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Reynolds and dispersive shear stress in free-surface turbulent channel flow over square bars
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Reynolds and dispersive shear stresses in turbulent flow over spanwise-aligned square bars in an open channel
flow are examined. Results of large-eddy simulation of flow over two different bar spacings corresponding to
transitional and k-type (reattaching flow) roughness are analyzed. The Reynolds shear stress contribution to the
momentum loss (or the friction factor, respectively) is greater than the dispersive shear stress contribution. By
increasing the bars spacing, however, the contribution of the dispersive shear stress increases while the Reynolds
shear stress contribution decreases, which is due to a standing wave at the water surface in the flow over k-type
roughness which results in significant spatial variations in the time-averaged velocities. Strong sweep events
take place and contribute to the friction coefficient. Investigating the dynamics of the flow reveals that there
is momentum source below the crest of the bars and momentum sink above them, leading to acceleration or
deceleration of flow, respectively. The contribution of dispersive shear stress is significant only in the deceleration
of the flow near the crest of the bars and in the acceleration of the flow under the water surface. Quantification
of the three components of total kinetic energy, i.e. mean, turbulent, and wake kinetic energy, reveals that the
largest contribution is that of the mean flow in both geometries. By increasing the bar spacing, the contributions
of turbulent and wake kinetic energy, which are localized at the bar height, increase, while the kinetic energy of
the mean flow decreases.
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I. INTRODUCTION

Turbulent flows over rough surfaces are of critical and
fundamental importance in engineering applications. The flow
dynamics is altered by surface roughness mainly through the
change of the mean velocity profile near the wall which leads
to the modification of the friction coefficient [1]. Where the
maximum roughness height is not negligible with respect to
the integral length of the flow, the flow modification is not
limited to the viscous and buffer layers but extends to the
logarithmic layer where at least half of the turbulent energy is
produced. In free-surface shallow flows over rough beds, the
roughness and topography of the bed (among other factors)
is “felt” all the way to the water surface. In such low relative
submergence flows, direct interaction of bed and water surface
takes place through the alteration of the bulk flow. Scrutiniz-
ing the bulk flow structure leads to a detailed understanding
of the flow characteristics and quantities such as momentum
transport and friction coefficient.

Attaching roughness to the surface alters the flow structure
either directly or through the modification of near wall dynam-
ics. In order to incorporate the spatial heterogeneity induced
by the roughness in the averaged parameters, the double-
averaging methodology was introduced [2,3]. In this method,
the time averaging which yields the Reynolds-averaged
Navier-Stokes (RANS) equations is supplemented by spatial
averaging, which yields the double-averaged Navier-Stokes
(DANS) equations [4,5]. Dispersive or form-induced shear
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stresses are a result of double averaging and represent the
spatial variations in the time-averaged velocity field. These
stresses are induced by near-bed flow heterogeneity and
secondary currents when roughness is present. The double-
averaged (DA) statistics have been studied in several works
for wall-bounded canonical flows over rough surfaces with
irregular and regular geometrical roughness elements. The
dispersive stresses are reported to be generally smaller than
the corresponding Reynolds stresses for different surface mor-
phologies, except for the normal streamwise dispersive stress
for which the peak value is comparable to its Reynolds stress
counterpart [6–8], yet it significantly depends on geometrical
surface parameters [6]. The peak magnitudes of dispersive
stresses occur under or around the roughness crest and at
some distance away from the roughness crest they are neg-
ligible, unlike the Reynolds stresses. Over a specific irregular
roughness, both dispersive and Reynolds stress peak magni-
tudes increase by increasing the Reynolds number [8]. The
wall-normal gradient of dispersive shear stress is comparable
to the wall-normal gradient of Reynolds shear stress and by
increasing the Reynolds number the relative difference in the
peak magnitudes of these stresses decreases [8–10]. The sign
of the wall-normal gradient of these stresses is different, high-
lighting their different contribution to momentum transport.

Among multiple roughness types, square bars perpendic-
ular to the main flow direction have been an area of intense
research as this canonical configuration allows studying the
principal effects of surface roughness on flow characteristics
[11–14]. The bar spacing is a key parameter of this rough-
ness geometry and the main two types of this roughness,
as first identified by Perry et al. [15], are d-type (closely
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spaced bars) and k-type (widely spaced bars) roughness. In
the former, the bulk flow skims over the bars while a stable
vortex is formed between the bars. In the latter, flow separa-
tion and flow reattachment downstream of a bar take place.
At around λ/k = 4–5, the transition from d-type to k-type
roughness occurs, where k is the bar height and λ is the bar
spacing [1,16,17].

The alteration of the friction coefficient due to surface
roughness is generally in the form of an increase. The po-
tential of energy saving by drag reduction due to surface
manipulation has led to a multitude of research over the
past few decades [18]. Many other studies investigated the
decomposition of the friction coefficient into its constituents
with the aim to quantify the effects of flow structure on the
generation of the total drag. The main approaches to imple-
ment this decomposition are based on the momentum budget
[19,20], energy budget [10,21], and velocity-vorticity correla-
tion [22–24]. Triple integration of momentum, kinetic energy,
or vorticity equations are carried out in these approaches to
calculate the decomposition of the friction factor. Among all
these methods, the work of Nikora et al. [20] is suitable for
both smooth and rough walls, which accounts for roughness-
scale flow separation and the emergence of pressure drag at
the bed. Furthermore, in their approach, the direct contribu-
tion of Reynolds and dispersive stresses to the generation
of the Darcy-Weisbach friction factor, being widely used in
hydraulics application, is presented.

The objective of the present work is to quantify Reynolds
and dispersive shear stresses in free-surface turbulent flow
over transitional and k-type transverse square-bar roughness.
The underlying data are generated by large-eddy simulations.
The spatially varying contributions of the Reynolds and dis-
persive stresses to the integral friction coefficient are explored
and compared. The distribution of these stresses and the phys-
ical phenomena resulting these distributions are scrutinized.
The budgets of turbulent inertia and kinetic energy are inves-
tigated as well to quantify the contribution of the Reynolds
and dispersive stresses. This manuscript is organized into four
sections. In Sec. II, the numerical method and details of the
simulations are described. Section III presents and discusses
the results and the conclusion is presented in Sec. IV.

II. NUMERICAL SIMULATIONS

Turbulent flow in a rough-bed open channel is simu-
lated using the method of large-eddy simulation (LES). The
in-house LES code HYDRO3D, which has been validated thor-
oughly for a large number of flows with similar complexity
[25–30], is employed to solve the spatially filtered Navier-
Stokes equations,

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u − ∇ · τ. (2)

Here, u is the velocity vector with the three components u, v, w
in the streamwise (x), spanwise (y), and wall-normal (z) direc-
tions, p is the pressure, Re = UbH/ν is the Reynolds number
where Ub is the bulk velocity, H is the depth defined as the dis-
tance between the mean water surface position before starting

TABLE I. Hydraulic conditions and computational details.

λ/k H/k Ub Re Fr (Lx, Ly, Lz ) �x+ �y+ �z+ k+

5.2 2.5 0.24 7.2×103 0.44 (10.4k, 5k, 5k) 5.6 6.6 3.5 84.0
10.4 2.9 0.23 8.0×103 0.39 (10.4k, 5k, 5k) 5.5 6.5 3.5 82.8

the simulation and the mean bed elevation (zmb), ν is the fluid
kinematic viscosity, and τ is the subgrid scale stress tensor. A
fractional-step method with a second-order Runge-Kutta time
integration scheme is used to solve equations on a staggered
Cartesian grid. In the predictor step, a second-order central
differencing method is used to compute diffusive terms. The
convective terms are computed using a fifth-order weighted,
essentially nonoscillatory (WENO) scheme to compromise
between numerical accuracy and algorithm stability [27]. In
the corrector step, the pressure Poisson equation is solved
using a multigrid method to achieve a divergent flow field
at the end of each time step. The wall-adapting local eddy-
viscosity (WALE) model is used to approximate the effects
of the small-scale turbulence on the large eddies [31]. The
free surface is captured using the level set method (LSM),
which is successful in the description of complex air-water
interfaces [32,33]. In this method, the interface is tracked
by solving a pure advection equation for a level set signed
distance function which is zero at the phase interface, neg-
ative in air, and positive in water. The sudden changes of
density and viscosity of the two immiscible fluids at either
side of the free surface may cause instability. To avoid this,
a transition zone with the thickness of two grid spacings is
introduced at either side of the phase interface where density
and viscosity are calculated using a Heaviside function. The
governing equations are solved via parallel computing, and
Message Passing Interface (MPI) is used for this purpose.
More details of the code can be found in [34,35]. Table I
provides geometrical and hydraulic parameters for the two
simulated cases. Two different bar spacings are considered:
λ/k = 5.2 is considered transitional (wake interference flow)
roughness as it is neither d-type (skimming flow) nor k-type
(reattaching flow) roughness, and λ/k = 10.4 is classified as
k-type roughness. In terms of k+, both flows can be considered
hydraulically rough (see Table I). Only these two roughness
types are considered since, unlike the skimming flow, in these
cases significant momentum transfer takes place between the
area below the crest of the bars and the bulk flow [36]. Figure 1

FIG. 1. Schematic of the computational domain.
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presents the schematic of the computational domains. As the
length of the domain, Lx, for both bars spacings is similar, the
domain includes two troughs for the λ/k = 5.2 case and one
trough for the λ/k = 10.4 case. The adequacy of the domain
size for both cases is evaluated using two-point correlation
of the streamwise velocity fluctuations in the streamwise and
spanwise directions and is not shown for brevity. The Re and
global subcritical Froude number, Fr = Ub/

√
gH , are similar

for both cases (g is the gravity acceleration). In both cases, the
grid spacing is uniform in all directions because it minimizes
dispersive discretization errors in the high-order numerical
schemes that are employed and allows high-accuracy predic-
tions of water surface deformations. The grid is sufficiently
fine to resolve the small-scale turbulent motions (Table I),
as was shown in [30]. The flows are driven by a constant
pressure gradient of similar value to the flume experiments
discussed in [30]. A no-slip boundary condition is applied at
the bed and at the surface of the bars. The no-slip condition
on the surface of the bars is enforced in every time step by
setting the velocity at the first grid point inside the bar to the
negative value of the first grid point outside the bar, hence
ensuring the velocity to be exactly zero at the boundary. Pe-
riodic boundary conditions are applied in the streamwise and
spanwise directions, thus the flow is quasi-two-dimensional
and homogeneous in the spanwise direction. All simulations
are initiated with a free-slip boundary condition at the still
water level and, after attaining a fully developed flow, the
simulations are restarted with the level set algorithm to track
the free surface. When the free-surface flow is fully developed
again, averaging of the flow quantities is begun and continued
for between 40 and 60 further flow through periods to obtain
converged turbulence statistics. In this work, small symbols
are instantaneous quantities, time-averaged quantities are de-
noted with an overbar, small symbols with prime are turbulent
fluctuations, the double- (temporal- and spatial-) averaged
quantities are denoted by both the overbar and brackets < >,
and the dispersive quantities that represent the spatial fluctu-
ations of the time-averaged quantities are denoted by a tilde.
Thus, an instantaneous flow variable is decomposed as

θ (x, y, z, t ) = 〈θ〉(z) + θ̃ (x, y, z) + θ ′(x, y, z, t ). (3)

A DA variable is calculated using the volume-averaging op-
erator applied to the temporally averaged variable as

〈θ〉(z) = 1

φ(z)

1

Vo

∫∫∫
Vf

θ (x, y, z) dx dy dz. (4)

Here, φ = Vf / Vo is the geometry function, where Vf is the
volume occupied by the fluid and Vo is the total volume. The
averaging volume is a thin slab parallel to the bed with the
size Lx × Ly × �z and it is larger than the dominant roughness
scale [5,37]. The dispersive and Reynolds shear stresses are
calculated as [38]

ũw̃ = (u − 〈u〉)(w − 〈w〉), (5)

u′w′ = (u − u)(w − w). (6)

The superscript + in this work represents inner-scaled quan-
tities calculated using the friction velocity uτ = √

τwall/ρ,
where τwall is the wall shear stress and ρ is the water density.

FIG. 2. Contributions to friction factor f .

The adequacy of the grid and validation of the results have
been demonstrated previously [39] using the experimental and
numerical data of McSherry et al. [30].

III. RESULTS AND DISCUSSION

A. Friction factor decomposition

The momentum-based method proposed by Nikora et al.
[20] is applied to quantify the contribution of viscous ef-
fects, as well as Reynolds and dispersive shear stresses, to
the Darcy-Weisbach friction factor f = 8τ0/(ρU 2

b ), where
τ0 = ∫ zc

zt
FD dz and FD is the total drag applied on the bed. For

steady, two-dimensional flow over a rough bed, the friction
factor computes from

f = 48

Re

1

N︸ ︷︷ ︸
fviscous

+ 48

Q2N

∫ zws

zt

(zws − z)φ〈−u′w′〉 dz︸ ︷︷ ︸
fReynolds shear stress

+ 48

Q2N

∫ zws

zt

(zws − z)φ〈−ũw̃〉 dz︸ ︷︷ ︸
fdispersive shear stress

. (7)

Here, N = 3(Lτ /H )2 + (τ02D)/(τ0)(Lφ/H )3 - (h/H )3 is a
parameter characterizing flow–rough-bed interaction, where
Lτ = [

∫ zc

zt
(zws − z)2FD dz/

∫ zc

zt
FD dz]0.5 is a drag length scale,

τ02D = ρgHSb while Sb is bed slope, Lφ = [3
∫ zws

zt
(zws −

z)2(1 − φ) dz]1/3, and Q = UbH . Here, zws, zt , and zc are
water surface elevation, roughness trough elevation, and
roughness crest elevation, respectively. More details for the
calculation of these terms can be found in [20]. The contri-
bution of each term in Eq. (7) to f is presented in Fig. 2.
As expected, the viscous contribution is the smallest and
the dispersive shear stress contribution is less than that of
the Reynolds shear stress for both geometries. The friction
coefficient is larger for λ/k = 10.4 as the flow separates at
the bar and reattaches to the bed after the recirculation zone,
generating a positive velocity gradient adjacent to the bed,
whereas in the flow over λ/k = 5.2 there is no flow separation

TABLE II. Contributions to the friction factor f .

λ/k f fviscous fReynolds Shear Stress fDispersive Shear Stress

5.2 0.57 1.0% 89.0% 10.0%
10.4 0.83 0.6% 81.8% 17.6%
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FIG. 3. Integrands representing the contribution of Reynolds and
dispersive shear stresses to the friction factor f .

or reattachment between bars [39]. The exact magnitude (in
percent of the total) of each contribution is shown in Table II.
The difference between ftotal calculated as the sum of the
contributions and ftotal calculated using the Darcy-Weisbach
formulation is less than 10%. By increasing bar spacing, the
Reynolds shear stress contribution to f decreases while the
dispersive shear stress contribution to f increases. Investi-
gating the wall-normal variations of the integrands in the
last two terms in Eq. (7) reveals the contribution of these
shear stresses to f at different wall distances. As shown in
Fig. 3, the Reynolds shear stress integrand is larger in flow
over λ/k = 10.4 than that in the flow over λ/k = 5.2. The
maximum magnitude of the Reynolds shear stress integrand
occurs near the bar crest for both geometries. The dispersive
shear stress integrands are similar in both geometries under
the crest of the bars having a peak near z/k = 1. However, for
the flow over λ/k = 10.4, there is a second peak above the bar,
leading to a larger contribution of this stress to f in this case.
The distribution and generation of Reynolds and dispersive
shear stresses will be examined to explore the reason for these
differences.

TABLE III. Magnitudes and locations of maximum Reynolds
shear stress.

λ/k 〈−u′w′〉+
max x/k z/k

5.2 0.83 4.30 0.92
10.4 0.88 3.10 0.83

B. Spatial variation of turbulent and dispersive shear stresses

Figure 4 shows time- and spanwise-averaged normalized
Reynolds and dispersive shear stresses in the streamwise–
wall-normal plane. In both cases, the Reynolds shear stress
is the largest at a wall distance around the bar height. The
circles in Fig. 4 represent the location of the maximum
〈−u′w′〉+, and their magnitudes and locations are mentioned
in Table III. These magnitudes and locations are averaged
for the two circles in the flow over λ/k = 5.2. Consistent
with Fig. 3, 〈−u′w′〉+max is smaller for λ/k = 5.2, while in
this case, the maximum occurs at larger x/k and z/k. Fig-
ure 4(b) shows that the standing wave at the water surface
in λ/k = 10.4 moves this maximum location closer to the
bed. As shown in Figs. 4(c) and 4(d), 〈−ũw̃〉+ has several
positive and negative local peaks in the streamwise direc-
tion and the peaks are greater in the flow over λ/k = 10.4.
Above the crest of the bars, however, a large region of strong
positive 〈−ũw̃〉+ extends from the water surface to the bed,
leading to the generation of the second peak in Fig. 3(a).
There are local large magnitudes of negative and positive
〈−ũw̃〉+ in both geometries at the edges of the bars due to
large spatial variations in the time-averaged velocities in these
areas.

The normalized components of the dispersive shear stress,
〈̃u〉+ and 〈w̃〉+, are shown in Fig. 5. There are two distinct
layers, under and above the bar crest, in the distribution of
〈̃u〉+. Under the crest of the bars, in both geometries, just
downstream of the bars where the recirculation bubbles start
to develop, 〈̃u〉+ is negative. At the upstream of the bars,

FIG. 4. Contours of time- and spanwise-averaged (a),(b) Reynolds and (c),(d) dispersive shear stress.
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FIG. 5. Contours of temporal- and spanwise-averaged (a),(b) streamwise and (c),(d) wall-normal dispersive velocities.

there is a region of positive 〈̃u〉+. Above the bar crest, similar
regions but with opposite sign are generated. The magnitude
of 〈̃u〉+ is negligible for the λ/k = 5.2 case above the bar
crest. However, in the flow over λ/k = 10.4, 〈̃u〉+ is man-
ifested above the bar crest by the changes in water surface
elevations. A region of strong positive 〈̃u〉+ is established at
the upstream of the standing wave below the water surface
and, at the downstream of this wave, there is a strong negative
〈̃u〉+ extending downwards to the next bar in the downstream.
Figures 5(a) and 5(b) suggest that the changes in 〈̃u〉+ under
the bar crest are due to the presence of the bar, and, above that
height, are due to the changes at the water surface. The wall-
normal component of 〈̃uw̃〉+ does not have a layered structure.
The magnitude of 〈w̃〉+ is not considerable in the flow over
λ/k = 5.2, except in small areas near the leading edge of the
bars. In the flow over λ/k = 10.4, there are regions of strong
positive and negative 〈w̃〉+ signifying the main effects of the
changes in the water surface elevations on 〈w̃〉+. The negative
〈w̃〉+ at the upstream of the standing wave expand to the bed.
These results show that due to the small changes in the water
surface elevation in the flow over λ/k = 5.2, the weak 〈w̃〉+
leads to the generation of weak 〈−ũw̃〉+ [Fig. 4(c)] both above
and under the bar crest. In the flow over λ/k = 10.4, both 〈̃u〉+
and 〈w̃〉+ contribute to the generation of stronger 〈−ũw̃〉+
[Fig. 4(d)] as a result of larger changes in the water surface
elevation, with 〈̃u〉+ being larger than 〈w̃〉+.

A quadrant analysis is carried out to investigate and quan-
tify the contribution of velocity fluctuations to the generation
of Reynolds and dispersive shear stresses. Using this analysis,
the shear stresses are divided into four events based on the
sign of their fluctuating components [40]. The second and
fourth quadrants, Q2+(u′ < 0,w′ > 0) and Q4+(u′ > 0,w′ <

0), are the dominant events in the turbulent flows and are
known as ejection and sweep events, respectively. Ejection
events correspond to vertical flow away from the wall (w′ >

0) at low speed (u′ < 0) and sweep events are flows towards
the wall (w′ < 0) at high speed (u′ > 0). Table IV provides
the contributions of these four events to the shear stress

and confirms that ejections and sweeps dominate among all
four events for both shear stresses in both geometries. Q2+
and Q4+ have the largest contribution in the generation of
〈−u′w′〉+, with Q2+ being the largest. In the flow over λ/k =
5.2, consistent with the results of Toussaint et al. [10], Q̃2

+

has the largest contribution to 〈−ũw̃〉+, while Q̃4
+

has the
largest contribution to 〈−ũw̃〉+ in the flow over λ/k = 10.4.
This is due to significant water surface deformations in the
λ/k = 10.4 case which generates larger spatial fluctuation of
velocities than in the λ/k = 5.2 case and Toussaint et al. [10].
The contours of the normalized spanwise-averaged Q2+ and
Q4+ events in Fig. 6 represent that the highest magnitude of
the ejection and sweep events of the Reynolds shear stress
occurs at around the roughness height with the maximum Q2+
localized above the maximum Q4+ event. Regions of strong
ejection and sweep are established downstream of the trailing
edge of each bar and expand in the wall-normal direction
downstream of the bars. Due to the larger bar spacing in the
flow over λ/k = 10.4, these regions extend to a larger x/k.
This figure implies that the strong ejection and sweep events
related to 〈−u′w′〉+ are induced only by the bars and that the
water surface deformation does not have a significant contri-
bution in the generation of these events. Figures 7(a) and 7(c)
show, similarly, the negligible contribution of the deformed
water surface to the generation of Q̃2

+
and Q̃4

+
in the flow

over λ/k = 5.2. However, Figs. 7(b) and 7(d) reveal a more
significant effect of the water surface deformation on inducing
especially sweep events in the bulk flow over λ/k = 10.4.
At the upstream of the standing wave, a relatively strong
sweep event is established and extended downward to the bed,
consistent with Figs. 5(b) and 5(d), where a strong positive
〈̃u〉+ and relatively strong negative 〈w̃〉+ are generated at the
same location. This explains the reason that Q̃4

+
has the

largest contribution to 〈−ũw̃〉+ in the flow over λ/k = 10.4.
To summarize, the negative 〈w̃〉+ induced by the downward
motion of the water surface along with the large positive 〈̃u〉+
at the upstream of the standing wave lead to the generation
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TABLE IV. Quadrant contribution to Reynolds and dispersive shear stress.

λ/k Qi+ Contribution to 〈−u′w′〉+ Q̃i
+

Contribution to 〈−ũw̃〉+

5.2 Q1+(u′ > 0, w′ > 0) −21.2% Q̃1
+

(̃u > 0, w̃ > 0) −30.7%

5.2 Q2+(u′ < 0, w′ > 0) 84.8% Q̃2
+

(̃u < 0, w̃ > 0) 83.1%

5.2 Q3+(u′ < 0, w′ < 0) −28.5% Q̃3
+

(̃u < 0, w̃ < 0) −26.0%

5.2 Q4+(u′ > 0, w′ < 0) 64.9% Q̃4
+

(̃u > 0, w̃ < 0) 73.6%

10.4 Q1+(u′ > 0, w′ > 0) −30.1% Q̃1
+

(̃u > 0, w̃ > 0) −37.3%

10.4 Q2+(u′ < 0, w′ > 0) 96.6% Q̃2
+

(̃u < 0, w̃ > 0) 68.6%

10.4 Q3+(u′ < 0, w′ < 0) −40.7% Q̃3
+

(̃u < 0, w̃ < 0) −21.8%

10.4 Q4+(u′ > 0, w′ < 0) 74.2% Q̃4
+

(̃u > 0, w̃ < 0) 90.5%

of strong downwash of the time-averaged flow through a Q̃4
+

event and locally large 〈−ũw̃〉+ in the flow over λ/k = 10.4.
These lead to the generation of larger 〈−ũw̃〉+ above the bar
crest in Fig. 3(b) and larger total contribution of the dispersive
shear stress to f in the flow over λ/k = 10.4, which renders
the combined effect of the water surface and bar spacing on
the generation of the friction coefficient in the shallow flows.

To study the dynamics of the flow over the current
roughness configuration, the double- (first temporal- and
then spatial-) averaged streamwise momentum equation is
calculated [2,3],

∂〈u〉
∂t

+ 〈w〉∂〈u〉
∂z

= − 1

ρ

∂〈p〉
∂x

− 1

ρ

〈
∂ p̃

∂x

〉
︸ ︷︷ ︸

Pressure Gradient(PG)

+ ν∇2〈u〉 + ν〈∇2ũ〉︸ ︷︷ ︸
Viscous Force(VF)

+ ∂〈−u′w′〉
∂z

+ ∂〈−ũw̃〉
∂z︸ ︷︷ ︸

Turbulent Inertia(TI)

. (8)

The right-hand side of Eq. (8) is decomposed into three terms
which contribute to the momentum transport. Turbulent iner-
tia (TI) has been shown to constitute the dynamically most
significant term in the mean momentum equation [41]. Where
TI is positive, there is momentum source and the flow is
accelerated, and where it is negative, there is momentum sink
and the flow is decelerated. In similar decomposition of the
RANS equation, TI is equal to the wall-normal gradient of the
Reynolds shear stress, while applying DA methodology,
the wall-normal gradient of the dispersive shear stress con-
tributes to TI as well. Comparison of these two shear stress
gradients gives a different perspective on the role of the
dispersive shear stress in the mean dynamics of the flow
[9]. Figure 8 shows the normalized wall-normal gradient of
Reynolds and dispersive shear stresses and their sum, TI+,
over λ/k = 5.2 and λ/k = 10.4. The abrupt changes at z/k =
1 are due to the sudden change in the geometry function φ,
which is multiplied with the shear stress gradients to account
for the effects of the roughness. Unlike the previous works
[8,9], the gradient of the dispersive shear stress is not equal to
or larger than the gradient of the Reynolds shear stress, except
around the bar height and near the water surface, and this is
attributed to the difference in the roughness type and effects of
the water surface. Under the crest of the bars, TI+ and both its

FIG. 6. Contours of spanwise-averaged (a),(b) Q2+ and (c),(d) Q4+ events.
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FIG. 7. Contours of spanwise-averaged (a),(b) Q̃2
+

and (c),(d) Q̃4
+

events.

components are positive, suggesting acceleration in the flow,
while just above the bar, the flow is decelerated. A strong
local form drag generated over the bars crest due to its square
shape leads to this deceleration. The large negative magnitude

of ∂〈−ũw̃〉+
∂z+ at z/k ≈ 1 contributes more than ∂〈−u′w′〉+

∂z+ to the
deceleration of the flow due to the sudden change in φ which
leads to the large spatial fluctuations of flow quantities in this
region. Above the roughness height, there is a local increase
in ∂〈−ũw̃〉+

∂z+ , which is stronger in the flow over λ/k = 10.4,
highlighting the interfering effect of the water surface in the
distribution of 〈−ũw̃〉+ in the bulk of the fluid [Fig. 4(d)].
However, this local increase does not lead to the acceleration
of the fluid as it is counteracted by a local negative peak of
∂〈−u′w′〉+

∂z+ . The flow is decelerated above the roughness crest.
Near the water surface, the changes in TI+ and its components
is larger in the flow over λ/k = 10.4. The large changes in
the water surface elevation lead to the generation of relatively
large TI+ and acceleration of the flow near the water surface
in this case.

FIG. 8. Profiles of the wall-normal gradient of Reynolds and
dispersive shear stresses.

C. Kinetic energy

In order to investigate the effects of double averaging and
the contribution of spatial variations in time-averaged veloc-
ities in the generation of kinetic energy, the DA total kinetic
energy is calculated as

1
2 〈uiui〉 = 1

2 〈ui〉〈ui〉︸ ︷︷ ︸
Mean Kinetic Energy(MKE)

+ 1
2 〈u′

iu
′
i〉︸ ︷︷ ︸

Turbulent Kinetic Energy(TKE)

+ 1
2 〈ũiũi〉︸ ︷︷ ︸

Wake Kinetic Energy(WKE)

. (9)

Equation (9) is calculated by substituting ui in the total ki-
netic energy 1

2 (uiui ) using Eq. (3) and applying first temporal
and then spatial averaging. The DA total kinetic energy is
decomposed into three terms: the mean kinetic energy (MKE),
turbulent kinetic energy (TKE), and wake kinetic energy
(WKE), corresponding to the effects of the mean flow, the tur-
bulent flow, and spatial variations of the time-averaged flow,

FIG. 9. Profiles of the mean, turbulent, and wake kinetic energy.
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FIG. 10. Contours of spanwise-averaged (a),(b) turbulent and (c),(d) wake kinetic energy.

respectively. These contributions in percentage to the DA total
kinetic energy for both geometries are provided in Table V.
MKE has the largest and WKE has the smallest contribution.
Increasing the bar spacing, the contribution of both TKE and
WKE increases and that of MKE decreases. The normalized
contributions are shown in the wall-normal direction in Fig. 9.
The maximum MKE+ occurs near the water surface, mainly
due to the local increase in the mean streamwise velocity at the
upstream of the standing wave near the water surface [30,39].
On the other hand, the maximum TKE+ and WKE+ occur at
the bar crest as the sudden change in the geometry function φ

leads to the enhancement of the temporal and spatial velocity
fluctuations (Figs. 5(b) and 5(d), and [7,8,10]). Figure 10
presents contours of time- and spanwise-averaged normalized
turbulent and wake kinetic energy. There is a high magnitude
of turbulent kinetic energy at the height of the bar crest and
a localized peak under the standing wave in the flow over
λ/k = 10.4. The large magnitudes of WKE+ are localized at
the bar edges. In addition, for λ/k = 10.4, there is an area of
relatively large WKE+ at the upstream of the standing wave
which corresponds to the local increase of 〈̃u〉+ and 〈w̃〉+
in Figs. 5(b) and 5(d). These figures suggest that similar to
the Reynolds shear stress [Figs. 4(a) and 4(b)], the Reynolds
normal stresses are enhanced by the presence of the bars and
have local maxima at the bar height. The spatial variations of
the normal stresses, however, are influenced by both the bar
and the changes in the water surface elevation.

TABLE V. Mean, turbulent, and wake kinetic energy contribution
to the total kinetic energy.

λ/k MKE TKE WKE

5.2 88.1% 11.2% 0.7%
10.4 83.0% 12.9% 4.1%

IV. CONCLUSION

The results of large-eddy simulations of turbulent free-
surface flow over spanwise-aligned square bars in an open
channel flow have been analyzed to investigate the spatial
variation of Reynolds and dispersive shear stresses and their
effects on the streamwise momentum balance and the friction
factor. Two bar spacings, corresponding to transitional and
k-type roughness at similar Re and Fr, have been considered.
The largest contribution to the friction factor f stems from the
Reynolds shear stress in both geometries, while by increasing
the bar spacing, this contribution decreases and that of the
dispersive shear stress increases. This is due to the presence
of the standing wave at the water surface in the flow over
k-type roughness which generates a region of strong positive
dispersive shear stress upstream of the wave extending from
the water surface to the bed. The changes in the water surface
elevation in this case, which is insignificant in the flow over
transitional roughness, along with the roughness effects lead
to the generation of stronger components of the dispersive
shear stress, especially above the bar crest. Quadrant analysis
has revealed that these strong components induce a downwash
in the time-averaged flow at the upstream of the standing
wave, leading to the larger contribution of dispersive shear
stresses to the friction coefficient in this case. Furthermore,
dominant ejection and sweep events of the Reynolds shear
stress are not affected by the water surface and are only
influenced by the roughness in both geometries. The sum of
the wall-normal gradients of Reynolds and dispersive shear
stresses has demonstrated that the mean flow accelerates un-
der the bar crest and decelerates above it. The contribution of
dispersive shear stress in the acceleration and deceleration of
the flow is small, except near the bar crest and water surface.
Near the bar crest, the dispersive shear stress contributes to
the deceleration of the flow and, near the water surface, it
contributes to the acceleration of the flow. The decomposition
of the total kinetic energy has revealed the effects of mean, tur-
bulent, and spatial variations of the time-averaged velocities.
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The mean flow has the largest contribution and, by increasing
the bar spacing, it decreases while the contribution of turbu-
lent and wake kinetic energy increases. The large contribution
of the turbulent kinetic energy is induced by the changes made
by the roughness in the flow. Both the roughness and water
surface contribute to the generation of wake kinetic energy.
These results suggest that in flows with intermediate relative
submergence and shallow flows, significant water surface de-
formation results in large spatial variation of the flow, and
hence its time-averaged quantities. Modifying bed topogra-
phy or relative submergence in engineering designs could
be beneficial, for example, by reducing friction factors and
hence energy consumption. In flow monitoring applications,

examining the water surface deformation can be employed for
predicting hydrodynamics of the flow, for example, the bulk
flow and changes in relative submergence which are especially
helpful in predicting extreme conditions such as flooding.
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