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a b s t r a c t 

In this paper, we consider image quality assessment (IQA) as a measure of how images are amenable with 

respect to a given downstream task, or task amenability . When the task is performed using machine learn- 

ing algorithms, such as a neural-network-based task predictor for image classification or segmentation, the 

performance of the task predictor provides an objective estimate of task amenability. In this work, we use 

an IQA controller to predict the task amenability which, itself being parameterised by neural networks, 

can be trained simultaneously with the task predictor. We further develop a meta-reinforcement learning 

framework to improve the adaptability for both IQA controllers and task predictors, such that they can 

be fine-tuned efficiently on new datasets or meta-tasks. We demonstrate the efficacy of the proposed 

task-specific, adaptable IQA approach, using two clinical applications for ultrasound-guided prostate in- 

tervention and pneumonia detection on X-ray images. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

.1. Image quality assessment 

Medical imaging is used extensively for diagnostic and ther- 

peutic procedures in medicine, whether they be interventional 

r non-interventional in nature. Several such diagnostic, naviga- 

ional or therapeutic tasks in the clinical workflow rely on med- 

cal images where they inform the clinician’s judgement, directly 

r via derived measurements. Medical imaging is increasingly be- 

ng used as a navigational aid to guide surgical and other interven- 

ional procedures, such as for prostate biopsies ( Brown et al., 2015 ), 

iver resections ( Simpson and Kingham, 2016 ), and brain resections 
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E-mail address: shaheer.saeed.17@ucl.ac.uk (S.U. Saeed). 

a

s

i

o

ttps://doi.org/10.1016/j.media.2022.102427 

361-8415/© 2022 The Authors. Published by Elsevier B.V. This is an open access article u
 Kondziolka and Lunsford, 1996 ). Treatment planning, for exam- 

le radiotherapy planning, relies heavily on pre-operative medical 

mages ( Dirix et al., 2014; Liney and Moerland, 2014 ). Moreover, 

maging is commonly used for diagnostic clinical tasks whether 

he task is performed manually by humans or automated using 

omputer aided diagnosis. The use of chest radio-graphs for di- 

gnosis of lung diseases ( Doi, 2007 ), computed tomography (CT) 

r magnetic resonance (MR) scans for diagnosis of brain diseases 

 Doi, 2007 ) and ultrasound (US) for diagnosis of uterine diseases 

 Dueholm, 2006 ), are all common examples where diagnosis relies 

eavily or solely on medical images. 

The performance of clinical tasks that rely on medical imag- 

ng can be adversely impacted by the image quality of the im- 

ges being used ( Chow and Paramesran, 2016 ). Image quality as- 

essment (IQA) is an effective way to ensure that any clinical task 

ntended for a medical image can be performed reliably as the use 

f poor quality images for clinical tasks can result in inaccurate, 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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r potentially erroneous, diagnoses or measurements ( Davis et al., 

009; Wu et al., 2017; Chow and Paramesran, 2016 ). IQA serves 

s a mechanism to ensure that intended downstream target tasks 

or medical images, such as diagnostic, therapeutic or navigational 

asks, can be performed effectively and reliably. 

The use of IQA in medicine to ensure reliability in clinical task 

erformance is common and various approaches to IQA have been 

roposed in the past decades to address this problem. Existing 

QA methods broadly fall into two categories, manual and auto- 

ated assessment. Manual assessment is widely used in clinical 

ractice ( Chow and Paramesran, 2016 ), often involving human in- 

erpretation of a set of criteria in order to assess image quality 

 Loizou et al., 2006; Hemmsen et al., 2010; Shima et al., 2007 ). Due

o the high variance in manual assessment, consensus or mean 

uality scores from multiple observers may be used to assess im- 

ges ( De Angelis et al., 2007; Chow and Rajagopal, 2015 ). Although 

onsensus-based methods are able to reduce the variance in pre- 

ictions and produce repeatable measurements for IQA, the human 

ost associated with obtaining IQA scoring from multiple expert 

bservers is high ( Chow and Paramesran, 2016 ). Automated as- 

essment methods for IQA provide a means to ensure reproducible 

easurements and to reduce both the variance in predictions and 

he involvement of human perception of both the medical image 

nd the IQA criteria ( Chow and Paramesran, 2016 ). These auto- 

ated methods differ from manual methods in that after a compu- 

ational tool construction phase, such as training a machine learn- 

ng model, they are able to quantify IQA without requiring human 

udgement for any new images being assessed. It is, however, im- 

ortant to note that model construction itself may require human 

udgement, possibly in the form of labelled samples or to select 

ommon features across high or low quality images, for both de- 

elopment and validation of the model. 

Automated methods can further be classified based on the ex- 

ent to which they utilise information from a reference set of im- 

ges in the IQA model construction phase ( Chow and Parames- 

an, 2016 ). Full-reference automated methods use selected refer- 

nce images directly in order to compute an IQA metric, which 

s often based on a similarity measure between the image being 

ssessed and the subjectively selected reference standard good- 

uality image. The selection of the reference standard and con- 

truction of the metric may be considered as part of model con- 

truction ( Fuderer, 1988; Kaufman et al., 1989; Henkelman, 1985; 

ietrich et al., 2007; Shiao et al., 2007; Geissler et al., 2007; Salem 

t al., 2002; Choong et al., 2006; Daly, 1992; Jiang et al., 2007; 

iao et al., 2008; Wang et al., 2004; Kumar and Rattan, 2012; Ku- 

ar et al., 2011; Rangaraju et al., 2012; Kowalik-Urbaniak et al., 

014; Huo et al., 2006 ). These full-reference methods and other 

educed-reference methods, which use partial information from a 

elected reference image set ( Chow and Paramesran, 2016 ), can 

hus produce automated, reliable and repeatable measurements. 

o-reference methods aim to eliminate the subjective selection of 

 reference standard and do not rely on a reference image set 

or model construction ( Dutta et al., 2013; Kalayeh et al., 2013; 

ortamet et al., 2009; Woodard and Carley-Spencer, 2006; Eck 

t al., 2015; Racine et al., 2016; Davis et al., 2009; Khler et al., 

013; Loizou et al., 2006 ). These methods require robust math- 

matical models to capture common features across low quality 

mages or the statistics of high quality image generation, and are 

herefore specific to certain modalities or applications. For exam- 

le, methods have been proposed for MR images ( Mortamet et al., 

009; Woodard and Carley-Spencer, 2006 ), single photon emission 

T ( Kalayeh et al., 2013 ), and CT ( Eck et al., 2015; Racine et al.,

016 ). Constructing these modality- or application- specific mod- 

ls may not require human labels of IQA at model construction 

r inference, however, it requires in-depth knowledge of the noise 

ources within the imaging modality as well as of the image acqui- 
2 
ition process and that of intended use of the images ( Chow and 

aramesran, 2016 ). Learning-based approaches use machine learn- 

ng methods, including recent deep learning, to automate IQA and 

rovide fast inference. Most of the existing methods learn from 

ubjective expert labels of IQA ( Wu et al., 2017; Zago et al., 2018;

sses et al., 2018; Baum et al., 2021; Liao et al., 2019; Abdi et al.,

017; Lin et al., 2019; Camps et al., 2020 ), based on a set of pre-

elected reference images to varying extent. Most automated IQA 

ethods, including full-, reduced- and no- reference methods, both 

earning- and non-learning based, were validated against human 

abels of IQA regardless of the extent to which they use human 

abels for model construction ( Chow and Paramesran, 2016 ). 

In this work we turn our attention to task-specific IQA meth- 

ds, when the goal of an IQA method is to ensure that specific 

ownstream tasks can be reliably performed, and task-agnostic IQA 

ethods may not always be effective, efficient or feasible. We pro- 

ose to use the term ‘task amenability’ to define the usefulness of 

n image for a specific downstream target task. Most IQA methods, 

egardless of the extent to which they utilise a reference standard, 

re often designed to be specific to a certain imaging modality or 

o a specific anatomy, rather than directly quantify the impact on 

he downstream clinical task performance ( Chow and Paramesran, 

016; Wu et al., 2017; Esses et al., 2018; Eck et al., 2015; Racine 

t al., 2016 ), as discussed above. For example, a strong ultrasound 

eflection, obstructing a significant part of gland boundaries, is 

atastrophic to a downstream task of gland segmentation, but may 

ot adversely impact a classification task for identifying the pres- 

nce of the gland. Similar examples also include severe noise found 

utside of regions of interest, upon which the diagnosis decision 

oes not rely. 

Perhaps more interestingly, as increasing number of down- 

tream tasks are being automated by, for example, machine learn- 

ng models, the subjectively perceived task-specific IQA may be 

ery different from the actual impact of an image on the auto- 

ated target task. Thus the extent to which these human-defined 

riterion can measure impact on machine-automated task perfor- 

ance is still an open question. Thus one could argue that, where 

he downstream target task is independently learned or performed, 

ask amenability may be difficult to quantify. 

.2. Related work and contribution 

In our previous work ( Saeed et al., 2021a ), we proposed a 

ethod to objectively quantify task amenability for a specific task 

y jointly learning the task-specific IQA and the target task to cap- 

ure the inter-dependence between the two functions, without the 

eed for human labels of IQA. We proposed to simultaneously 

earn a task predictor, which performs a downstream target task, 

nd an IQA controller, which selects or weights images based on 

heir task amenability. In this scenario, images can be selected or 

eighted based on their task amenability such that this selected 

r weighted subset results in improved target task performance. 

t should be noted that only performing the target task (i.e. using 

 task predictor function with fixed weights) while learning the 

ask amenability may also be able to capture the dependence of 

he controller on the target task. However, to capture the inter- 

ependence which arises from the task predictor training data 

odification by the controller and the controller training based on 

ask predictor performance, requires the target task to be learnt 

ithin the framework. Nonetheless, the fixed task predictor formu- 

ation may be useful for applications where the task-predictor has 

een pre-trained with different data or in applications where what 

he IQA entails does not impact task performance. 

In the proposed problem setting, optimising the controller is 

ependent on the task predictor being optimised. The problem can 

hus be modelled in a meta-learning framework where the down- 
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tream target task performance is maximised with respect to the 

ontroller selected images. The task predictor and the data used 

o train it are considered to be contained within an environment 

hich reflects a Markov decision process (MDP). 

Meta-learning problems have increasingly been formulated 

s reinforcement learning (RL) problems under RL-based meta- 

earning. In the RL-based meta-learning framework, a parameter 

ssociated with the target task is modified by the controller such 

hat the target task performance can be maximised. The reward, 

hich indicates how well the target task is performed, is com- 

uted after the parameter modification and thus indicates the ef- 

ect of the controller’s modification. This reward is used to update 

he controller in a way which maximises the cumulative obtained 

eward and thus allows for a parameter setting that maximises the 

arget task performance, to be learnt. The target task can include 

ny automated classification, regression or segmentation task and 

he parameter modification by the controller can include select- 

ng a data transformation strategy for augmentation policy search 

 Cubuk et al., 2019; Zhang et al., 2019 ), selecting hyper-parameters 

ike filters for convolutional layers for neural architecture search 

 Zoph and Le, 2017 ) and sampling training data for data valua- 

ion ( Yoon et al., 2020 ). This approach to learn task amenability 

ears some resemblance with the data valuation framework pre- 

ented in ( Yoon et al., 2020 ), however, there are several differences 

n reward formulation without human labels of quality, the RL al- 

orithms used, and other methodological details including use of 

he controller for holdout data. 

In another previous work we proposed a meta-RL training 

cheme for the controller ( Saeed et al., 2021b ). The training 

cheme involved a recurrent neural network (RNN) based con- 

roller and sampling different MDP environments, each with dif- 

erent observer labels for the target task, during training in order 

o equip the trained controller with adaptability to new labelling 

tandards. The resulting adaptability from data labelled by non- 

xpert observers to high-quality expert labelled data, carefully cu- 

ated by reviewed consensus, proved useful for the efficient use of 

abelled data. 

In this work, we summarise the two preliminary sets of exper- 

mental results ( Saeed et al., 2021a; 2021b ) and present a general 

ramework to learn an adaptable task amenability assessment us- 

ng meta-reinforcement learning (meta-RL). The proposed scheme 

amples environments for training, from a distribution of MDP 

nvironments, such that the controller can adapt to new envi- 

onments sampled from the distribution with a few interactions. 

daptive behaviour is learnt as a result of the proposed training 

cheme which involves sampling multiple environments and the 

se of a recurrent neural network (RNN) to equip adaptability to 

he controller similar to the framework proposed in our previous 

ork ( Saeed et al., 2021b ). However, different from the previous 

ork, the distribution of environments in the general framework 

an be over different target tasks, imaging modalities, observer la- 

els, task predictor functions (e.g. different network architectures), 

r any other variable within the environment, as opposed to over 

ifferent observer labels (where each sampled environment can be 

onsidered a new meta-task). Meta-RL allows for the task predic- 

or and controller functions to be trained together to capture the 

nter-dependence between them and also to equip adaptability to 

he controller over different meta-tasks. Therefore, the focus of this 

ork is to formulate a general meta-RL framework for IQA which 

s applicable to a variety of scenarios where adaptability is to be 

earnt over a distribution of environments or meta-tasks. 

Contributions of this work are summarised as follows: 1) we 

resent a literature review with a contextual discussion for posi- 

ioning the proposed task-specific IQA methodology and explains 

he need for co-learning between the IQA controller and a task 

redictor; 2) building on our preliminary work presented in two 
3 
ecent conference papers ( Saeed et al., 2021a; 2021b ), we for- 

ulate a general, unified meta-RL based meta learning frame- 

ork to train an adaptable IQA system which directly accounts for 

he inter-dependence between the task-specific IQA and the tar- 

et task; 3) we present new experiments to evaluate the hyper- 

arameters and design choices in our proposed framework; 4) in 

ddition to summarising the two previously reported target tasks 

f prostate classification and segmentation, we also evaluate for 

 new diagnostic target task of pneumonia detection, on a public 

ataset of chest X-ray images; 5) the code used in this study are 

ade available for reproducibility of the presented experimental 

esults. 

. Methods 

.1. Problem formulation 

In this section, we formulate the image quality assessment 

roblem in a specific scenario, that uses the output of the mea- 

ure of quality for task amenable data selection. As described in 

ect. 1 and illustrated in the Fig. 1 , the proposed IQA formulation 

elies on two inter-dependent functions, the controller and the task 

redictor. 

.1.1. Task predictor and IQA controller 

Without loss of generality, assume the task predictor is a para- 

etric function, 

f (x ; w ) : X → Y, (1) 

hich preforms the target task given an image sample x ∈ X and 

utputs a prediction y ∈ Y , with parameters w . The controller is 

lso a parametric function, 

 (x ; θ ) : X → [0 , 1] , (2) 

hich outputs a task amenability score given an image sample, x , 

ith parameters θ . In this formulation X and Y correspond to the 

mage and label domains for the specific downstream target task 

espectively. P X and P XY denote the image and joint image-label 

istributions with probability density functions p(x ) and p(x, y ) , 

espectively. 

The task predictor performs the downstream target task and the 

ontroller selects or weights data used for training the task pre- 

ictor. The task performance informs the controller decisions over 

ime in order to allow for task performance to be improved. The 

raining methodology outlined below helps to capture this inter- 

ependence between the two functions. 

.1.2. Optimising task predictor 

Given that a loss function, L f : Y × Y → R ≥0 , measures how 

ell the target task is performed by the task predictor f (x ; w ) 

iven task label y , the task predictor is optimised by minimising 

 weighted loss function as follows: 

in 

w 

E (x,y ) ∼P XY 
[ L f ( f (x ; w ) , y ) h (x ; θ )] . (3) 

Here, weighting by the controller-measured task amenability for 

he same image sample, x , ensures that high loss samples with low 

ask amenability should be weighted less. This provides an incen- 

ive to reject such samples, and to accept samples with high task 

menability, in optimising the controller described as follows. 

.1.3. Optimising controller 

The controller is optimised by minimising a weighted metric 

unction on the validation set L h : Y × Y → R ≥0 : 

in 

θ
E (x,y ) ∼P XY 

[ L h ( f (x ; w ) , y ) h (x ; θ )] , (4) 
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Fig. 1. Illustration of the proposed multi-environment meta-RL task amenability framework. 
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.t. E x ∼P X [ h (x ; θ )] ≥ c > 0 . (5) 

The controller thus predicts lower task amenability for sam- 

les with higher values from this metric function, which translates 

o lower task performance, due to the weighted sum being min- 

mised. Intuitively, this means correctly predicting the task labels 

or lower task amenability samples tends to be difficult. The trivial 

olution of h ≡ 0 is prevented by introducing the constraint. 

.1.4. Bi-level optimisation for learning task amenability 

The proposed task amenability framework can thus be posed as 

he following bi-level minimisation problem ( Sinha et al., 2018 ): 

in 

θ
E (x,y ) ∼P XY 

[ L h ( f (x ; w 

∗) , y ) h (x ; θ )] , (6) 

.t. w 

∗ = arg min 

w 

E (x,y ) ∼P XY 
[ L f ( f (x ; w ) , y ) h (x ; θ )] , (7)

 x ∼P X [ h (x ; θ )] ≥ c > 0 . (8) 

This problem can be re-structured to permit sampling or se- 

ection based on controller outputs by considering the data x and 

x, y ) to be sampled from the controller-selected or -sampled dis- 

ributions P 

h 
X 

and P 

h 
XY 

, with probability density functions p h (x ) ∝ 

p(x ) h (x ; θ ) and p h (x, y ) ∝ p(x, y ) h (x ; θ ) , respectively. Thus, re-

ormulating to facilitate sampling or selection, we can re-write the 

i-level minimisation problem as follows: 

in 

θ
E (x,y ) ∼P h 

XY 
[ L h ( f (x ; w 

∗) , y )] , (9) 

.t. w 

∗ = arg min 

w 

E (x,y ) ∼P h 
XY 

[ L f ( f (x ; w ) , y )] , (10) 

 x ∼P h 
X 
[1] ≥ c > 0 . (11) 

.2. Meta-reinforcement-learning for task amenability 

The formulated task amenability assessment problem, eq. 1 to 

 , can be learnt in a RL-based meta-learning framework as formu- 

ated in our previous work ( Saeed et al., 2021a ). In this work we

utline a general meta-RL based meta-learning framework to learn 

daptable task amenability assessment. 
4 
.2.1. Markov decision process environment construction 

The proposed formulation can be modelled as a finite-horizon 

arkov decision process (MDP) with the controller interacting 

ith, and influencing, an ‘environment’, which contains the task 

redictor and the data used to train such a function, as illustrated 

n Fig. 2 . The MDP environment for this task amenability problem 

hus consists of the data from P XY , where this joint image-label 

istribution is defined as P XY = P X P Y | X , and the target task pre-

ictor f (·; w ) . At time-step t , the observed state of the environ- 

ent s t = ( f (·; w t ) ,B t ) is composed of the target task predictor

f (·; w ) and a batch of samples B t = { (x i , y i ) } B i =1 
from a train set

 train = { (x i , y i ) } N i =1 
from the distribution P XY . If each MDP envi-

onment is defined as M k , the joint image-label distribution and 

ask predictor within the environment can be defined as P XY,k and 

f k (·; w k ) , respectively. However, in further analysis, we omit k from 

hese expressions, for notational convenience. 

.2.2. Reinforcement learning for bi-level optimisation 

Reinforcement learning allows for the training of a controller 

o maximise a reward obtained based on controller-environment 

nteractions, which are considered to be a MDP. In RL, the MDP 

s considered to be a 5-tuple (S, A , p, r, π) . S is the state space

nd A is the continuous action space. p : S × S × A → [0 , 1] is

he state transition distribution conditioned on state-actions, e.g. 

p(s t+1 | s t , a t ) represents the probability of the next state s t+1 ∈ S
iven the current state s t ∈ S and action a t ∈ A . 

The reward function is denoted by r : S × A → R and R t =
(s t , a t ) denotes the reward given current state s t and action a t .

he policy, π(a t | s t ) : S × A ∈ [0 , 1] , represents the probability of

erforming the action a t given the state s t . The controller inter- 

cting with an environment creates a trajectory of states, actions 

nd rewards, (s 1 , a 1 , R 1 , s 2 , a 2 , R 2 , . . . , s T , a T , R T ) , where the sub-

cript indicates the time-step. 

The goal of the agent is to maximise the cumulative reward 

ver a trajectory. The cumulative reward is the discounted sum 

f accumulated rewards starting from time-step t: Q 

π (s t , a t ) = 

 T 
k =0 γ

k R t+ k , where the discount factor γ ∈ [0 , 1] is used to dis- 

ount future rewards. The objective of the controller is thus to 

earn a parameterised policy πθ which maximises the expected re- 

urn J(θ ) = E πθ
[ Q 

π (s t , a t ) ] . The central optimisation problem in RL 

an be expressed as: 

∗ = argmax θ J(θ ) 

here θ ∗ denotes optimal policy parameters. 
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Fig. 2. A single environment in the IQA framework. 
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In our previous work ( Saeed et al., 2021a ), we proposed to train

he task-amenability-predicting controller using RL, where the con- 

roller outputs sampling probabilities { h (x i,t , θ ) } B 
i =1 

based on the 

nput images. The action a t = { a i,t } B i =1 
∈ { 0 , 1 } B leads to a sample

election decision for target task predictor training, if a i,t = 1 . The 

election is done based on a i,t ∼ Bernoulli (h (x i,t ; θ )) . The policy 

θ (a t | s t ) is defined as: 

og πθ (a t | s t ) = 

B ∑ 

i =1 

h (x i,t ; θ ) a i,t + (1 − h (x i,t ; θ )(1 − a i,t )) (12) 

In this formulation, the reward R t was formulated based on the 

etric function which measures performance of the target task, L h . 

here are several options for how to design a metric using L h and 

e describe a few examples in the subsequent paragraphs. 

.2.3. Meta reinforcement learning for adaptability 

In this work, we propose to train the controller using meta- 

L that unifies the single-environment formulation proposed in 

 Saeed et al., 2021a ). Meta-RL is a training procedure which has 

he same goal of maximising the expected return as RL, however, 

he objective is averaged across multiple MDP environments in a 

istribution of MDPs such that the trained controller can effec- 

ively generalise or adapt to new MDPs sampled from the distri- 

ution ( Duan et al., 2016; Wang et al., 2017; Botvinick et al., 2019 ).

o facilitate adaptability in the controller, it is shared across dif- 

erent MDPs sampled from the distribution of MDPs P M 

. A period 

f interaction with a single MDP is referred to as a trial . The con-

roller learns across multiple trials by sampling an MDP M k ∼ P M 

or each trial. The controller also takes the action a t , raw reward 

 t , and termination flag d t at the previous time step in addition to

he observed current state s t+1 . Note that for per-sample operation 

 t = R t at the episode end, and zero otherwise, similar to sparse 

eward formulations in ( Duan et al., 2016; Wang et al., 2017 ). Ad-

itionally, the controller embeds a recurrent neural network (RNN) 

ith the internal memory shared across episodes within the same 
5 
rial. The internal memory is reset before the controller encoun- 

ers another environment i.e. at the start of each trial. This mech- 

nism allows for adaptability even with fixed wights ( Duan et al., 

016; Wang et al., 2017; Botvinick et al., 2019 ). The additional in- 

uts along with the embedded RNN and its internal memory make 

he controller a function of the history leading up to a sample such 

hat changing history can influence the action for that sample. It 

hould be noted that each sampled MDP M k , has its own task pre-

ictor and joint image-label distributions. There may be benefit in 

haring components between the MDPs and a few such cases are 

iscussed in the following paragraphs. The training scheme is out- 

ined in Algorithm 1 and summarised in Fig. 1 . 

Subsequent to training using the meta-RL scheme, adaptation 

an be carried out by sampling a single MDP M a ∼ P M 

, where M a is

he environment to be adapted to, resetting the RNN internal state 

nce at the start of the adaptation and allowing for controller- 

nvironment interaction across multiple episodes. This means fol- 

owing the same scheme as Algorithm 1 but without sampling a 

ew MDP on each trial, without resetting the RNN internal state 

t the start of each trial, and without updating the controller. The 

daptability in this adaptation scheme is a result of updating RNN 

nternal state rather than updates of the weights. 

This meta-RL training and adaptation scheme could potentially 

e applicable to a wide range of scenarios and could be used to 

rain an IQA system which could adapt to different tar get tasks, 

ew labels for the target task, different task predictor functions, 

ifferent reward metrics, or different imaging modalities. This 

ould allow for efficient use of data without the need to retrain 

n entirely new IQA system. As an example, to train an IQA system 

daptable to different task predictor functions, for example neu- 

al network architectures, the defined MDP distribution P M 

would 

ave MDPs each with a task predictor with a different architecture. 

or some of these applications, such as to train an adaptable IQA 

ystem across multiple reward metrics or labels for the target task, 

t may be beneficial to share the task predictor between MDP en- 

ironments. This equips adaptability to the task predictor in addi- 
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Algorithm 1: Adaptable image task amenability assessment 

using multiple environments. 

Data : Multiple MDPs M k ∼ P M 

. 

Result : Controller h (·; θ ) . 

while not converged do 

Sample an MDP M k ∼ P M 

; 

Reset the internal state of controller h ; 

for Each episode in all episodes do 

for t ← 1 to T do 

Sample a training mini-batch B t = { (x i,t , y i,t ) } B i =1 
; 

Compute selection probabilities 

{ h i,t } B i =1 
= { h (τi,t ; θt ) } B i =1 

; 

Sample actions a t = { a i,t } B i =1 
w.r.t. 

a i,t ∼ Bernoulli (h i,t ) ; 

Select samples B t, selected from B t ; 

Update predictor f (·; w t ) with B t, selected ; 

Compute reward R t ; 

end 

Collect one episode {B t , a t , R t } T t=1 
; 

Update controller h (·; θ ) using the RL algorithm; 

end 

end 
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ion to the controller. Moreover, sharing certain components of the 

ataset may be useful as well, such as for multiple observer labels, 

t may be useful to share images across environments and define 

he distribution of MDPs P M 

to be over different joint image-label 

istributions as outlined in Sect. 2.4 . 

.2.4. Reward formulation 

In the previous sections we outlined how a performance metric 

an be used as the reward function to train the task amenability- 

redicting controller. This allows for many different combinations 

nd variations in the reward formulation, however, in this work 

e focus on a performance metric computed on the validation set 

 val = { (x j , y j ) } M 

j=1 
, from the same distribution as the train set P XY ,

s: { l j,t } M 

j=1 
= { L h ( f (x j ; w t ) , y j ) } . This performance can be used to

ormulate the un-clipped reward 

˜ R t . ˜ R t can be formulated in sev- 

ral ways, with or without the controller output for the validation 

et { h j } M 

j=1 
= { h (x j ; θ ) } M 

j=1 
. In this work we consider three formu-

ations for ˜ R t : 

1. ˜ R avg ,t = − 1 
M 

∑ M 

j=1 l j,t, the average performance. 

2. ˜ R w ,t = − 1 
M 

∑ M 

j=1 l j,t h j , the weighted sum. 

3. ˜ R sel ,t = − 1 
M 

′ 
∑ M 

′ 
j ′ =1 l j ′ ,t, the average of the selected M 

′ samples. 

The first reward formulation 

˜ R avg ,t requires pre-selection of 

ighly task amenable data by a human observer to form the vali- 

ation set since no controller weighting or sampling is performed. 

hese “task amenability” labels can be acquired in addition to the 

ask labels and can be used to form such a clean fixed validation 

et. The second 

˜ R w ,t and third 

˜ R sel ,t reward formulations do not 

equire these human labels of task amenability as they utilise the 

ontroller output to weight or sample the validation set, respec- 

ively. For the third reward formulation, ˜ R sel ,t , { j ′ } M 

′ 
j ′ =1 

⊆ { j} M 

j=1 
and 

 j ′ ≤ h k ′ , ∀ k ′ ∈ { j ′ } c , ∀ j ′ ∈ { j ′ } , i.e. the un-clipped reward 

˜ R sel ,t is 

he average of { l j ′ } from the subset of M 

′ = � (1 − s re j ) M� samples,

y removing s re j × 100% samples from the end, after sorting h j in 

ecreasing order. During training, this ˜ R t value is clipped using 

 moving average R̄ t = αR ̄R t−1 + (1 − αR ) ̃  R t , where αR is a hyper- 

arameter set to 0.9. It is possible to clip the reward using other 

alues such as using a random selection baseline rather than using 
6 
 moving average. It is interesting to note that since the validation 

et is formed of multiple samples, this means that the controller 

ill not only keep samples on which the target task can be per- 

ormed perfectly but will try to select samples to facilitate gener- 

lisability to new samples. Additionally, since the validation set is 

ither weighted or selective, with or without human labels of IQA, 

ith respect to task amenability, generalisability to samples that 

ave high task amenability is encouraged compared to those with 

ow task amenability. This means that cases such as all samples be- 

ng selected or all but one samples being rejected, are discouraged 

n this formulation. 

.3. Single environment cases 

The task-specific IQA system presented in ( Saeed et al., 2021a ) 

an be considered a special case of the general meta-RL framework 

resented in this work. In the single environment case, there are 

o environment-specific trials but rather we can consider the same 

nvironment to be sampled at the start of each trial. Moreover, 

daptation is not required after training. The Reptile update (intro- 

uced in Sect. 2.4 ) is also not applicable to this single environment 

ase and the RNN may be replaced with a simple feed-forward 

unction such as a deep neural network and the additional inputs 

f a t , r t , and d t may be omitted. More succinctly, meta-RL sim- 

lifies to RL for this single environment case. This is useful when 

daptability over a dataset distribution is not required but general- 

sability to new samples in a dataset is still desirable. 

.4. Multiple environments for inter-observer labels 

Our previous work presented preliminary results for such a spe- 

ific formulation of the meta-RL framework ( Saeed et al., 2021b ), 

n which a trained IQA system could adapt across multiple ob- 

ervers of task amenability, for example to use non-expert target 

ask labels for training and then use limited expert-labelled data 

or adaptation to adapt the task-specific IQA definition to a new 

eference standard. In this paper, the general framework presented 

n Sect. 2.2.2 is a more general case of the multi-observer frame- 

ork presented in ( Saeed et al., 2021b ). Additional results from a 

omprehensive set of experiments are also presented in Sect. 4 . 

For the multi-observer setting we consider multiple label dis- 

ributions {P 

k 
Y | X } K k =1 

which means that each sample x has multiple 

abels { y k } K 
k =1 

. Therefore, we have multiple joint image-label dis- 

ributions P 

k 
XY 

= P X P 

k 
Y | X for k = 1 , . . . , K. We use each joint image-

abel distribution to form an individual MDP environment M k . The 

istribution of MDPs P M 

is thus over multiple observers for the 

ame target task. In the multi-observer framework, weights of the 

ask predictor are synced between the different environments at 

he start of a new trial and the task predictor is updated using 

eptile ( Nichol et al., 2018 ) to allow for adaptability and data effi- 

iency of the predictor in addition to the controller. 

The task predictor update therefore consists of two steps: 1) 

erform gradient descent to update the weights of the task pre- 

ictor f (·; w t ) , from w t to w t, new 

; 2) update the task predictor

eights w t ← w t + ε(w t, new 

− w t ) . ε is set as 1.0 initially and lin-

arly annealed to 0.0 as trials progress. 

.5. Controller selection at inference 

A separate holdout set is used to evaluate the controller-learned 

ask amenability assessment. We remove a proportion of the sam- 

les valued least by the controller by sorting the samples in the 

oldout set according to controller predicted values. This ratio of 

amples removed based on controller outputs is referred to as the 

holdout set rejection ratio’. 
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. Experiments 

We conduct experiments to evaluate the efficacy of the pro- 

osed task amenability framework, both in single and multiple en- 

ironment settings. The details of the experiment and the data 

sed to evaluate the proposed framework are outlined in this sec- 

ion. 

.1. Experiment data 

We used two datasets in our experiments; the first dataset was 

ormed of trans-rectal ultrasound (TRUS) images of the prostate 

land and surrounding regions, and the second dataset consisted 

f chest X-ray images. The TRUS dataset allows us to evaluate the 

fficacy of the proposed framework to two common surgical guid- 

nce and navigational target tasks of prostate presence detection 

nd gland segmentation. The chest X-ray dataset allows us to eval- 

ate the framework for a common diagnostic target task of pneu- 

onia detection using chest X-ray images, and to demonstrate that 

he proposed approach is not limited to a single imaging modality, 

ataset, and target task. Moreover, this dataset is publicly available 

nd commonly used for medical imaging research. 

.1.1. Transrectal ultrasound imaging and the target tasks 

Ultrasound guided biopsy procedures were performed for 259 

atients as part of the clinical trials (NCT02290561, NCT02341677). 

rans-rectal ultrasound images were acquired for these patients 

sing a side firing transducer of a bi-plane trans-perineal ultra- 

ound probe (C41L47RP, HI-VISION Preirus, Hitachi Medical Sys- 

ems Europe). These images were acquired either while manu- 

lly positioning a digital trans-perineal stepper (D&K Technologies 

mbH, Barum, Germany) for navigation using ultrasound or while 

otating the stepper with recorded relative angles to scan the en- 

ire gland. Each image consisted of 50–120 2D frames of TRUS with 

elative angles recorded for each frame. 

Data pre-processing 

In order to feasibly label the acquired data, the resulting TRUS 

mages were sampled at approximately 4 degrees resulting in a to- 

al of 6712 2D frames of TRUS from 259 patients. These images 

ere randomly split into train, validation and holdout sets with 

689, 1023, and 10 0 0 images from 178, 43, and 38 subjects, re-

pectively. All the images were labelled by four observers for two 

ownstream target tasks. In addition to the labels for target task, 

uman labels of task amenability for both target tasks were ac- 

uired for the purpose of comparing to controller predicted task 

menability assessment and in order to select data for the fixed 

lean validation set reward strategy. These task amenability la- 

els were in the form of binary labels indicating if an image was 

menable for the target task or not. 

Two target tasks and their labels 

Labels for two target tasks were curated for all the images: 

) prostate presence classification (binary scalar value indicating 

rostate presence); 2) prostate gland segmentation (binary image 

ask of the prostate gland). 

Three sets of labels were collected from three trained medi- 

al imaging researchers for both target tasks. For brevity, these 

hree sets are referred to as “non-expert” labels and are denoted 

y { L i } 3 i =1 
. An additional set of consensus labels were generated 

sing a slice-level and pixel-level majority vote for the classifica- 

ion and segmentation tasks, respectively. These consensus labels 

re denoted by L C . These consensus labels were then reviewed by 

 urologist and edited as required. The labels curated by reviewed 

onsensus with an “expert” are denoted as L R . 

Summary of experiments 

With this dataset we perform two types of experiments: 1) ex- 

eriments where we use the consensus labels L as a single envi- 
C 

7 
onment for training using the single environment simplified case 

resented in Sect. 2.3 ; 2) experiments where we use the non- 

xpert label sets { L i } 3 i =1 
for training and the expert label set L R for

daptation using the multi-environment framework (more specifi- 

ally the multi-observer setting presented in Sect. 2.4 ). For exper- 

ments that fall under type 1, referred to as single-environment 

xperiments, we investigate the effect of the three proposed re- 

ard strategies, presented in Sect. 2.2.4 , and compare with a non- 

elective baseline ( Sect. 3.4.1 ), compare controller-predicted task 

menability to human labels of IQA ( Sect. 3.4.1.2 ), conduct a sen- 

itivity analysis for the s rej hyper-parameter for the segmentation 

ask ( Sect. 3.4.1.1 ). For experiments that fall under type 2, referred 

o as multi-environment experiments, we compare the proposed 

ulti-environment meta-RL framework to a single environment 

aseline ( Sect. 3.5 ), and conduct ablation studies to evaluate the 

esign choices of the proposed meta-RL algorithms and its train- 

ng strategy ( Sect. 3.5 ). 

.1.2. Public chest X-ray data and the target task 

A public dataset of chest X-ray images with binary labels indi- 

ating pneumonia diagnosis ( Yang et al., 2021 ) was used to evalu- 

te the applicability of the proposed framework to diagnostic tar- 

et tasks. A total of 5856 images were randomly split into train, 

alidation and holdout sets with 4708, 524 and 624 images, re- 

pectively. The images are scaled down paediatric chest X-ray im- 

ges acquired as part of routine clinical visits. Since low-quality 

mages were manually removed from this data we added artifi- 

ial corruptions of random intensities to these images in order to 

valuate the task amenability assessment framework. Two corrup- 

ion operations with random intensities were used. Firstly, random 

aussian noise was added to images with intensities varying be- 

ween 0.0 and 0.8 where an intensity of 1.0 means all pixels in the 

mage are corrupted by random noise and 0.0 means that no pixels 

re corrupted (percentage of pixels corrupted in the image varies 

inearly with intensity value). Secondly, random obstructions were 

dded to the image with intensities between 0.0 and 1.0 where an 

ntensity of 1.0 means 100% of the image is obstructed by zero in- 

ensity pixels and 0.0 means that the original image is fully visible 

ith no obstructions added (percentage of image obstructed varies 

inearly with intensity value). 

The dataset used and the associated experiments are avail- 

ble in an open-source GitHub repository: https://github.com/s-sd/ 

ask-amenability . 

Summary of experiments 

With this dataset we perform experiments with the reduced 

ingle environment ( Sect. 2.3 ) and thus experiments for this data 

ll fall under single-environment experiments. We evaluate differ- 

nt RL algorithms within the proposed framework ( Sect. 3.4.3 ), and 

ompare the performance of the task predictor when controller se- 

ection is applicable to the holdout set with random selection and 

on-selective baselines ( Sect. 3.4.2 ). 

.2. IQA Performance evaluation 

The IQA system, including both the controller and target task 

redictor are evaluated jointly using task performance. This serves 

s a direct measure of performance for the task predictor and in- 

irect measure of performance for the controller with respect to 

he learned task amenability. The task performance measures for 

he different tar get tasks considered in this work are outlined as 

ollows. 

Prostate presence detection For the prostate presence detection 

lassification task, we report the mean accuracy (Acc.) for the hold- 

ut set with standard deviation (St.D.) as a measure of inter-patient 

ariability. 

https://github.com/s-sd/task-amenability
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RNN internal state was not reset before adaptation. 
Prostate gland segmentation We report the mean binary Dice 

core (Dice) on the holdout set with St.D. to measure inter-patient 

ariability, for the prostate gland segmentation task. 

Pneumonia detection For the pneumonia detection classification 

ask, we report Acc. and we use bootstrap sampling to estimate the 

t.D. as a measure of inter-sample variance for the holdout set. 

All results, for all tasks, are averaged across all the samples 

n the holdout set. Where controller selection on the holdout set 

s applicable, the holdout set rejection ratio is specified and the 

ask performance measures are computed over the selected sam- 

les only. Paired t -test results at a significance level of 5% are re-

orted for comparisons. 

.3. Training details 

Prostate presence detection For the single-environment class 

f experiments, the controller is trained using the deep deter- 

inistic policy gradient (DDPG) ( Lillicrap et al., 2019 ) algorithm 

ith hyper-parameters being empirically configured. For the multi- 

nvironment type of experiments the controller is trained us- 

ng proximal policy optimisation (PPO) ( Schulman et al., 2017 ). 

n Alex-Net-style architecture ( Krizhevsky et al., 2012 ) was used 

s the target task predictor. The target task predictor and con- 

roller were trained with a cross-entropy loss and reward based 

n classification accuracy (Acc.) for the classification task. Hyper- 

arameters for the controller and task predictor network architec- 

ures and training procedures remain unchanged from default un- 

ess specified. The actor and critic networks used in the DDPG and 

PO algorithms pass the image inputs via a 3-layered convolutional 

ncoder. These networks then feed into 3 fully connected layers 

which embed an RNN in the case of PPO as detailed in Sect. 3.5 ). 

Prostate gland segmentation The DDPG and PPO algorithms were 

sed for the single- and multi-environment experiments, respec- 

ively, similar to the prostate presence detection task and hyper- 

arameters for these controller networks are also identical be- 

ween these two tasks. The U-Net architecture ( Ronneberger et al., 

015 ) was used as the task predictor and was trained with a pixel-

ise cross-entropy loss. The reward was based on mean binary 

ice score. 

Pneumonia detection All details including the target task loss, re- 

ard and RL hyper-parameters remain the same as the prostate 

resence classification task, however since there are no multi- 

nvironment experiments for this dataset, for comparison between 

ifferent RL algorithms, both DDPG and PPO are used in the single- 

nvironment setting for controller training. 

.4. Single-environment experiments 

.4.1. Evaluating different reward strategies 

The proposed RL-based task amenability framework for a single 

nvironment was evaluated using the TRUS data with consensus 

abels L C for training for all three reward strategies presented in 

ec 2.2.4 . 

To evaluate the relationship of the controller output with the 

arget task performance, different percentages of the holdout set 

ere removed according to controller output and the mean per- 

ormance measure and measure of spread are reported for the re- 

aining samples. The three reward formulations were compared 

ith a baseline target task predictor with no controller selection 

uring training or testing. For the fixed clean validation set reward 

ormulation, s rej was set as 0.05 and 0.15 for the prostate classi- 

cation and segmentation tasks, respectively, for all experiments, 

nless specified otherwise. The holdout set rejection ratio for the 

rostate presence detection and gland segmentation tasks are set 

o 0.05 and 0.15, respecitvely. 
8 
Sensitivity analysis for the rejection ratio for the selective reward 

ormulation 

The selective reward formulation has an additional hyper- 

arameter s rej . We conducted a sensitivity analysis for this hyper- 

arameter for the segmentation task for the TRUS data. The per- 

ormance measure and spread are reported for this task for vary- 

ng s rej using the selective reward formulation. For the purpose of 

omparison, the task performance is reported for a holdout set re- 

ection ratio of 0.15 for all tested values of s rej . 

Comparing controller labels to human labels of task amenability 

We compared human labels of task amenability with controller 

redictions for the two target tasks for the TRUS data. These com- 

arisons were made for all three reward strategies and for the pur- 

ose of comparing with binary human-labelled task amenability, 

% and 15% of the lowest valued controller samples were consid- 

red as having low-task amenability. These comparisons are pre- 

ented in the form of contingency tables. 

.4.2. Controller selection and a non-selective baseline 

The weighted validation set strategy was used to evaluate the 

fficacy of the proposed RL-based task amenability framework on 

he chest X-ray dataset, without using any human labels of task 

menability. The relationship between target task performance and 

ontroller output was studied by removing a proportion of sam- 

les based on controller output. The results are reported for a 

oldout set rejection ratio of 0.10. Two baseline networks trained 

nd tested, 1) without controller selection referred to as the non- 

elective baseline, and 2) with a random selection strategy, i.e. a 

rivial controller, referred to as the random selection baseline, are 

uantitatively compared. 

.4.3. Comparing different RL algorithms 

To evaluate the sensitivity of the proposed framework to dif- 

erent RL algorithms. The proximal policy optimisation (PPO) and 

eep deterministic policy gradient (DDPG) algorithms were com- 

ared for controller training, based on the weighted validation set 

eward strategy with the chest X-ray dataset. The holdout set re- 

ection ratio for this experiment was set as 0.10. 

.5. Multi-environment for multi-observer labelling 

To evaluate the multi-environment meta-RL framework, for the 

ulti-observer setting, we trained and compared three models for 

ask amenability: 

• Meta-baseline : This model was trained with all the high-quality 

reviewed consensus labels L R . Only a single environment was 

used to train with this “expert” labelled data to establish a ref- 

erence. 
• Meta-RL : The proposed meta-RL framework was used for train- 

ing with the three non-expert labels { L i } 3 i =1 
forming the three 

environments for training where the train and validation sets 

are used. The task predictor and controller were subsequently 

adapted using k × 100% of the training and validation sets with 

expert labels L R . 
• Meta-RL Variant : We conduct an ablation study in order to eval- 

uate the effectiveness of the environment-level separation, we 

trained a model using all of the training and validation data us- 

ing non-expert labels { L i } 3 i =1 
as a single environment. That is to 

say that the trials were not environment specific and Reptile 

was not used to perform updates to optimise the task predictor 

as it reduces to gradient descent in this case. The task predic- 

tor and controller were adapted using k × 100% of the training 

and validation sets with expert labels L R but for this model, the 
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Table 1 

Results on the controller-selected holdout set. 

Task Reward computation strategy Mean ± St.D. 

Prostate presence 

(Acc.) 

Non-selective baseline 0.897 ± 0.010 
˜ R avg ,t , fixed validation set 0.935 ± 0.014 
˜ R w ,t , weighted validation set 0.926 ± 0.012 
˜ R sel ,t , selective validation set 0.913 ± 0.012 

Prostate segmentation 

(Dice) 

Non-selective baseline 0.815 ± 0.018 
˜ R avg ,t , fixed validation set 0.890 ± 0.017 
˜ R w ,t , weighted validation set 0.893 ± 0.018 
˜ R sel ,t , selective validation set 0.865 ± 0.014 

Pneumonia detection 

(Acc.) 

Non-selective baseline 0.817 ± 0.026 

˜ R w ,t , weighted validation set (DDPG) 0.843 ± 0.033 
˜ R w ,t , weighted validation set (PPO) 0.838 ± 0.031 
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Table 2 

Sensitivity analysis for s rej for the prostate segmentation 

task for the selective reward formulation. 

s rej Mean ± St.D. 

0.00 0.827 ± 0.011 

0.05 0.838 ± 0.012 

0.10 0.845 ± 0.010 

0.15 0.865 ± 0.014 

0.20 0.882 ± 0.017 

0.25 0.888 ± 0.016 

0.30 0.876 ± 0.012 
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We evaluate these models for varying k -values, where k is 

he ratio of expert-labelled samples used for adaptation ( k × 100% 

amples used). 

The TRUS data was used for this experiment and the multi- 

nvironment framework was evaluated for both target tasks. The 

ontroller, for this experiment, was embedded with an RNN and 

ad additional inputs of the previous reward, action and termi- 

al flag. The image was passed through 3 convolutional layers be- 

ore being passed to the RNN embedded controller which had a 

tacked LSTM architecture with hyper-parameters remaining un- 

hanged from defaults in ( Wang et al., 2017 ). PPO was used to train

he controller in this meta-RL framework since the DDPG algorithm 

elies on random sampling from a replay buffer which is not well 

uited when adaptation is done based on RNN internal state up- 

ates, which builds sequential memory in the system. 

. Results 

Reward strategies The results of Acc. and Dice from the TRUS 

ataset, with the three proposed reward strategies, are sum- 

arised in Table 1 . The performance measures are computed after 

 controller selection of the holdout set with holdout set rejection 

atios of 0.05 and 0.15 for the prostate presence classification and 

rostate segmentation tasks, respectively. For both of the tasks, all 

hree proposed reward formulations were able to achieve higher 

erformance compared to a non-selective baseline, with statisti- 

al significance ( p-values < 0.001 ). The fixed clean validation set and 

eighted validation set strategies led to significantly higher per- 

ormance ( p-values < 0.001 ) compared to the selective validation set 

eward formulation, for both tested tasks. However, significance 

as not observed between those from the fixed clean validation 

et and weighted validation set reward strategies, for both the clas- 

ification ( p-value = 0.06 ) and segmentation ( p-value = 0.49 ) tasks. To

valuate performance at varying holdout set rejection ratios, the 

ean performance against holdout set rejection ratio is plotted in 

ig. 3 . The peak classification Acc. 0.935, 0.932 and 0.913 occur at 

% , 10% and 5% rejection ratios, for the fixed-, weighted- and se- 

ective reward formulations, respectively, while the peak segmen- 

ation Dice 0.891, 0.893 and 0.866 occur at 20% , 15% and 20% re-

ection ratios, respectively. 

Comparison to human IQA labels Contingency tables are pre- 

ented in Fig. 4 to compare controller predicted task amenabil- 

ty to human labels of task-specific quality for the holdout set, 

or the prostate presence classification and prostate segmentation 

asks. For the purpose of comparison, the holdout set rejection ra- 

io is set to 0.05 and 0.15, for the classification and segmentation 

asks, respectively, such that rejected samples are considered low 

ask amenability and the rest are considered high task amenability. 

greement in low task amenability samples of 75% , 70% and 43% , 

ith Cohen’s kappa values of 0.75, 0.51, was seen for the prostate 
9 
resence classification task, for the fixed-, weighted- and selective 

alidation sets, respectively. In the segmentation task, agreement 

n low task amenability samples of 65% , 58% and 49% , with Co- 

en’s kappa values of 0.63, 0.48 and 0.37, was observed for the 

hree reward formulations, respectively. 

Sensitivity analysis and ablation studies The validation set re- 

ection ratio s rej is treated as a hyper-parameter and a sensitiv- 

ty analysis for this hyper-parameter is conducted for the prostate 

egmentation task. The performance at varying values of s rej is 

resented in Table 2 . s rej is increased in increments of 0.05 and 

ach step increase leads to a statistically significant improvement 

n performance up to s rej = 0 . 20 ( p-values < 0.01 ). No significance

as found comparing performances for a step increase of s rej from 

.20 to 0.25 ( p-value = 0.37 ). A subsequent step increase from 0.25 

o 0.3 led to a statistically significant performance reduction ( p- 

alue < 0.01 ). 

To evaluate the sensitivity of the proposed framework to dif- 

erent RL algorithms, we present task performance results for the 

neumonia detection task for a holdout set rejection ratio of 0.10 

n Table 1 . Although DDPG showed improved performance, sig- 

ificance was not observed ( p-value = 0.20 ) for the difference be- 

ween the two algorithms. Both the DDPG- and PPO-trained con- 

roller showed significantly improved performance compared with 

he non-selective baseline ( p-values < 0.001 ). To evaluate the rela- 

ionship between performance and holdout set rejection ratio, we 

resent a plot of mean performance against holdout set rejection 

atio in Fig. 6 , which presents a comparison between the task 

menability framework, a non-selective baseline and a random se- 

ection baseline. An implementation of the proposed framework, 

ith both the PPO and DDPG algorithms, along with the data, code, 

nd results for the pneumonia detection task are available in the 

ame open-source GitHub repository. 

Adaptability performance of meta-RL The proposed meta-RL 

ulti-environment framework was evaluated using the prostate 

lassification and segmentation tasks and the results are sum- 

arised in Table 3 . Additionally, a plot of performance against 

arying k values is presented in Fig. 7 for both tasks. Statistical 

ignificance was not found between the baseline and meta-RL for 
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Fig. 3. Plots of the task performance (in respective Acc. and Dice metrics) against the holdout set rejection ratio for the two tasks. (Colour figure). 

Table 3 

Comparison of holdout set results with a rejection ratio set to 0.05 (Meta-RL). 

Tasks Prostate Classification (Acc.) Prostate Segmentation (Dice) 

IQA Methods k Mean ± St.D. Mean ± St.D. 

Meta-baseline N/A 0.932 ± 0.011 0.894 ± 0.016 

Meta-RL 0.5 0.936 ± 0.012 0.892 ± 0.018 

0.4 0.929 ± 0.016 0.886 ± 0.014 

0.3 0.926 ± 0.010 0.888 ± 0.020 

0.2 0.925 ± 0.017 0.873 ± 0.017 

0.1 0.911 ± 0.012 0.863 ± 0.020 

0.0 0.908 ± 0.010 0.857 ± 0.018 

Meta-RL 

Variant 

0.5 0.931 ± 0.015 0.884 ± 0.016 

0.4 0.920 ± 0.010 0.882 ± 0.021 

0.3 0.919 ± 0.013 0.882 ± 0.015 

0.2 0.916 ± 0.014 0.860 ± 0.014 

0.1 0.905 ± 0.014 0.858 ± 0.021 

0.0 0.896 ± 0.016 0.849 ± 0.017 

10 
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Fig. 4. Contingency tables comparing subjective labels to controller predictions for the different reward computation strategies. (Colour figure). 

Fig. 5. Controller prediction samples for the pneumonia detection task. Blue : samples predicted as having low task amenability; Red : samples predicted as having high task 

amenability. Low task amenability refers to controller predicted value below the 10-th percentile and high refers to above. More examples can be found with the open-source 

repository. (Colour figure). 

Fig. 6. Plot of performance (Acc.) against holdout set rejection ratio for pneumonia detection task. (Colour figure). 

11 
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Fig. 7. Plots of the task performance (in respective Acc. and Dice metrics) against the k values with a rejection ratio set to 5%. (Colour figure). 
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he prostate presence classification task, with k values from 0.5 

o 0.2 ( 0.10 < p-values < 0.23 ), however, the baseline showed signif-

cantly higher performance compared to meta-RL for low k-values 

f 0.1 and 0.0 ( p-values < 0.01 for both). For the prostate segmenta-

ion task, no statistical significance was found between the base- 

ine and meta-RL for k -values from 0.5 to 0.3 ( 0.07 < p-values < 0.17 )

ut the baseline performance was significantly higher than meta- 

L for low k values from 0.2 to 0.0 ( p-values < 0.01 ). For the ab-

ation study, the proposed meta-RL framework outperformed the 

eta-RL variant which had no environment-level separation, with 

tatistical significance, for k values from 0.0 to 0.4 ( p-values < 0.01 ),

or the classification task and for all k values, for the segmentation 

ask ( p-values < 0.03 ). A significant difference was not observed for 

 high k value of 0.5 in the classification task ( p-value = 0.06). In an-
 d

12 
ther ablation study, compared to a Reptile-omitted meta-RL vari- 

nt, which achieved Acc. =0 . 901 ± 0 . 013 and Dice =0 . 851 ± 0 . 013 for

he classification and segmentation tasks, respectively, the meta- 

L framework showed higher performance, with statistical signif- 

cance ( p-values < 0.01 ), for both tasks for a k -value of 0.0. For all

ther k -values no significant differences were seen between meta- 

L and the its Reptile-omitted variant. 

. Discussion 

The results presented in Sect. 4 show that the proposed task 

menability framework is able to offer an increased performance, 

ompared to a non-selective baseline for all tested tasks which 

emonstrates the efficacy of the proposed approach. The three 
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Fig. 8. Examples of controller selected and rejected images (rejection ratio = 5%) for both tasks for the multi-environment framework. Blue: rejected samples; Red: selected 

samples; Yellow: rejected samples despite no apparent artefacts or severe noise; Green: selected samples despite present artefacts or low contrast. Orange arrows: visible 

artefacts; Cyan arrows: regions where gland boundary delineation may be challenging. (Colour figure). 
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asks include a range of clinical applications, including prostate 

resence classification, prostate gland segmentation and pneumo- 

ia detection, for surgical navigation, interventional guidance and 

iagnostic assistance. 

It was found particularly useful that task amenability can be 

earnt within the proposed IQA framework without any human la- 

els of image quality, by using the weighted and selective reward 

ormulations. While only the weighted reward formulation offers 

omparable performance to the fixed clean validation set reward 

ormulation, which requires human labels of image quality, the se- 

ective formulation provides a means to specify a clinically desir- 

ble rejection rate. Furthermore, tuning this validation set rejection 

atio parameter, s rej , for the selective formulation may be neces- 

ary in order to achieve performance comparable to the weighted- 

nd fixed clean validation set reward formulations. In practice, we 

bserved that increasing s rej beyond a certain point, the perfor- 

ance was significantly reduced which could potentially be due 

o over-fitting of the agent, caused by an increased exploration 

pace as a result of the increased number of samples to be re- 

ected from the validation set. This parameter could thus also im- 

act the exploration-exploitation trade-off in training the proposed 

ask amenability framework. Interestingly, the mean performance 

howed a small decrease after an initial rise, with increasing hold- 

ut set rejection ratio, for all tested reward formulations. The vari- 

nce of predictions, possible over-fitting of the RL agent and the 

verall high quality of the datasets used (which could in turn limit 

he overall performance improvement), may offer some explana- 

ion for this observation, however, it still remains an open ques- 

ion. 

The multi-environment framework, proposed to learn adaptable 

ask amenability assessment, is potentially applicable to several 

cenarios, for example, learning an adaptable IQA definition over 

ifferent tar get tasks or task predictor functions, besides different 

atasets. This multi-environment framework was investigated in 

he clinically relevant scenarios to equip adaptability, over differ- 

nt observer labels, to both the controller and task predictor func- 

ions. Adaptation to an expert labelling standard was achieved with 

0–30 % of the expert labelled data without any significant reduc- 
13 
ion in performance compared to using 100 % of the expert labelled 

ata for training. This meant that, for the classification and seg- 

entation tasks, 1087 and 1634 expert-labelled images from 42 

nd 63 subjects (training and validation sets), respectively, were 

ufficient to achieve performance comparable to using 100 % of the 

xpert-labelled data for training. It is important to note that the 

ulti-environment formulation also required non-expert-labelled 

ata for training, however, these labels may be used to learn vary- 

ng definitions of task amenability; further economic analysis of 

he use of non-expert data is beyond the scope of this work. The 

pplicability of the framework, to equip adaptability to allow for 

fficient use of expert-labelled data, brings to light other potential 

se cases such as to equip adaptability across different target tasks 

o adapt IQA definitions to new tasks using limited labelled data 

hich could be useful for several applications such as active learn- 

ng, and particularly of interest in developing resource-constrained 

linical applications. 

. Conclusion 

This work introduces task amenability as an alternative to tra- 

itional subjective definition of image quality, especially for down- 

tream machine learning tasks. We also propose a mechanism to 

fficiently adapt such RL-based IQA agents to new labelling stan- 

ards. Learning a task-specific IQA or task amenability is use- 

ul for several applications such as for re-acquisition guidance for 

pplications such as ultrasound where re-acquisition is inexpen- 

ive, for operator skill feedback and for meeting clinically de- 

ned accuracy requirements for downstream clinical tasks. The 

roposed multi- and single-environment frameworks promise a 

ew method to learn such a task-specific IQA or task amenabil- 

ty. The proposed approach has been shown its wide applicabil- 

ty with clinically relevant target tasks of prostate presence de- 

ection and gland segmentation, and pneumonia detection, with 

eal clinical data from prostate cancer and pneumonia patients, 

espectively. 
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