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ABSTRACT 

 

Background: Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 Deletion 

Syndrome (22q11.2DS) have a 25-30% risk of schizophrenia, and up to 60% also have varying degrees of 

hearing impairment, primarily from middle ear inflammation. The Df1/+ mouse model of 22q11.2DS 

recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities 

and high inter-individual variation in hearing ability. However, the relationship between brain abnormalities 

and hearing impairment in Df1/+ mice has not been examined.  

Methods: We measured auditory brainstem responses (ABRs), cortical auditory evoked potentials, and/or 

cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We 

also performed longitudinal ABR measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 

weeks of age. 

Results: Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ 

interneurons, which are implicated in schizophrenia pathology, were reduced in density in auditory cortex 

but not secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which 

affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age.  

Conclusions: In the Df1/+ mouse model of 22q11.2DS, abnormalities in central auditory excitability and 

auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of 

cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either 

schizophrenia or middle ear inflammation.  
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INTRODUCTION  

 

The multigene deletion that causes 22q11.2 Deletion Syndrome (22q11.2DS) is the strongest known 

cytogenetic risk factor for schizophrenia in humans (1,2). Approximately 25-30% of patients with 22q11.2DS 

develop schizophrenia during adolescence or adulthood (1,3,4). Notably, up to 60% of 22q11.2DS patients 

have hearing impairment, arising primarily from high rates of recurrent or chronic otitis media (middle ear 

inflammation) (5).  

 

The Df1/+ mouse model of 22q11.2DS has an engineered hemizygous deletion of 1.2Mbp encompassing 

18 orthologs of genes deleted in human 22q11.2DS (6). Like other mouse models of 22q11.2DS, the Df1/+ 

mouse recapitulates many phenotypic features of the human syndrome (2,6,7), including brain and 

behavioral anomalies that have been linked to schizophrenia in humans (8,9). Df1/+ mice exhibit reduced 

prepulse inhibition of the acoustic startle response (10), an auditory behavioral marker for schizophrenia-like 

abnormalities and common feature of 22q11.2DS in humans (4). Specific abnormalities in auditory 

thalamocortical processing have also been reported in Df1/+ mice, including abnormal sensitivity of auditory 

thalamocortical projections to antipsychotic drugs (11). However, like humans with 22q11.2DS, up to 60% of 

Df1/+ mice have hearing impairment (12), which arises from developmental defects that increase 

susceptibility to otitis media (13). The potential interaction between hearing impairment and auditory brain 

abnormalities in Df1/+ mice has never been systematically explored.  

 

In humans, hearing impairment has been described as the “neglected risk factor for psychosis” (14). 

Hearing loss is associated with increased risk of psychosis and hallucinations, and hearing impairment in 

childhood elevates the risk of developing schizophrenia later in life (15). The mechanisms underlying the 

association between hearing impairment and schizophrenia are unknown, and could include common 

etiology, top-down influences (e.g., from social isolation), and/or bottom-up effects. A role for bottom-up 

effects is suggested by data from animal studies indicating that reductions in peripheral auditory input drive 

long-lasting changes in central auditory processing which can affect behavior (16–19). Even moderate 
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conductive hearing impairment, such as that caused by otitis media, can produce persistent changes in 

inhibitory synaptic transmission in the auditory cortex that persist after normal hearing is restored 

(17,18,20,21). 

 

Here we investigated the relationship between hearing impairment and auditory brain abnormalities in the 

Df1/+ mouse model of 22q11.2DS. We focused on neurophysiological and neuroanatomical markers 

associated with schizophrenia in humans, such as abnormalities in cortical auditory evoked potentials (22) 

and parvalbumin-positive (PV+) cortical interneurons (23). PV+ interneurons play a key role in maintaining 

excitation-inhibition balance in the cortex (24) and abnormalities in these inhibitory cells are thought to be 

important to the pathophysiology of schizophrenia (25). Our results reveal a significant correlation between 

hearing impairment in Df1/+ mice and both electrophysiological markers of central auditory excitability and 

reductions in density of PV-expressing cortical interneurons. Thus, inter-individual differences in the 

magnitude of brain abnormalities in the Df1/+ mouse model of 22q11.2DS can be predicted from inter-

individual differences in the degree of peripheral hearing impairment. 
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METHODS AND MATERIALS 

 

Animals. Df1/+ (also known as Df(16)1/+) mice (6) and their wild-type (WT) littermates were maintained in 

standard mouse housing facilities at either University College London (UCL) or the National Institute of 

Mental Health (NIMH). Experiments at UCL were performed in accordance with a Home Office project 

license approved under the United Kingdom Animal Scientific Procedures Act of 1986. Experiments at 

NIMH were approved by the local Animal Care and Use Committee. See Supplementary Information for 

further details. 

 

Neurophysiology. Auditory brainstem response (ABR) and cortical auditory evoked-potential (AEP) 

recordings were obtained from mice anaesthetised with ketamine and either medetomidine or 

dexmedetomidine. All testing was performed in a sound isolation booth. Auditory stimuli were presented 

either via an in-ear coupler (for longitudinal ABR threshold measurements) or free-field from a speaker 

directed at the ear under test. For ABR threshold measurements, we used click or tone stimuli presented at 

0‒90 dB SPL. For comparisons of ABR and AEP wave magnitudes and latencies, we used 80 dB SPL click 

stimuli. ABR signals were recorded differentially between subdermal electrodes placed at the vertex (+) and 

behind or below the ear being tested (-), with a ground electrode either near the opposite ear (ABR 

threshold measurements) or over the olfactory bulb (ABR/AEP comparisons). AEP signals were recorded 

single-ended from subdermal electrodes placed over the temporal lobe contralateral to the ear being tested, 

relative to a ground over the olfactory bulb. See Supplementary Information for further details. 

 

Immunohistochemistry and microscopy. Coronal brain sections (50 μm thick) were either stained 

alternately for Nissl substance and parvalbumin (PV), or triple-stained for PV, NeuN and DAPI. Sections 

stained for Nissl or DAPI were viewed at 2.5x to 5x magnifications to identify auditory cortex (A1) and 

secondary motor cortex (M2) with reference to a mouse brain atlas (26). Single-plane images of A1 and M2 

sections immunostained for PV and NeuN were then taken at 5x to 10x magnification with 720 pixels/inch 
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resolution, using a Zeiss Axio Scan 2 Imaging microscope. See Supplementary Information for further 

details. 

 

Data analysis: ABRs and AEPs. ABR signals were bandpass-filtered in software (100–3000 Hz, 5th-order 

Butterworth) before averaging across trials; AEP signals were unfiltered aside from the 2.2–7500 Hz 

hardware filter used in data collection. The ABR threshold was identified as in previous work (12). ABR 

wave I amplitude was defined as the difference in signal amplitude between the moment of sound onset and 

the first peak of the ABR to an 80 dB SPL click. AEP P1-N1 and N1-P2 amplitudes were defined as 

amplitude differences between the respective AEP wave components (27): P1, maximum peak 15-30 ms 

after stimulus onset; N1, maximum negative deflection 25-60 ms post-onset; and P2, maximum peak 60-

110 ms post-onset. Central auditory gain was defined as the amplitude of the AEP wave complex (P1-N1 or 

N1-P2) divided by the amplitude of ABR wave I. 

 

Data analysis: cell counts. PV+ and NeuN+ cell counts and laminar distributions in A1 and M2 were 

estimated for images from both hemispheres in each mouse when possible. Immunohistochemical data 

from some hemispheres and animals were lost due to problems with perfusion, damage to sections, or 

aberrant fluorescence in images. See Table 1 for the numbers of mice and hemispheres used for 

comparisons shown in Results figures. 

 

Cortical areas of interest were defined by overlaying the section image with the mouse atlas image (26) for 

the corresponding coronal location, using Adobe Photoshop Elements. Cell centers were marked and 

centroid coordinates recorded using ImageJ. For PV analysis, all immunolabelled cells in the cortical area of 

interest (A1 or M2) were counted. For NeuN analysis, immunolabelled cells were counted within a smaller 

pia-to-white-matter rectangular strip through the center of the region of interest (5% of total area). Laminar 

distributions of cells were estimated using custom MATLAB software, which calculated cell centroid depth 

along a line perpendicular to the pial surface and white matter, normalized by the pia-to-white-matter 

distance in each section. Laminar distributions were compared between animal groups using cell counts 
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binned into 5 equal-depth bins by cortical depth; similar analyses were also performed using 10 or 20 bins 

in depth.  

 

Statistical methods. All data collection and analysis was conducted blind to animal genotype, except in 

experiments involving longitudinal ABR measurement, which involved mostly Df1/+ mice. Separate 

measurements from the same animal obtained during auditory stimulation of left versus right ears were 

treated as independent measurements for some data analyses, since hearing impairment in Df1/+ mice 

frequently affected only one ear. Notably, the distribution of ABR thresholds for Df1/+ ears was bimodal 

rather than Gaussian (i.e., normal thresholds in some Df1/+ ears, significant hearing impairment in others). 

Therefore, for comparisons involving ABR threshold measurements (Figures 1–2, 7, S3), we used non-

parametric tests (Wilcoxon rank-sum or signed-rank tests for differences in medians of two unpaired or 

paired samples; Spearman’s rank correlation tests). Distributions of evoked-potential amplitudes and cell 

density were reasonably well approximated by Gaussian distributions. Therefore, for comparisons involving 

these measurements (Figures 4–6, S1–S2, S4), we used parametric tests (unpaired or paired t-tests for 

differences in means of two unpaired or paired samples; ordinary one-way ANOVA for comparisons 

between multiple groups, followed by Fisher’s LSD post-hoc tests where group differences were significant).  

All statistical tests were two-tailed with α=0.05. 
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RESULTS 

 

Approximately 60% of adult Df1/+ mice have hearing impairment in one or both ears 

 

We quantified hearing sensitivity in adult Df1/+ and WT mice aged 6.6–24.6 weeks (overall median 10.1 

weeks) using the click-evoked auditory brainstem response (ABR) as in previous work (12). There was no 

significant difference in age between the two groups (median [95% CI]: Df1/+ 8.3 [6.6 19.3] weeks, WT 10.4 

[6.6 24.6] weeks; Wilcoxon rank-sum test, p=0.06). ABR thresholds were obtained for each ear in each 

mouse, except in one WT animal which died after measurement in only one ear. 

 

Replicating previous results obtained in a cohort of older Df1/+ and WT mice (12), we found clear evidence 

for hearing impairment in more than half of the Df1/+ animals (Figure 1). Median ABR thresholds were 

significantly higher in Df1/+ than WT mice (median [95% CI]: Df1/+ 40 [30 70] dB SPL, WT 30 [30 40] dB 

SPL; Wilcoxon rank-sum test, p<0.0001). Elevation of ABR thresholds in Df1/+ relative to WT mice was 

evident in both male and female animals, but there were no differences between genders within genotype 

(Figure 1A; Wilcoxon rank-sum tests, p<0.0001 between genotypes within gender, p>0.1 between genders 

within genotype). 

 

Notably, there was substantial inter-ear and inter-individual variation in hearing ability among Df1/+ animals 

(Figure 1B); i.e., ABR thresholds were abnormally elevated in some Df1/+ ears but not others. Defining the 

upper bound of normal hearing as 2.5 SD above the mean ABR threshold for WT ears (i.e., abnormal 

hearing threshold: >40.88 dB SPL), we found that 46% (23/50) of Df1/+ ears and 0% (0/51) of WT ears 

displayed hearing impairment. Overall, 60% (15/25) of Df1/+ mice had either monaural or binaural hearing 

impairment, and monaural hearing impairment occurred most commonly in the left ear (Figure 1C). These 

results align both qualitatively and quantitatively with findings previously reported in Df1/+ and WT animals 

tested at similar or older ages (12). 
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Hearing impairment emerges before adulthood in Df1/+ mice 

 

To investigate the early timecourse of hearing impairment in Df1/+ mice, we measured click and tone ABR 

thresholds in mice as young as 3 weeks of age (i.e., at weaning) and conducted a longitudinal study of 

changes in ABR thresholds over time. This work was performed using a separate cohort of Df1/+ and WT 

mice bred and tested in a different facility and country (at the National Institutes of Health, USA instead of 

University College London, UK). 

 

Hearing impairment was evident in a subset of Df1/+ mice well before adulthood. Even among mice less 

than 6 weeks old — i.e., before puberty in mice (28) — click ABR thresholds were elevated in Df1/+ ears 

compared to WT ears (Figure 2A; median [95% CI]: Df1/+ 35 [30 45] dB SPL vs. WT 32.5 [30 37.2] dB SPL; 

Wilcoxon rank-sum test, p=0.012). Moreover, early hearing impairment tended to persist in affected ears. In 

mice for which click ABR measurements could be obtained at both young and adult ages (<6wks and 

>6wks), we found significant differences in ear ABR thresholds between Df1/+ and WT animals within both 

age groups, but no significant differences between ages within genotype (Figure 2B; Wilcoxon rank-sum 

tests, Df1/+ vs. WT: <6wks p=0.020, >6wks p=0.0027; Wilcoxon signed-rank tests, <6wks vs. >6wks: Df1/+ 

p=0.26, WT p=1). 

 

Thus, hearing impairment emerged early in a subset of Df1/+ animals and typically persisted for many 

weeks once it emerged. Longitudinal measurements of maximum-ear click ABR thresholds for individual 

mice revealed multiple examples of Df1/+ mice with early-onset and persistent hearing impairment, along 

with examples of Df1/+ mice with normal hearing across all tested ages (Figure 2C). Similar results were 

also obtained when measuring ABR thresholds using 8 or 16 kHz tones. 

 

ABR wave I amplitude reductions in Df1/+ mice with hearing impairment are not maintained in 

cortical AEPs 
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We wondered if auditory brain responses might differ between Df1/+ and WT mice, and whether any 

differences might be related to the hearing impairment afflicting a subset of Df1/+ animals. Previous studies 

have reported abnormalities in sound-evoked auditory thalamic and/or cortical activity in mouse models of 

22q11.2DS, but have either not investigated the role of hearing impairment (11) or not observed hearing 

impairment in the animals tested (29).  

 

We recorded both ABR waves and contralateral cortical auditory evoked potential (AEP) waves following 

presentations of loud suprathreshold (80 dB SPL) clicks at 300 ms inter-click intervals, in adult mice from 

the Figure 1 cohort. To assess the timing and strength of afferent input to the auditory brain, we measured 

the peak latency and baseline-to-peak amplitude of ABR wave I (Figure 3A), which arises from the auditory 

nerve. Within the AEP, we focused on wave peaks or troughs typically attributed to activity within the 

auditory thalamus (P1), auditory cortex (N1), and associative cortices (P2), measuring P1, N1, and P2 

latency and P1-N1 and N1-P2 amplitudes (Figure 3D). 

 

Hearing impairment, defined here as an elevation of the ABR threshold, would be expected to reduce ABR 

wave I amplitude for a suprathreshold click. Indeed, the amplitude of ABR wave I to an 80 dB SPL click was 

significantly lower in Df1/+ mice with hearing impairment (HI) than in either Df1/+ mice with no hearing 

impairment (NHI) or WT mice (Figure 3C and Figure 4B; one-way ANOVA, F(2,76)=5.55, group difference 

p=0.0056; Fisher's LSD, Df1/+ HI vs. WT p=0.0094, Df1/+ HI vs. Df1/+ NHI p=0.0019). However, there was 

no significant difference in ABR wave I amplitude between Df1/+ mice without hearing impairment and WT 

animals (Figure 3C and Figure 4B; unpaired t-test, p=0.33), nor between Df1/+ and WT mice overall (Figure 

3B and Figure 4A; unpaired t-test, p=0.66).  

 

More surprisingly, there were no significant differences between Df1/+ and WT mice in either P1-N1 or N1-

P2 cortical AEP wave amplitudes, even when Df1/+ mice with and without hearing impairment were 

considered separately (Figure 3E,F and Figure 4C-F; unpaired t-test, WT vs. Df1/+ overall, P1-N1: p=0.82 

and N1-P2: p=0.22; one-way ANOVA, WT vs. Df1/+ NHI vs. Df1/+ HI, group differences P1-N1: 
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F(2,76)=0.025, p=0.98 and N1-P2: F(2,76)=1.20, p=0.31). There were also no significant differences in 

latencies of ABR wave I or cortical AEP waves P1, N1 or P2 between WT and Df1/+ animals, either overall 

or when hearing impairment in Df1/+ mice was taken into account (Figure S1).  

 

Thus, while ABR wave I amplitude was reduced as expected in Df1/+ mice with hearing impairment, there 

were no significant differences in the cortical AEP waves between any of the subgroups. This result 

suggests an increase in central auditory gain in Df1/+ mice with hearing impairment, as previously observed 

in animal models of more profound, bilateral hearing loss (e.g., (16,30)).  

 

Central auditory gain is elevated specifically in Df1/+ mice with hearing impairment 

 

To quantify central auditory gain, we compared ABR wave I amplitude to cortical AEP P1-N1 or N1-P2 

amplitude recorded simultaneously over the contralateral cortical hemisphere. We used the ratios of cortical 

AEP P1-N1 or N1-P2 amplitude to ABR wave I amplitude as measures of central auditory gain. 

 

Both the P1-N1 and N1-P2 gain measures revealed elevated central auditory gain specifically in Df1/+ mice 

with hearing impairment (Figure 5). When comparing Df1/+ mice overall with WT mice, we observed no 

significant differences in the ratio of either AEP P1-N1 amplitude or N1-P2 amplitude to ABR wave I 

amplitude (Figure 5A,C; unpaired t-test, P1-N1: p=0.36 and N1-P2: p=0.084). However, the P1-N1 gain 

measure was significantly higher in Df1/+ mice with hearing impairment than in either WT mice or Df1/+ 

mice without hearing impairment, while Df1/+ mice without hearing impairment were not significantly 

different from WT animals (Figure 5B; one-way ANOVA, F(2,76)=4.96, group difference p=0.0094; Fisher's 

LSD, Df1/+ HI vs. WT p=0.011, Df1/+ HI vs. Df1/+ NHI p=0.0037, WT vs. Df1/+ NHI p=0.44). Similar results 

were obtained for the N1-P2 gain measure (Figure 5D; one-way ANOVA, F(2,76)=7.68, group difference 

p=0.0009; Fisher's LSD, Df1/+ HI vs. WT p=0.0006, Df1/+ HI vs. Df1/+ NHI p=0.0009, WT vs. Df1/+ NHI 

p=0.79). These results suggest that central auditory abnormalities arise in some Df1/+ mice as a 

consequence of hearing impairment. 
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Df1/+ mice with hearing impairment have reduced density of PV+ interneurons in the auditory cortex 

 

Changes in central auditory gain following hearing impairment have been linked with alterations in 

parvalbumin-positive interneuron activity in the auditory cortex (31,32), and abnormalities in PV+ 

interneuron networks are also a common finding in animal models of schizophrenia (see (33,34) for 

reviews). We wondered whether auditory cortical PV+ interneuron density might be abnormal in Df1/+ mice, 

and if so, how these abnormalities might relate to hearing impairment. To examine both PV+ cell density 

and density of neurons overall, we performed immunohistochemical staining for PV and NeuN (a pan-

neuronal marker) in coronal brain sections through the auditory cortex (Figure 6A and Figure S2A) in adult 

Df1/+ and WT mice, most of which had also undergone ABR testing (Table 1).  

 

PV+ cell density in the auditory cortex was significantly lower in Df1/+ than WT mice (Figure 6B; unpaired t-

test, p=0.00030), and this difference arose primarily from abnormalities in the subset of Df1/+ mice with 

hearing impairment. In Df1/+ mice with hearing impairment, PV+ cell density was significantly lower than in 

either WT mice or Df1/+ mice without hearing impairment, while PV+ cell density in Df1/+ mice without 

hearing impairment did not differ from that in WT animals (Figure 6C; one-way ANOVA, F(2,43)=6.37, group 

difference p=0.0038; Fisher's LSD, Df1/+ HI vs. WT p=0.0011, Df1/+ HI vs. Df1/+ NHI p=0.026, WT vs. 

Df1/+ NHI p=0.53). In contrast, there were no significant differences in NeuN+ cell density in A1 between 

WT and Df1/+ animals with or without hearing impairment (Figure S2B,C).  

 

Importantly, PV+ interneuron density in the auditory cortex was inversely correlated with the severity of 

hearing impairment in Df1/+ mice (Figure 7). We quantified the degree of hearing impairment in each mouse 

by calculating the maximum click-evoked ABR threshold across ears, and then subtracting the average of 

these values across WT animals. In Df1/+ mice, auditory cortical PV+ cell density decreased as the degree 

of hearing impairment increased (Figure 7; Spearman’s rho=−0.42, p=0.0021). Similar trends were evident 

when PV+ cell density in auditory cortical hemispheres from Df1/+ mice were compared to left, right, 
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contralateral or ipsilateral ear ABR thresholds, with a significant negative correlation for the relationship with 

left ear ABR threshold in particular (Figure S3). Thus, PV+ interneuron abnormalities in the auditory cortex 

of Df1/+ mice are related to the variable hearing impairment observed in these animals. 

 

Df1/+ mice do not show abnormalities in PV+ or NeuN+ cell density in M2, nor changes in laminar 

distribution of PV+ cells in A1 

 

Auditory cortex in mice is reciprocally connected with the secondary motor area (M2) in the frontal cortex, 

and neural activity in M2 is known to modulate auditory cortical processing (35,36). To find out if reductions 

in PV+ cell density observed in A1 of Df1/+ mice with hearing impairment also occurred in M2, we analyzed 

PV and NeuN immunostaining in coronal brain sections through frontal cortex (Figure 6D and Figure S2D).  

 

Results suggest that reductions in PV+ cell density in Df1/+ mice with hearing impairment may be specific to 

auditory cortex. PV+ cell density in M2 did not differ between WT and Df1/+ mice (Figure 6E; unpaired t-

test, p=0.46), nor between WT mice, Df1/+ mice without hearing impairment, and Df1/+ mice with hearing 

impairment (Figure 6F; one-way ANOVA, F(2,56)=1.04, group difference p=0.36). There were also no 

significant differences between animal groups in NeuN+ cell density in M2 (Figure S2E,F).  

 

Furthermore, we observed no abnormalities in laminar distribution of PV+ interneurons in A1 of Df1/+ mice, 

and minimal evidence for abnormalities in M2. Comparing WT mice to Df1/+ mice overall, we found no 

significant differences in the cortical depth distribution of PV+ interneurons in either A1 or M2 (Figure 

S4A,C). Comparing WT mice and Df1/+ mice with and without hearing impairment, we again found no 

significant differences in depth distribution of PV+ cells in A1, while a weak effect of hearing impairment was 

observed in M2 (Figure S4B,D). Post-hoc tests identified the significant result in M2 as arising from a 

reduction in PV+ cell density in Df1/+ mice with hearing impairment, at cortical depths 0.6-0.8 of the total 

distance from pia to white matter. This slight alteration in M2 PV+ cell distribution in Df1/+ mice with hearing 

impairment is reminiscent of aberrant laminar distributions of PV+ cells previously observed in medial 
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cortical regions of the LgDel mouse (37, 38). However, in M2 of Df1/+ mice the laminar abnormalities 

appeared relatively weak, despite a comparatively large sample size. 
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DISCUSSION 

 

Our results show that abnormalities in auditory cortical evoked potentials and PV+ interneuron density in the 

Df1/+ mouse model of 22q11.2DS are related to the degree of peripheral hearing impairment in individual 

Df1/+ animals. In principle, this correlation could arise from either direction of causal relationship between 

auditory brain abnormalities and peripheral hearing impairment, or from a common underlying cause that 

varies across Df1/+ animals despite their genetic similarity.  

 

The most plausible of the two possible causal relationships is that auditory brain abnormalities in Df1/+ mice 

are caused either entirely by peripheral hearing impairment, or by an interaction between hearing 

impairment and other genetic vulnerabilities associated with the 22q11.2 deletion. Peripheral hearing 

impairment in Df1/+ mice arises from middle ear inflammation (otitis media) triggered by developmental 

defects in muscles of the Eustachian tube (12,13). It is highly unlikely that auditory cortical abnormalities in 

Df1/+ mice alter peripheral hearing sensitivity; even bilateral auditory cortex lesions do not affect ABR 

thresholds in mice (38). On the other hand, experimentally induced peripheral hearing impairment is already 

known to increase central auditory gain and to alter cortical excitation/inhibition balance in mice and other 

animals (18,31,39–41). 

 

It is also possible that individual differences in auditory brain abnormalities and peripheral hearing 

impairment among Df1/+ mice arise from a common underlying cause, such as varying levels of 

inflammation. Distinguishing the common-cause explanation from causal effects of hearing impairment will 

require further experiments in other mouse models of otitis media and in WT mice with induced hearing 

impairment. 

 

Hearing impairment in mouse models of 22q11.2DS 
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Our data confirm that approximately 60% of adult Df1/+ mice have hearing impairment in one or both ears 

(12), and demonstrate for the first time that hearing impairment emerges well before adulthood in affected 

animals. These observations raise the possibility of developmental as well as acute effects of hearing 

impairment on brain function in a subset of Df1/+ mice. Even hearing impairment that occurs only in one ear 

can drive plastic changes throughout the central auditory system, particularly if it occurs during development 

(17,20,21,42,43).  

 

Hearing impairment in Df1/+ mice has previously been shown to correlate ear-by-ear with otitis media (12), 

which is also the primary cause of hearing impairment in humans with 22q11.2DS (5). In Df1/+ mice, 

susceptibility to otitis media arises from a developmental defect in a muscle affecting drainage of the middle 

ear through the Eustachian tube (13). This muscle defect is caused by haploinsufficiency of the gene Tbx1 

(13,44), which lies within the minimum human 22q11.2 deletion region. Thus, our present results and 

previous work (12,13) suggest that any mouse model of human 22q11.2DS with heterozygous deletion of 

Tbx1 may be susceptible to otitis media and hearing impairment from an early age.  

 

There are, however, some discrepant results in the literature; two previous studies that tested peripheral 

hearing sensitivity in mouse models of 22q11.2DS found no significant differences from WT animals 

(29,45). Age differences or genetic differences in the mice seem unlikely to explain the discrepant results, 

since hearing impairment is evident even in young Df1/+ mice and arises from Tbx1 haploinsufficiency. 

Differences in the microbiological status of the mice seem a more plausible explanation, given that 

opportunistic pathogens in laboratory mouse facilities can increase risk of otitis media (47). Mice used in the 

present study were bred and maintained in standard mouse housing facilities. It is possible that the 

incidence of otitis media and hearing impairment in Df1/+ mice might be lower in super-clean facilities. 

Importantly, however, hearing impairment and otitis media have been found to affect a majority of human 

22q11.2DS patients (5). Therefore, even if it were possible to reduce the incidence of otitis media in Df1/+ 

mice by restricting their microbiological exposure, the resulting animals would be poorer models of the 

human syndrome. 
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Central auditory abnormalities in mouse models of 22q11.2DS 

 

We found that measures of central auditory gain (e.g., ratios between AEP P1-N1 or N1-P2 amplitude and 

ABR wave I amplitude) were significantly higher in Df1/+ mice with hearing impairment than in WT mice or 

in Df1/+ mice without hearing impairment.  This finding is consistent with previous literature on effects of 

hearing impairment. Loss of peripheral auditory input drives homeostatic changes throughout the auditory 

brainstem, midbrain, thalamus and cortex, which typically manifest as reductions in inhibitory synaptic 

transmission, increased spontaneous activity, and increased gain of sound-evoked responses 

(16,18,21,31,49). Thus, increased central auditory gain in Df1/+ mice with hearing impairment could arise at 

multiple stages of the central auditory pathway.  

 

Parvalbumin-positive cortical interneurons and hearing impairment 

 

We observed a reduction in the density of PV-expressing cortical interneurons in Df1/+ mice, which was 

specific to the auditory cortex and correlated with degree of hearing impairment in individual animals.  

To our knowledge, this is not only the first report of a link between hearing impairment and reduced PV+ 

interneuron density in an animal model of schizophrenia, but also the first indication that hearing impairment 

due to otitis media may influence PV+ interneuron density in the auditory cortex. Previous studies in mice 

have demonstrated that PV+ interneuron density and distribution in the auditory cortex can be affected by 

age-related changes in the auditory system (59–62), by noise-induced or pharmacologically induced 

sensorineural hearing loss (32,61), and by mutations that disrupt both auditory hair cell function and cortical 

interneuron migration (63). Our findings raise the additional possibility that conductive hearing impairment, 

either alone or in combination with genetic risk factors for schizophrenia, may lead to reductions in PV+ 

interneuron density.  
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Reduced PV+ cell density could arise from disrupted PV+ cell migration to cortex during embryonic 

development (~E13–E17), increased PV+ cell death during postnatal development (~P5–P15), and/or 

reduction in PV expression in cortical interneurons after development (64,65). Previous work suggests that 

otitis media develops soon after ear opening (at P11) in affected Df1/+ ears (13), a finding consistent with 

our observation of hearing impairment in Df1/+ mice at 3–6 weeks of age. Therefore, hearing impairment in 

Df1/+ mice likely emerges after embryonic migration of PV+ cells, but might affect postnatal PV+ cell 

development as well as PV expression in adulthood. Further experiments are required to determine the 

timing of the reduction in PV+ cell density in auditory cortex. 

 

Parvalbumin-positive cortical interneurons in mouse models of 22q11.2DS 

 

PV+ interneurons are known to play a pivotal role in maintenance of normal cortical circuit function (57,69). 

Previous studies of mouse models of 22q11.2DS have reported altered laminar distribution and/or reduced 

density of PV+ interneurons in the medial prefrontal cortex and hippocampus (37,64–67). Abnormalities in 

PV+ interneurons are also a common finding in human schizophrenia, and are thought to contribute to 

cognitive deficits (25,70–73). Thus, auditory cortical PV+ interneuron abnormalities in mouse models of 

22q11.2DS seem likely to be relevant to understanding cortical circuit dysfunction in schizophrenia — and 

the influence of other potential risk factors such as hearing impairment. 

 

Implications for schizophrenia research 

 

In humans, there is compelling evidence that hearing impairment increases the risk of psychosis and 

hallucinations (see (15) for a recent meta-analysis and review). Moreover, hearing impairment and/or 

middle ear disease in childhood is associated with elevated risk risk of developing schizophrenia in 

adulthood (15,76–78). The mechanisms underlying this association are unknown, but could include 

changes in neuronal networks driven by loss of sensory input. In individuals with genetic vulnerability to 

schizophrenia, including but not only 22q11.2DS patients, hearing impairment from middle ear problems 
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might be a critical “second hit” that breaks the balance of excitation and inhibition in the cortex and 

promotes development of hallucinations and other schizophrenia symptoms. Our results demonstrate that 

the Df1/+ mouse model of 22q11.2DS is an ideal system for studying how genetic vulnerability to 

schizophrenia, hearing impairment, and/or interactions between these factors could produce brain 

abnormalities that promote psychiatric disease.  
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TABLE 

 

Cell type Area Sample units All WT All Df1/+ WT with ABR Df1/+ with ABR 

PV+ A1 Mice 19 19 14 14 (6 NHI, 8 HI) 

Hemispheres 32 34 22 24 (10 NHI, 14 HI) 

M2 Mice 25 21 19 16 (7 NHI, 9 HI) 

Hemispheres 43 36 31 28 (11 NHI, 17 HI) 
 

NeuN+ A1 Mice 7 10 7 10 (4 NHI, 6 HI) 

Hemispheres 10 15 10 15 (6 NHI, 9 HI) 

M2 Mice 14 12 14 12 (6 NHI, 6 HI) 

Hemispheres 25 20 25 20 (10 NHI, 10 HI) 

 

Table 1. Numbers of mice and brain hemispheres used for analyses of PV+ and NeuN+ cell density and 

laminar distribution. All mice were included in comparisons of WT and Df1/+ mice (Figure 6B,E; Figure 

S2B,E; and Figure S4A,C). Only data from mice which underwent ABR testing were included in 

comparisons of WT animals and Df1/+ mice with and without hearing impairment (Figure 6C,F; Figure 

S2C,F; Figure S3; and Figure S4B,D). 
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FIGURE LEGENDS 

 

 

 

Figure 1. Elevated auditory brainstem response (ABR) thresholds in Df1/+ mice.  

(A) Click ABR thresholds recorded from individual ears in male and female WT (blue) and Df1/+ (red) mice. 

Data points represent individual ear measurements; animals typically contributed two measurements, one 

for each ear. P-values indicate significant differences in Wilcoxon rank-sum tests (see text). Number of 

mice: 13 WT male, 13 WT female, 9 Df1/+ male, 16 Df1/+ female.  

(B) Click ABR thresholds pooled across recordings from male and female animals. Note that the Df1/+ ABR 

threshold distribution extends from the minimum to well beyond the maximum of the WT range.  

(C) Relationship between left and right ear ABR thresholds in each mouse. Slight horizontal scatter added 

to aid visualization of overlapping data points. Dashed lines indicate the upper bound of normal hearing, 

defined as 2.5 SD above the mean ABR threshold for WT ears. Upper right quadrant, binaural hearing 

impairment; upper left and lower right quadrant, monaural hearing impairment; lower left quadrant, normal 

hearing. 60% (15/25) of Df1/+ mice had either monaural or binaural hearing impairment, and 46% (23/50) of 

Df1/+ ears exhibited hearing impairment. As previously observed, monaural hearing impairment in Df1/+ 

mice occurred most commonly in the left ear (cf. Figure 2 in (12)). 

 

 

Figure 2. Hearing impairment typically emerges in a subset of Df1/+ mice before 6 weeks of age and 

persists into adulthood.  

(A) Click ABR thresholds recorded in individual ears of WT (blue) and Df1/+ (red) mice younger than 6 

weeks old (i.e., before the typical age of sexual maturity). Data points represent individual ear ABR 

thresholds, averaged across any repeated measurements at ages younger than 6 weeks; each animal 

contributed two data points, one for each ear. Number of mice: 6 WT, 27 Df1/+.  

(B) Click ABR thresholds measured in the same mice at 3-6 weeks (<6wks) and 6-14 weeks (>6wks) of 

age. Individual ear threshold estimates were averaged across repeated measurements at different time 
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points within either the <6wks age range (as in A) or the >6wks age range. Random vertical scatter (+/-3 dB 

SPL) added for display purposes only. P-values indicate significant differences in Wilcoxon tests (see text). 

Number of mice: 4 WT, 7 Df1/+.  

(C) Maximum click-evoked ABR threshold across the two ears for each animal, shown for all measurement 

time points. Solid colored lines join repeated measurements from the same animal, where these could be 

obtained. Number of mice: 6 WT, 30 Df1/+. Random vertical scatter (+/-3 dB SPL) was added for display 

purposes only, to help separate overlapping data points. 

 

 

Figure 3. Average ABR and cortical auditory evoked potential (AEP) waveforms in WT and Df1/+ 

mice.  

(A) Example trial-averaged ABR to an 80 dB SPL click, recorded ipsilateral to the stimulated ear in an 

individual WT animal. Arrows indicate baseline and peak used for measurement of wave I amplitude.  

(B) Mean ABR waveforms averaged across recordings from WT mice (blue) and Df1/+ mice (red). Error 

bars indicate SEM across all trial-averaged ABR recordings for each group of animals.  

(C) Same as B, but with Df1/+ ABR recordings separated into those from Df1/+ mice without hearing 

impairment (green, NHI) or Df1/+ mice with hearing impairment in at least one ear (magenta, HI).  

(D) Example trial-averaged AEP to an 80 dB SPL click, recorded over auditory cortex contralateral to the 

stimulated ear in a WT animal. Arrows indicate P1 peak, N1 trough, and P2 peak.  

(E) Mean AEP waveforms averaged across recordings from different mice; color conventions as in B. Error 

bars indicate SEM across all trial-averaged AEP recordings for each group of animals.  

(F) Same as E, but with Df1/+ AEP recordings separated into those from Df1/+ mice with or without hearing 

impairment in at least one ear; color conventions as in C.  

Ipsilateral ABR and contralateral AEP data were obtained from the same recording for each stimulated ear; 

however ABR waveforms in A-C represent differential signals while AEP waveforms in D-F are single-ended 

signals (see Materials and Methods). Each animal typically contributed two data points, one for each 
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ear/hemisphere combination. Number of mice: 20 WT, 20 Df1/+ (11 Df1/+ NHI, 9 Df1/+ HI). Number of 

ABR/AEP recordings: 39 WT, 40 Df1/+ (22 Df1/+ NHI, 18 Df1/+ HI).  

 

 

Figure 4. Reductions in ABR wave I amplitude in Df1/+ mice with hearing impairment are not 

maintained in cortical AEPs. See text for details of statistical tests. 

(A) ABR wave I amplitude to an 80 dB SPL click does not differ between WT and Df1/+ mice overall.  

(B) However, wave I amplitude to an 80 dB SPL click is reduced in Df1/+ mice with hearing impairment 

relative to either WT mice or Df1/+ mice without hearing impairment, while there is no significant difference 

in ABR wave I amplitude between Df1/+ mice without hearing impairment and WT mice.  

(C-D) AEP P1-N1 amplitude does not differ between WT and Df1/+ mice, either overall (C) or when Df1/+ 

mice with and without hearing impairment are considered separately (D).  

(E-F) No significant differences in AEP N1-P2 amplitude between WT and Df1/+ mice, either overall (E), or 

when Df1/+ mice with and without hearing loss impairment are considered separately (F).  

Number of mice, number of ABR/AEP recordings, and color conventions as in Figure 2. Bars and error bars 

indicate mean ± SEM across recordings. 

 

 

Figure 5. Central auditory gain is elevated in Df1/+ mice with hearing impairment. See text for details 

of statistical tests. 

(A) The ratio of AEP P1-N1 amplitude to ABR wave I amplitude for an 80 dB SPL click does not differ 

between WT mice and Df1/+ mice overall.  

(B) However, this measure of central auditory gain for the P1-N1 complex is significantly elevated in Df1/+ 

mice with hearing impairment relative to either WT mice or Df1/+ mice without hearing impairment.  

(C) Same as A but for the ratio of AEP N1-P2 amplitude to ABR wave I amplitude; no difference between 

WT mice and Df1/+ mice overall.  
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(D) Central auditory gain for the N1-P2 complex is significantly elevated in Df1/+ mice with hearing 

impairment relative to either WT mice or Df1/+ mice without hearing impairment.  

Number of mice and number of ABR/AEP recordings as in Figures 2 and 3; plot conventions as in Figure 3. 

 

 

Figure 6. PV+ cell density is reduced in the auditory cortex but not the motor cortex of Df1/+ mice. 

(A) Example confocal image used for cell counting. Coronal section through primary auditory cortex (A1) 

stained with an antibody against the inhibitory interneuron marker parvalbumin (PV). Areas outside A1 are 

masked in black. Scale bar: 0.1 mm. 

(B) PV+ cell density in A1 was significantly reduced in Df1/+ mice overall compared to WT mice.  

(C) PV+ cell density in A1 was significantly reduced in Df1/+ mice with hearing impairment compared to 

either WT mice or Df1/+ mice without hearing impairment, but there was no significant difference between 

WT mice and Df1/+ mice without hearing impairment.  

(D) Example PV-immunostained coronal section used for cell counting in secondary motor cortex (M2). 

Areas outside M2 are masked in black. Scale bar as in A. 

(E) In M2, there was no significant difference in PV+ cell density between Df1/+ and WT mice overall.  

(F) PV+ cell density in M2 also did not differ between groups when comparing WT mice, Df1/+ mice without 

hearing impairment, and Df1/+ mice with hearing impairment.  

See text for details of statistical tests, and Table 1 for numbers of hemispheres (and mice) in each 

comparison. 

 

 

Figure 7. PV+ cell density in the auditory cortex correlates inversely with hearing impairment in 

Df1/+ mice.  

Each data point (blue, WT; red, Df1/+) represents a PV+ cell density measurement from A1 in the left or 

right hemisphere; individual mice typically contributed two measurements, one for each hemisphere. Here, 

hemisphere measurements are plotted against an overall measure of hearing impairment for each animal 
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(x-axis), obtained by calculating the maximum click-evoked ABR threshold across ears, and then 

subtracting the mean of these values across WT animals only. For comparisons of PV+ cell density in each 

hemisphere to left, right, contralateral, and ipsilateral ear ABR thresholds, see Figure S3. Red text, 

Spearman's rho and p-value for correlation of PV+ cell density with hearing impairment, for Df1/+ mice only. 

Solid red line, two-dimensional least-squares linear fits to the Df1/+ data. Number of mice and number of 

hemispheres as in Table 1 and Figure 6. 
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