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Abstract

The ATLAS experiment at the LHC has completed its run-2 data collection at
√

s = 13 TeV. An upgrade phase has begun in preparation of the high luminos-

ity LHC. Improvements to the algorithms underpinning data analysis in ATLAS are

researched, with a particular focus on data science techniques and machine learn-

ing. The research carried out focused on b-tagging, the labelling of jets produced by

b decays, and a search for new physics signals in ATLAS data. The use of neutral

tracks in the fit of the b-decay topology in existing ATLAS algorithms was studied.

No major performance boost was observed. Software development efforts were

carried out to improve the design and extensibility of existing b-jet decay topology

fitting algorithms. Research into an RNN based b-jet topological reconstruction

algorithm was carried out. The optimization studies and performance evaluation

techniques are summarized alongside key insights. Such a technique could serve

next to existing b-tagging algorithms at ATLAS. Finally, a search was performed

for heavier version of the Higgs boson using the 139 fb−1 ATLAS data. Such parti-

cles are motivated by several BSM theories. Expected upper limits on the strength

of various signal models are given, and expected exclusion contours at 95% confi-

dence level are drawn for the various parameters of the model.



Impact Statement

The field of particle physics explores the most fundamental equations of laws and

nature. The experimental measurements made by the ATLAS detector are at the

very cutting edge of human knowledge. This work includes an analysis of ATLAS

data in a completely novel final state, which is well motivated as a signal for a new

heavy particle with Higgs-like properties. The results of this analysis will directly

contribute to help answer one of the greatest questions of particle physics: What

lies beyond the Standard Model? Further impacts on the ATLAS data processing

chain are also present in this work. These focus around efforts for the development

of new and existing flavour tagging techniques. A particular focus on Machine

Learning algorithms underpinned this research. The benefits outside of academia

will derive mainly from the technologies developed during this effort. In particular,

the expertise and algorithms developed in the field of AI are expected to be of

significant importance to the future of the world economy.
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Chapter 1

Introduction

The high energy particle collisions at the LHC offer physicists an unprecedented

opportunity to study fundamental physics. Protons are collided at a 13 TeV centre

of mass energy, on average a billion times per second. This big data challenge has

led to the research and use of algorithmic tools such as Machine Learning at the

LHC. The collision events at the LHC are best understood through the Standard

Model of Particle Physics. Much of the research program of collaborations such as

ATLAS is dedicated to investigating the predictions of this model and its limitations.

ATLAS physicists search for new physics, experimental signatures that lie beyond

the predictive power of the Standard Model.

This thesis covers the work of the author as a member of the ATLAS collab-

oration. Personal contributions are particularly found in chapters 6, 7 and 8. The

earlier chapters review all necessary background material. The thesis is structured

as follows.

Chapter 2 conducts a review of the particle physics theory relevant in this work.

The Standard Model of particle physics is presented here, alongside theoretical ex-

tensions under research.

Chapter 3 describes the ATLAS detector and the LHC. This instrument was

used to gather experimental data used in the work.

Chapter 4 focuses on the data processing chain of ATLAS. The physics objects

used in ATLAS analysis are described alongside the format of observed data, and

predicted data from Monte Carlo simulation.
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Chapter 5 is a review of the machine learning tools and theory used in this

work.

Chapter 6 reviews the b-tagging algorithms used in ATLAS, with the author’s

contributions to the JetFitter algorithm covered in sections 6.5 and 6.6.

Chapter 7 presents the author’s research into topological b-tagging with recur-

rent neural networks.

Chapter 8 describes the search for generic heavy versions of the Higgs boson.

The author was a member of the analysis team behind this work. Attention will be

drawn towards the author’s personal contributions to this work.

The work presented here and future outlook will be summarized in chapter

9. As part of the author’s research program, a six month internship was carried out

with industry partner Faculty. The author worked on the use of variational inference

and its application to data privacy [1]. This work will not be presented in this thesis.

https://faculty.ai/


Chapter 2

Theory

2.1 Particle Physics at ATLAS
The Standard Model of Particle Physics (SM) is the theoretical framework under-

pinning experimental research at ATLAS [2, 3, 4]. It provides a description of

three of the fundamental forces of nature: Electromagnetism, the Weak interac-

tion and the Strong interaction. The SM is a relativistic quantum field theory with a

SU(3)×SU(2)×U(1) gauge symmetry. A Lagrangian density is written down con-

strained by these symmetries and the requirement of renormalizability. From here

the dynamics and kinematics are determined, dependent only on 19 experimentally

observed free parameters1.

The phenomenology of the Standard Model is generally expressed in terms of

fundamental particles. The fundamental fermions, having half-integer spin, com-

prise the leptons and quarks. Leptons can interact via the weak force and electro-

magnetism, whilst quarks additionally interact through the strong force. Leptons

and quarks come in three mass generations. The fundamental bosons, having inte-

ger spin, are the force-carrying particles which mediate the strong, weak and elec-

tromagnetic interactions. The Higgs boson, the only scalar particle in the SM, is

the most recently discovered particle [6]. It is responsible for the masses of gauge

bosons through the Higgs Mechanism (see section 2.1.2). The particle content of

1An additional 7 free parameters are usually added to the SM to account for neutrino masses (and
the PMNS matrix). These are not relevant to this work and thus not covered here. For a more full
description see [4].



2.1. Particle Physics at ATLAS 30

Symbol Description Value
me Electron mass 0.511 MeV
mµ Muon mass 105.7 MeV
mτ Tau mass 1.78 GeV
mu Up quark mass 1.9 MeV
md Down quark mass 4.4 MeV
ms Strange quark mass 87 MeV
mc Charm quark mass 1.32 GeV
mb Bottom quark mass 4.24 GeV
mt Top quark mass 173.5 GeV
θ12 CKM 12-mixing angle 13.1°
θ23 CKM 23-mixing angle 2.4°
θ13 CKM 13-mixing angle 0.2°
δ CKM CP violation Phase 0.995
g′ U(1) gauge coupling 0.357
g SU(2) gauge coupling 0.652
gs SU(3) gauge coupling 1.221

θQCD QCD vacuum angle ≈ 0
v Higgs vacuum expectation value 246 GeV

mH Higgs mass 125 GeV

Table 2.1: The 19 free parameters of the SM and their current measured values [5]

the SM is summarized in figure 2.1.

2.1.1 Interactions of the SM

2.1.1.1 The Strong Interaction

Quantum Chromodynamics (QCD) is the quantum field description of the Strong

force. The mediator of the strong force is the gluon. Quarks and gluons carry a

color charge that allow them to interact though the strong force, the strength of

this interaction determined by the strong coupling constant, αs. The value of αs

can be determined from QCD theory through a mathematical procedure known as

the renormalization group. This leads to the phenomenon of the running of αs,

the value of the coupling strength is dependent on the momentum/length scale2 at

which it is probed. QCD exhibits asymptotic freedom [8], the interaction strength

of the strong force decreases at high momentum (small distance) allowing perturba-

tive calculations. Conversely, at low energy and large length scales the interaction

2The momentum and length scales are inversely related by quantum mechanics.
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Figure 2.1: The particles of the SM [7]

becomes much stronger. This leads to the observed phenomenon of colour confine-

ment: particles with a non-zero colour charge cannot exist independently. Quarks

and gluons found in nature are confined to colourless hadrons. The two common

forms are mesons, formed of a quark and anti-quark, and baryons, formed of either

three quarks or three anti-quarks3.

Quarks can be produced as the final states of interactions in the LHC. The

cross-sections of these interactions can be calculated perturbatively thanks to

asymptotic freedom. The quarks/gluons produced in these events will be observed

as jets, a collimated group of hadronic particles. These jets are produced by the

hadronization/fragmentation of the quark or gluon. The hadronization process can-

not be calculated directly from QCD theory, but is well studied experimentally.

Several different models for the process exist, such as the Lund String Model [9]

used by the Pythia event generator [10]. Experimental observation of hadronization

shows differing behaviour for each quark and gluon [11]. In particular, the heavier

b-quark carries a much larger mean fraction of energy into its final b-hadron then

3Three colours (rbg) and three anti-colours (r̄b̄ḡ) exist. A combination of all three colours or a
colour and its anti-colour give a colourless object.
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the lighter quarks. Top quarks decay weakly before hadronization occurs and can

be treated as free particles [12].

2.1.1.2 The Electroweak Interaction

Electroweak theory is the quantum field description of electromagnetism and the

weak interaction. Electromagnetism is the force governing interactions between all

electrically charged particles, for a more detailed description see [2, 3, 4]. The weak

interaction is responsible for the decay of fermions between generations. Its force

carrying particles are the W± and Z bosons. The weak interaction allows quarks to

change their flavour through weak decay. It is responsible for the decay of heavy

leptons, such as the muon and tau, and hadrons4, through the decay of quarks.

The electroweak framework contains four fundamental fields under an

SU(2)L×U(1)Y gauge symmetry. The fields are denoted Ẇµ = (W 1
µ ,W

2
µ ,W

3
µ ) and

Bµ . By Noether’s theorem, the gauge symmetries entail two conserved quantities:

the third component of weak isospin T3 and weak hypercharge Y . After electroweak

symmetry breaking we obtain the W± and Z boson fields, which are responsible for

the weak force, and the photon or electromagnetic field Aµ (see section 2.1.2). In

electroweak theory, quarks and leptons gain a weak isospin and hypercharge and

are organised into left- and right-handed chiral doublets or singlets (see table 2.2).

The electric charge Q = T3 +
1
2Y becomes the conserved quantity after electroweak

symmetry breaking via the Higgs mechanism (discussed in section 2.1.2).

The W± bosons interacts with the fundamental fermions through the charged-

current interaction. This allows a quark or lepton to transform into its doublet

counterpart, for example a left-handed electron into an electron neutrino (see figure

2.2). The W boson is unstable and decays rapidly, the W decays and corresponding

4Hadrons can also decay through the strong or electromagnetic forces, those decaying exclusively
by the weak force have longer lifetimes
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Fermion Singlet/Doublet chirality Q T3 Y(
ν`

`−

)
L

Left
(

0
−1

) (
+1

2
−1

2

) (
−1
−1

)
(

qu
qd

)
L

Left
(
+2

3
−1

3

) (
+1

2
−1

2

) (
+1

3
+1

3

)
(
`−
)

R Right
(
−1
) (

0
) (

−2
)(

qu
)

R Right
(
+2

3

) (
0
) (

+4
3

)(
qd
)

R Right
(
−1

3

) (
0
) (

−2
3

)
Table 2.2: Fermion singlets/doublets and their properties. `− refers to the leptons

e−, µ−, τ−, ν` to the neutrinos νe, νµ , ντ , qu to the up-like quarks u, c, t
and qd to the down-like quarks d, s, b

branching fractions are as follows [5]:

Br(W→ eν̄e) = 0.1046±0.0042±0.0014, (2.1)

Br(W→ µν̄µ) = 0.1050±0.0041±0.0012, (2.2)

Br(W→ τν̄τ) = 0.1075±0.0052±0.0021, (2.3)

Br(W→ hadrons) = 0.6832±0.0061±0.0028. (2.4)

The weak interaction with quarks is more complex. The weak eigenstates of

quarks are mixtures of the mass eigenstates, as determined by the CKM matrix [5]:
|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

=


0.97370±0.00014 0.2245±0.0008 0.00382±0.00024

0.221±0.004 0.987±0.011 0.0410±0.0014

0.0080±0.0003 0.0388±0.0011 1.013±0.030


(2.5)

The weak decay vertex for quarks thus picks up an extra term from the CKM matrix.

This can be seen from the Feynman diagram in figure 2.3. Quark decays are greatly

affected by this as the transition rate picks up a factor of |Vi j|2.

2.1.2 Higgs Mechanism

The Higgs Mechanism was introduced to the SM to explain the observed masses of

the W and Z gauge bosons [13, 14, 15, 16, 17, 18]. In gauge field theory, simple
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Figure 2.2: Weak interaction vertex with an electron and electron neutrino.

Figure 2.3: A b quark decaying to c via the weak interaction. The b to c vertex picks up a
factor Vcb from the CKM matrix.
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mass terms of the form:

Lmass =−m2AµAµ (2.6)

are not allowed as these are not invariant under a gauge transformation (for exam-

ple the U(1) gauge transformation Aµ → Aµ − ∂ µθ(x)). Gauge invariance naively

prevents us adding SM mass terms for the W, Z and chiral fermions. The solution is

to introduce a new scalar field, the Higgs field, with a non-zero vacuum expectation

value. This field couples to the gauge bosons and fermions giving them mass in a

gauge-invariant manner.

The Higgs field, Φ is an SU(2) doublet:

Φ =

φa

φb

 (2.7)

where the complex scalar fields φa and φb are written in terms of real scalar fields:

φa = φ1 + iφ2,φb = φ3 + iφ4 (2.8)

The Lagrangian for the Higgs field is written as:

LΦ = (DµΦ)†(Dµ
Φ)−V (Φ) (2.9)

with the Higgs Potential defined as:

V (Φ) = λ (Φ†
Φ)2 +µ

2
Φ

†
Φ (2.10)

The covariant derivative Dµ is defined according to the gauge symmetry of the

electroweak SU(2)L×U(1)Y sector5:

Dµ = ∂µ + i
g
2

σ jW
j

µ + iY
g′

2
Bµ (2.11)

where the W j
µ = (W 1

µ ,W
2
µ ,W

3
µ ) and Bµ are electroweak gauge fields (before sym-

5The Higgs field does not, as far as we know, directly couple to gluons.
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metry breaking), Y is the weak hypercharge and σ j are the Pauli matrices. Sponta-

neous symmetry breaking occurs when the Higgs potential has µ2 < 0. This leaves

a non-zero vacuum expectation value corresponding to the minimum of the poten-

tial V (Φ). It is possible to expand the Higgs field in terms of a single scalar field,

this is called the unitary gauge:

Φ =

 0

v+h(x)

 (2.12)

Where v2 = µ2

λ
. Combining this with the Lagrangian in equation (2.9) and perform-

ing the electroweak symmetry breaking produces:

LΦ =
1
2
(∂µh)(∂ µh)+

g2

4
(v+h)2(W+

µ W−µ)

+
1
8
(g2 +g′2)(v+h)2ZµZµ +

µ2

2
(v+h)2− λ

4
(v+h)4

(2.13)

Where we have used the convention:

W±µ =
1√
2
(W 1

µ ∓ iW 2
µ ), (2.14)

Zµ =
1√

g2 +g′2
(gW 3

µ −g′Bµ), (2.15)

Aµ =
1√

g2 +g′2
(g′W 3

µ +gBµ) (2.16)

Excitations of these fields give rise to their respective bosons. The W±µ and Zµ fields

give the W± and Z bosons, the electromagnetic field Aµ gives the photon and the

Higgs field h gives the Higgs boson. We can read off the mass of the electroweak
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bosons in terms of v:

mW =
1
2

gv (2.17)

mZ =
1
2

v
√
(g2 +g′2) (2.18)

mγ = 0 (2.19)

mh =
√
−2µ2 (2.20)

2.1.2.1 Fermion Masses

To obtain the fermion masses, Yukawa coupling terms are added to the SM La-

grangian. The Yukawa coupling for a fermion f to the Higgs field is:

LYukawa =−G f (Ψ̄LΦΨR + Ψ̄RΦΨL) (2.21)

where ΨL/R are the left/right handed fermion isospin fields (doublet or singlet),

Φ is the complex scalar Higgs field and G f is the Yukawa coupling (determined

experimentally). We can plug in the Higgs field from eq. (2.24) and the fermion

doublets to obtain the mass terms. For example, the first lepton generation doublets

(ν ,e)L and (e)R give:

L =−Ge(v+h(x))√
2

(ēe) (2.22)

An additional term is required for the masses of up-like quarks:

LYukawa,up =−G f (Ψ̄LΦ̃
c
ΨR + Ψ̄RΦ̃

c
ΨL) (2.23)

where

Φ̃
c =

v+h(x)

0

 (2.24)

The Yukawa coupling terms for each fermion are then determined by experi-

mentally measuring v and the fermion mass6.

6The neutrinos require special consideration as the method for neutrino mass generation is not
currently known. For an example of neutrino mass generation see [5].
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Figure 2.4: The possible Higgs vertices from the SM. f is any massive fermion (leptons or
quarks, but not neutrinos). V is any massive boson (W± or Z)

Table 2.3: The branching ratios of the 125 GeV SM Higgs boson [5].

With the addition of the Yukawa couplings, the SM Lagrangian is complete.

Perturbation theory can give us the Feynman vertices of the Higgs boson (shown in

figure 2.4). The branching ratios of the most common Higgs decays are shown in

table 2.3.

2.1.3 Heavy Quark Phenomenology

The phenomenology of heavy quarks is of particular importance in this thesis and

is described here. For more detail on the phenomenology of other particles, such as
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leptons, see any of the references [2, 3, 4].

The strong and weak interactions both have important effects on quark phe-

nomenology as detailed in section 2.1.1. The two heaviest quarks, the top (t) and

bottom (b), are of particular interest to scientists at the LHC. The b quark is the

most common decay product of the Higgs boson and the top quark. The top quark,

as the most massive fermion, is important in the searches for BSM physics at high

energy scales.

The t quark is the heaviest known fermion. This leads to its extremely short

lifetime (around 5×10−25 s). It decays via the weak force into a b quark, although

the mixing of the CKM matrix means it can very rarely decay to an s or d quark.

The branching ratio for t→W+b was measured by the CMS experiment at around

1.014± 0.003 (stat.)± 0.032 (syst.) [19]. This gives the CKM matrix value of

|Vtb| ≈ 1, consistent with unitarity. At the LHC, top quarks are therefore expected

to decay rapidly producing a b-jet and a W boson, which will further decay either

leptonically or hadronically.

The b quark is the second heaviest fermion, albeit much less massive than the

top. It might therefore be expected to decay rapidly, however the weak decay of b

is suppressed as |Vub|2 << |Vcb|2 << 1. Hadrons containing b quarks consequently

have lifetimes of the order 10−12 s. Combined with their large mass (the b is four

times heavier than a proton), this gives b hadrons a very distinctive signature in col-

lider physics (see section 6). The b hadrons will mainly decay to hadrons containing

c quarks [5], as |Vcb| is an order of magnitude larger than |Vub|. The weak decays of

b hadrons not involving b→ c are called rare decays. These have branching frac-

tions with values around 10−5 [5]. The W produced in the b-decay then decays to

hadrons or leptons, this latter is termed a semi-leptonic decay.

2.2 Beyond the Standard Model

There are numerous reasons to look for beyond Standard Model (BSM) physics.

Arguments for BSM broadly fall into two categories. Firstly, the SM is limited

to modelling the behaviour of three fundamental forces and particles at the small



2.2. Beyond the Standard Model 40

scale, it is not a complete model of all physics. The second category of arguments

are more philosophical, stemming from desires for naturalness and elegance.

2.2.1 Problems with the SM

2.2.1.1 Gravity

The SM provides no description of the force of gravity. Our current best theory of

gravity is General Relativity. Attempts to express General Relativity as a quantum

field theory have so far proven unsuccessful. It can, however, be expressed as an

effective field theory up to a certain energy scale. The energy scale at which this

effective field description breaks down is known as the Planck mass, MPlanck ∼

1019 GeV.

2.2.1.2 Dark Matter

Cosmological observations of the universe suggest only 15% of all matter in the uni-

verse is formed from the SM particles. The other 85% of matter appears to only in-

teract via gravity and is thus difficult to detect [20]. Evidence for dark matter comes

from many cosmological observations such as gravitational lensing, galaxy rotation

curves, the cosmic microwave background and many more phenomena [21]. The

standard model of cosmology [22], which has general relativity as its mathematical

basis, requires dark matter to fit current observations of the universe.

2.2.1.3 Dark Energy

The standard model of cosmology further predicts 68% of all energy in the uni-

verse is so called dark energy [22]. This energy is responsible for the observed

accelerating expansion of the universe. In the mathematics of general relativity, it

is characterized by the cosmological constant. This can be interpreted as the energy

density of vacuum. The SM currently could offer an explanation through vacuum

energy, quantum fields have a non-zero energy value at all points in space, however

this gives a value almost 120 orders of magnitude off from the observed value of

dark energy [23, 24].



2.2. Beyond the Standard Model 41

2.2.1.4 Neutrino masses

The observations of neutrino oscillations suggest that neutrinos have a non-zero

mass [25, 26]. To introduce a neutrino mass into the SM requires the addition of

right-handed sterile neutrinos or majorana mass terms [5]. To date, no experimental

evidence for either has been found.

2.2.1.5 Hierarchy Problem

The hierarchy problem relates to the observed large difference between the mass of

the Higgs (∼ 125 GeV) and the Planck Mass (∼ 1019 GeV). The energy scale of

the physics described by the SM is vastly different to the energy scale of quantum

gravity. This leads to questions of naturalness in a theory where one force is vastly

different to the rest [27]. It further leads to excessive fine-tuning.

The observed mass of the Higgs would be expected to have contributions at the

order of the Planck scale. Consider a fermion, f , with a Yukawa coupling, G f to the

Higgs field. The Feynman diagram in figure 2.5 gives a quadratic order correction

to the Higgs mass [27]:

δm2
h =−

G2
f

32π2 Λ
2
UV (2.25)

Figure 2.5: Feynman diagram of the first loop correction to the bare Higgs mass from a
fermion f .

The negative sign in eq. (2.25) is due to the the fermion spin-statistics. Every

particle which couples to the Higgs contributes a loop correction. Bosons, such

as the W and Z, contribute similar quadratic loop terms of order Λ2
UV but with a

positive sign. If we take the UV cutoff to be the Planck mass, we find a huge fine-
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tuning of the bare Higgs mass is required to produce the observed value of 125 GeV.

This large fine-tuning is seen as unnatural, and as an argument for BSM.

2.2.1.6 The Structure of the SM

There are several things about the SM that still puzzle physicists. One is the exis-

tence of three, and only three, generations of fermions. The SM relies on 19 (26

with neutrino masses) free parameters which must be experimentally determined.

Physicists would like to understand the origins of these values and the SM structure,

and many BSM theories attempt to solve this.

2.2.2 Examples of BSM

There exist many examples of BSM theories produced to solved the experimental

and theoretical challenges of the SM. Examples include SUSY [28], which can offer

a solution to the hierarchy problem, or string theory [29], which attempts to recon-

cile gravity and quantum field theory. Some of these theories offer phenomenolog-

ical predictions we can search for at the LHC. In experimental research, it is more

common to start with a simplified model that targets a particular signature. This

simplified model could be explained as a consequence of a more complete BSM

model. An example of this is the generic heavy Higgs model in 2.2.2.2.

2.2.2.1 SUSY

Supersymmetry posits that every particle has a so called super partner with different

spin statistics. They differ only by their spin quantum number until a spontaneously

broken symmetry is introduced to allow different masses, such as in the minimal su-

persymmetric Standard Model (MSSM) [28]. Thus all fermions have a bosonic su-

perpartner and vice versa. The new particles introduced by theories such as MSSM

offer potential candidates for dark matter. As an example the neutralino predicted

by MSSM is massive, stable and interacts only through the weak force. This would

make it an ideal candidate for dark matter (as a Weakly-Interacting Massive Particle

(WIMP)). Supersymmetric theories additionally offer a neat solution to the hierar-

chy problem. For example, consider the superpartner, f̃ of the fermion f in section

2.2.1.5. The loop correction to the Higgs mass comes from the Feynman diagram



2.2. Beyond the Standard Model 43

in figure 2.6. This could cancel the mass correction term of figure 2.5 as it will have

opposite spin statistics and thus the ineraction term has an opposite sign (but equal

couplings), solving the issues of fine-tuning7.

Figure 2.6: Feynman diagram of the first loop correction to the bare Higgs mass from a
superpartner f̃ of fermion f

2.2.2.2 Extra Higgs Bosons

In many BSM models such as the MSSM or NMSSM8, multiple Higgs particles are

predicted beyond the 125 GeV Higgs measured at the LHC [28]. It is possible to

predict the phenomenology of a heavy version of the Higgs in a model-independent

way [30, 31, 32]. Suppose there are multiple Higgs SU(2)L fields such as those

in equation (2.7): (Φ1,Φ2, ...). Next, add the most generic multi-Higgs potential

V (Φ1,Φ2, ...). These fields can mix to produce the mass eigenstates. Consider

the lightest mass eigenstate, Φh, and the next-to-lightest mass eigenstate, ΦH . The

particle h would correspond to the 125 GeV particle observed at the LHC9. The

particle H is the next lightest Higgs particle not yet discovered.

The most general Lagrangian will, in this case, give the following order 4

7This cancellation is not exact in models such as MSSM due to the different masses of super-
partners. A residual fine-tuning is needed to the order of the m f̃ , this is known as the little hierarchy
problem [27]

8next-to-minimal supersymmetric Standard Model
9In general, this doesn’t have to be the case.
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couplings to the vector bosons [30]:

L
(4)

hWW = ρhgmW hW µWµ , (2.26)

L
(4)

hZZ = ρh
gmW

2cos2 θW
hW µWµ , (2.27)

L
(4)

HWW = ρHgmW HW µWµ , (2.28)

L
(4)

HZZ = ρH
gmW

2cos2 θW
HW µWµ (2.29)

where θW is the weak mixing angle and mW is the W boson mass. The scaling

factors ρh and ρH arise as the vacuum expectation values (v.e.v.) and the couplings,

g, are in general different from the SM values. If there are only two Higgs doublets,

then it is possible to write these explicitly [32]:

ρh = cos(β −α) (2.30)

ρH = sin(β −α) (2.31)

Where β is defined from the v.e.v. of the two fields (v1 and v2):

tanβ =

∣∣∣∣< Φ0
2 >

< Φ0
1 >

∣∣∣∣≡ ∣∣∣∣v2

v1

∣∣∣∣ (2.32)

and α is a mixing angle relating the Higgs doublets Φ1,Φ2 to the neutral scalar

Higgs and heavy Higgs fields, h and H:√2Re(Φ0
2)−v2

√
2Re(Φ0

1)−v1

=

 cosα sinα

−sinα cosα

h

H

 (2.33)

For a SM-like light Higgs ρh must be close to 1.

Dimension-6 effective operators for the heavy Higgs can also be written to

encapsulate physics at a higher energy scale [30]:

L
(6)

HVV = ∑
n

fn

Λ2 On (2.34)

Where Λ is the scale up to which the effective field description is valid and On are
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all the gauge invariant six-dimensional operators. The effective Lagrangian terms

involving the heavy Higgs and the vector gauge bosons are found after electroweak

symmetry breaking10:

L
(6)

HWW = gmW
fW

2Λ2

(
W+

µνW−µ
∂

νH +h.c.
)
−gmW

fWW

Λ2 W+
µνW−µνH, (2.35)

L
(6)

HZZ = gmW
c2 fW + s2 fB

2c2Λ2 Z+
µνZ−µ

∂
νH−gmW

c4 fWW + s4 fBB

2c2Λ2 Z+
µνZ−µνH

(2.36)

where s = sinθW and c = cosθW . The terms fW , fWW , fB, fBB are coupling

strengths to be determined experimentally. These follow from equation (2.34) with

the subscripts relating to the fields W and B (see section 2.1.1.2 and ref. [30]).

Terms of O(s2) and O(s4) will be small and could be neglected.

This generic heavy Higgs model leads to the possibility of an experimental

signature in the ATLAS detector at the LHC. The addition of dimension-6 terms

has interesting effects on phenomenology. It enhances the cross-section of certain

production modes, in particular associated vector boson production [31]. This par-

ticular mode has not been searched for as of yet at the LHC. It has a particularly

clean signal (low standard model backgrounds) in its same-sign two lepton final

state: HW±→W±W∓W±→ `±νqq̄`±ν . By searching for such a signal with the

ATLAS detector, evidence for an undiscovered heavy Higgs boson could be found.

In the absence of such as signal, limits could be set on BSM model parameters such

as fW and fWW . A search for such a generic heavy Higgs is presented in chapter 8.

10We ignore the triple gauge couplings as ATLAS and CMS have imposed strong constraints on
these [30].



Chapter 3

The ATLAS Detector at the LHC

3.1 The Large Hadron Collider (LHC)
Particle accelerators allow us to study fundamental physics at high energies and

extremely small scales. The Large Hadron Collider (LHC) [33] at the European Or-

ganisation for Nuclear Research (CERN) is the most powerful accelerator currently

in operation. The LHC accelerates beams of protons along two 27km long circu-

lar tunnels using powerful superconducting magnets. These protons then collide at

up to 13 TeV centre of mass energies, with the resulting events measured by three

main detectors along the ring: ATLAS [34], CMS [35] and LHCb [36]. Several

other detectors exist such as ALICE [37], which observes the collision of large ions

also accelerated by the LHC.

The CERN accelerator complex is sketched in figure 3.1. Protons, from ionised

Hydrogen gas, are first accelerated up to 50 MeV by Linac 2. These are then accel-

erated to 450 GeV through the Proton Synchotron Booster (up to 1.5 GeV), Proton

Synchotron (25 GeV) and finally the Super Proton Synchotron (450 GeV). The

protons are then fed into the LHC, where they are accelerated up to 6.5 TeV. Two

proton beams travelling in opposite directions then collide producing 13 TeV centre

of mass energy events. The protons in beams travel in bunches of up to 1.1×1011

particles spaced 25 ns apart. Run 2 of the LHC finished in 2018 delivering 150 fb−1

of integrated luminosity1 [38].

1Integrated luminosity: L = Nevt/σ , where σ is the cross-section of a process, and Nevt is the
number of events of this process
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Figure 3.1: CERN’s accelerator complex [42]

The large number of protons in a bunch can lead to multiple collision events

per bunch crossing. This helps to boost the luminosity of the LHC but also leads to

pile-up, as the measurement of a collision is affected by other collisions in the same

bunch crossing (in-time pile-up) and other bunch crossings (out of time pile-up)

[39].

The LHC is currently shut down in preparation for run 3 (delayed until spring

2022 due to COVID-19). After run 3, the LHC will be upgraded in preparation

for the High-Luminosity LHC (HL-LHC) [40]. The HL-LHC will see ∼ 200 colli-

sions per bunch crossing for an expected 3000-4000 fb−1 of integrated luminosity

throughout its scheduled lifetime. In contrast, current run conditions have around

∼ 40− 60 collisions per bunch crossing [41]. Pile-up effects will consequently

increase.

3.2 The ATLAS Detector
The ATLAS (A Toroidal LHC ApparatuS) detector [34] is a large cylindrical de-

tector with the LHC beampipe running along its central axis. It is a multi-purpose
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Figure 3.2: Schematic of the ATLAS detector [34]

detector and has many components to help study proton-proton collision events.

The three main components are the sub-detectors: the Inner Detector, Calorimeter

System and Muon Spectrometer. These form concentric rings around the beampipe

in the barrel of the detector. Two end caps additionally provide extra coverage for

forward physics. A schematic of the detector is shown in figure 3.2.

3.2.1 Co-ordinate System

A right-handed Cartesian coordinate system is used for ATLAS with the z-axis

along the beam-pipe, the y-axis pointing up away from the earth’s centre and the

x-axis pointing towards the centre of the LHC ring. The azimuthal angle (φ ) is de-

fined starting form the x-axis going around the z-axis. The polar angle (θ ) is the

angle from the z-axis (θ = 0 is along the z-axis). The radius r =
√

x2 + y2.

The momentum of a particle in Cartesian coordinates is:

p = (px, py, pz) (3.1)

The transverse momentum is the projection of p onto the x-y plane: pT = |p|sinθ .
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Component Angular Coverage Element Size R−φ

Resolution
z/R
Resolution

IBL |η |< 2.5 50×250 µm2 8 µm 40 µm
Pixel (barrel) |η |< 1.7 50×400 µm2 10 µm 115 µm

Pixel (End Cap) 1.7 < |η |< 2.5 50×400 µm2 10 µm 115 µm
SCT (barrel) |η |< 1.4 80 µm 17 µm 580 µm

SCT (End Cap) 1.4 < |η |< 2.5 80 µm 17 µm 580 µm
TRT (barrel) |η |< 0.7 4000 µm 130 µm

TRT (End Cap) 0.7 < |η |< 2.0 4000 µm 130 µm

Table 3.1: Summary of the components in the ATLAS ID. The z/R resolution refers to the
resolution in z direction for barrel components, R direction for end cap compo-
nents. [34, 43]

A transformation of the polar angle known as pseudorapidity is often used:

η =− ln tan
θ

2
(3.2)

This quantity is useful as, in the massless limit, it is equal to the rapidity of a particle,

y = 1
2 ln(E+pz

E−pz
). Differences in rapidity are Lorentz invariant to longitudinal boosts.

The value η = 0 corresponds to a particle travelling perpendicular to the beamline,

whilst η → ∞ corresponds to a particle travelling parallel (or anti-parallel) to the

beamline. A useful distance parameter derived from pseudorapidity and azimuthal

angle is often used:

∆R2 = ∆η
2 +∆φ

2 (3.3)

In the massless limit, where η ≈ y, this quantity is Lorentz invariant to boosts along

the beam direction.

3.2.2 Inner Detector

The inner detector (ID) is the collection of detectors closest to the beampipe. The

ID provides position measurements of charged particles passing through it. The ID

is placed inside a 2 T magnetic field causing charged particles to curve as they travel

through it. The components of the ID going radially outward from the beampipe are:

the insertable b-layer (IBL), the pixel detector, the semiconductor tracker (SCT)

and the transition radiation tracker (TRT). The resolution and coverage of these

components are summarized in table 3.1.
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The IBL and pixel detector form four cylindrical pixel layers in the barrel re-

gion, and three disc-shaped pixel layers in each of the end caps. The IBL is the

innermost pixel layer in the barrel at a radius of 30 mm. The three pixel detector

layers in the barrel cover the space 50.5 < r < 122.5 mm. The IBL and pixel detec-

tor, when its end cap layers are included, cover the region |η |< 2.5. The pixel de-

tector and IBL provide high resolution position measurements close to the primary

interaction point of proton-proton collision events. This is particularly important

not only for track reconstruction but to identify tracks originating from b hadron

decays (see chapter 6). The pixel sizes and achieved resolution are summarized in

table 3.1.

The SCT consists of four layers of pairs of silicon microstrips. Each strip is

∼ 120 mm in length and the pairs have a separation of 80 µm (strip pitch). A

3D position measurement is obtained by angling the strips by 40 mrad from their

common normal. The achieved resolution is 10 µm in the transverse direction and

580 µm in the longitudinal (see table 3.1).

The TRT is composed of 4mm radius cylindrical gas drift tubes. The space be-

tween these tubes is filled with polymer fibres (barrel) and foils (end caps). Charged

particles radiate photons as they pass through these materials, more specifically the

boundary between materials. The intensity of the transition radiation depends on

the velocity of the particle. This can be combined with a measurement of the par-

ticles momentum to deduce its mass. This helps in particle identification, e.g. the

distinguishing of electrons from pions.

The inner detector has been designed to give a high resolution measurement

of particle tracks. The design target for transverse impact parameter resolution is

10 µm. A 2 T magnetic field is applied in the ID. This causes charge particles to

curve allowing for a measurement of momentum. The ATLAS ID has a target track

momentum resolution of:

σpT

pT
= 0.05%pT⊕1% (3.4)

The first term encapsulates the momentum dependence of resolution, as high mo-
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parameter resolution (designed)
d0 140 µm/pT⊕10µm

z0 sinθ 209 µm/pT⊕91µm
φ0 39 mrad/pT⊕70µrad

cotθ 5.0/pT⊕0.7
q/p 0.05%pT⊕1%

Table 3.2: Designed resolution of the five track parameters used at ATLAS. The multiple
scattering resolution term dominates at low pT and intrinsic resolution term at
high pT. [44]

Figure 3.3: The barrel region of the inner detector. [45]

mentum tracks form almost straight lines [34]. The second term is due to multiple-

scattering. The designed resolution of track parameters is summarized in table 3.2.

3.2.3 Calorimeter System

The calorimeter systems surround the inner detector. Their purpose is to measure

the energy of particles produced in an event. There are two different calorimeter

systems: The Electromagnetic Calorimeter (ECAL) which measure the energy of

photons/electrons and the Hadronic (HCAL) calorimeter which measures the en-

ergy of hadrons2. Both use layers of absorber material and active material. The

absorber material reduces the energy of a particle as it passes through. The active

material then detects this energy. The calorimeters are characterised by a critical

2Hadrons deposit energy in both the HCAL and ECAL
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Calorimeter σE/E
√

E
EM (barrel and end-cap) 10% 0.7%

Tile and HEC 50% 3%
FCAL 100% 10%

Table 3.3: Energy resolutions obtained from test beam data. The HCAL is divided into Tile
(in the barrel), HEC (end-cap) and FCAL (forward calorimeter). The first term
is from stochastic noise whilst the second reflects local non-uniformities in the
calorimeter response.

length defined by the distance through which the energy of a target particle (elec-

tron/photon or hadron) is reduced by 1/e. For the ECAL this is the radiation length,

X0. For the HCAL it is the characteristic depth, λ .

The energy resolution of these calorimeters is summarized in table 3.3. The

ATLAS calorimeter system is non-compensating, the response to hadrons and elec-

tromagnetic particles is not the same. This is accounted for by calibration.

3.2.3.1 Electromagnetic Calorimeter (ECAL)

The ECAL is the innermost calorimeter system. It uses a lead absorber material3.

The active material is liquid Argon (LAr). The ECAL is arranged with an accordion

geometry to provide continuous coverage in φ . It is divided between the barrel

component, covering |η |< 1.475, and two end cap components at either end of the

detector covering 1.375 < |η |< 2.5 and 2.5 < |η |< 3.2. The length of the ECAL

is X0 > 22 in the barrel and X0 > 24 in the end caps.

3.2.3.2 Hadronic Calorimeter

The HCAL lies outside the ECAL. In the barrel region, it uses a steel absorber and

scintillating tiles as active material (termed the tile calorimeter). The tile calorimeter

is divided into the central and extended barrel sections covering |η |< 1.0 and 0.8 <

|η |< 1.7. It consists of three layers of thickness 1.5λ , 4.1λ and 1.8λ in the central

region and 1.5λ , 2.6λ and 3.3λ in the extended barrel.

The HCAL uses LAr active material in the end-cap (HEC) and forward regions

(FCAL). The HEC uses copper absorbers and is formed of two wheels per end-

3The EM coupling of a particle to an absorber is proportional to atomic number squared, hence
lead has a short X0 [5]
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cap with depth of 12λ , covering the region 1.5 < |η | < 3.2. The FCAL uses one

layer of copper absorber and two of tungsten. It has a depth of 10λ and covers

3.1 < |η |< 4.9.

3.2.4 Muon Spectrometer

The muon spectrometer (MS) is the outermost system of ATLAS. Muons are mini-

mally ionising and have a large mass leading to reduced bremsstrahlung emission.

This allows them to pass through most of the detector undisturbed, until they reach

the MS. The MS contains layers of detectors that provide positional measurements.

A toroidal magnetic field provided by magnets in the barrel and end caps perme-

ates the MS. This causes the trajectory of muons to curve allowing for momentum

measurement.

Four types of detector are used in the MS to measure the position of muons.

Two of these are known as trigger muon chambers: Resistive Plate Chambers

(RPCs) and Thin Gap Chambers (TGCs). These provide a position measurement

with very short time delays (< 25 ns [46]). RPCs cover |η |< 1.05 and TGCs cover

1.05 < |η |< 2.4. The other two muon detectors are monitored drift tubes, covering

|η |< 2.7 and cathode strip chambers covering 2.0 < |η |< 2.7.

The MS additionally provides measurements in the case of jet punch-through.

This occurs when a non-negligible amount of energy from a high-pT jet is deposited

in the MS, having “punched through” the calorimeters.

3.2.5 Trigger

Proton collisions in the LHC occur at the bunch crossing rate of 40MHz. The trigger

helps to reduce the rate of events to ∼ 1kHz, by identifying and recording only

events of interest. The run 2 trigger is divided into two levels: the Level 1 hardware

trigger (L1) and the software based High Level Trigger (HLT) [47].

The L1 trigger reduces the initial event readout rate from 40MHz to 100kHz.

As such, it operates with very limited latency. This means no ID information is

available. It only makes use of the calorimeter and MS detectors (the trigger muon

chambers). Regions of interest (RoI) within the calorimeter and muon systems are
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selected that may contain high pT jets, leptons or photons. Global information is

available to trigger on as well, such as missing transverse momentum. The events

passing the L1 trigger then pass to the HLT.

The HLT reduces the event rate down to 1kHz. It is a software based trigger

running on a computer farm. The online algorithms in the HLT reconstruct events

similar to offline reconstruction algorithms4 but are designed for speed. This allows

for an improvement in trigger efficiency.

The different triggers used in ATLAS make up the “trigger menu”. Analyses

will have a trigger chain which details all the triggers used, an example of this can

be found in chapter 8. Triggers can be prescaled if the output rates are too large.

Only a fraction of the events passing the HLT are then kept. Thresholds on pT offer

an alternative way to reduce the trigger output to the desired rate. For instance, the

HLT j380 trigger requires at least one jet with a pT > 380 GeV. Many analyses

prefer to use pT thresholds as prescaled triggers entail correction factors.

4see chapter 4



Chapter 4

Data Processing in ATLAS

4.1 Object Reconstruction
The measurements performed by the ATLAS detector are used to reconstruct phys-

ically meaningful objects. The tracking detectors provide the locations of hits, en-

ergy deposits as a charged particle passes through the detector. These hits are used

to reconstruct particle tracks. The energy deposited in the calorimeters are formed

into clusters with a specific location. These can be combined with tracks to deduce

objects such as electrons or jets. The reconstructed objects used in this work are

presented in this section.

4.1.1 Tracks

Charged particle trajectories are reconstructed from hits in the IBL, pixel layer and

SCT (hits in the TRT are initially excluded) [45]. Single hits in the IBL or pixel

layer, or two hits in the SCT, form 3D space-points. A track seed is created from

three such points. More hits are then iteratively added to the track seed to form a

track candidate. Track seeds are created from all combinations of three hits then

grown assuming a helical track.

The resultant track candidates occasionally share hits. This issue is solved

using a track score. The set of tracks with the highest combined score and no

shared hits is selected. The track score is based on their pT, number of associated

hits, number of holes (missing expected hits) and overall χ2 of the fit. Tracks with

less than 7 hits or pT < 400 MeV are removed.
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The information from the TRT is added in a final step. Hits in the TRT consis-

tent with track candidates are added and the tracks are refit.

4.1.1.1 Vertex reconstruction

A reconstructed vertex is the point at which multiple tracks meet. The primary

vertex refers specifically to where the two protons in an event collide. Vertices may

arise due to many other physical processes, such as heavy flavour hadrons decaying.

These secondary vertices are covered in more detail in chapter 6. Due to the large

number of pp collisions per bunch crossing, the vertexing procedure will identify

multiple primary vertex candidates. The primary vertex with the highest sum of

squared transverse momentum from its associated tracks is assumed to be the hard-

scatter primary vertex.

The vertexing procedure starts by identifying a vertex seed position from the

track collection. Tracks incompatible with this position are removed and the vertex

position is refit. This procedure recurs iteratively until the vertex candidate passes

certain quality requirements.

4.1.2 Jets

4.1.2.1 Reconstruction

The first step in jet formation is the construction of topological clusters (topocluster)

in the calorimeters [48]. Energy deposits in calorimeter cells are given an energy

significance Scell:

Scell =
Ecell

σnoise,cell
(4.1)

Where Ecell is the energy in the cell and σnoise,cell the background noise of the cell,

both are measured calibrated to the electromagnetic (EM) energy scale. Topological

cluster seeds are formed from cells with Scell > 4. Neighbouring1 seed cells are

merged. Any neighbouring cells with Scell > 2 are then merged to the cluster until

only boundary cells with 0 < Scell < 2 are left. These final boundary cells are

collected, completing the process.

1Adjacent cells in the same sampling layer, or cells with partial overlap in the (η ,φ) plane if in
different sampling layers.
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Figure 4.1: A flow chart of the PFlow algorithm [49].

The particle flow (PFlow) algorithm is a recent addition that combines ID track

information with topoclusters [49]. This allows for better angular resolution, pile-

up mitigation and increased resolution at low pT, where the ID outperforms the

calorimeters. The algorithm selects a number of tracks from the ID and matches

them each to an individual topocluster. The expected energy in a topocluster is cal-

culated from its position and the momentum of its matched track. The algorithm

can then decide to add more topoclusters to the track/topocluster system by calcu-

lating the probability the particle deposited its energy in multiple topoclusters. The

expected energy from the track is then subtracted cell-by-cell from the matched

topoclusters. The remaining topocluster cells are removed if their energy is con-

sistent with the expected shower fluctuations of the particle. A flow-chart of the

algorithm can be seen in figure 4.1. The final output of PFlow is the tracks, the

topological cells remaining after the expected energy removal and any unmodified

topoclusters that were not matched to a track.

The anti-kt algorithm [50] is used in ATLAS to reconstructs jets from input

four-vector objects2. These objects can be simply calorimeter topoclusters (e.g. in

the AntiKt4EMTopo jet collections) or they can be combinations of the topoclus-

ters and ID tracks as outputted by PFlow (the AntiKt4PFlow collection). The

algorithm uses two distance measures:

di j =min(k2p
ti ,k

2p
t j )

∆R2
i j

R2 (4.2)

diB =k2p
ti (4.3)

where kti is the pT of object i and p =−1 for anti-kt (p = 1 gives the kt algorithm).

2This algorithm is infrared and collinear safe.
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The distance R can be freely chosen, for jets in ATLAS the common choice is

R = 0.4 (AntiKt4). The algorithm proceeds iteratively:

1. Compute di j and diB for all i, j.

2. If the smallest distance is di j, combine kti and kt j.

3. Otherwise remove object i, having the smallest distance diB as a new jet.

4. Repeat until all objects are removed clustered.

4.1.2.2 Jet Calibration

The jet energy calculated by the ATLAS reconstruction differs from the true jet en-

ergy due to many effects: the calorimeter is non-compensating (its energy response

to hadrons and electrons is different, see section 3.2.3), the impact of pile-up, de-

tector inhomogeneities and other losses in the detector material. The following jet

calibration procedure is applied to correct for these effects in PFlow jets [49]:

• The input tracks require |z0 sinθ |< 2 mm, where z0 is the longitudinal impact

parameter with respect to the hard scatter primary vertex. This removes a

large fraction of tracks from pile-up. The topocluster η and φ are recalculated

with respect to the hard scatter primary vertex to conserve jet energy.

• An area-based pile-up correction is applied. An energy correction is sub-

tracted from the jet. It is calculated by the product of the jet area A and the

transverse energy density ρ . The density ρ is calculated using charged and

neutral particle flow objects.

• A jet energy scale correction is applied to account for the differences in

hadron energy reconstruction at different positions in the detector. The AT-

LAS calorimeter system is initially calibrated to the EM scale, such that the

energy deposited by electrons and photons is the same at all positions. The

reconstructed hadron energy will still change depending on where in the de-

tector the shower develops. A correction is calculated using Monte Carlo

(MC) simulated samples to account for this.
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• Global sequential calibration accounts for differences due to the flavour of the

originating parton and composition of hadrons created in fragmentation. This

procedure uses three variables consecutively: the fraction of the jet energy

from its constituent tracks, the fraction of jet energy in the third ECAL layer,

and the fraction in the first Tile calorimeter layer.

• An in-situ calibration is then performed to account for the differences be-

tween the simulated samples used in the previous steps and data. This uses

data samples with a jet balanced by a recoiling Z→ µµ decay, a photon, or

multiple low pT jets. Correction factors for data to MC are derived.

A similar calibration procedure is applied for AntiKt4EMTopo jets, more detail

can be found in Refs. [51, 52, 53, 54].

Several important systematic uncertainties arise from the jet energy calibration,

in particular uncertainties relating to jet energy scale (JES) and jet energy resolution

(JER). The derivation of these are detailed in Refs. [55, 56]

4.1.2.3 Flavour tagging

An important aspect of jet studies in ATLAS is flavour tagging. This procedures

attaches a label to jets denoting their origin, e.g. the flavour of quark producing

the jet. A b-jet is a jet originating from the hadronic shower of a b quark. Flavour

tagging is explored in more detail in chapter 6. The currently recommended b-

tagging algorithm in ATLAS is DL1r. It is a neural network based algorithm with

two supported working points with respect to b-tagging efficiency, the 85% working

point and 77% working point. The working point is chosen to have a specific b-jet

efficiency (percentage of true b-jets which will be tagged). The light jet rejection

(one over the fraction of light jets incorrectly tagged as b-jets) decreases at higher

working points (see figure 4.2). Jets passing one of these working points are labelled

as b-jets.

4.1.2.4 Pile-up Mitigation

Low pT jets from pile-up are rejected using the multivariate jet vertex tagger (JVT)

discriminant. This uses information on the ID tracks associated to a jet to perform
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Figure 4.2: An example receiver operating characteristic (ROC) curve showing the light-jet
rejection performance at given b-tagging efficiency working points for several
ATLAS b-tagging algorithms.

pile-up jet rejection. A number of working points are implemented such as the

Medium working point (JV T > 0.2). An area based pile-up correction is applied to

the jets passing the JVT cut.

4.1.3 Large-R Jets

The ATLAS detector collected data for run-2 at a centre of mass energy of 13 TeV.

At such high energy scales, the jets from a highly boosted particle decay can over-

lap. This makes the individual reconstruction of jets, using the algorithms of section

4.1.2, sub-optimal. Instead, a new object called a large-R jet (or fatjet) can be cre-

ated.

4.1.3.1 Reconstruction

Large-R jets [57, 58] are reconstructed using slight modifications of the topological

clustering and anti-kt algorithms presented in section 4.1.2.1. Topological clusters

are calibrated to the LCW (local cell weighting) scale instead of the EM scale.

LCW accounts for the differences in response of the ECAL and HCAL, thus the

topological clusters are corrected to the hadronic scale. The anti-kt algorithm is

used with a larger radius parameter, R = 1.0, to capture the decay products of the
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two overlapping jets.

Large-R jets are much more sensitive to pile-up as they enclose a larger vol-

ume of the calorimeter. Pile-up can interfere with measurements of jet substructure

variables, these are used in determining the origin of large-R jets. A procedure

known as grooming (or trimming) is used to reduce these issues. In jet grooming,

the constituents of a large-R jet are reclustered using the kt algorithm with a ra-

dius parameter Rsub. Any sub-jets found by this procedure with a pT less than a

fraction fcut of the large-R jets have their constituent objects removed. The cur-

rent recommendation for large-R jets is to use Rsub = 0.2 and fcut = 0.05 giving

the AntiKt10LCTopoTrimmedPtFrac5SmallR20Jets jet collection. This

is found to give excellent robustness to pile-up conditions, up to 200 collisions per

bunch crossing.

4.1.3.2 Calibration

Large-R jets are calibrated in a similar fashion to small-R jets (section 4.1.2.2). The

calibration accounts for pile-up effects, corrects for the jet energy scale, and does

in-situ validation. One extra step is added for large-R jets, calibration for the jet

mass scale (JMS). This is important as large-R jets typically require a well defined

mass to aid in their interpretation [58]. The calibration proceeds as follows:

• Pile-up mitigation is performed using jet grooming.

• JES calibration is performed, in the same way as small-R jets. MC simulated

jets are used, with the reconstructed jets compared to the truth jets. This

accounts for energy differences due to detector effects. The calibration is

done binned by energy and η .

• JMS calibration is done in a similar way, by matching reconstructed jets to

truth jets in simulation. The mass response is calibrated (parameterized by

mass, η and pT).

• In-situ calibration accounts for the differences between data and MC used in

previous steps. For JES, data samples with a large-R jet balanced with a γ or
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multiple low-pT jets are used. For JMS, the forward folding method is used

(this process uses the detector response to compare expected and observed

measurements, see ref. [59]). This uses samples with hadronically decaying

W bosons and top quarks.

Systematic uncertainties again arise for these calibrations analogously to the small-

R jet case.

4.1.3.3 Boosted Jet Tagging

The major advantage of large-R jets is their interpretation as the decay product of

boosted particles. The reconstructed jet mass and its rich substructure can be used

to identify its origin. Several multivariate techniques have been used to tag large-R

jets originating from W/Z boson decays, Higgs bosons, top quarks or other QCD

signals. Such an algorithm used in this work is the W/Z tagger [60]. The parent

particle of a large-R jet will decay to form a specific type of substructure. For

instance, a high-pT W boson decaying hadronically forms two jets. The large-R jet

formed from their overlap will have “W-like” substructure.

The W/Z tagger uses three variables to tag large-R jets. The first is the re-

constructed jet mass, this is the combined mass formed by adding together mass

information from the tracker and the topocluster mass [61]. The energy correlation

ratio, D2 is defined as:

D2 = ECF3

(
ECF1

ECF2

)3

(4.4)

where the energy correlation functions (ECF ):

ECF1 = ∑
i

pT,i (4.5)

ECF2 = ∑
i j

pT,i pT, j∆Ri j (4.6)

ECF3 = ∑
i jk

pT,i pT, j pT,k∆Ri j∆R jk∆Rki (4.7)

and i, j refer to sub-constituents of the fatjet. The interpretation of this variable

is the ratio of “3-prongness” over “2-prongness”. Jets with a 2-prong substructure
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(i.e. two main subjet components) will have a low value of D2, whilst jets with 1

or 3-prongs will have a high value. A vector boson (V) would be expected to be 2-

pronged due to the decay V → qq̄. The final substructure variable is the number of

ghost-associated3 tracks to the jet, ntrk. W/Z bosons are color-singlets, as opposed

to quarks and gluons, hence the particle multiplicity of the W/Z bosons is nearly

constant with pT, whilst it changes quickly for quark/gluon jets.

Two working points are available for the W/Z tagger. These are the 50% and

80% working points, referring to the W/Z signal efficiency. The tagger signal and

background efficiencies are calibrated with scale factors derived from data to MC

comparisons [60].

4.1.4 Electrons

4.1.4.1 Reconstruction

Electron candidates are reconstructed by associating a track to a cluster of energy

in the ECAL. The seed energy clusters in the ECAL are identified using a sliding

window4. The total transverse energy in a seed cluster must exceed 2.5 GeV. Tracks

are then associated with this cluster. In the main ATLAS track reconstruction, a

pion hypothesis is used which assumes up to 30% momentum loss at every material

layer intersection. An additional electron hypothesis, allowing for larger momen-

tum loss, can be used to reconstruct tracks which failed to reach 7 hits in the pixel

layers or SCT. This improves performance without interfering with the main track

reconstruction. In the event of multiple tracks matching the cluster, a “primary”

track is chosen by ranking the candidates based on the ∆R separation of the track

and cluster, the number of pixel hits and whether a hit is present in the first silicon

layer. Electron candidates with no associated tracks are considered to be photons.

Electrons are only reconstructed in the region |η |< 2.47, to avoid edge effects

in extrapolating to the ECAL.

3Ghost-association is a robust way of matching tracks to a jet using its catchment area [62]
4Window size: 3× 5 in units of 0.025× 0.025 in η × φ (corresponds to granularity of middle

layer of ECAL)
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4.1.4.2 Identification

The electron ID algorithm is used to distinguish between prompt5 electrons and

background-like electrons. Background-like electrons are produced by hadronic

jets or photon conversions.

The electron ID algorithm is a likelihood method based on variables relating to

the electron cluster and track measurements. For a full description see [63]. Three

working points are used, in order of increasing background rejection: LooseLH,

MediumLH and TightLH. All three working points are defined with respect to a

Likelihood-based discriminant. These are defined in table 1 of [63].

Additional requirements on η and track parameters are usually applied to re-

duce backgrounds. The region 1.37 < |η | < 1.52 is excluded as it is the tran-

sition region between the barrel and end-cap ECAL. The large amount of ma-

terial here causes an increase in background-like electrons from photon conver-

sions. The transverse impact parameter significance must satisfy |d0|/σd0 < 5,

whilst the longitudinal impact parameter and polar angle of the track must satisfy

|z0 sinθ |< 0.5 mm. This ensures compatibility to the primary vertex, further reduc-

ing backgrounds.

4.1.4.3 Isolation

Electron isolation helps to further differentiate between prompt electrons, originat-

ing from the hard-scatter event, and non-prompt electrons, e.g. from heavy hadron

decays. The prompt-lepton veto tagger (PLV) is employed to perform isolation.

This BDT6 based algorithm makes use of the properties of track jets7 matched to an

electron or muon [64, 65].

4.1.4.4 Charge Reconstruction

The electron charge is reconstructed from the curvature of the track in the ATLAS

magnetic field. A BDT method known as ECIDS (Electron Charge ID selector)

attempts to reject electrons with incorrectly reconstructed charge [66]. ECIDS is

5Refers to products originating from the primary vertex. Also known as signal-like.
6Boosted decision tree, see section 5.2.1.
7A jet with tracks in the ID associated to it.
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also know as the charge mis-assignment veto BDT in [64]. It uses various input

variables such as pT, η , charge and d0. The variables are motivated by the causes

of charge mis-identification, such as bremsstrahlung due to material interactions

or the tracks being almost straight at high momentum. Only one working point is

currently recommended by the egamma combined performance group, known as

the loose working point. Scale factors are implemented for this working point to

correct for differences between MC and data [66].

4.1.4.5 Rejection of Photon Conversions

Electron and photon signals can often be hard to distinguish. Photons can undergo

conversion in the detector material: pair-production of an electron and positron

γ → e−e+. The produced electron could then be reconstructed, giving us a fake

signal. An electron can also be faked if a track is found to point to a deposit in the

ECAL from a photon.

Two variables exist to help reject electrons from converted photons and pho-

tons mis-reconstructed as electrons. The electron author (ambiguityType) variable

tells if an electron has also been reconstructed as a photon [67]. The addAmbigu-

ity variable has been newly implemented to offer further rejection of internal and

material conversions [68].

4.1.4.6 Electron Definitions

Combinations of the different requirements set out previously are used to define

several different types of electron in this thesis, see chapter 8. The definition of a

signal electron used here is summarized in table 4.1.

4.1.5 Muons

4.1.5.1 Reconstruction

Muon tracks are reconstructed by combining information in the ID and MS [69].

Two Muon track definitions are used here:

• Combined (CB) muon tracks are formed from tracks in the MS extrapolated

to match with a track in the ID. The Muon track in the MS is found by first
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Requirement Value
pT > 20GeV
η |η |< 1.37&1.52 < |η |< 2.47

Identification TightLH
d0

σd0
< 5

|z0 sinθ | < 0.5 mm
Object quality author == 1, addAmbiguity ≤ 0
Isolation/PLV PLVTight
ECIDS WP Loose

Table 4.1: Signal electron definition used in this work.

identifying track segments using a Hough transform [70]. A track candidate

can be formed by matching at least two segments8. Track segments shared

between candidates are assigned to the most compatible track using an over-

lap removal procedure. The hits associated to this candidate are then recon-

structed in a χ2 fit. The MS track is then matched to an ID track, and the hits

from both are refit together to form a combined track.

• Segment-tagged (ST) muons are formed if an ID track extrapolated to the

MS matches at least one track segment. This allows for a higher muon recon-

struction efficiency and is useful in regions where the MS lacks good coverage

(|η |< 0.1).

4.1.5.2 Identification

To separate prompt muons from background ones (mainly from hadron decays), a

set of requirements on different variables is defined. CB muons make use of the

q/p significance9, the normalized χ2 of the track fit and ρ ′10. There are further

requirements on the number of hits and holes in the ID and MS.

Several different working points are defined, each having its specific set of

requirements. These are termed loose, medium and tight in decreasing order of

reconstruction efficiency (increasing order of purity). An additional set of require-

8In the barrel-endcap transition region, one high-quality segment is enough.
9The absolute difference of the ratio of charge and momentum of the track measured in the ID

and MS, divided by uncertainty.
10Absolute difference of pT of the MS track and ID track, divided by the pT of the combined

track.



4.1. Object Reconstruction 67

Requirement Value
pT > 20 GeV
η |η |< 2.5

Identification TightLH
d0

σd0
< 3

|z0 sinθ | < 0.5mm
Object quality medium
Isolation/PLV PLVTight

Table 4.2: Muon signal definition used in this work

ments, high-pT, gives the best reconstruction efficiency for muons with high pT

(> 100 GeV).

Additional requirements on kinematics are normally used to distinguish

prompt muons from background ones, such as heavy flavour decays, and muons

from pile-up. These include a requirement on pT > 20 GeV, |d0|/σd0 < 3 and

|z0 sinθ | < 0.5 mm. A geometrical acceptance term is usually required as well,

|η |< 2.5.

4.1.5.3 Isolation

The PLV is used to isolate muons similarly to electrons. Two different working

points exist, with the PLVTight offering the best rejection of muons from heavy

flavour jets and other backgrounds [65].

4.1.5.4 Muon Definitions

Several different muon definitions will be used in this work, see chapter 8. The

signal muon definition is summarized in table 4.2.

4.1.6 Missing Transverse Momentum

The total transverse momentum in an ATLAS event should be zero by conservation

of momentum. When this sum is performed using the measurements made there

will usually be some missing momentum. This can be due to detector effects or

mis-measurement but is also a signal of particles invisible to the detector such as

neutrinos. The missing transverse momentum, Emiss
T , is calculated as:

Emiss
x(y) = Emiss,e

x(y) +Emiss,γ
x(y) +Emiss,τ

x(y) +Emiss, jets
x(y) +Emiss,µ

x(y) +Emiss,so f t
x(y) (4.8)
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where each term, Emiss,i
x(y) , is the x or y component of the negative vector sum of

the momentum of all objects of type i. The soft term takes into account all the pT

objects in the detector that were not reconstructed into baseline objects (electrons,

muons, photons, taus, jets). This is done in the track-based soft term using the

ID tracks not associated to baseline objects. The Emiss
T is the magnitude of the 2D

vector given by the Emiss
x(y) components [71].

4.1.7 Overlap Removal

The reconstruction algorithms are applied separately and may on occasion recon-

struct a detector signal as two separate objects. An overlap removal procedure is

used to mitigate against this. This ensures no accidental addition of extra particles

or energy. The following procedure is known as the “heavy-flavour” recommenda-

tion:

• Electron/muon overlap: If an electron and muon lie within ∆R < 0.1 of each

other, the electron is removed. A muon can radiate a photon, which can then

convert into an electron/positron pair.

• Electron/Jet overlap: The ECAL deposits of an electron could be recon-

structed as a jet. However, an electron could be produced by heavy flavour

decay in a jet. It is therefore recommended to remove the electron if the over-

lapping jet (∆R < 0.4) is b-tagged with DL1r (85%). If the jet is not b-tagged,

the electron is removed if the electron-jet separation is 0.2 < ∆R < 0.4, and

the jet is removed if the separation is ∆R < 0.2.

• Muon/Jet overlap: The procedure is the same as for electrons but with one

addition. In the event of a non-b-tagged jet with separation ∆R < 0.2 from

a muon, the muon will be discarded if the jet has at least three associated

tracks, otherwise the jet is discarded. This behaviour is not typical of a prompt

muon, it is likely light-flavour jet punch-through to the MS, or a muon from

a hadronic decay in the jet.
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Figure 4.3: The ATLAS data processing chain for real (left) and simulated (right) data. [72]

4.2 Data Formats in ATLAS
The ATLAS data processing chain is responsible for producing data formats for

physics analysis. Real and simulated data are presented to analysis groups in a for-

mat known as an analysis object data (AOD). The processing chain is summarized

in figure 4.3.

4.2.1 Data Samples

ATLAS data samples are gathered over the course of runs. Run 2 data was collected

between 2015-2018 at
√

s = 13 TeV. Three collections exist, the 2015-16, 2017 and

2018 datasets. The ATLAS reconstruction framework takes the RAW data outputted

by the trigger and creates the physics objects described in section 4.1. The final

output is an AOD, typically having order PB size.

4.2.2 MC Simulation in ATLAS

The SM gives us a theoretical framework to predict what we expect to see in AT-

LAS. Monte Carlo (MC) methods are used to simulate ATLAS events, starting

from the hard scatter process [73]. The non-perturbative QCD processes such as

hadronization and parton shower are simulated with programs such as PYTHIA [10]

and Herwig [74]. It is common to interface amplitude generating programs to parton

shower ones.
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The end result of event generation is the final state particles expected in an

ATLAS event. The next step is to simulate a detector response . GEANT 4 [75] is

used to simulate the ATLAS detector response. The process of digitization is then

responsible for turning this into the simulated detector output, a raw data object

(RDO). Once an RDO is obtained, the exact same reconstruction algorithms used

for real data are applied to create an AOD. MC simulated AODs are created for

specific background or signal processes.

4.2.3 Derivations

A recent addition to the ATLAS data chain in run-2 is the derivations framework

[76]. Derivations take the PB scale AODs and reduce them to TB sized DAODs.

The reduction is achieved by keeping only the information necessary to a specific

analysis, or a group of similar analyses. The removal of information happens in

three separate ways:

• Skimming: Removal of events based on criteria relating to their features.

• Thinning: Removal of objects within an event based on criteria relating to

object features.

• Slimming: Removal of variables of a certain object across all objects of that

type and all events. Slimming is applied independent to the features of a

particular object or event.

The derivations framework also has the ability to add information through aug-

mentation. This can be adding entirely new objects created by the framework, or

decorating existing objects (adding a new member variable to the object). An ex-

ample decoration might be if a jet has been b-tagged by a certain algorithm. The

derivations framework contains all the tools necessary for augmentation, such as the

b-tagging algorithms.



Chapter 5

Machine Learning

The ATLAS experiment handles petabytes of data. The big data challenge entailed

by this motivates the use of artificial intelligence (AI), and in particular machine

learning, to aid ATLAS researchers. The large amount of data and simulated data

ensures that AI techniques can be trained to achieve excellent performance. These

techniques allow for complex non-linear modelling of a variety of physics pro-

cesses. ML techniques are consequently widely used across the ATLAS physics

program. For a review of ML techniques at the LHC, see reference [77].

ML algorithms are models trained on data to optimise performance on a de-

fined task [78, 79, 80]. Performance is measured by a loss function (or cost func-

tion). The set task can be generic, but in this work is usually either classification

or regression. Examples of classification tasks in ATLAS are flavour tagging or the

categorization of events as signal-like or background-like during analysis work. Re-

gression ML algorithms are used for instance in tracking [77]. ML is also used for

tasks such as clustering or fast simulation of data, for instance using a variational

auto-encoder (VAE).

The training procedures used in this work can be broadly categorized as super-

vised learning, these are detailed in section 5.1. Several different models are used

in this work, these are covered in section 5.2.
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5.1 Supervised learning

Supervised learning requires labelled training data, each datapoint is a pair (XXX ,yyy)

where XXX is the input features and yyy the output or label. These are generically vectors.

The learning process creates a map of XXX→ yyy. The two main tasks set for supervised

learning are regression and classification.

5.1.1 Regression

Regression tasks involve the prediction of a continuous output yyy, termed the de-

pendent variable(s), from input XXX , termed the independent variable(s). The most

commonly known is linear regression, where the relationship between XXX iii and a

scalar output yi is modelled as a linear combination:

ỹi = θθθ ·XXX iii +b (5.1)

where ỹi is the predicted output, (XXX iii,yi) are the observed values for the i− th data

point, and the weights θθθ and intercept b are to be determined such that some loss

function Q(ỹ,y) is minimized. Commonly, the sum of differences squared is used:

Q(ỹ,y) =∑i(ỹi−yi)
2. Linear regression can be performed analytically but is limited

in application. In the case of high-dimensional data or non-linear processes, ML

algorithms such as neural networks can be used to perform regression.

5.1.2 Classification

A classification task involves the mapping of input XXX to a discrete categorical value

(or vector of values) yyy. The inputs in this context are often referred to as features,

these need not be categorical themselves. A simple classifier model can be formed

from an extension of linear regression called logistic regression [79]. Our label y

is now a binary variable (0,1), corresponding to one of two categories (e.g. signal

or background). The variable ỹ from Eq. (5.1) is now passed through a logistic

function which maps to the interval [0,1]:

y′ = σ(ỹ) =
1

1+ e−ỹ (5.2)
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ỹ is now referred to as the latent variable. The category can be predicted from σ(ỹ),

for example the predicted label y′ = 0 if σ(ỹ)< 0.5. In the framework of ML, σ(ỹ)

is recast as a conditional probability:

Pr(y = 1|XXX ,θθθ) = σ(ỹ)≡ σ(XXX ,θθθ) (5.3)

We change the notation to make explicit that σ(XXX ,θθθ) is a function of XXX

parametrized by some values θθθ . The loss function to be minimised will be the

negative log likelihood. To construct the likelihood, we make the assumption that y

is an independent Bernoulli distributed variable with parameter p = Pr(y = 1|XXX ,θθθ)

as defined above:

Pr(y|XXX ,θθθ) = py(1− p)1−y (5.4)

giving the likelihood

L(θθθ |XXX ,y) = ∏
i
(σ(XXX iii,θθθ))

yi(1− (σ(X̃XX iii,θθθ))
1−yi (5.5)

where we have multiplied across all datapoints, i, in the dataset.

5.1.3 Loss functions and Gradient Descent

The learning procedure is formulated as the minimization of a loss function. Several

algorithms exist for finding the minima of multivariate functions, the most com-

monly used is gradient descent [81]. This involves iteratively updating the parame-

ters θθθ using the negative gradient of the loss function:

θθθ
(n+1) = θθθ

(n)−a∇Q(θθθ (n)) (5.6)

where Q is the loss function, θθθ
(n) the parameters at the n− th step, ∇ is the gradient

with respect to the parameters θθθ and a is specified value known as the learning rate.

The learning rate must be chosen to optimise the minimization procedure1. The

determination of ∇Q is often done by summing over all the observed data points

1Too small and we risk getting stuck in a local minimum, too large and we risk missing the global
minimum.
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Figure 5.1: An illustration of gradient descent for a one dimensional loss/cost function J(w)
[82].

∑i ∇Qi (batch gradient descent). For large datasets this may be computationally

expensive, so methods such as stochastic gradient descent [81], which calculates

the gradient with respect to a single randomly chosen datapoint, are used.

The choice of loss function is generally problem specific. Two loss functions

have been introduced in the context of classification and regression. The loss func-

tion in linear regression problems can take many forms, but the most common is

termed ordinary least squares:

Q(θθθ) = ∑
i
(ỹi(θθθ)− yi)

2 (5.7)

This is often chosen as it corresponds to the maximum likelihood estimator in the

case where the measurements of yi differ from the linear combination of XXX iii by the

addition of Gaussian noise. The loss function in logistic regression was chosen as

the negative log likelihood:

Q(θθθ) =− logL(θθθ |XXX ,y) =−
N

∑
i

yi logσi−
N

∑
i
(1− yi) log(1−σi) (5.8)

where N is the total number of datapoints in the dataset, and σi≡σ(XXX iii,θθθ) is defined

in equation (5.2)2. This corresponds to maximum likelihood estimation for binary

classification.
2This loss function corresponds to the binary cross-entropy between two distributions p and q.
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5.1.4 Training

The training procedure is vital to achieving a useful ML model. A given base model

is selected for a defined task. The loss function is then chosen with respect to that

base model and learning proceeds, usually by minimising the loss with gradient

descent. Gradient descent will iterate through the data (either stochastically or in

batch method), every iteration through the training dataset is termed an epoch. An

important aspect of all ML algorithms is ensuring we do not bias our results to the

dataset we are using, this is often referred to as overfitting. To avoid overfitting, we

generally split our dataset into two parts termed the training dataset and validation

dataset. The model fit on the training dataset is evaluated on the validation dataset

and training generally stops when we reach our best performance (or minimal loss)

on the validation dataset. Finally, results are generally quoted on a third, held-out,

test set. This has not been seen during the training to avoid any potential bias.

A method called k-fold cross validation [80] is often used at ATLAS. The

dataset is split into k sets and a model is trained on all but one of these sets, with

the hold-out set used for validation. This is repeated for all k sets. The model

performance is then evaluated by the aggregation across each k-fold. 2-fold cross-

validation is used in training most ML algorithms in ATLAS.

5.2 Models
Two models have already been introduced in the context of regression and classi-

fication tasks. These are the linear and logistic regression models in sections 5.1.1

and 5.1.2. This section summarizes the main models used in this work.

5.2.1 Boosted Decision Trees

5.2.1.1 Decision Trees

A decision tree is a predictive model that operates by making a series of cuts on

variables to predict a label. In classification tasks, the label y is discrete and the

variables are XXX = (x1,x2, ...xn). At each node (or leaf) in the tree, a cut is applied on

some variable xi. A simple example is shown in figure 5.2. The final node in each

branch predicts the label y.
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Figure 5.2: An example of a decision tree. At each decision node a cut is applied on some
feature xi of the data, splitting the dataset. The final node (output leaf) labels
the data as signal (S) or background (B) [83].

Decision trees are generally constructed in a top-down manner. The optimal

cut at each node is determined using some quantitative measure. An example is

the Gini impurity, which gives a measure of the separation between categories in a

node [84]. It is given by the probability that a datapoint that reaches a given node

would be labelled incorrectly, assuming it were randomly labelled according to the

distribution of labels in the set of points reaching that node:

G =
M

∑
i

pi(1− pi) (5.9)

where M is the total number of classes and pi is the probability of the i− th class.

For example, if a node contains two classes A and B, split in a ratio 40:60 then

pA = 0.4 and pB = 0.6. Tree branches continue to grow until the Gini impurity

stops increasing i.e.:

Gparent−∑Gdaughters > 0 (5.10)

Trees will also stop growing if the number of datapoints in a node goes below a

certain threshold, or if the number nodes in a branch exceeds a certain depth.



5.2. Models 77

5.2.1.2 Forests and Boosting

Decision trees alone tend to perform quite poorly at classification tasks, perform-

ing not much better than random guessing. They suffer greatly from problems of

overfitting to data. Several methods exist to solve this problem, generally by using

collections of decision trees called forests. In ATLAS, the most common method

is boosting [84] using AdaBoost [85]. This constructs a forest called a boosted de-

cision tree (BDT) in the following procedure: a decision tree is trained, the events

in the training sample misclassified by the decision tree are reweighted to increase

their importance, and a decision tree is trained on the new training sample. This

procedure continues iteratively. A weighting term wi is added to each term in the

sum of equation (5.9). This is updated each iteration by:

w(n+1)
i = w(n)

i eαn (5.11)

where the score for the nth tree αn is:

αn = β log
(

1− fn

fn

)
(5.12)

fn =
∑yi 6=Tn(XXX iii)wi

∑i wi
(5.13)

where the sum on the numerator of eq. 5.13 is taken with respect to only the mis-

classified points, and Tn(XXX iii) refers to the prediction of the n− th tree on the i− th

datapoint. The value β is the learning rate within the context of boosting. Once

the training is finished, the predicted label of a point is taken by summing over the

weighted predictions of each tree in the forest:

T (XXX iii) =
Ntrees

∑
n

αnTn(XXX iii) (5.14)

5.2.1.3 Examples

BDTs are used fairly ubiquitous in ATLAS. Several examples were mentioned in

section 4.1. These include the prompt-lepton veto tagger in section 4.1.4.3 and
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Figure 5.3: A schematic of a fully-connect feed-forward neural network with three hidden
layers. Information flows from left to right. The black lines denote connections
between nodes [86].

ECIDS in section 4.1.4.4. Another important BDT is the flavour tagging algorithm

MV2, which attempts to classify jets by their flavour (either b, c or light). This is

covered in section 6.3.6.2.

5.2.2 Neural Networks

A neural network is a model consisting of nodes connected by edges. A simple

model is shown in figure 5.3. The nodes are arranged into layers. In a fully-

connected model all nodes have connections to every node in the subsequent layer.

The first layer of nodes is termed the input layer, nodes in this layer take the in-

put data features and pass them on. Nodes in subsequent layers receive data from

their connections to the previous layer then output a value through connections to

the next layer. This value is determined by some function of the weighted sum of

inputs. This function is termed the activation function and is nonlinear. Activation

functions are commonly sigmoid functions such as the logistic function in eq. (5.2)

[79].

Neural nets are learnt by adjusting the connection weights between nodes. In a

supervised learning approach, the weights are modified to minimize the error in the
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network’s prediction as characterized by some loss function Q(y′,y), where y′ is the

predicted label and y the actual label. Learning proceeds through gradient descent

with respect to the network weights:

w(n+1)
i j = w(n)

i j −a
∂Q

∂w(n)
i j

(5.15)

where w(n)
i j is the weight connecting the i and j− th nodes (at the n− th step). The

partial derivative can be determined using backpropagation [79], which requires the

activation function to be differentiable.

5.2.2.1 Deep Neural Nets

A deep neural network simply refers to a network with more than one hidden lay-

ers. The diagram in figure 5.3 is thus a deep neural net. The addition of hidden

layers allows for far more complex problems to be learnt. These models can be

applied to highly dimensional datasets with little feature engineering needed. They

outperform more simple traditional methods. Deep neural nets have as such become

extremely commonplace in many ML problems. An example in ATLAS is the b-

tagging algorithm DL1r (see section 6.3.6.3). This trend began around 10 years ago

with the emergence of a variety of procedures that enabled the rapid training of such

models.

5.2.3 Recurrent Neural Networks

A recurrent neural network (RNN) is an extension of feed-forward networks for the

purpose of processing ordered sequences of data. An RNN can make a prediction

preserving the time-ordered nature of the data. The data input, XXX , is an ordered se-

quence of scalars or vectors (xxx000,xxx111, ...,xxxttt), with the subscript denoting the timestep.

The total length of the sequence, t, is free to vary. An example sequence, XXX might

be a sentence with each xxxiii corresponding to a word.

An RNN is formed from a cell that recurs at every timestep in the sequence.

A diagram can be seen in figure 5.4. At each timestep i the cell receives the input

value xxxiii of the sequence and the output of the cell from the previous timestep (this



5.2. Models 80

Figure 5.4: A schematic of an RNN and its appearance when “unrolled”. Data at each
timestep of the sequence is xt , the RNN/LSTM cell is the box A. At each
timestep the cell receives the hidden state from the previous timestep and the
next data of the sequence. The output from the final cell is the RNN output
[87].

is termed the hidden state). The cell then produces an output for the next timestep.

The output of the final cell is the final output of the RNN, yyy. In the simple example

of a sentence, this output yyy could be the sentiment (positive or negative).

RNNs are trained using the same gradient descent techniques as feed-forward

networks. The RNN cell in the simplest case could be a one-layer feed-forward

neural network. Most RNNs in practice use a modification called a Long Short-

Term Memory cell (LSTM). These are necessary to avoid the problem of vanishing

gradients in backpropagation. In a simple RNN, vanishing gradients would cause

the earliest entries in the input data sequence to have no impact on the final output3.

LSTMs ensure information from the early part of the sequence is not forgotten. For

a good description of how LSTM cells operate and the vanishing gradients problem

see reference [88].

5.2.3.1 Examples

A simple example of sentence sentiment analysis was briefly presented above. This

is a classification task on sequenced data, each sentence is a sequence of words. In

general, RNNs can be used for classification or regression tasks.

An important application of RNNs is in b-tagging at ATLAS. The RNNIP

[89] tagger classifies jets by the flavour of their parent quark (b, c, or l). It is

trained on collections of jets. Each jet can be presented as an ordered sequence
3Consider a simple RNN processing a sequence of length t. This corresponds to a deep neural

network with t layers. The nodes in the earliest layers of such a network will have very little impact
on the final output due to vanishing gradients.
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XXX = (xxx000,xxx111, ...,xxxttt) (note the length of this will vary from jet to jet). In RNNIP, the

inputs xxxiii correspond to particle tracks ordered by the 2D distribution of transverse

impact parameter significance of the tracks. Each track is a vector of five character-

istic variables, xxxiii = (Sd0 , Sz0, Category, p f rac
T , ∆R(track, jet)), for the definition of

these see table 6.1 in chapter 6. The output of the final cell in the RNN is then fed to

a simple feed-forward network to produce three output variables characterizing the

probability of each jet flavour, yyy= (pb, pc, pl). In training, performance is evaluated

by comparing the output predictions, ỹyy to the true jet flavour yyy using a loss function

called categorical cross-entropy:

Q =−
N

∑
i

yi log ỹi (5.16)

where the values ỹi are the probabilities pb, pc, pl . The model is trained on jets

from MC simulations using gradient descent. RNNIP has many advantages over

traditional b-tagging algorithms, this algorithm is covered in more detail in section

6.3.2.

A final example of an RNN is the model presented in chapter 7 of this work.

The RNN is again used within the context of b-tagging but instead focuses on iden-

tifying the positions of secondary and tertiary decay vertices within jets. These

form from the decay of the b- and c-hadrons. The model has a similar architecture

to RNNIP, using LSTM cells and then a feed-forward network applied to the final

LSTM output. Each jet is again an ordered sequence of tracks XXX = (xxx000,xxx111, ...,xxxttt).

Each track is a vector of several variables (for example the track parameters). The

key difference is the output of the model corresponds to the predicted positions of

secondary and tertiary vertices in the jet, yyy= (xs,ys,zs,xt ,yt ,zt). As it is a regression

task, an appropriate loss function such ordinary least squares (equation (5.7)) can

be used.

5.2.4 Other Neural Networks

A variety of different neural network types have been developed over the years

which have advantages in performing certain tasks. Convolutional neural networks
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(CNNs) use convolution layers to scan across input data, analogous to sliding a

window across an image. CNNs are particular useful at image processing tasks.

Graph neural networks (GNNs) [90] are a very recent development in the field of

ML. These operate directly on graph representations of data, a structured form mod-

elling relationships (edges) between objects (vertices). Vertices (or nodes) can be

thought of as some feature vector, edges are generally some neural network con-

necting one vertex to another. The values of vertices and edges are learnt in the

training of GNNs.

5.2.5 Variational Autoencoders

A variational autoencoder (VAE) is a machine learning model built for the task of

data generation. Generating new realistic datapoints is a hot topic of research within

ML, and many so-called generative models have been produced.

5.2.5.1 Autoencoders

The principle behind an autoencoder (AE) is dimensionality reduction. It is formed

of two networks called an encoder and decoder, see figure 5.5. The encoder takes

an original data vector xxx and reduces it to some smaller dimensional vector zzz, called

the latent. The decoder is then responsible for restoring the original data as well

as possible from zzz. This reconstruction, xxx′′′ has the same dimensionality. Autoen-

coders are trained end-to-end by minimising some loss function representing the

error between xxx′′′ and xxx.

5.2.5.2 Variational Latent Space

The decoder of an AE would at first seem a good candidate for a generative model.

By passing random samples in the space zzz through the decoder we might hope to

generate some new sensible looking data. However this requires the latent space (z

space) to have some structure reflecting the distributions of x. A vanilla AE will

not necessarily learn such a space as it can just encode datapoints in a deterministic

manner.

To create a decoder capable of generating data a VAE is constructed [92]. The

latents z outputted by the encoder now must correspond to the mean and variance of
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Figure 5.5: A schematic of an autoencoder showing the encoder and decoder networks, and
the latent encoding [91].

a Gaussian distribution (in effect we double the number of values in z and take half

to be means, and half to be variances). This enforces a regularization of the latent

space such that the decoder will now form sensible data if we were to pass random

samples from latent space through it.

The training of a VAE is different to an AE. The encoder produces means and

variances that characterize normal distributions for each latent dimension. Points

are then sampled from these distributions and the resultant vector is passed through

the decoder. The loss function used to train this VAE in an end-to-end way gains

a term responsible for regularizing the latent space. This function is derived from

maximum likelihood estimation methods when applied to the proper mathematical

formulation of the VAE model. A derivation of this can be found in [79] or [92].
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Figure 5.6: A schematic of a VAE. The input data enters on the left, the reconstructed
data leaves on the right. The latents produced by the encoder correspond to
means and variances of normal distributions. The z are sampled from these
distributions and pass through the decoder [93].

5.3 Working Points
ML and other multivariate algorithms deployed in ATLAS will often have a number

of different working points (or operating points) defined. In a classification task

such as b-tagging, the output of an algorithm such as a BDT is usually chosen

to be some continuous value as opposed to a discrete label. This value can be

interpreted as a probability of a certain class. Consider an algorithm (BDT or neural

net) attempting to classify events as signal (S) or background (B). The classifier

outputs a value p for a given event. If p > 0.5, we label the event as S, and label it

B otherwise. The value 0.5 is referred to as our threshold, the value p is referred to

as the discriminant.

For a given threshold value, the following quantities are defined:

• True Positive Rate (TPR): The fraction of correctly labelled signal events.

Also called the signal efficiency or sensitivity.

• True Negative Rate (TNR): The fraction of correctly labelled background

events. Also called the background efficiency or specificity.

• False Positive Rate (FPR): The fraction of incorrectly labelled signal events.

Also called the signal inefficiency. This is related to TNR by FPR= 1−T NR.

• False Negative Rate (FPR): The fraction of incorrectly labelled background
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events.

In ATLAS a further quantity known as background rejection is defined, this is the

inverse of the background efficiency.

Modifying the threshold value will cause the signal and background efficien-

cies to shift. A tight threshold will lead to a very high TPR. Using the example

above, we might require p > 0.99 (p is some measure of the probability an event is

signal-like). Conversely a loose threshold will lead to lower TPR but a better TNR.

The effect of modifying the threshold value is usually shown in a receiver operat-

ing characteristic (ROC) curve (figure 5.7). In ATLAS, ROC curves generally plot

background rejection on the y-axis and signal efficiency on the x-axis, for instance

in figure 4.2 where the signal event is a b-jet, and the background is a light-jet. This

is done as the signal efficiency is generally the parameter we fix. The background

rejection is preferred as it can be plotted on a log-scale and at ATLAS performance

tends to be very high (background rejection can reach up to ∼ 105 equivalent to a

FPR of 0.99999).
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Figure 5.7: An example ROC curve showing the TPR vs FPR for a logistic regression clas-
sifier (orange). Each point on the ROC curve corresponds to a different thresh-
old value. The optimal classifier is in the top left corner. A random classifier
(no skill) is represented by the blue dashed line [94].



Chapter 6

b-Tagging

6.1 Physics Motivation

The identification of jets containing a b-quark, known as b-tagging, plays a key

role in physics analysis at ATLAS. As one of the heaviest known fermions, it is

important in searches for new physics at high energy scales and for testing the pre-

dictions of the SM. It is essential in studies of the two heaviest known particles, the

Higgs and top quark. The identification of the jet origin is more broadly referred

to as flavour tagging, as more than just the b flavour jets can be identified. For in-

stance, many b-tagging algorithms are capable of discriminating between jets from

c quarks, light quarks (u,d,s) and those forming from τ lepton decays1.

The top quark decays before hadronising and can only be studied via its decay

products. In practice, this will always be a b quark as |Vtb| ∼ 1. Thus b-tagging

is essential in studying the top. The top quark is of particular interest to particle

physicists because of its large mass. It is thus likely to couple to high energy scale

BSM physics, and gives physicists the opportunity to study a bare quark.

The Higgs boson decays preferentially to b-quarks. This is because it couples

to mass, the b is the heaviest particle it can feasibly decay to. The branching frac-

tion of H → bb̄ is around 58%, see table 2.3. Studies of the Higgs boson and its

properties therefore often involve b-tagging.

1The τ lepton has a mass of 1778.86 MeV allowing it to decay hadronically (around 65% of the
time), leaving a hadronic jet signal in the detector.



6.2. b decay properties 88

6.2 b decay properties
Several important properties of b-quarks are exploited to perform b-tagging. A b-

quark will hadronise to a b-hadron (around 91% of the time this is a B meson) [5].

This hadron may be in an excited state (and decay strongly), but the decay chain

will always contain a weakly decaying b-hadron. These quasi-stable hadrons have

longer lifetimes than most others (∼ 10−12 s). They also have very large masses,

around 5 times the mass of a proton. The most common kinematically possible

decay for the b is to a c-quark, but this decay is suppressed by the small CKM

matrix element |Vcb| leading to longer lifetimes than expected. The fragmentation

of b-quarks is hard, meaning the b-hadron generally carries a large fraction of the

b-quark momentum. Combined with their long lifetime, this means b-hadrons typ-

ically travel several mm in the detector. A secondary decay vertex is thus resolv-

able in the b-jet, occurring where the b-hadron decays. The b-hadron will in most

cases decay producing a hadron with a c-quark (c-hadron). These have only slightly

shorter lifetimes than b-hadrons2 (∼ 10−13 s) and can similarly travel far enough in

some instances for a tertiary displaced vertex to be resolved, at the position of the

c-hadron decay. These similar properties of c-hadrons to b-hadrons means c-jets

are often identified by flavour tagging algorithms alongside b-jets and light quark

jets. The b-hadron decay also occurs with high charged track multiplicity, typically

leaving around 5 stable charged products [95].

Leptons are an important signal in b-tagging. Around 42% of b-quark decay

chains contain an electron or muon. These arise in the semi-leptonic decay of the

b-hadron (∼ 11%) and the c-hadron (∼ 10%). The leptons are much less massive

than the parent hadron and thus tend to have a large momentum perpendicular to

the jet axis (as this approximates to the b- and c-hadron flight direction).

6.3 Overview of ATLAS Techniques
Several algorithms exist in ATLAS to perform b-tagging. These are broadly cate-

gorised as low-level and high-level b-taggers. Low-level b-taggers operate on indi-

2Whilst the decay c→ s is not suppressed by the CKM matrix, the weak decay is still a slow
process.
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vidual jets and produce a number of output variables3 which can be used to classify

jets by flavour (b, c or light). Light jets refer to jets forming from a light quark (u, d,

s) or gluon. High-level b-taggers are multivariate algorithms which take the outputs

of low-level algorithms as their inputs.

The jets used by the b-tagging algorithms are particle flow jets (An-

tiKt4EMPFlow). AntiKt4EMTopo jets were used in the past. Tracks are associated

to these jets using the ∆R between the jet axis and the track momentum. The jet

axis is the vectorial sum of the cluster objects defining the jet. The track momenta

are defined at the perigee: the position of closest approach along a track helix to the

z-axis.

6.3.1 Impact Parameter based methods

Impact parameter (IP) methods exploit the displacement of tracks from secondary

and tertiary vertices, i.e. the tracks from decay products of the b- and c-hadrons,

to discriminate b, c and light jets [96]. The displaced tracks are differentiated from

primary vertex tracks using the signed transverse and longitudinal impact parameter

significances:

Sd0 = signrφ

d0

σd0

(6.1)

Sz0 = signz
z0

σz0

(6.2)

The lifetime signs, signz and signrφ , are defined as positive if the track crosses the

jet direction in front of the primary vertex and negative if it crosses behind. Tracks

from secondary and tertiary vertices are expected to have positive lifetime signs.

Probability distribution functions (PDFs) are derived from the distributions of Sd0

and Sz0 (see figure 6.1) as for each jet flavour. These additionally depend on the

track hit pattern to increase discriminating power: tracks are assigned a category

according to the number of missing, expected and observed hits in the different

layers of the ID [97]. This helps discriminate tracks by their origin (e.g. secondary

or primary vertex) and quality. Two different methods are used: IP2D where the

3These express some characteristic of the jet, such as the number of tracks or its invariant mass.
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Figure 6.1: The distributions of lifetime signed (a) transverse and (b) longitudinal impact
parameters for b, c and light-jets in a tt̄ sample. The b and c jets tends to have
more tracks with large positive lifetime-signed impact parameters. The light
jets also show an exponential tail in this direction due to tracks from Ks and Λ

decays. The longitudinal impact parameter (z0) shows an additional bump in
the light-jet tail due to pile-up [97].

PDF is a 1D function of Sd0 and IP3D where the PDF is a 2D function of Sd0 and

Sz0:

IP2D : fi(IPk) = fi(Sd0) (6.3)

IP3D : fi(IPk) = fi(Sd0,Sz0) (6.4)

for a track k in a jet flavour i. Log-likelihood ratios (LLR) are defined to discrimi-

nate the three jet flavours (b, c and light):

LLRi j = log
(

∏
N
k=1 fi(IPk)

∏
N
k=1 f j(IPk)

)
(6.5)

for a jet with N tracks, i, j ∈ {b,c,u} where u refers to light flavour jets. The ratios

LLRbu, LLRbc and LLRcu are used as inputs to high-level taggers.

6.3.2 RNNIP

RNNIP is a new ML based tagger that uses an RNN with the jet’s tracks as inputs

[89]. This algorithm can rectify several issues with the more simple LLR based
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Track Variable Description
Variables for IP3D and RNNIP

Sd0 The lifetime signed transverse impact parameter signifi-
cance (d0/σd0)

Sz0 The lifetime signed longitudinal impact parameter signifi-
cance (z0/σz0)

Category [97] Track categorization based on number of observed, ex-
pected or missing hits in the ID. Tracks are organised based
on impact parameter resolutions.

Extra variables for RNNIP
p f rac

T The fraction of the jet transverse momentum carried by the
track, ptrack

T /p jet
T

∆R(track, jet) The ∆R between the track and the jet axis

Table 6.1: The track variables used in IP3D and RNNIP [89].

methods. In the IP2D and IP3D algorithms, it is assumed that the track flavour

probabilities in a jet are independent. The templates used to define the PDFs also

require large sample sizes and are too computationally expensive to produce if ad-

ditional kinematic dependencies are added. Furthermore, the tracks in jets are not

independent of each other, but instead will be spatially and kinematically correlated.

For example, tracks originating from the same b-decay are related to each other. An

RNN can account for the track correlations and additional dependencies in a fast

and efficient way.

The RNNIP architecture is shown in figure 6.2. It consists of two parts: An

RNN formed from LSTM cells and a fully-connected feed-forward network. Tracks

in a candidate jet are formed into an arbitrary length sequence. They are ordered

based on |Sd0| and passed to the RNN. The tracks are a vector of the variables de-

fined in table 6.1. The output of the RNN then passes through a feed-forward net-

work which produces the final output probabilities for each flavour pb, pc, pτ , plight .

A softmax4 layer ensures these probabilities sum to 1.

4This simply applies the softmax function to the output vector. The vector of k real values is
converted to a vector of k values between 0 and 1, which all sum to 1. These can thus be interpreted
as probabilities. The final size of a component is proportional to its initial value.
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Figure 6.2: Schematic of RNNIP showing the network architecture, the inputs and the out-
puts. Note when used as an input to high-level taggers (MV2 and DL1), the
RNNIP output is generally reduced to a 3-class pb, pc and plight .

6.3.3 Inclusive Secondary Vertex Reconstruction

The displaced tracks from the secondary and tertiary vertices can be used to recon-

struct an inclusive secondary vertex. This is done by the secondary vertex tagging

algorithm SV1 [98]. The algorithm first reconstructs all possible two-track vertices

from the selected tracks in the jet. It rejects those consistent with material inter-

actions and neutral particle decays (such as the Ks and Λ). The tracks associated

to remaining two-track vertices are then used to iteratively try and fit a secondary

vertex. At each iteration, the least compatible track as measured by a χ2 test of

the track-to-vertex association is removed. This proceeds until the χ2 of the vertex

passes a fixed acceptance and the vertex mass is less than 6 GeV5, or until no more

tracks are left.

The properties of the reconstructed secondary vertex are used by high-level

taggers to discriminate b, c and light jets. These include, for example, the mass

of the secondary vertex (assuming the pion mass tracks) and the number of tracks

associated to it. The properties used are summarized in full in Table 6.2.

5This value is roughly related to the mass of b and c hadrons.
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6.3.4 Topological Reconstruction

The JetFitter [99] algorithm exploits the full topology of the b→ c decay chain to

tag jets. It reconstructs both secondary and tertiary vertices using a Kalman Filter

based algorithm. This algorithm is detailed in section 6.4. JetFitter assumes that the

decay vertices all lie along the flight path of the b, this allows for the reconstruc-

tion of vertices from a single track. Several output variables from the fitted decay

topology of a jet are used by high-level taggers, these are detailed in Table 6.2.

6.3.5 Leptons

The leptons produced in semi-leptonic decays of the b- and c-hadrons are a useful

feature for b-tagging. The soft muon tagger (SMT) [96] exploits this fact, specifi-

cally looking at soft muons associated to jets. Due to the branching ratios, muons

are expected in 20% of b-jets, and 10% of c-jets [100]. The muon is expected to

have a large momentum perpendicular to the jet direction pTrel . Combined muons

reconstructed by ATLAS are associated with jets if the separation of the muon di-

rection and jet axis ∆R < 0.4. The SMT makes use of the ∆R, pTrel and d0 of the

muon track alongside three variables quantifying the muon track quality:

• The scattering neighbour significance: S= q×∑i
δφ i

scat
σ

δφ i
scat

where q is the particle

charge and δφ i
scat the angular difference between two half-tracks starting or

ending at the i− th pair of adjacent hits in the muon track. This quantifies

how significant any kinks along the track may be.

• The momentum imbalance significance M =
pID−pextr

MS
σEloss

where pID is the muon

momentum measured in the ID, pextr
MS is the momentum from the MS extrap-

olated to the vertex and σEloss is the uncertainty on the calorimeter measured

energy loss.

• R = (q/p)ID
(q/p)MS

where (q/p)ID(MS) is the track curvature measured by the ID (or

MS).

These variables are useful in separating muons from b- or c-hadron decays from

muons originating in pion or kaon decays. The latter could occur in light-jets caus-

ing a fake signal of a b-jet.
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These six variables can be passed directly to a high-level tagger, or combined

into a single multivariate discriminant by an SMT BDT.

6.3.6 High-level Taggers

The optimal separation of b, c and light jets is achieved by high-level taggers. These

are multivariate algorithms which combine the information produced by the low-

level taggers. The two most important in ATLAS are MV2 and DL1.

6.3.6.1 Training Samples

The high-level taggers are ML algorithms and thus require labelled training data.

This comes from MC simulation, the truth information is kept in MC samples to

provide a truth label (b-, c- or light-jet). The samples are produced as a hybrid of tt̄

and Z′ events. The Z′ events are important for jets with high pT [101].

6.3.6.2 MV2

MV2 [96] is a BDT discriminant formed from the output variables summarized in

table 6.2. The algorithm is trained using TMVA from the ROOT toolkit. As well as

the outputs from low-level taggers, jet pT and η enter as inputs to the BDT. Several

different flavours of the MV2 algorithm exist. The default version, often called

MV2c10, is trained on a hybrid sample where the background jets are 7% c-jets

and 93% light jets6. These values were chosen to give the optimal balance between

c-jet and light-jet rejection for the majority of ATLAS analyses [102]. The MV2

tagger uses only the inputs from IP2D/3D, SV1 and JetFitter. The recent addition

of new low-level taggers has led to two new versions: MV2mu additionally uses

the SMT BDT discriminant, and MV2MuRnn further adds the outputs of RNNIP

(pb, pc, plight). The performance of these are shown in figure 6.3. MV2 used to be

the recommended b-tagger at ATLAS but has now been displaced by DL1.

6.3.6.3 DL1

DL1 [96] is a feed-forward neural network with multiple hidden layers. It is trained

using Keras [103] (Theano backend) [104] with an Adam optimiser [105]. The
6Historically, this c-jet fraction was varied to produce taggers optimised for c-jet rejection (e.g.

MV2c100 had a larger c-jet fraction) or light-jet rejection (e.g. MV2c00 where all background jets
are light jets), these will not be considered in this work.
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Table 6.2: The variable inputs to the high-level taggers MV2 and DL1 (not including the
SMT and RNNIP inputs). The JetFitter c-tagging variables are only used in DL1
[101].
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Figure 6.3: The b-tagging efficiency vs (a) light-jet rejection and (b) c-jet rejection of
MV2c10 (MV2) with the SMT discriminant added (MV2Mu) and the RNNIP
outputs added (MV2MuRnn) evaluated on a tt̄ sample. The ratio of all taggers
to MV2c10 is also plotted. The addition of muon information does not improve
the c-jet rejection above 50% efficiency, since leptons are produced in both b-
and c-decays [96].

architecture is a mixture of feed-forward layers and Maxout layers [106]. Several

hyperparameters such as network architecture, learning rate, number of epochs, etc.

are tuned. The optimal parameters are shown in table 6.3. The inputs to DL1 are the

same as for MV2 but additional JetFitter c-tagging variables are used (see table 6.2).

All the inputs are summarized in Table 6.2. DL1 outputs three values corresponding

to the probability of a b-jet, c-jet or light-jet (pb, pc, plight). This allows DL1 to be

used for b-tagging and c-tagging. The final b-tagging discriminant is defined as:

DDL1 = ln
pb

fc · pc +(1− fc) · plight
(6.6)

where fc is the fraction of c-jet backgrounds in the training sample. An optimal

value of fc = 0.08 is used. The performance of DL1 as compared to the other taggers

is shown in figure 6.4, note for a fair comparison the extra inputs from RNNIP and

SMT are not used for DL1 or MV2. DL1 is found to match or outperform MV2

everywhere.

DL1 can be upgraded similarly to MV2 to include inputs from the RNNIP and

SMT taggers. DL1r includes the additional outputs of RNNIP (pb, pc, plight) with
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Hyperparameter Value
Number of input variables 28
Number of hidden layers 8
Number of nodes (per layer) [78,66,57,48,36,24,12,6]
Number of Maxout layers [position] 3 [1, 2, 6]
Number of parallel layers per Maxout layer 25
Number of training epochs 240
Learning Rate 0.0005
Training minibatch size 500

Table 6.3: The optimised hyperparameters used in DL1 [101].

Figure 6.4: The b-tagging efficiency vs (a) light-jet rejection and (b) c-jet rejection of two
high-level (MV2 and DL1) and three low-level (IP3D, SV1, JetFitter) taggers
evaluated on tt̄ events. The ratio of all taggers to MV2 is also plotted [101].

DL1rmu adding further the six variables from the SMT tagger. The performance of

these taggers is shown in figure 6.5. The current recommended b-tagger for ATLAS

analyses is DL1r.

6.4 JetFitter
JetFitter [108, 99] exploits the topology of the b-hadron decay (see figure 6.6). Jet-

Fitter makes the assumption that the b- and c-hadron decay vertices and the primary

vertex lie on a straight line. This has several advantages: it allows for the reconstruc-
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Figure 6.5: The b-tagging efficiency vs (a) light-jet rejection and (b) c-jet rejection of DL1,
DL1r and DL1rmu evaluated on tt̄ events. The ratio of all taggers to DL1 is
also plotted [107].

tion of incomplete topologies (for instance where the only a single track for each

vertex is found), it reduces the degrees of freedom of the fit increasing the chance

of separating the vertices, and it increases the discrimination against light quark

jets by specifying the compatibility to the given topology. The assumption is well

physically motivated due to the hard b-quark fragmentation and the large masses of

b- and c-hadrons. It is only in the transverse direction where this assumption can

potentially cause bias as the track resolution can occasionally be better [108]. This

is fixed by a looser cut on the χ2 probability of the decay chain vertex. The straight

line used is the b-hadron flight direction, approximated by the direction of the jet

axis [108].

6.4.1 Track Selection

The tracks in a jet are associated during the clustering and formation of the jet.

These in general contain tracks from the hadronization process (primary tracks),

those from heavy hadron or neutral particle decays (secondary tracks) and tracks

from other source such as pile-up. Most low-level b-tagging algorithms therefore

apply a track selection procedure to remove jets that might obscure the flavour of

the jet.
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Figure 6.6: The b decay topology showing the decay vertex of the b-hadron (B) and c-
hadron (D), and the JetFitter assumption that these lie along the B flight axis
[108].

The JetFitter algorithm has a custom built track selection. Its aim is to remove

all charged particle tracks not originating from b- or c-hadron decays. This includes

primary tracks and tracks from other sources such as material interactions, neutral

particle decays and pile-up.

Primary tracks are removed by cutting on the χ2 compatibility to the primary

vertex. This cut is dependent on the lifetime sign of the tracks. If the sign is positive

the χ2 probability must be below 10%. If it is negative, this cut drops to 5% as these

tracks are less likely to come from the b- or c-hadron decays.

The remaining tracks (called secondary tracks) are paired up and examined as

potential vertices. The two-track vertices are formed using a χ2 vertexing proce-

dure. The vertices failing cuts on χ2 probability and lifetime-signed decay length

significance (L/σL) are removed7. The resulting candidates are vetoed as hadronic

interactions if the vertex position is in the boundaries between pixel layers [108].

Candidates can optionally be vetoed if they are compatible with photon conversion,

Ks decays or Λ0 decays. This is deduced by inspecting the invariant mass of the

vertex candidate. Currently, this neutral particle veto is not applied, more detail on

this is presented in section 6.5.

Tracks associated to the remaining vertex candidates only are used in a first

fit of JetFitter (termed tracksToUseInFirstFit). These tracks are required to have

7accept vertices with (P2
χ > 3% and (L/σL)> 1.5) or (P2

χ > 5% and (L/σL)> 1)
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|d0| < 3.5mm, |z0| < 5mm and pT > 0.5GeV. All combinations of two tracks are

considered. Tracks can in principle be shared by multiple two-track vertices. If the

formed two-track vertex is of good quality (as measured using a χ2 test), and not

consistent with a material interaction, its tracks enter the tracksToUseInFirstFit8.

The secondary tracks which did not pass the requirements above are used in

a second fit if they pass certain quality requirements. These are termed track-

sToUseInSecondFit. These tracks must fulfill |d0| < 1.5mm, |z0| < 3mm and

pT > 0.75GeV. To further mitigate against pile-up, tracks with |z0 sinθ |/σz0 > 5

and |d0|/σd0 < 2 are not considered [99].

6.4.2 Vertex Finding

The vertex finding procedure is a two-stage process. The first stage takes the best

secondary tracks (the tracksToUseInFirstFit) to fit a decay chain topology. A second

stage than augments this topology using the remaining tracksToUseInSecondFit.

An initial jet topology is created assuming each track forms a single vertex

along the b-hadron flight axis, which is taken as the jet axis. This is passed to the

Kalman filter fitting procedure (see section 6.4.3). The resultant fitted topology then

undergoes a clustering procedure:

1. Each vertex is assigned a χ2 probability based on the compatibility of the

tracks assigned to it and the compatibility of the vertex to the decay chain. If

this probability is less than 0.1%, the vertex is removed.

2. All combinations of the remaining vertices are then formed and the χ2 prob-

ability of the new vertex is calculated. This fills a table of probabilities as

shown in table 6.4.

3. Any vertices (k) with a resultant χ2 compatibility to the primary vertex PkP >

0.1% are merged to the primary vertex.

4. The two vertices i and j forming the merged vertex with highest χ2 score, Pi j,

are merged. The entire topology is then refit with the Kalman filter.

8Note: Any track that is consistent with a material interaction two-track vertex will be hard
vetoed out of the collection.



6.4. JetFitter 101

Vertex 1 2 3 ... Primary
1 X P12 P13 ... P1P
2 P21 X P23 ... P2P
3 ... ... ... ... P3P
... ... ... ... ... ...

Primary ... ... ... ... X

Table 6.4: The table of probabilities for merging combinations of vertices. The probability
of merging vertex i and vertex j is Pi j assuming they form a new vertex along
the b-hadron flight axis [108].

5. Steps 2 and 3 are repeated until no more pairs can be formed with a χ2 score

above a certain threshold.

The threshold in step 4 depends on the reconstructed mass of the merged vertex,

mJF
sec. This is done to improve tertiary vertex reconstruction. The probability that a

true vertex with mass mtruth
sec > mJF

sec is determined by comparing to truth secondary

vertices in simulation. This value is then used to select the vertex merge threshold.

The second stage of vertex finding takes the returned topology from the first

stage and adds the tracksToUseInSecondFit, again assuming they form single track

vertices where they intersect the flight axis. The same fit and clustering procedure

is then performed. The end result is a set of well defined (at least one-track) ver-

tices forming the topology of the b decay. From this topology, the JetFitter output

variables of table 6.2 can be deduced.

6.4.3 Fitting Procedure

JetFitter uses a Kalman Filter based fitting procedure [108]. The variables describ-

ing the decay chain to be updated are ~d = (xPV ,yPV ,zPV ,φ ,θ ,d1,d2, ...,dN), these

are sketched in figure 6.7:

• The primary vertex coordinates (xPV ,yPV ,zPV ) (and covariance matrix) are

obtained from the primary vertex finding.

• The flight direction of the b-hadron in spherical polar coordinates (φ ,θ) is

taken as the jet axis. Uncertainties are derived from the jet direction resolution

and the difference between the b-hadron flight axis and jet direction in MC

simulation [99, 108].
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Figure 6.7: A schematic of a b-decay chain topology within a jet, showing the variables
defined in the JetFitter fitting procedure [108].

• The distances along the flight axis of the single-track vertices are termed

d1, ...dN . These are calculated by finding the intersection of each track with

the flight axis using a Newton-based method [108].

At each step of the Kalman filter fit, the track parameters of an individual track

are added and the vertex to be updated is specified. The Kalman Filter takes as its

main input the measurement equation which relates the track helix parameters ~q to

the vertex positions to be updated, and the momentum of the track evaluated at the

vertex, ~p . The measurement equation for a single vertex, position~x, is [109]:

~q = ~C+A~x+B~p (6.7)

where A and B are Jacobians, C is a constant vector. These encode the linearisation

parameters. For JetFitter we replace~x with the full decay configuration ~d giving:

~q =~q(~d,~p)
∣∣∣∣
~d=~d0,~p=~p0

+
∂~q(~d,~p)

∂ ~d

∣∣∣∣
~d=~d0

(~d− ~d0)+
∂~q(~d,~p)

∂~p

∣∣∣∣
~p=~p0

(~p− ~p0) (6.8)

which is linearised to be used in the Kalman Filter by a first order Taylor expansion.

The JetFitter algorithm is adapted from pre-existing ATLAS algorithms for single

vertex finding [110] by noting that the~x position of the i− th vertex can be written:

x = xPV +di sinθ cosφ (6.9)

y = yPV +di sinθ sinφ (6.10)

z = zPV +di cosθ (6.11)



6.5. Neutral Tracks 103

The values from (6.7) and (6.8) are thus equivalent C = Ĉ and B= B̂, only A must be

modified Â = Ad~x(~d)
d~d

∣∣∣∣
~d0

by some transformation matrix, see for instance reference

[108]. This allows the JetFitter Kalman Filter re-use the code from the main ATLAS

vertex finding algorithms.

The Kalman Filter procedure applies each candidate track iteratively to up-

date the decay chain ~d. The procedure will generally cycle through all the tracks

several times before the fit converges due to the non-linearity of the measurement

equation. At the end of each cycle, an updated ~d and covariance matrix are pro-

duced. Convergence is defined using the χ2 probability of the fit, if after a new cy-

cle |χ2
new− χ2

old| < 0.001. The procedure is exactly the same when multiple tracks

are associated to a single vertex, i, in that case they enter with the same value di.

6.5 Neutral Tracks

Secondary tracks form not only from heavy hadron decays, but from the decay of

neutral particles. The Ks, for instance, has a similar lifetime to b-hadrons (∼ 10−11)

and thus will decay at similar displacements from the primary vertex. The Ks can

be produced during the decay chain of the b-hadron.

JetFitter can optionally identify two-track vertices compatible with a neutral

particle decay. The two charged tracks forming this vertex can then be removed

from the jet candidate, as they do not therefore originate in the B- or C-Hadron

decays. JetFitter used to go further and explicitly reconstruct the neutral particle

tracks from the identified charged tracks. These new neutral track objects could

then be used as inputs to JetFitter, so long as they formed from the b- or c-hadron

decay. This can improve performance due to the increase in number of candidate

tracks, as these can be used to better fit the secondary vertex position [108]. This

functionality was lost with the upgrades to the new software base and event data

model (EDM) in release 19 of Athena.
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Ks Λ0 Conversion
opposite charged tracks opposite charged tracks opposite charged tracks
|m(π+,π−)−mKs |< 18 MeV |m(p,π−)−mΛ0 |< 7 MeV m(e+,e−)< 30 MeV
Slsd > 4.5 Slsd > 4.5 Slsd > 0
P(χ2

track1 +χ2
track2)< 10−4 P(χ2

track1 +χ2
track2)< 10−4

P(χ2
track1(2))< 10−3 P(χ2

trk1(2))< 10−3

rT > 2 cm rT > 2 cm
OR atLeastOneLoose OR atLeastOneLoose

Table 6.5: The requirements on vertex candidates and their constituent tracks to be identi-
fied as neutral particle decays. The Boolean atLeastOneLoose is true if at least
one of the tracks has |d0| > 1mm and |z0| > 2 mm. rT refers to the transverse
radius of the vertex candidate. Slsd is significance of the lifetime signed distance
between the primary vertex and vertex candidate lsd/σlsd .

6.5.1 Neutral Particle Identification and Veto

The neutral particle decays of interest are conversions, Ks and Λ. Their two-particle

decays are:

γ → e++ e− (6.12)

Ks→ π
++π

− (6.13)

Λ0→ p+π
− (6.14)

All possible two-track combinations of secondary tracks are examined as potential

neutral particle decay vertices (see section 6.4.1). The selections applied to identify

these are detailed in table 6.5. This includes requirements on oppositely charged

tracks and the invariant mass of the two-tracks, assuming the tracks are the decay

products in equations (6.12)-(6.14). Additional cuts are applied on the χ2 com-

patibility of the tracks to the primary vertex, the impact parameters of the tracks,

the significance of the lifetime signed distance between the candidate vertex and

primary vertex and the transverse displacement of the candidate vertex from the

origin. More detail on these selections and their motivation can be found in [108].

The vertices identified as originating in neutral particle decays can be used in a track

veto procedure. If this option is turned on, the two tracks belonging to the identified

neutral vertex are removed from the fit.

The effect of the neutral candidate veto is investigated using an MC simulated
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(a) (b)

Figure 6.8: The effect on a MV2c10 of removing the tracks identified with neutral decay
vertices. The b-jet efficiency is plotted against (a) light-jet rejection and (b) c-
jet rejection. The black line is with the veto turned off, red dashed line is with
the veto turned on. The ratio of the red curve divided by black is plotted.

tt̄ sample9. The AntiKt4EMTopo jet collection is used. Neutral decay vertices were

only identified in less than 2% of events. The result on b-tagging performance is

shown in the MV2c10 ROC curves in figure 6.8. A small boost in c-jet rejection

was seen at very low b-jet efficiency but performance was unchanged at the normal

working points. No significant effect was seen for light-jet rejection at any effi-

ciency. As such, the neutral candidate veto is not used by default. An old version

of MV2 which uses only the JetFitter variables as inputs was also used to test the

effect of the neutral candidate veto. The light-jet rejection ROC curve is shown in

figure 6.9. A small performance boost was seen (< 2%). This JetFitter only BDT

is no longer maintained as it is not used by any analysis stream. It is, however, still

useful as a diagnostic tool to see the impact of changes to JetFitter variables alone.

The veto appears to slightly improve JetFitter, but the benefit does not transfer to

the high-level tagger MV2. The extra information used by the high-level tagger is

already sufficient.

The effect of the veto was also investigated by counting the number of recon-

9mc16 13TeV.410470.PhPy8EG A14 ttbar hdamp258p75 nonallhad.deriv.DAOD FTAG1.e633
7 s3126 r10201 p3582
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Figure 6.9: The effect on a JetFitter based BDT (with the MV2 architecture) of removing
the tracks identified with neutral decay vertices. The black line is with the veto
turned off, red dashed line is with the veto turned on. The ratio of the red curve
divided by black is plotted.

(a) Veto Code Off (b) Veto Code On

Table 6.6: The effect on the number of reconstructed JetFitter vertices of removing the
tracks identified with neutral decay vertices. The percentage of different
flavoured jets containing 0, 1, 2 or 3+ vertices is shown when the veto code
is turned (a) off and (b) on. Results were produced on 130,000 selected jets
from a tt̄ sample.

structed vertices in different flavour jets. The jet flavour was identified using truth

information in the MC sample, the number of JetFitter vertices was then counted.

Additional selections on jets were applied: jet pT > 20 GeV, jet |η |< 2.5, jet JVT

parameter > 0.59 (to reduce pile-up), and the jet must not overlap with an elec-

tron10. The result on approximately 100,000 events is shown in table 6.6. Again,

no significant changes were seen.

10A variable jet aliveAfterOR must equal 1
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Figure 6.10: A schematic view of the two charged particle tracks forming from a neutral
particle decay. The neutral track is reconstructed from these, extrapolation
back to its perigee is shown (closest approach point of the primary vertex).

6.5.2 Neutral Particle Reconstruction

JetFitter historically went further then simply vetoing neutral decay vertex candi-

dates. The corresponding neutral particle was reconstructed as a neutral track. This

code functionality was lost in the recent upgrade of the ATLAS event data model

(EDM). The re-created neutral particles could then be used in the JetFitter fitting

procedure, entering as a new track for the first fit. This is physically motivated as

neutral particles, such as the Ks or Λ, can be produced in the b decay chain. Recre-

ating neutral particles allows additional tracks from the b-decay to be used in the

secondary and tertiary vertex reconstruction.

To restore this functionality, the old code was upgraded to be compatible with

the new EDM. The code detail is described in appendix A. The neutral particle’s

track parameters are calculated from the track parameters of the two charged par-

ticles producing the vertex candidate. A schematic of this is shown in figure 6.10.
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The neutral track momentum can be deduced from conservation of momentum. The

track is assumed to pass through the vertex position, and is thus fully defined. To

deduce the covariance matrix, correlations between the charged track parameters of

the daughters and vertex position is needed. This is in a 9× 9 covariance matrix

denoted cov[~r,~ptrk1,~ptrk2], where~r is the vertex position. The correlations between

the momenta of tracks 1 and 2 can be recovered by propagating the covariance ma-

trices of the track momenta with the vertex position [108]:

cov[~ptrk1,~ptrk2] = cov[~ptrk1,~r] · cov−1[~r,~r] · cov[~r,~ptrk2] (6.15)

The covariance matrix for the neutral track cov[~r,~pneutral] is then obtained by error

propagation. This 6D representation of the neutral track is then converted to the 5D

perigee representation used at ATLAS (d0,z0,φ ,θ ,1/p) (with the primary vertex as

reference point) by noting the neutral track will travel in a straight line. It is entirely

analogous to a charged track, except 1/p is used instead of q/p (for neutrals q = 0).

The impact parameters are used to define a χ2 compatibility to the primary vertex

[108].

The recreated neutral track is now ready to be used in JetFitter. The created

tracks are checked for their χ2 compatibility to the primary vertex. Those with

χ2 < 36 are flagged as primary vertex tracks and removed. The remaining Ks and Λ

neutral tracks are available to be used in the fit (conversions are much more likely

to be fakes).

The neutral reconstruction code was tested using the same tt̄ sample as in sec-

tion 6.5.1 and AntiKt4EMTopo jet collection. To measure the impact, the baseline

version of JetFitter, with the neutral candidate veto switched on, was used. The

neutral particle reconstruction is then added, and Ks tracks satisfying the above re-

quirements were added to the fit11. The impact on the performance of MV2c10 is

shown in figure 6.11. Some benefit was seen at very low b-jet efficiencies, how-

ever no significant change was observed at the working points used in most ATLAS

analyses (> 60%). The impact on the individual JetFitter output variables is further

11The addition of Λ tracks was tested, but this impact was small.
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explored in appendix A.

(a) (b)

Figure 6.11: The effect on a MV2c10 of using reconstructed Ks tracks in JetFitter fit. The
b-jet efficiency is plotted against (a) light-jet rejection and (b) c-jet rejection.
The black line is with neutral particles identified and vetoed, red dashed line
is with the addition of reconstructed Ks tracks to the fit. The ratio of the red
curve divided by black is plotted.

6.6 Code Development
The efforts to restore neutral tracks to JetFitter uncovered a lot of issues with code

readability and design. It was thus decided to complete an overhaul of the code

structure of the JetFitter vertex finding procedure. The new design will maintain

full backward compatibility while allowing easy extension, improvement and main-

tenance. A modular design makes it easier to replace certain aspects of the code,

such as the track selection.

A map of the old code structure used by JetFitter is presented in figure 6.12.

The vertex finding procedure and track selection are all contained within InDetIm-

provedJetFitterVxFinder. This file is thus extremely long, around 2000 lines of

code. A more detailed view of this file can be seen in the second map, figure 6.13.

A modularized version was proposed where the track selection, two-track vertex

analysis (called V0s) and merge procedure form separate modules. The role of In-

DetImprovedJetFitterVxFinder is thus reduced to directing these procedures. The
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Figure 6.12: Map of the JetFitter code structure showing the four main modules.
BTagSecVertexing is part of the main b-tagging algorithm and directs JetFitter
to find its secondary vertices by calling InDetImprovedJetFitterVxFinder. The
resulting decay chain topology is passed to JetFitterVariablesFactory to create
the variables for high-level taggers. The flow of information is shown by ar-
rows. Key methods within modules are shown. This map is not an exhaustive
description but rather meant to show the important information only.

final refactored version of the code was under 300 lines of code. A map of the new

code is shown in figure 6.14.

The refactor effort also added some improvements to the code. The use of

smart pointers, new to C++ 11, was implemented. Some bugs to do with object

ownership were uncovered and fixed. An explicit track ordering by pT was imple-

mented as the fitting procedure is dependent on track order. This ordering is the

same as that used in the old JetFitter, but is now made explicit in the code.

With a refactored code, several avenues for future development open up. Each

of the newly created modules could be replaced or upgraded. In recent years, ML

algorithms have been increasingly favoured in particle physics and could serve as

a good replacements. The JetFitter fitting procedure could be replaced a ML based

algorithm, such as an RNN, this is explored in chapter 7. The two-track vertex

finding and V0 identification procedures could be replaced by a GNN, for example

see ref. [111, 112]. A GNN like this could potentially replace the entire vertex
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Figure 6.13: Map of the JetFitter code structure but with the InDetImprovedJetFitter-
VxFinder module, and in particular the track selection method doTheFinding
shown in more detail. More expanded maps similar to this can be found in the
appendix B.

Figure 6.14: Map of the refactored JetFitter code structure. InDetImprovedJetFitter-
VxFinder has been greatly simplified. Four new modules have been created.
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finding procedure. The end result of such a GNN would be a set of secondary

vertices each with a number of tracks associated to them. This topology could then

be fit by JetFitter’s Kalman Filter, and the resultant JetFitter topology used to deduce

the JetFitter output variables.

Some further examples of code development might be replacing the track se-

lection with an external ATLAS tool. The track ordering procedure could also be

investigated for possible gains. Cuts on mJF
sec are currently used to determine when

to merge vertices. These are based on results from simulation done in 2009 and

could be re-optimized.



Chapter 7

Jet Topology Fitting with an RNN

7.1 Overview

This chapter presents work on an ML based topological jet fitter. The use of an

RNN in fitting the positions of secondary and tertiary decay vertices in b-jets is ex-

plored, motivated in part by the JetFitter and RNNIP algorithms. The motivation is

covered in more detail in section 7.2. The vertex fitting is a regression task. The

model must predict the coordinates of the secondary and tertiary vertices, optimis-

ing a loss function based on the difference between the predicted and true vertex

positions. The inputs to the model will be the ordered set of tracks in a jet, each

track parameterized by some features. The training data is constructed from a sim-

ple model of jets. Each particle track in the jet is simulated alongside the decay

vertices. The simple toy jet model is covered in detail in section 7.3. Jets of three

different flavours (b, c and l) can be simulated, but only the b-jets are used.

The model is tasked with fitting the secondary and tertiary vertex positions in

b-jets. With the scope of the model set and the training data generated, the detail of

the model is covered in section 7.4. The training procedure and model architecture

are laid out. Several experiments on optimising the model were performed and the

results are quoted in section 7.4.2.

A major difficulty with the ML model is evaluating performance. The predic-

tions of the model do not come with associated uncertainties. It is therefore not

straightforward to interpret the errors on the predicted vertices with respect to the
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true vertices. This problem is attacked in sections 7.5.1 and 7.5.2. A particular

difficulty of this model is how to compare with the current b-tagging algorithms

in ATLAS. The scope of the ATLAS models is not the same. They predict the jet

flavour, not the secondary vertex positions. The exception is JetFitter, which uses

the reconstructed vertices and their associated tracks to create the JetFitter variables.

Some investigation into the association of tracks to vertices in the RNN model was

therefore performed. The results of this are covered in section 7.5.3.

7.2 Motivation

The use of ML in ATLAS is an important part of the efforts to upgrade performance

in advance of the high luminosity era. The increase in pile-up and data production

rates brings new challenges that ML algorithms are well placed to solve. B-Tagging,

both online and offline, is an area where ML algorithms have had considerable

success. Two recent examples are DL1 [96] and RNNIP [89]. DL1 uses a deep

neural net and is the current recommended tagger in ATLAS. RNNIP is a low-level

tagger which uses an RNN (LSTM) to predict jet flavour. The choice of an RNN

was motivated as they can account for the correlations between tracks in a jet. By

expressing the tracks in this jet as a sequence, a considerable boost in performance

over conventional IP based methods was obtained [89]. The RNN can further handle

sequences of varying lengths, the number of tracks in a jet is not fixed.

A sequential treatment of tracks in a jet is not a new concept in b-tagging.

The Kalman Filter procedure in JetFitter processes tracks in a sequence (ordered by

pT). RNNs, in particular LSTM, have been successfully used as replacements for

Kalman Filters in several fields [113, 114, 115, 116]. The RNN offers several ad-

vantages over a Kalman Filter. Firstly, Kalman Filters operate under the assumption

of linearity. In vertex fitting [110, 109] and JetFitter [108], this leads to the lineari-

sation procedure (see section 6.4.3). An RNN makes no assumption of linearity

and could thus be used to study inherently non-linear models such as vertexing.

Kalman Filters also require an initial state with known covariances. JetFitter is able

to deduce these up to certain approximations (e.g. the approximations of the flight
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direction and single-track vertex positions in section 6.4.3). An RNN however can

be initialized in a null state, such as in RNNIP [89]. There is thus motivation to

investigate replacing the Kalman Filter fit procedure in JetFitter with an RNN.

7.3 Toy Jets
The training procedure for a ML model requires labelled training data. In ATLAS,

these are produced using MC simulations based on SM theory and detector simu-

lations. These MC simulated samples are complex and large. They contain a lot

of information about ATLAS run conditions and underlying physics. As such, it

was decided to investigate an RNN based jet fitting procedure on a simplified “toy

jet” model. This allows much more control over key aspects such as noise, as well

as a complete knowledge of the decay chain topology. If an RNN algorithm can

do a good job at fitting a simplified model, it could then be extended to ATLAS

simulated data.

The toy jets were created with minimal constraints from phenomenology. The

jet is assigned an overall energy and a flavour (b, c or light). The jet is assumed

to travel in the θ = φ = π/4 direction. This choice is arbitrary but will not limit

the algorithm performance as the scenario under investigation is constructed to be

spherically symmetric1. The primary vertex is fixed at the origin, this is allowed

from translational symmetry. The primary vertex particles, produced by the quark

fragmentation, are then simulated. Finally, in the case of b and c jets, the heavy

hadrons are propagated and decay to form the secondary and tertiary particles. In a

light jet, all particles form at the primary vertex. The toy jet model uses only three

particles: pions, b-hadrons and c-hadrons2.

Primary vertex particles are formed from random fractions of the jet energy3.

In light jets, the total jet energy is used. In b and c jets, a heavy hadron is created

first and assigned a large constant fraction of the jet energy. This value is deter-

1We assume no eta dependence on the detector resolution when adding noise, see section 7.4.2.6.
In reality, there would be an η dependence to the noise due to the ATLAS detector geometry.

2The b- and c-hadrons do not correspond to real particles, instead they have a mass and lifetime
roughly similar to the B and D mesons.

3The procedure ensures the overall jet direction is fixed.
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mined from the observed fragmentation energies of b- and c-jets (80% for the b,

50% for the c) [95]. The heavy hadron is propagated some distance before decay-

ing. This distance depends on the hadron momentum and lifetime (which follows

an exponential distribution). The heavy hadron formed at the primary vertex is as-

sumed to travel along the jet axis. The hadron then decays to two, three or four new

particles. In the case of the b-hadron, one of these particles is a c-hadron which

propagates further before decaying at a tertiary vertex. The jets resulting from this

simple model thus contain the correct decay chain topology.

Once the particle content of the jet is simulated, a jet object is formed by con-

verting all pions into tracks. For simplicity, the tracks are assumed to be straight

lines. The tracks are parameterized using the same perigee system as the ATLAS

tracks: (d0,z0.φ ,θ ,q/p). Figure 7.1 shows an example toy b-jet with the tracks

drawn as straight lines. To simulate the imperfect response of the detector, Gaus-

sian noise can be added to each of the track parameters. The values of the noise is

modified during experiments. Figure 7.2 shows the same example b-jet as before

but with added noise.

The model above was used to create several training samples. The jet energy

is uniformly distributed between 10 and 100 GeV. The distribution of total tracks

in jets of each flavour category is plotted in figure 7.3. The momentum distribution

of these tracks is plotted in figure 7.4. Similar distributions are seen in all three

categories, although c-jets have on average lower track pT (due to the fragmentation

function). The secondary vertex positions for b and c-jets were similarly distributed,

on average around 4mm (median was 2mm) from the origin. The tertiary vertices

in b-jets had an average displacement of 7mm (median 5mm). These can be seen

in figure 7.5, the distributions are exponential due to the heavy hadron lifetime

distribution.

7.4 RNN Fitting

The toy jets are used to train an RNN designed to find the secondary and tertiary

vertex positions. This is a supervised regression task.
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Figure 7.1: A toy b-jet with noiseless pion tracks originating from the primary (red), sec-
ondary (blue) and tertiary (orange) vertices. The vertex positions are denoted
by the black squares. The jet axis is the dashed blue line.

The RNN architecture used is based on RNNIP. It is formed of an LSTM net-

work, each cell has a single hidden layer, followed by a fully-connect feed forward

network, with a single dense layer. The output of the RNN is six continuous vari-

ables corresponding to the Cartesian coordinates of the secondary and tertiary ver-

tex, (xs,ys,zs,xt ,yt ,zt) where the subscripts s, t denote secondary or tertiary vertex.

Jets are processed by the RNN as ordered sequences of their tracks. The input fea-

tures for each track can be freely chosen. As the number of tracks per jet varies,

null tracks are added to ensure each jet has exactly 30 tracks. Initially, only b-jets

were studied.

7.4.1 Training

The RNN model is trained using Keras [103] and Tensorflow [117] using the Adam

optimizer [105]. The jets are labelled by the true positions of secondary and tertiary
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Figure 7.2: A toy b-jet with noise added pion tracks originating from the primary (red),
secondary (blue) and tertiary (orange) vertices. The vertex positions are de-
noted by the black squares. The jet axis is the dashed blue line. Gaussian noise
is added to the d0,z0,φ ,θ (with σ = 10−5) and q/P (a 0.1% error).

vertices4. The toy jet samples form a training set and held out test set as described

in section 7.4.2.2. Regression loss functions, such as the mean squared and mean

absolute error, are used. These are defined in section 7.4.2.1.

The models are trained for a maximum of 100 epochs5. An example loss curve

is shown in figure 7.6 The model training set is split in a ratio 80:20 to form a

validation set. Each experiment is repeated five times to measure an uncertainty

on the final performance. The training split and initial network weights rely on

a random seed, hence the same model trained again will not have the exact same

performance.

4In the case of c- and light-jets, the missing vertex would be assigned the primary vertex position,
(0,0,0).

5Note the training will early stop if validation loss does not decrease in 10 subsequent epochs.
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(a) b-jets (b) c-jets

(c) light-jets

Figure 7.3: Histograms showing the number of tracks per jet for samples of 300,000 toy
(a) b-jets, (b) c-jets and (c) light-jets.

7.4.2 Model Optimization

A number of experiments were carried out to create an optimal RNN based vertex

fitter. The aspects of the model investigated are:

• Amount of Training Data

• Loss Function

• Feature scaling

• Track Ordering

• Feature Selection

• Noise

A baseline toy jet sample was created for these experiments with minimal (Gaus-

sian) noise added: (d0,z0,φ ,θ) take an absolute uncertainty with standard deviation
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(a) b-jets (b) c-jets

(c) light-jets

Figure 7.4: Histograms showing the track momentum across 300,000 (a) b-jets, (b) c-jets
and (c) light-jets.

Experiment Baseline Model Aspect
Training Set Size 20,000
Validation Split 0.2
Loss Function MAE
Feature Scaling MinMax for φ ,θ , RobustScaler for d0,z0,q/p
Track Ordering Random
Features d0,z0,φ ,θ ,q/p

Table 7.1: The investigated model parameters, and the value of these in the baseline model.

of 10−5 (metres/radians), (q/p) is given a 0.1% uncertainty. A second sample was

created when investigating the impact of noise in section 7.4.2.6. The results of

each experiment are compared to a baseline model which has the aspects described

in table 7.1.

The hyperparameters of the RNN model are the learning rate, batch size, and

network size (number of nodes and hidden layers). An extensive hyperparameter

tuning was not carried out due to limited time and computational resources. Some

small experiments were carried out on each one individually using the RNNIP value
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(a) b-jets secondary (b) c-jets secondary

(c) b-jets tertiary

Figure 7.5: Histogram of the secondary and tertiary vertex distances from the primary ver-
tex in b-jets ((a) and (c)) and c-jets ((b)).

Figure 7.6: The training and validation loss (mean absolute error) versus the number of
training epochs.
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Hyperparameter Value
Nodes in LSTM Layer 300
Nodes in Dense Layer 40

Learning Rate 0.0001
Batch Size 256

Table 7.2: The hyperparameters and their values in the the RNN model.

as an initial guess. The values used in all experiments are quoted in figure 7.2.

7.4.2.1 Loss function

A standard choice of loss function in regression problems is mean squared error

(MSE). For our output~y = (xs,ys,zs,xt ,yt ,zt) this is written:

L(~y,~y′) =
1
n

n

∑
i
(~yi−~y′i)2 (7.1)

Where ~yi is the true label and ~y′ the predicted label of the i−th sample, and n the

number of samples. Note the sum is over each of the 6 output values6. An alterna-

tive loss function, the mean absolute error (MAE), was found to outperform MSE.

The MAE loss is written:

L(~y,~y′) =
1
n

n

∑
i
|~yi−~y′i| (7.2)

Again the sum is over all 6 output values7. The two metrics MSE and MAE are

similar. Optimising either one during training will therefore to some extent also

optimise the other. For instance, models trained to optimise the MAE loss achieved

a similar final MSE (measured on the validation set) as those optimising directly

the MSE loss. Table 7.3 shows the final MSE and MAE values measured on the

validation set for two different models, one trained with an MAE loss the other with

MSE loss. The MAE loss improves on performance for both metrics. This is likely

because MAE is more robust to outliers in data. For this reason, the MAE is chosen

6As such it does not correspond to the sum of the L2 norm distances between true and recon-
structed secondary and tertiary vertices. A loss function based on such a measure could be con-
structed but was not considered in our experiments.

7This is the sum of the L1 distance between true and reconstructed secondary, and true and
reconstructed tertiary vertices.
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Loss function Final Validation MSE /mm2 Final Validation MAE /mm
MSE Loss 1.82±0.12 0.76±0.02
MAE Loss 1.78±0.16 0.67±0.01

Table 7.3: The final validation MSE and MAE of a model trained on 20,000 toy b-jets using
a MSE loss function or MAE loss function.

as the loss function.

7.4.2.2 Amount of training data

ML models perform better when more training data is used. However, this increases

the training time. Therefore, most experiments were carried out with a smaller set

of training data. The reduction in performance was investigated by training the

baseline model on two training samples with different sizes. The model trained on

20k jets reached a final validation loss (MAE) of 0.67± 0.01 mm (early stopped

after loss did not improve for 10 epochs). The same model trained on 280k jets

achieved validation loss of 0.169± 0.002 mm after 100 epochs. The difference

is significant, therefore the final optimized model is retrained with 280k jets. The

improvements deduced while training with 20k jets are shown to improve the model

trained on 280k jets as well (see section 7.4.3.

7.4.2.3 Feature Scaling

An important part of all ML tasks is data pre-processing. The goal is to present the

data in the most optimal fashion to the neural network. As a general rule, features

of equal importance should have similar orders of magnitude. Scaling involves

projecting a feature x from its original domain to a new domain [a,b]. The simplest

scaling process is minmax scaling:

x′ = a+(a+b)
x−min(x)

max(x)−min(x)
(7.3)

The domain chosen in our work is [a,b] = [−1,1].

Another method of scaling is used which is more robust to outliers. This is

good for features such as the longitudinal impact parameter z0
8, where a few outliers

8The RobustScaler on z0 improved performance to 0.67 mm (0.80 mm with MinMax).



7.4. RNN Fitting 124

(a) (b)

Figure 7.7: The distribution of the longitudinal impact parameter (z0) in a toy jet sample of
3×105 b-jets, (a) shows the distribution of z0 using 1000 equal spaced bins (b)
shows the distribution of |z0| with a logarithmic binning.

are orders of magnitude larger than the majority of values as shown in figure 7.7.

Robust scaling uses the interquartile range:

x′ =
x−median(x)
Q3(x)−Q1(x)

(7.4)

Where Q3(x) and Q1(x) refer to the 75th and 25th percentile values of the data.

Many experiments were performed with all combinations of scaling. The best

scalings for each feature were deduced using a grid search, and are used in the

baseline model. MinMax scaling is used for the track parameters φ and θ . Ro-

bust scaling is used for all other features (d0,z0,(q/p),xp,yp). The output vertex

positions are measured in mm to be order unity.

7.4.2.4 Effect of Track Ordering

The order of tracks entering an RNN has an impact on performance. Several dif-

ferent orderings were tried. The results are presented in table 7.4, compared to the

baseline which uses random ordering. In addition to three orderings based on the

track parameters d0,z0,q/p, two additional derived orderings were tried: An order-

ing based on r0 =
√

d2
0 + z2

0, and an ordering based on the closest point on the jet

axis to the track. This latter ordering is the same as used in JetFitter. The distance

along the jet axis can be derived by finding the closes points between the two skew
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Ordering Validation Loss (MAE) /mm
Random 0.67±0.01

Increasing d0 0.58±0.01
Decreasing d0 0.50±0.02
Increasing |z0| 0.59±0.01
Decreasing |z0| 0.48±0.02
Increasing |1/p| 0.59±0.01
Decreasing |1/p| 0.61±0.02

Increasing r0 0.58±0.01
Decreasing r0 0.50±0.02
Increasing t1 0.442±0.006
Decreasing t1 0.367±0.008

Table 7.4: Performance of the baseline model with modified track ordering. The perfor-
mance metric is the mean absolute error on the validation set.

lines:

~L1 = t1~d1 (7.5)

~L2 = ~rp + t2~d2 (7.6)

Where ~L1 is the jet axis and ~d1 is its unit direction vector, ~L2 is the equation of the

track, ~rp is the perigee position of the track and ~d2 is its unit direction vector. The

distance along the jet axis can be written as:

t1 =
~rp · (~d1− (~d1 · ~d2)~d2)

1− (~d1 · ~d2)2
(7.7)

where we have made us of the fact |~d1|2 = |~d2|2 = 1. The jet axis has been fixed to

to ~d1 =
1
2(1,1,

√
2) for all experiments9. This choice is arbitrary, but the model is

spherically symmetric so will not change the results.

A significant improvement on the baseline can be seen for all orderings. The

best ordering was decreasing values of t1. This ordering will approximately show

the RNN tracks from the tertiary vertex first, then secondary and finish with primary

vertex tracks. It is of note that ordering in this way is more successful than the

reverse order, where primary tracks enter first.

9In polar coordinates θ = φ = π

4
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Features Ordering Validation Loss (MAE) /mm
Baseline Random 0.67±0.01
Baseline Decreasing t1 0.367±0.008
+ (xp,yp) Random 0.424±0.009
+ (xp,yp) Decreasing t1 0.299±0.003

Table 7.5: Performance of the baseline model with and without the addition of two new fea-
tures (xp,yp). Two track orderings were investigated. The performance metric
is the mean absolute error on the validation set.

7.4.2.5 Feature Selection

The five track parameters chosen in the baseline are not the only features available.

The perigee point (xp,yp,zp) can also be used (note that zp≡ z0 and d0 =
√

x2
p + y2

p).

The track parameters (φ ,θ ,d0,z0) alone do not uniquely determine a line in 3D,

in ATLAS a reference position must also be defined (the perigee). Hence it was

hypothesised that adding in (xp,yp) could aid the RNN performance. The results

of this experiment are shown in table 7.5 using a random ordering and the best

ordering from section 7.4.2.4. As was hypothesized, the additional track features

help to improve performance from a MAE of 0.67 mm to 0.42 mm for the baseline

model.

7.4.2.6 Effect of Noise

The effect of noise is an important aspect of any observational model. The base-

line model added an absolute uncertainty σ = 10−5 m/rad to the parameters

(d0,z0,φ ,θ) and a 0.1% error to (q/p). This value ensures we are always equal or

below the ATLAS design noise. The choice of absolute versus relative uncertainties

is motivated by the ATLAS design detector resolution. The extra features (xp,yp)

were then derived from the noised (d0,z0) assuming no angular measurement error.

This noising procedure is based on the ATLAS measurement uncertainty see table

3.2 in section 3.2.2. The ATLAS uncertainties include a pT dependent resolution

term which for simplicity was ignored here. The baseline model did not use the

exact values from table 3.2, instead it slightly underestimated the noise. The noise

level in the baseline model is compared to the design resolution of ATLAS in table

7.6.
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Parameter ATLAS (design) Baseline High Noise
d0 10µm 10µm 100µm
z0 91µm 10µm 100µm
phi 70µrad 10µrad 100µrad

theta 1000µrad 10µrad 1000µrad
q/p 1% 0.1% 1%

Table 7.6: The resolution of track parameters in our toy jets for two different levels of
noise (baseline and high noise) compared to the ATLAS design specifications.
The values for the latter are calculated from [44] assuming tracks perpendicular
to the beamline, with the exception of the θ resolution which is taken from
[118]. The high noise model thus has a larger noise than would be expected at
ATLAS. For simplicity, the absolute error for the baseline was set to 10µm for
all parameters (thus all parameters are less or equal than ATLAS design noise).

Baseline Noise High Noise
Best model (20k) 0.299±0.003 mm 0.53±0.02 mm

Best model (280k) 0.119±0.001 mm 0.283±0.003 mm

Table 7.7: The performance as measured by validation loss of the best RNN model trained
on a sample of jets with the baseline noise or high noise.

To investigate the effect of noise, a high noise training sample of toy jets was

produced using the values in table 7.6. This was done by multiplying the standard

deviation of noise added by a factor of 10, with the exception of the theta parameter

which was increased by a factor of 100 to be greater than the ATLAS design reso-

lution. The best RNN model was then trained on these and the results are quoted in

table 7.7.

7.4.3 Best Model

The current best model is determined from the experiments above. The tracks are

ordered in decreasing value of t1 (the closest point on the jet axis to the track).

Two extra features, the xp and yp perigee coordinates, are used. The scalings from

section 7.4.2.3 are used. This best model is retrained using 280,000 training samples

and achieves a validation MAE of 0.119± 0.001 mm, compared to the baseline

model’s 0.169± 0.002 mm. Using the high noise dataset the best model achieved

0.283±0.003 mm compared to the baseline which achieved 0.356±0.003 mm.
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7.5 Performance metrics

The MAE evaluated on the validation set was the main metric used to determine

the best performing model. More performance metrics, calculated on a held out test

set, are studied here. These metrics shed light on the factors affecting individual

jet performance and how this algorithm performs in the context of ATLAS. A key

goal is a metric that allows comparison of the RNN model with existing ATLAS

algorithm.

ATLAS b-tagging algorithms such as SV1 or JetFitter, are not evaluated by

the exact position of reconstructed vertices. This reflects their usage: They pro-

duce output variables for the high-level taggers, which in turn discriminate b-jets

from other flavour jets. These output variables are calculated from reconstructed

secondary vertices and their associated tracks. They rely on the vertices being an

accurate representation of some true physical decay. Determining whether a recon-

structed vertex represents a “true” decay vertex is more important than knowing its

exact position. ATLAS algorithms determine this using the tracks associated to a

vertex. In JetFitter, the χ2 compatibility of reconstructed vertices to the associated

tracks determines the vertex quality. Furthermore, the truth identity of the tracks

can be used to determine if a vertex is accurate. In the RNN method, however, all

the tracks are used to fit both vertices. It is difficult to identify which individual

track the RNN used to fit which vertex.

The vertex reconstruction performance is investigated in three ways. First,

some simple quantities are derived using the true vertex and reconstructed vertex

positions in section 7.5.1. Secondly, a vertex identification measure from error

propagation of the resolution uncertainties is investigated in section 7.5.2. Finally,

some studies on the track association problem are shown in section 7.5.3. For the

following, the best model trained on 280,000 training samples is used. The results

quoted are evaluated on the held out 20,000 test samples.
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Figure 7.8: The mean absolute and percentage errors across the six output values of each
jet.

7.5.1 Individual Jet Performance

The RNN performance can vary significantly for individual jets. The distributions

of the mean absolute and mean percentage error10 per jet are shown in figure 7.8.

The distributions have very long tails, in fact some values lie outside the plotted

ranges (for instance one jet had a MAE of around 5.11 mm). The mean and median

of these distributions are significantly different. The mean of the mean absolute

error per jet is 0.118 mm (this is equivalent to the loss function value calculated on

the test set) whilst the median value is around 0.064 mm. The mean of the mean

percentage error per jet is around 32.35%, whilst the median is 3.86%.

The (L2) distance between the true and reconstructed secondary/tertiary vertex

positions can be used as a measure of the vertexing performance11. This is termed

the secondary/tertiary vertex error. Figure 7.9 shows the distributions of these val-

ues in the test set. It is interesting to note the median tertiary vertex error (135 µm)

is slightly higher than the secondary vertex error (76 µm). If, however, we consider

the vertex error as a fraction of the true vertex displacement then the reverse trend is

seen (this is termed the percentage vertex error). The median percentage secondary

10This is the sum of the absolute or percentage error of each output coordinate. The MAE can be
thought of as the secondary L1 error plus the tertiary L1 error. A vertex L1 error is the L1 distance
between its true and reconstructed position. The percentage error is taken as a fraction of the absolute
(L1) displacement from 0.

11Contrast this to the mean squared error loss function, which was summed over all 6 coordinates
independently. The L2 distance is calculated for the secondary and tertiary vertices separately.
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Figure 7.9: The secondary and tertiary vertex errors as measured by the distance between
true and reconstructed vertices. The percentage vertex error is vertex error
divided by the true vertex displacement.

vertex error is 3.9% and the median for the tertiary vertex is 3.3%.

These measures do not always give a reasonable estimate of jet performance.

The percentage vertex errors can blow up when the absolute vertex displacement

is small. One jet had a percentage secondary vertex error of 383049%. This par-

ticular jet had a true secondary vertex at a position (3.8× 10−5,3.8× 10−5,5.4×

10−5) mm, a displacement of only 0.076 µm which is much less than our detector

resolution. This jet is drawn in figure 7.10. Its absolute secondary vertex error is

not much worse than other jets at around 290 µm (its tertiary error was 267 µm).

The percentage vertex error is clearly not a useful quantity at such scales. The jet

in figure 7.11, had secondary and tertiary vertex percentage errors of less than 0.5%

(absolute secondary error was 90 µm and tertiary was 11 µm). Considerations of
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Figure 7.10: An image of a jet showing the reconstructed vertices (cyan crosses), true ver-
tices (black squares) and primary (red), secondary (blue) and tertiary (orange)
tracks after noise was added. This jet had large vertex errors. The true sec-
ondary and primary vertices cannot be distinguished at this scale

absolute or percentage error alone do not help determine the RNN performance.

7.5.2 Vertex Identification

The previous section covered simple measures of the errors on individual vertex re-

construction in a jet. Performance varied depending on the individual jet candidate.

This is somewhat expected, the resolution uncertainties are randomly distributed as

are the vertex displacements. In this section, a vertex identification is derived to
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Figure 7.11: An image of a jet showing the reconstructed vertices (cyan crosses), true ver-
tices (black squares) and primary (red), secondary (blue) and tertiary (orange)
tracks after noise was added. This jet had small vertex errors.
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account for these effects.

The secondary and tertiary vertex errors were introduced in section 7.5.1. A

simple vertex identification method would be to place a threshold value on this error

metric. If the error is less than this value, the vertex has been correctly identified.

In principle, the vertex error must be due to the noise on the data. In the noiseless

scenario, it is expected that all vertices could be exactly identified. This could in

fact be done analytically, it reduces to finding the intersection of two lines in 3D.

When noise is added, the tracks will generally no longer intersect the jet axis. The

best analytical guess at a vertex position would be the point closest to all tracks

belonging to that vertex. The error on this guess will vary depending on the noise

added, this could be calculated using error propagation. This value can then be used

as the threshold.

Consider the case of a single track and the jet axis. The two can be represented

by equations (7.5) and (7.6). The shortest distance between the two skew lines is

given by:

dmin =

∣∣∣∣∣~rp · (~d1× ~d2)

|~d1× ~d2|

∣∣∣∣∣ (7.8)

The perigee and direction vectors are:

~rp = (d0 cosφp,d0 sinφp,z0) (7.9)

~d1 =
1
2
(1,1,

√
2) (7.10)

~d2 = (cosφ sinθ ,sinφ sinθ ,cosθ) (7.11)

where it is assumed that φp, the azimuthal angle of the perigee position, and the jet

axis are constant. The shortest distance can thus be written as a function of four of

the five track parameters: (d0,z0,φ ,θ):

dmin = |A(φ ,θ)d0 +B(φ ,θ)z0| (7.12)
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where:

A(φ ,θ) = K(φ ,θ)(cosφp(cotθ −
√

2sinφ)− sinφp(cotθ −
√

2cosφ)) (7.13)

B(φ ,θ) = K(φ ,θ)(sinφ − cosφ) (7.14)

K(φ ,θ) =
1√

(cotθ −
√

2sinφ)2 +(cotθ −
√

2cosφ)2 +(sinφ − cosφ)2
(7.15)

This is a highly non-linear function. The error propagation formula for these four

parameters is (assuming independent variables):

σ
2
dmin

= σ
2
d0

(
∂dmin

∂d0

)2

+σ
2
z0

(
∂dmin

∂ z0

)2

+σ
2
φ

(
∂dmin

∂φ

)2

+σ
2
θ

(
∂dmin

∂θ

)2
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2
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2
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)2
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2
θ

(
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(7.17)

This can be written in an analytical form. It is therefore possible to solve exactly

for the one track case. Some special note should be taken of the partial derivative

terms. These contain divergences in the domain θ ∈ [0,π], φ ∈ [0,2π], φq ∈ [0,2π].

Intuitively, these relate to the case where the track and jet axis are almost parallel

(or anti-parallel), e.g. at φ = θ = π/4. A small change in theta or phi can lead to

a large change in dmin. This has significant consequences for highly boosted jets,

where the tracks tend to align with the jet axis.

A similar analysis can be used to calculate the error for a vertex with multiple

tracks. However, this requires prior knowledge of which tracks are used to fit a

vertex. The RNN does not easily provide this information, see section 7.5.3. We

instead fix a simple threshold value using the single track case. We could consider

each term in equation 7.17 individually and take the maximum over the domain

θ ∈ [0,π], φ ∈ [0,2π], φq ∈ [0,2π]. This is explored in appendix C. Alternatively,

we can just derive the values of σdmin for the tracks in our toy jet samples.

The toy jet samples are used to calculate σdmin for each secondary and tertiary

track. This is done in the high and baseline noise samples separately. A threshold

error is then calculated using the sample maximum or median values, termed σmax
dmin

and σmedian
dmin

. The results are presented in table 7.8 for the two noise regimes:
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Threshold Baseline High Noise
σmax

dmin
110 µm 2470 µm

σmedian
dmin

5.80 µm 58.0 µm

Table 7.8: The threshold errors calculated from toy jet samples for the high noise and base-
line noise cases.

σ = σmax
dmin

σ = σmedian
dmin

n=1 n=2 n=5 n=1 n=2 n=5
fvID @ nσ 55.0% 77.2% 93.7% 2.39% 5.51% 15.4%
f j,2v @ nσ 34.6% 63.4% 88.9% 0.00% 0.145% 2.18%
f j,1v @ nσ 40.7% 27.5% 9.46% 4.78% 10.8% 26.5%
f j,0v @ nσ 24.7% 9.04% 1.62% 95.2% 89.1% 71.4%

Table 7.9: Performance of the RNN tagger for the baseline noise model using the derived
performance metric. A vertex is considered identified if it lies within a certain
threshold distance of a true vertex, given by σmax

dmin
or σ

max/median
dmin

. This threshold
can be loosened to some integer multiple n. fvID is the total fraction of vertices
identified and f j,kv the fraction of jets with k identified vertices.

The thresholds in table 7.8 are now used to determine whether a vertex is cor-

rectly identified. Consider the displacement between true and reconstructed (sec-

ondary/tertiary) vertices dvtx. If dvtx < nσ
max/median
dmin

then the vertex is considered

to have been correctly identified, where n is some integer (for instance n = 2 cor-

responds to the p-value of 0.05). By this metric, the fraction of correctly identified

secondary and tertiary vertices and the number of jets with 0, 1 or 2 correctly identi-

fied secondary vertices is shown in table 7.9 for the baseline noise model. The same

quantities are calculated for the high noise model in table 7.10.

σ = σmax
dmin

σ = σmedian
dmin

n=1 n=2 n=5 n=1 n=2 n=5
fvID @ nσ 99.8% 100.0% 100.0% 32.4% 57.0% 83.7%
f j,2v @ nσ 99.6% 99.9% 100.0% 12.5% 36.9% 73.1%
f j,1v @ nσ 0.35% 0.07% 0.005% 39.7% 40.0% 21.3%
f j,0v @ nσ 0.05% 0.015% 0% 47.8% 23.0% 5.66%

Table 7.10: Performance of the RNN tagger for the high noise model using the derived
performance metric. A vertex is identified if it lies within a certain threshold
distance of a true vertex, given by σmax

dmin
or σ

max/median
dmin

. This threshold can
be loosened to some integer multiple n. fvID is the total fraction of vertices
identified and f j,kv the fraction of jets with k identified vertices.
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The RNN performance at high noise appears to be better than the low noise

(baseline), using both maximum and median methods. This occurs because the

threshold values, σdmin , increase with the detector resolution uncertainties. We are,

in effect, comparing our performance to a simple algorithm that predicts the closest

point between the track and the jet axis. In the baseline noise case, the performance

is poor by this metric. This suggests that the detector resolution is not the limiting

factor here. The performance at high noise is, however, quite good. This is likely

due to RNN making use of extra information in the dataset, rather than simply

finding the closest point to all tracks.

This vertex identification metric is clearly imperfect. It firstly assumes a single

track and the jet axis. It is also estimated from the sample distribution, not on an

individual jet basis. Some interesting observations were nevertheless drawn.

7.5.3 Impact of Individual Tracks

An important aspect of ATLAS vertexing is the association of tracks to a vertex.

This is used to assess the validity of the vertex, and further to calculate output

variables for high-level taggers. Associating tracks to vertices is not straightforward

with the RNN. The RNN uses all of the tracks to fit the vertex positions, the origin

of a single track is unknown. To this end, the impact of individual tracks on the

RNN prediction was studied.

If an individual track belongs to the secondary or tertiary vertex, removing

it would increase the reconstruction error of that vertex. As such the RNN was

run on the same jet repeatedly removing one track at a time. The impact of the

removed track on the absolute and percentage error of the vertices (as measured by

the distance between reconstructed and true) was plotted. The plot for the good jet

from figure 7.11 is shown in figure 7.12.

From inspection of these plots, it is difficult to identify which tracks belong to

the secondary or tertiary vertex. The truth information from the jet tells us the first

3 tracks are tertiary tracks, the fourth is a secondary track, and the rest are primary

tracks. It is perhaps possible to identify the primary vertex tracks, these are the ones

with the lowest impact and smallest value of t1 (remember these tracks are ordered
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Figure 7.12: The change in the secondary and tertiary vertex error (in mm) when a track is
removed from the jet. The removed track is indexed by its position in the jet
after ordering by decreasing t1, e.g. removed track 1 has the highest value t1.

by decreasing t1). However, some of the secondary/tertiary vertex tracks also have

a fairly small impact. The 3rd track in this jet seems to be of particular importance

for both vertices, despite this being a tertiary vertex track it greatly impacts the

secondary vertex prediction. These plots show that information from all the tracks

is being used by the RNN in vertex fitting, regardless of their origin.

A second measure of the track’s impact is to plot the evolution of the vertex

prediction as each track is added into the RNN. This was done by running the RNN

multiple times, first on a null set, then with the first track added in, then the first

and second tracks, and so on until all tracks are back in. The error is plotted as

a function of the number of tracks added back. The plot for the same good jet as

above is shown in figure 7.13.

It is again difficult to determine which tracks belong to the secondary or ter-

tiary vertex. Some insight into the RNN working may be drawn as we know that

tracks 1-3 belong to the tertiary vertex, track 4 is the secondary vertex track and the

rest are primary tracks. The error only significantly drops when tracks from differ-

ent vertices are present. The RNN seems to use the differences between tertiary,
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Figure 7.13: The evolution of the error in the secondary and tertiary vertex prediction as
more tracks are seen. The value at N of tracks added = 0 is calculated on a
jet with all null tracks. The value at N=k is calculated on a jet with the first k
tracks (ordered by decreasing t1) only, the rest are null.

secondary and primary tracks in its calculation.

7.6 Outlook
An RNN algorithm was implemented to predict the positions of secondary and ter-

tiary vertices in b-jets. The RNN performance was qualitatively inspected using jet

drawings such as figures 7.11 and 7.10. A quantitative measure of performance was

attempted using error propagation methods to set a threshold for the expected ver-

tex error, the results of this analysis are in section 7.5.2. There remain several key

disadvantages to the RNN method. It is not immediately comparable to the JetFitter

algorithm as it does not associate tracks to vertices. Evaluating its performance is

not straightforward as no uncertainty on the predicted values is given by the RNN.

The RNN based vertex fitting method is therefore likely not a direct replacement

for the current Kalman Filter based algorithms. Nevertheless, some interesting ob-

servations can be made.

Difficulties arose in evaluating performance. The vertex position errors (the

secondary and tertiary vertex errors) were analysed in section 7.5.1, however these
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were not very informative as they do not account for the noise added to the tracks.

In section 7.5.2, an error propagation method was used to determine the reconstruc-

tion performance accounting for this noise. Multiple threshold values for vertex

error, if reconstructed vertex had an error below this threshold it was considered to

be correctly identified. The results vary significantly depending on which threshold

value is used. But all of them shows that the RNN is robust to noise: the fraction

of vertices correctly identified is higher in the high noise sample than the low noise

case with every single threshold metric. The threshold metrics predicted from error

propagation all grow faster with noise than the actual errors in the vertex predic-

tions of the RNN. There is no clear choice as to which metric to use, as the method

makes several assumptions and simplifications in determining them. Finding a bet-

ter performance metric would be key to comparing the RNN to current vertex fitting

methods.

Secondary vertex fitting at ATLAS is not generally interested in the exact po-

sition of the vertex, but rather whether the vertex is viable or not. In b-tagging, the

presence of a secondary vertex is the main discriminating condition, not necessarily

its exact position. To asses this, tracks are associated to the secondary vertex in

the ATLAS algorithms such as JetFitter. The validity of this association determines

the validity of the vertex. Track association with the RNN was explored in sec-

tion 7.5.3. The RNN method does not currently offer a simple method of directly

associating tracks to a vertex, so no direct comparison is possible. Some further ex-

periments could be carried out to achieve this association. One method could be to

calculate some measure of the compatibility between tracks and a vertex predicted

by the RNN. This could use a χ2 method, analogous to the track-vertex compatibil-

ity calculations in JetFitter (see section 6.4.2). But this is not straightforward as the

RNN does not return a covariance matrix for the fit vertices. Other methods based

solely on the RNN might also be explored, such as Shapley values [119].

Several experiments were performed to optimise the RNN tagger performance

(as measured by validation loss). There remain several more that could be tried.

Firstly, an extensive hyperparameter tuning was not carried out. Another experiment
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could be to try adding the tracks in reverse order to the end of the sequence, this

is modelled on the Kalman filter’s smoothing procedure, which steps backwards

through the track sequence after its initial fit. By allowing the RNN to see the tracks

again, it might perform better. The vertex fitting problem could also be constrained

to a 1D problem. This could be done in the same way as JetFitter, by constraining

the vertices to lie on the jet axis. The vertex distance along this axis is then fit.

The RNN method could also be combined with a Kalman Filter method, this might

allow for additional use of the domain knowledge provided by the Kalman Filter.

This might be done in several ways, for instance using KF-LSTM cells such as in

[114], or by using the RNN to initialise the decay topology before passing to the

RNN. Finally, experiments using all different jet flavours were not performed. It

would be of interest to see how the RNN works in this case, and whether it offers

good discrimination between b, c and light-jets.



Chapter 8

Analysis

8.1 Physics Motivation
The SM faces several challenges which motivate research into new physics. Issues

such as the existence of dark matter and energy motivate the search for new particles

and interactions. The current Higgs sector suffers from the hierarchy problem and

excessive fine-tuning. Much of ATLAS analysis work is therefore dedicated to

finding new physics.

Heavy versions of the Higgs boson are predicted in many BSM models, such

as supersymmetric models. A generic heavy Higgs (GHH) model was covered in

section 2.2.2.2. The dim-4 and 6 couplings to the vector bosons were derived in

equations (2.26) - (2.29) and (2.35) - (2.36). The couplings to fermions were not

covered, channels involving these are not searched for in this work. This is moti-

vated by the lack of any observations in searches requiring gluon-gluon fusion (ggF)

production1 of the GHH, for example in [120, 121, 122, 123]. As such, any generic

heavy Higgs is assumed to have small couplings to the fermion sector.

The SM Higgs is produced at the LHC predominantly through ggF. For the

fermiphobic heavy Higgs under investigation this process is disfavoured. The next

two most prominent production mechanisms are vector-boson fusion (VBF) and

associated vector boson Higgs production (VH) [30]. Of the two, the cross section

of VBF is about an order of magnitude higher if only dim-4 terms are considered.

1This involves a fermion loop, and thus the GHH-fermion coupling.
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Figure 8.1: The leading order cross sections of different production methods and final states
as a function of heavy Higgs mass. Two models are compared, dim4 has ρH =
0.05, fW = fWW = 0 and dim4+6 has ρH = 0.05, fW = fWW = 50. (a) shows
the cross-sections for the VBF and VH 2` processes (pp → H j j → `` j j j j
and pp→ V H → `` j j j j ). (b) compares the VBF 2` process and the VBF 4`
process (pp→ H j j→ 4`+ j j) [31].

When dim-6 operators are included, the VH and VBF production cross-sections are

both enhanced. VH becomes the predominant mechanism, as shown in figure 8.1.

Final states containing leptons are of particular interest to suppress SM back-

grounds. Single lepton channels, studied in more detail in [124] were not considered

as they have low sensitivity due to large SM backgrounds (W+jets and tt̄) [31]. This

analysis instead requires two or more leptons. For a single Higgs produced by VBF,

the two decay modes with best sensitivity are: H→ ZZ→ `` j j and H→ ZZ→ 4`.

The first of these has large SM backgrounds and the second does not have a large

enough yield in the high momentum region to be detected [31]. For these reasons,

VBF production mechanisms were not considered. This is further justified if dim-6

operators are present, as VH will have a large cross-section.

The VH final states, in the fermiphobic assumption, follow from the combi-
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nations of the three vector bosons: W±ZZ, W±W±W∓, ZW±W∓ and ZZZ, where

the last two bosons are produced by the Higgs. The W and Z can decay hadroni-

cally (reconstructed as two jets), or leptonically2. Final states with τ leptons are not

searched for as these decay rapidly, and do not offer a clean signal in the ATLAS

detector. The key branching ratios are [5]:

Br(W→ eνe)≈ Br(W→ µνµ)≈ 10% (8.1)

Br(W→ hadrons)≈ 70% (8.2)

Br(Z→ e+e−)≈ Br(Z→ µ
+

µ
−)≈ 3.5% (8.3)

Br(Z→ hadrons)≈ 65% (8.4)

Final states with more than one leptonically decaying Z will have low signal yields

so are not considered. The WH→W±W±W∓→ 3`3ν final state, with three semi-

leptonic W decays, was similarly not considered. The remaining VH final states,

containing at least two leptons, were studied in detail in [31]:

• V H → `+`− j j j j: The OS2` (opposite-sign) channel. The two leptons origi-

nate from a Z decay and have the same flavour.

• V H→ `±ν`+`− j j: The 3` channel. One of the lepton pairs originated in a Z

decay.

• V H → `±ν`±ν j j: The SS2` (same-sign) channel. This is formed from the

triboson production process WH→W±W±W∓.

The expected signal and background yields with 300 fb−1 of LHC data in the signal

regions of these channels are quoted in table 8.1. The SS2` channel is the most sen-

sitive due to the SM background process being very rare in proton proton collisions

[31]. The Feynman diagram of this process is shown in figure 8.2.

2Ignoring the Z→ νν decay.
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Signal Z+QCD jets Other
OS2` channel 4.0 41.6 3.5

3` channel 3.6 7.2 1.3
SS2` channel 11.4 4.1 3.1

Table 8.1: Expected signal and background yields in the signal regions of the three studied
channels with 300 fb−1 [31].

Figure 8.2: Feynman diagram of the SS2` process for a generic heavy Higgs.

8.2 Analysis Overview

8.2.1 Strategy

The final state studied has two same-sign leptons, two neutrinos and a hadronically

decaying W . The H mass cannot be reconstructed due to the neutrinos. An effective

mass observable, Me f f , is instead used. This is defined in equations (8.6) and (8.7).

MC simulations are used to create samples for the studied signals and all relevant

backgrounds. These are summarized in section 8.3.

To cover as much kinematic space as possible, the signal will fall into two

separate categories. These are defined by the properties of the hadronically decaying

W . In the low momentum region, the products of this boson can be resolved into

two small-R jets, giving the resolved category. In the high momentum region, or

boosted category, a single large-R jet is instead reconstructed. The two categories

are orthogonal, if the leading large-R jet in an event can successfully pass object

selections this event can only enter the boosted category. The two same-sign leptons
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can be muons or electrons leading to four sub-channels termed ee, eµ , µe and µµ .

The lepton listed first has the larger pT, and is termed the leading lepton.

The basic object definitions used are summarized in section 8.4. The final sig-

nal regions were selected using an optimization procedure summarized in section

8.5. The main backgrounds of this analysis are described in section 8.6. The back-

grounds are estimated using a variety of data-driven techniques and through the use

of the simulated background samples. Control regions are defined to fit the nor-

malization of key simulated background processes to data. A validation region is

used to evaluate the background estimations as described in section 8.7. Systematic

uncertainties and their treatment are covered in section 8.8. A statistical framework

is used to test for the presence of a signal. This is described in section 8.9 and the

results are presented in section 8.10.

8.2.2 Personal Contributions

The analysis work presented here is a product of the collaborative work of all the

members of the GHH analysis team, and builds on the work of the wider ATLAS

collaboration. I will therefore briefly bring attention to the parts of the analysis that

are my own work.

• Experimental Systematics: I worked on the implementation, validation and

documentation of the experimental systematics in various parts of the analysis

framework.

• N-tuple production: I worked on the development of the ntuplereader ghh

framework and was responsible for ntuple production. I had a particular focus

on implementing the systematic variations in this framework. I also helped

with the application of the W tagger scale factors.

• Variable Plots: I worked within the plotting framework to add the systematic

variations and produce the kinematic plots in analysis regions.

• The CxAOD Framework: I implemented, maintained and tested various as-

pects of the CxAOD Framework. I worked on various aspects such as: sys-

tematic variations, b-tagging (upgrade from MV2 to DL1), implementing the
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W tagger (scale factors and systematics), the V gamma overlap removal tool

and upgrading the framework to new Analysis Base.

• The Statistical Framework (HistFitter [125]): I worked on the implementa-

tion of systematics within our statistical framework, the production of pull

and ranking plots to validate systematics and the formatting of these plots.

I produced the upper limit results for the final signal grid and created plots

to summarize these results. I also produced the exclusion contour plots. In

addition to these responsibilities, I helped with the testing and running of the

framework.

• Documentation: I was part of the team writing the internal note. I am the

main contributor to the introduction and experimental systematics sections

and as a native speaker helped edit the other sections.

8.3 Data and Simulated Samples
The analysis is performed on data samples gathered at the ATLAS detector during

run 2 of the LHC (2015-2018). The data was collected during stable run conditions.

The total integrated luminosity was 139fb−1. Simulated signal and background

samples are also used, these are described in more detail in the following sections.

The ATLAS derivations framework is used to produce DxAOD format ntuples for

the analysis, starting from the data or simulation xAODs. This is done by the AT-

LAS Standard Model group, more details can be found in chapter 4. These DxAODs

are then further processed using an analysis specific version of the CxAODFrame-

work. This gives the final ntuples used by the analysis. More detail on the analysis

CxAODFramework is given in appendix D.

8.3.1 Simulated Signal Samples

The analysis considers the generic heavy Higgs model described in section 2.2.2.2.

A range of parameters for the Higgs mass, mH ∈ [300,2000] GeV, and coupling

parameters fW ∈ [−2510,2480] and fWW ∈ [−15000,15000] are explored. These

ranges are selected to span the expected exclusion limits determined from simula-
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tion. No sensitivity is expected at higher mass values. These are defined in equa-

tions (2.35)-(2.36). The coupling parameters fB and fBB are set to 0 to neglect

higher order terms. The scaling factors from equations (2.26)-(2.29) are fixed to

ρh = 1 and ρH = 0.05. This is because the lighter Higgs must correspond to the

boson already measured at the LHC, and ρH +ρh ≈ 1. The full list of samples can

be found in appendix E.

The samples are produced using MADGRAPH5 aMC@NLO [126] and FEYN-

RULES [127] interfaced to PYTHIA 8.244 [10] for parton showering. Leading Order

(LO) processes only are considered for the hard scatter corrected with K-factors.

The K-factor, the ratio of the next-to-leading order (NLO) and LO cross-sections,

is calculated at production level using the pp→V H process. It is measured to have

a value of around 1.3.

8.3.2 Simulated Background Samples

The background samples are created using MC simulations and their detector re-

sponse modelled using GEANT 4. The background sample types and the generator

used to produce them are summarized in table 8.2. In all samples not generated

with SHERPA, PYTHIA 8 is used for parton showering. Each background process

can require multiple generated samples to be fully described. More detail on the

background simulation can be found in the support note for this analysis [128].

8.4 Object Definitions and Selections
The objects reconstructed in the ATLAS detector were described in detail in chap-

ter 4. This section describes the specific object criteria used in the heavy Higgs

analysis.

8.4.1 Primary Vertex and pile-up

The primary vertex in an event is defined as the vertex with the largest ∑ p2
T of asso-

ciated tracks. Events in this analysis must have a primary vertex with at least three

associated tracks with pT > 0.4 GeV. Pile-up conditions at the LHC during run 2

differ for data gathered in 2015/16, 2017 and 2018. The MC simulated samples

are thus generated three times to match each pile-up profile (these are termed the
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Physics process ME Generator PS Generator
WZ→ ```ν SHERPA 2.2.2 SHERPA 2.2.2
WZ→ ```ν j j SHERPA 2.2.2 SHERPA 2.2.2
WZ→ `ννν SHERPA 2.2.2 SHERPA 2.2.2
ZZ→ ```` SHERPA 2.2.2 SHERPA 2.2.2
ZZ→ ```` j j SHERPA 2.2.2 SHERPA 2.2.2
tt̄Z→ ``+X MADGRAPH5 aMC@NLO PYTHIA 8
tt̄W → `ν +X MADGRAPH5 aMC@NLO PYTHIA 8
tZ MADGRAPH5 aMC@NLO PYTHIA 8
WWZ→ ````νν SHERPA 2.2.2 SHERPA 2.2.2
ZZZ→ ````νν SHERPA 2.2.2 SHERPA 2.2.2
same-sign WW (ssWW) SHERPA 2.2.2 SHERPA 2.2.2
SingleTop POWHEG-BOX PYTHIA 8
WWW → ``+X SHERPA 2.2.2 SHERPA 2.2.2
WH→WWW POWHEG-BOX PYTHIA 8
WWW → ``` SHERPA 2.2.2 SHERPA 2.2.2
tt̄ POWHEG-BOX PYTHIA 8
Z + j SHERPA 2.2.1 SHERPA 2.2.1
W + j SHERPA 2.2.1 SHERPA 2.2.1
Wγ SHERPA 2.2.2 SHERPA 2.2.2
Zγ SHERPA 2.2.2 SHERPA 2.2.2

Table 8.2: The simulated background physics processes used in the analysis and the Matrix
Element (ME) and Parton Shower (PS) generators used for each.

MC16a, MC16d and MC16e campaigns respectively). Pile-up reweighting is used

to match the pile-up profile of samples to data if these are different, for instance

when the samples were generated before data-taking.

8.4.2 Triggers

ATLAS triggers were described in more detail in section 3.2.5. The triggers used in

this analysis are single lepton triggers. Dilepton triggers were considered, but the

gain in signal efficiency was small. Instead, a combination of single lepton trigger

and a requirement on the leading pT > 27 GeV and sub-leading lepton pT > 20 GeV

can sufficiently decrease fake lepton rates. Events must have at least one electron

or muon matching a trigger object. The trigger object’s pT must be at least 1 GeV

larger than the trigger threshold. This ensures correctly calibrated objects are always

used. The trigger threshold negates the need for pre-scaling and is set to 26 GeV.

Scale factors are used to correct the trigger efficiency in MC simulated samples to



8.4. Object Definitions and Selections 149

data. For more detail on the analysis triggers see appendix D.

8.4.3 Electrons

Leptons are important objects in this analysis, as such good quality signal electrons

are needed. The signal electron definition is shown in table 4.1 and again in table

8.3. For more detail on the definitions, see section 4.1.4. Other “electron” objects

are also defined in this analysis to be used for background estimation, these are the

veto, anti-IBL and antiID electrons. Veto electrons are used to veto events with

more than two leptons. An event requires two signal leptons and no veto leptons.

AntiID electrons are designed to contain more non-prompt electrons. These are

used in the estimation of backgrounds from jets reconstructed as electrons. The an-

tiID and signal electron collections are defined to be orthogonal. This is required as

these electrons are used to define orthogonal control regions in section 8.6. Anti-

IBL electrons are “photon-like” and are used in the estimation of backgrounds from

photons mis-reconstructed as electrons. They require no hits in the IBL. This en-

sures orthogonality with signal and antiID electrons.

Summary of all electrons definitions
Signal Anti-ID Anti-IBL Veto

Reconstructed electron candidate
pT > 20 GeV > 7 GeV
|η | |η |< 1.37 & 1.52 < |η |< 2.47 < 2.47

Identification TightLH MediumLH TightLH no IBL LooseLH
d0

σd0
< 5 −

|z0× sinθ | < 0.5 mm −
Object quality author == 1, addAmbiguity ≤ 0 − no BADCLUSTER

Isolation PLVTight − PLVTight −
ECIDS WP Loose Loose Loose −

Further not Signal

Table 8.3: Summary of all the electron definitions used in this work. AntiID electrons must
not pass the signal electron definitions.

.

8.4.4 Muons

Signal Muons are required to be high quality, these were described in table 4.2.

More information on the requirements is found in section 4.1.5. Veto and AntiID
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muons are also defined, analogously to the veto and AntiID electrons. All muon

definitions are summarized in table 8.4.

Summary of all muon definitions
Signal Anti-ID Veto
Reconstructed muon candidate

pT > 20 GeV > 4.5 GeV
|η | < 2.5 < 2.7
d0

σd0
< 3 < 10 −

|z0× sinθ | < 0.5 mm −
Object quality medium loose

Isolation PLVTight !PLVTight −
Further not Signal

Table 8.4: Summary of all the muon definitions used in this work. AntiID muons must not
pass the signal muon definitions.

.

8.4.5 Jets

The analysis strategy looks at boosted and resolved kinematic regions. This requires

the use of both small-R and large-R jets. The small-R jets are referred to using

the symbol j, whilst large-R jets are represented as J. The jet definitions used

are summarized in table 8.5. The b-tagging algorithm DL1r is used with its 85%

working point as our signal region is looking for the products of a W boson decay,

thus b-jets are vetoed. The W tagger is used on large-R jets. For more detail on the

terms used see sections 4.1.2 and 4.1.3.

Summary of all jet definitions
small-R jet large-R jet

Jet collection AntiKt4EMPFlow AntiKt10LCTopoTrimmedPtFrac5SmallR20Jets
pT > 20 GeV > 200 GeV
|η | < 2.5 < 2.0

mass − (50,200 GeV)

W/Z-tagger − 80% WP
JVT Medium −

b-tagging DL1r @ 85% −

Table 8.5: Summary of the jet definitions used in this work.
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8.4.6 Missing Transverse Momentum

The missing transverse momentum, sometimes referred to as MET or Emiss
T , is the

the negative vectorial sum of all reconstructed objects (see section 4.1.6). The veto

muon and leptons defined in tables 8.3 and 8.4 are used in this calculation, along-

side the jets defined in table 8.5. The “heavy-flavour” overlap removal algorithm

described in section 4.1.7 is applied to these objects.

8.5 Event Selection and Optimization
The SS2` channel is characterised by the V H → `±ν`±νJ( j j) decay. The signal

events are therefore required to have 2 same-sign leptons, hadronic jets (either two

reconstructed small-R jets, j, or a single large-R jet J) and Emiss
T . The two hadronic

jets must be consistent with a W decay, this is done using mass cuts in the resolved

case and the boosted W tagger in the boosted case. Additional cuts are used to re-

duce backgrounds. This includes a b-jet veto to reduce tt̄ background and a veto on

events with more than two leptons to reduce background from WZ processes. Our

signal is expected to have boosted leptons, hence two cuts on the leading lepton pT

and combined lepton invariant mass (M``) are investigated. These can reduce back-

grounds from Z + jets. The selections are optimized using a significance metric:

σ =

√
∑

i∈bins
2((Si +Bi) ln(1+

Si

Bi
)−Si (8.5)

S and B are the number of signal and background events in the effective mass dis-

tribution estimated from MC simulation. The following cuts were optimized:

• W tagger working point: The 80% working point is selected as it suppresses

SM background.

• M``: M`` > 100 GeV chosen to preserve most signals whilst reducing Z+jets

background

• Leading lepton pT: pT(`1)> 27 GeV. Increasing this did not improve signif-

icance, likely due to the M`` cut. The correlation of this cut with the M`` cut
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was investigated but did not change the optimal value.

• Emiss
T : The optimization procedure suggests Emiss

T > 80 GeV for the boosted

category and Emiss
T > 60 GeV for the resolved category

• Small-R jet pT: A 20 GeV cut was found to work best for both the leading

and sub-leading small-R jet pT.

• Invariant mass of the two leading small-R jets, M j j, in the resolved category.

The optimal cut was 50 GeV < M j j < 120 GeV (a window cut around the W

mass).

The optimization procedure scans each variable one at a time. Thus the optimization

of later variables is dependent on the ones coming before. A number of signal

samples are used in this procedure, scanning a range of heavy Higgs mass, fW and

fWW values. The results are summarized in table 8.6.

Table 8.6: The optimized selection criteria for the SS2` signal region

SS2` (l±1 l±2 = e±e±, e±µ±, µ±e±, µ±µ±)
Boosted Resolved

Two same-sign leptons with pT > (27)20 GeV
3rd lepton veto

no b-jet @ 85% DL1r
Mll > 100 GeV

Boosted Category !Boosted Category
Emiss

T > 80 GeV Emiss
T > 60 GeV

NJ ≥ 1 N j ≥ 2
pT (J1)> 200 GeV pT ( j1), pT ( j2)> 20 GeV

J1 @ 80% W tagger M j j ∈ (50,110) GeV

The SS2l region does not allow for direct reconstruction of the heavy Higgs

mass. The best discriminating variable is instead the effective mass, Me f f :

boosted category: ∑
i

pT(`i)+ pT(J1)+Emiss
T (8.6)

resolved category: ∑
i

pT(`i)+ pT( j1)+ pT( j2)+Emiss
T (8.7)
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where pT( j1(2)) is the pT of the leading(sub-leading) small-R jet, pT(`1(2)) is for

the leading(sub-leading) leptons and pT(J1) is the pT of the leading large-R jet.

8.6 Background Estimation
The backgrounds of this analysis are all SM processes which mimic the SS2l sig-

nature (two same-sign leptons, two jets and Emiss
T ). This section summarizes how

each background process is controlled for. There are six main categories:

• The non-prompt background: Hadronic jets can be mis-reconstructed as lep-

tons due to non-prompt leptons produced in the jet. If one or two of these are

mistaken for signal leptons then many different processes cause a fake signal,

including V+jets, ttbar, single top or QCD multijet.

• The charge mis-identification background (misID): A prompt electron may

radiate a photon (bremsstrahlung). At high momentum, where tracks are al-

most straight, this can cause mis-reconstruction of the track curvature and

thus charge misID. Equally, the photon can pair-produce e+e−, the original

electron could be mistaken for the emitted positron. This background mainly

comes from ttbar, W±W∓+ jets and Z/γ + jets processes.

• The photon fake process: In V γ + jets processes the photon can be mis-

reconstructed as an electron. The vector boson decay provides the second

lepton.

• The WZ background: In the WZ+ jets process, one of the leptons from the Z

decay may not be reconstructed (or in ZZ + jets if two leptons are missing).

• Double parton scattering (DPS): Collisions between pairs of partons could

produce Wjets+W/Zjets or W(W/Z) dijet processes. This background was

found to be negligible however.

• The same-sign W boson (ssWW) background. In the SM, this is due to same-

sign W vector boson scattering. This background has QCD and EW compo-

nents.
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Data-driven techniques are used to estimate the non-prompt background as de-

scribed in section 8.6.1, the charge misID background as described in 8.6.2 and

the photon fake background as described in 8.6.3. Two control regions are used

to establish normalization factors on the MC estimated backgrounds for WZ and

ssWW.

8.6.1 Non-prompt Leptons

A non-prompt background fake rate is estimated in the signal region using an ABCD

method (figure 8.3), This is a fully data-driven technique, MC simulation doesn’t

accurately model this process thus cannot be used. The non-isolated antiID leptons

are used as an estimate of the non-prompt leptons. Non-prompt electron and muon

inclusive fake rates are derived separately using the ee and µµ sub-channels. This

is to avoid the ambiguity over deciding which lepton is the fake in the eµ and µe

subchannels. Fake rates binned by pT and |η | are also derived.

Figure 8.3: The ABCD method for the non-prompt fake background estimation. The fake
factor is derived using the ratio of events in B and D, then applied to C to obtain
the number of fake events in A.

The ABCD method assumes that the ratio of fake leptons in the region A to

region C is equal to the ratio from region B to region D. Each region is defined to
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be orthogonal34. The region A is the signal region. The fake rate/factor is estimated

using B and D, then applied to the region C to obtain the non-prompt background in

region A. The regions A and C differ only by the second lepton, being either a signal

(ID) or antiID lepton. The regions B and D differ from A and C by the requirement

of a b-tagged jet to ensure orthogonality, and from each other by the ID requirement

of the second lepton. Some other restrictions in B and D are loosened or removed

entirely to increase the statistics:

• The W-tagger requirement and M j j cut are removed. For this method, we do

not separate into boosted and resolved categories.

• M`` cut is removed in all sub-channels, with the exception of the ee sub-

channel where a cut is kept to remove the Z+jets background: |Mee −

90 GeV|> 10 GeV.

An inclusive fake rate with respect to the ABCD method is derived separately for

electrons and muons using the ee and µµ sub-channels. For the eµ and µe signal

region sub-channels, the non-prompt background is estimated by applying either the

inclusive electron or muon fake rate depending on the flavour of the antiID lepton in

the eµ and µe region B sub-channel. Electron and muon fake rates are additionally

calculated binned by pT and |η | by assuming the sub-leading lepton in the region

B is fake. This is again done using the ee sub-channel for electrons but for muons

the eµ sub-channel is used instead as studies with truth information show the sub-

leading fake assumption holds better. The estimation for the remaining two sub-

channels is done as before by use of the antiID lepton flavour. Non-prompt leptons

originate mainly in jets due to photon conversions or heavy hadron decays. Photon

conversions would be expected to increase with |η | as more detector material is

present whilst heavy hadron decays will generally give a more energetic (higher

pT) lepton. It is found that a pT binning is best for the electron fake factor and

an η binning for the muon fake factor. This performance is checked by applying

3No two regions share the same event.
4It is also implicitly assumed the cuts applied to ensure orthogonality are uncorrelated. Any bias

resulting from this seems small as there is good agreement in the validation plots in section 8.7.
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the derived fake factors to the control region B. The data/MC agreement is plotted

in the region B using the non-prompt fake factor to estimate the background. The

other background source are from the MC samples of processes that produce prompt

leptons (ttV, WZ, ZZ, etc.) and the charge flip background (see section 8.6.2). As

the non-prompt factor is derived using B and D, the normalizations of the data and

MC will agree by construction but not the shape. The shape in the data/MC plot

thus serves as a validation of the method. A good shape agreement was seen for

all kinematic distributions in this region B, for example in figures 8.4 and 8.5. The

inclusive, pT binned and |η | binned fake rates are shown in tables ?? and 8.8.

pT bin electron muon
Inclusive 0.048±0.006 0.018±0.001

20 GeV < pT < 30 GeV 0.027±0.005 0.015±0.002
30 GeV < pT < 40 GeV 0.051±0.012 0.019±0.004

pT > 40 GeV 0.139±0.034 0.020±0.005

Table 8.7: The inclusive and pT binned non-prompt fake rates for electrons and muons with
statistical uncertainty included.

|η | bin electron muon
Inclusive 0.048±0.006 0.018±0.001

0 < |η |< 0.5 0.049±0.011 0.024±0.004
0.5 < |η |< 1.5 0.046±0.009 0.016±0.003
|η |> 1.5 0.050±0.014 0.011±0.003

Table 8.8: The inclusive and |η | binned non-prompt fake rates for electrons and muons
with statistical uncertainty included.

The composition of the non-prompt background is estimated from the MC sim-

ulations. There is reasonable agreement between the MC and the data in the plots of

kinematic variables5, hence some estimates can be made. The derived background

appears to be mainly composed of non-prompt leptons from heavy hadron decays,

e.g. tt̄ or W + b/c jet events. In channels with electrons, the contribution from W

+ light jet events is fairly large. No additional uncertainty is considered to account

for this, as it would be much smaller than the statistical uncertainty on the derived

5Plots are not yet public.



8.6. Background Estimation 157

Figure 8.4: The data/MC agreement in the control region B ee sub-channel. CF refers
to the charge flip background. The background from non-prompt leptons is
estimated using the pT binned non-prompt electron fake factor applied to the
control region D (ee sub-channel). These four distributions show the typical
agreement in all the kinematic plots.

non-prompt background. Furthermore, the good agreement in the validation region

in figures 8.12 and 8.13 in section 8.7 suggests this assumption has not caused any

issues. The non-prompt background is a relatively small contributor, thus any addi-

tional bias remains small.

8.6.2 Charge mis-identification

The charge mid-identification (misID) background stems from electrons that pro-

duce a photon through bremsstrahlung and track mis-reconstruction uncertainties at

high pT. The charge misID of muons is negligible in the regions considered by this

analysis. The charge misID rate for electrons can be estimated using a data sample

enriched in Z→ e+e− events (known as the Zee control region). The region is split

between events where the electrons have the same sign (SS) or opposite sign (OS).

The region is further split into a mass window region and a sideband region. The

selections are the same as for the ee signal region in table 8.6 but with the following

changes:
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Figure 8.5: The data/MC agreement in the control region B eµ sub-channel. CF refers
to the charge flip background. The background from non-prompt leptons is
estimated using the |η | binned non-prompt muon fake factor applied to the
control region D (eµ sub-channel). These four distributions show the typical
agreement in all the kinematic plots.

• Z mass window region: 75 GeV < Mee < 105 GeV

• Z mass sideband region: 60 GeV < Mee < 75 GeV or 105 GeV < Mee <

120 GeV

• Jet requirements are removed.

The sideband regions are used to roughly estimate the non-Z background events.

It is assumed that the data yield in the sideband regions is entirely from all non-Z

SM backgrounds. As the sidebands have the same 30 GeV mass range, this yield

is then roughly equal to the non-Z background in the Z mass window region. We

thus can obtain the number of Z events in the mass window region by subtracting

the data yield in the sideband regions. This is done for both SS and OS regions and

is validated using MC simulation events. The following likelihood fit procedure is

used to estimate the charge misID rates as a function of the electron pT and η .
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The charge flip rates of two electrons are defined as εi and ε j. The probability

distribution of observing Nss same-sign ee events is a Poisson distribution:

P(Nss|εi,ε j,N
exp
os+ss) =

(Nexp
ss )Nsse−Nexp

ss

Nss!
, (8.8)

where the expected number of same-sign events, Nexp
ss , is defined as the probability

that exactly one electron has its charge flipped multiplied by the expected total

number of Z→ ee events (of any sign combination), Nobs
os+ss:

Nexp
ss = Nexp

os+ss[(1− εi)ε j +(1− ε j)εi], (8.9)

The number of same-sign and opposite-sign events are then observed in 4 pT and

6 η regions, for a total of 24 separate bins. The likelihood function can then be

defined:

L(εεε) = ∏
i

∏
j

P(Nobs
ss,i j|εi,ε j,Nobs

ss+os,i j), (8.10)

where i( j) corresponds to the i( j)-th electron pT × η bin. Nobs
ss,i j is the number

of observed same-sign events with the leading electron in the i-th bin and sub-

leading electron in the j-th bin. The charge flip rates, εi for each bin are obtained

by minimising the negative log-likelihood. The obtained rates are then used to

estimate the charge flip background. The charge flip rates are found to be generally

well below 0.1% in most of the pT×η regions, except for the highest bin (2.3 <

|η | < 2.5 and 130 < pT < 1000 GeV) where it is around 2%. The estimate charge

flip background yields in the signal regions are shown in table 8.9.

Boosted Resolved
Charge Flip 0.43 8.56

All Backgrounds 29.28 166.30

Table 8.9: The charge flip background yields in the inclusive boosted and resolved signal
regions.

A Z mass validation region is used to evaluate the performance of the charge

flip background estimation. This uses all the ee signal region cuts except it removes

the cut on Emiss
T and requires the dilepton mass:
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• 80 GeV < Mee < 100 GeV

It is thus orthogonal to the signal region. The charge flip background in this region

is estimated using the derived charge misID rates, with all other backgrounds esti-

mated from MC simulation. Good agreement between the predicted backgrounds

and data was seen in plots of the data/MC distributions in the Z mass validation

region, as shown in figure 8.6.

Figure 8.6: A few kinematic distributions in the Z mass validation region showing typical
agreement. The charge flip contribution is estimated using the charge flip rate
applied to the data in the opposite-sign lepton region instead of using the Z+jets
MC. Only statistical uncertainties are shown.

8.6.3 Fake Leptons from Photons

Prompt photons, such as those produced in V γ events, can be mis-reconstructed

as electrons. This can happen when the photon converts to e+e− and one of these

leptons is not reconstructed. When combined with the lepton or leptons from the V

decay, the event will enter the signal region.

The photon fake rate, i.e. photon mis-reconstructed as electron, is estimated

using another ABCD method similar to section 8.6.1. In this instance, the “A”

(signal region) and “C” (termed the Wγ CR) regions are differentiated by the sub-
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leading lepton being a signal or anti-IBL electron. The “B” ( Zγ → `ID`ID`ID CR)

and “D” (Zγ → `ID`ID`Anti−IBL CR) regions differ from “A” and “C” respectively

by containing a third lepton. This is summarized in figure 8.7. Some additional

changes are made for the Zγ CR definitions:

• Two opposite-sign signal muons and an additional signal or anti-IBL electron.

Only the µ±µ±e∓ sub-channel is used to calculate the photon fake rate. This

is done to reduce the influence of charge-flip backgrounds.

• Veto events with more than 3 leptons (using veto leptons).

• 80 GeV<M``` < 100 GeV, this replaces the M`` cut. This is needed to ensure

orthogonality with the WZ control region in section 8.6.4.

Figure 8.7: The ABCD method for the photon conversion fake background estimation. The
fake factor is derived using the ratio of events in B and D, then applied to C to
obtain the number of fake events in A.

The photon fake rate is then calculated analogously to the non-prompt fake

rate, using the ratio of yield in the two Zγ CRs and applying this to the data yield

in the Wγ CR. The method is again validated using a closure test: plotting data/MC

comparisons in the Zγ → `ID`ID`ID CR and replacing the Zγ MC sample with the
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estimation made from the photon fake rate applied to the Zγ → `ID`ID`Anti−IBL

CR. The data/MC plots using the photon conversion estimated background showed

good shape agreement, see figure 8.8. To produce these plots, the VGammaORTool

was implemented in our CxAOD framework to remove overlapping MC events in

V γ + jets and V + jets. These two MC samples contain overlapping events, due to

the production of final state photons from the leptons in V + jets samples [129].

Figure 8.8: Data/MC comparison for four observables in the Zγ ID+ID+ID control region.
The Zγ background is estimated using the photon conversion fake rate applied
to the Zγ → `ID`ID`Anti−IBL CR. Statistical uncertainties are included.

8.6.4 Backgrounds with prompt leptons

WZ Background The WZ(∗)+ jets process (W±Z → `±ν`+`−) can form a back-

ground in the event that one of the decay leptons is not identified. The MC simulated

sample is used in the fit but first normalized to data using two normalization fac-

tors. These are derived by fitting to data in two separate WZ control regions. The

Boosted and Resolved WZ CRs are three lepton regions6, other than that the SR

cuts are used. In the eee and µµµ sub-channels, one lepton has the opposite sign

6Ensuring orthogonality to the SR.

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/VGammaORTool
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of the other two. In the eeµ and µµe sub-channels, the same flavour leptons have

opposite sign. The WZ CRs are defined fully in table 8.10, and are found to be 95%

pure7. The normalization factors are estimated from the bakground-only fit (see

section 8.10) as 0.927± 0.067 in the boosted region and 0.824± 0.025 in the re-

solved region. Figure 8.9 and Figure 8.10 show a few typical variable distributions

in the boosted and resolved WZ CRs, with the corresponding the WZ normalization

factors applied. Good data MC agreement can be observed.

WZ CR
Boosted Resolved

3 leptons with pT > 27,20,20GeV
4th lepton veto

at least one pair of same-flavour opposite sign leptons
Mlll > 110 GeV

no b-jet @ 85% DL1r
Emiss

T > 40 GeV
Boosted Category !Boosted Category
≥ 1 large-R jet ≥ 2 small-R jets
pT > 200 GeV pT( j1), pT( j2)> 20 GeV

Table 8.10: The selection cuts defining the WZ CR.

ssWW Background The background from the same-sign W±W± vector boson

scattering (VBS) process is again estimated using a normalization factor derived

from a ssWW CR. The ssWW CR is defined in the same way as the resolved signal

region8 in table 8.6 but with M j j > 200 GeV. This ensures orthogonality and im-

proves the ssWW purity in the region. The full region definition is found in table

8.11. The normalization factor is estimated from the bakground-only fit (see sec-

tion 8.10) as 1.441±0.174, which agrees with the value from recent measurements

[130]. Figure 8.11 shows a few typical variable distributions in the ssWW CR af-

ter application of the normalization factors for ssWW and WZ. Good agreement

between data and MC can be observed.

7More than 95% of events in the CRs come from the WZ process.
8There is no boosted ssWW control region.
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Figure 8.9: Data/MC plots in the boosted WZ CR of four variables showing typical agree-
ment: missing Et (top left), number of jets (top right), effective mass (bottom
left), invariant mass for three leptons (bottom right). A 0.93 normalization fac-
tor applied to the WZ events. Statistical and systematic uncertainties are added.

ssWW CR
not pass boosted category definition

Two same-sign leptons with pT > (27)20 GeV
3rd lepton veto

no b-jet @ 85% DL1r
Mll > 100 GeV
Emiss

T > 40 GeV
N j ≥ 2

pT ( j1), pT ( j2)> 20 GeV
M j j > 200 GeV

Table 8.11: The selection cuts defining the ssWW control region. Note not passing the
boosted category means the event is vetoed if the leading reconstructed large-R
jets has pT > 200 GeV and 50 GeV < MJ < 200 GeV.

8.7 Validation Region

A validation region (VR) is designed in this analysis to provide data-to-simulation

comparisons for validation of the background estimation methods. The data in the

signal region remains blinded throughout these procedures. The VR is designed to
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Figure 8.10: Data/MC plots in the resolved WZ CR of four variables showing typical agree-
ment: missing Et (top left), number of jets (top right), effective mass (bottom
left), invariant mass for three leptons (bottom right). A 0.82 normalization
factor applied to the WZ events. Statistical and systematic uncertainties are
added.

contain minimal signal events and be orthogonal to the signal region. This is done

by reversing the W tagger requirement in the boosted category and using the mass

sideband region in the resolved category. Otherwise, all selections are the same

as SR. The full selection criteria are shown in table 8.12. The agreement of the

data and estimated backgrounds is shown in kinematics distribution plots for the

boosted validation region (figure 8.12) and resolved validation region (figure 8.13).

Reasonable agreement is seen. These distributions are made before the fit to data

and thus do not include the normalization factors.

8.8 Systematic Uncertainties

The various systematic uncertainties are summarized in this section. These enter

the statistical fit in section 8.9.
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Figure 8.11: Data/MC plots in the ssWW CR of four variables showing typical agreement:
missing Et (top left), leading lepton pt (top right), effective mass (bottom left),
leading jet pt (bottom right). WZ and ssWW normalization factors are both
applied and statistical and systematic uncertainties shown.

SS2` VR (l±1 l±2 = e±e±, e±µ±, µ±e±, µ±µ±)
Boosted Resolved

Two same-sign leptons with pT > (27)20 GeV
3rd lepton veto

no b-jet @ 85% DL1r
Mll > 100 GeV

Boosted Category !Boosted Category
Emiss

T > 80 GeV Emiss
T > 60 GeV

NJ ≥ 1 N j ≥ 2
pT (J1)> 200 GeV pT ( j1), pT ( j2)> 20 GeV

J1 not @ 80% W tagger M j j ≤ 50 GeV or 110 GeV≥M j j ≤ 200 GeV

Table 8.12: The validation region selection criteria.

8.8.1 Experimental Systematics

This section covers the systematic uncertainties related to the experimental mea-

surements of the ATLAS detector.

Luminosity Uncertainty The systematic uncertainty on the luminosity value for

the 2015-2017 dataset is 1.7%. It is derived from the luminosity scale calibrations



8.8. Systematic Uncertainties 167

Figure 8.12: Various kinematic distributions in the boosted validation region (inclusive
channel), showing the agreement of data with the estimated backgrounds.
Systematic and statistical uncertainties are shown. The signal is shown
stacked on top of the SM background (solid red block), the signal ×4 is also
shown unstacked (black line).
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Figure 8.13: Various kinematic distributions in the resolved validation region (inclusive
channel), showing the agreement of data with the estimated backgrounds.
Systematic and statistical uncertainties are shown. The signal is shown
stacked on top of the SM background (solid red block), the signal ×4 is also
shown unstacked (black line).



8.8. Systematic Uncertainties 169

using xy beam-separation scans. The methodology follows that detailed in [131].

Pile-up Uncertainty An uncertainty is applied on the pile-up reweighting of MC

samples. The recommendation for this comes from a dedicated ATLAS group. 9

Muon Uncertainties The systematic uncertainties on reconstructed muons are im-

plemented by the dedicated Muon Combined Performance (MCP) group10. A num-

ber of uncertainties are implemented for the different aspects of muon reconstruc-

tion:

• Track Uncertainties: These relate to variations from the smearing of ID and

MS tracks used to create the combined muon track. These smearings are

applied cover the uncertainties in the track pT reconstruction and resolution.

• Momentum Scale Uncertainty.

• Sagitta Uncertainties: Variations to the charge dependent momentum scale

due to corrections on the Z scale or residual charge-dependent bias.

• Isolation Efficiency: The PLV is applied to muons. Uncertainties applied on

the MC-to-data scale factors of this tool.

• Reconstruction Efficiency Uncertainty: These apply to the muons passing the

identification working points from [69].

• Track to Vertex association efficiency: Relating to association of muons

tracks to vertices.

• Trigger Efficiency Uncertainty: Relating to the scale factors for muon trigger

efficiency.

These are the recommendations for the ATLAS derivation framework

(AnalysisBase,21.2.152). The uncertainties were derived using data sam-

ples with large statistical power (e.g. Z→ µµ and J/ψ → µµ). The muon uncer-

tainties do not generally have a large impact on our results11.
9Internal documentation (ATLAS members only) is found at ExtendedPileupReweighting.

10Internal documentation can be found here
11Muon resolution tends to be very good at the momenta used in this analysis (pT of order 100

GeV).

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/ExtendedPileupReweighting
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MCPAnalysisConsolidationMC16
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Electron Uncertainties The uncertainties on electron reconstruction performance

are from the dedicated e/gamma combined performance group12. The following

uncertainties are provided:

• Reconstruction and Identification Efficiency: The uncertainties relating to the

electron ID and reconstruction efficiencies. These are measured using events

around the Z mass peak.

• Isolation Efficiency: The PLV is used to isolate electrons as with muons.

• Momentum scale and resolution uncertainties.

• Trigger efficiency uncertainties.

Small-R Jet Uncertainties The following uncertainties are considered for the

small-R jet objects, including uncertainties on flavour tagging (as a b-jet veto is

used). These are developed by the Jet/Etmiss and Flavour Tagging groups13. The

uncertainties used are:

• Jet Energy Scale Uncertainties: A category reduction scheme is used to cal-

culate the uncertainty in MC simulation. This is detailed in [55].

• Jet Energy Resolution Uncertainties: A scheme called SimpleJER is used

[56]. This analysis does not have hard selections on jets.

• Flavour Tagging Efficiency Uncertainties: The b-jet tagging differences be-

tween MC simulations and data are corrected using scale factors. These are

varied to obtain systematic uncertainties.

• JVT Efficiency: The JVT tool efficiency uncertainty is derived from a com-

parison of hard scatter jets in Z→ µµ data and simulation.

12e/gamma Combined Performance internal link.
13Internal links: Jet/Etmiss and Flavour Tagging

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaRecommendationsR21
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/JetEtmissRecommendationsR21
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BTagCalib2017


8.8. Systematic Uncertainties 171

Large-R Jet Uncertainties The large-R jet systematic uncertainties are applied

based on the recommendations of the ATLAS combined physics (CP) group. The

following are used:

• Fatjet Energy Resolution: The uncertainty is obtained by applying a 2%

smearing in absolute pT. This follows the method used in ref. [132].

• Fatjet Energy Scale: These uncertainties relate to the in-situ calibration of the

JES detailed in chapter 4. A category reduction scheme is used [133].

• Boosted Jet Tagging: The W tagging is performed using the W/Z tagger de-

tailed in 4.1.3.3. These relate to the data-to-MC scale factors used for the

tagger efficiency and inefficiency.

• Fatjet Mass Scale and Resolution: As mentioned in section 4.1.3.2, a well

defined mass is required for large-R jets. Uncertainties relating to the mass

scale and resolution are used.

Large-R jets are a recent addition to the main ATLAS reconstruction program,

hence dedicated recommendations for all their uncertainties do not yet exist. The

flavour tagging of large-R jets is not considered in this analysis, so their uncertain-

ties are not used.

Missing Transverse Momentum Uncertainties The Emiss
T entails systematic un-

certainties relating to the momenta of objects used in its calculation. The soft term,

momenta of unassociated tracks, also entails an uncertainty. The dedicated Etmiss

group 14 provides tools to handle these uncertainties.

8.8.2 Data-Driven Background Systematics

The systematic uncertainties for the data-driven background estimation methods are

presented here.

Non-Prompt Lepton Uncertainties The derivation of the non-prompt lepton rate

(section 8.6.1) entails three systematic uncertainties. First, the statistical uncertainty

14Internal link: Etmiss

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EtmissRecommendationsRel21p2
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Table 8.13: Summary of the experimental systematic uncertainties.

Systematic uncertainty name Description
Event

LUMI 2015 2018 uncertainty on total integrated luminosity
PRW DATASF uncertainty on pile-up modelling

Electrons
EL EFF Trigger TOTAL 1NPCOR PLUS UNCOR trigger efficiency uncertainty
EL EFF Reco TOTAL 1NPCOR PLUS UNCOR reconstruction (reco.) efficiency uncertainty
EL EFF ID TOTAL 1NPCOR PLUS UNCOR identification (id.) efficiency uncertainty
EL EFF Iso TOTAL 1NPCOR PLUS UNCOR isolation efficiency uncertainty
EG SCALE ALL energy scale uncertainty
EG RESOLUTION ALL energy resolution uncertainty

Muons
MUON EFF RECO STAT(SYS) reconstruction and ID efficiency uncertainty for muons with pT > 15 GeV
MUON EFF RECO STAT(SYS) LOWPT reco. and ID efficiency uncertainty for muons with pT < 15 GeV
MUON EFF ISO STAT(SYS) isolation efficiency uncertainty
MUON TTVA STAT(SYS) track-to-vertex association efficiency uncertainty
MUON SCALE momentum scale uncertainty
MUON SAGITTA RHO(RESBIAS) momentum scale uncertainty to cover charge-dependent local misalignment effects
MUON ID(MS) momentum resolution uncertainty of the inner detector (muon spectrometer)
MUON EFF TrigStat(Syst) trigger efficiency uncertainty

Small-R jets
JET CR BJES Response energy scale uncertainties for b-quark jets
JET CR EffectiveNP Detector{1-2} energy scale uncertainties due to in-situ calibration
JET CR EffectiveNP Mixed{1-3} energy scale uncertainties due to in-situ calibration
JET CR EffectiveNP Modelling{1-4} energy scale uncertainties due to in-situ calibration
JET CR EffectiveNP Statistical{1-6} energy scale uncertainties due to in-situ calibration
JET CR EtaIntercalibration Modelling energy scale uncertainties to cover η-intercalibration non-closure
JET CR EtaIntercalibration NonClosure highE energy scale uncertainties to cover η-intercalibration non-closure
JET CR EtaIntercalibration NonClosure negEta energy scale uncertainties to cover η-intercalibration non-closure
JET CR EtaIntercalibration NonClosure posEta energy scale uncertainties to cover η-intercalibration non-closure
JET CR EtaIntercalibration TotalStat energy scale uncertainties to cover η-intercalibration non-closure
JET CR Flavor Composition(Flavor Response) energy scale uncertainty related to flavour composition (response)
JET CR PileUp {OffsetMu(NPV),PtTerm,RhoTopology} energy scale uncertainties due to pile-up effects
JET CR PunchTroughMC16 energy scale uncertainty for ’punch-through’
JET CR SingleParticle HighPt energy scale uncertainty for the behavior of high-pT jets
JET JvtEfficiency JVT efficiency uncertainty
JET CR JER DataVsMC MC16 energy resolution uncertainty
JET CR JER EffectiveNP {1-6,7restTerm} energy resolution uncertainties

Large-R jets
FATJET Medium JET Comb Baseline Kin energy and mass scale uncertainty due to basic data-simulation differences
FATJET Medium JET Comb Modelling Kin energy and mass scale uncertainty due to simulation differences
FATJET Medium JET Comb Tracking Kin energy and mass scale uncertainty on reference tracks
FATJET Medium JET Comb TotalStat Kin energy and mass scale uncertainty from stat. unc. on the measurement
FATJET BJT boosted jet tagger uncertainties
FATJET JER energy resolution uncertainty
FATJET JMR mass resolution uncertainty

: VR track jets
FT EFF Eigen B {0-4} b-tagging efficiency uncertainties for b jets
FT EFF Eigen C {0-3} b-tagging efficiency uncertainties for c jets
FT EFF Eigen Light {0-3} b-tagging efficiency uncertainties for light jets
FT EFF extrapolation b-tagging efficiency uncertainty for high-pT b-quark and jets
FT EFF extrapolation from charm b-tagging efficiency uncertainty on τ-lepton jets

Emiss
T

MET SoftTrk ResoPara(Perp) ’soft term’-related longitudinal(transverse) resolution uncertainty
MET SoftTrk Scale ’soft term’-related scale uncertainty
MET JetTrk Scale scale uncertainty

on this derivation is considered. Second, the uncertainties on the prompt MC nor-

malizations and charge flip background, as these backgrounds are subtracted from

the data events in the non-prompt CRs. Third, the impact of b-tagging uncertainties

on the non-prompt rate are considered, as the b-jet requirement is the key difference

between these control regions with the signal region. There is no guarantee this is

not correlated to probability of a non-prompt lepton.

The statistical uncertainty relates to the number of data events in the non-

prompt control regions. Non-prompt electrons in particular suffer due to contam-
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ination from many other processes. The muon non-prompt rate has a statistical

uncertainty of 5.5%, whilst the electron rate has an uncertainty of 12.5%.

The uncertainty from the MC and charge flip backgrounds subtraction from

the ID+ID non-prompt control region (control region B in fig. 8.3) is derived by

applying scale factors. The non-prompt rates are rederived but a scale factor of

1.1 or 0.9 is applied to the prompt MC and charge flip backgrounds before these

are subtracted. The fake rates derived in each case are shown in table 8.14. These

differences are well covered by statistical uncertainty.

Scale Factor electron muon
1 (default) 0.048±0.006 0.018±0.001

1.1 0.042±0.006 0.017±0.001
0.9 0.051±0.006 0.020±0.001

Table 8.14: The effect of applying a 1.1 or 0.9 scale factor to the prompt MC and charge
flip backgrounds.

To measure the impact of the b-tagging, the 85% working point is modified to

the 77% working point and the fake factors re-derived. For the electron fake factor

the rate changes from 0.048± 0.006 to 0.052± 0.008, whilst for the muon fake

rate it changes from 0.018± 0.001 to 0.021± 0.002. The difference is within the

statistical uncertainty.

Charge misID Uncertainties The systematics stemming from the derivation of the

charge flip rate are considered. The charge flip rate is derived from a Z→ ee sample

in a Z mass window. The non-Z component of this is estimated from the sideband

region and subtracted. The uncertainty is estimated in three ways.

The first way is to vary the Z mass window selections by 2 GeV and check

the bias. The second way is by comparing with the rates derived using Z + jets

MC simulation. The third way is to subtract the MC predicted non-Z contribution

instead of the data in sideband regions. Finally, the statistical uncertainty on the

charge flip rate is considered.

Photon Fake Rate Uncertainties Four systematic uncertainties are defined for the

derivation of the rate of photons mis-reconstructed as electrons. The first stems

from the statistical uncertainty of the measured rate. The second uncertainty is
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measured by calculating the photon conversion rate in two separate pT bins (cho-

sen to have roughly equal statistics). The results are shown in table 8.15, both are

roughly consistent with the inclusive rate and no pT dependence is observed. The

third uncertainty is due to prompt MC normalization uncertainties used for the sub-

traction in the Zγ → `ID`ID`ID control region. A 1.1 or 0.9 scale factor is applied

and the rate re-derived, entirely analogously to the non-prompt uncertainty. Finally,

an uncertainty due to the extrapolation of the misID rate measured in Zγ events to

a Wγ enriched region is measured. This is done by measuring a photon misID rate

in Wγ and Zγ MC and comparing the two. No strong difference was observed, see

table 8.16.

pT bin photon conversion rate
Inclusive 0.043±0.004

pT < 25 GeV 0.044±0.004
pT > 25GeV 0.041±0.004

Table 8.15: The effect of pT on the photon conversion rate. Measured using two bins of
equal statistical power.

Sample photon conversion rate
Zγ 0.16±0.03
Wγ 0.13±0.04

Table 8.16: The photon conversion rates derived using Zγ or Wγ MC simulated samples.

8.8.3 Theoretical Systematics

The MC simulated samples used in the fit entail theoretical systematic uncertainties.

These arise from the various theory parameters used in simulating these samples.

These uncertainties therefore relate to the production algorithm used for each sam-

ple. For the background samples that contribute only a small number of events,

e.g. ZZ, VVV and TopX, a 15-20% cross-section uncertainty is considered in the

statistical fit (see table 8.17. For the main background samples, the systematic un-

certainty due to varying the parton shower, PDF and scale are considered following

the recommendations of the Physics Modelling Group (PMG). Similar uncertainties
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will in future be derived for the signal MC samples once alternative signal samples

have been produced.

Background Uncertainty (%)

TopX 15 [134, 135]
VVV 15 [136]
ZZ 20 [137]

Table 8.17: Cross-section uncertainties for other background.

The parton distribution function (PDF) models the internal structure of the

proton, and thus affects how proton-proton events are simulated. PDF uncertainties

follow from the recommendations of the PDF4LHC [138] working group. The par-

ton shower can be modelled in different ways, as the hadronization process cannot

be calculated perturbatively (see chapter 2). The scale relates to two parameters,

the renormalization (µR) scale and factorization (µF) scale. These parameters are

needed to solve problems with ultraviolet and infrared divergences when using per-

turbation theory to simulate events (to some order, e.g. LO or NLO). Variations in

these two parameters are used to extract the scale uncertainties.

WWW and WH Theory Uncertainties The WWW process is split between the

on-shell W±W∓W∓ process simulated using SHERPA 2.2.2 and the pp→WH∗→

WWW process simulated using POWHEG-BOX. The scale uncertainty is derived

by varying the (µR) and (µZ) scales and taking the envelope over the output his-

tograms of observables. The PDF uncertainties are derived from similar envelopes

produced by varying the PDF set used in the simulation. The PDF+αS error is also

considered. The parton shower uncertainties are estimated using alternative samples

produced with SHERPA for the WWW sample and HERWIG 7 for the WH sample.

The ssWW uncertainties are estimated using the same approach as the WH samples.

The WZ sample uses the same prescription as the WWW sample. Finally, ATLAS

has recently measured the WWW production cross-section finding a combined sig-

nal strength of 1.61±0.25 [139]. Due to the similarities between our signal region

and the WWW same-sign two lepton signal region, an additional 60% uncertainty

is applied to the WWW background.
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ssWW and WZ Theory Uncertainties Special consideration is needed for the

ssWW samples, which suffer from mis-modelling issues. The dijet mass, m j j, is

mis-modelled in the QCD samples for values m j j > 1 TeV due to the shower activ-

ity and scale choice for NLO emissions. This range is, however, far removed from

the signal region under consideration here. A color-flow issue in the electroweak

ssWW samples also causes a significant reduction in predicted cross-sections. The

impact on the normalization will be accounted for in this analysis by the dedicated

ssWW normalization factor. An additional shape uncertainty is also derived to ac-

count for any further issues due to the mis-modelling.

8.9 Statistical Analysis
The data gathered by ATLAS is analysed by comparing to the various predicted

signals and backgrounds. The latter are estimated using a mix of MC simulation

and data-driven techniques, as described in sections 8.3 and 8.6. The fit of observed

data to a given model prediction proceeds using maximum likelihood estimation.

This is all implemented in a statistical framework known as HistFitter [125].

For an event counting analysis such as this, the probability of measuring a

given number of events, Ni
data, in a bin, i, (belonging to whatever regions we fit

over, e.g. signal and/or control regions) is best modelled as a Poisson distribution.

The likelihood function can be written as [125]:

L(NNNdata,θθθ
0|µsig,µµµ ppp,θθθ) =

bins

∏
i

Ppoiss(Ni
data|λi(µsig,µµµ p,θθθ)×Csyst(θθθ

0,θθθ) (8.11)

where NNNdata is the input data and µµµ p are our normalization factors to be fit from the

control regions. The nuisance parameters θθθ continuously parameterise the system-

atic uncertainties, and are defined such that θi = 0 returns the nominal template and

θi = ±1 return the +1 and -1 systematic variation templates15. These are assumed

to be Gaussian16 distributed around the central values θθθ
0 (typically these are set to

15In general, these are asymmetric (the +1 and -1 are different). Symmetric uncertainties are also
used, where only the up variations is provided. The down variation is inferred from the nominal and
up variation.

16Log-normal probability distributions are used for normalization uncertainties, such as the nor-
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0, but can be varied in toy experiments):

Csyst(θθθ
0,θθθ) =

S

∏
j

G(θ 0
j −θ j) (8.12)

where S is the total number of nuisance parameters. The Poisson distributions,

Ppoiss, are characterized by the frequency:

λi(µsig,µµµ p,θθθ) = µsigsi(θθθ ,µµµ ppp)+bi(θθθ ,µµµ ppp) (8.13)

where µsig is our signal strength (a positive scalar value), si is the expected yield

of signal events in the bin i and bi the expected yield of background events. If the

value of µsig = 0, then the signal component has been turned off. The signal yield

si will come from the particular model under consideration (in our case, that is an

MC simulated sample dependent on a particular combination of the three model

parameters: mH , fW and fWW ).

The fit strategy employed in this analysis proceeds in two steps. A background-

only fit is first performed to evaluate the normalization factors µp. The fitted values

are tested by extrapolating to the validation region and examining the result. The

background-only fit is performed only in the bins of the control regions and using

µsig = 0. If a satisfactory result is found, with no unexpected normalization factor

values or nuisance parameter pulls, a model-dependent fit is then performed for

each model point (combination of mH , fW and fWW ). This fit is performed in the

signal and control regions whilst varying the value of µsig. In the case of a measured

excess, this fit will characterize properties such as the signal strength. In the absence

of any detected signal, exclusion limits can be drawn using a hypothesis test.

8.9.1 Hypothesis Test for Exclusion Limits

The hypothesis test used to establish 95% confidence level expected upper limits on

the signal cross-section is the CLs method [140]. This method begins by establish-

malization uncertainty on the WWW sample, to ensure these are always positive.
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ing a test-statistic:

qµ =−2ln

(
L(µsig, θ̂θθ µsig)

L(µ̂sig, θ̂θθ)

)
, (8.14)

This is known as the profile likelihood ratio and is generally used by the LHC col-

laborations [125]. The null hypothesis is that the true value of µsig corresponds to

the tested value. The numerator of this expression, L(µsig, θ̂θθ µsig) is the conditional

likelihood maximised with respect to the free parameters θ̂θθ µsig for a constant µsig.

The denominator L(µ̂sig, θ̂θθ) is the unconditional likelihood, maximised with respect

to both θ̂θθ and µ̂sig as free parameters. The major advantage of this test statistic is

that, in the limit of large samples, its probability density functions (pdfs) can be cal-

culated using approximate methods such as the asymptotic calculator in HistFitter

[141].

Derivation of the 95% C.L. limits requires calculating the conditional pdf of

the test-statistic given some hypothesis, f (qµ |hyp). These can be calculated using

approximate methods such as the asymptotic calculator or using Monte Carlo toy

experiments. This is done for the background only hypothesis, B, and signal plus

background hypothesis, S+B. Once the pdfs are known, a reference value of the test

statistic qref
µ is used to calculate two values:

pB = P(qµ < qref
µ |B) =

∫ qref
µ

−∞

f (qµ |B)dqµ (8.15)

pS+B = P(qµ > qref
µ |S+B) =

∫
∞

qref
µ

f (qµ |S+B)dqµ (8.16)

The reference value, qref
µ , is either the best fit test value from the observed data

(giving the observed limit), or the median of the B hypothesis pdf, f (qµ |B) (giving

the expected limit). The excluded µsig at 95% C.L is given by:

CLs ≡
pS+B

1− pB
< 5% (8.17)

Exclusion contours can be given in the model phase space by computing the

CLs values for each model point and interpolating an exclusion surface.
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8.9.2 Binning in the GHH Analysis

The GHH analysis is formed of two signal regions (boosted and resolved) along-

side two control regions from which normalization factors are derived (the WZ and

ssWW control regions). The histograms describing these regions (which are fit) are

the effective mass distributions, Me f f . The histogram binning, is in general a free

parameter. Fits in the CRs are done using a single bin. In the SRs, a brief study was

performed to determine an optimal binning. A variety of binnings were examined,

constrained only by having a minimum bin content of 6 events and maximum bin

error of 10%. The expected upper limit for a small grid of signal models was cal-

culated using all the different binnings. The optimal binning is chosen to have the

smallest expected upper limit across the different signal samples. For the two SR

the optimal binning was:

• Boosted: (0,600,800, in f ) GeV

• Resolved (0,300,400,500,600, in f ) GeV

8.10 Results
The initial results of the analysis fit are shown here. Unblinded results will be made

public in the near future but for now only blinded results are shown (data in the

signal regions is removed). As such only expected results derived from Asimov

data17 are shown. The fit results are on the samples from the most recent analysis

framework (r04-02).

8.10.1 Signal Acceptance and Efficiency

The signal acceptance is the number of signal events passing the phase space (pT

and η) cuts of the signal regions. The signal efficiency relates to all other cuts and

reconstruction efficiencies that signal events must pass to enter the signal regions.

The product of signal acceptance and efficiency gives us the fraction of the simu-

lated events in a sample that will enter out signal regions. This quantity is calculated

17This is produced using the sum of the predicted background yields from the MC simulations. In
some cases, such as the ranking plot, the predicted signal yield may be added.
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Figure 8.14: The product of signal acceptance and efficiency (A × ε) for the inclusive,
boosted-only and resolved-only signal regions. The quantity is displayed for
a number of benchmark signals with values of mH from 300 GeV to 2 TeV
and two sets of the parameters ( fW , fWW ): (1350,0) and (0,6200).

for several benchmark signals with a range of mass from 300 GeV to 2000 GeV for

two value pairs of ( fW , fWW ) equal to (1350,0) and (0,6200). The result is plotted

in figure 8.14.

8.10.2 Normalization factors

The background-only fit is performed to give a first value of the normalization fac-

tors µWZResolved , µWZBoosted and µssWW . The agreement between the observed data

events and the predicted (background-only) events in the validation region is plot-

ted to examine performance. This is first done plotting the predicted events with

normalization factors set to 1 (pre-fit) and then with the best fit values (post-fit). For

the r04-02 results, the best fit values of the normalization factors are quoted in table

8.18. The validation region pre- and post-fit plots are shown in figure 8.15.

MC process scaling factor

WZBoosted 0.927±0.067
WZResolved 0.824±0.025
ssWW 1.441±0.174

Table 8.18: The normalization factors (and corresponding uncertainties) calculated from
the background only fit of the Me f f distributions of data and MC samples.
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Figure 8.15: The (left) pre- and (right) post-fit distributions in the (top) boosted and (bot-
tom) resolved validation regions. In the post-fit case, the normalization factors
from the background only fit in the CR has been applied. The model is the
SM background (b) plus signal (s). In this background-only fit no signal is
present.

8.10.3 Blinded Exclusion Fit

The next step in the fitting procedure (the model-dependent exclusion fit) can be

tested using an Asimov dataset. The real data in the SR remains blinded. Instead

of running with no data in the SR, we use Asimov data where the observed data

distribution is set equal to the background prediction (µsig = 0). Note that real data

is still used to fit the CRs. The pre- and post-fit distributions in the SR are shown in

figures 8.16 and 8.17.
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Figure 8.16: The pre- and post-fit distributions in the boosted SR from an exclusion fit
using real data in the CRs and Asimov data with µsig = 0 in the SRs. The
model is the SM background (b) plus the GHH600fW1350fWW0 signal (s).

0

10

20

30

40

50

60

70

80

90

E
ve

nt
s

Model (s + b)
WZResolved
WWW
Others
ChargeFlip
NonPrompt
PhotonConversion
ssWW
GHH600fW1350fWW0

ATLAS Work in progress
-1=13 TeV, L = 139 fbs

SS2l SR Resolved

0  300  400  500  600  1000
 [GeV]effM

0

0.5
1

1.5
2

D
at

a/
(s

+
b)

0

10

20

30

40

50

60

70

80

90

E
ve

nt
s

Model (s + b)
WZResolved
WWW
Others
ChargeFlip
NonPrompt
PhotonConversion
ssWW
GHH600fW1350fWW0

ATLAS Work in progress
-1=13 TeV, L = 139 fbs

SS2l SR Resolved

0  300  400  500  600  1000
 [GeV]effM

0

0.5
1

1.5
2

D
at

a/
(s

+
b)

Figure 8.17: The pre- and post-fit distributions in the resolved SR from an exclusion fit
using real data in the CRs and Asimov data with µsig = 0 in the SRs. The
model is the SM background (b) plus the GHH600fW1350fWW0 signal (s).
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8.10.4 Systematic Uncertainties

The impact of the various systematic uncertainties can be assessed in two ways.

The first is through so called pull plots. These show how the values of the fitted

systematics θθθ compared to their central values θθθ
0. A pull plot shows the value of

the fitted nuisance parameters θθθ , in the plot these are termed α , as well as the other

parameters such as the fitted normalization factors µp and the statistical uncertain-

ties, termed γ . The pulls for the background-only fit are plotted in figure 8.18, this

fit is only over the CR using real data in those regions (signal data blinded). The

systematics in this fit are not pulling in any direction as expected. In previous fits, a

single normalization factor for the WZ background was used, calculated from both

boosted and resolved regions together, This led to the systematics all pulling in the

positive direction, as the normalizations in these two regions are different. This mo-

tivated the switch to using two factors, one for the resolved region, µWZResolved and

another for the boosted µWZBoosted .

The pulls are also plotted for the exclusion fit with Asimov data in the SRs

(µsig = 0), and real data in CRs in figure 8.19. The correlation matrix of all the

nuisance parameters can also be plotted. An example is in figure 8.20 where the

nuisance parameters with off-diagonal correlations greater than 0.01 are plotted.

There do not seem to be any large correlations between nuisance parameters, as is

assumed in the fitting procedure [125].

A further way to visualise the impact of the systematics is through systematic

ranking plots. In addition to the pulls, these plots show the impact of individual sys-

tematics on the fitted parameter of interest (µsig). The impact is calculated by vary-

ing one systematic parameter at a time to its plus one and minus one sigma values,

and measuring the change in the fitted value of µsig (from its nominal fit value). The

systematics are then ranked by their largest absolute impact. The top 20 nuisance

parameters by impact are shown in the ranking plot in figure 8.21. For this plot,

an exclusion fit is performed using Asimov data in the SR but using the expected

background and signal yield (i.e. the Asimov data is calculated using µsig = 1). The

systematic uncertainties with the largest impact on the measured signal strength are
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Figure 8.18: The fitted value of the nuisance parameters for the top 20 largest systematic
pulls, normalization factors and statistical errors. These values are for the
background-only fit. For the naming conventions, refer to table 8.13.

the PDF and scale theoretical uncertainties on the signal sample, followed by the

WWW normalization uncertainty. The signal theoretical systematics directly im-

pact the signal shape and normalization, it is thus expected that they rank highly.

The WWW normalization uncertainty is very large (60%) to account for the recent

WWW cross-section measurement value (see section 8.8.3). B-tagging uncertain-

ties and the scale factor uncertainties for the W-tagger also feature prominently.

8.10.5 Expected Results in the Inclusive Fit

For each model point in our signal grid, the expected upper limit is calculated us-

ing the CLs method. The asymptotic calculator is used in this search. The sig-

nal strength is varied until the expected CLs falls below 0.05, the value at which

this happens is the expected upper limit. The p value versus signal strength is
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Figure 8.19: The fitted value of the nuisance parameters for the top 20 largest systematic
pulls, normalization factors and statistical errors. These are the values from
the exclusion fit using Asimov data (µsig = 0) in the SR. For the naming con-
ventions, refer to table 8.13. The γ parameters are the statistical uncertainties
from the different bins.

plotted for a benchmark signal18 in figure 8.22. There are 172 different signal

points which were studied. The results for these are shown in a graphical for-

mat. Figure 8.23 shows all the expected upper limit values for signals with a fixed

mH = (300,600,900) GeV and varying values of fW and fWW .

Expected exclusion contours at 95% confidence level are also drawn. These

are calculated for each signal point by running a hypothesis test that µsig = 1 and

storing the resulting p value. The results for each point can be interpolated in the

plane defined by two model parameters, and contours then drawn where the surface

is equal to 0.05. The interpolation is done in the ( fW , fWW ) plane using the signal

points with the fixed mass values of (300,600,900) GeV to produce the plots in

18The benchmark signal is termed GHH600fW2130fWW0: this corresponds to mH = 600 GeV,
fW = 2130, fWW = 0.
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Figure 8.20: The reduced correlation matrix of all nuisance parameters with an off-
diagonal value greater than 0.1 (the remaining 170 nuisance parameters fell
under this threshold). These are the values from the exclusion fit using Asi-
mov data (µsig = 0) in the SR.

figure 8.24. These plots exhibit a radial symmetry, this is expected from the form

of the Lagrangian in equation (2.35). The exclusion limits shift outward as mass

increases, this is because for a fixed value of ( fw, fWW ), the SR yields decrease

as mass increases (see Table 8.19). The expected upper limit on the signal cross-

section are compared to the theoretical cross-sections in figure 8.25. This was done

for ( fw, fWW ) of (1350,0) and (0,6200) over a range of heavy Higgs mass values.

For three of the very high mass points19 the fit does not converge, as such the plots

do not extend to include these. This occurs due to the low signal yields in these high

mass samples, see Table 8.19.

19GHH2000fW1350fWW0, GHH1500fW0fWW6200 and GHH2000fW0fWW6200.
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Figure 8.21: The systematic ranking plot from the exclusion fit with Asimov data (µsig = 1)
in the SR and real data in the CR. The top 20 by impact nuisance parameters
are shown. For the naming conventions, refer to table 8.13.

Mass ( fW , fWW ) Boosted SR Yield Resolved SR Yield
300 (1350,0) 10.26 11.04
600 (1350,0) 10.60 4.13
900 (1350,0) 7.51 1.35

1500 (1350,0) 2.31 0.20
2000 (1350,0) 0.78 0.044
1500 (0,6200) 1.01 0.13
2000 (0,6200) 0.25 0.022

Table 8.19: The signal yields in the Boosted and Resolved SR for various different GHH
mass samples.

8.10.6 Resolved and Boosted-only Sensitivities

The sensitivity of the resolved and boosted signal regions was explored by re-

running the fit twice using first only the resolved SR, second only the boosted

SR. Exclusion contours in the ( fw, fWW ) were created from the resolved-only and

boosted-only fits and are shown in figures 8.26 and 8.27 respectively. The resolved-
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Figure 8.22: The expected upper limit of signal GHH600fW2130fWW0 is 0.34. The ob-
served values are calculated using Asimov data in the signal region as the
real data remains blinded. This model has a theoretical cross-section of
0.04731 pb.

only fit performs much worse than the inclusive fit, particularly for the higher GHH

mass samples, as can be seen by the outward shift of the exclusion limits when

compared to figure 8.24. The boosted-only fit in contrast appears to perform almost

as well as the inclusive fit for the higher mass samples mH = 600 and 900 GeV. This

conclusion is further supported by plots of the expected upper limits on the signal

cross-section against mass for ( fw, fWW ) equal to (1350,0) and (0,6200). These

plots are shown for the resolved-only and boosted-only fits in figures 8.28 and 8.29

respectively. The resolved-only fit has a much lower sensitivity than the inclusive

whilst the boosted-only fit performs similarly, as can be seen by comparison to fig-

ure 8.25. Nevertheless, some sensitivity is gained from the inclusion of the resolved

channel at the lower values of mH .
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Figure 8.23: The expected upper limit on signal strength for signal samples with 300, 600
and 900 GeV mass and a range of fW and fWW parameters.
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Figure 8.24: The expected exclusion contours in the fW vs fWW plane for 300, 600 and
900 GeV heavy higgs. All parameter points outside of the contours are ex-
cluded.
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Figure 8.25: The expected upper limit on the cross-section versus the heavy Higgs mass
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Figure 8.26: The expected exclusion contours with heavy Higgs mass of 300 GeV, 600
GeV and 900 GeV for resolved-only fit.
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Figure 8.27: The expected exclusion contours with heavy Higgs mass of 300 GeV, 600
GeV and 900 GeV for boosted-only fit.
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Figure 8.28: The expected exclusion contours in the mass vs cross-section space for (top)
fW = 1350 and fWW = 0 and (bottom) fW = 0 and fWW = 6200 for resolved-
only fit.

8.11 Summary

The GHH analysis searched for a fermion-phobic heavy Higgs in the same-sign two

lepton channel. This is well motivated as a signal of heavy Higgs associated vector

production. It is particularly sensitive in the case of an effective six-dimensional

operator, that can be considered a stand-in for new physics at some heavier scale.

The two same-sign lepton signal is associated with two resolved small-R jets or a

single boosted large-R jet, covering a wide phase space. The backgrounds were

estimated using a combination of data-driven techniques and MC simulation. Esti-

mates for the upperlimit on the signal strength were calculated over a large phase

space of three variable parameters: the Higgs mass, and the coupling strengths fW

and fWW . Exclusion contours for these three parameter spaces are drawn. For the
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Figure 8.29: The expected exclusion contours in the mass vs cross-section space for (top)
fW = 1350 and fWW = 0 and (bottom) fW = 0 and fWW = 6200 for boosted-
only fit.

coupling parameters ( fW , fWW ) = (0,6200), the largest expected GHH mass that

can be excluded at 95% C.L. is 700 GeV. For ( fW , fWW ) = (1350,0), this value is

around 800 GeV.



Chapter 9

Conclusion

The ATLAS physics program aims to continue making ever more precise measure-

ments of SM predictions and search for new BSM physics. The advent of the high-

luminosity LHC brings not only the promise of increased statistics but greater chal-

lenges relating to the the processing of big data in high pile-up conditions. The

current algorithmic tools, such as b-tagging, will require upgrades to keep pace in

this new regime.

The continued development of the JetFitter algorithm was a key focus of this

work. Neutral track veto and reconstruction algorithms were implemented with

the aim of improved tagger efficiency. The impact of these was measured on the

high-level b-tagger MV2. No major improvement to light-jet or c-jet efficiency was

seen at the working points used by the collaboration. Further efforts were carried

out in the refactoring and documentation of the JetFitter code. These will form

an important part of future ATLAS software development, with implementation

already pushed to the latest ATLAS code-base. This refactored code will greatly

aid future code development efforts for JetFitter.

Research was carried out into a new Machine Learning version of the topolog-

ical reconstruction used in JetFitter. The use of an RNN in secondary and tertiary

vertex reconstruction was investigated on a toy jet model. The challenges of this

RNN regression task were made apparent. Various performance measures were

used to assess the success of this model. The RNN fitter showed a fairly good

robustness to noise, it can particularly improve upon simple analytic methods at
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higher noises. However, difficulties remained in comparing such a method to cur-

rent ATLAS b-taggers. A major issue is the inability of an RNN to assign tracks to

a particular vertex. The method nevertheless could be expanded in future. Further

improvements could be made to the algorithm itself. The RNN could prove use-

ful not as a stand-alone tool but in conjunction with other algorithms such as the

Kalman Filter in JetFitter. More generally, other machine learning models, such as

graph neural networks, could be considered instead of the RNN.

A search for generic heavy versions of the Higgs bosons was carried out. The

motivations for such a model and the methods used to perform the search were

presented. A likelihood fit was performed on data and simulated samples to pro-

duce expected upper limit estimates and 95% C.L. exclusion contours in the model

parameter space. The analysis is currently awaiting approval to unblind the sig-

nal sample data, and is expected to be made public within the coming months. In

the absence of a signal, this analysis will help to narrow down the phase space of

potential new discoveries at the energy frontier.



Appendix A

Neutral Tracks in JetFitter

This appendix describes the ATLAS specific code used to reconstruct neutral tracks

in JetFitter. As such a lot of terminology specific to the ATLAS EDM is used. This

is intended more as a guide to future ATLAS developers attempting to understand

the neutral track code.

A.1 Overview
Charged particle tracks are currently stored as xAOD::TrackParticle objects, the

analogous neutral particle object is the xAOD::NeutralParticle. To create a Neutral-

Particle we must first calculate its track parameters and a reference position. The

reference position will be the position of the two-track vertex candidate (known

as a V0 candiate in JetFitter). The two charged tracks are used to determine the

NeutralPerigee using the NeutralParticleParameterCalculator (found under TrkVer-

texFitterUtils). The NeutralParticleParameterCalculator required substantial over-

haul to ensure compatibility with the new EDM. The neutral particle creation is

called inside the main vertex finding package of JetFitter (InDetImprovedJetFitter-

VxFinder), around phase 5. The neutrals are then added to tracksToUseInFirstFit if

they pass certain selection criteria.

The JetFitter fitting routines required some small modifications to handle neu-

tral particles correctly. This happens at one point in JetFitterRoutines and in the

KalmanVertexOnJetAxisSmoother. The rest of the fit can then operate smoothly as

the new EDM interfaces well to the old EDM still used by JetFitter.
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Major changes involving the storage of neutral particles used in the fit were

made. JetFitter saves the fitted decay topology using BTagVertex objects, these ob-

jects contain links to the tracks used to fit to them. When a neutral track is present

some modification is required. The objects themselves were modified, these are all

found under xAOD/xAODBTagging. These objects are created in the BTagSecVer-

texing module, which required substantial modification for this. Finally the store-

gate containers (NeutralParticleContainer) must be created in the StandAloneJetB-

TaggerAlg to ensure correct ownership.

The last set of changes are to the JetFitterVariablesFactory, where the neutral

tracks are now used alongside charged tracks to create the JetFitter output variables.

A.2 List of Modified Files
• InnerDetector/InDetRecTools/InDetSecVxFinderTool/*/

InDetImprovedJetFitterVxFinder*

• InnerDetector/InDetRecTools/InDetSecVxFinderTool/*/InDetJetFitterUtils*

• Event/xAOD/xAODBTagging/*/*/BTagVertexAuxContainer v1*

• Event/xAOD/xAODBTagging/*/*/BTagVertex v1*

• PhysicsAnalysis/JetTagging/JetTagAlgs/Btagging/*/BTagSecVertexing*

• PhysicsAnalysis/JetTagging/JetTagAlgs/Btagging/*/

StandAloneJetBTaggerAlg*

• PhysicsAnalysis/JetTagging/JetTagTools/src/JetFitterVariablesFactory.cxx

• Tracking/TrkVertexFitter/TrkJetVxFitter/src/JetFitterRoutines.cxx

• Tracking/TrkVertexFitter/TrkJetVxFitter/src/

KalmanVertexOnJetAxisSmoother.cxx

• Tracking/TrkVertexFitter/TrkVertexFitterUtils/src/

NeutralParticleParameterCalculator.cxx
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A.3 List of Identified Bugs
• KalmanVertexOnJetAxisSmoother: creating perigeeAtVertex not neu-

tralPerigeeAtVertex for neutral tracks

• JetFitterVariablesFactory: Not storing mass of neutral (Ks) tracks

• JetFitterRoutines: Not correctly casting to NeutralPerigee

• BTagSecVertexing: Neutral track info storage separate to charged, not casting

to NeutralPerigee

• V0s with negative eigenvalues (not fixed, just veto these candidates)

A.4 Variable Plots
The following are plots of two of the output jetfitter variables for a simulated ttbar

sample. The effect of including the reconstructed Ks tracks on the output variables

can be seen in figure A.1 (assuming the Ks mass for all neutral tracks).
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(a) light-jets (b) light-jets

(c) c-jets (d) c-jets

(e) b-jets (f) b-jets

Figure A.1: The effect on the number of tracks associated to secondary vertices in (a) light-
jets (c) c-jets and (e) b-jets and the effect on the invariant mass of all tracks
associated to secondary vertices in (b) light-jets (d) c-jets and (f) b-jets when
using reconstructed Ks tracks in JetFitter fit. The blue histogram is with no
neutral tracks used in the fit (but neutral decay vertices are vetoed), the red is
with the addition of Ks tracks to the fit. The ratio of the red histogram over
blue histogram is plotted.



Appendix B

JetFitter Refactor

This appendix covers the technical detail relating to the refactoring of the JetFitter

code. This refactor was carried out in release 21 of Athena. It was not merged to

the latest version of release 21, but forms the basis for the release 22 of Athena

currently used.

The main focus of the refactor was the InDetImprovedJetFitterVxFinder mod-

ule. This file contains all the code relating to the track selection and vertex merging

procedure of JetFitter. These are both long and complex procedures, hence the file

is around 2000 lines of code. A single method called doTheFinding makes up the

bulk of this. It is formed of nine phases. The first two separate primary and sec-

ondary vertex tracks. Phase 3 creates the two track vertices which are then analysed

as potential neutral tracks in phases 4 and 5. Phase 6 creates the tracksToUseInFirst-

Fit from the good two-track vertices and phase 7 finds the tracksToUseInSecondFit.

Phase 8 passes to the vertex fitting and merging procedure and phase 9 is just storing

the result.

The entire track selection procedure is very long (phases 1-7 above). It can

broadly be divided into the separation of primaries, the creation of two-track ver-

tices, and the analysis of these V0s to create the tracksToUseInFirst/SecondFit.

The refactor thus aimed to create three separate modules for these processes: Jet-

FitterTrackSelectorTool, JetFitterTwoTrackVtxFinderTool, JetFitterV0FinderTool.

Finally, it was decided that to separate the fit and merge procedure out into its own

module JetFitterMultiStageFit. This could then be replaces by some other fitting
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Figure B.1: Map of the JetFitter code structure showing the four main modules.
BTagSecVertexing is part of the main b-tagging algorithm and directs JetFitter
to find its secondary vertices by calling InDetImprovedJetFitterVxFinder. The
resulting decay chain topology is passed to JetFitterVariablesFactory to create
the variables for high-level taggers. The flow of information is shown by ar-
rows. Key methods within modules are shown. This map is not an exhaustive
description but rather meant to show the important information only.

algorithm in the future.

The final InDetImprovedJetFitterVxFinder file becomes much simpler to un-

derstand. It is now just directing the track selection and vertex fitting procedures,

interfacing to the appropriate modules in order.

The refactor effort also added some improvements to the code. The use of

smart pointers, new to C++ 11, was implemented. Some bugs to do with object

ownership were uncovered and fixed. An explicit track ordering by pT was imple-

mented as the fitting procedure is dependent on track order. This ordering is the

same as that used in the old JetFitter, but is now made explicit in the code.

B.1 JetFitter Code Maps
The code maps in figures B.1 - B.5 describe the JetFitter code before the refactoring

takes place. The final refactored code is mapped in figure ??.
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Figure B.2: Map of the JetFitter code structure but with the InDetImprovedJetFitter-
VxFinder overloaded findSecVertex mehod shown in more detail.

Figure B.3: Map of the JetFitter code structure but with the InDetImprovedJetFitter-
VxFinder method doTheFit shown in more detail.
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Figure B.4: Map of the JetFitter code structure but with the InDetImprovedJetFitter-
VxFinder module shown in more detail.

Figure B.5: Map of the JetFitter code structure but with the JetFitterRoutines module
shown in more detail.
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Figure B.6: Map of the refactored JetFitter code structure. InDetImprovedJetFitter-
VxFinder has been greatly simplified. Four new modules have been created.



Appendix C

Error Propagation for a Single Track

To fix a simple measure of the maximum σdmin , we could consider each term individ-

ually and take the maximum over the domains θ ∈ [0,π], φ ∈ [0,2π], φq ∈ [0,2π]:

max(A) =

√
(2)
2

(C.1)

max(B) = 1 (C.2)

However, problems arise with the partial derivative terms. These contain diver-

gences in the domain of interest. Intuitively, these relate to the case where the track

and jet axis are almost parallel (or anti-parallel). A small change in theta or phi can

lead to a large change in dmin. If these divergences are ignored, it is still possible

to get some measure of the maximum value by sampling sparsely in the (φ ,θ ,φp)

space and calculating the derivatives at each sample point. For each angle, 100

equally spaced values are sampled forming a 3D grid with 10,000 total points. The

derivatives are then calculated using numpy’s gradient method. The sample maxi-

mums are:

maxs(
∂A
∂φ

) = 15.5 (C.3)

maxs(
∂A
∂θ

) = 22.0 (C.4)

maxs(
∂B
∂φ

) = 3.70 (C.5)

maxs(
∂B
∂θ

) = 21.9 (C.6)
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Baseline High Noise
σmax

dmin
21 µm 1540 µm

σmedian
dmin

5.16 µm 51.6 µm

Table C.1: The thresholds errors estimated from uniform samples across the domain of the
function for σdmin .

The maximum values can change extremely quickly depending on how fine a sam-

pling is used. To get around this, a different measure based on the sample median

(of the absolute value) could be used. 50% of the sampled points have an absolute

value less than this number. The sample medians are calculated as:

medians(A) = 0.354 (C.7)

medians(B) = 0.376 (C.8)

medians(|
∂A
∂φ
|) = 0.193 (C.9)

medians(|
∂A
∂θ
|) = 0.507 (C.10)

medians(|
∂B
∂φ
|) = 0.155 (C.11)

medians(|
∂B
∂θ
|) = 0.427 (C.12)

The formula for σdmin now depends only on two parameters: (d0,z0). To get to a

final measure dependent only on the noise values added, we estimate these using

distributions of (d0,z0) for secondary and tertiary vertex tracks from our 300,000

toy jets. The maximum and median values are given below:

maxs(d0) = 42,600µm (C.13)

maxs(z0) = 27,100µm (C.14)

medians(d0) = 312µm (C.15)

medians(z0) = 28.9µm (C.16)

The error σdmin is then calculated using the max and median values derived to create

σmax
dmin

and σmedian
dmin

. The results are presented in table 7.8 for the two noise regimes:
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Analysis Framework and Triggers

D.1 Analysis Framework
The GHH analysis chain covers all the processing of the data starting from the input

DxAODs and finishing with the final result. The chain is composed of several key

frameworks as follows:

1. The CxAOD Framework: Comprised of two main parts, called CxAODMaker

and CxAODReader, a GHH specific version of the CxAOD Framework was

developed. The CxAOD Framework is broadly responsible for applying the

various calibrations recommended by the ATLAS CP groups, reducing the

input DxAODs to a much more manageable CxAOD (calibrated xAOD) ob-

ject. A size reduction is achieved from the order TB DxAODs to the order GB

CxAODs. This is achieved by removing all information not necessary for the

GHH analysis. The CxAODs are produced by the CxAODMaker. The CxAO-

DReader can then be used to produce analysis ntuples in an easily readable

format. Documentation for the CxAOD Framework can be found here.

2. The n-tuple Reader: The analysis specific ntuplereader ghh transforms the

analysis ntuples outputted from CxAODReader into the kinematic histograms

of the various analysis regions. It applies all the various cuts and outputs the

histograms with each systematic variation applied.

3. The plotting tool: The PlottingTool GHH framework generates kinematic

https://indico.cern.ch/event/457239/contributions/1127251/attachments/1208175/1762731/CxAODintro.pdf
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Electron Trigger Muon Trigger
HLT e24 lhemedium L1EM20VH HLT mu20 iloose L1MU15

2015 HLT e60 lhemedium HLT mu50
HLT e120 lhloose

HLT e26 lhtight nod0 ivarloose HLT mu26 ivarmedium
2016 - HLT e60 lhmedium nod0 HLT mu50
2018 HLT e140 lhloose nod0

HLT e300 etcut

Table D.1: The single-lepton triggers used in this analysis

variable plots in the various analysis regions. These are used to compare

the various estimated backgrounds to data and validate these methods.

4. The statistical framework: An analysis specific framework is developed that

uses HistFitter [125] to perform the statistical fit. This takes the histograms

produced by ntuplereader ghh and outputs the various results shown in sec-

tion 8.10.

D.2 Analysis Triggers
The single lepton triggers used are summarized in table D.1. The single-lepton

triggers are defined in the tech report [142].



Appendix E

Signal Samples

The various signal samples used in this analysis are summarized here. The 172

samples found across tables E.1 to E.4 are the current signal samples in use to

produce the results.
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Table E.1: Simulated signal samples used in the analysis with mH = 300 GeV.

MC Type DSID mH [GeV] fW fWW

GHH300fW1230fWW0 505229 300 1230 0
GHH300fW770fWW0 505230 300 770 0
GHH300fW1910fWW0 505231 300 1910 0
GHH300fW660fWW3960 505232 300 660 3960
GHH300fW415fWW2490 505233 300 415 2490
GHH300fW1015fWW6090 505234 300 1015 6090
GHH300fW0fWW4600 505235 300 0 4600
GHH300fW0fWW2450 505236 300 0 2450
GHH300fW0fWW7100 505237 300 0 7100
GHH300fWm730fWW4380 505238 300 -730 4380
GHH300fWm455fWW2730 505239 300 -455 2730
GHH300fWm1125fWW6750 505240 300 -1125 6750
GHH300fWm1360fWW0 505241 300 -1360 0
GHH300fWm810fWW0 505242 300 -810 0
GHH300fWm2180fWW0 505243 300 -2180 0
GHH300fWm610fWWm3660 505244 300 -610 -3660
GHH300fWm370fWWm2220 505245 300 -370 -2220
GHH300fWm960fWWm5760 505246 300 -960 -5760
GHH300fW0fWWm4650 505247 300 0 -4650
GHH300fW0fWWm2300 505248 300 0 -2300
GHH300fW0fWWm7250 505249 300 0 -7250
GHH300fW710fWWm4260 505250 300 710 -4260
GHH300fW430fWWm2580 505251 300 430 -2580
GHH300fW1110fWWm6660 505252 300 1110 -6660
GHH300fW1000fWW2000 505253 300 1000 2000
GHH300fW500fWW1000 505254 300 500 1000
GHH300fW1500fWW3000 505255 300 1500 3000
GHH300fW300fWW4500 505256 300 300 4500
GHH300fW150fWW2250 505257 300 150 2250
GHH300fW470fWW7050 505258 300 470 7050
GHH300fWm330fWW4950 505259 300 -330 4950
GHH300fWm150fWW2250 505260 300 -150 2250
GHH300fWm490fWW7350 505261 300 -490 7350
GHH300fWm1200fWW2400 505262 300 -1200 2400
GHH300fWm500fWW1000 505263 300 -500 1000
GHH300fWm1950fWW3900 505264 300 -1950 3900
GHH300fWm1100fWWm2200 505265 300 -1100 -2200
GHH300fWm500fWWm1000 505266 300 -500 -1000
GHH300fWm1800fWWm3600 505267 300 -1800 -3600
GHH300fWm300fWWm4500 505268 300 -300 -4500
GHH300fWm140fWWm2100 505269 300 -140 -2100
GHH300fWm470fWWm7050 505270 300 -470 -7050
GHH300fW330fWWm4950 505271 300 330 -4950
GHH300fW150fWWm2250 505272 300 150 -2250
GHH300fW500fWWm7500 505273 300 500 -7500
GHH300fW1100fWWm2200 505274 300 1100 -2200
GHH300fW500fWWm1000 505275 300 500 -1000
GHH300fW1800fWWm3600 505276 300 1800 -3600
GHH300fW1350fWW0 505373 300 1350 0
GHH300fW0fWW6200 505383 300 0 6200



213

Table E.2: Simulated signal samples used in the analysis with mH = 600 GeV.

MC Type DSID mH [GeV] fW fWW

GHH600fW1350fWW0 505277 600 1350 0
GHH600fW820fWW0 505278 600 820 0
GHH600fW2130fWW0 505279 600 2130 0
GHH600fW765fWW4590 505280 600 765 4590
GHH600fW470fWW2820 505281 600 470 2820
GHH600fW1205fWW7230 505282 600 1205 7230
GHH600fW0fWW6200 505283 600 0 6200
GHH600fW0fWW3800 505284 600 0 3800
GHH600fW0fWW9750 505285 600 0 9750
GHH600fWm855fWW5130 505286 600 -855 5130
GHH600fWm520fWW3120 505287 600 -520 3120
GHH600fWm1355fWW8130 505288 600 -1355 8130
GHH600fWm1340fWW0 505289 600 -1340 0
GHH600fWm790fWW0 505290 600 -790 0
GHH600fWm2130fWW0 505291 600 -2130 0
GHH600fWm755fWWm4530 505292 600 -755 -4530
GHH600fWm455fWWm2730 505293 600 -455 -2730
GHH600fWm1195fWWm7170 505294 600 -1195 -7170
GHH600fW0fWWm6250 505295 600 0 -6250
GHH600fW0fWWm3800 505296 600 0 -3800
GHH600fW0fWWm9900 505297 600 0 -9900
GHH600fW915fWWm5490 505298 600 915 -5490
GHH600fW555fWWm3330 505299 600 555 -3330
GHH600fW1440fWWm8640 505300 600 1440 -8640
GHH600fW1200fWW2400 505301 600 1200 2400
GHH600fW500fWW1000 505302 600 500 1000
GHH600fW1900fWW3800 505303 600 1900 3800
GHH600fW400fWW6000 505304 600 400 6000
GHH600fW200fWW3000 505305 600 200 3000
GHH600fW650fWW9750 505306 600 650 9750
GHH600fWm400fWW6000 505307 600 -400 6000
GHH600fWm200fWW3000 505308 600 -200 3000
GHH600fWm650fWW9750 505309 600 -650 9750
GHH600fWm1250fWW2500 505310 600 -1250 2500
GHH600fWm500fWW1000 505311 600 -500 1000
GHH600fWm2000fWW4000 505312 600 -2000 4000
GHH600fWm1200fWWm2400 505313 600 -1200 -2400
GHH600fWm500fWWm1000 505314 600 -500 -1000
GHH600fWm1900fWWm3800 505315 600 -1900 -3800
GHH600fWm400fWWm6000 505316 600 -400 -6000
GHH600fWm190fWWm2850 505317 600 -190 -2850
GHH600fWm650fWWm9750 505318 600 -650 -9750
GHH600fW450fWWm6750 505319 600 450 -6750
GHH600fW200fWWm3000 505320 600 200 -3000
GHH600fW670fWWm10050 505321 600 670 -10050
GHH600fW1300fWWm2600 505322 600 1300 -2600
GHH600fW600fWWm1200 505323 600 600 -1200
GHH600fW2050fWWm4100 505324 600 2050 -4100
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Table E.3: Simulated signal samples used in the analysis with mH = 900 GeV.

MC Type DSID mH [GeV] fW fWW

GHH900fW1570fWW0 505325 900 1570 0
GHH900fW940fWW0 505326 900 940 0
GHH900fW2510fWW0 505327 900 2510 0
GHH900fW1015fWW6090 505328 900 1015 6090
GHH900fW610fWW3660 505329 900 610 3660
GHH900fW1615fWW9690 505330 900 1615 9690
GHH900fW0fWW8800 505331 900 0 8800
GHH900fW0fWW5250 505332 900 0 5250
GHH900fW0fWW14100 505333 900 0 14100
GHH900fWm1165fWW6990 505334 900 -1165 6990
GHH900fWm695fWW4170 505335 900 -695 4170
GHH900fWm1865fWW11190 505336 900 -1865 11190
GHH900fWm1550fWW0 505337 900 -1550 0
GHH900fWm920fWW0 505338 900 -920 0
GHH900fWm2480fWW0 505339 900 -2480 0
GHH900fWm1000fWWm6000 505340 900 -1000 -6000
GHH900fWm495fWWm2970 505341 900 -495 -2970
GHH900fWm1605fWWm9630 505342 900 -1605 -9630
GHH900fW0fWWm8700 505343 900 0 -8700
GHH900fW0fWWm5150 505344 900 0 -5150
GHH900fW0fWWm13950 505345 900 0 -13950
GHH900fW1205fWWm7230 505346 900 1205 -7230
GHH900fW720fWWm4320 505347 900 720 -4320
GHH900fW1925fWWm11550 505348 900 1925 -11550
GHH900fW1400fWW2800 505349 900 1400 2800
GHH900fW700fWW1400 505350 900 700 1400
GHH900fW2300fWW4600 505351 900 2300 4600
GHH900fW550fWW8250 505352 900 550 8250
GHH900fW300fWW4500 505353 900 300 4500
GHH900fW900fWW13500 505354 900 900 13500
GHH900fWm600fWW9000 505355 900 -600 9000
GHH900fWm300fWW4500 505356 900 -300 4500
GHH900fWm1000fWW15000 505357 900 -1000 15000
GHH900fWm1500fWW3000 505358 900 -1500 3000
GHH900fWm800fWW1600 505359 900 -800 1600
GHH900fWm2400fWW4800 505360 900 -2400 4800
GHH900fWm1400fWWm2800 505361 900 -1400 -2800
GHH900fWm700fWWm1400 505362 900 -700 -1400
GHH900fWm2300fWWm4600 505363 900 -2300 -4600
GHH900fWm550fWWm8250 505364 900 -550 -8250
GHH900fWm250fWWm3750 505365 900 -250 -3750
GHH900fWm850fWWm12750 505366 900 -850 -12750
GHH900fW600fWWm9000 505367 900 600 -9000
GHH900fW300fWWm4500 505368 900 300 -4500
GHH900fW1000fWWm15000 505369 900 1000 -15000
GHH900fW1500fWWm3000 505370 900 1500 -3000
GHH900fW800fWWm1600 505371 900 800 -1600
GHH900fW2400fWWm4800 505372 900 2400 -4800
GHH900fW1350fWW0 505382 900 1350 0
GHH900fW0fWW6200 505392 900 0 6200
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Table E.4: Simulated signal samples used in the analysis for mass scan.

MC Type DSID mH [GeV] fW fWW

GHH300fW0fWW4600 505235 300 0 4600
GHH300fW0fWW2450 505236 300 0 2450
GHH300fW0fWW7100 505237 300 0 7100
GHH300fW0fWWm4650 505247 300 0 -4650
GHH300fW0fWWm2300 505248 300 0 -2300
GHH300fW0fWWm7250 505249 300 0 -7250
GHH600fW1350fWW0 505277 600 1350 0
GHH600fW0fWW6200 505283 600 0 6200
GHH600fW0fWW3800 505284 600 0 3800
GHH600fW0fWW9750 505285 600 0 9750
GHH600fW0fWWm6250 505295 600 0 -6250
GHH600fW0fWWm3800 505296 600 0 -3800
GHH600fW0fWWm9900 505297 600 0 -9900
GHH900fW0fWW8800 505331 900 0 8800
GHH900fW0fWW5250 505332 900 0 5250
GHH900fW0fWW14100 505333 900 0 14100
GHH900fW0fWWm8700 505343 900 0 -8700
GHH900fW0fWWm5150 505344 900 0 -5150
GHH900fW0fWWm13950 505345 900 0 -13950
GHH300fW1350fWW0 505373 300 1350 0
GHH360fW1350fWW0 505374 360 1350 0
GHH420fW1350fWW0 505375 420 1350 0
GHH480fW1350fWW0 505376 480 1350 0
GHH540fW1350fWW0 505377 540 1350 0
GHH660fW1350fWW0 505378 660 1350 0
GHH720fW1350fWW0 505379 720 1350 0
GHH780fW1350fWW0 505380 780 1350 0
GHH840fW1350fWW0 505381 840 1350 0
GHH900fW1350fWW0 505382 900 1350 0
GHH300fW0fWW6200 505383 300 0 6200
GHH360fW0fWW6200 505384 360 0 6200
GHH420fW0fWW6200 505385 420 0 6200
GHH480fW0fWW6200 505386 480 0 6200
GHH540fW0fWW6200 505387 540 0 6200
GHH660fW0fWW6200 505388 660 0 6200
GHH720fW0fWW6200 505389 720 0 6200
GHH780fW0fWW6200 505390 780 0 6200
GHH840fW0fWW6200 505391 840 0 6200
GHH900fW0fWW6200 505392 900 0 6200
GHH1000fW1350fWW0 507657 1000 1350 0
GHH1200fW1350fWW0 507658 1200 1350 0
GHH1500fW1350fWW0 507659 1500 1350 0
GHH2000fW1350fWW0 507660 2000 1350 0
GHH1000fW0fWW6200 507661 1000 0 6200
GHH1200fW0fWW6200 507662 1200 0 6200
GHH1500fW0fWW6200 507663 1500 0 6200
GHH2000fW0fWW6200 507664 2000 0 6200
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