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Take-aways:  

 

● Temperate forests are a widespread global biome, and host diverse yeasts. 

● Well-studied model yeasts from other fields are in temperate forests. 

● Isolation strategies depend on target yeasts and researcher questions. 

● Temperate forest yeasts are potentially exciting biotechnological resources. 

● Advancing technology is revealing yeast growth and life cycle secrets. 
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Abstract 

 Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the 

yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are 

less understood. Yeasts are present on nearly all sampled substrates in temperate forests 

worldwide. They associate with soils, macroorganisms, and other habitats, and no doubt 

contribute to broader ecosystem-wide processes. Researchers have gathered information 

leading to hypotheses about yeasts’ niches and their life cycles based on physiological 

observations in the laboratory as well as genomic analyses, but the challenge remains to test 

these hypotheses in the forests themselves. Here we summarize the habitat and global 

patterns of yeast diversity, give some information on a handful of well-studied temperate forest 

yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate 

forest yeasts’ contributions to biotechnology. We close with a summary of the many future 

directions and outstanding questions facing researchers in temperate forest yeast ecology. 

Yeasts present an exciting opportunity to better understand the hidden world of microbial 

ecology in this threatened and global habitat. 

 

1. Introduction 

Yeasts, defined here as predominantly unicellular fungi that often reproduce asexually 

by budding or fission (Kurtzman et al., 2011; Boekhout et al., 2021a), and dimorphic fungi that 

have filamentous and unicellular phases, are ubiquitous throughout Earth's biomes (Péter et 

al., 2017; Boekhout et al., 2021a); however, they are often overlooked in favor of sporocarp-

forming fungi. This is especially true in temperate forests, where researchers have paid 

considerable attention to decomposer and mycorrhizal fungi, many of which produce large 

macroscopic fruiting bodies (Albarracín et al., 2013; Tedersoo et al., 2010; Boddy & Hiscox 

2016). Nevertheless, yeasts have colonized a diverse variety of available forest substrates, 

including soils and the microbiomes of plants, animals, and other fungi (Péter et al., 2017; 

Yurkov, 2018; Stefanini, 2018; Starmer & Lachance, 2011; Yurkov et al., 2012; Boekhout et 

al., 2021a). In addition to being ubiquitous, yeasts are involved in multiple ecosystem 

processes, acting as free-living saprobes, mutualists, parasites, and other symbionts (Starmer 

& Lachance, 2011). They likely have profound impacts on ecosystem functioning in temperate 

forests. However, most of mycologists’ and ecologists’ current knowledge about yeasts in 

temperate forests comes from ex-situ studies of model organisms. In response, research on 

natural history and ecology throughout this fascinating fungal group in the temperate forest 

environment is currently expanding. 

Because yeasts are so diverse, they have the potential to have diverse impacts on 

temperate forest ecosystems. Genomic surveys have associated yeasts with higher stress 

tolerance, simpler carbon utilisation, and higher nitrogen uptake compared to filamentous fungi 
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(Treseder & Lennon 2015; Romero-Olivares et al., 2021), although these genomic surveys 

are biased toward model organisms. In temperate forests, yeast communities respond to 

changes in forest properties including tree age, density, management, and wood deposition, 

and these changes may feed back on forest ecosystem function (Birkhofer et al., 2012; Yurkov 

et al., 2012; Yurkov et al., 2012b; Yurkov et al., 2016). While data on yeasts’ impacts on 

temperate forest ecosystem functioning is still in its infancy, temperate forest yeasts may 

impart ecosystem resilience in the face of climate change. For example, researchers speculate 

that stress-tolerant yeasts  will respond positively to stressful environmental changes relative 

to filamentous fungi, leading to decreased filamentous fungal decomposition and increased 

carbon storage in forest environments (Treseder & Lennon 2015).  

In this review, we define temperate forests broadly as forests in the temperate zone, 

found between boreal and tropical forests. Overall, forests cover nearly a third of global land 

area, and 16% of forested area is occupied by temperate forests (10 million km2) (FAO & 

UNEP 2020). Transitions between temperate and boreal, or temperate and tropical, are not 

sharp. Temperate forest vegetation is diverse, including coniferous, deciduous, and mixed 

forests in Köppen classification climate groups C and D (Beck et al., 2018). This vegetation 

ranges from nearly boreal (continental, with pronounced cold seasons) to subtropical with mild 

climates (only rarely with temperatures below 0 ºC) and can include climates with a 

pronounced dry season (Mediterranean climate). In several geographic areas, temperate 

forests border large grasslands, including the North American great plains and tallgrass 

prairie, Patagonian grasslands, Eurasian steppes, and Humid Pampas (Myster (ed.) 2012). 

The majority of temperate forests are located in the northern hemisphere (Beck et al., 2018).  

 Most forests in the temperate zone are included in two terrestrial biomes (Olson & 

Dinerstein 2002), the temperate broadleaf and mixed forests biome and the temperate 

coniferous forest biome. The former includes most broadleaf and mixed forests in both 

hemispheres, and the latter includes Alpine, coastal Scandinavian, Asian (Himalayan and Tian 

Shan), Mediterranean, and coastal North American Pacific forests. Dominant tree families 

include Fagaceae (e.g. Betula, Fagus, Nothofagus, Quercus), Pinaceae (e.g. Abies, Picea, 

Pinus), Cupressaceae (e.g. Fitzroya, Juniperus, Sequoia), and, exclusively in the southern 

hemisphere, Araucariaceae (e.g. Agathis, Araucaria), Podocarpaceae (e.g. Dacrydium, 

Podocarpus, Saxeogathea), and tree ferns (Cyatheales) (Reyna et al., 2018; Mao et al., 2012; 

Beard,, 1990; Brock et al., 2016). Temperate forests also include unique and interesting plant 

communities such as dry Mediterranean-type forests (e.g. Oak and Eucalyptus forests), humid 

temperate rainforests (e.g. Valdivian forest in South America) and relict laurel forests (e.g. 

Macaronesian Laurisilva) (Cowling et al., 1996; Claudino-Sales 2019; Noh et al., 2019).   

 Human activities have had a large impact on forests, mainly through continuous 

deforestation (e.g. for timber and energy) and forest conversion into agricultural lands (FAO & 
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UNEP 2020). Additionally, global warming and fires are devastating for forest ecosystems, 

with fire destroying 1% of temperate forest area in 2015 (FAO & UNEP 2020). Recently 

recognized biodiversity hotspots in temperate forests highlight the unique character of these 

ecosystems and need for forest conservation (Myers et al., 2000). We expect high numbers 

of endemic plants and animals to similarly harbor high numbers of endemic microorganisms, 

including yeasts.  

 In this review, we address the current knowledge of yeast diversity in temperate 

forests, their ecology, and their biotechnological applications. We discuss biases in the 

literature and how an unbiased picture of yeasts’ roles and biodiversity will emerge from future 

studies. 

 

2. Yeast biodiversity and abundance in temperate forests  

 

2.1 Yeast distributions from environmental sequencing  

Based on environmental sequencing data, yeasts are widespread globally in 

temperate forest soil and leaf litter (Figure 1), but their frequencies tend to be low. However, 

there are potential biases and errors in environmental sequencing due to incomplete 

databases, detection of dead or dormant cells, technical biases, and different detection limits 

between sequence- and culture-based studies; conclusions from environmental sequencing 

should therefore be made cautiously and confirmed using culture-based studies whenever 

possible (Lücking et al., 2020). A comprehensive screening of temperate forest soil and leaf 

litter internal transcribed spacer (ITS) barcode sequences deposited in the GlobalFungi 

database (Vetrovsky et al., 2020)  and analysed for this review revealed 3,783,412 total yeast 

sequences belonging to 859 yeast species hypotheses (SHs); yeasts here were “yeast” or 

“facultative yeast” as in Polme et al. (2020), with some manual curation (Table S1); and only 

samples with more than 5000 fungal sequences were considered. Fungal ITS-targeting 

primers perform well with all important fungal lineages containing yeasts as well as individual 

yeasts in a mock community (Větrovský et al., 2016; 2019) and no significant PCR bias is 

observed when comparing the yeast share in metagenomic data (without PCR) and ITS 

amplicon data (Tláskal et al., 2021); nor does there seem to be important DNA extraction bias 

against selected yeast taxa (Větrovský et al., 2016). This screening showed that the median 

yeast abundance in soil was significantly higher than in litter (Wilcoxon Rank-Sum test, W = 

722187, p = 2.9 x 10-15). Yeasts were generally not common: only 12% of soil samples and 

3% of litter samples included more than 8% yeast ITS sequences (Figure S1). Richness 

ranged from 1-31 in soil and 1-35 in litter (Table S1). Because of geographical sampling biases 

(Figure 1) and the overall low frequencies of yeasts in most individual samples, we could not 

conduct analyses correlating yeast incidence with season, climate, or host plant. However, we 
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anecdotally noticed a weak amount of seasonality in yeast communities; this seasonality 

remains to be investigated with targeted studies. 

The global temperate forest yeast community emerging from barcode sequencing 

includes some widespread and dominant taxa. Specifically, the most frequently detected 

classes containing yeasts were Tremellomycetes (87.7% of yeast sequences), Dothiomycetes 

(4.6%) and Eurotiomycetes (3.1%). The most prevalent yeast species, with prevalence 

meaning the percent of temperate forest and soil samples on which a species was found, were 

Saitozyma podzolica, Solicoccozyma terricola, Apiotrichum xylopini/porosum, Tausonia 

pullulans, and Cutaneotrichosporon moniliforme (Table S2). These five yeast species are 

widespread and cosmopolitan, and have broad climatic niches (Větrovský et al., 2019).   

 

2.2 Yeasts in culture collections 

 While culture-independent methods to profile microbial species and their functions are 

gaining prominence, the vast majority of the current knowledge about the biodiversity and 

distributions of yeasts in temperate forests has been garnered through direct isolation and 

subsequent study of yeast cultures. Currently, thousands of yeast strains isolated from 

temperate forests are preserved in both public and private microbial culture collections. 

Researchers have used collections to demonstrate that yeast communities in natural 

unmanaged forests can be more species-rich than in managed ones (Yurkov et al., 2012; 

Yurkov et al., 2016); below-ground communities reflect properties of plant cover, such as 

canopy density and diversity; and seasonality impacts total quantity and species richness of 

yeasts (Yurkov et al. 2016). However, these conclusions rely on targeted sampling, which is 

currently limited by locality, season and substrates.  

 Many culture collections throughout the globe contain lots of yeast isolates from 

temperate forests. In many cases, researchers can search culture collection catalogs for 

keywords or substrate, such as “soil”, “forest”, or “bark” to help identify temperate forest 

yeasts. The Global Catalog of Microorganisms (https://gcm.wdcm.org), organized with the 

World Data Centre for Microorganisms (WDCM), has combined the catalogs of over 140 public 

microbe collections to streamline the process of locating a specific yeast species or yeasts 

isolated from a certain location or habitat (Wu et al., 2013). In addition, the list of Culture 

Collections Information Worldwide (CCINFO), created by the WDCM and the World 

Federation for Culture Collections (WFCC), provides an overview of more than 800 

repositories worldwide. For more information about the history and ongoing use of culture 

collections, we recommend the review of Boundy-Mills and coauthors (2016). Not all culture 

collections index strain habitat information in a searchable way, and a reliable summary of  

yeast cultures from temperate forests is a current challenge. 

 

https://gcm.wdcm.org/
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3. Model yeast genera in temperate forests 

Beginning with the genus Saccharomyces in the days of Louis Pasteur (Pasteur 1876), several 

groups of yeasts have been used as model organisms for biotechnology, cell biology, 

medicine, genetics, and genomics. While the impacts of these yeast groups extend well 

beyond yeast biology, many of them have also been isolated from temperate forest 

ecosystems. These include the genera Saccharomyces, Komagataella, and Lachancea, and 

yeasts that until recently were classified in the genus Cryptococcus, and comprise a 

polyphyletic group. These yeast groups have the potential to be valuable models for temperate 

forest ecology, and some—especially the genus Saccharomyces—are already well-developed 

ecological and evolutionary models. 

 

3.1 The genus Saccharomyces 

 The genus Saccharomyces is the most frequently studied model yeast group in 

temperate forests. There are eight known species: S. cerevisiae, S. paradoxus, S. mikatae, S. 

jurei, S. kudriavzevii, S. arboricola, S. eubayanus and S. uvaraum (Batschinskaya, 1914; 

Libkind et al., 2011; Meyen, 1839; Naseeb et al., 2017; Naumov et al., 2000; Ono et al., 2020; 

Pulvirenti et al., 2000; Wang et al., 2012). S. cerevisiae is a famous industrial and laboratory 

model organism, and hybrids between Saccharomyces species are also industrially important 

(Gallone et al., 2019; Langdon et al., 2019; Peréz-Torrado et al., 2018). All Saccharomyces 

species, including S. cerevisiae, have been isolated from temperate forest substrates, 

including tree bark, leaf litter, soil, fruits, insects, and leaf surfaces (Phaff et al., 1956; Libkind 

et al., 2011; Sampaio & Gonçalves, 2008, 2017; Naseeb et al., 2017; Naumov et al, 2000; 

Wang & Bai 2008; Glushakova et al., 2007). The genus includes several rare naturally-

occurring hybrids and incipient hybrid species (Barbosa et al., 2016; Leducq et al., 2016; 

Eberlein et al., 2019) in addition to the eight Saccharomyces species, although most hybrids 

are from domesticated environments (Liti et al., 2005; Gibson et al., 2017). Interspecies 

Saccharomyces hybrids are rare outside of domesticated environments, although genomic 

introgressions (e.g., S. paradoxus open reading frames in S. cerevisiae genomes) have been 

found in temperate forest yeasts, and are evidence of past hybridization (Almeida et al., 2014; 

Peter et al., 2018). 

 Of the eight known Saccharomyces species, S. paradoxus has been most frequently 

isolated from temperate forests, and it is the best-studied Saccharomyces species outside of 

domesticated environments. The species was first described in 1914 based on strains isolated 

from oak and elm exudates in Russia (Batschinskaya, 1914). Its native range includes much 

of the northern hemisphere with average summer temperatures below 31 ºC (Robinson et al., 

2016). Its infrequent isolation in New Zealand is consistent with a recent migration of isolates 

with European ancestry (Zhang et al., 2010). Most isolates have been obtained from bark, sap 

https://doi.org/10.1007/s10482-012-9803-2
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exudates, leaf litter, and soil; host trees are often but not always oaks (Phaff et al., 1956; 

Kodama, 1974; Banno & Mikata, 1981; Naumov, 1996; Naumov et al., 1998; Kowallik & Greig, 

2016; Kowallik et al., 2015; Glushakova et al., 2011; Sampaio & Goncalves, 2008, 2017; 

Sniegowski et al., 2002). S. paradoxus is generally infrequent in forest habitats, but its 

frequency can spike seasonally or after rain events to as many as 100% of isolated colonies 

(Glushakova et al., 2007; Anderson et al., 2018; Charron et al., 2014); these spikes are less 

evident when sampling is less frequent, with a pattern of approximately even frequency year-

round in at least one study (Kowallik & Greig, 2016).   

 Similar surveys also identified other northern hemisphere Saccharomyces species 

(Sampaio & Goncalves 2008). For instance, recent studies suggest that eastern Asia harbors 

several Saccharomyces species characterized by high genetic diversity (Duan et al., 2018; 

Han et al., 2021; Lee et al., 2021; Wang et al., 2012; Bing et al., 2014; Bendixen et al., 2021; 

Peter et al., 2018), including temperate forest S. cerevisiae populations that are strongly 

diverged from domesticated populations (Duan et al., 2018; Wang et al., 2012). Some 

examples of successful sampling efforts that uncovered multiple species include a study in 

which S. kudriavzevii, S. uvarum, and S. cerevisiae were isolated from oak bark in Portugal 

(Sampaio & Gonçalves, 2008, 2017), and another in which S. arboricola, S. kudriavzevii, and 

S. cerevisiae were isolated from mushrooms, litter and leaves in Taiwan (Naumov et al., 2013). 

In contrast, S. jurei, S. arboricola, and S. mikatae geographic ranges appear more limited. For 

example, the strains of S. arboricola were only isolated from trees of the Fagacee family in 

China in 2008 (Wang et al., 2008), and S. mikatae has only been isolated so far in soil and 

decayed leaves from Japan and China (Naumov et al., 2000, Sampaio & Gonçalves 2017). 

Along the same line, S. jurei has been recently isolated twice in different locations in Europe 

(Naseeb et al., 2017, Hutzler et al., 2021) and a metagenomic study also detected S. jurei in 

temperate forests in the Italian Alps (Alsammar et al., 2019), but it is not yet known if different 

populations exist outside Europe. S. jurei and S. mikatae share some genomic 

rearrangements, suggesting a shared evolutionary history (Naseeb et al., 2018). 

 Northern hemisphere Saccharomyces species isolated from temperate forests show 

generally low genetic admixture. Forest S. paradoxus populations have high clonality and low 

heterozygosity, and they experience infrequent sex with even less frequent outcrossing (3 x 

10-6 to 10-5 per cell division) (Tsai et al., 2008; Johnson et al., 2004; Liti et al., 2006; Liti et al., 

2009; Bergström et al., 2014). Researchers sampling S. paradoxus in temperate forests 

frequently find the same clonal genotype, with the probability of uncovering the same clone 

decreasing with distance (Koufopanou et al., 2006). The same clone can also persist over 

consecutive years (Koufopanou et al., 2006) (Xia et al., 2017; Anderson et al., 2018). Similarly, 

S. cerevisiae outcrossing rates are also estimated to be low at 9 x 10-5 to 2 x 10-5 per cell 

division (Jensen et al., 2001; Ruderfer et al., 2006). However, outcrossing rates of S. 

https://doi.org/10.1007/s10482-012-9803-2
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cerevisiae increased at least ten-fold when yeast spores were digested by an insect dispersal 

vector such as Drosophila (Reuter et al., 2007); insect digestive systems may promote 

outcrossing and hybridization by bringing ascospores together (Stefanini et al., 2016).  

 Surveys in the southern hemisphere have further expanded our understanding of 

Saccharomyces diversity. During the past decade, S. uvarum and S. eubayanus have 

emerged as the most frequently isolated Saccharomyces species in bark, fruits and soil in the 

southern hemisphere, particularly in Australasian and South American temperate forests 

(Figure 1) (Almeida et al., 2014; Eizaguirre et al., 2018; Langdon et al., 2020; Libkind et al., 

2011; Nespolo et al., 2020; Rodriguez et al., 2014). Patagonia, in particular, harbors high S. 

uvarum and S. eubayanus diversity (Nespolo et al., 2020; Langdon et al., 2020; Peris et al., 

2016). S. eubayanus is widely distributed in South Patagonia and associates with cold 

environments, and it has also been isolated in Asia (Bing et al., 2014; Peris et al., 2016), 

Oceania, (Gayevskiy & Goddard, 2016) and North America (Peris et al., 2014). Interestingly, 

S. eubayanus, a parent of the hybrid lager species S. pastorianus, has never been isolated in 

Europe, challenging our understanding of the origin of lager beer yeast hybrids. While S. 

eubayanus may indeed be rare in Europe, the lack of S. eubayanus in Europe could also be 

due to insufficient sampling or absence of the species due to deforestation. Recent evidence 

collected from a targeted metagenomics study of Saccharomyces diversity in the Italian Alps 

suggests that S. eubayanus may be present in Europe, although future culture-based work is 

needed to confirm this (Alsammar et al., 2019).  

 In addition to members of the genus Saccharomyces isolates from throughout the 

globe, genome sequencing of isolates from hybrid zones have revealed admixture among 

partially reproductively isolated S. paradoxus populations (Leducq et al., 2016; Xia et al., 2017; 

Eberlein et al., 2019). For instance, studies on genetically diverged and partially reproductively 

isolated North American S. paradoxus lineages revealed the presence of hybrid, 

phenotypically diverged, and reproductively isolated lineages, which were found at 

intersections of the parental geographic distributions. These incipient hybrid species evolved 

following post glacial admixture between parental lineages (Leducq et al., 2016; Xia et al., 

2017; Eberlein et al., 2019). 

 The ecological determinants of different Saccharomyces lineages’ ranges are still 

unclear. Temperature has been suggested as an important abiotic niche determinant because 

experimental work found different temperature optima among Saccharomyces lineages 

(Sweeney et al., 2004; Salvado et al., 2011). In the northern hemisphere, it has been 

hypothesized that S. cerevisiae is better adapted to warmer temperatures than S. paradoxus 

(Charron et al., 2014; Robinson et al., 2016). Climatic modeling of S. eubayanus has also 

recapitulated much of its known distribution (Langdon et al., 2020). In some locations, multiple 

Saccharomyces species with different temperature optima coexist at the same site. For 
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example, cold-tolerant S. kudriavzevii and S. uvarum are readily isolated from the same 

samples that yielded warm-tolerant S. cerevisiae or S. paradoxus, when these same samples 

were incubated at two different temperatures (Sampaio & Goncalves 2008; Sweeney et al., 

2004). Diversity in genes related to glycerol accumulation and acetaldehyde production has 

been implicated in temperature tolerance diversity and may therefore be important for 

temperature niche partitioning (Paget et al., 2014). 

 While temperature may indeed determine the ranges of S. paradoxus and S. cerevisiae 

in the northern hemisphere, this does not directly translate to a correlation between latitude 

and sampling success. We surveyed the literature for studies that isolated either S. paradoxus 

or S. cerevisiae from temperate forests and clearly stated the number of positive and negative 

sampling attempts (Table S3). Across these studies, rates of success in isolating either 

species does not correlate with latitude (Figure 2). However, Saccharomyces cerevisiae has 

been less frequently isolated at higher latitudes than S. paradoxus when isolation frequency 

is compared within the same study (Figure S2); more data are needed to further evaluate this 

observation. While several studies have reported isolation of one, but not both species, others 

have indeed isolated both S. paradoxus and S. cerevisiae from the same location (Boynton et 

al., 2019; Dashko et al., 2016; Kowallik et al. 2016; Sniegowski et al., 2002). This result 

suggests that additional factors influence these species’ ranges beyond temperature.  

 A similar pattern of partial coexistence of Saccharomyces species is mediated by host 

tree identity in the southern hemisphere. For instance, South American S. uvarum and S. 

eubayanus partly share their habitat, but while S. uvarum is mainly found on Nothofagus 

dombeyi, S. eubayanus is mainly found on Nothofagus pumilio (Eizaguirre et al., 2018; 

Langdon et al., 2020; Libkind et al., 2011; Mardones et al., 2020). In spite of this apparent 

specialization, both species can inhabit the same tree, and elsewhere in Tibet they coexist in 

similar niches (Bing et al., 2014). Because dominant forest trees and species distributions 

change with latitude, there is a correlation between species isolated and latitude in the 

southern hemisphere (Figure 2, Table S3). S. uvarum is more frequently found at lower 

latitudes with warmer climates than S. eubayanus (Figure S2). In contrast, S. eubayanus is 

frequently found at higher latitudes and altitudes, near the treeline in extremely cold 

environments (Figure 2). The data used for this analysis are derived from a single study in 

which all samples were collected and processed using the same methods, suggesting that 

variability among isolation protocols across labs could add a confounding effect when 

estimating species ranges.  

 

3.2 The genus Cryptococcus and former Cryptococcus 

 Taxonomic challenges over the past decades have drastically changed our 

understanding of the prevalence and frequency of the genus Cryptococcus in temperate 
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forests. Historically, sexual and asexual fungal forms were given separate names and the 

genus epithet “Cryptococcus” described asexual (i.e., mitotically reproducing) species of 

basidiomycetous yeasts (Vuillemin 1901; Liu et al., 2015). This system of dual nomenclature 

for fungi with asexual and sexual forms was abolished in 2012 (Lücking et al., 2021). At about 

the same time, modern DNA sequencing technology regrouped the previous polyphyletic 

genus Cryptococcus into a monophyletic genus in the former sexual Filobasidiella clade, plus 

several other basidiomycete genera. The genus Cryptococcus now comprises prominent 

human pathogens (the C. neoformans species complex) and a few closely related non-

pathogenic yeasts with a possible link to mycoparasites (Liu et al., 2015; Passer et al., 2019). 

All other former Cryptococcus species were transferred to other genera, emended, 

resurrected, or newly erected (Liu et al., 2015) (Table S4). As a consequence, historic reports 

of Cryptococcus from natural substrates can be dubious because they may be reports of 

species no longer circumscribed in the genus Cryptococcus (Lücking et al., 2021). 

 Members of the currently delineated genus Cryptococcus inhabit temperate forests 

worldwide (Cogliati et al., 2016; Lin et al., 2021; Chowdhary et al., 2012; Kidd et al., 2007). 

Non-pathogenic Cryptococcus species are rare and only known from a very few isolates of 

plant-insect origin, including C. amylolentus, C. wingfieldii, and C. floricola (Passer et al., 

2019). The limited number of reports of environmental Cryptococcus are restricted to selective 

cultivation surveys of pathogenic species and single-strain isolations of potential new species 

(Mittelbach et al., 2015; Yurkov et al., 2016; Passer et al., 2019). The species Cryptococcus 

neoformans and Cryptococcus gattii are best known as human pathogens, but they have also 

been isolated from soils, water, air and tree samples from temperate forests (Chowdhary et 

al., 2012; Kidd et al., 2007; MacDougall et al., 2007). The exchange between host niches in 

the forest and human hosts contributes to disease incidence (Kidd et al., 2004). 

 Since the taxonomic revision of the genus (Liu et al., 2015), Cryptococcus has not 

been present in the list of prevalent genera found in forests. In contrast, many yeast genera 

previously assigned to the genus Cryptococcus have been found in temperate forests, and 

these genera are composed of several species. They mostly inhabit soil and plant (including 

moss) habitats (Table S4), and many have been detected using environmental barcode 

sequencing, with the genera Vishniacozyma, Filobasidium, Piskurozyma, Saitozyma and 

Solicoccozyma among those with the most abundant DNA sequences recovered in 

environmental samples (Kemler et al., 2017). In fact, several of the species identified as most 

common in our global analysis of yeast sequence diversity belong to this group (Table S2). 

We do not know what makes these taxa so common, but speculate that some of them may be 

generalists, inhabiting many different global environments, or have an as-yet unexplored, but 

very common, ecological niche in temperate forests. For example, many members of the 

genera Filobasidium, Papiliotrema, and Vishniacozyma inhabit aboveground substrates 
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(Yurkov et al., 2015; Kemler et al., 2017). Moreover, Cryptococcus and former Cryptococcus 

species (Table S4) use a variety of nutrient acquisition and stress tolerance strategies in 

temperate forest environments. Many of these yeasts from temperate regions are 

opportunistic saprobionts, consuming the products of decomposing plant material released by 

other microorganisms, such as filamentous fungi (Babjeva and Golovleva, 1963; Yurkov, 

2017; Mašínová et al., 2018). However, others can use complex compounds directly. For 

example, forest soil strains of Solicoccozyma terricola and Holtermanniella wattica (formerly 

Cryptococcus terricola and C. watticus) exhibit a wide assimilation spectrum of carbon sources 

and extracellular enzymes, including growth on oligosaccharides (Mašínová et al., 2018). 

Similarly, S. terrea and some Apiotrichum species can grow on phenolic compounds (Botha 

2006; Yurkov et al., 2017). Many former Cryptococcus have physiological features that can 

increase their chances of survival under stress as other temperate forest yeasts, including 

drought, nutrient limitation, and radiation in soil and phylloplane environments (Kemler et al., 

2017; Yurkov, 2017). For example, members of the genera Naganishia and Solicoccozyma 

produce extracellular polysaccharide capsules that promote growth in low nutrient and low 

water activity environments (Vishniac et al., 1995, 2006; Botha et al., 2011), and some 

Naganishia species produce mycosporines as radiation protection in extreme environments 

(Nizovoy et al., 2021). This variety of nutrient acquisition and stress tolerance strategies 

illustrates the diversity and explains the heterogeneity of the former polyphyletic genus 

Cryptococcus.  

 

3.3 The genus Komagataella 

 The seven species in the methanol-assimilating model genus Komagataella are all 

present in temperate forest ecosystems (Naumova et al., 2020). They have been isolated from 

tree exudates, bark, associated insects, and rotten wood of temperate forest trees including 

Quercus spp., Populus spp., Ulmus spp., Castanea spp. and Betula spp. in the northern 

hemisphere (Lachance et al., 1982; Naumova et al., 2020). Species in this genus have 

substrate preferences. For example, while most Komagataella species have been isolated 

from broad-leaved trees, K. kurtzmanii has been isolated only from fir flux. Additionally, K. 

pseudopastoris has higher sensitivity to the tannic acids in Quercus species than K. pastoris 

(Dlauchy et al., 2003; Péter et al., 2019). 

 Geography contributes to the taxonomic structure of the genus Komagataella. The 

genus itself includes three groups of closely related species: K. pastoris/K. ulmi, K. 

kurtzmanii/K. phaffii, and K. mondaviourum/K. pseudopastoris/K. populi (Figure S3) (Dlauchy 

et al., 2003; Kurtzman 2005, 2012; Naumov et al., 2013, 2018). As with Saccharomyces, 

Komagataella species readily hybridize in the laboratory, but hybrids are post-zygotically 

reproductively isolated and generate mostly unviable ascospores (0-7%) (Naumov 2015; 



 

13 

Naumov et al., 2016); they may also be pre-zygotically isolated by substrate or geography. 

We are not aware of naturally-occurring Komagataella hybrids in temperate forests, although 

the shared mating system among Komagataella species makes hybrids likely.  K. kurtzmanii, 

K. mondaviorum, K. phaffii, K. populi, and K. ulmi have frequently been isolated from North 

America, while K. pastoris and K. pseudopastoris are spread across Europe (Dlauchy et al., 

2003; Kurtzman, 2011a, 2012; Miller et al., 1962, Naumov 2013; 2018; Phaff et al., 1972). 

Large-scale screening of methanol-assimilating ascomycetous yeasts failed to isolate 

Komagataella strains in Thailand and Brazil (Limtong et al., 2013; Santos et al., 2015), 

suggesting that the genus might be absent from these areas. However, rare Komagataella 

isolates have been documented in Japan (Phaff et al., 1972; Kodama 1974) and Argentina 

(Spencer et al., 1995, 1996). Future sampling may uncover more species in this genus, which 

would likely expand our understanding of their ranges and ecology. 

 

3.4 The genus Lachancea 

 The genus Lachancea comprises eleven species from a wide variety of ecological 

niches (Figure S4). Members of this genus are among the most commonly isolated yeasts 

worldwide and their relationship with temperate forest environments is understudied. 

Lachancea species share common physiological properties: they ferment glucose, can grow 

on raffinose, maltose, ethanol, and mannitol, and have similar temperature preferences and 

fermentation characteristics (Bandara et al., 2009; Naumova et al., 2007; S. Benito, 2018). 

They have been isolated from a wide variety of ecological niches, including plants (Esteve-

Zarzoso et al., 2001; Gonzalez et al., 2007; Romano & Suzzi, 1993a, 1993b), tree bark 

(Nespolo et al., 2020), tree exudates (Varela et al., 2020), insects (Phaff et al., 1956), soil (Lee 

et al., 2009; Mesquita et al., 2013; Sylvester et al., 2015), water (Kenkichi. & Tadashi., 1974), 

and food and beverages (Magalhães et al., 2011; Marsh et al., 2014; Nova et al., 2009; Pereira 

et al., 2011; Tzanetakis et al., 1998; Wojtatowicz et al., 2001). While the most common species 

in the genus, L. thermotolerans and L. fermentati, are often associated with domesticated food 

and beverage environments (Aponte & Blaiotta, 2016bnt; Bagheri et al., 2016; Baleiras Couto 

et al.,, 2005; Clavijo et al., 2010; Cordero-Bueso et al., 2013; Fernández et al., 1999; Hsieh et 

al., 2012; Senses-Ergul et al., 2006), they are also frequently isolated from natural substrates 

(Sylvester et al., 2015; Spurley et al., 2021). L. cidri, a close relative of L. fermentati, has also 

been recently reported on Nothofagus bark in temperate southern Chile (Villarreal et al., 2021). 

Despite the large number of ecosystems where Lachancea is present, ranging from fermented 

beverages to temperate forests, there is a lack of information on why the different species 

inhabit such a wide variety of ecological niches (Porter et al., 2019b) and which roles they play 

in those ecosystems. 
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4. Practical suggestions for collecting yeasts from forests 

 Sampling and isolation steps both play a crucial role in yeast discovery and estimation 

of species richness (Lachance & Starmer 1998; Yurkov & Pozo 2017). When making a 

sampling and isolation plan, researchers should determine whether they wish to characterize 

the entire diversity of the environment or focus on a particular group of yeasts. Researchers’ 

goals will ultimately inform their sampling and isolation strategies. 

 

4.1 Collecting substrate samples from temperate forests for yeast isolation 

Wild yeasts can be isolated from diverse habitats and ecological niches in temperate 

forests around the world, including soil, leaf litter, tree bark, rotten fruits, insect bodies, 

mushrooms, and other plant, animal, and fungal material. Generally, one to a few grams of 

material are sampled at a time (Boynton et al., 2019; Kowallik et al., 2015; Spurley et al., 

2021). It is important to use proper aseptic technique to avoid contamination by wearing gloves 

and sterilizing tools with a solution of 70% ethanol. Substrate heterogeneity should be 

accounted for, either by mixing (in the case of soils), or deep and repeated sampling (in the 

case of difficult to mix substrates, such as phylloplane, nectar, and fluxes) (Boundy-Mills, 

2006; Yurkov 2017, 2018; Yurkov & Pozo, 2017).  

Because of substrate diversity and heterogeneity, researchers designing field surveys 

to isolate yeasts should also consider the ecological factors that might affect sampling results. 

These ecological factors include the geographic region of the forest, sampling substrates, and 

seasonal conditions. For example, Saccharomyces isolation success can be dependent on 

season, temperature, and surrounding flora; (Robinson et al., 2016; Charron et al. 2014; 

Leducq et al., 2014; Sylvester et al., 2015; Eizaguirre et al., 2018; Langdon et al., 2020). 

Additionally, genetic diversity, including levels of heterozygosity and admixture, can vary 

among sampled substrates: for example, wild Saccharomyces strains from forests have lower 

admixture and heterozygosity than strains isolated from fruits, flowers, insects, or human-

associated substrates (Magwene et al., 2011, Hyma and Fay 2013; Tilakaratna and 

Bensasson 2017; Günther et al., 2019). Finally, because the number of observed species 

depends on the sampling intensity, species-rich substrates require more samples than 

species-poor ones to determine species richness (Yurkov & Pozo 2017). 

Researchers should record sampling conditions carefully when conducting sampling 

schemes to effectively answer their research questions. Across studies, it is essential to record 

standard data about every yeast isolation sample, including the GPS coordinates of sampling 

sites; collection dates; descriptions of isolation substrates such as tree species and substrate 

material; descriptions of field sites; and climate data such as temperature or humidity. This 

metadata can be used for resampling across time and makes field collections repeatable. 

Metadata is also important for putting patterns of habitat preference and genetic diversity into 
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environmental context. Collected samples with appropriate metadata recorded can now be 

processed for strain isolation. 

 

4.2 Strain isolation for diversity estimation and new species discovery 

 Direct streaking and dilution plating on universal media is preferable over enrichment 

techniques and selective media to have a broad overview of yeast biodiversity (Lachance & 

Starmer 1998; Boundy-Mills 2006; Yurkov et al., 2011). Yeast yield can be increased by 

filtration and sample concentration steps (Lachance & Starmer 1998; Boundy-Mills 2006). 

Media used for yeast isolation and enumeration are generally complex and nutritionally rich. 

Additives that suppress bacteria and filamentous fungi and special cultivation conditions 

increase the chances of isolating yeasts (Boundy-Mills 2006). 

 Inoculated tubes and plates are grown and visually inspected every two to three days 

for a minimum of two weeks or until growth is visualized. Isolation of slow-growing yeasts  may 

require a prolonged incubation for more than four weeks. Purified cultures can be stored in 

15-20% glycerol stocks at -80 ºC, but some yeasts should be safely cryopreserved at ultra-

low (-196 or -140 ºC) temperatures to avoid their loss. Isolates are often identified using 

barcode sequencing of genomic loci, including ribosomal RNA (Robinson, Pinharanda, and 

Bensasson 2016; White et al., 1990; Spurley et al. 2021), using physiological tests, or other 

techniques such as MALDI-TOF (Boekhout et al., 2021a; Lücking et al., 2020). 

 

4.3 Strain isolation targeting individual taxa 

 Strategies for isolating targeted taxa rely on phenotypic differences between target and 

other taxa. Selective isolation involves any unique physiological condition (e.g. fermentation 

ability) or tolerance to inhibitors (e.g. ethanol tolerance). These strategies include plating onto 

a selective medium, which has additives or environmental conditions that prevent growth of 

non-target taxa. Similarly, researchers can establish enrichment cultures, which have 

conditions that allow target taxa to grow more quickly than non-target taxa. Both strategies 

require some knowledge of target yeast physiology to design selective culturing conditions. 

 When plating, selective media can be taxon-specific (Boynton et al., 2019; Mašínová 

et al., 2018). When targeting yeasts, acidification and broad spectrum antibiotics reduce 

bacterial growth; and incubation at low temperatures, benomyl, calcium propionate and Rose 

Bengal may help to reduce mold growth (Boundy-Mills, 2006). Although this cultivation method 

can also reveal rare and minor species, selective isolation must be accompanied by an 

additional replicate with a complete medium when assaying diversity to ensure the complete 

assessment of the community (Yurkov & Pozo, 2017), and a negative control for contamination 

errors. Yeasts that produce forcefully ejected ballistospores can be isolated from substances 

such as leaves using the (ballisto)spore-fall method, (Boundy-Mills, 2006). A sample is placed 
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above an agar plate, and ballistospores fall and germinate onto the surface of the plate 

(Boundy-Mills, 2006). 

 Enrichment culturing, which can be especially efficient for isolation of target taxa, has 

been used for over a century to isolate microorganisms from mixed communities (Beijerinck 

1961). It involves taking a small amount of sampled substrate, mixing the substrate with a 

liquid selective growth medium in which the target microbe can outcompete other non-desired 

microbes, and then plating enriched samples onto solid growth medium to isolate individual 

colonies to be tested. Enrichment media vary depending on the targeted species and multiple 

compositions have been developed. 

 Researchers have isolated a broad diversity of yeasts in the subphylum 

Saccharomycotina and phylum Basidiomycota using glucose-based enrichment media, and 

they have developed targeted enrichment strategies for more narrow yeast groups. Examples 

of enrichment media that target a taxonomically broad collection of yeasts include a synthetic 

complete (SC) based medium with a mixture of amino acids (Sylvester et al., 2015), and media 

containing glucose concentrations ranging from 0.8 to 8% (Spurley et al., 2021). As with 

selective solid media discussed above, researchers often adjust pH, add broad spectrum 

antibiotics, or add ethanol to reduce non-yeast microbial growth and enrich for fermentative 

yeast (Sylvester et al., 2015; Sampaio & Gonçalves, 2008; Fingerman et al., 2002). To 

increase recovered yeast diversity, enrichment cultures are incubated at different 

temperatures. For instance, growth at lower temperatures (< 12 °C) may favor cryotolerant 

yeast species (Sampaio & Gonçalves, 2008). To target specific yeast groups, such as nitrate 

or nitrite-utilizing fungi (Kurtzman et al., 2011a; Opulente et al., 2018; Shen et al., 2018), 

researchers can alter the carbon or nitrogen sources in enrichment media or adjust pH (Table 

S5). For example, sucrose is often used in media to enrich Saccharomyces and related taxa 

(Sniegowski et al., 2002, Robinson et al., 2016; Charron et al., 2014; Boynton et al., 2021, 

2019). Negative and positive controls, to help detect contamination or media errors, can 

include tubes with enrichment medium only or tubes inoculated with a known culture, 

respectively. 

Once samples are introduced into liquid enrichment media, they are usually grown for 

a minimum of two weeks or until growth is visualized. The presence of yeast may be visible in 

the form of a white sediment, bubbles, or a cloudy medium. Upon visualization of growth, a 

second round of enrichment is sometimes done in the same or a different liquid medium until 

growth is visible. Cultures are diluted and plated to solid agar plates with a medium amenable 

to target yeasts. Growth on plates is checked daily and separated colonies are picked for 

species identification. Colony preservation and identification is conducted as described above. 

5. Forest yeast exploitation   
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Brewers, winemakers, and industrial biologists are using a variety of yeasts from 

temperate forests to improve their biotechnological processes. Some of the most recent and 

innovative attempts at wild yeast exploitation relate to the use of wild Saccharomyces species 

in the brewing industry (Cubillos et al., 2019), but diverse research and development have 

been carried out with a broad range of temperate forest yeasts for decades (Wegner 1983; 

Kurtzman 2009, 2011a). Use of wild yeasts may be a viable strategy to reintroduce diversity 

that was lost during modernization of the brewing process (Aquilani et al., 2015), which 

coincided with the use of pure brewing yeast cultures. This development greatly improved 

fermentation consistency and efficiency but may also have resulted in a severe drop in 

genotypic and phenotypic diversity among brewing yeasts. Many traditional strains have been 

discarded in favor of a small number of high-performing pure strains (Gallone et al., 2018). 

However, recently isolated wild strains have phenotypic traits useful for brewing. For instance, 

353 strains of Saccharomyces species recently isolated from oak niches in Slovenian Sub-

Mediterranean forests and nearby vineyards had useful phenotypes, including resistance to 

high concentrations of copper, sulfite, and ethanol (Dashko et al., 2016). Notably, S. 

eubayanus has been used in commercial beer production (Gibson et al., 2017). 

Saccharomyces paradoxus has likewise shown potential for brewing and has been used 

commercially (Nikulin et al., 2020b). Recent studies have also demonstrated the potential of 

the newly discovered Saccharomyces jurei for beer brewing (Giannakou et al., 2021; Hutzler 

et al., 2021). Though not adapted to the brewing environment, these temperate forest strains 

possess several traits beneficial for brewing, such as the ability to utilize the main wort sugar 

maltose (and in S. jurei’s case also maltotriose), tolerance to low temperatures, and production 

of desirable flavor volatiles (Gallone et al., 2016; Naseeb et al., 2017; Giannakou et al., 2021; 

Hutzler et al., 2021). Studies involving other fermentation systems such as winemaking and 

baking have likewise shown the application potential of wild yeasts (Magalhães et al., 2017a, 

2017b, 2021).  

A number of wild Saccharomyces phenotypic traits are amenable to modification by 

evolutionary engineering (Gibson et al., 2020). While this approach had previously been 

employed to enhance the potential of existing production strains, there are several recent 

examples of the approach being applied to the wild yeast S. eubayanus to improve its 

applicability in brewing, such as removing phenolic off-flavor, adaptation to ethanol, and 

utilization of the wort sugar maltotriose (Diderich et al., 2018; Mardones et al., 2021; Baker 

and Hittinger 2019; Brouwers et al., 2019). Increased diversity of brewing strains may be 

achieved through hybridization of wild and domesticated yeast strains. Several studies have 

shown how a lager yeast phenotype can be recapitulated by combining beneficial traits of the 

wild yeast S. eubayanus (cold tolerance) with domesticated S. cerevisiae strains (efficient 

sugar utilization) (Gibson et al., 2013; Hebly et al., 2015; Krogerus et al., 2015; Mertens et al., 
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2015). Moreover, several novel approaches have been proposed to generate genetic diversity 

of extant or de-novo hybrids that can be exploited in industrial applications (Nikulin et al., 2018; 

Peris et al., 2020; Naseeb et al., 2021; Mozzachiodi et al., 2021). 

Non-Saccharomyces yeasts from temperate forests have also been exploited in 

industrial applications. For example, Lachancea species have been used for sour beer 

fermentation because of their lactic acid production (Domizio et al., 2016), and for mead 

fermentation (Villarreal et al., 2021). Additionally, L. thermotolerans and L. fermentati produce 

large amounts of extracellular enzymes, which have important protease, polygalacturonase, 

and β-glucosidase activity for wine fermentation and aroma production (Belda et al., 2016; 

Porter et al., 2019a; Strauss et al, 2001). Lachancea spp. also could be used as biological 

control agents (BCAs) (Medina et al., 2017) because some members of the genus can inhibit 

growth or sporulation of other fungi using killer toxins or volatile organic compounds (Fiori et 

al., 2014; Kono & Himeno, 1997; Aponte & Blaiotta, 2016b; González-Arenzana et al., 2017). 

Outside of the genus Lachancea, Komagataella species isolated from broad-leaved trees have 

been used since the early 1970s for the production of single-cell protein from methanol, and 

more recently other yeasts belonging the genus Ogataea have been used with the same aim 

(Wegner 1983; Kurtzman 2009, 2011b). Subsequently, researchers developed a protein 

expression system in Komagataella, and the genus is currently used to produce 

biopharmaceutical proteins, recombinant enzymes, and chemicals (Cregg et al., 1985; 

Tschopp et al., 1987; Gasser et al., 2013; Karbalaei et al., 2020; Duman-Özdamar et al., 2021; 

Gao et al., 2021). 

 

6. Future perspectives 

In this review, we have presented an up-to-date overview of yeast biodiversity and 

abundance in temperate forests. Most of this progress is a result of technological changes that 

enabled more reliable yeast identification using molecular genetic information instead of 

phenotypic tests. Yeast researchers’ next steps include investigating how temperate forest 

yeast diversity has been shaped by dispersal and adaptation to changing environments across 

a long evolutionary time frame. Temperate forest yeasts are only a subset of yeast strains 

available in culture collections: most of the available yeast isolates have instead been derived 

from fungal infections (O’Brien et al., 2021) or substrates that are related to human activities 

(Almeida et al., 2015; Gallone et al., 2016). Moreover, none of the yeast species described in 

this review has been found among the most frequent species in environmental DNA from 

temperate forests, as reported in the GlobalFungi database. Our understanding of their roles 

in ecosystem functioning, if any, is still incomplete. Recent advances in sequencing and large 

population genomic surveys of various yeast species revealed their possible origins, 

population structure, and historical admixtures between lineages (Duan et al., 2018; Peter et 
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al., 2018; Ropars et al., 2018). Additional applications of whole-genome resequencing include 

interrogating genetic diversity to reveal how species adapt in nature and using genome-wide 

association studies (GWASes) to pinpoint genetic variants regulating yeasts’ life cycles in 

temperate forests (Alonso-Blanco et al. 2016; De Chiara et al., 2020). Such studies have been 

conducted in some model species, such as S. cerevisiae, and can be expanded across many 

other yeast species to provide a holistic view of microbial ecology.  

 

6.1 Microbial life cycle inferred through population genomics 

Population genomics will be especially useful in inferring yeast life cycle parameters. 

Interpreting yeasts’ natural history requires the inference of various fundamental parameters 

in molecular evolution, such as generation time, population size, mutation rate, and frequency 

of sex and outcrossing (Tsai et al. 2008). From population genomic data, historical events 

such as hybridization (Eberlein et al., 2019) or domestication (Jeffares et al., 2015; Gallone et 

al., 2016) have been estimated by calculating generation numbers. However, the generation 

times can depend on how much time cells spend in a non-dividing state (Gray et al., 2004) or 

in the spore state (Freese et al., 1982) in nature. For example, generation times can vary 

dramatically in Saccharomyces between about 90 minutes per generation in laboratory culture 

(Herskowitz 1988) and 150 generations per year in brewing environments (Gallone et al., 

2016); these clocks need to be calibrated for temperate forest conditions to be useful to 

understand yeast growth and evolution in natural settings. In particular, we note that laboratory 

calibrations disagree widely with molecular clocks calibrated against the fossil record (Shen 

et al., 2018). The interplay of genetic variation, mutation rate, and generation time are further 

complicated by other aspects of yeast biology. One example is many yeasts’ predominant 

asexual reproduction alternates with sporulation under harsh conditions and sexual contexts. 

Large variations exist in the frequency of sex in yeast (for a review see Nieuwenhuis and 

James 2016). Population genomic methods can be used to estimate the relative frequency of 

asexual and sexual reproduction by comparing differences in mutation and recombination 

rates (Tsai et al., 2008; Lee et al., 2021; Friedrich et al., 2015) and have shown population-

level differences (Tsai et al., 2008; Liti et al., 2009; Drott et al., 2020; Koufopanou et al., 2020).  

 

6.2 Genotype-phenotype through a reverse ecology approach 

With our understanding of yeasts still biased towards research conducted in laboratory 

settings, we need to continue sampling naturally-occurring yeasts and recording abiotic and 

biotic factors, which will be helpful to conduct a reverse ecology approach (Li et al., 2008) to 

learn how yeasts live in nature. It is especially important to identify the factors that contribute 

to species’ fitnesses in nature and try to replicate those as closely as possible in laboratory 

experiments (Liti, 2015). After establishing a collection of strains, we can start addressing how 
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genetic diversity is shaped by the adaptation to different environments, population drift, or 

bursts of population expansion associated with specific substrates. Such clonal lineages are 

especially suitable for GWAS-based approaches. Extensive collections are already available 

for the yeasts Schizosaccharomyces pombe (Jeffares et al., 2015) and Saccharomyces 

cerevisiae (Peter et al., 2018) and have allowed development of genetic tools, such as deletion 

strains (Giaever and Nislow 2014; Rai et al., 2018). However, sampling biases are still present, 

even in these established collections, with a low number of wild isolates from sparse 

geographic locations. The renewed interest in yeast biodiversity from natural habitats, 

including from temperate forests, will close this gap to provide a holistic view of the different 

species biology, their interaction among them and with the environment. 

 

 

Box: Outstanding questions 

1. How do we resolve differences in conclusions from culture-dependent and culture-

independent studies of yeast diversity? 

Sequencing and culture-based studies often uncover different diversity patterns and 

rare species are difficult to detect with either strategy. Both culture-dependent and 

culture-independent assays of yeast diversity have biases, including PCR and 

sequencing biases, unreliable barcode and genome databases, difficult-to-culture (i.e., 

fastidious) taxa, and taxa that can only survive within complex microbial communities. 

Additionally, sequence-based methods usually only report taxon frequencies, not 

abundances, although abundances can be inferred by scaling frequencies to another 

measure of cell abundances, such as qPCR or colony counts. Future studies will 

explore how to combine information from both strategies to get an accurate view of 

yeast diversity in temperate forests. 

 

2. What role do broader sampling biases play in influencing conclusions about yeast 

ecology? 

Enrichment culturing introduces sampling biases. Media and other enrichment 

conditions influence the yeast strains recovered, as do interactions among 

microorganisms in enrichment cultures. How can we quantify such biases to 

understand the effect of sampling strategies on our understanding of culturable yeast 

diversity? One possible strategy might be to release yeast cells into the environment 

and test different recovery strategies. Year-round sampling without enrichment could 

also help reduce the impact of sampling biases for some targeted yeasts.  

 

3. How do we quantify life history parameters in temperate forest yeasts? 
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Our current understanding of life history parameters in temperate forest yeasts relies 

on estimates from genome sequencing and assumptions based on laboratory 

experiments. Direct observations or experimental conditions that closely mimic forest 

environments are needed to inform genomic models. The discrepancy with molecular 

clocks calibrated against the fossil record also needs to be addressed and extended 

to non-model yeast groups. 

 

4. What are the contributions of temperate forest yeasts to ecosystem functioning? 

While we know that yeasts are common and diverse, and we often have information 

about their genetics and physiology, few studies have directly investigated their 

impacts on other members of forest communities. However, research examining 

microbial communities from a guild-centered point of view shows promise in helping 

us to understand yeasts’ contributions to ecosystem functioning (Martinović et al., 

2021). 

 

5. What are the wild niches of well-studied laboratory yeasts? 

Saccharomyces, Cryptococcus, Komagataella, Lachancea, and others are studied in 

the laboratory and exist in temperate forests. Understanding their natural ecologies 

would help laboratory researchers to put the genetics, genomics, and biotechnology of 

their systems into a more holistic context. These organisms have the potential to be 

interesting ecological models in addition to their roles in laboratory research. 

 

6. How do we reliably identify temperate forest yeasts species and determine boundaries 

among yeast taxonomic units? 

Mycologists often use DNA barcodes, such as ribosomal sequences, to identify yeast 

taxa, but barcodes do not always reliably delimit species (Schoch et al., 2012). Recent 

studies combined barcode sequences and physiological characteristics to describe 

new temperate forest yeast taxa from Bulgaria (Gouliamova et al., 2016; Gouliamova 

and Dimitrov, 2020). Such studies, especially when combined with genome 

sequencing and genetic crosses, can help determine how phenotypic characteristics 

shift across the boundaries of taxonomic units. 

 

7. How will our understanding of yeast ecology in temperate forests change as we focus 

away from well-studied systems and towards full temperate forest yeast communities? 

Yeast research in general has a bias towards a few well-studied genera, such as the 

genus Saccharomyces, which are not representative of yeast diversity. Instead, 

temperate forest yeast ecology needs to integrate entire yeast communities.  
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Figure legends: 

Figure 1: Geographic distribution of yeast sequences within temperate forest samples in the 

database GlobalFungi. Points on this map were used for analyses mentioned in the text. 

Relative abundances represent the share of ITS yeast sequences of each species in the global 

fungal ITS sequence pool. Each point represents a sequenced environmental sample and blue 

regions represent the distribution of temperate forest biomes. Points with a relative abundance 

of zero represent samples with a single yeast sequence, and these were rounded down to 

zero for the map. Points outside blue regions are from forest environments contiguous with 

temperate forests; we included these in the map and analyses to avoid breaking up information 

from individual forests. The world map with temperate forest biomes was obtained from 

https://earthobservatory.nasa.gov/biome/maptemperate.php 

 

Figure 2:  Success rates in isolating different Saccharomyces species across different 

geographical regions. The only significant correlation regards the success rate of S. uvarum 

isolation in South America, which decreases with latitude (Spearman coefficient, rs = -

0.94286, two-tailed p-value = 0.0048). Data from table S3. 
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