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Abstract—Despite the increasing effort being devoted to the
investigation of the link between imaging endophenotypes (IDPs)
and genetic determinants (GDs) in Mild Cognitive Impairment
(MCI) and Alzheimer’s disease (AD), many issues remain open
and deserve investigation. Among these is the role of functional
connectivity (FC). This paper aims at shading some light on the
topic relying on the ADNI repository. To this end, a total of
177 patients out of which 82 Mild Cognitive Impariment (MCI)
and 95 healthy controls (HC) were considered. Individual FC
matrices were derived after minimal pre-processing and nuisance
regression, and the within/between-network connectivities were
calculated to be used as IDPs. Concerning the genetics, the GDs
consisted of two Polygenic Risk Scores (PRS) that have recently
been proved to play a role in AD. A Partial Least Squares (PLS)
model equipped with LASSO regularization was finally fitted to
the data in order to assess the association between IDPs and
GDs. In the first component, all the FC coefficients had the same
sign, and were correlated with PRS2. Connectivities involving
the dorsal attention (DAN) and frontoparietal control (CON)
networks reached the highest weights, while within/between-
network FC for the limbic (LIM) resulted to be less represented.
Overall, the within-network FC values were less pronounced
compared to the between-network ones. In the second component,
most of the FC features had zero weights, with only 13 IDPs
surviving. Visual (VIS) and somatomotory (SMN) showed a
correlated trend, while being anti-correlated with limbic (LIM),
CON and default mode network (DMN) as well as with PRS1.
The between-network FC for DMN were the most represented in
this second component. Our findings suggest that the two PRSs
correlated with a possible pattern of aberrant within/between-
network FC changes occurring in RSNs devoted to higher
cognitive functions and more vulnerable in this pathology.

Index Terms—Resting-state functional MRI, Functional Con-
nectivity, Partial Least Squares, Mild Cognitive Impairment,
Polygenic Risk Score, Imaging genetics

I. INTRODUCTION

Mild Cognitive Impairment (MCI) is a syndrome character-
ized by an accelerated cognitive decline with respect to what
observed in healthy matched individuals. Despite the apparent
lack of notably effects, several studies have shown that people
with memory complaints and deficits have an increased risk of
progression to dementia, in particular to Alzheimer’s Disease
(AD) [1]. While great attention has been recently given to
characterising the association between genetic risk factors and
brain degeneration in AD patients [2], the role of the same
interaction in MCI is still less understood.

Such a process can be investigated within the Imaging
Genetics (IG) framework, that is relating genetic determinants
(GDs) with brain image-derived functional or structural en-
dophenotypes (IDPs) [3].

In this context, Genome Wide Association Studies (GWAS)
are generally used to identify the genetic variants associated
with a given set of IDPs, relying on large cohorts of subjects.
Along the same line, polygenic studies start from genetic fea-
tures derived from available large scale GWAS boiling down
the information spread across different genetic variants to one
ore more scores, named Polygenic Risk Scores (PRS). These,
being informative about the individual overall genetic disease



risk, allow to assess the association between genetic profiles
and IDPs on smaller cohorts [4]. For AD, these scores have
been shown to be associated with relevant phenotypes such as
disease progression and cognitive decline [5]. However, their
link with functional connectivity (FC) measures as derived
from resting-state functional MRI (fMRI) data is still largely
unexplored.

Blood oxygenation level dependent (BOLD) fMRI is a non-
invasive method of evaluating neuronal activity in the brain
either while performing a given task or at rest. Several authors
have demonstrated the functional significance of the sponta-
neous, low frequency fluctuations (<0.1 Hz) occurring in the
BOLD signal at rest and have proved the existence of spatially
distinct brain areas sharing a synchronous BOLD activity,
the so-called resting-state networks (RSNs) [6]. Different FC
measures have been devised so far focusing either on the co-
herence or on the Pearson temporal correlation between time-
series measured at different locations in the brain [7]. These
features have been scarcely investigated in the IG framework,
though could represent important biomarkers for a timely
characterisation of the underlying functional modulations in
neurodegenerative disorders.

In this study, we aimed at investigating the genetic influence
on FC patterns in MCI patients relying on a multivariate
statistical model. Our working hypothesis is that FC measures
in different RSNs could reveal subtle changes induced by
the onset of the disease, allowing to disentangle age-related
from pathological functional degeneration and thus potentially
enabling early detection of the disease fingerprints.

II. MATERIALS AND METHODS

The data analysed in the current study were collected from
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(http://adni.loni.usc.edu/) as part of ADNI-3 phase. The se-
lected cohort comprehended 177 subjects, including 95 healthy
controls (HC, among which 52 were classified as Cognitively
Normal and 43 with Significant Memory Concern) and 82 MCI
(comprising 52 Early MCI, 4 MCI and 26 Late MCI, according
to the ADNI database). Rs-fMRI acquisitions were performed
on a 3T scanner with the following sequence parameters:
TR/TE = 3000/∼ 30 ms, FA = 90°, FOV = 220× 220× 163
mm, 3.4-mm isotropic voxel size. 200 fMRI volumes were
acquired in almost all subjects, with minimal variations in a
small subset (e.g, 197 or 195 volumes). T1 weighted images
were also available (main parameters: TR = 2300 ms, FOV =
208× 240× 256 mm, 1-mm isotropic voxel size).

Data were preprocessed using the FMRIB Software Library
(FSL version 6.0) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). As
minimal preprocessing, removal of the first 5 volumes, motion
realignment (MCFLIRT), 4D mean intensity normalization,
spatial smoothing with a 6-mm FWHM kernel and interleaved
slice-timing correction were performed. A nuisance regression
pipeline was then applied to regress out from the minimally
preprocessed data the six motion parameters (plus their deriva-
tives), the mean white matter/cerebro-spinal fluid (WM/CSF)
signals and a linear trend component [8]. WM and CSF

signals were extracted from the corresponding partial volume
maps after erosion and binarisation with a threshold of 0.8.
The residuals resulting from this analysis were subsequently
band-pass filtered (0.01-0.08 Hz). To further eliminate motion
artifacts, scrubbing was applied to remove high-motion frames
as defined by exceeding 0.5 mm framewise displacement,
zero-padding these volumes together with one preceding and
two subsequent volumes to keep the number of data points
consistent across subjects. Lastly, the preprocessed rs-fMRI
images were spatially normalized to the 2-mm MNI space
(non-linear registration).

The FC matrices were generated using the Schaefer func-
tional atlas [9] with 100 parcels and 7 RSNs, namely visual
(VIS), somatomotory (SMN), dorsal attention (DAN), ventral
attention (VAN), limbic (LIM), frontoparietal control (CON),
and default mode networks (DMN). The symmetric connec-
tivity matrices were calculated using the Pearson correlation
coefficient. In order to exploit the FC patterns in these well-
known networks, summary measures representing the mean
connectivity value inside a given network (within-network FC)
and across edges connecting regions belonging to different
networks (between-network FC) were derived from the full
matrices. Within-network FC was calculated as the mean value
of all the region-to-region connectivities within a specific
network (e.g., DMN), while between-network FC was derived
by averaging across the edges connecting a node in a network
with the other nodes in the remaining networks (e.g, DMN-
SMN or DMN-VIS) [10]. These operations led to 28 single
FC features per subject to be used as IDPs.

Regarding the GDs, two PRSs namely PRS1 and PRS2,
proposed in [11], were chosen. These scores were based on
a recent GWAS study [12] and were calculated according to
SNPs passing the genome-wide suggestive threshold (p=1.0e−
05) and the p=0.5 cutoff, respectively. For further information
regarding the PRS calculation please refer to [11].

Finally, a Partial Least Square (PLS) model was applied
to the data to capture the association between the IDPs and
GDs. The imaging features extracted represented the matrix
X in the PLS model (177 × 28), while the genetic features
composed by the two PRSs were presented as matrix Y
(177×2). Before applying the model, GDs and IDPs matrices
were standardised by subtracting the mean and dividing by the
standard deviation. Deconfounding was also applied to remove
the bias from age and gender in the X matrix. Conversely, the
first five principal components of the genetic information of
the whole population on which the PRS were calculated were
regressed out from PRS2 only, as these represented the genetic
population structures to which such PRS was highly correlated
[11]. The PLS model was applied with LASSO regularization
using a penalty value of 0.15. Permutation test, based on 1000
permutations of the rows of the Y matrix, was used to test the
significance of the obtained eigenvalues (p < 0.05).

III. RESULTS

The two components resulting from the PLS model with
LASSO regularization accounted for 54% and 46% of vari-
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Fig. 1. PLS component’s weights for imaging and genetic features. Darker colors represent the within-network connectivity while the lighter shades show
the between-network connectivity.

ability of the data, respectively. The PLS weights of phenotype
and genotype in both eigen-components are reported in Fig.
1. In the first component, while all the coefficients had
the same sign, differences could be appreciated in terms of
weights across the FC features. The within/between-network
connections involving DAN generally featured the highest
values, along with those encompassing the CON network. In
particular, the between-network FC related to CON appeared
as having the highest weights in all cases. Conversely, the
connections with LIM had lower weights, especially for the
intra-network one which reached the lowest value. Of note, in
all cases the within-network FC values had generally lower
weights compared to the between-network ones.

In the second component, most of the FC features had zero
weights (or close to zero, as for LIM VIS). The weights for
the within-network FC were prominent in all cases except for
DAN and VAN, and these features presented an opposite trend
across networks, differently than before. Indeed, VIS and SMN
showed a correlated trend, while being anti-correlated with
LIM, CON and DMN. The magnitude of LIM coefficients was
generally higher compared to the others, suggesting a stronger
impact of this component on such FC measures. Conversely,
connectivities related to the SMN, DAN and VAN networks,
which reached high coefficient values in the first component,
appeared to have a negligible contribution in this second one.
Finally, DMN resulted to be the network with most surviving
features either from within- or between-network connectivity

(six out of the thirteen).
Regarding genotype variation, the PRS2 showed the highest

absolute weight in the first component, while the opposite
pattern was found in the second one. PRS2 was correlated
with all the FC features in the first component, while in the
second one PRS1 presented these correlated patterns only for
a subset of connectivities involving LIM, CON and DMN.
Conversely, the three features related to the SMN network with
high weights (SMN SMN, VAN SMN, DMN SMN) were
anti-correlated with the PRS1. Finally, the permutation test
proved the significance of the model with p-value = 0.044.

IV. DISCUSSION

In this study we investigated the associations between
neuroimaging phenotypes and genetics via joint multivariate
statistical modeling in patients with MCI. The phenotypic
features were presented in terms of within/between-network
FC derived from rs-fMRI scans, while two PRSs were used
as genetic features. These combines the effects of multiple
independent risk variants into single scores, being able to
capture an individual’s overall genetic disease risk [11].

PLS model has been applied to maximize the covariance
between the two sets of data with LASSO regularization
retaining the most relevant features.

Analysis of the PLS weights showed associations between
specific imaging features and one of the PRSs. In particular,
all FC features were correlated with PRS2, while only LIM,



CON and DMN were correlated with PRS1 in the second
component. These two PRSs have been demonstrated to be
associated with APOE, clinical diagnosis, CSF-tau levels and
with progressive atrophy in AD, although the second one has
poorer association with traits [11]. Our results showed that
the 28 FC features were differently represented in the two
components and had a differential association with the two
PRSs, suggesting these PRSs for AD might shape the FC
fingerprints in a selective way. Interestingly, the connectivities
involving DAN, VAN, CON and DMN were those featuring
the highest weights in either the first or second component.
These are all RSNs involved in higher cognitive functions, they
comprise highly connected regions, and are characterized by
an increased vulnerability compared to other networks, such as
VIS or SMN, in MCI and AD patients. Previous authors argued
this might depend on their particular vulnerability to amyloid
deposition since the preclinical stages of dementia [13]. DMN
in particular has been largely investigated in the current
literature, and both within- and between network changes
have been reported between HC, MCI and AD patients [14],
[15]. However, several studies are going beyond DMN and
have recently demonstrated aberrant inter-network changes
involving those brain systems that are closely correlated and
play a crucial role in higher cognitive function, underlying the
central role of the interactions between RSNs in understanding
MCI and AD pathology [16].

To the best of our knowledge, this was the first attempt to
exploit a multivariate PLS model for linking the PRS for AD
with brain FC measures in MCI subjects. In a previous work
by Lorenzi and colleagues [17], PLS was used to associate
brain atrophy to the complete set of SNPs from AD patients,
uncovering a significant link between the TRIB3 gene and
the stereotypical pattern of grey matter loss in AD. A similar
approach was followed in [18], where they were able to stratify
the early stages of AD in the PLS latent space by exploiting
classical structural features and disease-specific biomarkers
such as cerebrospinal fluid levels of t-tau, p-tau and amyloid-
beta. Despite these promising preliminary results, we are aware
of the small sample size which represents the main limitation
of the current study and the lack of AD subjects. However, we
consider the results as relevant as the within/between-network
FC modulations that could be detected are in agreement
with the typical neurodegeneration patterns in MCI and AD,
providing evidence in favor of the suitability of PRS scores for
explaining even in a selective way the genetic underpinning
of such changes.

V. CONCLUSIONS

The presented PLS model with LASSO suggested a joint
variation between FC and PRSs in MCI subjects. Moreover
the two PRSs correlated with a possible pattern of aberrant
within/between-network FC changes occurring in RSNs de-
voted to higher cognitive functions and more vulnerable in
this pathology.
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