚𝑡 (Lemma7.6) and of themaximumprinci-
ple. We give the explicit argument. Recall from the previous discussion that𝑚∞ is stationary, that
is,  ′𝜀,𝜇𝜀 (𝑚∞) = 0. Also recall that the second variation at 𝑢 ∶ 𝑁 → ℝ of the functional (2𝜎)𝜀,𝜇
(for a constant 𝜇) on the test function 𝜙 is given by the quadratic form 𝑄(𝜙, 𝜙) = ∫

𝑁
𝜀 |∇𝜙|2 +

𝑊′′(𝑢)

𝜀
𝜙2 (the term involving 𝜇 disappears because it is linear) and the Jacobi operator is given by

− 𝜀 Δ𝜙 +
𝑊′′(𝑢)

𝜀
𝜙.
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 43

Let 𝜌1 be its first eigenfunction; then 𝜌1 is (strictly) positive and smooth on 𝑁. Consider, for
𝑠 ∈ (−𝛿, 𝛿) (for some small positive 𝛿), the functions𝑚∞ − 𝑠𝜌1. Then their first variation satisfies

𝜕
𝜕𝑠

(
−(2𝜎) ′𝜀,𝜇𝜀 (𝑚∞ − 𝑠𝜌1)

)
= − 𝜀 Δ𝜌1 +

𝑊′′(𝑚∞ − 𝑠𝜌1)
𝜀

𝜌1.

If𝑚∞ were unstable, then the first eigenfunction would satisfy

− 𝜀 Δ𝜌1 +
𝑊′′(𝑚∞)

𝜀
𝜌1 = 𝜆1𝜌1

for some 𝜆1 < 0 and therefore

𝜕
𝜕𝑠

||||𝑠=0(−(2𝜎) ′𝜀,𝜇𝜀 (𝑚∞ − 𝑠𝜌1)) = 𝜆1𝜌1 < 0
on 𝑁. Then we could choose 𝑠0 > 0 sufficiently small so that

−(2𝜎) ′𝜀,𝜇𝜀 (𝑚∞ − 𝑠𝜌1)
= 𝜀 Δ(𝑚∞ − 𝑠𝜌1) −

𝑊′((𝑚∞ − 𝑠𝜌1))
𝜀

+ 𝜇𝜀 < 0 (45)

on 𝑁 for 𝑠 ∈ [0, 𝑠0]. Note that𝑚∞ − 𝑠𝜌1 is smooth on 𝑁.
Since−(2𝜎) ′𝜀,𝜇𝜀 (𝑚𝑡) > 0, at any 𝑡 ∈ [0,∞)we have𝑚𝑡 > 𝑚0, in particular𝑚∞ > 𝑚0. Choose

𝑠 sufficiently small so that 𝑠 < 𝑠0 and 𝑚∞ − 𝑠𝜌1 > 𝑚0. Let 𝜏 > 0 be the first time for which
𝑚𝜏 has a point 𝑥 such that 𝑚𝜏(𝑥) = (𝑚∞ − 𝑠𝜌1)(𝑥). Then 𝑚∞ − 𝑠𝜌1 − 𝑚𝜏 is a smooth nonneg-
ative function on 𝑁 with a minimum at 𝑥, so Δ(𝑚∞ − 𝑠𝜌1)(𝑥) ≥ Δ𝑚𝜏(𝑥). Moreover, we have
𝑊′(𝑚∞ − 𝑠𝜌1) = 𝑊

′(𝑚𝜏) at𝑥. Recalling that 𝜀 Δ𝑚𝜏 −
𝑊′(𝑚𝜏)

𝜀
+ 𝜇𝜀 > 0 on𝑁 (preservation ofmean

convexity) we get 𝜀 Δ(𝑚∞ − 𝑠𝜌1)(𝑥) −
𝑊′((𝑚∞−𝑠𝜌1)(𝑥))

𝜀
+ 𝜇𝜀 > 0, contradicting (45). □

Proposition 7.8. If Ric𝑁 > 0 then any stable solution to  ′𝜀,𝜇 = 0 on𝑁 must be a constant (here 𝜇
is any given constant.)

Proof. Let𝑢 be a stable solution to ′𝜀,𝜇(𝑢) = 0.We test the stability inequality𝑄( ⋅ , ⋅ ) ≥ 0 on a test
function of the form |∇𝑢|𝜙 for 𝜙 ∈ 𝐶2(𝑁). We get (this expression of 𝑄 follows using Bochner’s
identity; see [5, 6, 36])

∫𝑁⧵{|∇𝑢|=0}
(|𝐴𝜀|2 + Ric𝑁 (

∇𝑢|∇𝑢| , ∇𝑢|∇𝑢|
))

𝜀 |∇𝑢|2𝜙2 ≤ ∫𝑁 𝜀 |∇𝑢|2|∇𝜙|2,
where |𝐴𝜀|2 = |𝐷2𝑢|2 − |∇|∇𝑢||2 ≥ 0. We plug in 𝜙 = 1 so the positiveness of Ric𝑁 gives ∇𝑢 ≡
0. □

Lemma 7.7 and Proposition 7.8 give that 𝑚∞ is a constant. There exist exactly two stable con-
stant solutions of  ′𝜀,𝜇 = 0. Indeed, any constant 𝑘 satisfying  ′𝜀,𝜇 = 0 must satisfy𝑊′(𝑘) = 𝜀 𝜇
(and therefore𝑊(𝑘) ≈ 𝑐2𝑊 𝜀

2 𝜇2 for some 𝑐𝑊 depending on𝑊), so we obtain three constants, one
slightly larger than −1, one slightly larger than +1, one slightly smaller than 0, when 𝜀 is suffi-
ciently small. It is easily verified that the constant close to 0 is unstable, while the other two are
stable. In our case, since𝑚∞ > 𝑚0 and𝑚0 > 1∕2 on an open neighbourhood of𝑀, we conclude
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44 BELLETTINI

that𝑚∞ is the constant slightly larger than +1, which we will denote by 𝑘𝜇𝜀 :

𝑚∞ ≡ 𝑘𝜇𝜀 . (46)

Flow from 𝑔𝑡0+1. We now want to consider the negative (2𝜎)𝜀,𝜇𝜀 -gradient flow {ℎ𝑡} starting
at 𝑔𝑡0+1. We first make the initial datum smooth, by considering mollifiers 𝜂𝛿 for 𝛿 ∈ (0, 𝛿] as
in Appendix A and 𝛿 sufficiently small to preserve the strict inequality with 𝑚 = 𝑚0, that is, to
ensure 𝑔𝑡0+1 ⋆ 𝜂𝛿 > 𝑚0 for 𝛿 ∈ (0, 𝛿]. The family

𝛿 ∈ (0, 𝛿] → 𝑔𝑡0+1 ⋆ 𝜂𝛿 ∈ 𝑊
1,2(𝑁) (47)

is continuous in 𝛿 and extends by continuity at 𝛿 = 0 with value 𝑔𝑡0+1 (see Remark A.2). Con-
tinuity is also valid for 𝛿 ∈ (0, 𝛿] → 𝑔𝑡0+1 ⋆ 𝜂𝛿 ∈ 𝐶

0(𝑁). As a consequence, 𝜀(𝑔𝑡0+1 ⋆ 𝜂𝛿) varies
continuously with 𝛿 and therefore, upon choosing 𝛿 possibly smaller, we also have, in addition to
(47) and to 𝑔𝑡0+1 ⋆ 𝜂𝛿 > 𝑚0, that the following holds for all 𝛿 ∈ (0, 𝛿],

𝜀(𝑔𝑡0+1 ⋆ 𝜂𝛿) ≤ 𝜀(𝑔𝑡0+1) + 14𝜏. (48)

We now let ℎ0 = 𝑔𝑡0+1 ⋆ 𝜂𝛿 be the initial condition for the negative (2𝜎)𝜀,𝜇𝜀 -gradient flow:{
𝜀
𝜕

𝜕𝑡
ℎ𝑡 = 𝜀 Δℎ𝑡 −

𝑊′(ℎ𝑡)

𝜀
+ 𝜇𝜀,

ℎ0 = 𝑔𝑡0+1 ⋆ 𝜂𝛿.
. (49)

By the maximum principle, since 𝑚0 < ℎ0, the two flows (42) and (49) preserve 𝑚𝑡 < ℎ𝑡 for all
𝑡.13 Since 𝑔𝑡0+1 ≤ 1 by construction, we also have ℎ0 < 𝑘𝜇𝜀 ; therefore ℎ𝑡 < 𝑘𝜇𝜀 for all 𝑡 > 0 by the
maximum principle. On the other hand, we saw that𝑚𝑡 → 𝑘𝜇𝜀 as 𝑡 → ∞; therefore (with smooth
convergence, in particular we have continuity in 𝑡 for 𝑡 ∈ [0,∞] → ℎ𝑡 ∈ 𝑊

1,2(𝑁))

ℎ𝑡 → 𝑘𝜇𝜀 as 𝑡 → ∞. (50)

Evaluation of 𝜀 on the path ℎ𝑡. Let us estimate the value of 𝜀 along this path. For this, note
that𝜀,𝜇𝜀 is decreasing along the flow {ℎ𝑡}; therefore 𝜀(ℎ𝑡) ≤ 𝜀(ℎ) + 2 𝜇𝜀2𝜎𝑛+1(𝑁) for all 𝑡 (where
we used ℎ𝑡 < 2 for all 𝑡). This implies that 𝜀 is bounded above independently of 𝜀; more pre-
cisely, recalling that 𝜀(ℎ0) ≤ 2𝑛(𝑀) − 𝜏 + 𝑂(𝜀 |log 𝜀|), we can absorbe 𝜇𝜀

𝜎
𝑛+1(𝑁) in the error

𝑂(𝜀 |log 𝜀|) for 𝜀 sufficiently small. In other words, we obtain, for 𝜀2 ≤ 𝜀1 sufficiently small, the
upper bound

𝜀(ℎ𝑡) ≤ 2𝑛(𝑀) −
3
4
𝜏 + 𝑂(𝜀 |log 𝜀|) (51)

for all 𝑡 and for all 𝜀 < 𝜀2.
To complete the path, we connect ℎ∞ = 𝑘𝜇𝜀 to +1 (through constant functions):

𝑘𝑡 = (1 − 𝑡)𝑘𝜇𝜀 + 𝑡 (52)

13We have smoothed the initial data in order to use basic linear parabolic theory to obtain smoothness at all times and
thus use the classical maximum principle. The other option is to use 𝑔𝑡0+1 as initial condition and prove that it becomes
smooth after a short time.
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 45

for 𝑡 ∈ [0, 1]. The energy 𝜀(𝑘𝑡) is decreasing in 𝑡 ∈ [0, 1], since 𝑊 is an increasing function on
[1, 𝑘𝜇𝜀 ]. Therefore the same upper bound that we had in (51) holds:

𝜀(𝑘𝑡) ≤ 2𝑛(𝑀) −
3
4
𝜏 + 𝑂(𝜀 |log 𝜀|) (53)

for all 𝑡 and for all 𝜀 < 𝜀2.

8 CONCLUSION OF THE PROOF OF THEOREMS 1.3, 1.1, AND 1.8

In the previous sections we exhibited (given 𝑀 as in Theorem 1.3, which also fixed 𝐵 and 𝜏 by
Remark 5.4 and Lemma 6.4) for all sufficiently small 𝜀 (namely 𝜀 < 𝜀2) the following six contin-
uous paths in 𝑊1,2(𝑁): (24) reversed, (26), (31), (47), (49), and (52). In the order just given, the
endpoint of each partial path matches the starting point of the next one, therefore their compo-
sition in the same order provides a continuous path in 𝑊1,2(𝑁) for all 𝜀 < 𝜀2, that starts at the
constant −1 and ends at the constant +1 and such that

𝜀 along this path is ≤ 2𝑛(𝑀) − min

{
3
4
𝜏,
3𝑛(𝐵)
2

}
+ 𝑂(𝜀 |log 𝜀|),

thanks to (25, 30, 34, 48, 51, 53). Choosing 𝜀3 sufficiently small to ensure that 𝜀 < 𝜀3 ⇒|𝑂(𝜀 |log 𝜀|)| ≤ min{ 𝜏
4
,𝑛(𝐵)} the above bound gives, for all 𝜀 < 𝜀3, that the maximum of 𝜀 on

the path is at most 2𝑛(𝑀) − min
{ 𝜏
2
, 

𝑛(𝐵)

2

}
.

The path is in the admissible class for theminmax construction in [14]; therefore themaximum
on this specific path controls from above the minmax value 𝑐𝜀 achieved by the index-1 solution
𝑢𝜀 obtained from [14] (for all 𝜀 < 𝜀3). Summarising, for every𝑀 ⊂ 𝑁 as in Theorem 1.3 there exist
𝜀3 > 0, 𝜏 > 0, and 𝐵 ⊂ 𝑀 (nonempty) such that for all 𝜀 < 𝜀3

𝑐𝜀 = 𝜀(𝑢𝜀) ≤ 2𝑛(𝑀) − min

{
𝜏
2
,
𝑛(𝐵)
2

}
. (54)

This concludes the proof of the strict inequality in Theorem 1.3.
For Theorem 1.1 it suffices to observe that the integral varifold 𝑉 produced in [14] is (thanks to

[37, 40]) such that each connected component of reg𝑉 (the smoothly embedded part of spt ‖𝑉‖)
has the properties needed so that it can be used in place of 𝑀 in Theorem 1.3 or in (54) above;
moreover, the mass ‖𝑉‖(𝑁) of 𝑉 is lim𝜀𝑖→0 𝑐𝜀𝑖 (see Section 2.1). Letting𝑀 be any connected com-
ponent of reg𝑉 and denoting by 𝜃 ∈ ℕ its (constant) multiplicity, using (54) we get 𝜃𝑛(𝑀) ≤‖𝑉‖(𝑁) < 2𝑛(𝑀). This implies 𝜃 = 1 and the multiplicity assertion in Theorem 1.1 is proved.
The fact that the minimal hypersurface is two-sided then follows immediately, since under

multiplicity-1 convergence (and by the lower energy bounds in [14]) we have that 𝑢𝜀𝑖 → 𝑢∞ in
𝐵𝑉(𝑁), where 𝑢∞ is a nonconstant function that takes values in {−1, +1}, and moreover, 𝑉 is the
multiplicity-1 varifold associated to the reduced boundary of the set (of finite perimeter) {𝑢∞ =
+1} (there is no “hidden boundary” in the limit). We therefore have a global normal on reg𝑉 (the
interior- or the exterior-pointing normal for 𝜕{𝑢∞ = +1}). Theorem 1.8 is therefore proved.
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46 BELLETTINI

Remark 8.1. Note that reg𝑉 has to be connected, since each connected
14 component of it is unstable

(because it is two-sided andRic𝑁 > 0), and therefore theMorse index of reg𝑉 is at least the number
of its connected components. On the other hand, by multiplicity-1 convergence (or by [9, 15]) the
Morse index of reg𝑉 is ≤ 1. An alternative argument for the connectedness, that does not rely on
two-sidedness, can be given by means of the maximum principle for stationary varifolds [17, 40]
and the Frankel property15 for Ric𝑁 > 0 (using the regularity results [37, 40]).

Remark 8.2. In view of discussing Remark 1.6, we collect the three instances in which the cur-
vature assumption Ric𝑁 > 0 was used in the proof of Theorems 1.1, 1.3, and 1.8. The first was in
obtaining the sign condition Δ𝑑𝑀 ≤ 0 in Lemma 3.6 and the area bounds in Lemma 4.1. The sec-
ond, in Lemma 5.1,was to conclude that 𝜄 ∶ �̃� → 𝑁 is unstable as aminimal immersion. The third,
in Proposition 7.8, was to conclude that every stable solution to  ′𝜀,𝜇 = 0 on 𝑁 (for 𝜇 constant) is
a constant function.
The weaker assumptions stated in Remark 1.6 are easily seen to be sufficient for the proof.

Lemma 3.6 only requires Ric𝑁 ≥ 0. Similarly, in Lemma 4.1 it suffices to use Ric𝑁 ≥ 0 to conclude
𝑛(Γ𝑡) ≤ 2𝑛(𝑀); this inequality is enough for the estimates that follow Lemma 4.1 and lead to
(8).
Let us assume that {Ric𝑁 = 0} has vanishing𝑛-measure. To carry out the proof of Lemma 5.1,

in particular to obtain the negativity of− ∫
𝑀
Ric𝑁(𝜈, 𝜈)𝑑𝑛, it suffices to notice that the integrand

is negative on a subset of 𝑀 of full measure. For Proposition 7.8 the conclusion will be in a first
instance that∇𝑢 vanishes except possibly on {Ric𝑁 = 0}; the smoothness of any solution to  ′𝜀,𝜇 =
0 and the fact that {Ric𝑁 = 0} has empty interior then imply that ∇𝑢 vanishes identically.
Let us assume now that {Ric𝑁 = 0} ⊂

⋃∞
𝑖=1 𝐴𝑖 as in Remark 1.6. Then for a stationary varifold

(2|𝑀| in our case) the support cannot be contained in⋃∞
𝑖=1 𝐴𝑖 (and therefore𝑀 ⧵ {Ric𝑁 = 0} has

positive measure). This follows from the maximum principle [18], using the boundaries of 𝐴𝑖 as
barriers (e.g., flowing them by mean curvature until they touch the support of the varifold). Then
we follow Lemma 5.1 and the negativity of the term− ∫

𝑀
Ric𝑁(𝜈, 𝜈)𝑑𝑛 follows from the previous

observation. For Proposition 7.8 the conclusion will be in a first instance that ∇𝑢 vanishes except
possibly on {Ric𝑁 = 0}. On an arbitrary connected component of 𝑁 ⧵ {Ric𝑁 = 0} then, 𝑢 has to
be a constant 𝑘; this constant must also be a solution to  ′𝜀,𝜇 = 0 on 𝑁. Then 𝑘 and 𝑢 are both
solutions to  ′𝜀,𝜇 = 0, and they coincide on a nonempty open set; taking the difference of the two
PDEs. By unique continuation we obtain 𝑢 − 𝑘 ≡ 0, in particular 𝑢 is constant.
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APPENDIX A: MOLLIFIERS
We explain in detail the mollification procedure used in Section 7.5. For this appendix, notation is
reset. Let (𝑁, 𝑔) be a closedRiemannianmanifold of dimension𝑛 + 1 and𝑓 ∶ 𝑁 → ℝ in𝑊1,∞(𝑁).
We are going to produce, for every 𝛿 > 0 sufficiently small, a smooth function 𝑓𝛿 ∶ 𝑁 → ℝ such
that 𝑓𝛿 → 𝑓 strongly in𝑊1,2(𝑁) as 𝛿 → 0 (even𝑊1,𝑝 for every 𝑝 < ∞, but we will not need this).
The function 𝑓𝛿 is defined as a convolution 𝑓 ⋆ 𝜂𝛿, for a suitable mollifier 𝜂𝛿. Moreover, we will
check that, if additionally ∇𝑓 ∈ 𝐵𝑉(𝑁), then we have, for all 𝛿 sufficiently small, that Δ𝑓𝛿 =
(Δ𝑓) ⋆ 𝜂𝛿 + 𝐸𝛿, where (Δ𝑓) ⋆ 𝜂𝛿 is the convolution of the Radon measure Δ𝑓 with the mollifier
𝜂𝛿 and hence it is identified with its (smooth) density with respect to 𝑛+1, and 𝐸𝛿 is a smooth
function bounded in 𝐿∞ by a constant that depends only on𝑁. It would not suffice for our scopes
in Section 7.5 to have a convolution procedure that gives Δ𝑓𝛿 → Δ𝑓 as measures; therefore we
give an ad hoc construction here.

We begin with the definitions. The standard smooth bump function on ℝ is 𝜂(𝑥) = 𝑒−
1

1−𝑥2 for|𝑥| < 1 and 𝜂(𝑥) = 0 for |𝑥| ≥ 1. In the following, 𝛿 < inj(𝑁). We then let 𝜂𝛿 ∶ 𝑁 × 𝑁 → ℝ be
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defined as

𝜂𝛿(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
1

𝑐𝑛

1

𝛿𝑛+1
𝜂
(𝑑(𝑥,𝑦)

𝛿

)
for 𝑑(𝑥, 𝑦) < 𝛿,

0 for 𝑑(𝑥, 𝑦) ≥ 𝛿;

here 𝑑 is the Riemannian distance on 𝑁 (note that in the first line 𝑦 belongs to the geodesic ball
centred at 𝑥 with radius 𝛿), and we set

𝑐𝑛 = ∫𝐵𝑛+11 (0)
𝜂(|𝑥|) 𝑑𝑛+1 = (𝑛 + 1)𝜔𝑛+1 ∫ 1

0
𝜂(𝑠)𝑠𝑛 𝑑𝑠,

where the integration is with respect to the Lebesgue (𝑛 + 1)-dimensional measure. Therefore for
every 𝑥, using normal coordinates centred at 𝑥, the function 𝜂𝛿◦ exp𝑥 integrates to 1 in the ball of
radius 𝛿 in the tangent space to 𝑁 at 𝑥, endowed with the Euclidean metric.
The sectional curvatures of 𝑁 are bounded in modulus since 𝑁 is compact. Recalling Riccati’s

equation and the Bishop-Günther inequalities (see the final inequality in the proof of [11, theorem
3.17], combined with [11, (3.23)] in the case 𝑃 = {𝑥}) there exist 𝛿0 < inj(𝑁) and 𝐶𝑁 > 0 such that
for all 𝑥 ∈ 𝑁 and for 𝛿 ≤ 𝛿0 we have

|𝑛(𝜕𝐵𝛿(𝑥)) − (𝑛 + 1)𝜔𝑛+1𝛿
𝑛| ≤ 𝐶𝑁(𝑛 + 1)𝜔𝑛+1𝛿𝑛+2,

where 𝜔𝑛+1 is the Euclidean volume of the unit ball in ℝ𝑛+1.
Moreover, denoting by 𝐵𝛿(𝑥) the geodesic ball centred at 𝑥, by picking a possibly smaller 𝛿0 ∈

(0, inj(𝑁)), we can further ensure that there exists 𝐶𝑁 > 0 such that, for all 𝑥 ∈ 𝑁 and for all
𝛿 ≤ 𝛿0,

∫𝐵𝛿(𝑥) 𝜂𝛿(𝑥, 𝑦)𝑑
𝑛+1(𝑦) = 1 + 𝑂(𝛿2), (A1)

where |𝑂(𝛿2)| ≤ 𝐶𝑁𝛿2. (The constant 𝐶𝑁 depends only on the curvature of 𝑁, more precisely on
the maximum of the modulus of the sectional curvature.)
Proof of (A1). This follows by using the coarea formula in 𝐵𝛿(𝑥) for the function 𝑑(𝑥, ⋅ ), for

which |∇𝑑(𝑥, ⋅ )| = 1. By the choice of 𝛿0 above we have a constant 𝐶𝑁 > 0 such that for all 𝑥 ∈ 𝑁
and for 𝑠 ≤ 𝛿0,

|𝑛(𝜕𝐵𝑠(𝑥)) − (𝑛 + 1)𝜔𝑛+1𝑠
𝑛| ≤ 𝐶𝑁(𝑛 + 1)𝜔𝑛+1𝑠𝑛+2.

Then by the coarea formula we get

∫𝐵𝛿(𝑥) 𝜂𝛿(𝑥, 𝑦)𝑑
𝑛+1(𝑦)

=
1
𝑐𝑛

1

𝛿𝑛+1 ∫
𝛿

0
𝑛(𝜕𝐵𝑠(𝑥))𝜂

( 𝑠
𝛿

)
𝑑𝑠
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≤ 1
𝑐𝑛

1

𝛿𝑛+1
(𝑛 + 1)𝜔𝑛+1 ∫

𝛿

0
𝑠𝑛𝜂

( 𝑠
𝛿

)
𝑑𝑠

+
1
𝑐𝑛

1

𝛿𝑛+1
𝐶𝑁(𝑛 + 1)𝜔𝑛+1 ∫

𝛿

0
𝑠𝑛+2𝜂

( 𝑠
𝛿

)
𝑑𝑠,

and using 𝑠2 ≤ 𝛿2 in the second term we conclude that ∫
𝐵𝛿(𝑥)

𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦) is bounded above
by

1
𝑐𝑛
(𝑛 + 1)𝜔𝑛+1 ∫

1

0
𝑡𝑛𝜂(𝑡)𝑑𝑡 + 𝛿2

1
𝑐𝑛

1

𝛿𝑛+1
𝐶𝑁(𝑛 + 1)𝜔𝑛+1 ∫

𝛿

0
𝑠𝑛𝜂

( 𝑠
𝛿

)
𝑑𝑠

= 1 + 𝐶𝑁𝛿
2.

For the other inequality, namely ∫
𝐵𝛿(𝑥)

𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦) ≥ 1 − 𝐶𝑁𝛿2, one proceeds similarly.
Final choice of 𝛿0. By picking a possibly yet smaller 𝛿0 ∈ (0, inj(𝑁)), we can further ensure the

following (see [11, (3.35)] or [12, lemma 12.1]). For all 𝑥 ∈ 𝑁 and for 𝛿 ≤ 𝛿0, denoting by 𝐻𝑥,𝛿 the
mean curvature function on the geodesic sphere of radius 𝛿 around the point 𝑥 (with respect to
the outward-pointing normal, hence 𝐻𝑥,𝛿 ≤ 0), we have (−𝑛𝛿 is the Euclidean mean curvature of
the sphere of radius 𝛿 in ℝ𝑛+1) ||||𝐻𝑥,𝛿 + 𝑛𝛿 |||| ≤ 𝐶𝑁𝛿 on 𝜕𝐵𝛿(𝑥).

From now on we take 𝛿 ≤ 𝛿0. The convolution of an 𝐿∞ function 𝑓 ∶ 𝑁 → ℝ with 𝜂𝛿 is the
function 𝑓 ⋆ 𝜂𝛿 ∶ 𝑁 → ℝ defined as follows:

(𝑓 ⋆ 𝜂𝛿)(𝑥) = ∫𝑁 𝑓(𝑦)𝜂𝛿(𝑥, 𝑦)𝑑
𝑛+1(𝑦). (A2)

This is a smooth function thanks to the smoothness of 𝜂𝛿 in (𝑥, 𝑦). (Smoothness can be checked in
charts using standard properties of convolutions. ) Note that we have chosen a convolution kernel
that does not integrate exactly to 1; however, (A1) suffices to ensure:

Lemma A.1. Let 𝑓 ∈ 𝑊1,∞(𝑁). Then

(i) 𝑓 ⋆ 𝜂𝛿 → 𝑓 uniformly on𝑁;
(ii) 𝑓 ⋆ 𝜂𝛿 → 𝑓 in𝑊1,2(𝑁).

Proof of Lemma A.1(i). For all 𝑥 we rewrite

∫𝑁 |𝑓(𝑦) − 𝑓(𝑥)|𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦)

as

∫𝑁 |𝑓(𝑦) − 𝑓(𝑥)| 𝜂𝛿(𝑥, 𝑦)
1 + 𝑂(𝛿2)

𝑑𝑛+1(𝑦)

+ ∫𝑁
𝑂(𝛿2) |𝑓(𝑦) − 𝑓(𝑥)|𝜂𝛿(𝑥, 𝑦)

1 + 𝑂(𝛿2)
𝑑𝑛+1(𝑦);
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here 𝑂(𝛿2) is the function in (A1). Writing 𝐿𝑓 for the Lipschitz constant of 𝑓, the first term is
bounded by 𝐿𝑓 ∫𝑁 |𝑥 − 𝑦| 𝜂𝛿(𝑥,𝑦)

1+𝑂(𝛿2)
𝑑𝑛+1(𝑦) ≤ 𝐿𝑓𝛿. The second term is bounded in absolute value

by 𝐶𝑁𝐿𝑓𝛿2 for all sufficiently small 𝛿. Therefore ∫
𝑁
|𝑓(𝑦) − 𝑓(𝑥)|𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦) tends to 0

uniformly in 𝑥. Then we compute, recalling (A1),

(𝑓 ⋆ 𝜂𝛿)(𝑥) − 𝑓(𝑥)

= ∫𝑁 𝑓(𝑦)𝜂𝛿(𝑥, 𝑦)𝑑
𝑛+1(𝑦) − ∫𝑁 𝑓(𝑥)

𝜂𝛿(𝑥, 𝑦)

1 + 𝑂(𝛿2)
𝑑𝑛+1(𝑦)

= ∫𝑁(𝑓(𝑦) − 𝑓(𝑥))𝜂𝛿(𝑥, 𝑦)𝑑
𝑛+1(𝑦)

+ ∫𝑁 𝑓(𝑥)
𝑂(𝛿2)

1 + 𝑂(𝛿2)
𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦).

The last term is bounded in absolute value by 𝐶𝑁‖𝑓‖𝐶0(𝑁)𝛿2 for all sufficiently small 𝛿. Therefore
(𝑓 ⋆ 𝜂𝛿) → 𝑓 uniformly on 𝑁. (A3)

□

Proof of Lemma A.1(ii). We can choose a finite cover of 𝑁 by geodesic balls of radius 𝛿0 in which
we fix a local orthonormal frame. In each ball 𝑈 ⊂ 𝑁, we let {𝑣𝓁}𝑛+1𝓁=1

denote the 𝑔-orthonormal
frame. We can make the nonrestrictive assumption that the collection of open sets𝑈 obtained by
setting

𝑈 = {𝑥 ∈ 𝑈 ∶ dist(𝑥, 𝜕𝑈) ≥ 𝛿0∕2}
still constitutes a finite cover of 𝑁. Our final aim is to prove that for each 𝑈 and for every 𝓁 we
have ∫

𝑈
|(∇(𝑓 ⋆ 𝜂𝛿) − ∇𝑓) ⋅ 𝑣𝓁|2 → 0 as 𝛿 → 0. There are only finitely many open sets 𝑈, so this

implies that ∫
𝑁
|∇(𝑓 ⋆ 𝜂𝛿) − ∇𝑓|2 → 0. (Here | ⋅ | stands for the 𝑔-norm,∇ for themetric gradient,

and ⋅ for the 𝑔-scalar product of vectors.)
We divide the proof into two parts. In Step 1 we will show that, writing 𝑣 for one of the 𝑣𝓁, we

have (∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿 → (∇𝑓 ⋅ 𝑣) in 𝐿2(𝑈) (by the choice of𝑈, these convolutions can be defined by
staying inside 𝑈 for 𝛿 < 𝛿0∕2). In Step 2 we will prove that (∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿 − ∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣 tends to
0 in 𝐿∞(𝑈). The two steps together then give

∫𝑈 |∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣 − ∇𝑓 ⋅ 𝑣|2 → 0

as 𝛿 → 0, which is our aim.
Step 1. The first observation is that if 𝑞 ∈ 𝐿∞(𝑁), then for𝑛+1 − a.e. 𝑥 we have

∫𝑁 |𝑞(𝑦) − 𝑞(𝑥)|𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦) → 0 as 𝛿 → 0. (A4)
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52 BELLETTINI

This follows by writing, as in Lemma A.1(i),

∫𝑁 |𝑞(𝑦) − 𝑞(𝑥)|𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦)

= ∫𝑁 |𝑞(𝑦) − 𝑞(𝑥)| 𝜂𝛿(𝑥, 𝑦)
1 + 𝑂(𝛿2)

𝑑𝑛+1(𝑦)

+ ∫𝑁 |𝑞(𝑦) − 𝑞(𝑥)| 𝑂(𝛿2)

1 + 𝑂(𝛿2)
𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦).

The second term tends to 0 as argued earlier. The first term tends to 0 if 𝑥 is a Lebesgue point of
𝑞 (hence for almost all 𝑥). Then we have

∫𝑈 |((∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿)(𝑥) − (∇𝑓 ⋅ 𝑣)(𝑥)|2𝑑𝑛+1(𝑥)

= ∫𝑈
|||||∫𝑈 ((∇𝑓 ⋅ 𝑣)(𝑦) − (∇𝑓 ⋅ 𝑣)(𝑥))𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦)

+

(
∇𝑓 ⋅ 𝑣)(𝑥)∫𝑈

𝑂(𝛿2)𝜂𝛿(𝑥, 𝑦)

1 + 𝑂(𝛿2)
𝑑𝑛+1(𝑦)

|||||
2

𝑑𝑛+1(𝑥) ≤
⏟⏟⏟|𝑎+𝑏|2≤2𝑎2+2𝑏2

≤ 2∫𝑈
|||||∫𝑈 ((∇𝑓 ⋅ 𝑣)(𝑦) − (∇𝑓 ⋅ 𝑣)(𝑥))𝜂𝛿(𝑥, 𝑦)𝑑𝑛+1(𝑦)

|||||
2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
→0 by (A4) for a.e. 𝑥

𝑑𝑛+1(𝑥)

+ 𝐶𝑁‖∇𝑓‖2𝐿∞(𝑁)𝛿4.
(In the last term, we have included 𝑛+1(𝑈) ≤ 𝑛+1(𝑁) in the constant 𝐶𝑁 .) The braced inte-
grand in the first term tends to 0 for a.e. 𝑥 by (A4), used with ∇𝑓 ⋅ 𝑣 in place of 𝑞. Moreover, the
braced expression is bounded for every 𝑥 by 4‖∇𝑓‖2

𝐿∞(𝑁)
(1 + 𝑂(𝛿2))2, which is summable on 𝑁.

Hence we can use dominated convergence to conclude that the first term tends to 0 as 𝛿 → 0. The
second term tends to 0 as well, therefore we conclude that

(∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿 → (∇𝑓 ⋅ 𝑣) in 𝐿2(𝑈).

Step 2. We compute the difference between the two (smooth) functions

(∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿 and ∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣

and prove that it goes to 0 uniformly on𝑈. We work in normal coordinates centred at an arbitrary
point𝑂 ∈ 𝑈, namely in the ball𝐷 = {𝑥 ∈ ℝ𝑛+1 ∶ |𝑥| < 𝛿0∕2}, with exponential map exp𝑂 ∶ 𝐷 →
𝐵𝛿0∕2(𝑂) ⊂ 𝑈. We will evaluate the difference of the two functions at 𝑂, making sure that the
result does not depend on 𝑂. Since we are interested in ∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣, we need to let 𝑥 vary in a
neighbourhood of 𝑂 before evaluating the derivative; therefore we will assume 𝑥 ∈ {𝑥 ∈ ℝ𝑛+1 ∶|𝑥| < 𝛿0∕4} and 𝛿 < 𝛿0∕4, so that 𝑦 stays in 𝐷.
We use the customary notation 𝑔𝑖𝑗 for the metric coefficients,

√|𝑔| for the volume density
induced by 𝑔. We denote by ℎ the Lipschitz function on 𝐷 given by 𝑓◦ exp𝑂 ∶ 𝐷 → ℝ and by
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 53

𝜌 ∶ 𝐷 × 𝐷 → ℝ the mollifier 𝜌(𝑥, 𝑦) = 𝜂𝛿(exp𝑂(𝑥), exp𝑂(𝑦)) for an arbitrary 𝛿 <
𝛿0

4
. We point out

that𝜌(0, 𝑦) = 1

𝑐𝑛𝛿𝑛+1
𝜂
( |𝑦|
𝛿

)
becausewe are in normal coordinates,where | ⋅ |denotes theEuclidean

length. We write ∇𝑔 to denote the metric gradient in 𝐷, (∇𝑔)𝑖 = 𝑔𝑖𝑗𝜕𝑥𝑗 . Let 𝑣𝓁 be represented
in the chart by

∑
𝑣
𝑗
𝓁
𝜕𝑗 . We fix an arbitrary 𝓁 and write, for notational ease, 𝑣 = (𝑣1, … , 𝑣𝑛+1) =

(𝑣1
𝓁
, … , 𝑣𝑛+1

𝓁
). We will write ⋅ between two vectors to denote the scalar product induced by 𝑔, so

∇𝑔ℎ ⋅ 𝑣 =
∑
𝑔𝑖𝑗𝑔

𝑖𝑎𝜕𝑥𝑎ℎ 𝑣
𝑗 = 𝛿𝑎𝑗 𝜕𝑥𝑎ℎ 𝑣

𝑗 = 𝜕𝑥𝑗ℎ 𝑣
𝑗 (= 𝑑ℎ(𝑣)).We restrict to𝑥 ∈ 𝐷𝛿0∕4, andwe com-

pute for 𝛿 < 𝛿0

4
the coordinate expression for ∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣 (integration is in 𝑑𝑦 unless otherwise

specified):

𝜕𝑥𝑗

(
∫𝐷 ℎ(𝑦)𝜌(𝑥, 𝑦)

√|𝑔|(𝑦)𝑑𝑦)𝑣𝑗(𝑥)
= 𝑣𝑗(𝑥)∫𝐷 ℎ(𝑦)𝜕𝑥𝑗 (𝜌(0, 𝑦 − 𝑥))

√|𝑔|(𝑦)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

I

+ 𝑣𝑗(𝑥)∫𝐷 ℎ(𝑦)𝜕𝑥𝑗 (𝜌(𝑥, 𝑦) − 𝜌(0, 𝑦 − 𝑥))
√|𝑔|(𝑦)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
II

. (A5)

Working on the first term, and using the notation 𝜌(0, ⋅) = 𝜌0(⋅), we have

I = −∫𝐷 ℎ(𝑦)(𝜕𝑗𝜌0)(𝑦 − 𝑥)
√|𝑔|(𝑦) =

⏟⏟⏟
𝑦−𝑥=𝑧

− ∫𝐷 ℎ(𝑥 + 𝑧)(𝜕𝑗𝜌0)(𝑧)
√|𝑔|(𝑥 + 𝑧)𝑑𝑧

= ∫𝐷(𝜕𝑗ℎ)(𝑥 + 𝑧)𝜌0(𝑧)
√|𝑔|(𝑥 + 𝑧)𝑑𝑧

+ ∫𝐷 ℎ(𝑥 + 𝑧)𝜌0(𝑧)(𝜕𝑗
√|𝑔|)(𝑥 + 𝑧)𝑑𝑧

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
III

=
⏟⏟⏟
𝑥+𝑧=𝑦

= ∫𝐷(𝜕𝑗ℎ)(𝑦)𝜌0(𝑦 − 𝑥)
√|𝑔|(𝑦)𝑑𝑦 + III

= ∫𝐷(𝜕𝑗ℎ)(𝑦)𝜌(𝑥, 𝑦)
√|𝑔|(𝑦)

+ ∫𝐷(𝜕𝑗ℎ)(𝑦)(−𝜌(𝑥, 𝑦) + 𝜌(0, 𝑦 − 𝑥))
√|𝑔|(𝑦)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
IV

+III.

Consider the first term after the last equality sign, recalling that 𝑣𝑗(𝑥)multiplies I in (A5):

𝑣𝑗(𝑥)∫𝐷(𝜕𝑗ℎ)(𝑦)𝜌(𝑥, 𝑦)
√|𝑔|(𝑦)
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54 BELLETTINI

= ∫𝐷 𝑣
𝑗(𝑦)(𝜕𝑗ℎ)(𝑦)𝜌(𝑥, 𝑦)

√|𝑔|(𝑦)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=((∇𝑓⋅𝑣)⋆𝜂𝛿)(exp𝑂(𝑥))

+ ∫𝐷(𝑣
𝑗(𝑥) − 𝑣𝑗(𝑦))(𝜕𝑗ℎ)(𝑦)𝜌(𝑥, 𝑦)

√|𝑔|(𝑦)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑉

.

We now evaluate (A5) at 𝑥 = 0 to obtain

(∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣)(𝑂) − ((∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿)(𝑂)

= V|𝑥=0 + 𝑣𝑗(0) IV|𝑥=0 + 𝑣𝑗(0) |𝑥=0 + II|𝑥=0.
It is immediate that IV𝑥=0 = 0. In V we have 𝜌(0, 𝑦) = 0 for 𝑑(0, 𝑦) = |𝑦| ≥ 𝛿; therefore |𝑣𝑗(0) −
𝑣𝑗(𝑦)| ≤ 𝐶|𝑦| for some constant 𝐶 that depends on derivatives of 𝑣 in 𝑈 and can be thus chosen
independently of 𝑈 (there are finitely many 𝑈’s) and of 𝑣𝓁 (finitely many smooth vector fields).
We therefore get that 𝑉|𝑥=0 is bounded in modulus by 𝐶‖∇𝑓‖𝐿∞𝛿(1 + 𝑂(𝛿2)) ≤ 𝐶′‖∇𝑓‖𝐿∞𝛿 for
some 𝐶′ that depends only on the choices of charts and vector fields. In III𝑥=0 the integrand is
nonzero only for |𝑧| ≤ 𝛿. Let 𝐶𝑁 > 0 be an upper bound for the modulus of the second derivatives
of the volume element in a normal coordinate system of radius 𝛿0 centred at an arbitrary point
in 𝑁 (such a constant exists by the compactness of 𝑁, the smoothness of the metric, and the fact
that 𝛿0 < inj(𝑁)). Recalling that in normal coordinates themetric coefficients have vanishing first
derivatives at 0, we get that |III||𝑥=0 ≤ 𝐶‖𝑓‖𝐶0𝛿 for all 𝛿 ≤ 𝛿0, with a constant𝐶 that only depends
on the geometric data. For II, recall that 𝜌(𝑥, 𝑦) = 1

𝑐𝑛𝛿𝑛+1
𝜂(
𝑑(𝑥,𝑦)

𝛿
), where 𝑑 is the Riemannian

distance (induced by 𝑔); so for each 𝑦we have 𝜕𝑥𝑗𝜌(𝑥, 𝑦) =
1

𝑐𝑛𝛿𝑛+2
𝜂′(

𝑑(𝑥,𝑦)

𝛿
)𝜕𝑥𝑗𝑑(𝑥, 𝑦). On the other

hand, 𝜌(0, 𝑦 − 𝑥) = 1

𝑐𝑛𝛿𝑛+1
𝜂(

|𝑦−𝑥|
𝛿
), so for each 𝑦 we have 𝜕𝑥𝑗𝜌(0, 𝑦 − 𝑥) =

1

𝑐𝑛𝛿𝑛+2
𝜂′(

|𝑦−𝑥|
𝛿
)𝜕𝑥𝑗 |𝑦 −

𝑥|. At 𝑥 = 0 we have, for every 𝑦 ≠ 0, 𝜕𝑥𝑗 |𝑦 − 𝑥| = 𝜕𝑥𝑗𝑑(𝑥, 𝑦) = − 𝑦𝑗|𝑦| , because we are in normal
coordinates, and 𝑑(0, 𝑦) = |𝑦|. Therefore II𝑥=0 = 0.
We have therefore proved that |(∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣)(𝑂) − ((∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿)(𝑂)| ≤ 𝐶𝛿 for 𝐶 indepen-

dent of 𝑂, that is, |(∇𝑓 ⋅ 𝑣) ⋆ 𝜂𝛿 − (∇(𝑓 ⋆ 𝜂𝛿) ⋅ 𝑣)|→ 0 uniformly on 𝑈. □

Remark A.2. Also note that 𝛿 ∈ (0, 𝛿0] → (𝑓 ⋆ 𝜂𝛿) ∈ 𝑊
1,2(𝑁) is continuous, since 𝜂𝛿 changes

smoothly with 𝛿 (in fact, this curve is differentiable on (0, 𝛿0)). Similarly, 𝛿 ∈ (0, 𝛿0] → (𝑓 ⋆ 𝜂𝛿) ∈
𝐶0(𝑁) is continuous.

Next we are going to be interested inΔ(𝑓 ⋆ 𝜂𝛿) under the additional assumption on𝑓 that∇𝑓 ∈
𝐵𝑉(𝑁). Here Δ denotes the Laplace-Beltrami operator. Recall that 𝑓 ⋆ 𝜂𝛿 is smooth, so Δ(𝑓 ⋆ 𝜂𝛿)
is smooth on 𝑁. We shall compare this function with (Δ𝑓) ⋆ 𝜂𝛿, where Δ𝑓 is a Radon measure.
For a Radon measure 𝜇 on 𝑁 we define the (smooth) function 𝜇 ⋆ 𝜂𝛿 ∶ 𝑁 → ℝ as follows:

(𝜇 ⋆ 𝜂𝛿)(𝑥) = ∫ 𝜂𝛿(𝑥, 𝑦)𝑑𝜇(𝑦). (A6)
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Lemma A.3. Let 𝑓 ∈ 𝑊1,∞(𝑁)with∇𝑓 ∈ 𝐵𝑉(𝑁). There exists 𝐶𝑁 > 0 (depending only𝑁 and 𝛿0,
once 𝜂 ∶ ℝ → ℝ is fixed) such that, for all 𝛿 < 𝛿0,

‖(Δ𝑓) ⋆ 𝜂𝛿 − Δ(𝑓 ⋆ 𝜂𝛿)‖𝐿∞(𝑁) ≤ 𝐶𝑁‖𝑓‖𝐿∞(𝑁).
Proof. We work in a normal system of coordinates centred at an arbitrary 𝑂 ∈ 𝑁. Let 𝐷 be the
ball centred at 0 ∈ ℝ𝑛+1 of radius 𝛿0, with exp𝑂 ∶ 𝐷 → 𝐵𝛿0(𝑂) denoting the exponential map.
We keep notation as in the proof of step 2 of Lemma A.1 (ii), in particular we set 𝜌(𝑥, 𝑦) =
𝜂𝛿(exp𝑂(𝑥), exp𝑂(𝑦)) and 𝜌0(⋅) = 𝜌(0, ⋅). The Laplace-Beltrami operator Δ is, in the coordinate
chart, 1√|𝑔| 𝜕

𝜕𝑥𝑖
(
√|𝑔|𝑔𝑖𝑗 𝜕

𝜕𝑥𝑗
), so Δ𝑓 is 1√|𝑔| 𝜕

𝜕𝑥𝑖
(
√|𝑔|𝑔𝑖𝑗 𝜕ℎ

𝜕𝑥𝑗
), where ℎ = 𝑓◦ exp𝑂. We compute Δ(𝑓 ⋆

𝜂𝛿)(𝑥) in the normal chart, keeping 𝑥 ∈ {| ⋅ | ≤ 𝛿0∕2} and 𝛿 < 𝛿0∕2 so that 𝑦 ∈ 𝐷 in the following
computations. Differentiating,

Δ

(
∫𝐷 ℎ(𝑦)𝜌(𝑥, 𝑦)

√|𝑔|(𝑦)𝑑𝑦)
= ∫𝐷 ℎ(𝑦)Δ(𝜌0(𝑦 − 𝑥))

√|𝑔|(𝑦)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

I

+∫𝐷 ℎ(𝑦)Δ(𝜌(𝑥, 𝑦) − 𝜌(0, 𝑦 − 𝑥))
√|𝑔|(𝑦)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
II

, (A7)

where derivatives are taken in 𝑥 and integration is in 𝑑𝑦. We compute, for each 𝑦:

Δ(𝜌0(𝑦 − 𝑥)) =
−1√|𝑔|(𝑥)𝜕𝑥𝑖

(√|𝑔|(𝑥)𝑔𝑖𝑗(𝑥))(𝜕𝑖𝜌0)(𝑦 − 𝑥)
+ 𝑔𝑖𝑗(𝑥)(𝜕2𝑖𝑗𝜌0)(𝑦 − 𝑥);

(Δ𝜌0)(𝑦 − 𝑥) =
1√|𝑔|(𝑦 − 𝑥)𝜕𝑥𝑖

(√|𝑔|(𝑦 − 𝑥)𝑔𝑖𝑗(𝑦 − 𝑥))(𝜕𝑖𝜌0)(𝑦 − 𝑥)
+ 𝑔𝑖𝑗(𝑦 − 𝑥)(𝜕2𝑖𝑗𝜌0)(𝑦 − 𝑥).

Therefore

Δ(𝜌0(𝑦 − 𝑥)) − (Δ𝜌0)(𝑦 − 𝑥)

=
(
𝑔𝑖𝑗(𝑥) − 𝑔𝑖𝑗(𝑦 − 𝑥)

)
(𝜕2𝑖𝑗𝜌0)(𝑦 − 𝑥)

−

(
1√|𝑔|(𝑥)𝜕𝑥𝑖

((√|𝑔|𝑔𝑖𝑗)(𝑥)) + 1√|𝑔|(𝑥 − 𝑦)𝜕𝑥𝑖
((√|𝑔|𝑔𝑖𝑗)(𝑥 − 𝑦))

⋅(𝜕𝑖𝜌0)(𝑦 − 𝑥) (A8)
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56 BELLETTINI

and we can rewrite I as follows (so that in the second term we will be able to use (A8)):

∫ ℎ(𝑥 + 𝑧)(Δ𝜌0)(𝑧)
√|𝑔|(𝑥 + 𝑧)𝑑𝑧

+ ∫ ℎ(𝑦)(Δ(𝜌0(𝑦 − 𝑥)) − (Δ𝜌0)(𝑦 − 𝑥))
√|𝑔|(𝑦)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
III

.

We want to evaluate at 𝑥 = 0. Let �̃�0 = 𝜌0◦exp−1𝑂 and recall that 𝑓 = ℎ◦exp−1𝑂 ; then the first
term on the right-hand side of the last equality, evaluated at 𝑥 = 0, is ∫

𝑁
𝑓Δ�̃�0 𝑑𝑛+1. Integrating

by parts we rewrite it as ∫
𝑁
Δ𝑓 �̃�0 𝑑𝑛+1, and we get

I|𝑥=0 = ∫ Δℎ(𝑧)𝜌0(𝑧)
√|𝑔|(𝑧)𝑑𝑧 + III|𝑥=0

= ∫ Δℎ(𝑦)𝜌(0, 𝑦)
√|𝑔|(𝑦)𝑑𝑦 + III|𝑥=0 = ((Δ𝑓) ⋆ 𝜂𝛿)(𝑂) + III|𝑥=0.

Recall (A7); the statement of LemmaA.3will therefore follow by estimating II|𝑥=0 and III|𝑥=0, tak-
ing care that the estimates should be independent of𝑂. For III|𝑥=0, we use (A8) and the following
two facts. Firstly,

∫ 𝜕2𝑖𝑗𝜌0(𝑦)𝑑𝑦 =
1

𝑐𝑛𝛿2

(
∫𝐵1 𝜕

2
𝑖𝑗𝜂1(0, 𝑦)𝑑𝑦

)

and

∫ 𝜕𝑖𝜌(𝑦)𝑑𝑦 =
1
𝑐𝑛𝛿

(
∫𝐵1 𝜕𝑖𝜂1(0, 𝑦)𝑑𝑦

)

(the two integrals on the right-hand sides are Euclidean and depend only on the explicitly given 𝜂,
so theywill be absorbed into constants). Secondly, sincewe are in normal coordinates, 𝑔𝑖𝑗(0) = 𝛿𝑖𝑗 ,
𝜕𝑥𝑘𝑔𝑖𝑗 = 0 at 0 for all 𝑘; since𝑁 is compact, there exists a constant 𝐶𝑁,𝛿0 such that in any normal
system of coordinates centred at a point of𝑁 and with radius 𝛿0 (< inj(𝑁)), the second derivatives
of the metric coefficients are bounded in modulus by 𝐶𝑁,𝛿0 . Therefore||𝑔𝑖𝑗(0) − 𝑔𝑖𝑗(𝑦)|| ≤ 𝐶𝑁,𝛿0 |𝑦|2 and||||||

1√|𝑔|(−𝑦)𝜕𝑥𝑖 |𝑥=0
(
(
√|𝑔|𝑔𝑖𝑗)(𝑥 − 𝑦))|||||| ≤ 𝐶𝑁,𝛿0 |𝑦|.

Using these two facts in (A8), and noting that |𝑦| ≤ 𝛿 on the set where the integrand of III|𝑥=0
does not vanish, we get that III|𝑥=0 is bounded in modulus by ‖𝑓‖𝐿∞𝐶𝑛,𝑁,𝛿0‖𝜂‖𝐶2(ℝ) = 𝐶‖𝑓‖𝐿∞ ,
with 𝐶 depending only on fixed geometric data.
For II|𝑥=0 we need to compare, for each 𝑦 ≠ 0, Δ(𝜌(𝑥, 𝑦)) and Δ(𝜌0(𝑦 − 𝑥)), both evaluated at

𝑥 = 0. Let us write 𝑚𝛿(⋅) =
1

𝑐𝑛𝛿𝑛+1
𝜂(

⋅

𝛿
), 𝑚𝛿 ∶ ℝ → ℝ. Then, denoting by 𝑑 the distance induced

by 𝑔 and by | ⋅ | the Euclidean distance, by | ⋅ |𝑔 the vector length for 𝑔, and by ∇ the 𝑔-gradient,
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MULTIPLICITY-1 MINMAXMINIMAL HYPERSURFACES IN MANIFOLDS WITH POSITIVE RICCI CURVATURE 57

we get for each 𝑦 ≠ 0 (derivatives with respect to ⋅ )
Δ(𝜌( ⋅ , 𝑦)) = Δ(𝑚𝛿(𝑑( ⋅ , 𝑦)))

= 𝑚
′′

𝛿
(𝑑( ⋅ , 𝑦))|∇𝑑( ⋅ , 𝑦)|2𝑔 + 𝑚′

𝛿
(𝑑( ⋅ , 𝑦))Δ𝑑( ⋅ , 𝑦),

Δ(𝜌0(𝑦 − ⋅ )) = Δ(𝑚𝛿(|𝑦 − ⋅ |))
= 𝑚

′′

𝛿
(|𝑦 − ⋅ |)|∇|𝑦 − ⋅ | |2𝑔 + 𝑚′

𝛿
(|𝑦 − ⋅ |)Δ|𝑦 − ⋅ |.

Evaluating at ⋅ = 0 we note that 𝑚′′

𝛿
(𝑑(0, 𝑦))|∇𝑑(0, 𝑦)|2𝑔 = 𝑚′′

𝛿
(|𝑦|)|∇|𝑦||2𝑔 and, moreover,

𝑚
′

𝛿
(𝑑(0, 𝑦)) = 𝑚

′

𝛿
(|𝑦|), because in normal coordinates we have 𝑑(0, 𝑦) = |𝑦| and ∇|𝑦 − ⋅ | =

∇𝑑( ⋅ , 𝑦) = −
𝑦|𝑦| at the point ⋅ = 0 (for any chosen 𝑦 ≠ 0). We therefore need to compare, for

any 𝑦 ≠ 0, Δ𝑑( ⋅ , 𝑦) and Δ|𝑦 − ⋅ | at 0. The former is the opposite of the mean curvature at 0 of
a geodesic sphere centred at 𝑦 with radius 𝑑(0, 𝑦) (as usual, we compute the scalar mean cur-
vature with respect to the outward-pointing normal to the sphere). On the other hand, recall
that computing Δ at 0 is the same as computing the Euclidean Laplacian, therefore −Δ|𝑦 − ⋅ |
at 0 is the Euclidean mean curvature at 0 of a Euclidean sphere centred at 𝑦 with radius |𝑦|,
hence Δ|𝑦 − ⋅ | = − 𝑛|𝑦| at 0. The difference Δ𝑑( ⋅ , 𝑦) − Δ|𝑦 − ⋅ | is therefore bounded in modulus
by 𝐶𝑁|𝑦|, thanks to the initial choice of 𝛿0. Since we can take |𝑦| ≤ 𝛿 in II|𝑥=0 (because 𝜌 = 0 oth-
erwise) we can estimate (Δ(𝜌(𝑥, 𝑦)) − Δ(𝜌0(𝑦 − 𝑥)))|𝑥=0 inmodulus by ‖𝑚′

𝛿
‖𝐿∞𝐶𝑁𝛿 ≤ 1

𝛿𝑛+1
𝐶𝜂𝐶𝑁 ;

integrating on {|𝑦| ≤ 𝛿} we get that II|𝑥=0 is bounded in modulus by 𝐶𝜂𝐶𝑁‖𝑓‖𝐿∞ .
We have thus obtained |(Δ𝑓) ⋆ 𝜂𝛿 − Δ(𝑓 ⋆ 𝜂𝛿)|(𝑂) ≤ 𝐶‖𝑓‖𝐿∞ with𝐶 depending only on (𝑁, 𝑔)

and on the fixed entities 𝛿0, 𝜂. The arbitraryness of 𝑂 gives the result. □
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