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Abstract

Psycholinguistic research uses eye-tracking to show that polysemous
words are disambiguated differently from homonymous words, and that
ambiguous verbs are disambiguated differently than ambiguous nouns.
Research in Compositional Distributional Semantics uses cosine distances
to show that verbs are disambiguated more efficiently in the context of
their subjects and objects than when on their own. These two frameworks
both focus on one ambiguous word at a time and neither considers
ambiguous phrases with two (or more) ambiguous words. We borrow
methods and measures from Quantum Information Theory, the framework
of Contextuality-by-Default and degrees of contextual influences, and
work with ambiguous subject-verb and verb-object phrases of English,
where both the subject/object and the verb are ambiguous. We show that
differences in the processing of ambiguous verbs versus ambiguous nouns,
as well as between different levels of ambiguity in homonymous versus
polysemous nouns and verbs can be modelled using the averages of the
degrees of their contextual influences.

Keywords: Contextuality, Ambiguity, Senses and Meanings,
Quantum Mechanics
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1. Introduction

Dealing with ambiguity is the stronghold of Psycholinguistics where experi-
ments such as eye-tracking are performed to measure the delay in committing to
the interpretation of ambiguous words. This delay has been found to be related
to different types of interpretations a word has. Here, we have interpretations
that are senses and interpretations that are meanings (Klepousniotou, 2002).
The sense interpretations are used for polysemous words. For instance, a
word such as newspaper both refers to the physical object – pages of news
put together– or to the content – the news that is printed on these pages. An
example of object interpretation is in the phrase "I put the newspaper on
the table", an example of the content interpretation is in the phrase "I learnt
much from the newspaper today". The meaning interpretations are used for
homonymous words. An example of which is the word spring and its meanings
metal coil or season after winter.

Research in Psycholinguistics has also shown that commitment is delayed
more for words with multiple senses than for words with multiple meanings
(Frazier and Rayner, 1990; Pickering and Frisson, 1999, 2001a) and that
the higher the degree of overlap in senses, the higher the delay in semantic
commitment (Ekaterini Klepousniotou and Romero, 2008). Research in
Psycholinguistics has also shown that words with different grammatical types
have different effects on the semantic commitment delay. In particular, it has
been shown that noun disambiguation adheres to a shorter delay, as a reader
uses their immediate context to decide which interpretation to commit to,
whereas verb disambiguation takes longer, as the reader often has to go over
the whole sentential context and sometimes even do so a few times (Pickering
and Frisson, 2001b). More precisely, frequent nouns are often immediately
disambiguated using the dominance of their interpretations, whereas most
verbs need large contexts and it is common that a sentence with an ambiguous
verb is read and reread before any meaning is committed to.

Distributional semantics deals with the process of disambiguation using
statistical measures and machine learning algorithms on the co-occurrence data
collected from usages of words in large corpora of text. This line of research
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is motivated by early ideas of Harris (1954) and Firth (1957) that words that
often occur in the same context have similar meanings and that one can know
a word by the company that it keeps. In the 90’s, Distributional semanticists
employed a range of methods for disambiguating word meaning and notably a
state of the art hierarchal tree clustering algorithm (Schütze, 1998). Nowadays,
disambiguation tasks are best performed by using contextualised autoencoder
embeddings such as BERT (Devlin et al., 2019).

Similar to the research in Psycholinguistics, grammatical roles of words
have also been taken into account, by moving from disambiguation at the
word level to disambiguation at the phrase and sentence levels. Here, the
original work of Mitchell and Lapata (2008) showed that when ambiguous
verbs are placed in the context of their subjects or objects, a higher degree of
correlation is observed between the distances of their distributional semantic
representations and similarity degrees obtained from human annotations.
Subsequent work in Compositional Distributional Semantics (Coecke et al.,
2010), extended this line of research from subject-verb and verb-object phrases
to transitive subject-verb-object sentences (Grefenstette and Sadrzadeh, 2011;
Kartsaklis and Sadrzadeh, 2016) and relative clauses (Sadrzadeh et al., 2013,
2014). In a nutshell, here the Distributional semantics of a sentence is a vector
obtained from the grammatical structure of the sentence and the semantic
representations of the words therein. The cosine distances between sentence
vectors are computed and used as a measure for disambiguation for the verbs
of the sentences. A bit more formally, if sentence 𝑆 with ambiguous verb 𝑉

has a larger cosine with sentence 𝑆1 with verb interpretation 𝑉1, we say that 𝑉
disambiguates to 𝑉1. If, on the other hand, 𝑆 has a larger cosine with 𝑆2 with
verb interpretation 𝑉2, it is said that 𝑉 disambiguates to 𝑉2.

Our research is related to both of the above frameworks which sit within
computational approaches to natural language semantics. From the Psycholin-
guistics side, we are interested in studying the disambiguation process of
words that are ambiguous and have different grammatical roles. From the
Compositional Distributional side, we would like to work with phrases and
their grammatical structure rather than words in isolation. The difference
between our work and the Psycholinguistics research is that we work with
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phrases wherein both words are ambiguous, rather than focusing on one
ambiguous word, either noun or verb, at a time. The difference between
our work and the research in disambiguation in Compositional Distributional
semantics is that we do not consider ambiguous verbs in the context of their
unambiguous subjects and objects. Our goal is to work with ambiguous verbs
in the context of their ambiguous subjects and objects. Similar to the lines of
work done in Psycholinguistics and Compositional Distributional semantics,
we would like to come up with a measurable quantity that tells us which of the
words in the phrase, noun or verb, polysemous or homonymous, contributes
more to the disambiguation process of the phrase. Instead of the notion of
delay in semantic commitment from Psycholinguistics or differences in cosine
distances used by Compositional Distributional semanticists, we will work
with measures of contextual influences coming from research in contextual sce-
narios of Quantum Information Theory. We will use ambiguous polysemous
and homonymous nouns and verbs identified and studied in Psycholinguistics
research to form our ambiguous phrases and the original notion of context
from Distributional semantics, i.e. the window of words before or after a word.
In order to take the grammatical roles directly into account, we narrow this
window to one word before or after, which in the case of an ambiguous verb
becomes its ambiguous subject/object.

This paper is a proof of concept that shows the mathematical theory
of CbD-contextuality, a generalisation of settings originally developed for
the study of contextuality in Quantum Information Theory, can be used
to provide a statistical characterisation of the effect of subjects, objects,
and verbs on meaning selection in ambiguous subject-verb and verb-object
phrases. We are using notions and formulae from Quantum theory to analyse
linguistic phenomena, and the linguistic phenomena we study come from
Psycholinguistics, a subfield of Cognitive Science. The paper thus lies at the
Intersection of natural language, Physics, and Cognitive Science, the range of
topics covered by the SemSpace series of workshops.

Which Quantum Contextuality Framework? Quantum contextuality has
different interpretations in different frameworks. The well-known Bell theorem
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(Bell, 1964), supported by experimental data (Hensen et al., 2015), showed
that if Quantum systems need to have a “reality” independent of the observers,
one should allow interactions between systems to be unrestricted spatially
(non-local). In the setting of Bell, a set of inequalities were introduced that
offered a proof by contradiction that one cannot extend the probabilistic
models obtained from observations of Quantum systems to a deterministic
hidden-variable model. In Kochen and Specker (1967), the authors provide a
description of contextuality, now standard in Quantum Mechanics literature.
The sheaf-theoretic framework of contextuality (Abramsky and Brandenburger,
2011; Abramsky et al., 2015) starts from the observation that contextuality in
Quantum mechanics translates to “the impossibility of finding a global section
in special presheaves1", i.e. a model is contextual if some of its local features
cannot be extended globally.

All of the above systems rely on a principle called non-signalling, which
ensures that certain laws of Quantum mechanics hold in experiments such as
EPR (Einstein et al., 1935) and Bell and ensures that Quantum systems are
local, i.e. that there is no communication between the subsystems (e.g. qubits)
of. system (e.g. an entangled pair of qubits). This property is often ensured
by creating a geographical separation between the two subsystems and there is
no reason to assume that it should hold for natural language2. In fact, natural
language is not the only example of a system that may be contextual but which
does not satisfy the non-signalling property, psychological and behavioural
experiments show that these systems also do not satisfy it. For these reasons,
the setting of Contextuality by Default (CbD) (Dzhafarov and Kujala, 2016;
Kujala and Dzhafarov, 2016; Dzhafarov et al., 2015b) generalises the definition
of Quantum contextually to systems that are not necessarily non-signalling. In
this theory, one has a set of jointly distributed measurements for each qubit and
the two qubits as a whole are contextual when it is impossible to create a global
joint distribution. The term (non)-signalling is therein replaced by the CbD

1We will not make explicit use of presheaves in this work, but roughly speaking,
presheaves are structure preserving maps.

2In previous work (Wang et al., 2021), we go through this analogy in more detail
and provide concrete reasons why non-signalling cannot hold for analysing ambiguity in
natural language.
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term (in)consistent connectedness. One can also use the more intuitive term
(non)disturbance, which seems to be replacing the term (non)-signalling in the
Quantum Mechanics literature. For the rest this paper and to remain coherent
with our previous papers, we will carry on using the term (non)-signalling.

Connections to Previous and Other Work In previous work (Wang et al.,
2021), we showed that meaning combinations in ambiguous phrases can in rare
cases be modelled in the sheaf-theoretic framework for Quantum contextuality
(Abramsky and Brandenburger, 2011), where we found one example of a case
which was non-signalling and showed that this example is also possibilistically
contextual. Our calculations, nonetheless, showed that a large set of other
examples first explored in Wang (2020), and even the probabilistic variant
of this very same possibilistic example, were all signalling. This made us
make the move to the framework of Contextuality-by-Default (CbD), where
we showed that some of these probabilistic examples were CbD-contextual.

Our work also adds to the connections between natural language and
Quantum theory. In particular, density matrices (i.e. Quantum states) have
been used in representing ambiguity in a range of papers, such as in Blacoe
et al. (2013); Meyer and Lewis (2020), where connections between the
Quantum notion of superposition and ambiguities hidden in representations of
Distributional semantics have been studied. Further, in Piedeleu et al. (2015),
the authors encode different levels of lexical ambiguity as superposition or
statistical mixing, whereas in Correia et al. (2019, 2020), the authors use
the same methodology to propose a way of accommodating derivational
ambiguity. Quantum methods have found multiple other applications in
classical NLP tasks such as language modelling (Basile and Tamburini, 2017),
the contextuality and non-locality of our mental lexicon (Bruza et al., 2009),
and more recently in emotion detection (Li et al., 2020). Recent work of
Meichanetzidis et al. (2020) runs programs on real Quantum computers to
solve small datasets of natural language tasks and brings the field of Quantum
NLP one step closer to reality. Applications of Quantum methods are not
limited to natural language tasks, the role of Quantum formalisms has also
been explored in advancing machine learning in general, for example see the
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linework explored in Li et al. (2018, 2019).

Contribution and Scope In this paper, we take advantage of our previous
findings, systematically form a dataset of ambiguous phrases, and analyse the
properties of the disambiguation processes of these phrases using tools from
CbD. As mentioned above, our dataset of ambiguous phrases is obtained by
pairing ambiguous nouns with ambiguous verbs in either subject or object
positions. The verbs were chosen from the dataset of Pickering and Frisson
(2001b); Shutova (2010) and the nouns from Rayner and Duffy (1986);
Tanenhaus et al. (1979). For each pairing, we collected co-occurrence data
from the BNC (2007) and the ukWaC (Baroni et al., 2009) corpora. BNC is
an open-source text corpus comprising of 100 million words, spread across
documents of different nature (including press articles, fiction, transcription
of spoken language, and academic publications). UKWaC is a 2 billion word
corpus constructed from the Web limiting the crawl to the .uk domain. Both
BNC and UKWaC are part-of-speech tagged, hence, they provide grammatical
relations and the lemma forms of words, we mined the interpretation of phrases
manually.

After turning the raw co-occurrences mined from the above corpora into
probability distributions, we computed a quantity coming from CbD referred
to as direct influence, which roughly speaking determines how much each
word within a phrase contributes to the meaning selection for the phrase as
a whole. We then looked at the specific contributions from the verbs and
from the nouns, looking at their effect on the overall direct influence of the
phrase, using another CbD quantity Δ. Our computations showed that on
average, verbs have a larger direct influence on meaning determination of
the whole phrase than nouns. We also found out that the degree of direct
influence is larger for verbs with multiple meanings (homonymous verbs) than
verbs with multiple senses (polysemous verbs). This finding brought us back
to the Psycholinguists finding of Pickering and Frisson (2001b), which via
eye-tracking had shown that the disambiguation of verbs with multiple senses
needs a larger context than verbs with multiple meanings.

A similar investigation was not conclusive for nouns, however, as the



8 Wang et al.

homonymous and polysemous nouns of our dataset had a very small deviation
from the average direct influence of all the nouns combined. So we have
not been able to verify whether a similar conclusion holds for nouns, i.e.
that whether a noun with two senses contributes more to the disambiguation
process or a verb with two senses, or whether the equation reverts when
meanings are changed to senses.

Moving to a larger dataset and using larger corpora such as Google books
and news is a way to firstly provide a large scale experimentation and secondly
also verifying the hypothesis for nouns. Adding causality to the sheaf theoretic
framework, in the lines of recent work of Gogioso and Pinzani (2021), and
analysing these models there is another avenue for future work, as is finding
applications of our findings in metaphor detection and identification using the
datasets of Shutova (2010).

2. Definitions and Details from Quantum Contextuality

Measuring a system in Quantum theory corresponds to assigning a value to
a property of the system, e.g. that the particle was found to have position
𝑥. A system is then said to be contextual iff one cannot impose a joint
probability distribution that is defined across all global measurements and
which agrees with all of the observed statistics. In particular, this definition
only makes sense for non-signalling systems. These are systems in which
the probability distribution of a local measurement (marginal of the global
system’s distribution given all parties’ measurements) is always the same,
regardless of the choice of measurement of other parties. The non-signalling
condition ensures that the influence of the global measurement context is due
to “true contextuality” and not say, communications between parties. The first
formal studies of contextuality in Quantum Systems were presented by Bell
(1964), and by Kochen and Specker (1967).

Although the non-signalling approaches to contextuality provide elegant
methods for quantifying and reasoning about probabilistic systems, they are
too restrictive as one cannot use them to judge the contextuality of systems
that are signalling. This is in particular a major problem when dealing with
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experimental data, as experimental setups can only approximate probabilities
and are subject to noise. In such systems, observing two events with the
same frequency is highly unlikely and hence will often be signalling. The
mathematical framework of Contextuality-by-Default (CbD) (Dzhafarov and
Kujala, 2016; Kujala and Dzhafarov, 2016; Dzhafarov et al., 2015b) provides
tools for dealing with more general systems by extending its definition of
contextuality to also include signalling systems. In the CbD framework, a
system is said to be contextual if one cannot impose a globally joint probability
distribution across all contexts for which the local marginals agree with
maximal probability.

The work in Basieva et al. (2019); Cervantes and Dzhafarov (2018);
Dzhafarov et al. (2015); Dzhafarov et al. (2015a) applies the CbD framework to
a plethora of existing investigations on Quantum contextuality in psychological
and behavioural experiments, and in fact shows that many of them are not,
despite previous claims, truly contextual. Indeed, the apparent “Quantum
contextuality” of these settings were all results of the signalling nature of the
system.

Although a systematic study of contextuality in linguistic data has not
been done before, our general line of research does come closest to the concept
combination examples of Bruza et al. (2015), where the contextuality of
ambiguous concepts such as “apple chip” was considered. However, as shown
in Dzhafarov et al. (2015a); Dzhafarov et al. (2015), neither of the 23 examples
of Bruza et al. (2015) are truly contextual within the CbD framework. In
this paper, we go over examples discussed in newly accepted (and soon to
appear) work (Wang et al., 2021) that presents truly contextual combinations
but also analyse them using the rank-2 cyclic models of the CbD framework.
In addition, we also found a relationship between the degree of ambiguity of
the words in phrases and the degree of direct influence of the context.

3. Contextuality-by-Default

We work with the standard version of the formalism of Contextuality-by-
Default (CbD) and introduce it here, see Dzhafarov and Kujala (2016) for a
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more general introduction to the framework. In this setting, a content is a
measurement, or more generally a question with a known set of answers. The
context gathers which of these questions are asked, as well as extra information
about them, e.g. their order and information about the experimental setting.
Every content 𝑞𝑖 in a context 𝑐 𝑗 then gives rise to a random variable 𝑅

𝑗

𝑖
that

takes values from the possible answers to the question 𝑞𝑖 and returns the
probabilities with which these answers are observed in the context 𝑐 𝑗 . All
random variables in a given context are jointly distributed.

Our linguistic examples are analogous to the scenarios in behavioural
sciences studied under the umbrella term “Question Order Effect” (Wang and
Busemeyer, 2013; Dzhafarov et al., 2015; Kujala and Dzhafarov, 2016). Here
a specific type of CbD system, called cyclic systems are modelled. A cyclic
system has a rank 𝑛 where each context has exactly 𝑛 contents, and every
content is exactly in 𝑛 contexts. Since we work with pairings of verbs with
only one to its left or right, in other words, as its subject or object, we work
with rank 2 cyclic systems. Moreover, in such systems, all random variables
are assumed to take values in {±1}. Given a cyclic system, we define the
quantity Δ:

Δ =

𝑛∑︁
𝑖=1

���〈𝑅 𝑗𝑖
𝑖

〉
−
〈
𝑅

𝑗′
𝑖

𝑖

〉��� (1)

where 𝑗𝑖 ≠ 𝑗 ′
𝑖
∀𝑖 and 𝑅

𝑗𝑖
𝑖
, 𝑅

𝑗′
𝑖

𝑖
are well-defined; we write ⟨𝑅⟩ for the average of

the random variable 𝑅. This quantity gives an overall measure of how much
do the marginals corresponding to the same contents differ from each other.
Recall that the no-signalling condition is satisfied when these marginals are
exactly the same in every choice of context, then the quantity Δ can be seen as
a measure of the degree of signalling of the system (Basieva et al., 2019), as
we have Δ = 0 iff the system is non-signalling.

The probability distributions observed in each context will here be depicted
in tables such as Fig. 1. The global probability distributions are on the main
body of these tables, and the probability of a joint event is located in the
cell at the intersection of two individual events; for example in Fig. 1
𝑃
[
𝑅1
1 = −1, 𝑅1

2 = +1
]
= 𝑝3. The local probability distributions of each
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𝑅1
1 = −1 𝑅1

1 = +1 Marginal

𝑅1
2 = −1 𝑝1 𝑝2 𝑝1 + 𝑝2

𝑅1
2 = +1 𝑝3 𝑝4 𝑝3 + 𝑝4

Marginal 𝑝1 + 𝑝3 𝑝2 + 𝑝4

Figure 1. Example of a joint distribution of random variables 𝑅1
1,2 in a single

context 𝑐1.

𝑅1
1 = −1 𝑅1

1 = +1 Marginal

𝑅1
2 = −1 1/4 0 1/4

𝑅1
2 = +1 0 3/4 3/4
Marginal 1/4 3/4

(a) Context 𝑐1
𝑅2
1 = −1 𝑅2

1 = +1 Marginal

𝑅2
2 = −1 0 2/5 2/5

𝑅2
2 = +1 3/5 0 3/5
Marginal 3/5 2/5

(b) Context 𝑐2

Figure 2. Example of a cyclic system of rank 2.

individual variable, i.e. the marginals, are also depicted in these tables.

Example. Let us illustrate this with a concrete example. Suppose that we
are insterested in contents 𝑞1 and 𝑞2 measured in two distinct contexts 𝑐1 and
𝑐2; with the observations depicted in Fig. 2. Similar to the models that we
will consider in section 4, this example is a cyclic system of rank 2. Then the
degree of signalling of the system is determined by computing the quantity Δ

below:
Δ =

��〈𝑅1
1

〉
−
〈
𝑅2
1

〉�� + ��〈𝑅1
2

〉
−
〈
𝑅2
2

〉�� (2)

where, after the computation, we find out that Δ = 1.
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3.1 Contextual and Direct Influences

We want to understand and quantify the influence that the context has on
ambiguous words. But first, we need to clarify what we mean by context
influence.

One of the ideas behind the CbD approach is to extend the notion of
contextuality by allowing for the presence of direct influences of the context
on the results of measurements. However, for systems in which changing the
context results in a change of probability distribution, there is clearly some
contextual influence. Therefore, one question is to distinguish what counts as
“direct influence”, and what are “truly contextual influences”. In CbD, we want
to minimise the disparity between the content distributions; this disparity will
then be attributed to direct influences. We will refer to the minimal amount of
contextual influences allowed by the observed distributions as direct influence,
while contextual influence will designate any other kind of context effect, see
Fig. 3a.

The above intuitions led to the development of the M-contextuality frame-
work of Jones (2019), which also takes on ideas from the causal analysis of
contextuality of Cavalcanti (2018) and the (classical) theory of causality of
Pearl (2000). In Jones (2019), it was shown that every system of random
variables observed in the different contexts can be expressed as a Bayesian
network of the form depicted in Fig. 3b. Here, the context is treated as a
single random variable 𝐶 and each content 𝑞 is modelled by a random variable
𝐹𝑞. The latter is determined by the context 𝐶 and a latent variable denoted
by Λ. This variable Λ models the background knowledge of the system; in
our setting, this would for example include our knowledge of the world and
the overall frequencies of words and their interpretations. Such a Bayesian
network is referred to as a canonical model (Jones, 2019).

Now, given a canonical model which successfully describes the observed
probabilities of a cyclic system3, we quantify the direct influence of the context
variable 𝐶 on a given content 𝑞 as:

3This definition in fact works for every pair of contexts 𝑐𝑞 , 𝑐′𝑞 ∈ 𝐶; but we will not
make use of it in this work.
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(a) Details of the different types of
influences the content variables are
under.

C

Λ
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. . .Fq
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(b) Bayesian Network representation
of a canonical model.

Figure 3. Contextual and Direct influences. The labels 𝐶, 𝐹𝑞1, 𝐹𝑞2 and Λ in
both figures correspond to the random variables associated with the contexts,
contents and hidden variables respectively in M-Contextuality.

Δ𝑐,𝑐′
(
𝐹𝑞

)
= 𝑃

[
Λ ∈

{
𝜆 |𝐹𝑞 (𝜆, 𝑐) ≠ 𝐹𝑞 (𝜆, 𝑐′)

}]
(3)

Here, the 𝜆’s correspond to values that the latent random variable Λ can
take.

We now have two ways of quantifying the “direct influence” of the context
on a system, namely by using the “degree of signalling” Δ from CbD or by
using the direct influences of the just introduced canonical models Δ𝑐,𝑐′ (𝐹𝑞)
for each content 𝑞. As it turns out, these quantities are intrinsically related,
and the following is true:

Proposition 1. For a cyclic system with binary random variables taking values
in {±1}, we have:

Δ = 2
∑︁
𝑞

Δ∗
𝑐𝑞 ,𝑐

′
𝑞

(
𝐹𝑞

)
(4)

where Δ∗
𝑐𝑞 ,𝑐

′
𝑞

(
𝐹𝑞

)
is the minimum direct influence of the contexts 𝑐𝑞, 𝑐

′
𝑞
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associated with content 𝑞 across all the canonical models compatible with the
observed distribution. Moreover, Δ∗

𝑐,𝑐′
(
𝐹𝑞

)
is equivalent to:

Δ∗
𝑐,𝑐′

(
𝐹𝑞

)
= 1 −

∑︁
𝑣∈{±1}

min
{
𝑃[𝑅𝑐

𝑞 = 𝑣], 𝑃[𝑅𝑐′
𝑞 = 𝑣]

}
(5)

In order to prove Proposition 1 we need some results from CbD and M-
contextuality. In the CbD framework, given a cyclic system, or more generally
a system for which every content is part of exactly 2 contexts, we want to
minimise the probability 𝑃

[
𝑆𝑐𝑞 = 𝑆𝑐

′
𝑞

]
=
∑

𝑜∈𝑂 𝑃
[
𝑆𝑐𝑞 = 𝑆𝑐

′
𝑞 = 𝑜

]
(where 𝑂 is

the set of possible outcomes) for a globally imposed joint distribution 𝑆 across
all contexts (coupling), which agrees with the observed distributions.

Lemma 1. Given a content 𝑞 and contexts 𝑐, 𝑐′ containing 𝑞 and outcome 𝑜,
the maximum of 𝑃

[
𝑆𝑐𝑞 = 𝑆𝑐

′
𝑞 = 𝑜

]
for any coupling of the system is given by

min
(
𝑃
[
𝑅𝑐
𝑞 = 𝑜

]
, 𝑃

[
𝑅𝑐′
𝑞 = 𝑜

] )
.

Proof. We need a coupling to be compatible with the observed probability
distributions, i.e. that the marginals of 𝑆 coincide with the original distributions.
This condition means that:∑︁

𝑜′∈𝑂
𝑃

[
𝑆𝑐𝑞 = 𝑜, 𝑆𝑐

′
𝑞 = 𝑜′

]
= 𝑃

[
𝑅𝑐
𝑞 = 𝑜

]
(6)

for each context 𝑐, 𝑐′ sharing the content 𝑞, and for every value 𝑜 ∈ 𝑂. In
particular, this implies both of the following inequalities:

𝑃

[
𝑆𝑐𝑞 = 𝑜, 𝑆𝑐

′
𝑞 = 𝑜

]
≤𝑃

[
𝑅𝑐
𝑞 = 𝑜

]
(7)

𝑃

[
𝑆𝑐𝑞 = 𝑜, 𝑆𝑐

′
𝑞 = 𝑜

]
≤𝑃

[
𝑅𝑐′
𝑞 = 𝑜

]
(8)

and so:

𝑃

[
𝑆𝑐𝑞 = 𝑜, 𝑆𝑐

′
𝑞 = 𝑜

]
≤ min

(
𝑃
[
𝑅𝑐
𝑞 = 𝑜

]
, 𝑃

[
𝑅𝑐′
𝑞 = 𝑜

] )
(9)

In addition, given any system with content 𝑞, it is always possible to construct
a coupling for which 𝑃

[
𝑆𝑐𝑞 = 𝑆𝑐

′
𝑞

]
does attain its maximum (Theorem 3.3 of

Dzhafarov and Kujala (2016)). The above bound is therefore saturated.
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One consequence of this is that:

min 𝑃
[
𝑆𝑐𝑞 ≠ 𝑆𝑐

′
𝑞

]
= 1 −max 𝑃

[
𝑆𝑐𝑞 = 𝑆𝑐

′
𝑞

]
(10)

We now use one of the main results about the correspondence between
CbD and M-contextuality.

Proposition 2 (Proposition 8.4 of Jones (2019)). Given a measurement system
(i.e. context-content system with associated probability distributions), for each
compatible canonical model M, there exists a coupling 𝑆 s.t.:

Δ𝑐,𝑐′
(
𝐹𝑞

)
= 𝑃

[
𝑆𝑐𝑞 ≠ 𝑆𝑐

′
𝑞

]
(11)

for every content 𝑞. Conversely, for every coupling 𝑆, there exists a canonical
model M s.t. (11) is satisfied.

Corollary 1. The minimum of direct influence given a content 𝑞 and pair of
contexts 𝑐, 𝑐′, coincides with the minimum for 𝑃

[
𝑆𝑐𝑞 ≠ 𝑆𝑐

′
𝑞

]
.

We can now prove Proposition 1.

Proof of Proposition 1. By definition, we have:

Δ =
∑︁
𝑞

���〈𝑅𝑐𝑞
𝑞

〉
−
〈
𝑅
𝑐′𝑞
𝑞

〉��� (12)

Since only binary variables are considered for this definition to make sense,
each individual term of the sum is given by:���〈𝑅𝑐𝑞

𝑞

〉
−
〈
𝑅
𝑐′𝑞
𝑞

〉��� = ���𝑃 [
𝑅
𝑐𝑞
𝑞 = +1

]
− 𝑃

[
𝑅
𝑐𝑞
𝑞 = −1

]
− 𝑃

[
𝑅
𝑐′𝑞
𝑞 = +1

]
+ 𝑃

[
𝑅
𝑐′𝑞
𝑞 = −1

] ���
=2

���𝑃 [
𝑅
𝑐𝑞
𝑞 = +1

]
− 𝑃

[
𝑅
𝑐′𝑞
𝑞 = +1

] ��� (13)

Now, let
𝑚𝑞− = min

(
𝑃
[
𝑅
𝑐𝑞
𝑞 = −1

]
, 𝑃

[
𝑅
𝑐′𝑞
𝑞 = −1

] )
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and respectively

𝑚𝑞+ = min
(
𝑃
[
𝑅
𝑐𝑞
𝑞 = +1

]
, 𝑃

[
𝑅
𝑐′𝑞
𝑞 = +1

] )
Then, each of the above terms reduces to:���〈𝑅𝑐𝑞

𝑞

〉
−
〈
𝑅
𝑐′𝑞
𝑞

〉��� = 2
(
1 −

(
𝑚𝑞+ + 𝑚𝑞−

) )
(14)

Hence, following our previous corollary, the result follows.

Example. The minimal degrees of direct influence for our previous example
(Fig. 2), is computed as follows:

Δ∗
𝑐1,𝑐2

(𝐹1) =1 −
(
min

{
1

4
,
3

5

}
+min

{
3

4
,
2

5

})
=

7

20
(15)

Δ∗
𝑐1,𝑐2

(𝐹2) =1 −
(
min

{
1

4
,
2

5

}
+min

{
3

4
,
3

4

})
=

3

20
(16)

It is also easy to check that (4) indeed holds in this case as we have:

Δ∗
𝑐1,𝑐2

(𝐹1) + Δ∗
𝑐1,𝑐2

(𝐹2) =
1

2
=
Δ

2
(17)

4. Contextual Influences and Levels of Ambiguity

In natural language, words may have multiple unrelated interpretations
(homonymous words), e.g. spring can mean metal coil or the season, or
multiple related interpretations (polysemous words), e.g. book, which can
either mean the object or the content of a book. The former is usually just
referred to as meanings, whereas the latter is called senses. To avoid confusion,
we follow Pickering and Frisson (2001b) and use the term interpretation to
refer to either of these cases.

Using the CbD terminology, we take a content 𝑞𝑖 to stand for the inter-
pretation of a word in a phrase. A context 𝑐 𝑗 will include the phrase under
consideration, i.e. the words that constitute the phrase, the grammatical
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structure of the phrase, i.e. how the words are combined with each other,
as well as any extra information available, such as the corpus in which the
frequencies were observed. We will here consider cyclic models of rank 𝑛 = 2

where two ambiguous words can combine with each other in two different
ways to form phrases. In particular, we study the differences in the behaviour
of ambiguous verbs and nouns between verb-object and subject-verb cases.
To do so, we consider (verb, noun) pairs such that both the verb and the noun
have two different interpretations, and for which the two combinations of
interest have occurred at least once in the corpus; for example, the pair (ruin,
bank) should be valid as both to ruin a bank and the bank ruins make sense.
Ambiguous words can have more than two different interpretations; however,
to comply with the binary-variables-only setting of cyclic systems, we will
work with only two of its interpretations, which will be labelled by the values
{±1}; even though these labels are attibuted arbitrarily to interpretations, they
do not affect neither the degrees of direct influences nor the contextuality of
the models.

As corpus, we have considered both the BNC (2007) and the ukWaC
(Baroni et al., 2009) corpora. Our dataset was obtained by pairing each
ambiguous verb of Pickering and Frisson (2001b); Shutova (2010) with a
subject and an object. These were ambiguous nouns chosen from Rayner
and Duffy (1986); Tanenhaus et al. (1979). This procedure led to a pair of
ambiguous subject-verb and verb-object phrases, for each verb. For each such
pair, we looked at the overall level of direct influence Δ associated with it, as
well as the contributions from the verb and noun to Δ, which are respectively
denoted as follows:

Δ𝑣 ≡Δ∗
𝑐1,𝑐2

(𝐹𝑣𝑒𝑟𝑏) Δ𝑛 ≡Δ∗
𝑐1,𝑐2

(𝐹𝑛𝑜𝑢𝑛) (18)

The overall collected data is illustrated in Fig. 4 and has 90 entries in it. Note
that not all of the subject-verb and verb-object combinations led to a valid
model. For instance, some of the combinations had not occurred in either of
our corpora, and hence were not included in the dataset. We also decided not
to include combinations for which we did not have enough data, i.e. when



18 Wang et al.

the statistical uncertainty on Δ was bigger than the range of possible values.
Similarly, one may also note that the degrees of direct influence Δ,Δ𝑣 or Δ𝑛

alone do not judge the contextuality of the model4, but are instead measures
of how much the distributions of selected interpretations vary in different
contexts.

Figure 4. Direct influences for all rank-2 models considered by classes of models.
The overall height of each bar represents Δ of each combination pair, and the
error-bars are the corresponding uncertainty; for cases where Δ = 0 (e.g. cast
beam), only the error bar was depicted. The relative contributions from the verb
(2Δ𝑣) and the noun (2Δ𝑛) are also depicted as respectively the bottom and top
portions of each bar.

Our analysis showed that the average amount of overall direct influence Δ
was similar in all classes of models, namely: verbs with multiple meanings
combined with nouns with multiple meanings, verbs with multiple mean-
ings combined with nouns with multiple senses, verbs with multiple senses
combined with nouns with multiple meanings and finally verbs with multiple
senses combined with verbs with multiple senses. These values are shown
in Fig. 5a, and are all found to be about 1.35 (within half of the standard

4However, it can be shown that models with Δ > 2 cannot be contextual within the
CbD framework.
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error of the mean). Therefore, the value of the quantity Δ by itself cannot
be used to extract features of phrases with different levels of ambiguity; for
example, it cannot be used to distinguish between senses-senses combinations
and meanings-meanings combinations.

The only notable difference that we found was regarding the standard
deviation of these direct influences. Indeed, our dataset showed a larger spread
of the observed direct influences whenever a verb with multiple senses and/or
a noun with multiple meanings were combined, see Fig. 5b. This shows that
the behaviour of such combinations would be somehow more variable than
for other combinations. Given the size of our dataset, however, we should be
cautious with these results. A larger scale experiment is required in order to
verify this claim for all possible ambiguous subject-verb, verb-object phrases.

PPPPPPPPPNouns
Verbs

Meanings Senses Overall

Meanings 1.24 ± 0.29 1.36 ± 0.15 1.33 ± 0.14

Senses 1.50 ± 0.43 1.38 ± 0.36 1.41 ± 0.29

Overall 1.30 ± 0.25 1.36 ± 0.14 1.35 ± 0.12

(a) Means ofΔ for classes of models considered and their standard
errors.

Classes of models SD
Verbs with multi. meanings 1.04
Verbs with multi senses 1.20
Nouns with multi meanings 1.18
Nouns with multi senses 1.11

(b) Standard deviation (SD) of the direct influences collected for
different classes of models.

Figure 5. Statistics of the total direct influences for different classes of models.

Let us now focus on the ratios of direct influences due to the verbs and the
nouns. Without loss of generality, we will only consider the ratio5 2Δ𝑣/Δ; we

5The factor of 2 ensures the contributions from the verb and the noun add to 1.
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can see from (4) that the quantity 2Δ𝑛/Δ can be obtained as 1 − 2Δ𝑣/Δ. In
addition, we ignored the data points for which Δ = 0, as the ratio 2Δ𝑣/Δ is not
defined for these cases6.

Relative contributions of the noun and the verb to Δ did not vary much in
cases when the noun had multiple meanings or multiple senses; in both cases,
the average contributions were about 50% within statistical error, see Fig. 6b.
On the other hand, we observed a stark difference in the ratios when we looked
at the level of ambiguity of the verb, see Fig. 6a. The contributions attributed
to the verb are about 70% when the verb had multiple meanings, whereas they
averaged at about 50% when the verb had multiple senses. We found that the
average ratio Δ𝑣/Δ is strictly higher for verbs with multiple meanings than for
verbs with multiple senses with more than 95% confidence.

The difference between processing homonymous vs polysemous nouns
is mostly about their frequency effects (Frazier and Rayner, 1990). That is,
whenever a homonymous noun is encountered, its meanings are activated with
different thresholds depending on how common each meaning is. For instance,
when the word spring is encountered, both of its meanings are activated,
but the season meaning has a higher threshold than the coil meaning. The
intended meaning is thereafter selected using a larger linguistic context (e.g.
the rest of the sentence)(Dopkins et al., 1992; Duffy et al., 1988; Binder and
Morris, 1995). For polysemous nouns, however, research shows that subjects
originally select an underspecified sense with no special threshold (Frazier
and Rayner, 1990; Pickering and Frisson, 1999; Frisson and Pickering, 2009),
then, as was the case for homonymous nouns, the appropriate sense is selected
from a larger context. In the rank-2 examples that we considered, the same
noun is used in two different ambiguous phrases, but the noun has a different
grammatical role in each phrase. One can then only observe context effects
since we are working with the same noun and the only changes in frequency
are obtained via the different grammatical roles that it is taking, i.e. subject

6It can be shown that these points can also be included in the analysis by fixing the
ratios 2Δ𝑣/Δ = 2Δ𝑛/Δ = 50% (i.e. assuming that both contents are equally “responsible”
for the identical distributions), and we verified that doing so does not change the qualitative
aspects of our results.
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(a) Impact of the ambiguity of verbs.

(b) Impact of the ambiguity of nouns.

Figure 6. Relative contributions of the verb content to the overall direct influence
given different levels of ambiguity for the verb or the noun. The left-hand figures
correspond to the contributions of the verb-content; averages for each of the levels
of ambiguity are shown with dotted lines. The right-hand figures correspond
to the distributions of these data points, again for different levels of ambiguity;
the 66%-confidence intervals for the means are depicted by the hatched area; the
fitted normal distributions are also plotted.

vs object. These differences are observed in each example individually (i.e.
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whenever Δ𝑛 ≠ 0), and average out in the same manner no matter if the noun
is homonymous or polysemous.

For verbs, on the other hand, frequency effects are not as clearly present as
was the case for nouns, and instead, a delay in commitment to an interpretation
is observed (Pickering and Frisson, 2001b). In particular, for verbs with
multiple meanings, the delay mostly lasts until the arguments of the verb are
seen. In our examples, we are able to observe this effect despite the short length
of the phrases, since each of our phrases has at least one of the arguments of its
verb, and it is this argument that changes between the two contexts. As shown
above, the verb has, on average, a larger direct influence when compared to
its noun argument. This degree of direct influence is considerable for verbs
with multiple meanings but less so for verbs with multiple senses. Indeed
as Psycholinguists show, the disambiguation of verbs with multiple senses
is delayed to the end of the sentence and a larger context is needed for them
(Pickering and Frisson, 2001b).

5. Conclusions and Discussion

The semantically ambiguous nature of a word gives rise to a natural inter-
pretation of context-dependent probability distribution for each word. This
distribution represents the probabilities of choosing certain interpretations of
the word when making sense of a phrase. Studying the related probabilities
enables us to quantify the variations of choices of interpretations as the context
changes. The notion of contextuality developed in Quantum theory and the
mathematical theories that come with it offer a setting that formalises and
reasons about these variations, e.g. models that explain paradoxes such as
Bell and CHSH (Bell, 1964; Kochen and Specker, 1967) and models that
explain data coming from behavioural and psychological systems (Basieva
et al., 2019; Cervantes and Dzhafarov, 2018; Dzhafarov et al., 2015; Dzhafarov
et al., 2015a). In this paper, we applied these latter models to analyse natural
language data.

Our work in Wang et al. (2021) showed that “true contextuality" does also
arise in natural language, namely when words with more than one interpretation
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combine with each other in the same phrase. As the main focus of this paper,
we studied the differences between the verb-object and subject-verb contexts,
where both verbs and objects/subjects are ambiguous. We measured the
degree of contextual influences of these phrases, using formulae from the
Contextuality-by-Default and M-Contextuality frameworks. We found out
that the amount of direct influence of a word within a phrase provides us with
insights into the behaviour of ambiguous verbs and nouns in context. Indeed,
while the variations of the distributions for nouns only seemed proportional to
the overall change of distribution for the whole phrase, the same variations
for verbs did depend on whether the considered interpretations of the verb
had different meanings or different senses. The choice of interpretations did
vary considerably more for the verbs in cases where the verb had multiple
meanings. Inline with the findings of Pickering and Frisson (2001b), this can
be used to argue that verbs play a more complex role in disambiguation than
nouns, and that the degree of ambiguity of these verbs influences the process
of interpretation selection.

Following more recent developments in the CbD framwork (Kujala and
Dzhafarov (2019); Dzhafarov et al. (2020)), in previous work (Wang et al.
(2021)), we computed the degree of contextuality of our contextual examples;
these were 1

3 for the adopt boxer example and 7
30 for the throw pitcher example.

One can also compute the degree of noncontextuality of the entries of our
dataset and relate the findings to the linguistic features under study. Another
measure worth investigating in this regard is the CbD counterpart of the
contextual fraction of the sheaf theoretic models of contextuality, introduced
in Dzhafarov (2020).

Our findings were limited by the size of the dataset and the sample size of
the occurrences of each entry in corpora. We would like to undertake a larger
scale experiment either by using larger corpora or via human judgements.
Different types of contexts can also be considered; for example, higher rank
models could be used to study the effect of the context given a syntactic
structure (e.g. verb-object, adjective-noun, . . . ). No contextual instances
of rank-4 models have been found yet, but preliminary evidence seems to
suggest that the qualitative results of Section 4 can be extended to such models.
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Furthermore, in line with the work done in Sadrzadeh et al. (2018); Barker
and Shan (2015); Pustejovsky (1995), one can study the effect of context
evolution on meaning selection. Systematic modelling of the interactions
between statistics of contexts and linguistic structure is a future direction
made possible by moving to sheaf theoretic semantics, e.g. see Abramsky
and Brandenburger (2011); Abramsky and Sadrzadeh (2014); this constitutes
work in progress. In this realm, the use of continuations (Barker and Shan,
2015) has led to the development of modular relationships between context
and structure, where following research in programming language semantics,
natural language computations are modelled by monads that interact with
context via a set of inductive definitions. The main goal of continuation
semantics of natural language has, however, always been to explain the
ambiguities arising from quantification in natural language, in sentences such
as "every man likes a car". Ambiguities coming from senses and meanings
of polysemous and homonymous words and phrases have not been taken into
account and formalised. Further, common to most other formal semantics
frameworks, continuation semantics does not work with statistics of contexts
coming from large scale data. We hope our line of research is one that unites
linguistic structure with ambiguities and their contextual influences.

Finally, applications of this work to mainstream natural language tasks,
such as automatic metaphor detection is also a future goal. Finally, the study of
this paper was in English, but the methodology is applicable to other languages.
Using the same methodology we can model phrases and sentences that have
different word orders, for instance in verb final languages such as German or
Farsi. We can also analyse languages with free word order such as Latin or
Hungarian.
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A. Complete Dataset

(Verb, Noun) Δ err(Δ) 2Δ𝑣

(admit, band) 2.00 1.41 0.00
(cast, band) 0.80 0.67 0.70
(cast, bank) 2.00 1.22 1.00
(cast, beam) 0.00 1.07 0.00
(cast, coach) 4.00 1.41 2.00
(cast, yarn) 0.00 1.12 0.00

(file, cabinet) 2.00 1.01 2.00
(file, plant) 1.00 0.87 1.00

(file, volume) 1.50 0.87 1.50
(plug, band) 1.33 0.41 0.67

(saw, cabinet) 0.32 0.29 0.28
(saw, volume) 0.41 0.60 0.41
(tap, cabinet) 2.00 1.22 1.00

(tap, pen) 0.00 1.03 0.00

Figure 7. Verb with mult. meanings
- Nouns with mult. meanings

(Verb, Noun) Δ err(Δ) 2Δ𝑣

(admit, letter) 2.00 1.22 2.00
(admit, press) 2.00 1.41 0.00
(cast, letter) 2.00 1.15 2.00
(pen, letter) 0.00 0.59 0.00

Figure 8. Verb with mult. meanings
- Nouns with mult. senses

(Verb, Noun) Δ err(Δ) 2Δ𝑣

(bury, letter) 0.00 1.41 0.00
(capture, fall) 2.00 1.10 1.20

(capture, press) 2.00 1.41 2.00
(catch, letter) 2.00 1.41 0.00
(copy, letter) 0.58 0.42 0.32
(follow, press) 2.00 1.22 0.00
(label, press) 0.00 1.15 0.00

(launch, letter) 2.00 1.41 0.00
(reflect, letter) 0.22 0.78 0.22
(seize, press) 4.00 1.15 2.00
(throw, letter) 0.40 1.10 0.00

Figure 9. Verbs with mut. senses -
Nouns with mult. senses

(Verb, Noun) Δ err(Δ) 2Δ𝑣

(adopt, band) 2.00 1.22 2.00
(adopt, bank) 0.00 1.00 0.00
(adopt, boxer) 1.87 0.53 0.43
(adopt, coach) 1.00 1.12 1.00

(bill, band) 0.00 1.12 0.00
(bury, boxer) 2.50 0.87 1.00

(capture, band) 0.80 0.63 0.27
(capture, bank) 1.20 0.63 0.80
(capture, organ) 2.00 1.41 2.00
(capture, palm) 0.32 0.39 0.00
(capture, plant) 1.72 0.40 0.17
(capture, port) 3.89 0.75 1.89
(clean, organ) 1.00 0.71 0.67
(climb, boxer) 1.87 1.03 0.93
(climb, palm) 0.00 1.41 0.00
(climb, plant) 0.10 0.16 0.04
(copy, band) 0.50 0.60 0.44

(follow, band) 2.00 0.91 0.00
(follow, bank) 4.00 1.41 2.00
(follow, trip) 0.00 1.22 0.00
(grasp, band) 4.00 1.41 2.00
(grasp, palm) 0.00 1.41 0.00
(inherit, bank) 2.00 0.71 0.50
(inherit, boxer) 2.00 1.15 0.00
(inherit, plant) 1.88 1.03 1.75
(launch, band) 0.46 0.36 0.46
(launch, coach) 0.71 0.63 0.71
(launch, port) 1.17 0.76 0.67

(leak, pen) 0.00 1.41 0.00
(mount, band) 2.00 1.22 0.00

(mount, cabinet) 0.00 1.10 0.00
(mount, coach) 4.00 0.82 2.00
(mount, volume) 0.00 0.65 0.00
(mount, watch) 2.25 0.79 0.75
(reach, band) 1.54 0.59 0.51
(reach, bank) 3.20 0.23 1.34
(reach, coach) 1.63 0.47 0.93
(reach, pitcher) 2.00 1.15 0.00
(reach, plant) 1.59 0.19 0.13
(reach, port) 0.00 1.04 0.00
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(Verb, Noun) Δ err(Δ) 2Δ𝑣

(reflect, band) 2.00 0.91 1.33
(reflect, bank) 1.48 0.28 0.76
(reflect, beam) 2.00 0.77 1.00
(reflect, coach) 1.33 0.76 1.33
(reflect, trip) 0.00 1.41 0.00

(reflect, volume) 0.33 0.71 0.33
(ruin, plant) 1.33 1.15 1.33
(scent, plant) 0.00 0.49 0.00
(seize, bank) 1.33 1.15 0.00

(sketch, organ) 4.00 1.41 2.00
(stir, plant) 2.00 1.41 0.00

(tackle, bank) 0.00 1.15 0.00
(throw, band) 1.23 0.35 0.87
(throw, bank) 4.00 1.41 2.00
(throw, pen) 1.33 1.15 0.00

(throw, pitcher) 0.87 0.46 0.53
(throw, punch) 0.00 1.00 0.00
(throw, volume) 2.00 1.41 0.00

(wipe, bank) 0.00 1.22 0.00
(wipe, pen) 0.00 1.15 0.00

(wipe, plant) 0.25 1.06 0.25

Figure 10. Verb with mult. senses -
Noun with mult. meanings
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