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Introduction

As many authors (e.g., Arcavi et al., 2017; Mason, 1996; Radford, 2011) 
have argued arithmetic is the precursor of and prerequisite for algebra 
and even though algebra is considered “generalised arithmetic”, arith-
metic and algebra have different foci. Arithmetic encourages students to 
find numerical answers, whereas algebra encourages students to identify 
and express mathematical structures. While algebra is a system that sup-
ports structural sense and expresses generalisation, its teaching often pri-
oritises the acquisition of its transformation rules, rather than structural 
thinking and generalisation itself. There have, of course, been numerous 
attempts to address this challenge, and more generally, to come to grips 
with the difficulties that students face in their transition from arithmetic 
to algebraic thinking. For example, activities based around generalising 
patterns of various descriptions have been widely considered as a poten-
tially powerful way to help students learn how to “see the structure” 
and generalise and are used as a common route for introducing algebra 
(e.g., Küchemann, 2010; Mason, 1996; Radford, 2010; Radford et al., 
2007). However, the use of these activities needs care, as they can easily 
encourage trial-and-error techniques and a focus on the term-to-term 
(or in other words additive) rule, which do not necessarily lead to math-
ematically valid generalisation strategies that promote the acquisition of 
structural sense for the learner (Dörfler, 2008; Hart, 1981; Küchemann, 
2010; Küchemann & Hoyles, 2009; Radford, 2011). The challenge, 
therefore, is to introduce patterns and generalisation in ways that pro-
mote algebraic thinking, that is, to identify and express structural com-
monalities and relationships (Geraniou et al., 2009; Noss et al., 2009).

Our aim is to investigate the impact of collaborative computer-based 
tasks involving figural patterns to students’ justification strategies for 
discussing the equivalence and correctness of algebraic expressions and 
subsequently students’ development of algebraic generalisation and 
structural sense in Algebra. In the analysis of our empirical data involv-
ing such tasks, we will be discussing the interconnectedness of figural 
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and numerical patterns for the development of algebraic structural sense 
and generalisation.

Different authors have defined mathematical generalisation in vari-
ous ways: “as a mathematical rule about relationships or properties” 
(Ellis, 2007, p. 196); as the process of extending one’s scope of reasoning 
beyond the case or cases considered (Harel & Tall, 1991); or as commu-
nicating at a level “where the focus is no longer on the cases or situa-
tions themselves, but rather on the patterns, procedures, structures, and 
the relationships across and among them” (Kaput, 1999, p. 137). More 
recently, Radford (2010) argues, “generalizing a pattern algebraically 
rests on the capability of grasping a commonality noticed on some ele-
ments of a sequence S, being aware that this commonality applies to all 
the terms of S and being able to use it to provide a direct expression of 
whatever term of S” (Radford, 2010, p. 42). Ellis (2011) argues similarly, 
but adds a reference to the sociomathematical contexts in which students 
are engaged.

In this chapter, we refer to a restricted class of generalisation: namely, 
the process of noticing the structure of a figural pattern, identifying 
what is repeated, and expressing the rule that corresponds to this struc-
ture symbolically. Our interest also encompasses the role of justification 
of generality in a carefully designed collaborative social context, as a 
step towards the adoption of algebraic ways of thinking.

While it is relatively straightforward for students to illustrate some 
elements of generality using numbers and gestures, expressing general-
ity in words or in algebraic form has proved more problematic (Arcavi, 
Drijvers, & Stacey, 2017; Filloy and Rojano, 1989; Noss, Healy, & 
Hoyles, 1997; Noss et al., 2009; Radford, 2010, 2011;). Frequently, 
students view the algebraic expression as disconnected from the struc-
ture of the problem, to be added as an optional and seemingly arbitrary 
endpoint.

In this chapter, we present a research study, which aimed at bridging 
the gap between identifying and expressing pattern, by encouraging stu-
dents to identify the structure of the pattern through its construction 
and providing them with the necessary tools to express generality. Thus, 
the underlying theory that guided our activity design is constructionism 
(see Harel & Papert, 1991) and the claim is that this experience will 
support the expression of generality by focusing on the structural sense 
in Algebra, as well as shape how the generality is expressed. We used the 
microworld, eXpresser, a toolkit for working on the construction of til-
ing patterns (more details given later), and activity sequences that ended 
in a reflective and a collaborative phase aiming to provide students with 
a rationale and opportunity to justify their pattern constructions to each 
other. We focus on this final phase of the activity sequences. We present 
data from several studies in three English schools, illustrating how 11- 
to 14-year old students who had engaged with eXpresser were able to 
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reflect upon their own and their peers’ solution strategies and employ 
a range of strategies to justify the correctness and – where appropriate 
– the equivalence of their computer-based algebraic rules. Our research 
questions were: What is the impact of computer-based collaborative 
tasks involving figural pattern generalisation on students’ justification 
strategies for the equivalence and correctness of algebraic expressions? 
How do such tasks support the development of algebraic generalisation 
and structural sense in Algebra?

Theoretical Background

Perceiving and Expressing the Structure of Figural Patterns

The pattern-generalising process involves various steps that students 
typically follow in their efforts to reach meaningful generalisations. 
Dretske (1990) argues that the initial act of coming to see a pattern is of 
two types: sensory, which refers to individuals perceiving an object as a 
mere object-in-itself; and cognitive, when perception moves beyond sen-
sory perception by recognising a fact or a property related to the object 
in question. We will argue that Dretske’s distinction between these two 
modes might not be so clear-cut, depending crucially on the tools at 
hand, and the contexts in which they are used. A key issue, however, as 
Rivera (2010) points out, is seeing or recognizing a fact or a property 
in relation to an object, and doing so cognitively or theoretically rather 
than practically. In fact, the way in which the structure of a pattern is 
conceived will depend critically on the unit of repeat perceived, and – 
this is the crucial point – the tools available for repeating.

If and when students recognise what is repeated, they are often capa-
ble of expressing a general rule through the use of words like “always” 
or “every”, but struggle to use letters and symbols (see Warren & 
Cooper, 2008). Additionally, Radford’s (2009) discussion of “objec-
tification” shows how students’ inexperience with mathematical lan-
guage prevents them from “translating” the structure of a pattern to an 
algebraic expression after noticing what is repeated). To address this, 
Rivera (2010) advocates an “abductive-inductive action on objects” that 
involves “employing different ways of counting and structuring discrete 
objects or parts in a pattern in an algebraically useful manner” (ibid., 
p. 4). The idea is that such an approach allows students to perceive the 
structure of a pattern that could lead to a meaningful, but also mathe-
matically viable, pattern generalisation, which could form the basis for 
deriving a formula.

After this initial step of recognising the structure of the pattern, stu-
dents are usually encouraged (e.g., in mathematics lessons by a teacher) 
to adopt a suitable symbol system to reason about and to express gener-
alisations (Arcavi et al., 2017; Kieran, 1989), which is once again a far 
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from trivial process. This action has been characterised as “symbolic 
action” by Rivera (2010) and involves translating the visually perceived 
structure of a pattern into the form of an expressed generalisation. This 
transition from arithmetic to algebra, or “didactical cut” as described 
by Filloy and Rojano (1989) involves a substantive shift from operating 
with numbers and operating with the unknown (see also Filloy et al., 
2010). To effect this transition, Filloy, Rojano, and Puig (2008) argue 
that a teacher’s intervention is crucial.

The pedagogical strategy used by Filloy, Rojano, and Puig (2008) 
involved two concrete models: the balance scales model, in which the 
equation was represented as a balance between two weights in two pans, 
and the geometric model, in which the letters and algebraic expressions 
were represented as lengths and areas of rectangles. The lesson we take 
from this work is that while a modelling approach can support the devel-
opment of algebraic thinking, it can also become a hindrance in the 
absence of carefully designed activities to support pedagogically the 
transition to algebraic expression.

Algebraic expression, of course, does not have to be verbal or written. 
Noss and Hoyles (1996), for example, use the idea of situated abstraction 
to describe how students can express abstractions within a “concrete” 
symbolic medium, such as a computer program; Radford (2010) similarly 
invokes the notion of semiotic means of objectification to capture the 
means used by students to express a general rule, such as gestures, signs, 
etc. Designing semiotic systems is therefore a worthwhile challenge in 
the attempt to foster the expression of generality. However, the utility of 
such systems is sensitive to their structure: there are, for example, several 
studies (e.g., Lee, 1996; Stacey, 1989) that highlight students’ tendency to 
focus on recursive rather than functional relationships, which can pres-
ent barriers towards generalising “any” case. Furthermore, generalisation 
tasks that are presented as a sequence of consecutive terms often lead stu-
dents to seek empirical generalisation rather than a structural one (Bills 
& Rowland, 1999). More recent research documents the different strate-
gies students employ when constructing the algebraic rules that underpin 
patterns, which allow them to support the correctness of their general 
rules. For example, Rivera and Becker (2008) differentiate between con-
structive and deconstructive generalisation, depending on whether or not 
students perceive the figural pattern as having overlapping components, 
and Chua and Hoyles (2011) refer to reconstructive generalisation, where 
components of the pattern are rearranged to reveal the pattern structure.

Collaboration and Reflection

Alongside the affordances of novel representational systems for describ-
ing generality, algebraic thinking can be further supported by opportuni-
ties for reflection, to assist students in expressing structural relationships 
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and distinguishing variants and invariants (see for example, Ellis, 2007). 
Encouraging students to reflect on their actions can promote their justi-
fication skills and support the development of their algebraic thinking.

Unsurprisingly, reflection can be strengthened by suitably designed 
collaboration tasks. As students explain their ideas and solutions to 
their peers, they are encouraged to resolve conflicts and develop a deeper 
understanding than those who do not (Cohen & Lotan, 1995; Leonard, 
2001; Lou et al., 1996). Wood (1988) argues that discussion and inter-
action are critical to avoid “misconceptions”: “A trouble shared, in 
mathematical discourse, may become a problem solved” (p. 210). When 
collaborating in small groups, students are more likely to ask questions, 
reflect on their own work and attempt to make sense of each other’s 
work (Linchevski & Kutscher, 1998). In the context of generalisation, 
research suggests that working in small groups is advantageous for stu-
dents’ deeper understanding of generalisation, equivalence of rules and 
algebraic thinking (Ellis, 2011).

Leonard (2001) argues for the value of forming heterogeneous groups, 
especially for lower-attainment sixth grade mathematics students who 
were grouped with higher attainment students and achieved more 
although other disagree (see for example, Carter & Jones, 1993, as cited 
in Fuchs et al., 1998). Criteria such as these for grouping students are 
dependent upon the mathematical tasks they are asked to tackle and the 
learning objectives assigned by the teacher. Furthermore, students who 
work in small groups seem to learn more when the outcome depends 
upon all of the group members’ efforts (Lou et al., 1996). A cooperative 
learning strategy encourages students to share arguments and consider 
different approaches that could even be shared with the rest of the class. 
Hopefully such an approach minimises the issue of one student over-
powering the group. The question is how to design group work so it 
is most likely to lead to optimal results for learning (Abdu, Olsher & 
Yerushalmy, 2019; Healy et al., 1995).

Argumentation and Justification

Even though students are capable of generalising a pattern or a rule, few 
are able to explain why the rule is valid and justify their actions (Coe and 
Ruthven, 1994; Ellis, 2007; Healy and Hoyles, 2000; Küchemann and 
Hoyles, 2009). Many tend to rely on empirical examples to justify the 
truth of statements: it would hardly be surprising if a student who gen-
eralises based solely on specific cases were to use one or more examples 
as a form of justification.

Research suggests that a student who generalises by attending to the 
structure of a pattern and relating each algebraic expression to its cor-
responding part of the pattern-model-construction, has a better chance 
of justifying the generality of their expression and possibly producing 
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a general argument to justify the equivalence of rules (Küchemann, 
2010). Helping students develop their own algebraically powerful gen-
eralisations will likely aid in their abilities to provide symbolically- 
expressed justifications or in other words some form of proof (Ellis, 
2007). Thus setting challenges for students to reflect, recognise, and 
justify general rules and actions to themselves as well as to others, is 
a strong candidate for a strategy to enhance students’ generalisation 
capabilities. Moreover, it seems that focusing on justification activities 
may not only enhance students’ expression of their existing generali-
sations, but also aid in the development of subsequent, more powerful 
generalisations (Ellis, 2007).

Mercer (1995; 2000, as cited in Swan, 2006) has shown that atten-
tion should also be directed at promoting exploratory talk (critical and 
constructive exchanges) among the participants of the group rather than 
disputational (disagreement and individualised decision-making) and 
cumulative talk (build positively on others’ input). Working collabora-
tively (rather than competitively), students tend to be more committed 
to overcoming conflict in their efforts to master a task and coordinate 
different pints of view into new ones (Laborde, 1994). Furthermore, 
promoting a collaborative “knowledge building” culture as envisaged 
by Scardamalia and Bereiter (2006) during collaboration, can advance 
students’ knowledge.

Collaborative Interaction in Relation to Computers

There is a long research tradition in collaborative learning with com-
puters in mathematics education. Early work from Teasly and Roschelle 
(1993) and Healy et al. (1995) highlighted the importance of expressing 
ideas in words and establishing a common group goal. Similarly, a key 
research finding is that a characteristic of computational artefacts is that 
students’ focus of attention can gradually change from being computer- 
oriented to being focused on the mathematical aspects of the task at 
hand (e.g., Kieran, 2001; Lavy & Leron, 2004).

Among other relevant findings, Bereiter and Scardamalia (2003) and 
Moss and Beatty (2006) discuss how students make progress not only 
in improving their own knowledge but also in developing “collective 
knowledge” by contributing to their peers’ comments. The WebLabs 
project took this a step further through its “Webreports” system (Mor 
et al., 2005) that facilitated distance collaboration of students who 
constructed models. This study demonstrated the positive effects of 
sharing, commenting, making changes and allowing students to reflect 
on each other’s artefacts both synchronously (face-to-face) and asyn-
chronously (Mor et al., 2006). The importance of students’ engaging 
with, or talking about, the product of their work and the opportu-
nities for building on each other’s ideas, learning to participate in a 
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community of practice and benefit from the reflection that occurs from 
the interaction with others has also been widely identified (Vahey et al., 
2000; Vahey et al., 2007).

Ellis’s (2011) research on the role of collaboration in the development 
and refinement of students’ mathematical generalisations highlighted 
how generalisation can be viewed as “a dynamic, socially situated 
process that can evolve through collaborative acts” (p. 308) where, in 
the classroom situation outcomes are influenced by the interconnected 
actions of students, teachers, problems, representations, and artefacts. 
In her research, students were stimulated publicly to generalise, share, 
build, and encourage justifications or clarifications in their attempts 
to understand a new mathematical domain. Moreover, her research 
revealed that an initial generalisation evolves through extensive inter-
actions, phases of reflection, and takes many different forms until the 
final, stabilised version of generalisation, which cannot be claimed to 
have been developed in isolation. Rather, every student in a group is 
responsible for the final generalisation. This is described as collective 
generalising (ibid., 2011).

The eXpresser Microworld and Activities

The key idea of the eXpresser microworld is that students first identify 
the structure of a pattern of squares presented dynamically, next con-
struct the pattern, and finally express a general rule for the number of 
tiles in a general pattern. Thus, there is a tight coupling between build-
ing the pattern, and being able to describe how it is built – between the 
“algebra” and the objects the algebra aims at expressing. The quotes 
round the word algebra signify, as we will see, that the language of 
expression is algebra, but not as we know it.

For our purposes here, we see students’ work in eXpresser to solve 
a generalisation activity as involving two phases, the construction and 
the collaboration phases. In the construction phase, students go through 
the following actions: (1) visual perception of the model presented, (2) 
inductive action on the model, to realise what stays the same and what 
is repeated, (3) constructionist action, building the model (using one or 
more patterns), (4) expressive action, expressing the constructed model in 
the form of a general symbolic rule that colours the model. Then in the 
collaboration phase, students continue their interactions with: (5) reflec-
tive action with students writing arguments for or against their models 
and particularly their derived rules (these arguments are written at the 
end of the construction phase and used during subsequent collaboration, 
(6) justification action, viewing other students’ rules and validating/justi-
fying correctness and equivalence, and (7) collaborative reflective action, 
involving students in groups to reach an agreed statement regarding the 
equivalence and correctness (or not) of their shared rules.
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A typical activity in eXpresser will ask the student to reproduce what 
is presented as a dynamic model of a tiling pattern shown in a window 
that appears on the side of the activity screen. In eXpresser, an initial 
figure is presented dynamically in order to draw students’ attention to 
the general problem, rather than the static and inevitably therefore spe-
cific problem that could otherwise be posed on paper. Figure 6.1a shows 
the “Train-Track” model: it is animated randomly from left to right1 
with the value of the model number changing accordingly.2 Students 
are asked to construct the Train-Track model in eXpresser using pat-
terns and combinations of patterns of their own choosing (examples are 
shown in Figure 6.1), depending on their perceptions of the Train-Track’s 
structure. Students are encouraged to colour the patterns with different 
colours to represent the way they visualise the structure of the model. 
This happens by providing an expression that “tells the computer” the 
number of tiles in each coloured pattern. They then seek to derive a 
general rule for the total number of tiles needed for any Model Number. 
The generality of the rule can be tested by “animating” the figure to see 
if the model matches the activity model, is drawn correctly, and remains 
coloured for any model number the computer chooses randomly.

Since the activity model is presented dynamically, as an animated pat-
tern, students are given the opportunity to perceive the model visually and 
construct it in any way they see it. They can therefore identify the struc-
tural relationships in the model in an abstract way that would materialise 
as they carry on constructing the model and make meaningful generali-
sations. Based on their visual perception of the activity-model, students 
are expected to derive a rule that expresses their method of construc-
tion. Students identify a common unit in the activity-model, build it, and 
repeat it to form a pattern. A number of patterns can make their model. 
In an effort to discourage students from thinking from term-to-term and 
therefore additively, eXpresser is designed to help students to express the 
relationship between the common unit and the number of its repetitions. 
This common unit is referred to as a “building block”: the idea of using 

Figure 6.1  �(a) The Train-Track activity and (b) six different students’ percep-
tions of it.
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different building blocks for different patterns comes from the prevailing 
view in recent studies involving figural pattern generalisation activities 
that students see a pattern in different ways depending on how they con-
ceptualize such units (see the ZDM issue on pattern generalisation for ref-
erences to most studies; Rivera & Becker, 2008). This process comprises 
the second step in the generalisation activity diagram. This common unit 
is the coefficient (constant) of students’ variable in the general rule and as 
it will be shown later in this chapter, students employed the notion of the 
constant to justify the correctness of their rules.

The eXpresser capitalises on visual dynamic representations and feed-
back3 and, in addition, on the simultaneous representation of a specific 
and a generalised model, called “My Model” and “General Model” (see 
Figure 6.2 presenting the model of a year 8 student, Alicia). The model 
is built by combining patterns and there is a close alignment of the sym-
bolic expression, the Model Rule and the structure of the model. In the 
General Model, a value of the variable4 (“‘Model Number” in this exam-
ple) is chosen automatically at random (it is “6” in Figure 6.2. It will 
generally be different from that in the specific model (“3” in Figure 6.2). 

Figure 6.2  �Alicia’s Train-Track model showing her constructed model on the 
right, where she chose her variable “model” to be 3. On the left 
hand-side, there is the General Model window, where her con-
structed model is demonstrated for the value of 7 for the ‘model’ 
variable. Also, below Alicia’s Model, one can see her derived gen-
eral rule given in the eXpresser language. On the General Model 
Window, Alicia’s Model rule is presented in an algebraic form.
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So the General Model indicates to students whether their constructions 
are structurally correct for the different values of the variable(s) assigned 
to the various properties.

The system is designed to encourage students to express the struc-
ture of a pattern using the eXpresser representational form (which is the 
“Model Rule” in Figure 6.2). Students construct a model rule for the 
total number of tiles, and validation of its correctness is made evident by 
the system through colouring: patterns are only coloured if the rule for 
the number of tiles required is correct. Motivation for generality is thus 
provided by the main goal of the activity, that is, to produce a model that 
will animate correctly by colouring the exact number of tiles required, 
in combination with a pedagogical strategy that challenges students to 
construct models that are impervious to changes in the values of the 
variables.

Designing for Collaboration in eXpresser

Students’ notions of generality, even when constructed in an environment 
designed to scaffold mathematical generality, might not match what it 
is required for a meaningful generalisation. We therefore designed indi-
vidual reflective activities, in which students were required to think 
of and write down their arguments for their rules’ correctness. They 
were prompted to think carefully how best to explain and justify this in 
written form, to encourage them to come up with good arguments and 
express them explicitly. This activity would also prepare them for the 
second part of the collaborative activity where they discuss the equiva-
lence of different rules.

As illustrated in the final stage of the MiGen Activity Diagram 
(Figure 6.1), students were grouped in pairs by their teacher with the 
advice of the Grouping Tool (for a description see later) based on their 
different, yet equivalent, derived rules. During their collaboration, 
processes of ascertaining and persuading each other of their rules’ 
correctness and equivalence were revealed. In fact, there was a pro-
cess of ascertaining when a student was going through the reflection 
phase, which was followed by a process of persuading when they were 
paired during the collaboration phase. Also, collaboration encouraged 
the development of reasoning skills since students were encouraged to 
explain why their generalisations make sense.

Having reviewed the literature, we based our approach on the 
assumption that collaborating about and with something concrete (in 
this case, virtual) is more likely to lead to effective learning than with-
out. The activities were designed to prompt students to revisit their 
derived rules and through discussion with their peers reflect on their 
transition from simple to more complex expressions and then to alge-
braically accepted ones.
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We conjecture that focusing on figural pattern activities with tuned 
tools and carefully structuring and providing a context for students’ 
discussions on the correctness and equivalence of models and related 
algebraic expressions could prove to be a powerful approach to fostering 
algebraic thinking. In the context of this carefully designed exploratory 
learning environment eXpresser, students are given the means to relate 
the symbolic representation to the relevant parts of the pattern, give 
meaning to symbols, and form justifications in an algebraic manner.

Interactions in eXpresser

To give the reader some understanding of students’ interactions with 
the eXpresser microworld, we will briefly outline Alicia’s interactions 
with the Train-Track activity before we move on to consider the research 
methodology employed mainly for the collaborative activities.

Alicia was presented with the animated Train-Track model and was 
asked to construct it and find the general rule. She placed five red (dark 
grey in Figure 6.2) tiles to form a column. She wanted to repeat this col-
umn a number of times towards the right direction, but always leaving a 
gap in between each two consecutive columns. She therefore character-
ised this column in eXpresser as a building block. She decided to repeat 
this building block three times to make her blue pattern. She then made 
a building block of two green (light grey in Figure 6.2) tiles placed verti-
cally, but with a gap of three tiles in between, and repeated it three times. 
She noticed that the end of her model did not match the activity model as 
there was a column missing. She then derived a relationship between her 
two patterns that for every number of green building blocks, she always 
needs an extra red building block. Using the eXpresser’s language she 
was able to express this relationship. For any number of green build-
ing blocks, for example [model:3], she needs [model:3] + 1 red building 
blocks. To colour each of her patterns, she had to multiply the number 
of repeats for the building block with the number of tiles in one building 
block. So, for the green pattern, she built the expression [model:3] × 2 
and for the red pattern, {[model:3]+1} × 5. Since the activity was to find 
the rule that gives the number of tiles in the model for any model num-
ber, she added the two expressions that coloured her two patterns and 
got her general rule: {{[model:3]+1} × 5} + {[model:3] × 2}.

We now return to the study itself, and focus on the methodological 
approach regarding the reflective and collaborative aspects of our study.

Methodology

The purpose of our research study was to collect data that illustrate how 
students who had engaged with eXpresser were able to reflect upon their 
own and their peers’ solution strategies and employ a range of strategies 
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to justify the correctness and – where appropriate – the equivalence  
of their computer-based algebraic rules. Such data would allow us to dis-
cuss the impact of computer-based collaborative tasks involving figural 
pattern generalisation on students’ justification strategies for the equiv-
alence and correctness of algebraic expressions. Subsequently, we would 
make inferences regarding the degree to which such tasks would support 
the development of algebraic generalisation and structural sense in algebra.

The data presented in this chapter are derived from 48 mixed ability 
year 7, 8, and 9 students (aged 11–14 years) from three different schools 
in England. Table 6.1 presents the number of students interviewed from 
each school.

The following sections describe the sequence of activities students 
undertook, how the Grouping Tool, another tool of the MiGen system, 
paired students, and the data analysis process that was followed to reach 
our results.

Students’ Activities in eXpresser

Students were familiarised with the eXpresser in two lessons through a 
number of introductory activities and practice activities, asking students 
to construct figural models. Afterwards, they were given the Train-Track 
activity and were asked to build the model on their own. The activity 
text comes with suggested goals as follows: “Construct the Train-Track 
model. Use more than one pattern to make the model. Use different col-
ours for each pattern to show to other people how you made your model. 
Find a rule for the number of tiles for any Model Number. Use pattern(s) 
to construct the model; make sure “My Model” is always coloured; check 
that the “General Model” animates without messing up; make sure that 
the “General Model” is coloured always”. Students constructed the 
model in many different ways, some of which are presented in Figure 6.1.

After constructing their model, students were asked to reflect on it 
(reflective action) by answering the following questions: (1) Use your 

Table 6.1  Sample

Schools in  
London Year group

Number of  
students in class

Number of students 
interviewed during 
collaboration

A Year? 20   6
B Year? 24   6
B Year 8 22   6
C Year 8 16 16
C Year 9 28 14
TOTAL 48
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model to find the number of tiles for Model Numbers: 6, 12, 1, and 100. 
(2) Is your rule correct or not? In the next activity, you will discuss with 
another student. Make some notes here to explain why your rule is cor-
rect or not to prepare for this group activity. Based on having different 
student models and rules in any pair, students were paired to discuss the 
correctness and equivalence of their rules as mentioned earlier.

Students’ Collaboration

Student pairs were formed by exploiting information provided by the 
Grouping Tool,5 which was designed to support the teacher in deciding 
upon the best possible pairs of students in terms of potentially worth-
while discussions on the equivalence of eXpresser rules. The grouping 
tool retrieves all students’ models from the database and analyses them 
on the basis of three criteria: (1) the similarity of the building blocks, 
(2) the values of the right and downward displacement of the building 
blocks, and (3) the similarity of expressions that relate properties of the 
models (e.g., that a building block is repeated twice as another). Based 
on its analysis, it suggests to teachers’ possible groupings based on the 
dissimilarity of students’ models. The final decision for the best pairings 
of students of course lies with the teacher, so the tool is designed to allow 
the teacher to change the suggested pairs, as they deem appropriate.

Having been assigned to their pairs the students were asked the 
following two questions: (1) Convince each other that your rules are 
correct, (2) Can you explain why the rules look different but are equiv-
alent? Discuss and write down your explanations. Students were asked 
to write their final arguments on paper to share with the rest of the class, 
to stimulate discussion orchestrated by the teacher.

Data Collection and Analysis

For each school study, based on the grouping tool’s and the teacher’s 
suggestions, a number of pairs of students were chosen to be inter-
viewed outside the classroom during their collaboration (in some cases 
we interviewed all students, whereas in other cases we interviewed at 
least half a class). The rest of the students worked in pairs in the class-
room. This decision served our research purposes as it allowed us to 
better insight into their ways of thinking in a quiet space (outside a 
noisy classroom) and where their discussions could be recorded.6 In 
the interviews, the two students’ models together with their rules were 
opened in eXpresser on the same machine so the pair could explore and 
interact with the models if they wished. A snapshot of each student’s 
final model and rule in eXpresser was also presented colour-printed 
on paper in front of the students. Students’ interactions were vid-
eo-recorded and their verbal discussions recorded, transcribed, and 
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analysed. The students were encouraged to write some arguments to 
prepare for their discussions, as mentioned earlier, and this written 
work provided more data as to how they expressed their arguments in 
written as well as verbal form.

When analysing the 24 transcripts, our focus was on the students’ 
strategies in supporting their arguments to their peer. By the time the 
study was undertaken, students in years 8 and 9 had been introduced 
to generalisation activities in their normal classes whereas this was not 
the case for the younger year 7 students. But, as we understood from the 
teachers, no student had participated in any discussions on the topic of 
equivalence of algebraic expressions. Our interest, therefore, extended 
to seeing how students would reflect upon their general rules prior to the 
collaborative activity as well as during the discussions with their peers 
and assess their understanding of a general rule.

Throughout their interactions with eXpresser, support was pro-
vided through the intelligent support of the system, the teacher and the 
researchers. During collaboration, the researcher’s role was to initiate 
the discussions by introducing the activity and intervened only to clarify 
issues that were raised by the students by asking them to provide more 
details for their explanations. The researcher encouraged students to ask 
their fellow student questions if they were unsure of the other’s rule or 
their arguments. They reminded occasionally students of their collabo-
rative activity and prompted them to clarify their arguments or ideas to 
their peer (especially if they seem confused and didn’t take the initiative 
of asking if they were unsure).

The students’ discussions, orchestrated by a researcher as described 
above, were audio-recorded, transcribed, and analysed qualitatively 
following the open coding, axial coding, and selective coding analyt-
ical processes as described by Strauss and Corbin (1998). To facilitate 
this process, the Transana7 software was used, which allowed us to 
annotate all the transcripts and create codes that later formed cate-
gories and themes. During the open coding process, the transcripts 
were conceptualised line-by-line to create codes that were constantly 
compared, renamed, modified, or even merged into new concepts so 
as to reach a saturated list of codes. After constant comparison of the 
data and several modifications of the derived concepts, and an intent to 
sharpen the emerging theory, a number of categories that described the 
justification strategies students were using to argue about their rules’ 
correctness and equivalence were generated. Once a first set of catego-
ries had been established, the raw data were revisited to assess their 
validity and evaluate whether all the justification strategies used by 
students were adequately captured. When this was not the case, a new 
category was incorporated and validated against the data. This itera-
tive cycle was repeated a number of times until the set of justification 
strategies was finalised.
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After the categories and subcategories were finalised and we reached 
what Straus and Corbin refer to as “theoretical saturation” (Strauss & 
Corbin, 1998), students’ different justification processes were grouped 
under two themes: (a) Justification for Correctness and (b) Justification 
for Equivalence. It was at this point that we integrated all major catego-
ries and formed a coherent theoretical scheme (coding scheme) to pres-
ent our conceptualisation of students’ approach towards justifying their 
generalisations. In what follows we outline the classification of strategies 
based on the coding scheme in its final state and show how it relates to 
the theoretical framework we outlined at the outset.

Justification Strategies

Justification for Correctness

During the first part of the collaborative activity, students in their pairs 
were asked to convince each other that their rules are correct. In their 
efforts to give reasons for their rules being correct and therefore convince 
their pair, all students referred to the arguments they had written during 
the reflective action from the construction phase as preparation for their 
discussions and used them to start off their discussions.

During their collaborations, students used a number of different 
strategies as identified in the data. Note that 18 out of 48 students used 
more than one strategy to justify the rules’ correctness. Some students 
used their models to match each part of the rule to the corresponding 
coloured pattern of their model. Such an approach was characterised 
as constructive justification (number of responses: 26). For example, a 
Year 7 student, Janet, said for her model (see Figure 6.3):

Janet: that’s the number of red. But there’s 3 tiles in each of the blue 
building blocks, and the one plus 6 is because the 6 is the number 
of these and there’s always one more here, there’s one more of blue 
building blocks than the red because of the green one on the end and 
then the 2 green ones.

Other students used their models to explain the coefficients in their 
rule based on the number of tiles in each repeated building block. Such 
an approach was characterised as structural justification (number of 
responses: 29). For example, a Year 7 student, Patricia, said:

Patricia: we have the blue bits, which is 2 of them, each are blue, and 
then we have the red block. And the other 2 tiles. So that makes 4 
blue […] then add it together with red. Add these two together.

[That’s the same with Emily’s because  
she is talking about the C].
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In both Patricia and Janet’s strategy, we see traces of the construction 
each had pursued, and in both cases, the justification clearly took for 
granted that the audience (i.e., the other student) had participated in 
a similar activity. Indeed, in these cases, it is not difficult to share the 
situatedness of each abstraction, in which the constructive aspects of the 
spoken generalisation are expressed in the medium of the activity (e.g., 
“add it together with red”). These students directly related either the dif-
ferent patterns in their models to the different terms in their rules, or the 
number of tiles in their constructed building blocks to the coefficients 
in their rules.

As we might expect, students often used examples as a “proof” for 
their conjectures. Such an approach was characterised as empirical jus-
tification (number of responses: 10) and was chosen by a few students 
as a strategy that allowed them to test their rules with the help of the 
eXpresser’s feedback, that is, if their rule was correct, choosing a dif-
ferent value for the independent variable would maintain the model’s 
colouring. For example, a Year 7 student, Emily, said:

Emily: We answered correct when we typed in the model number.

Figure 6.3  Three example models.
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Emily tried a number of different values for the model number and 
each time her model remained coloured and did not “mess-up”.8 The 
idea of the computer “not being wrong” seemed to play a crucial factor 
in her judgement as in addition to her tendency to focus on a few cases 
to generalise for any case, she cleverly relied on eXpresser’s immedi-
ate feedback. During her collaboration with her pair, Patricia, Emily 
was challenged to use a different strategy later in their discussions that 
of constructive justification, as is evident from the results presented in  
Table 6.2, described below. Similarly, Susan and Tod, the only Year 8 stu-
dents who used the empirical justification, only used this strategy initially, 
and later relied on a different one as their collaboration in their pairs pro-
gressed. In fact, all the Year 9 students used the empirical justification 
strategy as an additional one to the ones they used initially (which were 
mainly the constructive or the structural ones), to support further their 
arguments with the support from the eXpresser’s immediate feedback.

On one occasion, it was interesting to hear the following dialogue of 
two students:

NANCY:  I understand the rule so I don’t see a reason why it shouldn’t be 
correct.

JANET:  Yeah. I understand yours.
RESEARCHER:  So you don’t see any reason why it’s not correct either?
JANET:  No.

Mainly Nancy, but also Janet influenced by her partner, failed to see 
the need to justify their rules. Their correctness was so obvious in their 
minds and so “understandable” that justification seemed unnecessary. 
In these cases, the relationship between the generic and general seems 
to be self-evident, thanks to the relationship between construction and 
expression: the situated abstraction goes something like this – “if you 
build it like that, and you say what you’ve built, it must be right”. Such 
an approach was characterised as authoritarian justification (number 
of responses: 3). It is worth mentioning though that after their initial 
reaction to use the authoritarian strategy, as their discussions continued, 
they used other strategies too. The same outcome holds for Emily and 
Maria, as will be presented below in the summative results in Table 6.2.

Summative Results

In Table 6.2, we summarise the results by presenting the different strat-
egies students used in their pairs. Each column that corresponds to a 
strategy is split into two cells to distinguish through the use of a tick 
whether the student named first or the one named second in the pair or 
both students used that strategy. As mentioned earlier, some students 
used more than one strategy. For example, Emily and Patricia were two 

BK-TandF-ROJANO_9781032055107-220002-Chp06.indd   124 23/02/22   2:08 PM



Justification Strategies and Equivalence  125

Year 7 students from school A. Emily used the constructive and the 
empirical strategies, whereas Patricia used the structural one only.

The last row in Table 6.2 reveals the total number of students who 
used each strategy. Out of the 68 times all strategies were used, the con-
structive strategy was used 26 times and the structural 29. Thus a justi-
fication strategy relevant to the structure of the constructed model was 
used to support the rules’ correctness 55 times. In total, about four-fifths 
of students’ strategies relied on the structure of the model.

Given the size of the sample, we do not of course claim causality. 
However, we do conjecture that there could be some link to the main 
Train-Track activity students had worked on prior to their collaborative 
activity. It seems that the system’s design to encourage students to focus on 

Table 6.2  Justification Strategies for Rules Correctness Used by Each Pair of 
Students from Each School. A Tick Means That the Correspondent Student 
Has Used That Strategy. For Example, Emily Used Both Constructive and 
Empirical Justification, Whereas, Patricia, Only Structural Justification

STUDENTS Constructive Structural Empirical Authoritarian

School A  
(Yr 7)

Emily + Patricia 3 3 3
Alex + Anne 3 3
Janet + Nancy 3 3 3 3

School B  
(Yr 7)

Alan + Simon 3 3
Fiona + Jackie 3 3 3 3
Susan + Dorothy 3 3 3 3

School B  
(Yr 8)

Neil + Rex 3 3
Randy + Susan 3 3
Tod + Ally 3 3

School C  
(Yr 8)

Colin + Lara 3 3
Maria + Mike 3 3 3 3
Penny + Leo 3 3
Alicia + Greg 3 3
Abigail + Mark 3 3
Scot + Louise 3 3 3
Amy + Nick 3 3
Eleanor + Trevor 3 3

School C  
(Yr 9)

Andy + Penny 3 3 3 3
Bill + Dave 3 3 3 3
Carey + Teddy 3 3 3
Nick + Scot 3 3 3
Colin + Maria 3 3 3
Eleanor + Mark 3 3 3
Greg + Leo 3 3 3 3

TOTAL
16 10 13 16 7 3 1 2

26 29 10 3
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the structure prevailed against their tendency to focus on recursive rather 
than functional relationships, a strongly prevalent tendency revealed in 
other studies (e.g., Lee, 1996; Stacey, 1989). Even though we noticed that 
a few students (2 Year 7 and 1 Year 8) followed the empirical strategy ini-
tially, we can see how their further interaction with eXpresser and their 
constructed models during their collaboration shaped their thinking in a 
direction that takes into account the structure of the pattern.

Justification for Equivalence

During the second part of the collaborative activity, students in their 
same pairs compared each other’s rules and discussed their equivalence. 
They were asked: Can you explain together why your rules look differ-
ent but are equivalent? Discuss and write your explanations.

After extensive analysis, coding and recoding, the data ended up 
grouped into three main categories: structural, symbolic, and empirical, 
described below along with their subcategories. Note that 22 out of the 
48 students used more than one strategy to justify the rules’ equivalence.

Structural Justification for Equivalence

Justifications in this category all focused on the structural aspect of the 
pattern by, for example, comparing the building blocks used in the dif-
ferent patterns and making arguments as to their equivalence with little 
if any reference to the symbolic rule. We distinguished three subcatego-
ries illustrated below with data from the study.

1. Reconstructive Justification (number of responses: 30). In this 
subcategory, different building blocks are compared or reconfigured as 
illustrated by the case of Janet and Nancy (see Figure 6.4).

Figure 6.4  Janet and Nancy’s model, building blocks and general rules.
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Nancy compared her building block with that of Janet’s:

NANCY:  Yeah it’s one red building block plus one blue building block so 
that would actually kind of make the…

JANET:  Yeah, it would make the same shape…
NANCY:  Because one red building block added to one blue building 

block…
JANET:  And that’s the same as one of my green building blocks.

Students complemented each other’s arguments and concluded that 
their building blocks were the same. They either explicitly related the 
models to their rules or linked the number of tiles in each block to the 
coefficients in the algebraic expressions. Rather, they simply compared 
the building blocks underlying the patterns used, basing their verbal 
interactions on their shared experience of construction and (algebraic) 
expression.

2. Experimental Justification (number of responses: 8). In this subcat-
egory, students chose a specific case and compared their two models and 
rules for this case, as illustrated by Alex and Anne.

ALEX:  I kind of got a C, but coloured them in different ways so I mean 
the 5 is only added at the end…

ANNE:  Then there are just 7 tiles in one model.
ALEX:  Yes, but your first model has 12 tiles and your second model 

has 7 tiles. For 5 red blocks I have 5 blue extra tiles, but you have  
12 blue extra tiles.

Anne was able to read Alex’s rule and recognised the configura-
tion of tiles that formed a similar building block to hers. Yet it was 

Figure 6.5  Alex’s and Anne’s model, building blocks, and general rules.
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evident that both students considered each building block as a sepa-
rate model. At first, Alex chose to change the number of red blocks 
in her model to 5 to match Anne’s model, but then realised that it 
was just not possible to match: the two models, in fact, had differ-
ent constant terms. Alex decided to compare the two models for the 
same model number and then justified the non-equivalence of the 
two rules.

This strategy was used by six other students, who all chose to select 
a value for their model number and use it in both rules (their own and 
their pair’s one), but then compared their models structurally focusing 
mainly on their length, but also on their building blocks. Such a strategy 
is mathematically valid for justifying non-equivalence (as demonstrated 
by Alex and Anne’s example above), since finding one case for which 
two rules are not equivalent is enough to disprove equivalence. However, 
experimenting with one case is not enough to generalise the equivalence 
for any case.

3. Justification by Contradiction (number of responses: 7). Students 
used the same model number and calculated the number of tiles used, 
and noticed that they obtain different answers, as illustrated by Amy 
and Nick (Figure 6.6). They had to go back to comparing their models 
structurally.

Nick noticed that for the same value of the independent variable, their 
models could never be the same. His justification was based on a contra-
diction expressed both numerically and structurally.

There were five more students that used justification by con-
tradiction and they all resorted to compare the structure of their  
models.

Figure 6.6  Amy’s and Nick’s model, building blocks and general rules.

BK-TandF-ROJANO_9781032055107-220002-Chp06.indd   128 23/02/22   2:08 PM



Justification Strategies and Equivalence  129

Symbolic Justification (Number of Responses: 21)

This category comprised student justifications focused on their eXresser 
rules and justified their equivalence by adding the constants and varia-
bles in each rule and comparing them as illustrated by Leo and Penny’s 
case (Figure 6.7).

When paired, Leo realised that his rule was incorrect, but was able to 
derive a correct general rule that he wrote on paper as [5] × 9 – [5] × 2 + 5.  
This is what they both compared with Penny’s rule.

LEO:  I had 5 times 9 because I had 9 things but I have to take away 2 of 
my red building block, so I have to take away 10 tiles because I need 
to have 5 sevens. I had that many on the end of each one [pointing 
at his model]. That is why I have to take away 2 and then plus 5 
because I need an extra line at the end. The 9 minus 2 is equal to 
plus 7 and the 5 is the same and then the 5 is the same so they’re the 
same rule but written differently.

PENNY:  Mine is 5 times 1 plus 8 times 7. These 8 times 7 because we’ve 
got 8 of the 7 blocks and so 8 times 9 minus times 2 is 8 times 7.

They concluded that Leo’s second rule on paper was equivalent to 
Penny’s rule. In this example, the value of reflecting on one’s own rule, 
triggered by collaboration is revealed.

There are 19 more students that followed this strategy and as shown 
in Table 6.3, the majority were Year 9 students. This might be due 
to their greater experience compared to Year 7 and 8 students with 
algebraic language. Two Year 9 students, Eleanor and Carey, resorted 
initially to the symbolic justification (see Table 6.3) and then used some 
type of a structural justification to support further their arguments 
and visually justify their rules’ equivalence or non-equivalence. The 

Figure 6.7  Penny’s and Leo’s model, building blocks, and general rules.
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rest of the students started off structurally and then moved on to sym-
bolic justification.

Empirical Justification for Equivalence

Some students focused solely on the numerical aspect of the rules, avoid-
ing any reference to the structure of their model constructions. Two sub-
categories were distinguished:

1. Matching-Terms Justification (number of responses: 5). In this 
category students pick a constant or a variable and compare with the 

Table 6.3  Justification Strategies for Rules Equivalence Used by Each Pair of 
Students from Each School. Similarly to Table 6.2, a Tick Means that the 
Correspondent Student Has Used That Strategy. For Example, Emily Used 
Only the Symbolic Justification Strategies, Whereas Her Partner, Patricia, 
Used Only the Reconstructive Justification Strategy

STUDENTS Rec. Exper. Contr. Sym. Match Eval.

School A 
(Yr 7)

Emily + Patricia 3 3
Alex + Anne 3 3 3 3 3 3 3 3
Janet + Nancy 3 3 3

School B 
(Yr 7)

Alan + Simon 3 3 3 3
Fiona + Jackie 3 3 3 3
Susan + Dorothy 3 3 3 3

School B 
(Yr 8)

Neil + Rex 3 3
Randy + Susan 3 3
Tod + Ally 3 3

School C 
(Yr 8)

Colin + Lara 3 3
Maria + Mike 3 3
Penny + Leo 3 3 3
Alicia + Greg 3 3
Abigail + Mark 3 3 3 3
Scot + Louise 3 3 3
Amy + Nick 3 3 3 3 3
Eleanor + Trevor 3 3 3

School C 
(Yr 9)

Andy + Penny 3 3 3
Bill + Dave 3 3
Carey + Teddy 3 3 3 3
Nick + Scot 3 3 3
Colin + Maria 3 3
Eleanor + Mark 3 3 3 3
Greg + Leo 3 3 3

TOTAL
13 17 4 4 4 3 13 8 3 2 3 2

30 8 7 21 5 5
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equivalent term in the other students’ rules. Here is Alex at an early stage 
of her collaboration with Anne:

ALEX:  They both have 7 in them plus something to make the end of the 
pattern.

She picked a constant in her rule and identified it in Anne’s rule too (see 
Figure 6.10). She noticed the similarities in the algebraic expressions, 
but also the difference in the added constant term (5 in Alex’s rule, but  
12 in Anne’s rule). This initial reaction to the collaborative activity 
reveals their tendency for an exploration of the rules, a rather important 
problem-solving skill, and does allow them to “read” both their rules 
and identify commonalities and differences.

Only two Year 9 students, Andy and Scot, as presented in Table 6.3, 
used this strategy after they used a symbolic and a structural justifi-
cation strategy respectively. It seems that this helped them to simplify 
further the rules and prove that their rules were equivalent and identified 
their simplest form as 7n+5. Similarly, two Year 7 students, Alan and 
Simon, as also presented in Table 6.3, used the matching-terms strategy 
to support further their arguments after using the experimental justifi-
cation strategy. Both these strategies revealed those students’ tendency 
to compare models first and then rules for specific cases preventing them 
from focusing on the general case and their rules’ equivalence for any 
value for the model number. Alex, who was the other Year 7 student, 
used this strategy too. She seemed eager to use many different arguments 
to support her view on her pair’s rule not being equivalent to hers and 
she was the only student to use five different strategies.

2. Evaluating-Terms Justification (number of responses: 5). In this cat-
egory, students compared the number of tiles for different model num-
bers. Later in their discussion, Alex chose a value for the independent 
variable and compared the answers for the two rules:

ALEX:  Model number 1 is blue blocks and it’s got 12 tiles in total. The 
backwards C is model number 2. So, we have 12 plus 7…19 tiles.

ANNE:  No, model number 2 is 2 backward Cs plus the blue block. So, 2 
times 7 plus 12…26 tiles.

Anne’s answer included seven more tiles because of the blue block she had 
added to her model. The students were confused at this point as to what 
the model was and what the model number was. This was the last strategy 
Alex used to support her argument on non-equivalence of their rules.

All three Year 9 students who used this strategy, except for Teddy, 
which was his only strategy, used it as an additional justification strat-
egy, but focused mostly on their original one, which was the symbolic 
strategy. A similar story holds for the only Year 8 student, Amy, who 
used the evaluating-terms justification strategy.
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Summative Results

In Table 6.3, we summarise the results by presenting the different strat-
egies students used in their pairs to justify their rules’ equivalence or 
non-equivalence. The same structure as for Table 6.2 is used. This means 
that each column that corresponds to a strategy is split into two cells to 
distinguish through the use of a “tick” whether the student named first 
or the one named second in the pair or both students used that strategy.

The last row in Table 6.3 reveals the total number of students who 
used each strategy. Out of the 76 times all strategies were used, a type 
of the structural justification strategy was used 45 times with the recon-
structive strategy dominating (30 times) and the symbolic one 21 times: 
the empirical strategy was the least used (10 times). About three-fifths 
of the time, students’ strategies relied on the structure of the model 
and two-fifths on the rules alone through manipulation of the terms. 
Compared to the first part of the collaborative activity on discussing 
correctness, students seem to rely mostly on the way they constructed 
their models. Some of the students, the majority of whom were in Year 9, 
focused on manipulating their rules algebraically to transform them into 
their simplest form. These students revealed their confidence in using 
the eXpresser language but crucially related it to formal algebraic lan-
guage identifying correctly and manipulating successfully constants and 
variables. Despite the obvious limitations of this quantitative overview, 
it suggests that a focus on structure remained the dominant choice for 
students. This, in combination with the general tendency in the litera-
ture and our previous anecdotal observations and evidence that seemed 
to suggest a prevalence of empirical justifications, supports the design 
decisions of the eXpresser and how it can act as a context for the collab-
oration activities.

Discussion

The data in the previous section support the value of reflective and col-
laborative activities. Similarly to many researchers we mentioned earlier, 
such as Ellis (2011), Wood (1988) and Lou et al. (1996), students engaged 
in acts of argumentation to support their own solution strategies, but also 
recognise and understand those of their peers. Such actions enhanced 
their justification skills and their algebraic thinking. For example, there 
were many cases, both during individual and initial collaborative work, 
that manifested students’ particular misconceptions such as their ten-
dency to focus on the additive principle as has been reported before (e.g., 
Hart, 1981; Lee, 1996; Stacey, 1989) or what the general rule is and what 
“n” represents. In our case, the crucial point is that the collaborative 
activity helped students to share their misunderstandings and support 
each other to overcome them because they had an object to share.
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Besides challenging misconceptions about generality, putting stu-
dents in a collaborative setup to discuss their modelling approaches 
helped them reflect on the components of their models in relation to the 
corresponding rules. From judging the justification strategies students 
used, it seemed that most students made sense of the “unknown” as 
they were given a rationale for its use (c.f. Filloy et al., 2008). Also, 
students were able to manipulate the rules and avoid mistakes, such as 
Ax + B = (A + B)x, as they could easily identify the components in their 
models’ rules.

In terms of forming heterogeneous groups, as suggested by Leonard 
(2001), our first criterion was for students to have derived different rules 
for the argumentation activity to be meaningful. The second criterion, 
the students’ characters and which pairs would collaborate sensibly and 
constructively, relied a lot upon the teacher who advised us based on 
the suggested pairs by the Grouping Tool. Students were prompted by 
the activity questions and also the researchers and the teacher reminded 
them on a regular basis to share arguments and consider all their dif-
ferent approaches. This established a collaborative learning approach as 
emphasized by Lou et al. (1996) and promoted a collaborative “knowl-
edge building” culture as described by Scardamalia and Bereiter (2006), 
which led students to use more than one justification strategy, resolve 
contradictions, and therefore challenged and broadened their algebraic 
ways of thinking.

Revisiting Dretcke’s (1990) distinction between sensory and cogni-
tive mode as two types for the act of coming to visually perceive a 
pattern, it can be argued that the distinction between the two relies 
crucially on the tools for expression the student is given as well as 
the context in which they are used. In the case of MiGen, it can be 
argued that when students interacted individually with the eXpresser, 
they could have seen patterns and their components as mere objects 
(sensory) and they could have derived expressions to “link” them pro-
cedurally. However, when they became involved in the collaborative 
activity, they were encouraged to reflect upon these objects, recognise 
their properties, and argue about their expressions-rules (cognitive). 
Even though eXpresser is designed to support students’ expressions of 
generalisations, we argue that it is students’ engagement in acts of jus-
tification through the collaborative activity that supported their under-
standing and “forced” them to reflect upon their visual perception of 
the figural patterns.

Since students are usually presented with the method of generalising 
based on noticing a commonality among the terms in a pattern sequence, 
one outstanding challenge posed by some researchers is to understand 
how students come to generalise what they notice to the whole pattern 
(e.g., Radford, 2010). In eXpresser, this turns out to be relatively straight-
forward, as with eXpresser’s functionality of building a pattern using a 
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building block, the arbitrary repetition of this building block when the 
model is, animated, shows how the model is “generalised”. We found 
that structural and reconstructive justifications were the main strategies 
used, a result that seems to align with students’ intuitive explanation of 
their construction method. As also claimed by Ellis (2007), Küchemann 
(2010), and Arcavi et al. (2017), attending to the structure of a pattern 
has a better chance of justifying students’ expressions generally and the 
findings from our studies seem to support this claim as the students suc-
cessfully reached a good understanding of generality as demonstrated by 
their justification strategies.

The choice of a “unit of repetition” or (in the eXpresser’s language) 
a “building block” proved to be a crucial step towards a correct gen-
eralisation, as suggested by Rivera (2010). Supported by the intelligent 
support of the MiGen system, students could find the minimum number 
of tiles that could be grouped into a building block and then repeated to 
form a pattern. Those who didn’t were challenged by their pair during 
collaboration (see, for example, the case of Anne, who chose 12 tiles 
for her blue building block instead of five, and was challenged by Alex), 
an outcome that emphasises the value of collaboration towards forming 
correct generalisations.

Students’ investment in building their own models supported them 
in deriving generalisations by directing their focus towards relation-
ships between quantities. The algebraic discourse of the eXpresser – 
the grammar of objects and relationships between them – gave students 
a means to express generalisation without the formal machinery of 
algebra. We argue that students were supported in expressing a general 
rule by the eXpresser’s language that gave meaning to the ‘unknown’, 
allowing them to name it as it made sense to them and use this as 
an intermediate step to formal algebraic language. Therefore, we sup-
ported the transition from natural language, as “always” and “every”, 
which is more intuitive for students (e.g., Warren & Cooper, 2008), to 
formal algebraic language. This action, which we refer to as “expres-
sive action” in Figure 6.1 and which could be linked to the “symbolic 
action” described by Rivera (2010), was supported further by the col-
laborative activity when students were encouraged to reflect upon their 
expressions and endorse them.

In more detail, during the collaboration phase, students were encour-
aged to revise their rules and identify the constants and the variables. 
The metaphor of the unlocked number was particularly salient here. 
Perhaps surprisingly all the students realised that in this case this was 
also the model number, “the number that can change” or in other words 
the variable.

An interesting observation is that some students who used algebraic 
symbolic justification responded in ways that could allow us to assume 
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that the transition to the use of letters to represent the unknown seemed 
easier for them. For example, Penny, during collaboration:

RESEARCHER:  How many tiles in model number 6?
PENNY:  So it will be 5 times 1 plus x times 7.
RESEARCHER:  And what’s x?
PENNY:  x is 6.

Although it is too early to claim that this is the case and despite lack 
of specific data on this question directly, we can surmise based on the 
above and similar interchanges that students mostly seemed to under-
stand what the “n” stands for and equally important, convinced of a 
rationale for having a general rule. Out of all year groups, most students 
(nine in total) who used a symbolic justification strategy were Year 9 
students (six were Year 7 and six were Year 8), which could mean that 
they are more experienced with algebraic notation or they have gained 
more expertise in the use of eXpresser.

The difference between algebraic thinking and algebraic symbol-
ism is evident in these data. Students were able to express generality 
verbally and in written form. If we consider the trajectory, there is 
a change from the first time they interacted with the eXpresser and 
their latest interactions in terms of their expressions of generality. By 
the end, most students were able to write down the rules using the 
eXpresser language (not the boxes, but e.g., 5 × Model Number + 3, or 
5 × Unlocked Number + 3).

What is encouraging is that most students’ activities after the engage-
ment described here tended to continue to focus on the structure of the pat-
terns in order to articulate the general rule. In their efforts to justify their 
general rules, students revisited their generalising actions, built on them, 
and constructed ones that were more powerful and meaningful. They suc-
ceeded in reaching rich justifications for the correctness and equivalence 
of their derived algebraic expressions for the linear Train-Track pattern.

The findings point to the students’ preference for referring to the 
structure of their models to justify correctness of their rules, since most 
students (55 out of 68 times all strategies were used or 81%) used either 
the constructive or the structural justification strategies. There was a 
similar preference when students justified the equivalence of their rules, 
since most students (45 out of 76 times all strategies were used or 59%) 
used a type of the structural justification strategy. The second most com-
mon strategy (21 out of 76 times all strategies were used or 39%) in 
terms of equivalence was symbolic justification. This result supports the 
usefulness of the eXpresser for students’ introduction to algebra and the 
collaborative activity for a possible introduction to proof (as a next step 
from justification).
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In summary, we can claim that students’ engagement in acts of jus-
tifying through collaboration seemed to support their generalisation 
skills in a number of ways that is: recognise the importance of see-
ing the structure, find the constants and the variables in their model 
and rule, express relationships using an independent variable to link 
patterns within their models and see the rationale and recognise the 
power of structural sense and algebraic generalisation. But to achieve 
this they had engaged in a carefully designed sequence of activities in 
the context of the eXpresser, which we suggest played a key role in 
their learning outcomes and assisted the integration of transition from 
arithmetic to algebra.
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Notes
	 1	 For this and other design priorities and rationales, the reader is referred to 

Noss et al. (2012). Mavrikis et al. (2013b) provides a more detailed discus-
sion on how the design of eXpresser supports the development of algebraic 
ways of thinking.

	 2	 To help the reader, the number of white gaps inside the Train-Track model 
could be mapped to the value of the Model Number.

	 3	 Apart from immediate feedback from the visualisations and representa-
tions of the microworld (e.g., lack of colouring of a pattern) the MiGen 
system incorporates intelligent components that analyse students’ activi-
ties and provide explicit feedback on their actions. This involves nudges to 
draw students’ attention to inconsistencies in their model compared to the 
activity model, for example, the lack of colouring or structural generality 
of the pattern and other prompts to help them reflect explicitly on their 
actions, especially when they request additional help. For more details and 
examples, see Noss et al. (2012) and Mavrikis et al. (2013a).

	 4	 All numbers in eXpresser are constants by default, referred to as “locked” 
numbers. When the user “unlocks a number”, it is possible to change its 
value; it becomes a variable.

	 5	 For more information on the Grouping Tool, see Noss et al. (2012) and 
Gutierrez-Santos et al. (2017).
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	 6	 The collaborative activity, though, is designed to be carried out in the 
classroom where the teacher is expected to run a classroom discussion at 
the end of the lesson.

	 7	 http://www.transana.org/
	 8	 When interacting with students, a pedagogical strategy, referred to as 

“messing-up” (Healy et al., 1994) was used. This strategy challenges stu-
dents to construct models that are impervious to changing values of the 
various properties of their construction.
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