
Compositional Satisfiability Solving in Separation Logic

Quang Loc Le

University College London, United Kingdom - quang.le@ucl.ac.uk

Abstract. We introduce a novel decision procedure to the satisfiability problem
in array separation logic combined with general inductively defined predicates
and arithmetic. Our proposal differentiates itself from existing works by solving
satisfiability through compositional reasoning. First, following Fermat’s method
of infinite descent, it infers for every inductive definition a “base” that precisely
characterises the satisfiability. It then utilises the base to derive such a base for
any formula where these inductive predicates reside in. Especially, we identify an
expressive decidable fragment for the compositionality. We have implemented the
proposal in a tool and evaluated it over challenging problems. The experimental
results show that the compositional satisfiability solving is efficient and our tool
is effective and efficient when compared with existing solvers.
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1 Introduction

Satisfiability solvers are essential to symbolic analysis in checking code correctness.
Such an analysis executes programs symbolically and constructs path conditions, those
constraints on values stored in program variables and expressed in terms of input pa-
rameters, that reach a program point. A satisfiability solver is then utilized for dis-
charging the path conditions to either detect and prune infeasible paths or to generate
inputs that exercise a buggy path. So far, while techniques to satisfiability solving for
heap-independent domains e.g., satisfiability modulo theories (SMT) [1], have been
well developed, there have been a few works targeting heap-oriented logics. Heap-
manipulating programs are often building-blocks of real-world applications (e.g., data
structures like arrays and trees). Especially, heap-related bugs are the sources of the se-
curity vulnerabilities; for instance, memory leak, double free and use-after-free caused
the vulnerabilities CVE-2020-12768, CVE-2019-3896 and CVE-2020-8649, respec-
tively, found in the Linux kernel recently. Therefore, satisfiability solver that supports
the symbolic execution over heap-manipulating programs is important.

Separation logic [16,36] formalism has been increasingly applied for reasoning
about heap-based programs. Combining with general inductive definitions and arith-
metic, it can concisely and precisely represent constraints over unbounded and complex
data structures (e.g., nested lists, AVL trees) [5,10,19,23,29,30,31,32]. The strength of
the logic is the support for compositional reasoning through the separating conjunction
operator, which allows reasoning about disjoint portions of heaps locally and indepen-
dently. The compositional reasoning has been applied through the frame rule and au-
tomated using the bi-abduction technique [9,19]. Implemented in Facebook’s Infer [8],
the compositional reasoning helps the verification scale up to millions of lines of code.



Our research question is whether the compositional reasoning introduced in [9]
could be applied to a satisfiability solver or not. The satisfiability problem in separa-
tion logic was studied in [5] for inductive definitions with heap-only constraints and
in [23] for those combining both heap and arithmetic (heap-independent) constraints.
Given a formula, these works essentially compute a base that characterises its satisfi-
ability precisely. In these works, a base generated for every formula is used to check
the satisfiability of the formula itself. Yet another challenge is to develop a satisfiability
solver that can derive a base for formula in a modular way: The base of a formula is
defined by terms of the bases of its parts and a means of combining them.

In this paper, we present a satisfiability solver with the capability of the composi-
tionality in array separation logic combined with general definitions of inductive pred-
icates and arithmetic properties. We study a decidable fragment with small heap model
property: The base of the formula is satisfied by those models, the interpretations of
variables, where heaps are minimal and finite. Especially, the base is a separation logic
formula without any inductive predicates. A base of a symbolic heap, a conjunctive for-
mula, is inductively computed from the bases of its conjuncts. In this endeavour, the
difficulty we face is to find a base for each inductive predicate defined with recursive
definitions. To overcome this challenge, we develop an algorithm as an application of
Fermat’s method of infinite descent. The method of infinite descent is a standard ap-
proach to Diophantine equations. This method is typically applied in two ways:

1. To show that an equation P has no solution. Let n be a positive integer, suppose
that whenever P pnq holds, there exists a positive integer m such that m ă n and
P pmq holds. Then, P pxq is false for all positive integers x.

2. To show that an equation P has a set of solutions. First, we need to hypothesize a
simpler equation Q which satisfies the following two conditions:

– Qpaq and P paq hold for some natural number constant a,
– and whenever Qpnq and P pnq hold, there exists a positive integer m such that
m ă n and both Qpmq and P pmq hold.

Then, P has the same set of solutions with Q.

The work in [21,23] used the first application to show the unsatisfiability of a formula.
Here, we apply the second approach to derive the base (like Q in the method of infinite
descent) through a so-called regular unfolding tree that represents a set of all equisat-
isfiable solutions of a formula. The bases of inductive predicates are computed once
and are independent of the contexts where they are used. Through compositionality,
we hope that our proposal could help to improve the performance of those symbolic
analyses (e.g., test case generation [29,31]) through the reuse of the bases to discharge
hundreds of satisfiability problems over the same set of predicate definitions.

Contributions Our primary contributions are summarised as follows.

– We propose a novel decision algorithm that can compositionally compute a base
for checking the satisfiability of a separation logic formula.

– We show that our solver is more expressive than all existing works (without the
separating implication). Alongside this, we describe a novel decision procedure for
Presburger arithmetic that includes nested inductive definitions.
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– We have implemented the proposal in a prototype solver, called S2S. Our experi-
mental results on those benchmarks taken from SL-COMP 2019, a competition of
separation logic solvers [37], and generated during the program verification show
that S2S with compositional reasoning is effective and efficient.

Organization The remainder of the paper is organized as follows. Sect. 2 illustrates our
ideas and presents motivating examples. Sect. 3 describes the fragment of separation
logic. Sect. 4 introduces regular unfolding trees, the intermediate structure constructed
to represent all solutions of a formula. In Sect. 5, we present our solver and identify se-
mantic conditions for decidability. We refer to the fragment satisfies these conditions as
SLIDLIAsem. The existing fragments presented in [3,5,14,18,39,21,23,41] are subsumed
by SLIDLIAsem straightforwardly. Sect. 6 shows SLIDLIA, a novel syntactic decidable
fragment of SLIDLIAsem. Sect. 7 presents the implementation and evaluation. Sect. 8
discusses related work. Finally, Sect. 9 concludes.

2 Basic Concepts and Motivating Examples

In this section, we first informally explain how to apply Fermat’s method of infinite
descent to compute the bases for inductive predicates. Next, we elaborate on our ideas
through two examples that are beyond the capability of existing works.

Generating bases via regular unfolding trees We show how to find a base, the “another
simpler related equation” in the second application of the method of infinite descent,
for an inductive predicate. We infer those bases through regular unfolding trees. Such a
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Fig. 1: A regular unfolding tree

tree is a (possibly infinite) tree of formulas: the
leaves are either base formulas - those without any
inductive predicates - or nodes (called buds) which
are linked back to inner nodes (called compan-
ions), the root of the tree is the formula being un-
folded, and nodes are connected to one or more
children through predicate unfolding i.e., replacing
an inductive predicate in the parents by its defini-
tion. Equivalently, an unfolding tree is a regular tree that is generated by a finite directed
(cyclic) graph. Fig. 1 shows an example of the regular unfolding tree, a tree with cycles
through back-links. In the back-link between B and C, B is a bud, C is a companion
and σ is a substitution between variables. B is linked back to C only when:

– There exist Ppx̄q P C and Ppȳq P B s.t. Ppȳq is in a formula unfolded from Ppx̄q;
– And there exists B1 such that B1 is equisatisfiable with B, B ñ B1 and B1σ ” C.

The base of an inductive predicate is generated as the disjunction of the leaf bases of
its regular unfolding tree. The most challenging task we have to solve is to compute
bases for subtrees involving cycles. For such a subtree, we need to find a base formula
that exactly characterises the set of solutions of the companion. In the following, we
illustrate how to compute such a base for the subtree rooted by C in Fig. 1.

1. If the base leaf D is unsatisfiable, then we infer the base as false .
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2. Otherwise, following the second application of infinite descent, we generate the
base as a base formula that exactly characterises the satisfiability of pD _B1q.

After that, the whole subtree rooted by the companion is replaced by the inferred base.
The process which computes bases for subtrees involving cycles is applied repeatedly
in a bottom-up manner until the tree does not contain any cycles. Then, the base of the
root is the disjunctive set of satisfiable leaves of the final tree.

Comparing to the base in [23] Using regular unfolding trees, the work in [23] gen-
erates bases to check satisfiability without compositionality. The main difference be-
tween this work and ours is in inferring the bases for subtrees involving cycles in the
second case above. To make a back-link with a bud B and a companion C, the algo-
rithm in [23] finds a substitution σ and a formula B1 for B ñ B1 and B1σ ” C.
As it might over-approximate B, it might generate over-approximated bases. Since D
is satisfiable, these bases are still complete when utilized to check the satisfiability of
companion C and its ancestors. If, however, they are combined with some formula, the
combined one might be over-approximated (as the frame rule says: P px̄q ñ base im-
plies P px̄q˚some formulañ base˚some formula). Hence, the solver in [23] may
produce false positives if it is for compositional solving. In contrast, ours ensures B1 is
equisatisfiable with B and the base generated exactly characterises the satisfiability of
the predicate provided. Our solver is thus sound and complete for compositionality.

First Example Let us consider the following satisfiability problem ∆0:

∆0 “ oddpx,y,mq ˚ oddpy,null,nq ^ pDk. m` n “ 2k ` 1q

where oddpx,y,mq is an inductive predicate representing singly-linked list segments
with head pointer x, ending pointer y, and odd length m. ∆0 is a symbolic heap. It
is a conjunction of a spatial formula, oddpx,y,mq ˚ oddpy,null,nq, and a pure (heap-
independent) formula, Dk. m`n “ 2k`1. The spatial one specifies two connected list
segments headed by x and y. The two lists are conjoined by the separating conjunction
˚ that tells us they lie on disjoint heap regions. The pure formula specifies that the sum
of the lengths of the two lists, m and n, is an odd number.

The inductive predicate odd is mutually defined as follows.

oddpx, y, nq ” Dx1. x ÞÑtx1u ˚ evenpx1, y, n´1q;
evenpx, y, nq ” emp^ x “ y ^ n “ 0_ Dx1.xÞÑtx1u ˚ oddpx1, y, n´1q;

Here, each inductive definition is a disjunction of symbolic heaps. A symbolic heap may
be existentially quantified. A heap formula is a conjunction of atomic predicates: emp
to specify empty heap, points-to predicates (e.g., x ÞÑtx1u above) to assert a singleton
heap, and occurrences of inductive predicates (e.g., evenpx1, y, n´1q above).

∆0 is unsatisfiable. This problem is challenging for the existing solvers. It includes
the arithmetic constraints which are beyond the fragments presented in Smallfoot [3],
SLSAT [5], SPEN [13], Asterix [27] and Harrsh [17]. Due to the mutual recursion, it is
beyond the capability of the algorithms presented in [14,18,39,41].

∆0 is in our decidable fragment. The proposed solver, S2S, proves its unsatisfiability
through the following two phases. First, it computes for predicate odd a base that pre-
cisely characterises its satisfiability. Here, a base is a (possibly disjunctive) separation
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oddpx,y,nq

∆1“xÞÑtX1u˚evenpX1,y,N1q^n“N1`1

∆2“x ÞÑtyu^n“N1`1^N1“0 ∆3

∆4

rX1{X3s

∆3“xÞÑtX1u˚X1 ÞÑtX2u˚oddpX2,y,N2q^n“N1`1^N1“N2`1
∆4“xÞÑtX1u˚X1 ÞÑtX2u˚X2 ÞÑtX3u˚evenpX3,y,N3q^n“N1`1^N1“N2`1^N2“N3`1

Fig. 2: Regular unfolding tree of oddpx,y,nq

logic formula without any inductive predicate occurrences. Secondly, it derives a base
∆10 for ∆0 by replacing every occurrence of odd by the base inferred in the first phase.
As ∆10 does not contain any inductive predicates, satisfiability is decidable [21,28].

In this example, S2S infers the base for predicate oddpx, y, nq as:

t x ÞÑt u ^ pDi. n “ 2i` 1^ iě0q u where denotes existential variables.

After that, it replaces each occurrence of odd in ∆0 with that base to obtain:

∆10”x ÞÑt u˚y ÞÑt u^pDk.m`n“2k`1q^pDi.m“2i`1^iě0q^pDi.n“2i`1^iě0q

As ∆10 is unsatisfiable (the unsatisfiable cores are underlined), so is ∆0.
We now show how S2S infers the base for predicate oddpx, y, nq. It first generates

the regular unfolding tree for oddpx, y, nq in Fig. 2. In this tree, uppercase variables
are existentially quantified, and the back-link is constructed based on the spatial (heap-
dependent) projection of the formulas. Next, in a bottom-up manner, it finds a base
for each subtree rooted by a companion and then replaces the whole subtree with that
base. That base is a combination of its spatial part and its numeric part that are derived
separately. For the subtree rooted by ∆1 in Fig. 2, the spatial projection of the base
is x ÞÑt u, the spatial formula of ∆2. We, especially, show that the (infinite) set of all
spatial formulas derived from this subtree is equisatisfiable with this base. The numeric
projection of the base is equivalent to evenN pN1q^n“N1`1 where evenN pN1q is de-
fined from the ones of∆2 and∆4 as: evenN pN1q ” N1“0_evenN pN3q^N1“N3`2.
Then, it derives for evenN pN1q an equivalent closed form, a Presburger formula, as :
evenN pN1q ” Di. N1“2i^iě0. Finally, the base of oddpx,y,nq is the base of ∆1, the
conjunction of its spatial and numeric projections, as x ÞÑt u^pDi. n“2i`1^iě0q.

Second Example Let us consider the satisfiability problem in a fragment including the
following nested lists whose data values are increasingly sorted.

sllsspx,y,mi,ma,n,n0q ” emp^x“y^mi“ma^n“n0
_ Du,mi1, n1.x ÞÑtmi,uu˚sllsspu,y,mi1,ma,n1,n0q^x‰y^miămi1^n“n1`1

nllsspx,y,b,mi,ma,n,n0q ” emp^x“y^mi“ma^n“n0
_ D u,Z,m1,m2,n1,n2.xÞÑtmi,u,Zu˚sllsspZ,b,m1,m2,n1,0q˚

nllsspu,y,b,m2,ma,n2,n0q^x‰y^x‰b^miăm1^n“n1`n2`1

Here, n and n0 are parameters to capture the size (i.e., the number of heap cells) of
the lists. nllss predicate contains nested length constraints that are beyond all existing
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decidable fragments. We show that nllss is in the decidable fragment, and can support
compositional satisfiability solving. We compute the length constraints in arithmetic
with addition and divisibility prior to transforming it into Presburger arithmetic. We
show how to derive the bases for these predicates throughout the rest of the paper.

3 Array Separation Logic with Inductive Definitions

In this section, we first present the syntax and semantics of formulas in our work. After
that, we show how to obtain spatial and numeric projections of formulas.

Definition 1 (Symbolic heap). Terms t, (Presburger) pure formulas π, spatial formu-
las κ, symbolic heaps ∆ and disjunctions Φ are given by the following grammar.

Φ ::“ ∆ | Φ _ Φ ∆ ::“ κ^π | Dv. ∆
κ ::“ emp | v ÞÑtt1, .., tNu | Ppv̄q | arraypt, tq | κ˚κ
π ::“ true | α |  π | π^π | π_π

α ::“ t“t | t“null | tďt
t ::“c | v | t`t | ´t

where v ranges over an infinite set Var of variables, t̄ over sequences of terms (either
variables or null) (t̄i for its ith element), c over Z, P over a finite set P .

The array predicate only records the bound of contiguous memory blocks, not their con-
tents. Note that t1‰t2 is the short form for  pt1“t2q. FVpΦq returns the free variables
of Φ. We write Φpv̄q to denote that v̄ “ FVpΦq. ∆rt1{v2s denotes the formula obtained
by substituting each term t1 in∆ for the variable v2. Dw̄, v. ∆^v“x is normalised into
Dw̄. ∆rx{vs and π ^ π is normalised into π.

Given a formula Dw̄. Ppv̄q˚v ÞÑtt̄u˚arraypv1, v2q ˚κ^x˛y^π (where ˛Pt“,‰u),
inductive predicate Ppv̄q (resp. arraypv1, v2q) is called (heap) observable if there exists
at least one variable in v̄ (resp. tv1, v2u) that is quantifier-free (i.e., x˛y ^ π implies
that v̄zw̄ ‰ H); v ÞÑtt̄u is called (heap) observable if v is quantifier-free (i.e., x˛y ^ π
implies that v R w̄). Finally, x˛y is observable if both x and y are quantifier-free (i.e.,
x˛y^π implies that tx; yuXw̄ “ H). If a predicate is not observable, it is unobservable.
∆ is a formula obtained by replacing every v ÞÑtt̄uP∆ by v ÞÑt u.

Φ is a base formula if it does not contain any occurrence of inductive predicates.
Otherwise, it is an inductive formula. We use B to denote a conjunctive base formula.

A definition of an inductive predicate is a disjunction as Ppv̄q ” Φ. In each dis-
junct of Φ (called a definition rule), all variables which are not formal parameters are
existentially quantified. We use basePpPpv̄qq to denote the base of Ppv̄q.

Semantics Concrete heap models assume a set Loc of locations (heap addresses), such
that Loc Ď Z and null R Z. The semantics is given by a satisfaction relation: s,h |ù Φ is
valid if the stack s P Stacks and heap h P Heaps satisfies the formula Φ. Stack and heap
abstractions are defined (assume that every points-to predicate has at most N fields):

Heaps def
“ Locáfin ZN Stacks def

“ VarÑ Z

Suppose that dompfq is the domain of function f , h1#h2 denotes disjoint heaps h1
and h2, and h1¨h2 denotes the union of two disjoint heaps. If s is a stack, vPVar and
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αPZ, we write srv ÞÑαs“s if vPdompsq and srv ÞÑαs“sYtpv, αqu if vRdompsq. The
interpretation of an inductive predicate Ppv̄q, denoted by JPpv̄qK, is based on the least
fixed point semantics (cf. [23]). Then, the semantics is shown below.
s, h |ù emp iff domphq“H s, h |ù true iff always
s, h |ù v ÞÑtv1, .., vNu iff domphq“tspvqu and hpspvqq“pspv1q, .., spvN qq
s, h |ù arraypt1, t2q iff spt1qďspt2q and domphq“tspt1q, ..., spt2qu
s, h |ù Ppv̄q iff ph, spv̄1q, .., spv̄kqq P JPpv̄qK
s, h |ù κ1 ˚ κ2 iff Dh1, h2. h1#h2, h“h1. h2 s.t. s, h1 |ù κ1 and s, h2 |ù κ2
s, h |ù κ^π iff s, h |ù κ and s |ù π
s, h |ù Dv. ∆ iff Dα. srv ÞÑαs, h |ù ∆
s, h |ù Φ1 _ Φ2 iff s, h |ù Φ1 or s, h |ù Φ2

Semantics of pure formulas is omitted, for simplicity.

Projections [39,23] For every variable vPVar, if it appears in a spatial formula then it
is a spatial variable. Otherwise, it is a numeric variable. x̄S (resp. x̄N ) is a sequence of
variables similar to x̄ excluding numeric (resp. spatial) variables. |x̄S | is a sequence of
variables obtained by replacing every spatial variable in x̄ with a fresh existential one.

For each inductive predicate Ppt̄q ” Φ, we assume the inductive symbol PS and pred-
icate PSpt̄Sq for its spatial projection that satisfy PSpt̄Sq ” ΦS . Similarly, we presume
the inductive symbol PN and predicate PNpt̄N q for its numeric projection that satisfy
PNpt̄N q ” ΦN . Given pure conjunction π, we can rewrite it as π ” α^β^γ where
FVpαq Ď FVpπqS and there does not exist another α1Pπ such that αPα1, FVpβq Ď
FVpπqN and there does not exist another β1Pπ such that β P β1, and γ is the conjunc-
tion of the remaining constraints. In the following, we define the two projections.

Definition 2. The spatial projection pΦqS is defined inductively as follows.

p∆1 _∆2q
S ” p∆1q

S _ p∆2q
S

pDv̄.∆qS ” Dv̄S .p∆qS

pκ^α^β^γqS ” pκqS^α
pκ1˚κ2q

S ” pκ1q
S˚pκ2q

S

pPpv̄qqS ” PSpv̄Sq
px ÞÑtv̄uqS ” x ÞÑt|v̄S |u
parraypv1, v2qq

S ” arraypv1, v2q
pempqS ” emp

Similarly, the numeric projection pΦqN is defined inductively as follows.

p∆1_∆2q
N ” p∆1q

N_p∆2q
N

pDv̄ ¨∆qN ” Dv̄N ¨ p∆qN

pκ^α^β^γqN ” pκqN^β

pκ1˚κ2q
N ” pκ1q

N^pκ2q
N

pPpv̄qqN ” PNpv̄N q
px ÞÑtv̄uqN”parraypv1, v2qq

N”pempqN”true

Definition 3 (Closed form). Any numeric project PNpv̄N q of an definition is called
Presburger-definable if there exists a Presburger formula π such that for any stack s,
we have: s |ù PNpv̄N q iff s |ù π. We call π is the closed formula of the projection.

We use functionPres to map every Presburger-definable projection into its closed form.

Example 1. The numeric projection of predicate sllss in Sect. 2 is:
sllssNpmi,ma,n,n0q ” mi“ma^n“n0

_ Dmi1, n1.sllss
Npmi1,ma,n1,n0q^miămi1^n“n1`1

This numeric predicate is in the decidable fragment DPI [39] and its closed form is
PrespsllssNpmi,ma,n,n0qq ” miďma^něn0. ˝
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4 Regular Unfolding Trees

Given an inductive predicate with spatial and pure constraints, its regular unfolding tree
is generated based on the spatial projection and the base is collected for the spatial and
arithmetic projections, separately. In this section, we first introduce regular unfolding
trees (subsection 4.1). After that, we present an algorithm to construct the trees where
back-links are generated based on the spatial projection of formulas (subsection 4.2).
We also discuss the properties of the trees that are foundations for correctness.

4.1 Data Structure

A regular unfolding tree T is a tuple pV,E, Cq where

– V is a finite set of nodes each of which is a symbolic heap ∆.
– E is a set of labeled and directed edges p∆,L,∆1q P E where ∆1 is derived from

unfolding an inductive predicate in ∆ and L is a label to record which disjunct rule
of the definition has been used. Given Ppv̄q”

Žn
i“1 Dw̄i.∆i and a node e ” ∆˚Ppt̄q

where Ppt̄q is chosen for unfolding, then new n nodes ei ” ∆ ˚ pDw̄i.∆iqrt̄{v̄s and
new n edges pe, pPpt̄q, Dw̄i.∆iqrt̄{v̄s, eiq are created.

– C is a back-link (partial) function. In a back-link Cp∆cÑ∆b, σq, the leaf node∆b is
linked back to an ancestor ∆c when the following two conditions hold. First, there
exist Ppx̄q P ∆c and Ppȳq P ∆b such that Ppȳq is in a subformula unfolded from
Ppx̄q. Secondly, there exists ∆1b s.t. ∆S

b ñ ∆
1S
b , ∆

1S
b is equisatisfiable with ∆S

b ,
and ∆

1S
b σ ” ∆S

c . In such a back-link, ∆b is a bud, and ∆c is a companion.

A leaf node is marked as open or closed. It is marked as closed when it is either a base
formula, unsatisfiable or a bud in a back-link. Otherwise, it is marked as open and may
be chosen to reduce into multiple open nodes through predicate unfolding. basePp∆q
denotes the set of satisfiable base formulas of the subtree rooted by node ∆.

4.2 Generating Regular Unfolding Trees

Regular unfolding trees are generated via procedure ω-SAT, described in Algorithm 1.
Given a formula ∆0, ω-SAT creates an initial tree with one open node ∆0. Then, it
iteratively applies the following procedures until all leaf nodes are marked as closed.

1. Leaf Node Evaluation via procedure base eval (line 3). It checks satisfiability for
every base leaf node and marks them closed accordingly.

2. Back-link Construction via procedure link back (line 4). It attempts to link an open
leaf node with an ancestor via some equisatisfiability and substitution principles.

3. Reduction. It chooses an occurrence of inductive predicates in an open leaf node
(line 5) to unfold (a.k.a. instantiate - line 9) in a breadth-first manner.

base eval makes use of the following procedure eXPure to discharge a base for-
mula. eXPure transforms a separation logic formula to a formula in first-order logic.
Given a base formula B ” Dw̄. ˚n

i“1 arraypvi, tiq ˚ ˚m
i“1xi ÞÑtȳiu ^ π, eXPure
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Algorithm 1: Procedure ω-SAT
input : ∆0

output: T
1 TÐt∆0u ; /* initialize */
2 while true do
3 TÐbase evalpT q ; /* eval bases */
4 TÐlink backpT q ; /* generate back-link */
5 pis exists,∆iqÐchoose bfspT q ; /* open leaf for unfolding */
6 if not is exists then
7 return T ;
8 else
9 TÐunfoldp∆iq;

10 end

works as follows. If π ñ
Ž

1ďiďn vi“null _ ti“null _
Ž

1ďiďm xi“null, then

πB “ eXPurepBq
def
“ false . Otherwise,

πB “ eXPurepBq
def
“ D w̄.

Ź

1ďiďn viďti ^
Ź

1ďiăjďnptiăvjq _ ptjăviq^
Ź

1ďiďn,1ďjďmpxjăvjq _ ptiăxjq ^
Ź

txi‰xj | i, jPt1...mu and i‰ju ^ π

Lemma 1. For any stack s and base formula B, s |ù eXPurepBq iff Dh. s, h |ù B.

The procedure link back was designed based on the spatial part of the formulas.
As we show that satisfiability in (dis)equalities relies only on quantifier-free variables,
existentially quantified heaps could be discarded. Particularly, a leaf node∆b, say∆b ”

Dw̄. ∆b1 ˚∆b2 ˚ κd, is linked back to an internal node ∆c only when:

1. every heap predicates in pDw̄. ∆b2q
S are unobservable; and

2. κd contains duplicate inductive predicate occurrences. Given ∆b1 ” κb1 ^ πb1 , for
every inductive predicate Ppv̄q in κd, there exists a substitution σ over a subset of
existentially quantified variables of v̄ such that pPpv̄qqSσ is in pκb1q

S ; and
3. there exists a substitution σc ” rt1{v1, .., tn{vns where vi, ti (i P t1...nu) are

existentially quantified such that p∆cq
S ” pDw̄. p∆b1q

Sqσc.

Properties of ω-SAT over Spatial Projection We now show some properties of ω-
SAT over fragment SHID, a fragment of array separation logic with spatial-only defi-
nitions of inductive predicates. These properties are fundamental for compositionality.

Definition 4 (Fragment SHID). Every inductive symbol Pi P P in SHID is defined as:
Pipv̄iq ”

Žm
j“1pDw̄ij . κij ^ πij q where πij (1ďjďm) are (dis)equalities.

For every back-link with a companion ∆c and a bud ∆b, if ∆b is satisfiable then
every formula derived from unfolding∆b is of the formB˚Br and there exists a substi-
tution σ such thatBσ is a leaf node of the subtree rooted by∆c andBr is unobservable.

9



∆s0

Bs1 ∆s2
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l3
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(a) Unfolding Tree for sll

∆n0

Bn1 ∆n2

∆n3

Bn5 ∆n6

∆n4

(b) Unfolding Tree for nll

Fig. 3: Regular Unfolding Trees

Proposition 1 (Completeness). For any s, h and a back-link with a companion∆c and
a bud ∆b, if s, h |ù ∆b, then DB P basePp∆cq and Ds1 Ď s, h1 Ď h s.t. s1, h1 |ù B.

We show the small model property of the bases generated.

Lemma 2 (Small Model). For any s, h and base satisfiable formula B˚Br where Br

is unobservable, if s, h |ù B, then Ds1 Ě s, h1 Ě h. s1, h1 |ù B ˚Br.

ω-SAT with link back always terminates over SHID as the numbers of both defini-
tions in the system and quantifier-free variables in a formula are finite.

Proposition 2 (Termination). ω-SAT terminates in SHID.

An unfolding tree is a cyclic proof only when every leaf nodes are either unsatisfi-
able or linked back. A cyclic proof is generated as a witness for unsatisfiability.

Proposition 3 (Soundness). If ∆ has a cyclic proof, ∆ is unsatisfiable.

Example 2. We illustrate ω-SAT over shape-only singly-linked list sll and nested lists
nll, the spatial projections of the ones in Sect. 2, without arithmetic properties.

sllpx,yq ” emp^x“y _ Du.x ÞÑt ,uu˚sllpu,yq^x‰y
nllpx,y,bq ” emp^x“y _ D u,Z.xÞÑt ,u,Zu ˚ sllpZ,bq ˚ nllpu,y,bq^x‰y^x‰b

Figure 3a shows unfolding tree for sll. This tree is constructed as follows. Starting
from ∆s0 ” sllpx,yq, ω-SAT unfolds the inductive symbol to obtain Bs1 and ∆s2 .

Bs1 ” emp^ x“y ∆s2 ” Du1.xÞÑt ,u1u˚sllpu1,yq^x‰y

with two new edges whose the labels are as follows.

l1 ” psllpx,yq, emp^ x“yq l2 ” psllpx,yq, Du1.xÞÑt ,u1u˚sllpu1,yq^x‰yq

ω-SAT evaluates Bs1 as satisfiability and marks it as closed. For ∆s2 , ω-SAT unfolds
the inductive predicate to obtain Bs3 ” x ÞÑt ,yu^x‰y and the following ∆s4 .

∆s4 ” Du1,u2.xÞÑt ,u1u˚u1 ÞÑt ,u2u˚sllpu2,yq^x‰y^u1‰y

The two new edges have the following labels.

l3 ” psllpu1,yq, emp^ x“yq l4 ” psllpu1,yq, Du2.u1 ÞÑt ,u2u˚sllpu2,yq^u1‰yq

10



∆s4 is linked back to ∆s2 and marked as closed since ∆s4 could be rearranged as:
∆s4 ” Du1,u2.∆b1 ˚ ∆b2 where ∆b1 ” x ÞÑt ,u1u˚sllpu2,yq^x‰y and ∆b2 ”

u1 ÞÑt ,u2u^u1‰y s.t. (i) Du1,u2.∆b2 is unobservable and (ii) ∆s2 ” pDu1,u2.∆b1qσc
where σc ” ru1{u2s. That means, if ∆s4 had been kept unfolding, its sub-tree would
have included an infinite set of base formulas each of which has the same observable
heap with Bs3 i.e., of the form x ÞÑt , u^x‰y ˚ Br where Br is unobservable. Obvi-
ously, models satisfying Bs3 are the smallest and have finite heap domains. Since all
leave nodes are marked as closed, ω-SAT terminates.

Similarly, Fig. 3b shows the unfolding tree for nll whose details are as follows.
∆n0 ” nllpx,y,bq, Bn1 ” emp^ x“y, Bn5 ” x ÞÑt ,y,bu^x‰y^x‰b

∆n2
”D u1,Z1.xÞÑt ,u1,Z1u ˚ sllpZ1,bq ˚ nllpu1,y,bq^x‰y^x‰b

∆n3 ” D u1.xÞÑt ,u1,bu ˚ nllpu1,y,bq^x‰y^x‰b
∆n4 ” D u1,Z1,Z2.xÞÑt ,u1,Z1u ˚ Z1ÞÑt ,Z2u ˚ sllpZ2,bq ˚ nllpu1,y,bq

^x‰y^x‰b^Z1‰b
∆n6

” D u1, u2,Z2.xÞÑt ,u1,bu ˚ u1 ÞÑt ,u2,Z2u ˚ sllpZ2,bq˚nllpu2,y,bq
^x‰y^x‰b^u1‰y^u1‰b

5 Compositional Satisfiability Solver

S2S compositionally discharges a formula as follows. First, it computes for every induc-
tive predicate Ppt̄q a base, denoted as basePpPpt̄qq - a set of satisfiable base formulae,
that precisely charaterises its satisfiability. If this set is empty, then Ppt̄q ” false . After
that, to discharge formula ∆ it replaces every occurrence of inductive predicates with
the corresponding base to obtain a disjunctive base formula, denoted by basePp∆q, be-
fore using procedure eXPure to transform this base formula into πB in first-order logic.
Finally, πB could be discharged efficiently by using an SMT solver.

In the rest of this section, we first present the algorithm to collect the bases (subsec-
tion 5.1). After that, we identify five semantic conditions for decidability and composi-
tionality (subsection 5.2). Finally, we show a syntactic decidable fragment, an extension
of SHID, where the satisfiability solving can be compositional (subsection 5.3).

5.1 Computing Bases

Algorithm 2 describes how to infer bases for inductive predicates. In intuition, for each
inductive predicate, it first computes a regular unfolding tree where cycles are generated
based on the spatial projection of buds and companions. After that, for every cycle,
it infers bases for the spatial projection and closed form for the numeric projection
separately. Finally, it conjoins the two bases. In particular, it first generates an unfolding
tree at line 2. (We assume that all subtrees whose leaf nodes are either unsatisfiable
or linked back are eliminated afterward.) At line 4, out´most cycle in each path is
the one which has the farthest companion from the root. At line 6, it collects numeric
parts of all buds (each cycle has one companion and one or more buds). Next, for each
cycle, it collects the spatial projection and numeric projection of all satisfiable leaf
nodes (lines 7-9). If spatial projection of all base leaf nodes is unsatisfiable, it returns
unsatisfiable (line 12). Every base formula generated by the cycle is equisatisfiable

11



Algorithm 2: Deriving Bases.
input : P
output: baseP

1 foreach Pipt̄iq P P do
2 pV,E, CqÐ ω-SATpPipt̄iqq ; /* reduction tree */
3 repeat
4 Cp∆cÑ∆b, σq Ð out-most cycle of pV,E, Cq ;
5 ΨS

ÐH ;
6 αÐ

Ž

t∆N
bi
u ; /* arithmetic of sat buds */

7 foreach ∆S
sat P Cp∆cÑ∆b, σq do

8 ΨS
Ð ΨS

Y t∆S
satu ; /* spatial of sat leaf bases */

9 αÐ α_∆N
sat ; /* arithmetic of sat leaf bases */

10 end
11 if ΨS

“ H then
12 ∆c Ð false ; /* unsat - cyclic proofs */

13 if ∆N
c contains one inductive predicate then

14 β Ð Presp∆N
c q ; /* ∆N

c ” α */
15 else
16 β Ð Prespαq ;
17 ∆c Ð

Ž

tB ^ β | B P ΨS
u ;

18 until no more cycles;
19 basePppPipt̄iqqq Ð t∆noncyc

sat | ∆noncyc
sat is satu ; /* sat leaf nodes */

20 end
21 return baseP ;

with one of those in the set of all spatial bases collected. For the numeric, it computes
the closed form of satisfiable instances (lines 13-16). (Recall that Pres is the function
that maps numeric projection of each inductive definition in the decidable fragment
to a Presburger formula.) Note that if the numeric companion ∆N

c is an occurrence
of an inductive predicate, it computes the closed form using a more precise on-the-fly
definition (∆N

c ” α at line 14). Finally, at line 17, it replaces the companion with
the combined base. This process of computing bases for cycles is repeated in such a
bottom-up manner until the tree does not contain any cycles. Finally, it collects all the
satisfiable leaf nodes of the tree.

Example 3. For the inductive predicates in Example 3, the base computed for the cycle
of sll is pBs3q

S “ DY. xÞÑt ,Y u^x‰y and the base of generated for sll is a dis-
junctive set of the two satisfiable base leaf nodes: basePpsllpx,yqq ” tBs1 ; pBs3q

Su.
Similarly, the base computed for nll is: basePpnllpx,y,bqq ” tBn1 ; pBn5q

Su. ˝

5.2 Decidability and Compositionality

We state the five conditions for a fragment of inductive predicates such that Algorithm 2
is terminating, and the generated bases are both sound and complete. First, the following
condition ensures the separation of the spatial and numeric projections such that there
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is no over-approximation of the two projections. Suppose that the pure formula π of a
definition rule in SLIDLIAsem is π ” α^β^γ where α is the spatial constraint, β is the
arithmetic constraint and γ is the mixing constraint between the two domains.
C1. γ is true . We note that if all inductive definitions of Ppt̄q in a fragment satisfy C1,
then such γ of any formula derived from unfolding Ppv̄q is also true .

For the termination of ω-SAT at line 2, we need the following condition.
C2. α in every definition rule in SLIDLIAsem is a conjunction of (dis)equalities.

The completeness further requires the three following conditions.

– Every back-link generated for the spatial projection is (sound and) complete when
combined with pure bases. Recall that a bud is of the form∆b ” Dv̄.pκb1^αb1^βb1q˚
pκb2^αb2^βb2q ˚ κd where κb2^αb2^βb2 is unobservable and κd is the duplicate
conjunction. As ω-SAT always returns the observable part, unlike in SHID, discard-
ing pκb2^αb2^βb2 ˚κdq

S may make the combined bases incomplete; that is p∆bq
S

is unsatisfiable while p∆bq
N is satisfiable. The completeness is retained only when:

For any s, we have if s |ù p∆bq
N , then D s1, h1. s1,h1 |ù p∆bq

S . As ω-SAT al-
ways returns the observable part, the following condition is equivalent.
C3. For any s, h, we have: if s, h |ù p∆b1q

S , then D s1, h1. s1,h1 |ù p∆bq
S .

– C4. If the system of inductive definitions contains arithmetic constraints, each cycle
in the regular unfolding tree derived for an inductive definition contains at most
one satisfiable spatial projection leaf node (line 8). This condition forbids the over-
approximation of the combination at line 17.

– C5. Numeric projection of every inductive predicate (at line 16) or on-the-fly nu-
meric predicate (at line 14) is Presburger-definable i.e., the numeric predicate is in
a decidable fragment like DPI [39]. This ensures that the numeric base computed
is equivalent to the numeric constraints of the whole subtree.

Suppose Algorithm 2 infers a base BS^π for subtree involving a cycle and B˚Br

is a base leaf of the subtree. By Lemma 2, for every v where spvq P domph1zhq, v is
existentially quantified. Hence, the heaps in h1zh could not be accessed by the outer
scope ofBr. As so, for any formula∆,B ˚Br ˚∆ is equisatisfiable with pBS^πq˚∆.
Therefore, satisfiability could be performed modularly via the inferred base BS ^ π.

Theorem 1 (Composition). For any stack s, heap h and ∆, we have:

– (if) if s, h |ù basePp∆q, then Ds1, h1. s1, h1 |ù ∆.
– (only if) if s, h |ù ∆, then Ds1, h1. s1, h1 |ù basePp∆q.

Motivating Example Revisited We show how to compute the bases of predicate
sllsspx,y,mi,ma,n,n0q in the second motivating example. In the definition of this
predicate, x, y are spatial variables and mi, ma, n and n0 are numeric variables. C1
and C2 hold straightforwardly for this definition.

At line 2, ω-SAT constructs a reduction tree whose shape is similar to the tree in
Fig. 3a. Its respective nodes are as follows. ∆ss0 ” sllsspx,y,mi,ma,n,n0q
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Bss1 ” emp^x“y^mi“ma^n“n0
∆ss2 ” Du1,m1,n1.x ÞÑtmi,u1u˚sllsspu1,y,m1,ma,n1,n0q^x‰y^miăm1^n“n1`1
Bss3 ” x ÞÑtmi,yu^x‰y^miăma^n“n0`1
∆ss4 ” Du1,u2,m1,m2,n1,n2.xÞÑtmi,u1u˚u1 ÞÑtm1,u2u˚sllsspu2,y,m2,ma,n2,n0q

^x‰y^u1‰y^miăm1^m1ăm2^n“n1`1^n1“n2`1

In∆ss4 ,∆S
b1
” x ÞÑtmi, u1u˚sllss

Spu2,yq, κd ” emp and the spatial projection of the
unobservable is ∆S

b2
” u1 ÞÑtm1, u2u^u1‰y. As ∆S

b2
is separate from ∆S

b1
, C3 holds.

And as the cycle in the reduction tree has only one baseBss3 , C4 holds. As shown in the
preceding subsection, its numeric projection is in DPI and is thus Presburger-definable:
PrespsllssNpmi,ma,n,n0qq ” miďma^něn0. Thus, C5 holds. Moreover, the base
for the cycle of the tree is computed as B22 ” pBss3q

S^Prespp∆ss3q
N _ p∆ss4q

N q,

B22 ” pBss3q
S^Prespp∆ss2q

N q

” DY.x ÞÑtmi,Y u^x‰y^PrespDm1, n1.sllss
Npm1,ma,n1,n0q^miăm1^n“n1`1q

” DY,m1, n1.xÞÑtmi,Y u^x‰y^pm1ďma^n1ěn0^miăm1^n“n1`1q

Finally, the base computed for sllss is: basePpsllsspx,y,mi,ma,n,n0qq ” tBss1 ;B22u.
The remaining question is syntactic decidable fragments where the satisfiability is

compositional. SHID satisfies the five conditions for compositionality straightforwardly.
As definitions of inductive predicates in [3,14,18,39,21,23,41] satisfy these five con-
ditions, satisfiability is compositional in these fragments. The next subsection shows a
new decidable fragment.

5.3 Compositionality with Small-Model Arithmetic Properties

We study fragment SHIDe that is an extension of SHID with small-model arithmetic pure
properties (e.g., sortedness) where every inductive predicate also has small models w.r.t.
satisfiability. Given a predicate Pipv̄iq, if two parameters v, t P v̄i define a small-model
pure property then in every instantiation unfolded from Pipv̄iq, the constraints over v, t
is: Dw1, ..., wn.v ˛ w1 ^ w1 ˛ w2 ^ ...^ wn ˛ t (where ˛ P t“,ě,ďu).

Definition 5 (SHIDe). Given every definition Pipv̄iq”
Žm

j“1pDw̄ij . κij^πij q in SHID,
πij (1ďjďm) may contain ˛ operators over parameters of inductive predicate Pi such
that for any s, h if s, h |ù Pipv̄iq, @l1Pdomphq.Dl2Pdomphq s.t. hpl1q“p..,l2,..,lj1 , ..q,
hpl2q“p..,lj2 ,..q and lj1 ˛ lj2 holds where lj1 and lj2 are the jth components.

Example 4. We define linked lists being sorted as follows.

sllsopx,y,mi,maq ” emp^x“y^ma“mi
_ Du,mi1.xÞÑtmi,uu ˚ sllsopu,y,mi1,maq^x‰y ^miămi1

For any formula B unfolded from sllsopx,y,mi,maq, in case B has an empty heap,
mi“ma. Otherwise, miăma. Hence, the base that includes one with the empty heap
and another with one singleton heap is sufficient to characterise the satisfiability of
sllsopx,y,mi,maq. Particularly, to compute base for sllsopx,y,mi,maq, ω-SAT con-
structs for it a cyclic reduction tree that has the same structure as the tree of sllpx,yq
(in Example 3). ˝

Obviously, ω-SAT terminates to compute bases for a definition in SHIDe that is a
combination of a definition in SHID with the small-model pure properties.

14



6 Decidable Fragment SLIDLIA

We define a syntactic fragment, called SLIDLIA (subsection 6.1). The decidability and
compositionality of SLIDLIA rely on the decidability of its numeric inductive predi-
cates. In subsection 6.2, we show that AID - Arithmetic with Inductive Definitions, the
fragment including these numeric projections, is indeed decidable.

6.1 Predicate Definition

A predicate in SLIDLIA with one pair of numeric parameters is defined as:

Ppr,F ,B̄,vs,vtq ”emp^r“F^vs“vt
_ DXtl, Z̄,v

1
s,Z̄s.r ÞÑtp̄u ˚ κ

1 ˚ PpXtl,F ,B̄,v
1
s,vtq^α^β

where r is called the root parameter, F the target parameter, B̄ the border parameters,
vs, vt is a pair of parameters to capture a pure property, r ÞÑtp̄u ˚ κ1 the matrix of the
heaps. r, F and B̄ are spatial variables and vs, vt are numeric variables. Moreover, this
definition is constrained by the following five conditions.
Y1. tXtluYZ̄ Ď p̄ Ď tXtluYZ̄YB̄.
Y2. κ1:“QpR,U,Ȳ ,S,T q | κ1˚κ1 | emp where Q ı P, R P Z̄ and for any Q1pR1,...q P κ

1

and Q2pR2,...q P κ
1 thenR1 ı R2,U P Z̄YB̄Ytr,Xtl, nullu, Ȳ Ď B̄Ytr,Xtl, nullu,

and S P Z̄s and T P Z̄s Y tv
1
su.

Y3. α is a conjunction of (dis)equalities and FVpαq Ď tr, F, nullu Y B̄.
Y4. β is of the one of the following forms:

– β ” β1 ^ vs“v
1
s`c1z`c2 where c1, c2 P Z, FVpβ1q Ď Z̄s, and z P Z̄s.

– β ” β1^vs˛v
1
s`c1 where c1 P Z, ˛ P t“,ě,ďu, FVpβ1q Ď Z̄s.

Y5. There is no mutual recursion.
The extension to multiple pairs of numeric parameters is straightforward. SLIDLIA is

subsumes the decidable fragments presented in [3,13,14,18,21,23]. SLIDLIAĂ SLIDLIAsem

because Y3 and Y4 imply C1; Y3 ensures C2; Y2 implies C3; Y1 and Y2 imply C4.
We show C5 in the next subsection. SLIDLIA includes sllss, nllss (shown in Sect. 2),
skip-lists, nested lists.

6.2 Decidability of Fragment AID

We show a procedure to compute the closed form of the numeric projections of defini-
tions in SLIDLIA. Recap that the numeric projection of a definition is of the form:

PNpvs,vtq ”vs“vt _ Dv1s,z̄.
Źn

i“0 P
N
ipSi,Tiq ^ PNpv1s,vtq^β

1 ^ β0

where β0 ” vs˛v
1
s`c or β0 ” vs“v

1
s`c1m`c2, ˛ P tě,ďu,

Źn
i“0 P

N
ipSi,Tiq ” true

when n“0, Si, Ti P z̄, and FVpβ1q Ď z̄.
As definitions in SLIDLIA do not allow mutual recursion (condition Y5), the compu-

tation of the closed form of these numeric definitions can be performed in a bottom-up
manner: the closed forms of all pred PNipSi,Tiq are computed before the computation of
the closed formula of pred PNpvs,vtq. The computation of the closed formula is based
on the two forms of β0 above. First, we show the computation for the first form.
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Lemma 3. Given any numeric projection in the following form

PNpvs,vtq ”vs“vt _ Dv1s,z̄.P
Npv1s,vtq^β

1pz̄q ^ vs˛v
1
s`c

where ˛ P t“,ě,ďu, and c P Z. Then, we have:

PNpvs,vtq ” vs´vt _ Dz̄, k.β
1pz̄q ^ vs´vt˛ck ^ kě1

The computation for the second form of β0 is based on the arithmetic of addi-
tion and divisibility [2,4,24]. Authors in [2,24] show that the formulas of the form
Dv̄.

ŹK
i“1 fipv̄q | gipv̄q are decidable, where fi, gi are linear functions over v̄ ” tv1, .., vnu

and the symbol |means that each fi is an integer divisor of gi when both are interpreted
over Nn. Recently, authors in [4] presented a decision procedure for an extension with
universally quantified formulas. They proposed to eliminate the quantifiers and trans-
form the formulas in the language x`, |, 0, 1y into Presburger arithmetic.

Proposition 4 ([4]). The following formula is Presburger-definable:

QzQ1x1...Qnxn.
N

ł

i“1

p

Mi
ľ

j“1

hijpzq | fijpx̄, zq ^
Mi
ľ

j“1

h1ijpzq - gijpx̄, zq ^ πpx̄, zqq

where Q, Q1,..,Qn P tD,@u, π is quantifier-free, f , f 1, h, g are linear functions.

Secondly, we show that the closed form for the second form of β0 is in the arithmetic
of addition and divisibility.

Lemma 4 (Nested Quantitative Property). Given a numeric projection of the form:

PNpvs,vtq ”vs“vt _ Dv1s,z̄.P
Npv1s,vtq^β

1 ^ vs“v
1
s`c1z`c0

where FVpβqĎz̄ and zPz̄, c0, c1PZ. Then, PNpvs,vtq ” Dz̄.β1pz̄q ^ c1z`c0 | vs´vt.

By Proposition 4, Dz̄.βpz̄q ^ c1z`c0 | vs´vt is Presburger-definable. Hence, Lemma
3, Lemma 4 and Theorem 4 imply that PNpvs,vtq is Presburger-definable.

Theorem 2. Numeric projections of definitions in SLIDLIA is Presburger-definable.

7 Implementation and Evaluation

We have implemented a prototype tool, called S2S, using OCaml for the satisfiability
problems. We made use of Z3 [11] as a back-end SMT solver for the arithmetic.

S2S gives a precise answer to those problems in a fragment that satisfies the five
conditions in Sect. 5.2. For those that are beyond these conditions, S2S infers over-
approximated bases to check their unsatisfiability. In particular, if C1. or C2. is vio-
lated, i.e., formulas with pointer arithmetic constraints, S2S discards these constraints.
For efficiency, checking the satisfiability of buds to comply with C3. can be ignored.
If C4. or C5. is violated, i.e., an arithmetically inductive definition is beyond the de-
cidable fragment AID, S2S computes for it an over-approximated closed form using the
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Table 1: Satisfiability Solving with/without Compositional Reasoning

Data Structure (pure properties) #query #unsat #sat without with
#Z3 Time #Z3 Time

Singly llist (size) 666 75 591 3,173 1.01 762 0.40
Sorted llist (size, sorted) 217 21 196 796 0.55 336 0.36

Doubly llist (size) 452 50 402 1,803 0.79 552 0.46
Heap trees (size, maxelem) 386 38 348 3,732 6.03 865 2.61

AVL (height, size) 881 64 817 9,051 23.06 2,026 10.85
RBT (size, blackheight, color) 1,741 217 1,524 3,491,730 74,158 1,767 2.81

rose-tree (size) 25 8 17 300 0.34 153 0.25
4,368 473 3,895 3,510,585 74,189.78 6,461 17.74

technique described in [21]. In intuition, for each definition, it first generates a set of
Horn clauses to capture the least fixed point set of its values. After that, it uses the fixed
point analysis in [34,40] to solve these clauses.

To demonstrate the efficiency, we have evaluated S2S on two sets of satisfiability
benchmarks. The first one includes those generated by the program verifier S2 [19,22]
(subsection 7.1), and the second one consists of those taken from the recent competition
for separation logic solvers SL-COMP 2019 [37,38] (subsection 7.2). All experiments
were performed on a machine with Intel Core i7-6700 3.4GHz and 8GB RAM. If a
solver runs longer than 600 seconds, we terminate it and mark the result as unknown.

7.1 Efficiency of Compositional Solving

In this section, we present experiments over satisfiability problems with and without
compositional reasoning. These problems come from the symbolic execution of the
heap-based verification tool [19]. Each test suit consists of a high number of test prob-
lems over the same set of inductive predicates. Then we run S2S over the suite in two
settings. For the first one, S2S generates bases for each input without reusing the bases
inferred for inductive definitions. For the second one, S2S generates bases for each test
by reusing the bases of inductive definitions.

The experimental results are shown in Table 1. The first column shows the names of
inductive predicates and pure properties that includes cyclic linked-list, sorted singly-
linked list, doubly-linked list, AVL trees, red-black tree, and rose trees. Pure properties
in each data structure include size properties (number of allocated objects), sortedness,
the maximal element of heaps, the height of trees, and color (red or black). The next col-
umn captures the number of satisfiability problems sent to the solver for the verification
of each program. The next two columns describe the number of unsat and sat queries,
respectively. The remaining four columns are divided into two groups corresponding
to the runs without and with composition. For each group, we report the number of Z3
invocations in the first column and the time taken in seconds in the second column. In
the last row, we sum the values of all the measurements of all data structures.
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Table 2: Experimental Results on SL-COMP benchmarks

Tool qf shls sat qf shid sat qf shidlia sat
sat unsat Time sat unsat Time sat unsat Time
(55) (55) (110) (81) (18) (99) (15) (18) (33)

Asterix [28] 55 55 0.56s - - - - - -
SPEN [13] 55 55 16.60s - - - - - -

S2SATSL [23] 55 55 36.61s 50 12 382m 13 8 120m6s
Harrsh [17] 55 55 11m7.41s 55 18 274m56s - - -
SLSAT [5] 54 54 36m22s 57 18 218m51s - - -

S2S 55 55 1.18s 56 18 237m55s 15 18 10.07s

The results show that S2S with the compositional reasoning is much more efficient.
In all experiments, the compositional solving helps to discharge the queries quickly with
small numbers of Z3 invocations. To sum up, S2S with the compositional reasoning took
as 0.024% (17.74s/74,189.78s) in time and 0.184% (6,461/3,510,585) in the numbers of
Z3 invocations as without the compositional reasoning. The experimental results of red-
black trees, AVL with height and size properties, especially, confirm the great advantage
of the compositional reasoning. On average, S2S with the compositional reasoning took
0.0028 seconds to discharge one satisfiability problem.

7.2 Experiments on SL-COMP 2019 benchmarks

We have compared S2S against the state-of-the-art solvers like Asterix [28], SLSAT
[5], SPEN [13], S2SATSL [23], and Harrsh [17]. We have conducted the comparisons
over all three satisfiability divisions of the competition: qf shls sat, qf shid sat, and
qf shidlia sat. All test problems are in our decidable fragments. For each division, we
report the number of correct outputs and time (in minutes and seconds) taken by each
tool. We note that as Asterix supported hardwired singly-linked lists only, it is unable
to handle the problems in qf shid sat, and qf shidlia sat. Similarly, as SPEN, SLSAT and
Harrsh have not supported arithmetic, qf shidlia sat is beyond their interests.

We report the results in Table 2. In this table, the first column presents the name
of the tools. The remaining columns show the results of three divisions each of which
includes three columns: the number of correct satisfiability results (sat), the number of
correct unsatisfiability results (unsat), and the time (m is for minutes and s for seconds)
taken, respectively, by each tool. - means the solver has not supported these benchmarks
in the corresponding division yet. In the third row, the number between “(..)” reports
the total number of tests in a column.

The first group shows the results of division qf shls sat. Each test problem, gener-
ated randomly by Asterix’s authors [27], contains 10-20 pointer-typed variables point-
ing to singly-linked lists. In this division, all tools performed pretty well. In particular,
Asterix performed the best, S2S was the second, and SPEN was the third. Asterix and
S2S decided all tests correctly in a short time. SLSAT was timeout in 3 test problems.
We note that as the definition of the singly-linked list was hardwired syntactically in
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Asterix, in contrast to S2S, Asterix would save the parsing time for this definition in
these 110 tests.

The second group reports the results for division qf shid sat targeting general induc-
tive definitions. It includes 40 challenging tests (succ-circuit[01..20] and succ-rec[01..20]),
generated by SLSAT’s authors [5], each of which requires a brute-force search of 2n val-
ues. SLSAT, S2S, and Harrsh performed pretty well in this division. SLSAT performed the
best; it was either timeout or stack overflow at only 24 problems: succ-circuit[07..20]
and succ-rec[11..20]. Note that, in SL-COMP 2019 [37], S2S was implemented together
with an under-approximate technique and outperformed other tools; it discharged all
problems in this division correctly in a super short time.

The third group, whose tests were contributed by the authors of [14,41,23], de-
scribes the results of division qf shidlia sat targeting the combination of linearly com-
positional inductive predicates and pure properties. While S2SATSL could handle 21/33
tests in 120 minutes, S2S reported correctly for all tests within 10.07 seconds.

S2SATSL also base on cyclic proofs. It did not support compositionality. Instead of
reusing the bases, it constructed cyclic proofs for every input. Its termination thus re-
lies on not only those definitions of inductive predicates but also the arithmetical con-
straints in the input. For instance, S2SATSL could not handle∆01”elspx,nq^n“320001
and ∆02”elspx,nq^n“320000 in which els predicate represents lists with an even
number of elements and n captures the length. If we increased the timeout to a large
enough number, S2SATSL would manage the second test successfully but would not
terminate for the first one. In contrast, S2S first inferred for elspx,nq the base as
basePpelspx,nqq ” temp^x“null^n“0, Dk. x ÞÑt u^n“2k^ką0u. After that, to
decide ∆01, it replaced this base into ∆01 and found that both disjuncts are unsatisfi-
able. It thus decided ∆01 as unsatisfiable. For ∆02, after replacing the base into ∆02, it
found that the second disjunct was satisfiable. Hence, it concluded ∆02 is satisfiable.

8 Related Work

The “base” was first introduced for shape-only predicates by Brotherston et al. [5] and
then extended for the combination of shape and arithmetic properties by Le et al. [23].
While the former computes the base based on a fixed point algorithm, the latter makes
use of cyclic proofs. However, these works did not discuss compositionality. Unlike
[5] and [23], this work presents a compositional reasoning as well as the most expres-
sive syntactic decidable fragments. Our proposal is a generation of the work presented
in [23]: It returns all equisatisfiable solutions of a formula. The proposed decidable
fragment, SHIDe, is slightly extended from the one on general inductive definitions in-
troduced in [5] and [23]. A crucial contribution of our work is to show that we can apply
compositional reasoning into this fragment for efficiency.

The authors in [21] propose a cyclic proof system for the combination of heap struc-
tures and universally pure constraints. In another direction, work in [39] presents a de-
cision procedure for a fragment where every predicate has two spatial base pairs, and
their pure projections are Presburger-definable. Recently, authors in [23] extended the
cyclic proof system in [21] for decidable fragments that subsume the ones presented in
both [21] and [39]. They also identify semantic conditions for decidable fragments with
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arithmetic constraints. Our focus complements [23] as we target compositional satis-
fiability solving. The authors in [6,7] studied satisfiability for array separation logic.
However, these works did not consider inductive predicates like ours. Nevertheless, de-
veloping a cyclic proof system to reason about the contents of array predicates might
be future work; for example, by reducing array theory into string constraints [20].

The idea of small models of heap structures and data has been discussed in the
literature: in separation logic [3,15,18] and other logics [25,26]. However, unlike ours,
the works in separation logic mainly focused on the entailment problem. Berdine et al.
present pioneering results for lists and binary trees [3]. They show that a singly-linked
list has the small model property; every singly-linked list predicate can be precisely
characterised by those heap models of size zero or two. Recently, this fragment was
extended with some small-model pure properties in [18]. Our proposal infers small
models for compositionality in a fragment, far beyond the lists and trees, including array
separation logic with general inductive predicates and small-model pure properties.

Other related works include those satisfiability solvers presented in [33,32,17,14,41].
The authors in [17] present a decision procedure based on heap automata. [14,41]
present a graph-based technique with predicates that are beyond the singly-linked lists.
These works support compositional predicates and one-hole trees with sortedness, size,
and balancedness. However, they have supported neither mutually recursive defini-
tions nor nested lists like ours. Our work closely relates to the satisfiability solver for
STRAND logic [25]. In [25], the authors discussed satisfiability-preserving embedding
that helps to enumerate a finite number of minimal models. Similar to this work, given
a formula, our procedure derives for it a base with the minimal model property that
precisely characterises its satisfiability. Unlike this work, while our solver works com-
positionally, STRAND did not support the compositionality.

Those works in [12,35] complement our work. While these works supported the
separating implication, they did not consider inductive definitions like ours. Finally,
the work in [39] discusses a solver for arithmetic with inductive definitions. This work
proposes to infer for each numerically inductive predicate a closed-form, an equivalent
formula in Presburger arithmetic. We here extend the decidable fragment in [39] with
nested list predicates.

9 Conclusion

We have presented a novel satisfiability solver in a fragment of array separation logic
combined with inductive definitions and arithmetic properties. Our proposal differenti-
ates itself from existing works on the compositional reasoning via the base inference.
Furthermore, we have shown that satisfiability solving can be compositional in the cur-
rent fragments. We have implemented the proposal into S2S and evaluated it over the
two sets of non-trivial benchmarks: taken from the SL-COMP 2019 and generated from
the verification of complex-pointer programs. The experimental results show that S2S
is effective and efficient. and is promising for being used in a verification system.
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editors, Formal Methods – The Next 30 Years, pages 442–461, Cham, 2019. Springer Inter-
national Publishing.

30. Long H. Pham, Quang Loc Le, Quoc-Sang Phan, Jun Sun, and Shengchao Qin. Testing heap-
based programs with java starfinder. In Proceedings of the 40th International Conference on

22



Software Engineering: Companion Proceeedings, ICSE ’18, pages 268–269, New York, NY,
USA, 2018. ACM.

31. Long H. Pham, Quang Loc Le, Quoc-Sang Phan, Jun Sun, and Shengchao Qin. Enhancing
Symbolic Execution of Heap-based Programs with Separation Logic for Test Input Genera-
tion. In Proceeding of ATVA, 2019.

32. Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic with trees
and data. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification, pages
711–728, Cham, 2014. Springer International Publishing.

33. Ruzica Piskac, Thomas Wies, and Damien Zufferey. Grasshopper - complete heap verifica-
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