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a b s t r a c t 

Machine learning methods exploiting multi-parametric biomarkers, especially based on neuroimaging, have huge 
potential to improve early diagnosis of dementia and to predict which individuals are at-risk of developing de- 
mentia. To benchmark algorithms in the field of machine learning and neuroimaging in dementia and assess their 
potential for use in clinical practice and clinical trials, seven grand challenges have been organized in the last 
decade: MIRIAD (2012), Alzheimer’s Disease Big Data DREAM (2014), CADDementia (2014), Machine Learning 
Challenge (2014), MCI Neuroimaging (2017), TADPOLE (2017), and the Predictive Analytics Competition (2019). 
Based on two challenge evaluation frameworks, we analyzed how these grand challenges are complementing each 
other regarding research questions, datasets, validation approaches, results and impact. 

The seven grand challenges addressed questions related to screening, clinical status estimation, prediction and 
monitoring in (pre-clinical) dementia. There was little overlap in clinical questions, tasks and performance met- 
rics. Whereas this aids providing insight on a broad range of questions, it also limits the validation of results across 
challenges. The validation process itself was mostly comparable between challenges, using similar methods for 
ensuring objective comparison, uncertainty estimation and statistical testing. In general, winning algorithms per- 
formed rigorous data pre-processing and combined a wide range of input features. 

Despite high state-of-the-art performances, most of the methods evaluated by the challenges are not clinically 
used. To increase impact, future challenges could pay more attention to statistical analysis of which factors (i.e., 
features, models) relate to higher performance, to clinical questions beyond Alzheimer’s disease, and to using 
testing data beyond the Alzheimer’s Disease Neuroimaging Initiative. Grand challenges would be an ideal venue 
for assessing the generalizability of algorithm performance to unseen data of other cohorts. Key for increasing 
impact in this way are larger testing data sizes, which could be reached by sharing algorithms rather than data to 
exploit data that cannot be shared. Given the potential and lessons learned in the past ten years, we are excited 
by the prospects of grand challenges in machine learning and neuroimaging for the next ten years and beyond. 
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. Introduction 

Over the past decade there has been a great research interest in
rtificial intelligence approaches assisting the management of demen-
ia. Especially, machine learning methods exploiting multi-parametric
iomarkers from large-scale datasets have shown huge potential to de-
ect dementia at an early stage, to provide insight into etiology and to
onitor and predict the development of symptoms. Because of this huge
otential and increased availability of data, many articles presenting
ovel algorithms have been published, most of them using neuroimag-
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ng as a key biomarker ( Ansart et al., 2021; Falahati et al., 2014; Oxtoby
nd Alexander, 2017; Rathore et al., 2017 ). 

Since 15 years, grand challenges have been organized in the biomed-
cal image analysis research field. These are international benchmarks
n competition form that have the goal of objectively comparing algo-
ithms for a specific task on the same clinically representative data using
he same evaluation protocol. In such challenges, the organizers supply
eference data and evaluation measures on which researchers can eval-
ate their algorithms. Over the past years, the number and the impact
f such grand challenges has increased ( Maier-Hein et al., 2018 ). Also in
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1 aicrowd.com/challenges/addi-alzheimers-detection-challenge. 
he field of machine learning algorithms for dementia, such grand chal-
enges have been organized to gain insight into successful approaches
nd their potential for use in clinical practice and clinical trials ( Allen
t al., 2016; Bron et al., 2015; Cash et al., 2015; Fisch et al., 2021; Mari-
escu et al., 2018; Sabuncu and Konukoglu, 2015; Sarica et al., 2018 ). 

With the trend of grand challenges in the field of biomedical image
nalysis becoming more important, two frameworks have been proposed
n the literature to evaluate and structure the design of grand challenges
nd assess the effect of the design on the interpretation and impact of
hallenge results. First, Maier-Hein et al. (2018) performed an evalu-
tion of 150 challenges and identified major problems, which led to
est practice advice. Regarding challenge design, they found that in the
ajority of challenges it was not possible to reproduce results, to ade-

uately interpret them, and compare them across challenges, since rel-
vant information was often missing and since challenge design (e.g. a
hoice of metrics and methods for rank computation) was highly hetero-
eneous. In addition, the authors concluded that the ranking of an algo-
ithm in a challenge was not robust, but highly dependent on a number
f design choices such as the test data sets used for validation, the ob-
ervers who annotated the data and the metrics chosen for performance
ssessment, as well as the methods used for aggregating values. Sec-
nd, Mendrik and Aylward (2019) categorized two types of challenges:
hallenges that aim to generate insight (insight challenges) and those
hat aim to solve a problem (deployment challenges). The main purpose
f this categorization was to guide researchers in setting-up challenges
f which the objectives match with its design and conclusion. Mixing
he insight design with the deployment design will negatively impact
he clinical significance of the challenge and generalizability of meth-
ds. While the first framework is based on a quantitative approach and
he latter framework provides a mostly qualitative view on grand chal-
enges, the identified topics of importance for evaluation of challenge
esign and results largely overlap. 

In this review, we will evaluate the grand challenges in de-
entia based on the topics defined by the frameworks of Maier-
ein et al. (2018) and Mendrik and Aylward (2019) . Our main research
uestion is how the grand challenges on this topic are strengthening and
omplementing each other. First, we will highlight unanswered clinical
uestions in dementia and the related tasks that are being addressed
y machine learning algorithms. Subsequently, we will summarize the
ncluded grand challenges, with an emphasis on the role of neuroimag-
ng. We will summarize design choices, including the alignment of their
urpose with the relevant questions in dementia, the data and truth cri-
eria, and performance metrics. In addition, we will outline the results
nd assess their impact. Finally, we will reflect on the status of the field
nd the open questions that remain to be addressed by future grand
hallenges. 

. Questions in clinical and pre-clinical dementia 

Worldwide 50 million people are estimated to be living with de-
entia and Alzheimer’s disease is the most prevalent underlying cause

 Association, 2020 ). For Alzheimer’s disease, the pre-clinical phase is
ound to take about 20 years before the onset of clinical symptoms
 Gordon et al., 2018 ). Diagnosis of dementia is highly challenging and
sually takes a substantial period of time after the first clinical symp-
oms arise ( Van Vliet et al., 2013 ). After diagnosis, novel challenges are
elated to prediction and monitoring of the disease, both in the natural
isease course and under treatment with potential disease-modifying
rugs in clinical trials. Along different phases of dementia, clinically
elevant questions could be identified to which machine learning meth-
ds can contribute by solving related tasks exploiting multi-parametric
iomarkers. 

First, in the pre-clinical stage, i.e. a community-dwelling popula-
ion without cognitive complaints, a key question is to identify persons
t-risk for developing dementia based on biomarker measurements at
n individual level. Several approaches for biomarker-based screen-
2 
ng have been proposed ( Cole et al., 2017; Licher et al., 2019; Wang
t al., 2019 ). Regarding neuroimaging, a frequently studied screening
iomarker is the brain age gap, i.e. the difference between chronological
ge and age predicted from MRI using machine learning, which has been
hown to identify individuals at risk for dementia in the general popula-
ion ( Wang et al., 2019 ). While highly important for improving disease
nderstanding, there is currently no clinical motivation for population
creening. As currently no disease-modifying medication could be of-
ered, the benefit for individuals at-risk to identify them before symp-
oms develop may be very limited. However, while the first Alzheimer’s
isease drug is entering the market and while the search for disease-
odifying treatments continues, screening of individuals at a very early

tage may aid inclusion for clinical trials ( Panegyres et al., 2016 ). 
Second, in an early-stage clinical population, i.e. patients with cog-

itive complaints that visit a memory clinic, the key question is whether
he person is developing dementia. The purpose of clinical status es-
imation is to understand the current ‘condition’ of the patient and to
stablish a clinical diagnosis that enables timely decision making regard-
ng care and treatment ( Prince et al., 2011 ). Relevant components of this
linical status are whether there is a cognitive impairment (e.g. quanti-
ed by a memory score, or fulfilling diagnostic criteria such as for mild
ognitive impairment or dementia ( Albert et al., 2011; McKhann et al.,
011 )) and what the underlying cause of this cognitive impairment is
e.g. Alzheimer’s disease). 

In addition to current clinical status, in this early-stage clinical pop-
lation, i.e. patients with subjective cognitive decline or a diagnosis of
ild cognitive impairment, a second key question is whether symptoms
ill develop into dementia and in what time frame. The purpose of pre-

iction is to understand the future ‘condition’ of the patient, mainly to
nform treatment and care decisions, but may also guide inclusion of in-
ividuals at risk for dementia in clinical trials. Outcomes of interest for
rediction are for example diagnosis and clinical functioning at a future
ime point or time-to-conversion to dementia. 

Lastly, in a later-stage clinical population, after diagnosis has been
stablished, a key question involves monitoring the disease develop-
ent and, if applicable, the patient’s response to treatment. In follow-up

onsultations, biomarkers could be used to assess the disease progres-
ion in a quantitative way. 

. Grand challenges in dementia 

Here we discuss grand challenges on screening, clinical status es-
imation, prediction and monitoring in (pre-clinical) dementia with a
ocus on neuroimaging data. Challenges were found by searching chal-
enges listed by grand-challenge.org and Maier-Hein et al. (2018) as
ell as searching publications through Pubmed and Google based on
ey words. Candidate studies were screened by reading the title and if
ecessary the abstract or website. No criterion on publication year was
sed. Details regarding the identification and screening can be found
n the supplementary information. Inclusion criteria for studies were
1) being organized as a competition, (2) neuroimaging data included
s input, (3) challenge tasks were related to screening, clinical status,
rediction, or monitoring and (4) medical application area was (pre-
linical) dementia. Hence, we excluded benchmarks that were not set
p as a grand challenge ( Ansart et al., 2021; Cuingnet et al., 2011; Wen
t al., 2020 ), grand challenges that did not include neuroimaging but
sed for example clock-drawing test data 1 or speech data ( Luz et al.,
020 ), grand challenges on brain image registration or segmentation
 Klein et al., 2009; Mendrik et al., 2015 ), and grand challenges in dis-
ases other than dementia. 

Based on this, we evaluated seven grand challenges: 

• Minimal Interval Resonance Imaging in Alzheimer’s Disease atrophy
challenge (MIRIAD, 2012): the challenge task was to quantify vol-

http://grand-challenge.org
http://aicrowd.com/challenges/addi-alzheimers-detection-challenge


E.E. Bron, S. Klein, A. Reinke et al. NeuroImage 253 (2022) 119083 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

4

 

t  

r  

t  

a  

g  

p  

T
a
b

le
 
1
 

O
ve

rv
ie

w
 
of
 
th

e 
ta

sk
s 

fo
r 

th
e 

se
ve

n 
gr

an
d 

ch
al

le
ng

es
 
in
 
de

m
en

ti
a,
 
re

la
ti

ng
 
to
 
th

e 
cl

in
ic

al
 
pr

ob
le

m
s 

of
 
sc

re
en

in
g,
 
cl

in
ic

al
 
st

at
us

 
es

ti
m

at
io

n,
 
pr

ed
ic

ti
on

 
an

d 
m

on
it

or
in

g.
 
A

D
: 

A
lz

he
im

er
’s
 
di

se
as

e,
 
M

C
I:
 
m

il
d 

co
gn

it
iv

e 
im

pa
ir

m
en

t,
 
C

N
: c

og
ni

ti
ve

ly
 
no

rm
al

. 
umes and atrophy rates of several brain structures based on a pair
of images blinded for time points with the objective of monitoring
dementia ( Cash et al., 2015 ). A total of 9 teams participated. 

• Alzheimer’s Disease Big Data DREAM Challenge (DREAM, 2014) 2 :
the challenge consisted of three tasks: (1) to predict change in cog-
nitive scores based on genotypes imputed from single-nucleotide
polymorphism (SNP) array data, (2) to screen for amyloid positivity
in cognitively normals based on genotypes, and (3) to estimate the
mini-mental state examination (MMSE) score based on T1-weighted
MRI ( Allen et al., 2016 ). A total of 32 teams submitted final results
(Task 1: 18 teams, 2: 11 teams, 3: 13 teams; all tasks: 4 teams). 

• Computer-aided diagnosis of dementia challenge (CADDementia,
2014) 3 : the challenge task was to classify subjects into the diagnos-
tic categories of Alzheimer’s disease, mild cognitive impairment, and
cognitively normal controls using a baseline MRI scan ( Bron et al.,
2015 ). Fifteen research teams participated with a total of 29 algo-
rithms. 

• Machine Learning Challenge (MLC, 2014) 4 : the challenge consisted
of several tasks of binary classification and continuous regression of
clinical phenotypes based on T1-weighted MRI. Tasks were blinded
to participants. One of the tasks, regression of age in healthy sub-
jects, was included in this evaluation; others were out-of-scope (e.g.
schizophrenia diagnosis) ( Sabuncu and Konukoglu, 2015 ). A total of
12 teams participated. 

• MCI neuroimaging challenge (MCI-NI, 2017) 5 : the challenge task
was to classify subjects into four clinical categories (Alzheimer’s dis-
ease, cognitively normal, mild cognitive impairment (MCI), and MCI
subjects that converted to Alzheimer’s disease) using a baseline MRI
scan and MMSE score, thereby combining current clinical status and
prediction into one task ( Sarica et al., 2018 ). 19 teams participated
in the challenge with a total of 347 entries. 

• The Alzheimer’s Disease Prediction Of Longitudinal Evolution Chal-
lenge (TADPOLE, 2017) 6 : the challenge consisted of three tasks in
predicting future evolution of individuals at risk for Alzheimer’s dis-
ease ( Marinescu et al., 2021; 2018 ). These tasks were to predict three
key outcomes: (1) clinical diagnosis, (2) Alzheimer’s Disease Assess-
ment Scale Cognitive Subdomain (ADAS-Cog13), and (3) total vol-
ume of the ventricles. A total of 33 teams participated with 92 algo-
rithms. 

• Predictive Analytics Competition (PAC, 2019) 7 : the challenge task
was to estimate brain age from healthy individuals (age range: 17–
90 years) based on T1-weighted MRI ( Fisch et al., 2021 ). As the lit-
erature frequently reported a bias between predicted brain age and
chronological age, i.e. overpredicting age of young and underpre-
dicting age of elderly individuals ( Treder et al., 2021 ), a second task
was to estimate brain age with a minimal bias towards chronological
age. A total of 79 teams participated. 

. Challenge design 

.1. Executive summary 

We assessed the design choices made by the seven challenges, as
hese largely determine the reproducibility, interpretability and compa-
ability of the challenges ( Maier-Hein et al., 2018 ). Table 1 summarizes
he tasks of all challenges and relates them to the clinical questions. As
ll challenges had a unique task, different choices have been made re-
arding data, metrics, and methodology for ranking, which limits com-
arability. On the other hand, methods for avoiding cheating, uncer-
2 synapse.org/##!Synapse:syn2290704. 
3 caddementia.grand-challenge.org . 
4 codalab.org/competitions/1471 . 
5 kaggle.com/c/mci-prediction . 
6 tadpole.grand-challenge.org . 
7 frontiersin.org/research-topics/13501 . 

3 

http://synapse.org/\043\043!Synapse:syn2290704
http://caddementia.grand-challenge.org
http://codalab.org/competitions/1471
http://kaggle.com/c/mci-prediction
http://tadpole.grand-challenge.org
http://frontiersin.org/research-topics/13501
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Table 2 

Overview of data for the seven challenges. Leaderboard data was used to compute algorithm performance for a public leaderboard on the challenge website during 
the competition phase. 

Training data Extra training data Leaderboard data Test data 

MIRIAD ( Cash et al., 2015 ) 69 subjects (46 Alzheimer’s disease, 
23 controls), 1–12 scans in 9 visits 
during 1–2 years. 708 images. 
( Malone et al., 2013 ) 

N.A. N.A. Same as training data. 

DREAM ( Allen et al., 2016 ) ADNI data: clinical data, imputed 
genotypes, (processed) MRI data 
(Task 1: 𝑁 = 767 , 2: 𝑁 = 176 , 3: 
𝑁 = 628 ). 

AddNeuroMed: clinical data, 
imputed genotypes (Task 1: 
𝑁 = 409 ) 

A subset of the test data (Task 1: 
𝑁 = 588 , 2: 𝑁 = 129 , 3: 𝑁 = 94 ). 
Leaderboard usage was limited (Task 
1: 100x, Task 2 and 3: 50x). 

ROS/MAP: clinical data, imputed 
genotypes (Task 1: 𝑁 = 1762 , 2: 
𝑁 = 257 ) and AddNeuroMed: clinical 
data, imputed genotypes, (processed) 
MRI data (Task 3: 𝑁 = 182 ) 

CADDementia ( Bron et al., 
2015 ) 

CADDementia data from Erasmus MC, 
VU University Medical Center and 
University of Porto: MRI + diagnostic 
labels ( 𝑁 = 30 ) 

Any training data permitted. N.A. CADDementia data: MRI ( 𝑁 = 354 ). 
Data was roughly balanced over the 
classes. 

MLC 4 OASIS data ( Sabuncu and 
Konukoglu, 2015 ): pre-processed 
MRI + label ( 𝑁 = 315 , split into a 
training and testing set). 

N.A. All test data. OASIS data: pre-processed MRI, split 
from training data, size unknown. 

MCI-NI 5 ADNI data: randomly selected, 
pre-processed MRI, MMSE score and 
classification label ( 𝑁 = 240 ). 

N.A. Approximately half of the test data 
(including dummy data). 

ADNI ( 𝑁 = 160 ), dummy data 
( 𝑁 = 340 ). Data was balanced over 
the classes. Dummy data was 
excluded for the final evaluation. 

TADPOLE ( Marinescu et al., 
2018 ) 

ADNI data: multi-parametric 
including (pre-processed) structural 
MRI, diffusion MRI, PET imaging, 
cerebrospinal fluid biomarkers and 
cognitive tests ( 𝑁 = 1737 ) 

Any training data permitted. A subset of the training data. ADNI data: follow-up diagnosis, 
ADAS-Cog13 score and ventricle 
volume ( 𝑁 = 219 ). 

PAC ( Fisch et al., 2021 ) Data from Imperial College London 
( Cole et al., 2017 ) and the Institute of 
Translational Psychiatry Münster: 
MRI + age ( 𝑁 = 2640 ) 

Any training data permitted. N.A. Data from Imperial College London 
( Cole et al., 2017 ) and the Institute of 
Translational Psychiatry Münster: 
MRI ( 𝑁 = 660 ) 
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8 adni.loni.usc.edu . 
ainty estimation and statistical testing are quite similar. An overview
f data provided for training and testing can be found in Table 2 .
able 3 provides an overview of truth criteria, anti-cheating strategies,
sed performance metrics, uncertainty estimates and statistical tests.
hese design choices, including approaches for challenge and result
issemination, are discussed in more detail in the remainder of this
ection. 

.2. Research questions and tasks 

The research questions of the seven challenges largely correspond to
he four identified clinical questions regarding screening, clinical status,
rediction and monitoring ( Table 1 ). PAC, MLC and one of the tasks in
REAM (Task 2) address a screening question. PAC and MLC aim to
nd the most accurate model (and for PAC additionally the most ac-
urate model under a small bias) for estimating brain age in a healthy
opulation, DREAM aims to detect cognitive normals with abnormal
myloid pathology. Clinical status estimation is addressed by three chal-
enges in a slightly different way. DREAM estimated the MMSE score
rom structural MRI (Task 3), while the other two challenges classified
ifferent diagnostic groups based on structural MRI (CADDementia: 3
roups, MCI-NI: 4 groups). Prediction is addressed by three challenges
hat predicted future outcomes in diagnosis (MCI-NI, TADPOLE), cogni-
ive score (DREAM Task 1: MMSE score, TADPOLE: ADAS-Cog13) and
RI measures (TADPOLE: Ventricle volume). In contrary to the clinical

tatus challenges, more diverse inputs were used for the prediction tasks
DREAM: genetics, MCI-NI: MRI, TADPOLE: MRI, PET, cognition and
erebrospinal fluid markers). Finally, one challenge addressed monitor-
ng: MIRIAD estimated volume and volume changes from longitudinal
tructural MRI after diagnosis. All challenges were insight challenges
 Mendrik and Aylward, 2019 ) that aim to provide insight into method-
logical choices for algorithms in the tasks of screening, clinical status,
rediction and monitoring. 
4 
.3. Data 

Data set sizes differed substantially ranging from 30 to 2640 subjects
or training and 69 to 1762 subjects for testing ( Table 2 ). Multi-center
ata was used in all challenges but MIRIAD and MLC. No specific atten-
ion was given to diversity of the data. Whereas most challenges used
ame population training and testing data, DREAM explicitly used data
ets of different cohorts. Four challenges allowed participants to use
dditional training data (DREAM, CADDementia, TADPOLE, PAC). The
lzheimer’s Disease Neuroimaging Initiative (ADNI) 8 was used in four
hallenges: either as (optional) training data (DREAM, CADDementia)
r both for training and testing (MCI-NI, TADPOLE). In addition, four
hallenges had a public leaderboard on their website showing perfor-
ances on a data subset during the competition phase (DREAM, MLC,
CI-NI, TADPOLE). 

All challenges used a fixed test data set, aiming to compare methods
or one specific setting. Labels of the test data were blinded and submis-
ion of prediction results was requested. The test set was in most cases
efined in a natural way, e.g. based on visit date (e.g. MIRIAD, TAD-
OLE) or using a separate cohort (e.g., DREAM, CADDementia). Other
hallenges used a random split into a training and testing (MLC, MCI-NI,
AC). The challenges could have provided a more complete view of per-
ormance in different settings by addressing variance in the challenge
esign, which can be done by randomizing as many sources of variation
s possible and using multiple data splits ( Bouthillier et al., 2021 ). 

Whereas most of the challenges focused on brain MRI as only type
f input, TADPOLE and DREAM specifically targetted multi-modal data
ncluding cognition, clinical data and genetics. The neuroimaging data
as used in different ways; some challenges provided raw imaging data

CADDementia, PAC), whereas other provided pre-computed imaging
easurements (MLC, MCI-NI) or allowed for both (DREAM, TADPOLE).

http://adni.loni.usc.edu
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Table 3 

Overview of performance metrics and truth criteria for the seven challenges. AD: Alzheimer’s disease, MCI: mild cognitive impairment, MMSE: mini-mental state 
examination, PET: positron emission tomography. 

Task Truth criteria Anti-cheating Performance metrics Uncertainty est. Statistical tests 

MIRIAD 
( Cash et al., 2015 ) 

Estimation of 
atrophy. 

N.A., instead 
reliability and 
variance of 
atrophy 
measurements 
were assessed 
( Fox et al., 2011 ). 

Timepoint labels of scans 
blinded (only one baseline 
labeled) 

Sample size to detect a 25% 

atrophy rate reduction at 
80% power. Secondary: 
repeatability, consistency, 
inter- and intra-subject 
variance. 

Confidence 
intervals from 

2000 bootstrap 
samples 

Non-parametric tests 
between pairs of methods 
(2000 bootstrap samples, 
𝛼 < 0 . 05 ) 

DREAM 

( Allen et al., 2016 ) 
Prediction of 
cognition (Task 1) 

MMSE score 
established after 2 
years. 

Test data outcomes were not 
released. A maximum of 2 
entries per task per team. 

Pearson’s correlation, 
Spearman’s correlation 
(using clinical input only and 
a combination of clinical and 
genetics input) 

Confidence 
intervals from 

100,000 bootstrap 
samples. 

Non-parametric tests 
(10,000 permutations) to 
assess if methods 
performed better than 
random ( 𝛼 < 0 . 05 ). 

Screening of 
amyloid pathology 
(Task 2) 

Amyloid positivity 
from PET or 
cerebrospinal 
fluid. 

” Balanced accuracy, 
area-under-the-curve 

” ”

Estimation of 
cognition (Task 3). 

MMSE score. ” Pearson’s correlation, Lin’s 
concordance correlation 
coefficient 

” ”

CADDementia 
( Bron et al., 2015 ) 

Classification of 
AD, MCI, and 
cognitively 
normals. 

Clinical diagnosis 
by 
multi-disciplinary 
consensus. 

Test data labels not released. 
A maximum of 5 entries per 
team. 

Accuracy. Secondary: 
Area-under-the-curve, True 
positive fraction 

Confidence 
intervals from 

1000 bootstrap 
samples 

McNemar’s test between 
pairs of methods ( 𝛼 < 0 . 05 ). 

MLC 4 Estimation of age. Chronological age. Tasks and labels blinded, test 
labels not released. A 
maximum of 15 entries per 
team. 

Root-mean-square error, 
Pearson’s correlation. 
Secondary: Generalization of 
performance w.r.t. 5-fold 
cross-validation. 

Confidence 
intervals from 

10,000 bootstrap 
samples. 

N.A. 

MCI-NI 5 Classification of 
AD, MCI 
converting to AD, 
stable MCI, and 
cognitively 
normals. 

Diagnosis using 
clinical criteria 
and follow-up 
diagnosis after 48 
months for MCI 
patients. 

Public and private 
leaderboard, but not final 
test data, were inflated by 
dummy data. A maximum of 
1 entry per team. 

Accuracy N.A. N.A. 

TADPOLE 
( Marinescu et al., 
2021 ) 

Prediction of a 
future status of 
AD, MCI, and 
cognitively normal 
(Task 1) 

Diagnosis 
established at a 
follow-up time 
point. 

Evaluation data acquired 
after challenge deadline. A 
maximum of 3 entries per 
team. 

Area-under-the-curve. 
Secondary: Balanced 
classification accuracy 

Confidence 
intervals from 50 
bootstrap samples 

Non-parametric test 
between pairs of methods 
(50 bootstrap samples of 
the test set, 𝛼 < 0 . 05 ). 

Prediction of 
ADAS-Cog13 and 
ventricle size 
(Task 2&3) 

Variables 
established at a 
follow-up time 
point. 

” Mean absolute error. 
Secondary: weighted error 
score, coverage probability 
accuracy 

” Wilcoxon signed-rank test 
between pairs of methods 
( 𝛼 < 0 . 05 ). 

PAC ( Fisch et al., 
2021 ) 

Estimation of age Chronological age. Age for testing data not 
released. Limited time (1 
week) between test data 
release and submission 
deadline. 

Mean absolute error. 
Secondary: Bias using 
Spearman’s correlation of 
predicted age difference and 
chronological age. 

N.A. N.A. 
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re-computing image-based features is an advantage for interpretation
differences between methods could be attributed to machine learning
ethodology only) and participation (more teams can participate, also

hose without expertise in MRI analysis), but may be a disadvantage
or assessing state-of-the-art (variation is limited, promising algorithms
ay be excluded). 

.4. Truth criteria and anti-cheating strategies 

To objectify the output of tasks, a reference standard, or truth crite-
ion, should be in place. The used truth criteria by the challenges were
linical diagnosis, follow-up measurements and independent biomarker
easurements ( Table 3 ). These criteria do not provide a ground-truth

nd are all subject to some measurement error. Especially when using
linical diagnosis, it is possible that some of the patients are misdiag-
osed as the clinical diagnosis does not take account of post-mortem
istopathology or amyloid and tau measurements. None of the chal-
enges reported an analysis of these specific measurement errors or an
nter-rater analysis of clinical diagnosis. An alternative approach was
5 
sed by MIRIAD, which instead of using a direct truth criterion for atro-
hy quantification used multiple indirect truth criteria focused on vari-
nce (i.e., power computation, repeatability, consistency, intra- and in-
ersubject variance). 

To ensure objective comparison, all challenges put some ‘anti-
heating’ strategies in place to promote objective comparison. The most
ommon strategy was to not release test data labels. Using ADNI data for
esting however requires an alternative approach as all data is public.
ADPOLE therefore required predictions to be submitted before acqui-
ition of the test set by ADNI, and MCI-NI provided fake test data. In
his last solution, fake data was not used for the final evaluation but
as used for the public leaderboard during the competition phase. As

esults that include these fake data may have influenced classifier pa-
ameters and model selection, final classification performances could
ave been suboptimal ( Castiglioni et al., 2018; Donnelly-Kehoe et al.,
018 ). Another complementary approach, used by all challenges, was
o limit the numbers of submissions per team or limit the time between
est data release and the submission deadline, in order to reduce the
pportunity for model tuning and selection using test set knowledge. 
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.5. Performance metrics 

For classification tasks, common performance metrics were (bal-
nced) accuracy and area-under-the-ROC-curve (AUC). Accuracy (i.e.
orrect classification rate) was chosen as primary metric in tasks with
alanced data across classes (CADDementia, MCI-NI), while challenges
ith class imbalance used balanced accuracy or AUC as primary metrics

DREAM, TADPOLE). For regression tasks, common metrics were mea-
ures of the differences between values (mean absolute error, root-mean-
quare error; MLC, TADPOLE, PAC) and correlation (Pearson’s or Spear-
an’s; DREAM, MLC). In addition, TADPOLE included the weighted er-

or score and coverage probability accuracy metrics that take account
f confidence of the predictions given by the individual methods. MLC
sked participants to also submit their 5-fold cross-validation results
n the training set in order to analyze the generalization error. The
IRIAD challenge, which had no access to ground truth atrophy mea-

urements, used as a primary metric the required sample size to detect
trophy rate reduction of 25% with 80% statistical power, related to
otential application of such methods for patient monitoring in clinical
rials. 

All grand challenges came up with a final ranking of methods and an-
ounced a winner. Ranks were computed on one primary performance
etric for each task. Where most challenges ranked methods based a sin-

le prediction, DREAM used the median ranking among 100,000 boot-
trap resamplings of the test data. TADPOLE summed ranks for their
hree tasks to make one overall ranking. While such ranking and the pos-
ibility to ‘win’ a challenge is highly motivating, a risk of this approach
ay be in parameter tuning. Instead, collaborative challenges without
inners may lead to less parameter tuning and could be more success-

ul in learning about strengths and weaknesses of algorithms ( Maier-
ein et al., 2018 ). 

Most challenges used bootstrapping to estimate confidence inter-
als on the performance metrics, which is useful for detecting statisti-
ally meaningful improvements ( Bouthillier et al., 2021 ). The number of
ootstrap samples varied from 50 to 100,000. TADPOLE also evaluated
onfidence estimations of individual predictions provided by the par-
icipants, which is important in clinical application for knowing when
stimates are unreliable. In addition, most challenges performed statis-
ical tests, either to test for significance differences between pairs of
ethods or to test whether performance was significantly better than

andom guessing. Mostly non-parametric tests were used (permutation
esting, Wilcoxon signed-rank), except for CADDementia (McNemar’s
est). MCI-NI and PAC did not provide strategies for uncertainty han-
ling and statistical testing. 

.6. Dissemination 

The methods for dissemination differed per challenge. All chal-
enges had a challenge website, mostly connected to a challenge plat-
orm (Grand-challenge.org: 2, Kaggle: 1, Codalab: 1, Synapse: 1). Two
hallenges are still open for new submissions (CADDementia, TAD-
OLE). For MLC and PAC, websites were not available anymore dur-
ng our evaluation, so organizers were contacted to provide missing
nformation. Most challenges published an overview paper to present
he challenge set-up and discuss results (MIRIAD, CADDementia, TAD-
OLE, DREAM; TADPOLE additionally published a design paper; CAD-
ementia and DREAM additionally published workshop proceedings
ith short papers describing individual algorithms). PAC and MCI-NI

nstead published a special issue with individual papers for the algo-
ithms and an editorial explaining and interpreting the results, and MLC
id not publish. Whereas a special issue might be most useful for in-
epth understanding and reuse of algorithms, an overview paper may
ase results to be interpreted and conclusions to be implemented by
he community. We successfully obtained all information required for
he overview, which means that aspects determined relevant by Maier-
ein et al. (2018) were reported. 
6 
.7. Limitations 

All challenges made specific design choices that may have negatively
ffected their impact, such as using single center data (e.g. MIRIAD), not
ncluding the results on all tasks in the publication (e.g. DREAM), using
linical diagnosis as a reference standard (e.g. CADDementia), limiting
he use of domain knowledge by blinding the context (e.g. MLC), mixing
he clinical questions of current clinical status and prediction into one
ask (e.g. MCI-NI), using ADNI data for both training and testing (e.g.
ADPOLE), or not providing strategies for uncertainty handling and sta-
istical testing (e.g. PAC). 

. Challenge findings 

.1. Main findings 

An overview of the main findings and best performing methods can
e found in Table 4 . All challenges aimed to obtain insight into the
est strategy for solving the problem and the current state-of-the-art
erformance. They reported results as performance-based rankings of
articipating algorithms, compared to the literature and drew conclu-
ions about the contribution of specific modeling choices (i.e. method,
eatures). 

There were methodological commonalities and differences across
inning methods in the challenges. Winning algorithms generally had

pecial attention for pre-processing of the data and combined a wide
ange of input features. Also, including more training data or pre-
raining on other data sets showed advantage. No single modeling
ethodology stood out among the winners across these challenges,
hich is perhaps unsurprising given the different objectives of each chal-

enge and the time span involved (10 years) and the plethora of available
ethods in this field. There was a large variety in types of modeling,

arying from Gaussian processes to gradient boosting and from random
orests to convolutional neural networks. To illustrate the changes of
he field over time: whereas in CADDementia (2014) only one partici-
ant used a neural network achieving a relatively low rank, PAC (2019)
as dominated by convolutional neural networks achieving high per-

ormance. 
Winners were announced for all except for two tasks in which al-

orithms did not outperform random guessing. In the second task of
he DREAM challenge, which focused on prediction of cognition based
n genetics, participants were unable to develop algorithms with pre-
ictive performances significantly better than random. According to
llen et al. (2016) , this might be due to low sample size and trait het-
rogeneity, but also indicates the difficulty of the task, i.e. information
bout cognitive resilience is not easily discoverable from genetic anal-
sis. Similarly in the TADPOLE challenge, the ADAS-Cog13 cognitive
core was more difficult to forecast than clinical diagnosis or ventricle
olume. The only method that performed better than random guessing
as a simple mixed effects model. According to Marinescu et al. (2021) ,

he difficulty could be due to variability in administering the cognitive
ests, practice effects and a short follow-up time. 

Most challenges looked at qualitative trends in factors –such as data
ypes, features or models– leading to higher performance. This evalua-
ion is usually not performed as a statistical analysis. Instead, as earlier
oncluded by Roßet al. (2021) for image analysis challenges in general,
esults analysis is often restricted to pure ranking tables, leaving impor-
ant questions unanswered. For example, quantitative statistical anal-
ses are desirable to properly understand which factors (i.e. features,
odels) contributed to the ranking, and to find failure modes for any

iven algorithm, data or objective. Such analysis were not performed by
ny of the challenges as the challenge design and number of submissions
re insufficient. 

.2. Clinical impact 

Most challenges generated novel insights into the best current strat-
gy for a specific clinical problem related to screening, clinical status,
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Table 4 

Overview of the main findings of the seven challenges. 

Main research question Main findings Best methods 

MIRIAD ( Cash et al., 2015 ) What is the best current strategy for 
atrophy measurement from MRI and 
what is the required sample size for 
hypothetical clinical trials using such 
methods? 

Measures of volume change, 
particularly ventricle and whole 
brain, were consistent and robust, 
leading to stable sample size 
estimates. Hippocampal measures 
were more variable, likely due to the 
differing definitions of the structure. 
Direct measures of change had 
smaller variance than indirect 
measures. 

The methods achieving the smallest 
required sample sizes were the 
Boundary Shift Integral (for whole 
brain atrophy measurement) and the 
combination of Demons-LCC 
registration and regional flux analysis 
(for ventricle and hippocampus 
atrophy measurement). 

DREAM ( Allen et al., 2016 ) What are the current capabilities for 
estimation of cognition and 
prediction of cognitive decline using 
genetic and imaging data from public 
data resources? 

Predictions of cognitive performance 
developed from genetic or structural 
imaging data were modest across a 
diverse set of models, with most 
algorithms performing roughly 
equivalently. The data was probably 
inadequate to support these tasks. 
There was no clinical value in 
prediction of cognitive decline based 
on genetic data. 

The algorithm that generated the best 
absolute mean combined rank in task 
1 and 3 used Gaussian process 
regression. For task 2, no method 
performed better than random. 

CADDementia ( Bron et al., 2015 ) What is the best current strategy for 
classification of Alzheimer’s disease 
and mild cognitive impairment based 
on MRI and how does it perform in a 
clinically representative multi-center 
data set? 

The best performing algorithms 
incorporated features describing 
different properties of the scans such 
as shape and intensity features in 
addition to volume and thickness. 
Performance was additionally 
influenced by the classification model 
and training data size. While all 
methods outperformed random 

guessing, performance was too low 

for clinical application. 

The method that achieved best 
accuracy used linear discriminant 
analysis of a combination of features 
measuring volume, thickness, shape 
and intensity relations of brain 
regions. 

MLC 4 What is the current state of the art in 
the field of neuroimage-based 
prediction? 

An interpretation of the findings has not 

been published. 

Descriptions of individual methods are 

published. 

MCI-NI 5 What is the best current strategy for 
prediction based on structural MRI 
features of early diagnosis of 
Alzheimer’s disease, differential 
diagnosis of mild cognitive 
impairment and conversion into 
Alzheimer’s disease? 

Articles on individual algorithms were 

published , a but an overall interpretation 

of the findings has not been published. 

The method that achieved best 
accuracy used an ensemble of random 

forest classifiers and morphological 
MRI features. 

TADPOLE ( Marinescu et al., 2021 ) What are the data, features and 
approaches that are the most 
predictive of future progression of 
subjects at risk of Alzheimer’s disease 
to aid identification of patients for 
inclusion in clinical trials who are in 
early stages of disease and are likely 
to progress over the short-to-medium 

term (1–5 years)? 

ADAS-Cog13 scores were more 
difficult to forecast than clinical 
diagnosis or ventricle volume. No 
single method performed well on all 
prediction tasks, while ensemble 
methods yielded consistently strong 
results. Diffusion MRI and 
cerebrospinal fluid biomarkers are 
most associated with high prediction 
performance of clinical diagnosis. 

The method that achieved the overall 
best rank used a gradient boosting 
regression method based on a 
combination cognitive, clinical and 
imaging data. 

PAC ( Fisch et al., 2021 ) What is the best current strategy for 
accurate prediction of age from brain 
MRI in an healthy population and 
what is the best strategy while 
avoiding bias of age estimation 
towards the mean age of the training 
dataset? 

Deep learning models performed 
better than classic machine learning 
algorithms. 

An ensemble of lightweight 
convolutional neural networks 
pretrained on UK Biobank data 
achieved the best performance 
(MAE = 2.90 years, which slightly 
increased after bias correction to 
MAE = 2.95 years.) 

a sciencedirect.com/journal/journal-of-neuroscience-methods/vol/302 . 
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rediction or monitoring in dementia. Next to conclusions on method-
logy, unanswered questions were identified (e.g. limited performance
n predicting cognitive scores) and some advice for use in practice was
iven (e.g. use a direct measure of ventricular volume change to assess
trophy in clinical trials). In general, challenges to date in dementia are
ll insight challenges; their results are not directly applicable in clinical
ractice but they are rather pushing the state-of-the-art towards answer-
ng clinical questions. 
7 
Most challenges attempted to distinguish the best performing sub-
issions using statistical significance testing. However, the consider-

ble challenge of determining the practical significance of such statisti-
al differences was generally not tackled ( Mendrik and Aylward, 2019 ).
or example, according to the non-parametric test in TADPOLE, the
hird-ranked algorithm (multiclass AUC = 0.907) performed signifi-
antly worse than winning algorithm (multiclass AUC = 0.931). It could
e argued that such a difference in performance is not clinically relevant.

http://sciencedirect.com/journal/journal-of-neuroscience-methods/vol/302
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ndeed, other factors might be more important in such cases, such as the
ase of applying the algorithm and the possibilities for understanding its
utputs ( Maier-Hein et al., 2018 ). 

Confounding may also impact the results of grand challenges. Aware-
ess of possible confounding is essential to ensure that actual clinical
utcomes rather than confounders are modeled. Age is for example a
ell-known confounder of dementia that should be taken account of
 Dukart et al., 2011 ). This also holds for biases more generally, the pres-
nce of biases such as scanner type ( Kruggel et al., 2010 ) and comor-
idities ( Ramirez et al., 2016 ) in challenge data may impact challenge
esults. For example, despite age-matched classes in the CADDementia
est set, challenge outcomes may have been influenced by age as test
ubjects were younger than the subjects whose data was used by most
lgorithms for training. 

Key to clinical impact is that the performance of the algorithms re-
orted by the challenges generalizes to real-world clinical data. The
ominance of ADNI data in the challenges may limit this generalizabil-
ty. We observed that all challenges on clinical status and prediction
sed ADNI data (2 for training; 2 for training and testing). While the
hallenges using ADNI for testing took measures to limit the advan-
age of researchers being more familiar to the data, the challenge re-
ults may still be biased towards its specific data characteristics. Data
rom the ADNI plays a major role in the research field of machine learn-
ng in Alzheimer’s disease and is used for optimization and validation
n 60–90% of the published articles ( Grueso and Viejo-Sobera, 2021;
athore et al., 2017 ). Therefore, state-of-the-art performance in ADNI

s likely to be an overestimation of performance in clinical practice.
rand challenges would be an ideal venue for assessing the generaliz-
bility of algorithm performance beyond ADNI to unseen data of other
ohorts, ideally real-world clinical data. This was done by the two chal-
enges using ADNI for training resulting in insight in the performance on
xternal test data. However, future challenges and studies should pro-
ide insight into which dataset and algorithm characteristics are key to
he generalizability of performance. Since in clinical practice there is
enerally limited training data available that represents new patients,
here would be high relevance for future grand challenges to evalu-
te not only the performance drop but also factors influencing such
eneralization. 

The code of algorithms that participated in challenges are mostly
ot available to the community for future research. While some indi-
idual methods are available through participants’ public repositories,
one of challenges released algorithms. For the TADPOLE challenge, al-
orithms were collected post-hoc, resulting in a collection of the code
f seven algorithms in a central repository. 9 In general, availability of
he algorithms, especially those that performed well, would increase the
hallenge’s impact on further research and eventually clinical practice. 

. Recommendations for future challenges 

Most of the methods evaluated by the challenges are not clinically
sed, which indicates that the field is some way off from making real
linical impact. Based on this review, we identified several key aspects
elating to clinical impact in dementia that are not or only partly ad-
ressed by current challenges but should, in our opinion, be a primary
ocus in developing future challenges to increase their contribution to
linical science. 

First, regarding clinical impact, it is key that the tasks being ad-
ressed by the algorithms contribute to solving questions relevant to
linicians and also that the algorithms and their output can be under-
tood and used by clinicians. Therefore, future challenges should aim
o maximize clinical relevance of the challenge findings for example by
aximizing engagement of clinicians in the challenge design. In addi-

ion, future challenge should strive for a challenge design that includes
9 tadpole-share.github.io . 

8 
valuation of the understandability of the output by clinicians and eval-
ation of the interpretability of the algorithms, e.g. using machine learn-
ng interpretability techniques ( Dyrba et al., 2021 ). 

Second, it is key to consider clinical impact beyond Alzheimer’s
isease and ADNI. Challenges with a wider focus could place the ap-
lication of algorithms in a broader clinical context by assessing gen-
ralizability of performance to real-life applications using clinical or
opulation-based data or by assessing clinical questions such as differ-
ntial diagnosis, prediction or monitoring in other diseases underlying
ementia, e.g. frontotemporal dementia or dementia with Lewy bodies.

Third, extended statistical evaluation of factors related to higher per-
ormance -such as data types, features or models- will contribute to
vidence-based development of future methods increasing performance
nd impact on clinical implementation ( Roßet al., 2021 ). However, such
 statistical analysis requires a test set of sufficient sample size and a suf-
cient number of challenge submissions. 

Finally, a key factor complicating the organization of challenges with
ither large sample sizes or with clinical questions beyond Alzheimer’s
isease and ADNI is the collection of clinical test data that can be shared
ith participants. Developments in research software and infrastructure
ay provide a solution: sharing algorithms rather than the data. While

lready done by some challenges, 10 , 11 dementia challenges have not yet
sed this approach. Such an approach would only share a small train-
ng dataset, but would keep test data private. Wrapping an algorithm
n a container (e.g. Docker, 12 Singularity ( Kurtzer et al., 2017 )) and ap-
lying the algorithms locally to the data (at one site or multiple sites
n a federated approach) enables challenges to benchmark algorithms
n large sets of data that cannot leave their respective institutes. This
ould improve both data set size and data set diversity. Such an ap-
roach could be also used for enabling training on larger datasets (i.e.
ederated learning). The nature of dementia neuroimaging data need-
ng a lot of data-preprocessing may make this more difficult. Platforms
uch as grand-challenge.org provide an infrastructure that can be used
y challenges without having to implement a custom evaluation system.

Future challenges should strive to have real impact on dementia sci-
nce by addressing these recommendations. In short, tomorrow’s ideal
ementia challenge will: (1) encourage explainability and interpretabil-
ty; (2) address key clinical questions such as early detection, non-AD
ementia, and differential diagnosis; (3) include a thorough statistical
valuation to map out the performance landscape; and (4) strive for
nbiased generalizability such as by using privacy-preserving technolo-
ies. 

. Conclusion 

We evaluated grand challenges benchmarking algorithms in the field
f screening, clinical status, prediction and monitoring of dementia
ased on neuroimaging and additional data. We used the frameworks
f Maier-Hein et al. (2018) and Mendrik and Aylward (2019) to iden-
ify topics for this evaluation. 

Our main research question was how the grand challenges in demen-
ia strengthened and complemented each other. Although the number
f challenges was small ( 𝑛 = 7 ), they had little overlap: they addressed
ifferent clinical questions, had unique tasks and made different choices
egarding data, metrics and methodology for ranking. Methods used for
voiding cheating, uncertainty estimation and statistical testing were
imilar. Together the challenges provide valuable insight into the state-
f-the-art and identified where key limitations currently exist. In gen-
ral, winning algorithms made an effort regarding data pre-processing
nd combined a wide range of input features. Whereas complementar-
ty is a strength providing insight on a broad range of questions, it also
imits the validation of results between challenges. 
10 mrbrains18.isi.uu.nl . 
11 node21.grand-challenge.org . 
12 www.docker.com . 

http://tadpole-share.github.io
http://grand-challenge.org
http://mrbrains18.isi.uu.nl
http://node21.grand-challenge.org
http://www.docker.com
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As dementia continues to become increasingly important for 21st-
entury medicine, we are encouraged by the lessons learned from the
ast ten years of machine learning and neuroimaging grand challenges.
his review of current challenge frameworks in dementia showed that
hallenges have been highly complementary and provided new insights.
uture challenges could increase impact by evaluation of interpretabil-
ty and understandability by clinicians, by more detailed evaluation of
actors related to performance, and by addressing the performance of
lgorithms for a wider range of clinical questions and for a larger vari-
ty of test data. We are excited by the prospects for the next ten years
nd beyond. 
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