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Abstract

We measured triadic closure in co-offending networks — i.e., the tendency of two individuals

to co-offend if they share an accomplice — using a method that addresses the risk of overesti-

mating clustering coefficients when using one-mode projections. We also assess the statistical

significance of clustering coefficients using null models. The data relates to adult offenders

(N = 274,689) connected to criminal investigations (N = 286,591) in Colombia. The observed

coefficients range between 0.05 and 0.53 and are statistically significant, indicating that ac-

complices become sources of information about potential associates. They support the idea of

preventing crime by targeting offenders’ trustworthiness and disrupting information flows.
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Introduction

Just as it is in other walks of life, collaboration is a critical ingredient in criminality (Bouchard,

2020). While individuals acting alone commit numerous crimes, many others involve two or

more offenders acting together; these range from pairs of friends shoplifting to large organised

groups engaged in drug trafficking and other illicit activities. Moreover, in many cases, the

collaborative aspect is integral to the crime, in the sense that it would not occur without the

contributions of all actors (Tremblay, 1993). Therefore, understanding the characteristics of

such co-offending can improve our understanding of criminal behaviour and inform prevention

efforts.

How offenders come to collaborate is one of the aspects that can inform prevention, and it

has been subject to multiple theoretical perspectives (for a review, see van Mastrigt, 2017). On

one hand, such collaborations may simply be a function of circumstance: individuals encounter

others in their milieu who may be amenable to crime and opportunistically decide to offend

together. Others, however, emphasise a more rational process in which individuals choose to

co-offend with those accomplices who are likely to maximise the benefits and reduce the costs

of the prospective crime. This process involves identifying potential accomplices based on their

competence and trustworthiness.

Network analysis is an approach that has considerable potential to shed light on these

issues. In an immediate sense, offenders’ social contacts constitute a supply of potential ac-

complices and are likely to reflect their wider social environment. Furthermore, networks are a

source of information about others’ skills and reputation: for example, offenders may vouch for

each other’s trustworthiness and provide introductions. Bichler (2019) recently proposed an

integrated framework, referred to as a ‘theory of networked opportunity’, to understand how

social networks shape the interactions between offenders and their surroundings that are con-

ducive to opportunities for crime (Felson & Clarke, 1998). Concerning personal networks, the

framework suggests that the information and resources available to individuals through their

social networks affect their perceptions and decisions to engage in criminal activity (Bichler,

2019, p. 84).

The analysis of networks linking offenders based on their co-participation in crimes can

shed light on how individuals select their accomplices. One feature of co-offending networks

that the literature has not thoroughly explored and that could explain how offenders find and

select their accomplices is triadic closure — that is, the tendency for two individuals to be
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connected if they share a common contact (Wasserman & Faust, 1994). In the context of

co-offending, this corresponds to an increased probability for two individuals to co-offend if

there is a third individual with whom they have also co-offended. We should anticipate such

a tendency if social networks mediate the accomplice selection, with the ‘third’ actor either

providing the introduction or making assurances for trustworthiness.

Accordingly, this paper aims to adequately measure the extent to which co-offending net-

works display triadic closure by examining the co-offending behaviour of offenders in Colom-

bia’s capital city, Bogotá, between 2005 and 2018. Using records of criminal investigations

relating to a wide range of crime types, we build co-offending networks and quantify the pres-

ence of triadic closure. Our focus on Colombia, a middle-income country with specific crime

problems, complements existing literature on this topic that primarily focuses on high-income

countries in Europe and North America.

We also contribute here by addressing a potential bias in previous studies. In technical

terms, co-offending networks are the one-mode projections of bipartite networks linking offend-

ers to crime events. As such, they typically contain a high number of fully connected cliques,

corresponding to instances where multiple actors have participated in the same crime. While

these cliques contain many connected triads, many of these do not reflect closure in a mean-

ingful sense since they do not correspond to separate co-offending decisions. Existing studies

of co-offending networks do not account for this, simply treating the one-mode projection as a

stand-alone network. The consequence is that clustering may be over-estimated. In this work,

we address this issue by adopting an approach developed by Opsahl (2013) which adjusts for

the bipartite nature of the underlying data.

Background

While co-offending behaviour has been documented empirically in a range of studies, there has

been comparatively little theoretical development concerning the mechanisms by which such

collaborations come about (Weerman, 2014). Nevertheless, a number of general principles have

been proposed as potential explanations for accomplice selection, across a range of contexts.

In this section, we will outline these theoretical perspectives, and argue that they imply that

co-offending networks are expected to exhibit some degree of triadic closure.
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Accomplice Selection

The few theories that explain accomplice selection lay along a continuum (van Mastrigt, 2017).

At one end, accomplice selection describes a spontaneous process arising from immediate

circumstances. In this model, willing offenders are continuously signalling their readiness to

offend to potential accomplices (Reiss, 1988; Alarid, Burton Jr, & Hochstetler, 2009); when a

criminal opportunity then arises, sufficiently motivated offenders might decide to collaborate

to take advantage of it, even without sharing a previous relationship. These spontaneous,

improvised decisions will lack a detailed plan and a thorough assessment of the risks and

benefits of the co-execution of crime.

At the other end of the continuum, accomplice selection is hypothesised to be a rational

process in which offenders decide to co-offend with those accomplices that are expected to

maximise benefits and reduce costs (Tremblay, 1993; Weerman, 2003). In doing so, offenders

evaluate potential partners based on their perceived trustworthiness (to minimise the risk of

betrayal) and their ability to help maximise the expected rewards of the criminal venture

(Tremblay, 1993). This evaluation involves judging accomplices’ criminal capital — skills,

information, and contacts deemed beneficial for the execution of a crime (Hochstetler, 2014).

A collective perspective of rationality can also explain the process of accomplice selection.

For example, when faced with uncertain situations (e.g., living without a permanent shelter or

starvation), individuals may recognise that personal needs can only be satisfied through activ-

ities that benefit others, including crimes. In this context, offenders are willing to cooperate

with others in the execution of a crime to achieve this mutual benefit (McCarthy, Hagan, &

Cohen, 1998), and so may choose accomplices who share their circumstances.

The relative contributions of these processes — in particular, the extent to which a choice

is rational — will vary according to context (e.g. crime type). Regardless of the precise

mechanism, however, the decision to co-offend and the selection of accomplices involve two key

considerations: how individuals become aware of potential partners, and how they evaluate

such partners’ value as potential co-offenders. The first determines the ‘pool’ of prospective

accomplices, while the second reflects their relative merits.

Most immediately, offenders are likely to encounter potential accomplices through their

immediate environment, both social and physical. Individuals’ social networks provide a source

of potential co-offenders, either through immediate contacts or friends-of-friends (McCarthy

et al., 1998). Furthermore, these pre-existing relationships — and the information circulating
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within the broader social networks — are likely to provide insight into the trustworthiness,

criminal capital, and reputation of potential partners (McCarthy et al., 1998). In turn, these

relationships allow offenders to make informed judgements to reduce the inherent risks of co-

offending. Consistent with this, research has found that siblings, friends, acquaintances, and

work colleagues tend to co-offend more than groups of strangers (Sharp, Aldridge, & Medina,

2006; Reiss & Farrington, 1991).

Beyond, but related to, their social networks, people’s immediate geography also bounds

the search for potential accomplices (van Mastrigt, 2017). Most directly, proximity gives

rise to opportunistic interactions: motivated offenders are likely to make contact with, and

communicate their intentions to, potential partners who are nearby (Reiss & Farrington, 1991).

More generally, though, the interactions and relationships that might lead to collaboration are

also likely to be shaped by offenders’ activity spaces; the places in which individuals tend to

move for work, leisure, and other routine activities (Brantingham, Brantingham, & Andresen,

2017). Thus, individuals are more likely to co-offend with those who coincide in these same

spaces simply because of the increased availability and potential for interaction.

As a typical example of this, criminal collaboration can also arise from the confluence of

motivated offenders in informal settings known as offender convergence settings (Felson, 2003).

In these settings, which typically have reputations as hubs of criminality, motivated offenders

interact through unstructured activities with potential accomplices and select those who are

available to seize a criminal opportunity. Accordingly, co-offending relies on the convergence

of potential co-offenders in informal settings, the interaction between them, and a minimum

amount of time to socialise, select one another, and share information or other resources

relevant to executing a crime.

Having encountered, or become aware of, potential accomplices via these mechanisms,

offenders will judge their suitability for participating in crime. As mentioned previously, these

judgements will take into account a range of factors, including the capacity to commit the

crime and the likelihood of successful collaboration. The first of these may involve preferences

for specific characteristics, whether inherent (e.g. age, sex or background) or related to their

criminal capital (i.e. experience and aptitude in criminal activity), which may mean that

certain candidates from the available pool are preferred over others.

On the other hand, a fundamental issue in the evaluation of potential partners is trust

(Tremblay, 1993). Trust corresponds to the likelihood that a collaborator can be relied upon
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to fulfil their role and not betray their co-offenders. Motivated offenders assess accomplices’

trustworthiness before selecting them, typically by drawing on information accessed through

personal contacts. Because of this, individuals rely on their trustworthiness to create and

protect a reputation for future criminal ventures, and thus their reputations, built upon their

behaviour in previous experiences, can also be considered part of their criminal capital.

Triadic closure in co-offending networks

The mechanisms outlined in the previous section imply that the formation of co-offending

relationships is subject to a number of tendencies and dependencies. In turn, these will be

expected to be manifested in co-offending networks in the form of structural regularities.

While several such regularities might be anticipated, one in particular — triadic closure —

arises consistently as a logical consequence of these mechanisms, and it is this property that

will be the primary focus for our analysis.

Triadic closure refers to the increased tendency of two individuals to make a direct con-

nection if they share a common neighbour (Wasserman & Faust, 1994). This concept echoes

transitivity in interpersonal relationships: if A is friends with both B and C, then it is likely

that B and C are also friends (Holland & Leinhardt, 1971). Figure 1 illustrates the concept

of triadic closure by presenting a network comprised of three individuals (A, B, and C), re-

ferred to as a triad. The solid lines between A-B and A-C represent existing relationships

(e.g. friendship or prior co-offending). Given that B and C share a common neighbour, triadic

closure predicts that these two individuals are themselves likely to develop a direct connection

(dashed line).

The accomplice selection theories proposed so far neither rule out nor explicitly endorse

the existence of transitivity in co-offending relationships, since they tend to omit a discussion

about accomplices’ role in procuring potential accomplices for future crimes. Despite this,

however, the mechanisms proposed share three elements with theories explaining triadic closure

more generally. These elements are trust, the limitations posed by geographic locations, and

homophily. Based on these commonalities, we expect to see this trait in co-offending networks.

Trust, or the commitment to a relationship without knowing how the other person or group

of persons will behave (Burt, 2005), is a critical element to explain why social networks display

triadic closure. Two individuals sharing a connection to the same person will have a basis to

trust one another and, therefore, will be more likely to create a direct connection themselves
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Figure 1: Example of triadic closure in social networks. The solid lines represent relationships
between A-B and A-C. B and C are likely to be connected (dashed line) since they share a
connection to a common individual, A.

(Easley & Kleinberg, 2010). Trust between two strangers sharing a common friend emerges

from the possibility of using informal sanctions to discipline either person if they break social

norms (Coleman, 1988). For example, if C fails to observe an expected behaviour towards B,

the latter can gossip about C to A. Here, A acts as an intermediary between the other two.

Since informal sanctions can harm the individuals’ reputations, all three have an incentive to

observe social norms. Likewise, two actors can discipline a third for not complying with these

norms (Wolff, 1950). The incentive for observing social norms, in turn, reinforces trust among

those who share a social connection (Coleman, 1988).

As explained in the previous section, trust plays a vital role in explaining accomplice

selection (Tremblay, 1993). Few theories directly address the sources of information used by

motivated offenders to evaluate the trustworthiness of potential accomplices, except for general

references to the information circulating in offenders’ social networks (McCarthy et al., 1998)

or the ‘underworld grapevine system’ Thrasher (1963). However, as explained by von Lampe

and Johansen (2004), previous accomplices can become a direct source of information about

potential accomplices, their trustworthiness, and their criminal capital or reputation. This

implies that previous accomplices can act as brokers, making contacts between unconnected

individuals and potentially gaining some benefits in doing so (Burt, 2005; Morselli & Roy,

2008). Furthermore, this shared accomplice can arbitrate between them if one breaks a social

norm (e.g., splitting the shares of a crime unevenly). In these ways, mechanisms based on
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trust are expected to lead to transitivity in co-offending networks.

Regarding the limitation posed by geographical locations, Feld (1981)’s focus theory ap-

proach suggests that certain elements in the environment act as social foci. Social foci are

‘social, psychological, legal, or physical entit[ies] around which joint activities are organised

(e.g., workplaces, voluntary organisations, hangouts, families, etc.)’ (p. 1016). Individuals

who share a social focus, according to this theory, are more likely to create a mutual positive

sentiment than those who do not share one. This can lead to triadic closure since two individ-

uals sharing a connection to a third one might imply that they share one or more social foci:

if so, the three will be likely to share a positive sentiment and the triad will be likely to be

closed.

Feld’s social foci resemble the offender convergence settings suggested by Felson (2003)

as drivers of co-offending. If these locations play host to unstructured interactions between

potential offenders, then it is to be expected that some co-offending relationships may be

formed. As per Feld’s argument, therefore, these will be expected to result in tightly-connected

structures exhibiting triadic closure.

Lastly, homophily — the tendency people have to associate with those who appear to be

similar to themselves (McPherson, Smith-Lovin, & Cook, 2001) — is both a feature of ac-

complice selection processes and a potential explanation for triadic closure in social networks.

Triadic closure is a byproduct of homophily (Granovetter, 1973) because the sharing of char-

acteristics is itself transitive: if A is similar to both B and C, then B and C must be similar.

Accordingly, any network which displays homophily is likely to exhibit some degree of triadic

closure.

Co-offending relationships are likely to be homophilic, due to a combination of explicit

preferences and structural opportunities, in line with the decision processes mentioned in the

previous section (Van Mastrigt & Carrington, 2014). Offenders may exhibit preference when

they actively collaborate with similar others to validate their social status or identity, or

because shared characteristics can facilitate more accessible communication and cooperation,

demanding less energy in these relationships. Consistent with this, those in co-offending groups

tend to be homogeneous in terms of their age, sex, ethnicity, or criminal experience (Weerman,

2003). Homophilic relationships may also arise as a consequence of the underlying distribution

of social characteristics rather than as the result of a conscious process (Van Mastrigt &

Carrington, 2014). For instance, if males are over-represented in the population of offenders,
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then it is more likely that two males will co-offend. When derived in this way, homophily in

co-offending relationships is not a matter of individual choices but the opportunities posed by

the underlying distribution of social characteristics.

Personal preferences, psychological biases, and structural opportunities create homophilic

relationships between co-offenders. Since homophily implies that social networks will exhibit

triadic closure, we expect to observe this trait in co-offending networks.

As shown, trust, geographical limitations and homophily — three prominent hypothesised

mechanisms for accomplice selection — all imply the existence of triadic closure; hence, we

should expect that this property will be observed in co-offending networks. Triadic closure is

therefore our focus in this paper: we discuss how it can be measured accurately for co-offending

networks, and examine whether it is present in a real-world network. In doing so, we do not

seek to find support for any particular one of the mechanisms discussed above — or indeed

to discriminate between them — but simply to establish whether this anticipated feature is

present.

Measuring triadic closure in co-offending networks

A co-offending network models the involvement of offenders in shared criminal activities. The

nodes in these networks represent individuals. The lines (or edges) connecting them represent

shared criminal events; each link indicates that the two offenders have collaborated in at least

one crime. Following the example presented in Figure 1, A, B, and C would represent a set of

offenders, while the solid lines represent crimes co-executed by each pair (A-B and A-C).

Co-offending networks are qualitatively different from other networks used to model the

interactions between those participating in criminal activities. The information contained in

court documents or arrest records about the co-execution of crimes by two or more individuals

determines the presence of links in co-offending networks (i.e., who co-offends with whom).

In contrast, research on organised crime groups tends to examine communication networks

(i.e., who speaks with whom) to model the interactions between individuals participating in

organised crime-related activities (e.g., Morselli, 2009; Campana, 2011; Malm & Bichler, 2011).

Hence, there is a difference between including individuals in networks based on the people they

talk to and the contents of their conversation, and creating connections between two or more

individuals based on the joint execution of a crime— discussing criminal activities is not a

crime in itself.
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Clustering coefficients quantify the extent of triadic closure, or transitivity, in a network by

comparing the relative proportions of closed (when the dashed line is present in the example

mentioned above) and open (when it is absent) triads (Newman, 2018). The coefficient c is

defined as

c =
t∆
t<
, (1)

where t∆ is the number of closed triads and t< is the total number of (open and closed) triads.

A coefficient near to 1 suggests that relationships are transitive (i.e., accomplices of an offender

are also accomplices). One near to 0 indicates that nodes with a common accomplice tend not

to be connected themselves. Put differently, this coefficient represents the average probability

of observing a connection between a pair of individuals who share a common accomplice

(Newman, 2018).

So far, only two studies have reported clustering coefficients in co-offending networks.

Iwanski and Frank (2013), using arrest records of individuals related to the illegal market of

hard drugs in British Columbia (Canada) between August 2001 and August 2006, analysed

the second-largest component of their network, containing 393 co-offenders. They observed

that the clustering coefficients in this component ranged between 0.75 and 1.0.

Bright, Whelan, and Morselli (2020), using arrest records of 102,261 adult offenders in Mel-

bourne (Australia) between 2011 and 2015, also reported a high clustering coefficient: 0.88 for

co-offenders related to violent crimes; 0.63 in co-offending networks related to property crimes;

and 0.83 for offenders arrested for participating in illegal markets (e.g., drugs). Combining all

the offenders regardless of their crimes into a single network also reported a relatively high

coefficient, 0.65.

Charette and Papachristos (2017) did not report a clustering coefficient for the co-offending

networks they were analysing. However, they used a different proxy to assess transitivity in

co-offending relationships by counting the number of shared contacts between pairs of co-

offenders. Using arrest records and victims’ reports from a random sample of co-offenders

(n=8,621) in Chicago between 2006 and 2013, they observed that, on average, a pair of co-

offenders shared 12.1 contacts (SD = 26). They also found that the odds of creating a direct

relation between two offenders increased with the number of contacts in common.

While studies of co-offending networks have offered important insights, the analytical

strategies employed thus far may mean that the calculated measures do not necessarily re-

flect the underlying principles of interest, especially triadic closure. In particular, the fact
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that analysis of co-offending networks typically does not account for the nature of the data

that shows the connections between offenders and criminal events and not directly between

individuals can introduce a bias in the measurement of network properties, including clustering

coefficients.

When we construct co-offending networks based on the joint-participation in criminal

events, an implicit first step is creating a bipartite (or two-mode) network representing links

between offenders and crimes. Figure 2(a) presents an example of such a bipartite network, in

which offenders A-D link to a set of criminal events 1-4. The links indicate, for example, that

A and B are both associated with criminal event 2; in other words, they co-offended in that

particular incident.

Given this bipartite representation, we can derive a co-offending network by taking its

one-mode projection (Newman, 2018; Wasserman & Faust, 1994). This projection involves

retaining only one of the node-sets (in this case, the offenders) and adding links between pairs

of nodes if, and only if, they are connected to the same criminal event in the original bipartite

network. For example, Figure 2(b) is the one-mode projection associated with the example in-

troduced above. We can then examine the resulting one-mode network using standard metrics

and measures like the clustering coefficient.

Figure 2: (a) Bipartite network with four nodes per mode and its two, one-mode projections
(b and c). Nodes connected to a common node in the original bipartite network will be
connected in the one-mode projection.

As identified by Opsahl (2013), however, the projection of two-mode networks creates

several issues for network analysis. In particular, the assumption that edges are independent

— implicit in many approaches — is no longer the case for projected networks; instead, a single

event (e.g. a crime) can simultaneously create multiple edges in a one-mode projection. More
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concretely, we can consider one-mode projections as the union of multiple cliques (Newman,

2018), with each one corresponding to a single node in the ‘other’ node-set in the original

bipartite network. Thus, in co-offending, for example, each criminal event will generate a

clique in the one-mode projection comprising all individuals who participated in the crime.

Because of this prevalence of cliques, we expect to observe networks derived by projection to

have higher clustering coefficients than one-mode networks that were not induced through a

projection process (Wasserman & Faust, 1994).

While this issue may not be problematic in technical terms, it has implications for inter-

preting clustering coefficients. The typical interpretation of clustering is that the ‘closure’

of the triangle structure is the result of an independent process that generated the original

triad — in other words, the final link appears in the context of the two existing links already

being present. This is not the case for projected networks: many closed triangles exist (within

cliques) due to single events (i.e. co-participation in a single crime). From a theoretical point

of view, this has quite different implications. For example, three individuals co-participating

in a single offence does not reflect triadic closure in the same way as two individuals with an

existing common accomplice choosing to co-offend together in a separate crime (see Figure 3).

When we calculate standard clustering coefficients for one-mode projections, this issue means

that they have the potential to substantially over-estimate the level of triadic closure since

many of the closed triangles identified may be due to single crimes.

Figure 3: Two configurations of bipartite, co-offending networks:(a) three offenders (A-C)
connected to a single investigation (1), and (b) three offenders (A-C) linked to three different
investigations (1-3). Both components yield a closed triangle in the one-mode projection of
offenders (A-C).

12



The two studies mentioned above used one-mode projections to calculate clustering coeffi-

cients. Iwanski and Frank (2013) connected two individuals arrested under the same criminal

event identifier. Similarly, Bright et al. (2020) also matched offenders using ‘event numbers’:

if two individuals shared the same event number, then they assumed they were co-offenders.

Consequently, it is reasonable to conclude that the clustering coefficients reported in these

studies may be subject to this issue. Consequently, this issue may partly explain the high

clustering values reported.

To avoid the bias introduced during the projection of bipartite networks, Opsahl (2013)

proposed a modified approach to quantify clustering. The proposed approach measures closure

among three nodes by referring back to their configuration in the original bipartite networks.

The approach involves examining paths of length four: in bipartite networks, these paths are

analogous to those of length two used to estimate the coefficients in one-mode networks. Cru-

cially, however, there is a distinction: while every 4-path in a two-mode network corresponds

to a 2-path in its one-mode projection, not all 2-paths in a one-mode projection are created

from 4-paths (the configuration in Figure 3 (a) is one such example). Thus, by reframing the

calculation in terms of 4-paths in the original bipartite networks, we can disregard triangles

created by three or more nodes linked to a single investigation.

Opsahl’s calculation involves examining whether each 4-path in the original bipartite net-

work is closed : a closed 4-path is one where the two terminal nodes both have a common

neighbour (i.e. the path is part of a 6-cycle). Figure 4 (a) contains an example to illustrate

this approach. This network contains five 4-paths, three of which are closed.1 These 4-paths

each have a corresponding path of length two in the one-mode projection (Figure 4(b)).2 Note,

however, that the one-mode projection has three additional paths of length two — between

nodes B, C, and D — since they are connected to the same event, ‘3’. By considering only

those structures that correspond to 4-paths in the original two-mode network, such 2-paths —

which are not triads in the same sense as the others — can be excluded from the calculation.

The modified clustering coefficient (Cbn) for bipartite networks is defined as

Cbn =
ρc
ρ
, (2)

where ρc is the number of closed paths of length 4, and ρ is the total number of paths of length
1A-1-B-3-C (closed by 2); A-1-B-3-D; A-2-C-3-B (closed by 1); A-2-C-3-D; B-1-A-2-C (closed by 3).
2A-B-C (closed); A-B-D; A-C-B (closed); A-C-D; B-A-C (closed)
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4, both open and closed. Since, as mentioned above, these 4-paths correspond to triads in the

one-mode projection, the coefficient, therefore, measures the proportion of such triads that are

closed — while, crucially, omitting those created by three or more offenders linked to the same

criminal event.

Figure 4: (a) Bipartite networks with four offenders (A-D) and three investigations (1-3).
(b) One-mode projection of the bipartite network. One-mode projection has additional paths
of length two.

As well as the coefficient itself, Opsahl (2013) also shows how the calculated values can be

compared to those that would be expected under the null hypothesis that no tendency towards

triadic closure is present (i.e. connections are random). For each observed bipartite network,

an ensemble of random networks is created by randomly rewiring its edges while preserving

node degrees in both modes. The coefficient Cbn is then computed for each of these randomised

networks, and these values form the null distribution against which the observed value can be

compared. In this way, the statistical significance of the observed level of triadic closure can

be estimated.

The following section presents the data we used to assess transitivity in co-offending net-

works, modelling the interaction between offenders and criminal events.

Data, analytical strategy, and results

We used data retrieved from the Colombian Attorney General’s Office (AGO), the authority in

charge of investigating and prosecuting offenders before courts of Law. The data set contained

information about criminal investigations in Bogotá between 01/01/2005 and 31/12/2018 re-
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lated to all seventeen categories of crimes included in the Criminal Code. To better understand

the population of co-offenders in this city, we included information about investigations that

were either on trial (as of December 2019) or had a guilty verdict or guilty plea. The obser-

vations also included those cases that exceeded the time granted by the Criminal Procedural

Law to reach a final decision and had therefore been closed by the AGO as required.3

Each observation in the data set consisted of a single offender related to a specific criminal

investigation. Therefore, we used the (encrypted) national identity number (NIN) to identify

each offender and the Criminal Investigation Record Number (CIRN) to identify individual

criminal investigations.

We partitioned the data into twelve rolling-temporal windows of three years duration (2005-

2007; 2006-2008; (...) ; 2016-2018). This window size provides a suitable number of data

points (i.e., windows) with a reasonable overlap between windows. The sensitivity analysis in

the Appendix also shows that the results only vary slightly with the value of this parameter.

Then, using the R package igraph (Csardi & Nepusz, 2006), we created a bipartite network

for each window. Table 1 presents the total number of offenders, the number of offenders who

co-offended with at least one other, the total number of investigations, and the number of those

that included more than one offender (i.e., co-offending investigations). As the networks yielded

in each window were highly fragmented, this table also presents the number of components

observed in each window.

Table 1: Number of offenders, co-offenders, investigations, investigations related to co-
offenders, and components per window in Bogotá (2005-2018).

Window Offenders Co-offenders Investigations Multi-person
investigations

Components

1 56,367 17,572 51,740 9,777 8,373
2 61,342 18,237 56,587 9,880 8,472
3 72,303 20,775 67,428 10,871 9,454
4 79,251 22,753 74,703 11,615 10,149
5 85,721 25,649 81,235 12,817 11,100
6 82,611 25,496 77,841 12,363 10,726
7 75,679 24,140 70,565 11,273 9,891
8 68,738 23,095 63,481 10,635 9,283
9 63,980 22,340 59,176 10,377 8,984
10 62,991 22,682 58,461 10,711 9,077
11 62,247 22,069 58,138 10,646 8,967
12 55,597 20,251 50,811 9,787 8,285

We calculated the clustering coefficients of these bipartite networks, as per the approach
3Some defendants try to prolong the length of trials to exceed the limit granted by the Law. Once trials

exceed this limit, the judges must declare an investigation closed, avoiding reaching a final decision. Due to
the prevalence of this malpractice, this study included this type of case.
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described in the previous section, using the R package tnet (Opsahl, 2009). Table 2 presents

the clustering coefficients for the bipartite networks observed at each window, as well as the

total number of paths of length four (closed) and number of those that are closed (Cbn is the

ratio of these). For comparison, this table also presents the standard clustering coefficients for

the one-mode projections of these networks.

Table 2: Bipartite clustering coefficients, closed paths of length four, total paths of length
four, and corresponding one-mode clustering coefficients

Window Bipartite clutering
coefficient (Cbn)

Closed paths
of length 4

Paths of
length 4

One-mode clustering
coefficient (C)

1 0.53 102,468 193,134 0.92
2 0.34 32,708 97,378 0.97
3 0.03 972 34,244 0.99
4 0.07 2,734 38,350 0.98
5 0.05 2,622 48,344 0.96
6 0.05 2,360 52,018 0.94
7 0.02 1,264 83,388 0.97
8 0.06 8,372 141,950 0.98
9 0.20 58,514 287,252 0.98
10 0.19 69,108 360,370 0.98
11 0.31 107,258 345,428 0.98
12 0.23 114,372 493,814 0.98

A number of patterns can be observed in the values of the modified clustering coefficient,

Cbn. On the whole, the values of Cbn are substantially lower than their one-mode counterparts:

while the latter are greater than 0.9 in all cases, the bipartite coefficients lie between 0.02 and

0.53. They are, however, greater than zero in all cases, indicating that triadic closure is

nevertheless still present when measured in this sense. In real terms, Cbn corresponds to

the probability that two accomplices of a randomly-selected offender will themselves have

co-offended (on a different incident); in Window 1, for example, this value is 53%.

It is also notable that the values of Cbn fluctuate considerably across windows. The co-

efficient reaches its highest value, 0.53, in 2005-2007 (Window 1), before dropping to 0.03 a

couple of years later. It then remains low until 2011-2013 (Window 7), before rising again

in later windows; by the final window, it reaches 0.23. Temporal fluctuations in clustering

coefficients have been reported elsewhere (e.g., Amblard, Casteigts, Flocchini, Quattrociocchi,

& Santoro, 2011) for other forms of network (e.g., co-authorship and citations); however, there

are no reports of such behaviour in co-offending networks, or for Opsahl’s modified clustering

coefficient.

To find a possible explanation for these fluctuations, it is worth examining the relationship
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between Cbn and other network features. Cbn is negatively correlated with both the number

of offenders who co-offended with at least one other (r = −0.79, p < 0.05) and the number

of multi-person investigations (r = −0.7, p < 0.05), suggesting that additional investigations

tend not to link those who already have an accomplice in common.

Even more notable, however, is the pronounced fluctuation in the number of paths of length

4 in the networks, which also mirrors that of Cbn. In real-world terms, each 4-path corresponds

to an instance where an offender has co-offended with 2 others, via 2 distinct offences, and

so there is clearly wide variation in the prevalence of such cases. Some insight into this can

be gained by examining the networks graphically: in Figure 5, we plot the largest connected

component for two contrasting windows, in bipartite form. Comparing these two diagrams,

it can be seen that the participants in distinct events overlap to a much greater extent in

Window 12, in which the number of 4-paths is very high. In Window 3, on the other hand,

the component is dominated by a single event (which itself generates no 4-paths), with only

minimal overlaps between events.

(a) Window 3 (b) Window 12

Figure 5: Bipartite plots of largest connected components: a) Window 3, which contains 43
offenders and 3 events, and has 160 paths of length 4; and b) Window 12, which contains 64
offenders and 33 events, and has 7974 paths of length 4.

This trend, which can also be observed in other windows, suggests that the variation

in prevalence of 4-paths is primarily a function of the extent to which distinct events share

common participants. Overlaps between events — particularly when a large group of offenders

is involved in multiple events together — can quickly generate large numbers of 4-paths. This

can also be expressed in terms of components: as more components merge with each other (and

therefore the lower the number of components), the more 4-paths will be present. This also
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extends to the closure of 4-paths: the more that individuals are involved in multiple crimes (and

therefore ‘bridge’ components), the greater the chance that a 4-path will be closed. Indeed,

Cbn is negatively correlated with the number of components (r = −0.74, p < 0.05). This

appears to be the main source of fluctuation between windows.

This study, to our knowledge, is the first one to report clustering coefficients using this

modified approach, which considers the bipartite nature of co-offending networks. As noted

above, there is a large discrepancy between these values and those obtained by applying the

classic clustering coefficient to the one-mode projection: not only does the traditional coeffi-

cient indicate exceptionally high levels of triadic closure, but the fluctuation in values is not

present. Both of these can be explained by the fact that our dataset contains many investiga-

tions involving large numbers of offenders, which translate into large complete subgraphs (and

therefore many closed triangles) in the one-mode projection. While these triangles dominate

the calculation of the classic clustering coefficient, they are omitted from Opsahl’s version be-

cause they do not correspond to 4-paths in the bipartite network; we argue that, in this case,

the modified coefficient gives a much more meaningful measure of ‘genuine’ triadic closure.

While the bipartite clustering coefficients are much lower than their one-mode equivalents,

we are not yet in a position to say whether they nevertheless represent significant levels of

triadic closure. However, as explained in the previous section, we can estimate their statistical

significance by computing the expected distribution of these coefficients under a null model in

which triadic closure is absent. If offenders sharing a common accomplice have no tendency

to co-offend together, this coefficient should be equal to 0 in the null model.

The null model we used here consisted of 1,000 randomised simulations of each of the

twelve bipartite networks. Each simulation consisted of a randomly ‘rewired’ version of the

original network that preserved the number of offenders and investigations and the number of

connections each offender and investigation had. For each of the 12,000 simulated networks,

we calculated the clustering coefficient using Opsahl’s approach.

Table 3 presents the observed coefficients alongside the 97.5 percentile of the null model. In

all cases, the 97.5 percentile values are exceptionally small (<0.001), likely reflecting the sparse

nature of the underlying networks. Consequently, the observed values are at the extreme of

the distributions under the null models, implying that they are significantly larger than those

expected by chance. This suggests that, while lower than would be estimated using a one-mode

projection, co-offending networks nevertheless show strong evidence that triadic closure plays
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a role in their formation. In our data, the probability for the accomplices of an accomplice

to be subject to a different investigation was moderately high in the first two and last four

windows and very low between 2007-2014. Between 2016 and 2018, for example, there was

a 20 per cent chance of randomly choosing a co-offender and observing a connection (i.e., a

different criminal investigation) connecting two of their accomplices. While other values are

lower than this, they are still much higher than would be expected without a triadic closure

effect.

Table 3: Observed clustering coefficients and those at the 97.5 percentile in the distribution
of the null models

Window Observed C 97.5 Percentile

2005-07 0.53 <0.01e-04
2006-08 0.34 <0.01e-04
2007-09 0.03 <0.01e-04
2008-10 0.07 <0.01e-04
2009-11 0.05 <0.01e-04
2010-12 0.05 <0.01e-04
2011-13 0.02 <0.01e-04
2012-14 0.06 0.02e-04
2013-15 0.20 0.94e-04
2014-16 0.19 0.89e-04
2015-17 0.31 1.00e-04
2016-18 0.23 1.11e-04

Discussion and conclusion

This paper was concerned with the extent to which co-offending networks — those in which

links represent co-participation in criminal events — exhibit triadic closure. That this should

be the case is predicted by a number of theories relating to criminal accomplice selection,

which is the mechanism which drives link formation in such networks. In our analysis, we

sought to verify that triadic closure was indeed present in a co-offending network from Bogotá,

Colombia, and to measure its extent in a rigorous way. In doing so, we more broadly addressed

Bichler’s (2019) theory of networked opportunity by examining the influence of social networks

on the decisions of offenders.

As far as we are aware, this article is the first to measure triadic closure in a set of relatively

large networks of co-offenders using the original bipartite version of these networks. Unlike

previous studies, we used data that combined information about cases that reached a guilty
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verdict or guilty plea with those in an early stage of the criminal investigation process. In

addition, this data was related to the capital city of a middle-income country, Colombia,

adding more evidence about co-offending in countries different from those previously considered

in the study of co-offending (e.g., Canada, Sweden, UK, and the USA). Moreover, we also used

a null model to assess the significance of the clustering coefficients. Although this technique is

widely used in other disciplines employing SNA (e.g., ecology), networked criminologists have

not typically employed this approach to assess the statistical significance of network statistics

or test hypotheses.

In our network, the probability of observing a co-offending relationship between the ac-

complices of an offender ranged from 3 to 53 per cent. Thus, the results strongly suggest that

social networks, especially those created through exposure to criminal events, exhibit a certain

level of influence in the decisions made by offenders about whom to select as their accomplices.

Our findings are consistent with a number of theories relating to accomplice selection,

encompassing mechanisms such as trust, geographical proximity and homophily. We do not

make any attempt here to distinguish between these mechanisms, and indeed to do so would

not be possible with the available data. However, having verified that triadic closure is present

as predicted, we will address this question in future work once detailed information about

criminal events (e.g., where they occurred) and offenders (e.g., demographic characteristics

and previous interactions with the criminal system) becomes available.

In the last three decades, security and crime researchers have illuminated dark, covert net-

works using social network analysis. Some reports show that dark networks have distinctive

features, setting them apart from ‘bright’ networks (see, for example, Morselli, Giguère, &

Petit, 2007). However, our findings suggest that dark networks — the example studied here

concerned criminal behaviour — may share some characteristics with ‘bright’, legitimate net-

works, and therefore that findings in this domain may be interpreted more broadly. Here,

transitive relationships were expected due to the overlap between accomplice selection theo-

ries and those explaining triadic closure. Given the broad applicability of theories relating to

transitivity in network science as a whole, the results add weight to the growing evidence base

that clustering may be a universal property of social networks.

One interesting feature of our findings is the high level of fluctuation observed in the bipar-

tite clustering coefficient across windows. As noted above, this appears to be due to variation

in the extent to which distinct criminal events share common participants (and therefore the
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extent to which components are linked). While we cannot be sure of the underlying reason

for this variation, it is clear that some windows saw particular individuals associated with

multiple offences to a greater degree than others, perhaps reflecting changes in enforcement or

detection practices. Clearly, observing triadic closure is dependent on law enforcement agen-

cies’ ability in detecting crime and revealing connections between known offenders. Assessing

the historical capacity of Colombia’s Prosecution Office and its impact on triadic closure in co-

offending networks is beyond the scope of this article. However, future research could inform

the direction and magnitude of the relationship between law enforcement’s capability and the

degree of transitivity observed in co-offending networks.

Even though we included time in the analysis of co-offending networks, we did not consider

the order in which offenders executed crimes: offenders could have committed these crimes

simultaneously or sequentially. Despite this shortcoming, these findings suggest that some of-

fenders could liaise in new criminal ventures with their accomplices’ accomplices, despite having

a relatively recent formal contact with the criminal justice system; the ‘triangles’ considered

here were all formed entirely within 3-year windows. This fact suggests a reduced deterrent

effect expected to operate when offenders increase their perceptions about the possibility of

being apprehended and punished.

In methodological terms, our results highlight the importance of accounting for the bipartite

nature of co-offending data when performing analysis. We demonstrated that the typical

approach of taking the one-mode projection and calculating standard clustering coefficients

results in extremely (perhaps implausibly) high values for transitivity being observed. The

nature of co-offending data — relatively sparse, but with some crime events involving large

numbers of offenders — means that many triangles result from single investigations. While

meaningful, these triangles do not correspond to the theoretical meaning of triadic closure; it is

assumed that links are formed independently. While the overall conclusion here is unchanged

— there is still strong evidence of triadic closure — the discrepancy in values suggests that

the modified approach proposed by Opsahl (2013) generates accurate values.

Despite the novel features included here, this study faces several limitations. Co-offending,

as other crime-related statistics, has some ‘dark figures’ due to crimes not being reported by

victims and law enforcement agencies failing to record them (Carrington, 2014). Moreover,

while offenders on trial were likely to be responsible for the crimes prosecuted by the AGO,4

4Prosecutors need to have some level of certainty about offenders’ responsibility before starting the trial.
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a court of Law could acquit some of the individuals included in the data set. This possibility

means that the data may contain information about people who were not ultimately convicted.

We also decided to remove 12.7 per cent (51668) of the observations since they yielded an error

during the encryption process of the NINs. The AGO used the MD5 algorithm to encrypt these

numbers, and it returned errors for missing values and NINs that included special characters or

blank spaces. Without the original numbers, it was not possible to run a node disambiguation

process (Newman, 2018) to know the exact number of unique individuals represented in the

observations that yielded an error; hence, we excluded them from the analysis.

Law enforcement should note the role co-offending networks have in co-offending. The

question, therefore, is how these networks can be disrupted to prevent future crime. Felson

(2003) suggested the intervention of co-offender convergence settings to prevent motivated

offenders from finding accomplices. However, this is one of the multiple policy alternatives

to reduce co-offending. First, we need to understand the mechanisms driving triadic closure

among offenders. For example, the existence of multiple convergence settings of offenders,

trust and social norms between offenders, and the personal preferences or structural opportu-

nities that allow homophilic relationships to emerge (or a combination of them) might explain

triadic closure. Therefore, more research is needed to understand transitivity in co-offending

relationships and the underlying mechanisms that result in the accomplices of an offender

co-executing new crimes together.
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complete this research article.
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Appendix

Figures 6 and 7 present the observed clustering coefficients in one-mode and two-mode networks

using windows of different size. Overlapping windows of size three provide a suitable number of

data with a reasonable overlap between windows. The clustering coefficients only vary slightly

when increasing the number of years per window. For this reason, we completed our analysis

using windows of size three.
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Figure 6: Observed clustering coefficients (y-axis) in one-mode networks between 2005 and
2018 (x-axis) using windows of different size. The first data point in x = 0 corresponds to the
first window for each partitioning.

Figure 7: Observed clustering coefficients (y-axis) in two-mode networks between 2005 and
2018 (x-axis) using windows of different size. The first data point in x = 0 corresponds to the
first window for each partitioning.
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