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Abstract— This paper addresses the parameter estimation
problem of a non-stationary sinusoidal signal with a time-
varying amplitude, which is given by a known function of
time multiplied by an unknown constant coefficient. A robust
estimation algorithm is proposed for identifying the unknown
frequency and the amplitude coefficient in real-time. The esti-
mation algorithm is constructed based on the Volterra integral
operator with suitably designed kernels and sliding mode
adaptation laws. It is shown that the parameter estimation error
converges to zero within an arbitrarily small finite time, and the
robustness against bounded additive disturbances is certified by
bounded-input-bounded-output arguments. The effectiveness of
the estimation technique is evaluated and compared with other
existing tools through numerical simulations.

I. INTRODUCTION

Parameter estimation of sinusoidal signals has drawn con-

tinuously increasing attention in many engineering fields,

such as communication, image processing, power electronics

engineering, and control systems to mention a few [1], [2],

[3], [4].

From the control perspective, online estimation is the cru-

cial field of interest. A large amount of algorithms have been

proposed using adaptive and nonlinear filtering techniques

[5], [6], [7] and adaptive observers [8], [9], [10]. All of

these methods formally guarantee the global stability of the

estimator. Nevertheless, these methods are not widely used

in real-world applications due to the lack of an extensive and

comparable sample of practical case studies. Other, particu-

larly those accommodated in power electronics applications,

are using phase-locked-loop schemes [11], [12], [13], [14],

where yet global convergence is usually not guaranteed.

While the aforementioned algorithms provide asymptotic

stability guarantees, there exist a few other methods that are

capable to achieve finite-time convergence [15], [16]. This

is a desirable feature in several application contexts, e.g. in

micro-grid systems which is low-inertia and vulnerable to

frequency fluctuations usually rely on fast estimation and

detection to deliver prompt frequency control [17].

The aforementioned algorithms address in most cases

only sinusoidal signals with stationary parameters. Such

algorithms could be applied without modification to estimate

piece-wise constant parameters, but are not suitable for more

general non-stationary sinusoidal signals. From a practical
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point of view, it is worth discussing the parameter estimation

of non-stationary signals, which are common in electric

power systems and time-varying parameters can describe the

qualitative behavior of the associated system. For example,

oscillations with time-varying amplitude in power systems

might be the precursor of instabilities due to equipment

malfunctions or other faults. Some particular models of non-

stationary signals have been studied in the literature. In

[9], structured perturbations are modeled and incorporated

in a sinusoidal estimation problem so as to represent high-

order perturbations, such as the drift phenomena in real-

life applications. A sinusoidal signal with an exponentially

damped amplitude is investigated in [18], [19], [20]. In [21],

an estimation approach is proposed for a sinusoidal signal

with a linear time-varying amplitude that is characterized

by a first-order time-polynomial. More recently, the work

shown in [22] puts forward a class of frequency estimator

for a sinusoidal signal with a time-varying amplitude, which

is the product of a known time-varying function and an

unknown time-invariant constant. Such formulation turns out

to be useful for estimating the external wrenching force of

robotic manipulators and for monitoring the angular speed

of permanent magnet synchronous machines [23].

In this paper, we present a novel frequency estimation

method for the non-stationary sinusoidal model proposed

in [22]. With inspiration from the idea devised in [16],

the proposed methodology employs Volterra operators with

a typical class of non-asymptotic kernels functions, which

can remove the dependency on the initial conditions. As

a consequence, finite-time convergence of the estimation

error can be achieved, which enables faster detection of the

parameters compared to the convergence of the estimator

presented in [22] without increasing the sensitivity to mea-

surement noise. Furthermore, the proposed method can also

estimate the unknown amplitude coefficient, which has not

been addressed in previous works on this subject [23], [22].

The rest of this paper is organized as follows. Section II

formulates the estimation problem for a sinusoidal signal

with a non-stationary amplitude. Section III presents the

frequency and amplitude coefficient estimation algorithm.

Stability analysis and robustness analysis against measure-

ment noise are carried out in Section IV. Section V gives

some simulation examples. Finally, we conclude the paper

in Section VI.



II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a non-stationary sinusoidal signal

y(t) = µα(t) sin(ϑ(t)), (1)

ϑ̇(t) = ω (2)

where ϑ(0) = φ0 ∈ R is the initial phase angle, µα(t) ∈ R>0

is the time-varying amplitude of the signal, and ω ∈ R>0

is the frequency. ω, µ, φ0 are unknown constant parameters,

while α(t) is a known function.

Assumption 1: α(t) is Lipschitz continuous and bounded

of 2nd-order derivatives.

As discussed in [23], there are many applications that

is consent to Assumption. 1. For instance, in the case of

estimating the frequency of a carrier signal, in wireless

communication, α(t) is a known modulating signal which

is known and bounded.

The objective of this paper is to design an estimator that

can identify ω and µ with a fast convergence rate from

the signal measurement y(t). Examples of such problem

statement are also commonly seen in the frequency estima-

tion of an amplitude modulated signal and angular velocity

estimation for permanent magnet synchronous motors [24].

A key algbraic tool of the proposed estimation method

is the Volterra integral operator and non-asymptotic kernel

functions. For readers’ convinience, basic concepts of the

Volterra operator and the non-asymptotic algebra are briefly

recalled hereafter. For deeper in sights, readers are advised

to refer to [25] and [26] and the reference therein.

Given a function belongs to the Hilbert space of locally

integrable function with domain R≥0 and range R, i.e.,

x(·) ∈ L2
loc(R≥0), its image by the Volterra operator VK

induced by a Hilbert-Schmidt (HS) Kernel Function K(·, ·) :
R× R → R is denoted by [VKx] (·) of the form

[VKx] (t) ,

∫ t

0

K(t, τ)x(τ)dτ, t ∈ R≥0 .

To achieve the non-asymptotic convergence, we resorted

to an N th order Bivariate Feedthrough Non-asymptotic Ker-

nel (BF-NK) designed in [26] which has the form of

Kh(t, τ) = e−βh(t−τ)
(

1− e−βτ
)N

which is parameterised by βh ∈ R>0 and β ∈ R>0. Such

kernel function has an important feature that K
(j)
h (t, 0) =

0, ∀j ∈ {0, 1, · · · , i−1}, t ∈ R≥0, where K
(i)
h (t, τ) denotes

the ith derivative with respect to the second argument τ . As

such, the Volterra image of the signal derivative x(i)(t), i ∈
{1, · · · , N} can be expressed as

[

VK
h
x(i)

]

=

i−1
∑

j=0

(−1)i−j−1x(j)(t)K
(i−j−1)
h (t, t)

+ (−1)i
[

VKh
(i)x

]

(t).

(3)

In the light of the Leibniz Rule the Volterra image signal
[

V
K

(i)
h

x
]

(t), for any i ∈ {1, 2, · · · , N} can be obtained as

the output of a linear time-varying system as


















ξ(t) =
[

V
K

(i)
h

x
]

(t)

ξ̇(t) = K
(i)
h (t, t)x(t) +

∫ t

0

(

∂

∂t
K

(i)
h (t, τ)

)

x(τ)dτ

= −βhξ(t) +K
(i)
h (t, t)x(t)

(4)

with ξ(0) = 0. Being K
(i)
h (t, t) bounded and ω strictly

positive, it holds that the scalar dynamical system realization

of the Volterra operators induced by the proposed kernels is

BIBO stable with respect to x(t).

III. MAIN ALGORITHM

Starting from the noise-free signal y(t), the time-derivative

of y(t) holds:

ẏ(t) = µα̇(t) sin(ϑ(t)) + µα(t)ω cos(ϑ(t)) (5)

ÿ(t) = µα̈(t) sin(ϑ(t)) + 2µα̇(t)ω cos(ϑ(t)) (6)

− µα(t)ω2 sin(ϑ(t))

In view of (1) and (5), by cancelling the term associated

with sin(ϑ(t)) and cos(ϑ(t)), the following relationship can

be established:

2α(t)α̇(t)ẏ(t)− α(t)2ÿ(t)

= 2α̇(t)2y(t)− α(t)α̈(t)y(t) + Ωα(t)2y(t), (7)

where Ω = ω2 Consider γ1 = α(t)2y(t), γ2 = α(t)α̇(t)y(t),
which are composed of known signals. It holds that:

α(t)2ÿ(t) = γ̈1 − 4α(t)α̇(t)ẏ(t)− 2α̇(t)2y(t) (8)

− 2α(t)α̈(t)y(t)

α(t)α̇(t)ẏ(t) = γ̇2 − α̇(t)2y(t)− α(t)α̈(t)y(t) (9)

Substituting (8) and (9) in (7), α(t)α̇(t)ẏ(t) and α(t)2ÿ(t)
can be replaced, yielding:

6(γ̇2 − α̇(t)2y(t)− α(t)α̈(t)y(t))

− (γ̈1 − 2α̇(t)2y(t)− 2α(t)α̈(t)y(t))

= 2α̇(t)2y(t)− α(t)α̈(t)y(t) + Ωα(t)2y(t)

After rearrangements, it yields

6γ̇2 − 3α(t)α̈(t)y(t)− γ̈1 − 6α̇(t)2y(t) = Ωγ1(t) (10)

Assuming that Kh(·, ·) are 2nd order non-asymptotic

kernel functions i.e. N = 2. βh ∈ R>0, ∀h = {1, 2} and

β̄ ∈ R>0 are set by the designers subject to β1 6= β2. Then

it holds that:
[

VK
h
γ
(2)
1

]

(t)=−γ1(t)K
(1)
h (t, t)+γ

(1)
1 (t)Kh(t, t)+

[

V
K

(2)
h

γ1

]

(t)
[

VK
h
γ
(1)
2

]

(t)=γ2(t)Kh(t, t)−
[

V
K

(1)
h

γ2

]

(t)

Applying K1 and K2 to both sides of (10), we get

6γ2(t)Kh(t, t)− 6
[

V
K

(1)
h

γ2

]

(t)− 3
[

VK
h
αα̈y

]

(t)

+ γ1(t)K
(1)
h (t, t)− γ̇1(t)Kh(t, t)−

[

V
K

(2)
h

γ1

]

(t)

− 6
[

VK
h
α̇2y

]

(t) = Ω
[

VK
h
γ1
]

(t), h = 1, 2 (11)



Then, we can cancel the unavailable signal derivative γ̇1(t)
by manipulating the two equations of (11):

6
[

V
K

(1)
2

γ2

]

(t)K1(t, t)− 6
[

V
K

(1)
1

γ2

]

(t)K2(t, t)

+3
[

VK2
αα̈y

]

(t)K1(t, t)− 3
[

VK1
αα̈y

]

(t)K2(t, t)

+γ1(t)K
(1)
1 (t, t)K2(t, t)− γ1(t)K

(1)
2 (t, t)K1(t, t)

+
[

V
K

(2)
2

γ1

]

(t)K1(t, t)−
[

V
K

(2)
1

γ1

]

(t)K2(t, t)

+6
[

VK2
α̇2y

]

(t)K1(t, t)− 6
[

VK1
α̇2y

]

(t)K2(t, t)

= Ω
([

VK1
γ1
]

(t)K2(t, t)−
[

VK2
γ1
]

(t)K1(t, t)
)

, (12)

which can be rearranged in vector form as follows:

11×5ζ1(t)K(t, t) = Ωζ2(t)K(t, t) , (13)

with K(t, t) = [K1(t, t) K2(t, t)]
⊤

ζ1 =

















6
[

V
K

(1)
2

γ2

]

(t) −6
[

V
K

(1)
1

γ2

]

(t)

3
[

VK2
αα̈y

]

(t) −3
[

VK1
αα̈y

]

(t)

−γ1K
(1)
2 (t, t) γ1K

(1)
1 (t, t)

[

V
K

(2)
2

γ1

]

(t) −
[

V
K

(2)
1

γ1

]

(t)

6
[

VK2
α̇2y

]

(t) −6
[

VK1
α̇2y

]

(t)

















and

ζ2 =
[

−
[

VK2
γ1y

]

(t)
[

VK1
γ1
]

(t)
]

.

Recalling (4), the Volterra images involved in ζ1 and ζ2
can be calculated the following LTV system.

{

ξ̇h(t) = Ghξh(t) + Eh(t)u⋆(t),
ξh(0) = 0, h = 1, 2

(14)

where

ξh(t)=

[

[

V
K

(2)
h

γ1
]

(t),
[

VKh
γ1
]

(t),
[

VK
h
α̇2y

]

(t),

[

VK
h
αα̈y

]

(t),
[

V
K

(1)
h

γ2
]

(t)

]⊤

,

Gh =diag (−βh,−βh,−βh,−βh,−βh) ,

Eh(t)=diag(K
(2)
h (t, t),Kh(t, t),Kh(t, t),Kh(t, t),K

(1)
h (t, t)),

u⋆(t) =
[

γ1(t), γ1(t), α̇(t)
2y(t), α(t)α̇(t)y(t), γ2(t)

]⊤
.

Notably, with such kernel functions tuned by β1 and β2

the following persistency of excitation condition has been

embedded.

Lemma 3.1: Given the measurement y(t) and the de-

signed kernel functions K1(t, τ) and K2(t, τ), for any

α(t) 6≡ 0, there exist ǫ1 and tǫ ∈ R≥0 such that

1

tǫ

∫ t

t−tǫ

|ζ2(τ)K(τ, τ)|dτ ≥ ǫ1, t ≥ tǫ. (15)

In order to avoid the zero-cross of ζ2(t)K(t, t) while

solving for Ω by (13), we make use of filtering technique

followed by a sliding mode adaptation law, i.e.

ṙ(t) = ν1r(t) + |11×5ζ1(t)K(t, t)|,
ż(t) = ν1z(t) + |ζ2(t)K(t, t)|,

(16)

where z(0) = r(0) = 0 and ν1 ∈ R<0 is a user-defined

parameter that act as a forgetting factor.

Therefore, it can be concluded that the signal z(t) is

positive ∀t > tǫ in the sense that

z(t) ≥

∫ t

t−tǫ

e−ν1(t−τ)|ζ2(τ)K(τ, τ)|dτ

≥ e−ν1tǫ

∫ t

t−tǫ

|ζ2(τ)K(τ, τ)|dτ ≥ tǫǫ1e
−ν1tǫ .

As a consequence, (13) becomes r(t) = Ωz(t), in which

Ω can be estimated by a 1st-order sliding mode-based

adaptation law

˙̂
Ω(t)=

{

z−1(t)
[

L1sign (R1(t))− ṙ(t) + Ω̂(t)ż(t)
]

, z≥δ1,

0, otherwise,
(17)

where R1(t) = r(t) − Ω̂(t)z(t) and δ1 ≥ tǫǫ1e
−ν1tǫ is the

singularity threshold with a positive small value. L1 is the

adaptive gain that can be chosen by the users.

Once Ω̂ is obtained, the frequency can be estimated by

ω̂(t) =

√

Ω̂(t). (18)

Next, we show how to estimate the coefficient µ. In view

of (11), γ̇1 can be immediately obtained by utilizing Ω̂. From

the fact that γ̇1 = 2α(t)α̇(t)y(t) + α(t)2ẏ(t), ẏ(t) can be

estimated. Thanks to

ẏ(t)α(t)− y(t)α̇(t) = µα(t)2ω cos(ϑ),

the following relationship can be established
√

(ẏ(t)α(t)− y(t)α̇(t))2 + (ωα(t)y)2 = ωµα(t)2. (19)

Similarly to (13), equation (19) can be used to identify µ
resorting to the filtering and sliding mode technique. Let

R2(t) = ρ1(t)− µ̂(t)ρ2(t) be a residual signal where ρ1(t)
and ρ2(t) are generated by

ρ̇1(t)=ν2ρ1(t)+
√

(ẏ(t)α(t)− y(t)α̇(t))2+(ω̂(t)α(t)y)2,
ρ̇2(t)=ν2ρ2(t)+ω̂(t)α(t)2,

(20)

with ρ1(0) = ρ2(0) = 0 and a user-defined gain ν2 ∈ R<0.

Then, the 1st-order sliding mode based adaptation law for µ
can be constructed

˙̂µ(t)=

{

ρ−1
2 (t)[L2sign (R2(t))−ρ̇1(t) + µ̂(t)ρ̇2(t)], ρ2≥δ2,

0, otherwise,
(21)

where δ2 is the small-valued singularity threshold and L2 is

a user-defined gain.

IV. STABILITY AND ROBUST ANALYSIS

Theorem 4.1: Given the sinusoidal signal y(t), the es-

timated frequency Ω̂(t) given by the adaptation law (17)

converges to the true value Ω in finite time with any choice

of L1.

Proof: The candidate Lyapunov function is chosen as

VΩ(t) = |R1(Ω̂, t)|, whose time-derivative is

V̇Ω(t) = sign(R1)
[

ṙ(t)− ż(t)Ω̂(t)− z(t)
˙̂
Ω(t)

]

.



Based on the sliding mode adaptation law in (17) when

z(t) ≥ δ1, it holds that

V̇Ω(t) = −L1, ∀R1 6= 0,

which implies that the residual R1(t) → 0 in finite time with

a constant rate of −L1. Accordingly, one can conclude that

the estimated Ω̂(t) converge to its true value in a finite time.

In the same way of reasoning, the following theorem of the

finite-time convergence of the adaptation law (21) can be

concluded.

Theorem 4.2: Given the sinusoidal signal y(t), the estima-

tion of the amplitude coefficient µ̂(t) given by the adaptation

law (21) converges to the true value µ in finite time with any

choice of L2.

Next, the robustness of the algorithm will be analyzed.

Assuming the measurement is affected by an additive distur-

bance, i.e.

yd(t) = y(t) + dy(t),

where the measurement noise is assumed to be bounded as

|dy(t)| ≤ d̄y . By definition, the auxiliary signals become

γ1,d = α(t)2 (y(t) + dy(t)) = γ1(t) + ǫγ,1,

γ2,d = α(t)α̇(t) (y(t) + dy(t)) = γ2(t) + ǫγ,2,

where ǫγ,1 , α(t)2dy(t) and ǫγ,2 , α(t)α̇(t)dy(t). Thanks

to the linearity of the Volterra operator, it holds that
[

VK
h
yd
]

=
[

VK
h
y
]

+
[

VKh
dy

]

,
[

VK
h
γ1,d

]

=
[

VK
h
γ1
]

+
[

VKh
ǫγ,1

]

,
[

VK
h
γ2,d

]

=
[

VK
h
γ2
]

+
[

VKh
ǫγ,2

]

.

As a consequence, the two auxiliary signals ζ1(t) and ζ2(t)
are perturbed, leading to the following two error signals

ǫζ1 , ζ1(t)− ζ1,d(t)

=

















6
[

V
K

(1)
2

ǫγ2

]

(t) −6
[

V
K

(1)
1

ǫγ2

]

(t)

3
[

VK2
αα̈dy

]

(t) −3
[

VK1
αα̈dy

]

(t)

−ǫγ1
K

(1)
2 (t, t) ǫγ1

K
(1)
1 (t, t)

[

V
K

(2)
2

ǫγ1

]

(t) −
[

V
K

(2)
1

ǫγ1

]

(t)

6
[

VK2
α̇2dy

]

(t) −6
[

VK1
α̇2dy

]

(t)

















,

and

ǫζ2 , ζ2(t)− ζ2,d(t) =
[

−
[

VK2
ǫγ1

]

(t)
[

VK1
ǫγ1

]

(t)
]

,

where ζ1,d(t) and ζ2,d(t) are the noisy counterparts of ζ1(t)
and ζ2(t) respectively.

In ǫζ1 , being α(t), K
(1)
h (t, t) and dy(t) bounded, for h ∈

{1, 2}, it is straightforward to conclude

|ǫγ1
K

(1)
h (t, t)| ≤ sup

0≤τ≤t

∣

∣

∣
α(τ)2dy(τ)K

(1)
h (τ, τ)

∣

∣

∣

, ǭζ1,3,h, h ∈ {1, 2}.

The other elements of ǫζ1(t) and ǫζ2(t) are composed

of Volterra images. Collecting corresponding Volterra

images in a vector as ǫξ,h =
[

[

V
K

(2)
h

ǫγ1

]

(t),

[

VKh
ǫγ1

]

,
[

VK
h
α̇2dy

]

(t),
[

VK
h
αα̈dy

]

(t),
[

V
K

(1)
h

ǫγ2

]

(t)
]⊤

.

Recalling (14), ǫξ,h(t) is the output of the system
{

ǫ̇ξ,h(t) = Ghǫξ,h(t) + Eh(t)ǫu⋆
(t),

ǫξ,h(0) = 0, h = 1, 2,
(22)

with ǫu⋆
(t) =

[

ǫγ1
(t), ǫγ1

(t), α̇(t)2dy(t), α(t)α̇(t)dy(t),

ǫγ2
(t)

]⊤
. Being Gh Hurwitz, and owing to the boundedness

of α, Kh(t, τ) and their derivatives, ǫξ,h is bounded element-

wisely. Thus, it holds that

11×5ǫζ1(t)K(t, t) ≤ 10ǭζ1 sup
0≤τ≤t

‖K(τ, τ)‖, (23)

ǫζ2(t)K(t, t) ≤ 2ǭζ2 sup
0≤τ≤t

‖K(τ, τ)‖. (24)

where ǭζ1 , ||ǫζ1 || and ǭζ2 , ||ǫζ2 ||.
Considering the P.E. condition in the noisy scenario, it is

straightforward to see that there exists a constant ǫ1,d, such

that

1

tǫ

∫ t

t−tǫ

|K(τ, τ)ζ2,d(τ)|dτ ≥ ǫ1,d,

provided yd(t) 6≡ 0 and α(t) 6≡ 0, ∀t ≥ tǫ. Let rd(t) and

zd(t) denote the counterpart signals of r(t) and z(t) in the

noise environment. In view of (16) , it holds that

ṙd(t) = ν1rd(t) + |11×5ζ1,d(t)K(t, t)|,
żd(t) = ν1zd(t) + |ζ2,d(t)K(t, t)|,
zd(0) = rd(0) = 0,

(25)

and the error signals with respect to these two signals satisfy

|ǫr(t)| , |r(t)− rd(t)|≤

∫ t

0

e−ν1τ |11×5ǭζ1 sup
0≤τ≤t

K(τ, τ)|dτ

≤
10

ν1
ǭζ1 sup

0≤τ≤t

‖K(τ, τ)‖ , ǭr (26)

|ǫz(t)| , |z(t)− zd(t)| ≤

∫ t

0

e−ν1τ |ǭζ2 sup
0≤τ≤t

K(τ, τ)|dτ

≤
2

ν1
ǭζ2 sup

0≤τ≤t

‖K(τ, τ)‖ , ǭz (27)

and

zd(t)≥

∫ t

t−tǫ

e−ν1(t−τ)|ζ2,d(τ)K(τ, τ)|dτ ≥ tǫǫ1,de
−ν1tǫ .

Therefore, in the noisy scenario, the activation threshold

of the sliding mode adaptation law (17) needs to be modified

˙̂
Ω(t) =











z−1
d (t)

[

L1sign (R1,d(t))− ṙd(t) + Ω̂(t)żd(t)
]

,

zd(t) ≥ δ1,d,
0, otherwise,

(28)

where R1,d(t) = rd(t) − Ω̂(t)zd(t) and δ1,d ≥ tǫǫ1,de
−ν1tǫ

is the activation threshold. The following Theorem char-

acterizes the robustness feature of the proposed frequency

estimation method (28).

Theorem 4.3: Given the amplitude-varying sinusoidal sig-

nal y(t) and its noisy measurement yd(t), the estimates Ω̂(t)
given by the adaptation law (28) enters into a neighborhood



of the true Ω in finite-time and the estimation error ǫΩ(t) ,
Ω̂(t)− Ω is bounded with respect to bounded measurement

noise dy(t).
Proof: Consider a candidate Lyapunov function

Vd(t) = |R1,d(Ω̂, t)|. Following the proof carried out in

Theorem 4.1, it is straightforward to show that the residual

R1,d(Ω̂) decays to 0 with a constant rate of L1. The conver-

gence time is Tc = |R1,d(0)/L1|. Retrieving the definition

of R1,d, we have that

Ω̂(t) =
rd(t)

zd(t)
, ∀t > ta + Tc.

where ta denotes the activation time when zd(t) exceeds

the threshold δ1,d. As such, with the proven boundedness of

zd(t) and rd(t) (due to the boundedness of ǫr, ǫz), it turns

out that the frequency estimates Ω̂(t) is bounded ∀t > 0 and

enters into the compact region

Ω̂(t) ∈

[

inf
0≤τ≤t

∣

∣

∣

∣

rd(τ)

zd(τ)

∣

∣

∣

∣

, sup
0≤τ≤t

∣

∣

∣

∣

rd(τ)

zd(τ)

∣

∣

∣

∣

]

, ∀t ≥ ta + Tc,

(29)

that subsumes the true frequency square Ω with the esti-

mation error ǫΩ(t) depending on the bounded measurement

noise dy(t).
As a result, the ǫω(t) , ω−ω̂ is bounded, denoting its upper

bound by ǭω . The estimation of γ̇(t) is calculated via

ˆ̇γ1(t) = Kh(t, t)
−1

[

6γ2,dKh(t, t)− 6
[

V
K

(1)
h

γ2,d

]

(t)

−3
[

VK
h
αα̈yd

]

(t) + γ1,dK
(1)
h (t, t)−

[

V
K

(2)
h

γ1,d

]

(t)

−6
[

VK
h
α̇2yd

]

(t)− Ω̂(t)
[

VK
h
γ1,d

]

(t)

]

, h ∈ {1, 2}.

The estimation error has the expression

ǫγ̇1
(t) = Kh(t, t)

−1

[

6ǫγ2
Kh(t, t)− 6

[

V
K

(1)
h

ǫγ2

]

(t)

− 3
[

VK
h
αα̈dy

]

(t) + ǫγ1
K

(1)
h (t, t)−

[

V
K

(2)
h

ǫγ1

]

(t)

− 6
[

VK
h
α̇2dy

]

(t)− ǫΩ(t)
[

VK
h
ǫγ1

]

(t)

]

. (30)

As ẏ is estimated by

ˆ̇y(t) =
ˆ̇γ1(t)− 2α(t)α̇(t)yd(t)

α(t)2,

Owing to the fact that µα ∈ R>0, the corresponding

estimation error takes on the following form

ǫẏ(t) = ˆ̇y(t)− ẏ(t) =
ǫγ̇1

(t)− 2α(t)α̇(t)dy(t)

α(t)2,

whose boundedness can be readily confirmed with respective

to bounded noise dy(t) and α(t). By following the same

process from (23) to (29), it is straightforward to show that

∀t > ta+Tc+|R2(0)/L2|, µ̂(t) goes into the compact region

[

inf
0≤τ≤t

∣

∣

∣

∣

ρ1,d(τ)

ρ2,d(τ)

∣

∣

∣

∣

, sup
0≤τ≤t

∣

∣

∣

∣

ρ1,d(τ)

ρ2,d(τ)

∣

∣

∣

∣

]

. (31)
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Fig. 1. True signal and noisy measurement in perturbed scenario.

where ρ1,d(t) and ρ2,d(t) are noisy counterparts of the ρ1(t)
and ρ2(t) calculated by

ρ̇1,d(t)=ν2ρ1,d(t)

+
√

(ˆ̇y(t)α(t)−yd(t)α̇(t))2+(ω̂(t)α(t)yd(t))2,

ρ̇2,d(t)=ν2ρ2,d(t)+ω̂(t)α(t)2,

The region (31) is bounded due to the boundedness of all

signals involved. This further implies that the estimation

error ǫµ(t) , µ̂(t) − µ is bounded with respect to bounded

measurement noise dy(t).

V. NUMERICAL EXAMPLE

The effectiveness of the proposed estimator for frequency

and amplitude factor is examined by a numerical example.

Consider a sinusoidal signal

y(t) = 5α(t) sin
(

2t+
π

3

)

(32)

with α(t) = 2 + sin(0.2t − π/2). We also consider an

uniformly distributed random noise within [−0.5, 0.5] on the

measurement, i.e., yd(t) = y(t) + dy(t). The signal y(t)
and the noisy measurement yd(t) are depicted as in Fig. 1.

The estimation results of the proposed method have been

compared with a recently designed frequency estimator [23].

It is worth noting such method provides frequency estimates

only, as such, only estimated frequency are compared herein.

In the noise-free scenario, the estimation results of the two

methods are shown as in Fig. 2, where it has been shown

that both methods give accurate frequency estimates within

a finite time. In the meantime, the proposed method is able

to estimate µ with finite-time convergence.

In the noisy environment, the estimation results are shown

as in Fig. 3. In such a scenario, the proposed method provides

robust estimates for both ω and µ whereas the method in

[23] is more sensitive to external noise, which is ubiquitous

in practice.

VI. CONCLUSION

In this paper, the problem of parameter estimation has

been addressed for sinusoidal signals subject to time-varying

amplitude. Based on the Volterra integral operator and suit-

ably designed non-asymptotic kernel functions, two adapta-

tion laws are proposed to estimate the frequency and the

amplitude coefficient that ensure the estimates converge to

the true values in a finite time with constant converging rates.

The robustness of the proposed estimation method has been

proven under the effects of bounded measurement noise.
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Fig. 2. Estimates of frequency ω and the amplitude coefficient µ in
perturbation-free scenario.
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Fig. 3. Estimates of frequency ω and the amplitude coefficient µ in
perturbed scenario.

Numerical simulations have been performed to examine the

effectiveness of the proposed estimators with comparisons

with a recently proposed frequency estimator.
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