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Recently, a protocol called quantum-gravity-induced entanglement of masses (QGEM) that aims to test the
quantum nature of gravity using the entanglement of two qubits was proposed. The entanglement can arise only
if the force between the two spatially superposed masses is occurring via the exchange of a mediating virtual
graviton. In this paper we examine a possible improvement of the QGEM setup by introducing a third mass with
an embedded qubit so that there are now three qubits to witness the gravitationally generated entanglement. We
compare the entanglement generation for different experimental setups with two and three qubits and find that a
three-qubit setup where the superpositions are parallel to each other leads to the highest rate of entanglement gen-
eration within τ = 5 s. We show that the three-qubit setup is more resilient to the higher rate of decoherence. The
entanglement can be detected experimentally for the two-qubit setup if the decoherence rate γ is γ < 0.11 Hz
compared to γ < 0.16 Hz for the three-qubit setup. However, the introduction of an extra qubit means that more
measurements are required to characterize entanglement in an experiment. We conduct experimental simulations
and estimate that the three-qubit setup would allow detecting the entanglement in the QGEM protocol at a 99.9%
certainty with O(104)–O(105) measurements when γ ∈ [0.1, 0.15] Hz. Furthermore, we find that the number of
needed measurements can be reduced to O(103)–O(105) if the measurement schedule is optimized using joint
Pauli basis measurements. For γ > 0.06 Hz the three-qubit setup is favorable compared to the two-qubit setup
in terms of the minimum number of measurements needed to characterize the entanglement. Thus, the proposed
setup here provides a promising avenue for implementing the QGEM experiment.
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I. INTRODUCTION

The quantum or classical nature of gravity has long been
a central theme in theoretical physics [1]. Unlike other inter-
actions of nature, gravity remains the only known interaction
whose quantum behavior has never been observed in a labo-
ratory. It is believed that the spin-2 massless graviton is the
carrier of gravitational interaction, which can be canonically
quantized around a Minkowski background [2–5]. However,
the direct detection of a graviton remains extremely difficult
due to the weakness of the gravitational interaction compared
to the other fundamental interactions of nature [6,7]. Even
the direct detection of primordial gravitational waves will not
be able to falsify the quantum nature of graviton [8,9]. The
indirect detection of the quantum aspects of graviton may be
feasible in the near future in laboratory-based experiments.

Recently, there has been a proposal to witness the quantum
nature of gravity by witnessing the entanglement of masses
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[10], with the theoretical protocol outlined in [10,11]. Simul-
taneously, there was another paper [12] where the authors
proposed to witness the quantum nature of gravity by wit-
nessing entanglement. However, the detailed analysis of the
graviton as a mediator and the feasibility aspects of the ex-
periment including decoherence and the relevant background
were first discussed in Ref. [10]. The proposal was followed
by extensive interest in the research community, suggesting
extensions and variations [13–34]. The protocol is based on a
bona fide quantum-mechanical gravitational interaction which
cannot be replicated by a classical world. One of the main
experimental requirements is the creation of the spatial quan-
tum superposition of masses, i.e., creating Schrödinger cat
states, in a laboratory. For the detection of quantum aspects of
gravity, we require the generation of quantum entanglement,
which yields quantum correlations between any two quantum
states and has no classical analog [35]. We assume that no
other quantum interactions arise between the systems. To
prove that the detection of entanglement shows the quantum
nature of gravity, we rely on the properties of the local opera-
tions and classical communication (LOCC) principle [36,37].
The LOCC principle states that the two quantum states cannot
be entangled via a classical channel if they were not entangled
to begin with, or entanglement cannot be increased by local
operations and classical communication. The classical com-
munication is the critical ingredient which can be put to test

2469-9926/2022/105(3)/032411(16) 032411-1 ©2022 American Physical Society

https://orcid.org/0000-0002-5585-4578
https://orcid.org/0000-0001-5034-474X
https://orcid.org/0000-0001-8860-1510
https://orcid.org/0000-0001-8726-0566
https://orcid.org/0000-0002-0967-8964
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.032411&domain=pdf&date_stamp=2022-03-04
https://doi.org/10.1103/PhysRevA.105.032411


MARTINE SCHUT et al. PHYSICAL REVIEW A 105, 032411 (2022)

FIG. 1. Proposed setups of the QGEM experiment using three qubits in spatial superpositions aligned in different configurations. The
superposition states of the ith qubit are denoted by |0〉i and |1〉i. The minimal distance dmin = 200 μm between any two states and the
superposition width �x = 250 μm [10] is kept constant in all different setups. The distance d denotes the distance between any two neighboring
|0〉 states and is determined by the setup. (a) Parallel setup of the three-qubit QGEM experiment where the spatial superpositions are aligned
parallel to each other. Note that dmin = d < �x. (b) Linear setup of the three-qubit QGEM experiment where the spatial superpositions
are aligned linearly to each other. Note that d = dmin + �x > �x. (c) Star setup of the three-qubit QGEM experiment where the spatial
superpositions are aligned in a manner we label as a star pattern. Note that dmin = d < �x.

when it comes to graviton-mediated interaction between the
two masses. If the graviton is quantum, it could mediate the
gravitational attraction between the two masses and it would
also entangle them, hence giving rise to the quantum-gravity-
induced entanglement of masses (QGEM) proposal [10,11].
The QGEM protocol highlighted the requirement of a graviton
as a quantum mediator, implying the origin of the gravitational
force between masses can be viewed as resulting from the
exchange of a virtual graviton. A virtual graviton is not a
classical entity and does not satisfy the classical equations of
motion; there is a total of six off-shell degrees of freedom,
i.e., spin-2 and spin-0 components, in the graviton propagator
(see [11,38,39]). By witnessing the entanglement between the
two masses and by detecting a correlation between the spins
which are embedded in the two test masses, we can ascertain
whether the exchange of the virtual graviton is a classical or a
quantum entity [10,11].

Many possible improvements to the original setup have
already been discussed, using a different witness [19], ways of
creating macroscopic quantum superposition [16], including
effects due to decoherence [19,40], ameliorating Casimir-
induced entanglement [17], taming gravity gradient noise
and relative acceleration [18,20], a different configuration of
the superpositions [14], using higher-dimensional quantum
objects [24], or using different measurement bases [41]. Fur-
thermore, Refs. [21,22] propose that the QGEM experiment
may be used to gain insights into the Planck mass and the
discreteness of time and possibly probe nonlocal gravitational
interaction [11,42,43]. The nonlocal gravitational interaction
tends to weaken the entanglement witness and the entangle-
ment entropy [11].

In this paper we will explore a design with three masses,
each with an embedded qubit (instead of two masses with
two qubits as proposed in the original QGEM protocol [10]).
As we will witness the entanglement purely by measuring the
qubits, we will refer to the previous and our current protocols
henceforth as two-qubit and three-qubit protocols, respec-
tively. We will show that this three-qubit protocol performs
better at generating entanglement, in particular when the de-
coherence effects are taken into account. However, this comes
at the cost of requiring more measurements to characterize

entanglement with a good enough level of certainty. In Sec. II
different possible setups for a three-qubit QGEM experiment
will be discussed. The optimal setup will be identified by
comparing the rate of entanglement generation in Sec. III. In
Sec. IV we will discuss the witness expectation value for the
different setups. In Sec. V we will incorporate the decoher-
ence in our analysis, to test how robust the different setups are
to different decoherence rates. Section VI will discuss exper-
imental simulations and the number of measurements needed
to characterize the entanglement. We will consider possible
improvements by switching to qudits instead of qubits and
discuss the merits of this approach in Sec. VII.

A short summary of our paper is that we find that the
three-qubit parallel setup [see Fig. 1(a)] is better than other
configurations with three qubits including the decoherence ef-
fects taken into account. Moreover, the entanglement entropy
is dependent on the chosen subsystem. Taking the partial trace
of the middle qubit gives the largest entanglement entropy.
Similarly, when determining the witness, choosing the middle
qubit as the subsystem provides an improved witness. The
three-qubit setup outperforms the two-qubit setup in generat-
ing entropy within 5 s and it has a better witness. Furthermore,
entanglement can be measured up to higher decoherence rates,
and the number of measurements needed to confirm entangle-
ment at higher decoherence rates γ > 0.08 Hz is similar to or
smaller than for the two-qubit setup.

II. THREE-QUBIT QGEM SETUP

We first discuss the optimal setups for the two- and three-
qubit cases.1 Reference [14] found that for the two-qubit setup
it is favorable to create the superpositions in the direction
orthogonal to their separation [depicted in Fig. 1(a)], as op-
posed to in the same direction as their separation, which was

1Throughout this paper the number of superpositions is denoted by
n and the number of states in the superposition is denoted by D. For
spin systems, the value of D = 2s + 1, where s is the spin state, for
electronic spin s = 1

2 . Later we will consider qudits which have D
superposition states, but for now we consider only qubits (D = 2)

032411-2



IMPROVING RESILIENCE OF … PHYSICAL REVIEW A 105, 032411 (2022)

proposed in the original paper [10] [depicted in Fig. 1(b)]. We
will first introduce three different setups [Figs. 1(a)–1(c)] and
in the next section we will study the generation of the entan-
glement in each setup to determine the better configuration for
witnessing graviton-induced entanglement.

For any three-qubit setup the initial (unentangled) state is
given as2

|�0〉 = 1

2
√

2

3⊗
i=1

(|0〉i + |1〉i ). (1)

The gravitational interaction between the two states is gov-
erned by the universal coupling

√
GhμνT μν , where the metric

is gμν = ημν + hμν , with μ, ν = 0, 1, 2, 3, and hμν is the per-
turbation around the Minkowski background ημν . Due to the
gravitational interaction, each superposition state picks up a
relative quantum-mechanical phase φ ∼ S/h̄ ∼ Eτ

h̄ , where S
is the gravitational action. This can be viewed as the result
of the time-evolution operator or equivalently as a result of
the Feynman path-integral formalism for a particle moving
through spacetime. The interaction energy E is determined
by the gravitational potential energy V , which in the non-
relativistic case is derived from the tree-level exchange of a
virtual graviton [11]. The quantum origin of this potential in
the nonrelativistic limit of perturbative quantum gravity in the
weak-field regime is discussed in detail in Refs. [11,44]. The
effect of higher-order corrections will be negligible here.

The total gravitational potential energy is given by V̂tot =
V̂12 + V̂23 + V̂13, where the subscripts denote the interactions
between the subsystems. For example, V̂i j is the potential
energy between system i at xi and system j at x j , which is
given by Gmimj

|x̂i−x̂ j | .
We now give the system’s state after the qubits have grav-

itationally interacted. To avoid writing out all the terms, we
will use the shorthand notation where ji = 0, 1 denotes the
state of the ith qubit (so | ji〉 is either |0〉 or |1〉),

|�(t = τ )〉 = 1

2
√

2

∑
j1, j2, j3=0,1

eiφ j1 j2 j3 τ | j1 j2 j3〉, (2)

with φ j1 j2 j3τ the phase picked up due to the interaction via
gravity between the systems during a time τ for the state
| j1 j2 j3〉. Note that since φ j1 j2 j3 is simply Utot/h̄, it is deter-
mined by the distance between the states |xi − x j |. Since the
setup specifies the distance between two systems, the phases
are specific to the setup. For the parallel setup in Fig. 1(a) we
find

φ
(‖)
j1 j2 j3

= 1

h̄

i<k∑
i,k=1,2,3

Gm2√
d2 + [�x( ji − jk )]2

. (3)

2Note that the different denotations for the three-qubit state used
in this paper refer to equivalent states, that is,

⊗3
i=1 |0〉i = |0〉1 ⊗

|0〉2 ⊗ |0〉3 = |010203〉. The state of the ith qubits is generally de-
noted by ji = 0, 1. For compactness and clarity, different denotation
is used throughout this paper.

The superscript ‖ specifies the parallel setup. For the linear
setup in Fig. 1(b) (denoted by −) we find

φ
(−)
j1 j2 j3

= 1

h̄

i<k∑
i,k=1,2,3

Gm2

(k − i)d + �x( jk − ji )
(4)

and for the star setup (denoted by ∗) we find

φ
(∗)
j1 j2 j3

= 1

h̄

i<k∑
i,k=1,2,3

Gm2

rik
, (5)

where rik is the distance between the superposition instances
labeled i and k in the star setup:

rik = (1 − ji jk )d + ji jk (d +
√

�x)

+ ( jk − ji )(

√
d2 +

√
3d�x + �x2 − d ). (6)

The expressions for the distances were found using trigonom-
etry. The distance d between two neighboring |0〉 states is
determined by the superposition width �x = 250 μm and by
requiring a minimal distance between any two qubits dmin =
200 μm. This minimum distance is introduced to ensure that
the Casimir-Polder potential is negligible [10]. Due to the
chosen parameters, the separation between the two qubits in
the parallel setup is d = 200 μm, for the linear setup it is d =
450 μm, and for the star setup the edge of the inner triangle
is d = 200 μm.3 Furthermore, we will consider the masses of
m ∼ 10−14 kg and an interaction time of τint = 2.5 s.4 These
parameters fall within the feasible range discussed in [10,16].

From Eq. (2) we find that the density matrix of the system
is ρ(τ ) = |�(τ )〉〈�(τ )|,

ρ(τ ) = 1
8

∑
j1, j2, j3=0,1
j′1, j′2, j′3=0,1

e
i(φ j1 j2 j3 −φ j′1 j′2 j′3

)τ
⊗

i,i′=1,2,3

| ji〉〈 j′i′ |. (7)

For more on the density matrix formalism, see [45]. With
Eq. (7), we can analyze and compare the rate of entanglement
generation for the different setups, which we will do by study-
ing the entanglement entropy.

III. ENTANGLEMENT ENTROPY TEST

As an initial test for comparing the two-qubit setup with the
three-qubit setup, we assess the rate of entanglement genera-
tion for each version of the experiment. To do so, we will rely

3The considered setups of Fig. 1 are symmetrical in d (and m).
Considering asymmetric configurations where one of the distances is
increased above dmin is not favorable since it decreases the interaction
which goes as 1/r. (Similarly considering asymmetric configurations
where one of the masses is smaller than what is considered the largest
possible mass m is not favorable since it decreases the interaction
strength.)

4The interaction time of τint = 2.5 s was chosen because it is both
feasible experimentally and during this time the systems can become
entangled enough to be detectable [11,23]. If the interaction time
were decreased, we will see in Figs. 2, 6, and 7 that the three-qubit
setup still generates more entanglement and provides a better wit-
ness.
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FIG. 2. Comparison of the entanglement entropy generated
within 5 s. Note that, due to the symmetry of the setups, for the
parallel and linear setups we have S1 = S3 and for the star setup we
have S1 = S2 = S3. During the first 5 s the n = 3 parallel setup has
the highest rate of entanglement generation compared to the other
setups. The lines representing S1, n = 3 linear and S1, n = 2 linear
setups almost overlap. The same plot for a larger timescale is given
in Fig. 15 in Appendix C.

on the entanglement entropy (von Neumann entropy) which
measures the overall mixing of one of the subsystems of the
two- or three-particle quantum state.

Using the density-matrix formalism, the entanglement en-
tropy can be found as [46,47]

S(ρa) = −Tr[ρa log2(ρa)] = −
∑

i

λi log2(λi), (8)

where ρa is the partial density matrix of the subsystems a with
the eigenvalues λi. The partial density matrix of a subsystem
is found by taking the partial trace over the other subsystems,
e.g., the partial density matrix describing the first system is
defined by ρ1 = Tr2,3(ρ) and can be used to find the entan-
glement entropy of the first subsystem S1. Here Tr2,3 denotes
the partial trace over subsystems 2 and 3. Although the entan-
glement entropy will be identical for either subsystem in the
two-qubit case (S1 = S2), this is not the case when adding a
third qubit, as we now have several options for the system’s
partition.

We compare the entanglement entropy for the three-qubit
system with the two-qubit system and find that an improve-
ment is made for the parallel setup, especially for S2, as can
be seen from Fig. 2. For the two-qubit setup (n = 2) we
have considered the linear and parallel setups, which were
discussed previously in [10,14], respectively. Their state and
density matrix can be derived from Eq. (7) by leaving out
the third particle j3. We have compared the two-qubit (n = 2)
setups with the three-qubit (n = 3) parallel, linear, and star
setups [depicted in Figs. 1(a)–1(c), respectively].

From Fig. 2 it is clear that the setup that generates the
most entropy is the parallel three-qubit S2. This setup con-
siders the entropy between the middle subsystem (labeled 2)
and the outer subsystems (labeled 1 and 3). As noted above,
S2 > S1 = S3, meaning the entanglement entropy is depen-
dent on which systems are chosen to be traced out. A likely
explanation for these differences is that the average distance

to the other subsystems is smaller for system 2 than for system
1 or 3 [see Fig. 1(a)] and therefore it has a higher coupling
to the other subsystems. Note that, due to the symmetries of
the setup, for the linear and parallel cases we have S1 = S3

and for the star setup we have S1 = S2 = S3. From now on,
when considering the parallel or linear n = 3 setup we will
always consider the second subsystem S2 (unless specified
otherwise).

Of course, the use of entanglement entropy as a figure of
merit for an experimental setup is not fully reliable. The
introduction of noise in the experiment and overall a realistic
setting make it impossible to distinguish the mixed state from
entanglement and the mixing resulting from the decoherence
of the states. As such, following previous research on this
experiment [10,14,19,24], we compare the different systems
in terms of the possibility of identifying the entanglement in a
realistic setting by using the entanglement witness.

IV. ENTANGLEMENT WITNESS

For the experimental detection of the entanglement one
needs a witness, as discussed in [10]. The witness will be
derived from a condition that determines when the states are
separable or entangled. In Ref. [10], the witness was derived
from the witness for the Bell state. These types of witnesses
are often not ideal in an experimental setup [48].

Reference [19] proposed a new witness based on the pos-
itive partial trace (PPT) criterion for separability of mixed
states [49,50]. In the two-qubit case, this witness was found
to work up to higher decoherence rates when decoherence
was introduced into the model [19]. In [24], which considered
the two-particle QGEM with qudits, the PPT witness was also
found to be an optimal witness and more efficient at detecting
the entanglement than alternatives. For the three-qubit setup
explored in this paper, we will therefore also use the PPT
witness.

The PPT witness gives the following criterion for the sep-
arability of the states: A state ρ is separable if and only if its
partial transpose is positive semidefinite, which is analogous
to having no negative eigenvalues [51]. The partial transpose
of the density matrix in Eq. (7) is found to be

ρT2 (τ ) = 1
8

∑
j1, j2, j3=0,1
j′1, j′2, j′3=0,1

e
i(φ j1 j′2 j3

−φ j′1 j2 j′3
)τ

⊗
i,i′=1,2,3

| ji〉〈 j′i′ |, (9)

where the superscript T2 denotes the partial transpose of the
second system is taken (similarly to S2, transposing the middle
subsystem provides a better witness because of the chosen
partition). Note that since the phase φ = φ(‖), φ(−), φ(∗) dif-
fers for the different setups in Fig. 1, the witness will also be
different for each of the three setups. According to the PPT
criterion, the system is entangled if the PPT density matrix
(9) has negative eigenvalues.

We will use this criterion to construct the entanglement
witness W , which is an observable that provides a sufficient
(but not always necessary) condition to detect entanglement.
We construct the witness [49]

W = |λ−〉〈λ−|T , (10)
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FIG. 3. Expectation value of the PPT witness W with respect
to time. For the three-qubit cases we have considered ρT2 , meaning
that system 2 is transposed as in Eq. (9). The lines representing the
n = 3 linear and star setups approximately overlap. We see that in
the chosen basis the n = 3 parallel setup provides the best (most
negative) witness.

where |λ−〉 is the eigenvector corresponding to the smallest
eigenvalue of ρT (the partial transpose of ρ). All separable
states ρ then satisfy [49]

TrWρ � 0. (11)

If TrWρ < 0, the state ρ has negative eigenvalues and is
therefore an entangled state. Note that for the three-qubit
case, the witness is a sufficient but not necessary condition
for the entanglement generation, meaning that if TrρW � 0,
the state can be either separable (not entangled) or nonsepara-
ble (entangled). An example of such a three-qubit entangled
state with TrρW � 0 is given in [52]. The exact expressions
for the witness operators for the two- and three-qubit setups
are given in Appendix A in terms of Pauli observables.

The expectation values of the PPT entanglement witness
for the setups discussed in Sec. II are shown in Fig. 3. The
three-qubit parallel setup does very well compared to the
other setups, which makes us optimistic about its potential
for detecting the entanglement. Since the witness is basis
dependent, one can only compare the shapes and should be
careful in comparing the values. Nevertheless, Fig. 3 shows a
much faster decrease in the entanglement witness expectation
value for the parallel three-qubit setup compared to the other
setups.

Although adding a qubit seems to yield a better witness, it
also comes with a more difficult experimental setup. We can
decompose the witness in terms of Pauli matrices, which can
be measured experimentally. Examples of these decomposi-
tions for two and three qubits are shown in Appendix A.

In general, given each particle can be measured in one
of three Pauli basis elements (plus identity), there is a total
of O(4n) terms to be measured for an entanglement witness
acting on n particles. The number of Pauli matrices that
need to be measured scales exponentially with the number
of qubits, therefore increasing exponentially the number of
measurements required to characterize the entanglement.

Given that we aim to produce the experimental setup that
is most efficient in detecting the entanglement, this could

become a large impediment to using three or more qubits. As
an illustration, while the two-qubit setup requires the mea-
surement of only three operators to construct the witness, the
three-qubit setup requires 25 operators to be measured.

To address this issue, we will turn towards the literature
regarding grouping a list of Pauli matrices into Abelian (com-
mutative) groups, traditionally used in quantum computing
(and initially stemming from error correction theory). Pauli
matrices that commute with each other can be jointly diag-
onalized by basis rotation [53], allowing them to be jointly
measured. Grouping of terms for the QGEM experiment with
qudits was proposed in [24] by identifying groups based on
general commutativity of the operators [54–56]. However,
authors noted that the realization of the joint measurements
by following this type of grouping may require nonlocal op-
erations.5 These techniques are widely used in the context
of early-stage quantum computation to reduce the number
of measurements required to perform methods such as the
variational quantum eigensolver (see [59]). Here we propose
to group Pauli matrices based on qubitwise commutation
[57,60–64] rather than the general commutation (i.e., we
group two Pauli matrices together if each qubit operator com-
mutes in the first matrix commutes with the respective qubit
operator in the second matrix) [54–57]. While this in general
means that fewer savings can be achieved in terms of the
total number of measurements we can perform, these joint
measurements can be realized through local operations only.
It is worth noting as well that such grouping strategies could
result in additional sampling noise from the appearance of
covariance between the operators being measured jointly [60].
These were shown however to be the exception rather than
the rule [57], and therefore we will leave the detailed analysis
of these possible covariances to future analyses. To perform
the grouping, we use the largest-degree-first coloring (LDFC)
algorithm [65], though for a small number of particles this
can be done manually. The LDFC algorithm is a traditional
heuristic algorithm for graph coloring. It has been shown at
least in some examples to perform somewhat better than other
coloring heuristics in the context of Pauli string grouping [58]
(a description of the method in this context can be found in the
Supplemental Material of [55]). We can reduce the number
of operators in the three-particle case from 25 to 12 using
this method. The groups we have found are presented as an
example in Appendix A. A comparison of the number of
operators in the Pauli decomposition can be seen in Table I.
By grouping some of the operators together, the number of
operators needed for the measurement of the witness signif-
icantly decreases. Due to the grouping of operators, the cost
for conducting the three-qubit experiment in the parallel setup
seems relatively cheap; it reduces the number of operators
that need to be measured to witness the entanglement from
25 to 12. The linear and star setups will not be considered in
the remainder of this paper since they do not provide a better
entanglement generation (see Fig. 2) or a better witness (see

5By nonlocal operations we mean operations that act on several
qubits and which cannot be applied to each qubit separately; these in-
clude, for instance, entangling operations or SWAP operations [57,58],
which might be difficult to implement in practice.
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TABLE I. Number of Pauli operators that make up the decom-
posed PPT witness and the number of Pauli operator groups for the
different setups. Operator groups are formed by operators which can
be measured together and can be found using the largest-degree-first
coloring algorithm. The partial transpose is taken such that the wit-
ness is optimal. For the three-qubit case the second system is partial
transposed as in Eq. (9)

n Setup No. of operators No. of operator groups

2 parallel 4 3
2 linear 9 8
3 parallel 26 12
3 linear 47 22
3 star 56 26

Fig. 3) and require more operator groups or operators to con-
struct the witness (see Table I). The number of measurements
needed to characterize entanglement by measuring the witness
increases as the decoherence is introduced into the setup.

V. DECOHERENCE

We have assumed so far that the system is completely unaf-
fected by its environment. Given our aim is to estimate which
setup is more appropriate, it is necessary to simulate a realis-
tic case where we must consider the effects of decoherence.
The interaction of the system with its environment causes
the system to share, and subsequently potentially lose, this
information information. This is defined as decoherence (see
[45] for an introduction to decoherence theory). Although the
decoherence is determined by the specific interactions with
the environment, we can still consider a general approach.
Assuming that the environmental state |Ei〉 couples to the sys-
tem’s position states |�x(i)〉 [66], we rewrite Eq. (1) to describe
both the environment and the system:

|�0〉 = 1

23/2

∑
j1, j2, j3=0,1

|�x( j1)�x( j2)�x( j3)〉|Ej1 Ej2 Ej3〉. (12)

We have assumed that the qubits are independent of each
other at t = 0 s and that their coupling to the environment
is independent [17]. The density matrix describing the en-
vironment and the system is found from Eq. (12) as usual:
ρ(0) = |�0〉〈�0|. We can extract the system’s (s) entangle-
ment by tracing out the environmental (e) degrees of freedom
ρs = Tre(ρ) = ∑

i〈Ei|ρ|Ei〉. We find

ρS (0) = 1

8

∑
j1, j2, j3=0,1

| j1 j2 j3〉〈 j1 j2 j3|

+ 1

8

j1 j2 j3 �= j′1 j′2 j′3∑
j1, j2, j3=0,1
j′1, j′2, j′3=0,1

| j1 j2 j3〉〈 j′1 j′2 j′3|〈Ej1 Ej2 Ej3 |

× ∣∣Ej′1 Ej′2 Ej′3

〉
. (13)

Equation (13) shows that the system loses coherence as
〈Ej1 j2 j3 ||Ej′1 j′2 j′3〉 → 0. As is done in many decoherence models
[66], we assume that the overlap between the environmental
states decreases exponentially over time with a rate γ , known

FIG. 4. Estimate of the decoherence rate due to interaction with
air molecules and blackbody photons. For environmental tempera-
tures Te = 0.1–5 K the wavelength of the air molecules is much
smaller (1–15 nm) and the wavelength of the blackbody photons
is much larger (3–98 mm) than the superposition width (250 μm).
Therefore, we can use both the short- and long-wavelength limits
to study their decoherence effects for this range of temperatures.
The number density for the gas is taken to be N/V = 108 m−3, the
radius of the superposition particles is a = 10−6 m, and we have used
the dielectric constant of a material similar to that of a diamond.
From the figure we expect the decoherence rate of at least 0.5 Hz
for the ambient temperatures Te > 0.5 K. The decoherence due to
the blackbody emission is dependent on the internal temperature
(Ti = 0.15 K) and therefore has a constant value of ∼10−10 Hz. See
Appendix B for more details.

as the decoherence rate,

〈Ej (t )||Ej′ (t )〉 ∝ e−γ t , j �= j′.

Clearly at t = 0 the states have not lost coherence. By time
evolving Eq. (13), we obtain

ρS (τ ) = 1

8

∑
j1, j2, j3=0,1

| j1 j2 j3〉〈 j1 j2 j3|

+ 1

8

j1 j2 j3 �= j′1 j′2 j′3∑
j1, j2, j3=0,1
j′1, j′2, j′3=0,1

e−δγ τ e
i(φ j1 j2 j3 −φ j′1 j′2 j′3

)τ | j1 j2 j3〉〈 j′1 j′2 j′3|,

(14)

with φ j1 j2 j3 as given in Eq. (3) and δ = 3 − δ j1 j′1 − δ j2 j′2 −
δ j3 j′3 ∈ [1, 2, 3]. The exponential decay term causes the off-
diagonal terms to go to zero over time, making it impossible
to measure the entanglement and progressively transforming
the experimental quantum state into a maximally mixed state.
The presence of the environment provides a constraint on the
experiment time τ .

In Appendix B the interaction with the environment is stud-
ied in a more detailed fashion based on the analysis performed
in [17]. The results of the calculations performed in this Ap-
pendix are represented in Fig. 4, which shows the estimated
decoherence rate as a function of the ambient temperature. We
estimate that γ > 0.05 Hz for an environmental temperature
of at least 0.5 K.

We have compared the witness expectation value for differ-
ent decoherence rates γ in Fig. 5. However, due to the witness
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FIG. 5. The PPT entanglement witness expectation value is
plotted for the two- and three-qubit parallel setups, for γ ∈
[0.02, 0.20] Hz and at τ = 2.5 s. The partial transpose for the three-
qubit setup is taken over the second subsystem. The three-qubit setup
is negative for higher decoherence rates compared to the two-qubit
setup. In Appendix C we show that taking the partial transpose over
the first subsystem does not give such an improvement in the witness.
The dotted line indicates Tr(Wρ ) = 0.

being basis dependent, this comparison should be considered
with caution. The three-qubit parallel setup (where we take
ρT2 ) seems to be robust against decoherence compared to the
two-qubit setup. The PPT entanglement witness becomes pos-
itive at τ = 2.5 s around γ > 0.12 Hz for n = 2 and around
γ > 0.16 Hz for n = 3. In Fig. 16. in Appendix C we show
that finding the witness by partially transposing the first qubit
(ρT1 ) does not improve the witness compared to the two-qubit
setup.

Figures 6 and 7 show the entanglement witness as a func-
tion of time for γ = 0.1 Hz and γ = 0.15 Hz, respectively.
We see that the experiment time τ is important in protecting
the system against decoherence. Comparing the shapes of the
lines in these figures also indicates that the three-qubit setup

FIG. 6. The PPT entanglement witness expectation value over
time for γ = 0.1 Hz for two and three qubits in the parallel setup. The
partial transpose for the three-qubit setup is taken over the second
subsystem. Due to the competition between the entanglement and the
decoherence, the graphs will become positive at some point when the
decoherence effects become too strong. This will happen sooner for
the two-qubit setup than for the three-qubit setup.

FIG. 7. The PPT entanglement witness expectation value over
time for γ = 0.15 Hz for two and three qubits in the parallel setup.
The partial transpose for the three-qubit setup is taken over the sec-
ond subsystem. The witness for the two-qubit setup is never negative
due to the strong decoherence effects. It is negative for about 4 s for
the three-qubit setup.

will likely be more robust against decoherence since it has a
steeper decrease. From Fig. 6 we can see that if the experiment
takes a sufficiently long time, the entanglement will not be
measurable for any of the systems considered as the witness
will become positive due to the decoherence effects. In Fig. 7
the entanglement is seen to be undetectable for the two-qubit
setup and only detectable for the three-qubit setup if τ < 4 s.
The shapes of the curves in these two graphs are due to the
competition between the entanglement and the decoherence.

Intuitively, the three-qubit setup is understood to be more
robust against decoherence effects because of this competition
between the entanglement of the subsystems and the decoher-
ence. Since the three-qubit setup generates more entanglement
between the subsystems within 5 s than the two-qubit setup
(see Fig. 2), it takes more decoherence (meaning either a
longer time or a higher decoherence rate) to destroy this entan-
glement between the subsystems. However, the fact that our
three-qubit system is more robust against decoherence is not a
general argument since the entanglement generation depends
not only on the number of particles but also on the setup and
the choice of subsystem, as discussed in Sec. II.

Our three-qubit setup looks very promising, but before
drawing any conclusions we must simulate the number of
measurements needed to witness the entanglement in a lab-
oratory.

VI. SIMULATING QGEM EXPERIMENT

The experimental simulations (by which we mean nu-
merical simulation of the experiment statistics) are done in
the same way as in Ref. [24]. The expectation value and
the standard error are computed by repeatedly measuring the
quantum state resulting from the experiment against the Pauli
operators. For each fixed number of repeated measurements
the confidence level of confirming that the state is entangled
is found. A confidence interval C for the expectation value of
a witness W can be computed as [24,67]

CW = [〈W〉 − tαsW , 〈W〉 + tαsW ], (15)
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FIG. 8. Experimental simulation of the QGEM experiment for
the two-qubit and three-qubit parallel setups at τ = 2.5 s. The
crosses indicate 99.9% confidence that the state is entangled. The
witness expectation values are −0.146 for the two-qubit setup and
−0.202 for the three-qubit setup (these can also be read off from
Fig. 5).

with tα the t-value corresponding to the desired level of
confidence and sW the standard error of the measurement pop-
ulation.6 To estimate a given confidence level tested against
the null hypothesis 〈W〉 � μ0, with μ0 = 0, we compute the
t-values by performing a one-sided t-test7 [24,67]

t = |〈W〉 − μ0|
sW

. (16)

The t-value provides us information about the probability of
the expectation value W being below the μ0 (i.e., that we can
reject the null hypothesis). To translate this information into
a confidence level, we can look at a t-distribution table and
recover the so-called p-value, which corresponds to the prob-
ability of making an error when rejecting the null hypothesis.
Therefore, p is the probability that the true value of W is
above μ0 = 0 despite the data gathered. To get the confidence
level, we just need to compute 1 − p. (For further details refer
to [67]; for another application to quantum observables refer
to the Appendix of [24].) As discussed in Sec. IV, if the
system is not confirmed to be entangled, it only means that
the entanglement is not measurable. It does not necessarily
mean that the system is separable.

Figure 8 compares the confidence levels given in Eq. (15)
as a function of the number of measurements for the two- and

6The t-value is a measure of the difference between the data (〈W〉
in our case) and the null hypothesis (μ0 = 0 in our case). In gen-
eral, a larger t-value means that there is more evidence against the
null hypothesis. For details about statistical testing and analysis we
recommend [67]

7A one-sided t-test, as opposed to a two-sided test, only performs
statistical tests in one direction (instead of two). Since we are inter-
ested in rejecting the null hypothesis 〈W〉 � 0, a one-sided test is
applicable.

FIG. 9. Experimental simulation of the QGEM experiment for
the two-qubit and three-qubit parallel setups with γ = 0.075 Hz
and at τ = 2.5 s. The crosses indicate 99.9% confidence for the
entanglement; this number increases due to the introduction of the
decoherence into the model. The witness expectation values are
−0.043 for the two-qubit setups and −0.084 for the three-qubit setup
(see Fig. 5).

three-qubit parallel setups after τ = 2.5 s. Without the deco-
herence, due to the extra qubit in the three-qubit setup, more
measurements are needed to confirm with confidence (99.9%)
that the system is entangled. However, from the discussion
in the preceding section we expect that if the decoherence
is included, at some point while increasing the decoherence
rate, the three-qubit setup will require fewer measurements
due to it being more resistant to the effects of decoherence.
Figure 9 compares the confidence levels given in Eq. (15) with
a decoherence rate of γ = 0.075 Hz. Due to the introduction
of the decoherence, the number of measurements needed to
confirm the entanglement increases.

In Fig. 10 the confidence levels for the three-qubit par-
allel setup are shown for different decoherence rates γ ∈
[0.025–0.1] Hz. Comparing this to the two-qubit setup plotted
in Fig. 11, we see that the number of measurements needed
to confirm the entanglement with 99.9% confidence is lower
for the two-qubit setup than for the three-qubit setup for the
decoherence rates 0.025–0.075 Hz, although the difference is
not very large. At higher decoherence rates (γ � 0.1 Hz) the
three-qubit setup needs fewer measurements compared to the
two-qubit setup.

From Fig. 5 we can predict that the two-qubit setup has a
negative witness at τ = 2.5 s for approximately γ < 0.12 Hz.
For 0.12 Hz < γ < 0.15 Hz, we have to look at the three-
qubit setup for measurements. The confidence level as a
function of the number of measurements for the higher de-
coherence rates is plotted in Fig. 12.

Around γ > 0.15 Hz, the three-qubit setup will probably
start experiencing too much decoherence for it to detect any
entanglement; this can already be seen from the γ = 0.15 Hz
graph in Fig. 12. The above results are summarized in Table II.

As discussed before in Sec. IV, the number of measure-
ments can be reduced by grouping the operators that need to
be measured. Table I showed the number of Pauli operator
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FIG. 10. Experimental simulation of the QGEM experiment for
the three-qubit parallel setup for different decoherence rates at τ =
2.5 s, with γ = [0.025, 0.050, 0.075, 0.1] Hz having the witness ex-
pectation values −0.156, −0.117, −0.084, and −0.055, respectively
(see Fig. 5). The number of measurements needed to confirm the
entanglement with the confidence increases for higher decoherence
rates, but not as much as for the two-qubit setup.

groups for different witnesses; an example of the grouping
is given in Appendix A. By measuring a group of opera-
tors simultaneously, the total number of measurements can
drop considerably, as illustrated in Fig. 12 for decoherence
rates γ = 0.125 and 0.15 Hz. The results from the exper-
imental simulation with grouped operators are summarized
in Table III. Performing measurements yields a marked im-
provement, especially for the three-qubit QGEM setup where
the number of measurements at lower decoherence rates γ <

0.6 Hz become less than or approximately equal to the number

FIG. 11. Experimental simulation of the QGEM experiment for
the two-qubit parallel setup for different decoherence rates at τ =
2.5 s, with γ = [0.025, 0.050, 0.075, 0.1] Hz having the witness ex-
pectation values −0.108, −0.074, −0.043, and −0.016, respectively
(see Fig. 5). The number of measurements needed to confirm the
entanglement increases for higher decoherence rates.

FIG. 12. Experimental simulation of the QGEM experiment
for the three-qubit parallel setup at τ = 2.5 s. For γ =
0.125, 0.15 Hz the witness expectation values are −0.030 and
−0.008, respectively. The two-qubit setup cannot detect entan-
glement for these decoherence rates. Measurements with grouped
operators reduce the number of measurements needed to confirm the
entanglement.

TABLE II. Comparison of the approximate number of measure-
ments needed to confirm the entanglement with 99.9% confidence
for the n = 2 and n = 3 parallel setups under different deco-
herence rates at τ = 2.5 s. The witness expectations values for
n = 2 for γ = [0.025, 0.050, 0.075, 0.1] Hz are −0.108, −0.074,
−0.043, and −0.016, respectively; for γ > 0.1 Hz the witness
becomes positive. The witness expectation values for n = 3 for
γ = [0.025, 0.050, 0.075, 0.1, 0.125, 0.15] Hz are −0.156, −0.117,
−0.084, −0.055, −0.030, and −0.008, respectively.

γ (Hz) n = 2 n = 3

0.025 ∼1000 ∼1500
0.05 ∼1500 ∼3000
0.075 ∼5000 ∼5500
0.1 ∼37 500 ∼13 000
0.125 ∼42 500
0.15 ∼750 000

TABLE III. Comparison of the approximate number of measure-
ments needed to confirm entanglement with 99.9% confidence for the
n = 2 and n = 3 parallel setups under different decoherence rates at
τ = 2.5 s. The number of measurements needed is reduced by doing
the experimental simulation with the grouped operators (see Table I),
as was discussed in Sec. IV.

γ (Hz) n = 2 n = 3

0.025 ∼580 ∼640
0.05 ∼1250 ∼1390
0.075 ∼3900 ∼2900
0.1 ∼29 200 ∼6500
0.125 ∼22 400
0.15 ∼312 000
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FIG. 13. The PPT entanglement witness is plotted for different
setups at τ = 2.5 s. Here n is the number of particles and D is
the number of superposition states. All setups are parallel setups
[Fig. 1(a)]. The dotted line indicates Tr(Wρ ) = 0. Adding a single
qubit (increasing n by one) makes the setup more resilient against
the decoherence compared to adding a single superposition state
(increasing D by one). Taking n = 2 and D = 6 seems to have the
same effect as adding a third qubit (n = 3 and D = 2). The n = 3
and D = 6 setup seems most resilient against decoherence, although
for this setup the number of needed measurements will be extremely
high.

of measurements needed for the two-qubit setup. This makes
the three-qubit QGEM setup even more favorable.

VII. QUBITS VS QUDITS

In Ref. [24] qudits (a superposition of D states8) instead
of qubits (which are qudits with D = 2) were proposed as a
way to protect against the decoherence. Due to the increase in
the number of measurements needed to confirm entanglement
for qudit setups, that work concluded that qudits should be
used only if the decoherence is sufficiently high such that the
witness for the qubit setup becomes positive (γ > 0.12 Hz). In
Sec. VI we saw that the three-qubit setup also outperforms the
two-qubit setup only for sufficiently high decoherence rates;
therefore, we compare the two-qudit and three-qubit cases.

In Fig. 13 we compare the entanglement witness expec-
tation value for n = 2 and n = 3 qubits (D = 2) and qutrits
(superposition of three states, D = 3). There seems to be
very little difference when switching from qubits to qutrits.
It seems that switching from qubits to six-dimensional qudits
has the same effect with respect to resilience against the de-
coherence as switching from the two-qubit to the three-qubit
setup. However, the number of operators needed to measure
the witness increases much more for the six-dimensional qudit
case (94 operator groups) compared to the three-qubit case
(12 operator groups). Table IV shows the number of operator
(groups) in the witness for the setups considered in Fig. 13.
From the two-qubit case, adding either one superposition di-
mension or one qubit does not differ much in the number of

8Experimentally, the number of superpositions states D can be
seen as the number of arms in each interferometer. The number of
particles n is the number of interferometers.

TABLE IV. Number of Pauli operators that make up the decom-
posed PPT witness, the number of Pauli operator groups for the
different number of qudits n, and different number of superposition
states D.

n D No. of operators No. of operator groups

2 2 4 3
3 2 26 12
2 3 77 14
2 6 1272 94

operator groups that are added (14 and 12 operator groups,
respectively), but from Fig. 13 we infer that the three-qubit
setup outperforms the two-qutrit setup.

For a better comparison, we look at the (grouped) mea-
surement plots in Figs. 10 and 12 and compare them with
the results from [24]. The number of measurements needed to
reach a 99.9% confidence level in the entanglement is much
higher for the six-dimensional two-qudit (n = 2 and D = 6)
setup compared to the three-qubit setup: For γ = 0.125 Hz,
the six-dimensional two-qudit setup needs about 2 000 000
measurements (or 200 000 when grouping operators9), while
the three-qubit setup needs about 42 500 measurements (or
22 400 when grouping operators). Reference [24] concluded
that only for γ > 0.12 Hz, it is favorable to use qudits over
qubits, specifically the six-dimensional qudit setup. However,
we find here that the three-qubit setup is even more favor-
able for these decoherence rates. One could also think about
switching to three-qudit setups for improvement, which we
will leave for future investigation. Looking at the results in
[24], this would only be necessary for γ > 0.16 Hz (when the
three-qubit setup never has a negative witness). It might also
be favorable to add a qubit instead of switching to qudits, but
this is beyond the scope of the present paper.

VIII. CONCLUSION

For the three-qubit case we studied three different setups:
the parallel, the linear, and the star setup (see Fig. 1). We have
found that the three-qubit parallel setup is optimal; it leads to
the highest rate of the entanglement generation (Fig. 2) and
in our chosen basis provides the best witness (Fig. 3). The
chosen subsystem matters when analyzing the entanglement
generation. Taking the partial trace or partial transpose of the
second system is the most favorable since it has a shorter aver-
age distance to the other subsystems and therefore the highest
interaction and the best generation of the entanglement.

Sections IV and V indicated that the three-qubit setup
compared to the two-qubit setup provides a better witness
(i.e., a more negative witness), which is also more resilient to
the decoherence (i.e., the witness stays negative for a longer
time and at higher decoherence rates). However, the cost of
having a better witness by introducing an extra qubit is that

9These numbers were derived in [24], where a different grouping
strategy was used. It is worth noting that that grouping strategy may
not be realizable in the actual experimental setting due to nonlocal
operations.
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it requires more measurements. In Sec. V we saw that the
number of Pauli operators or operator groups in the witness
increases for the three-qubit case. This was reflected in the
number of measurements needed (see Sec. VI). Tables II and
III showed that for smaller decoherence rates the two-qubit
setup is favorable in terms of the number of measurements,
while for higher decoherence rates the three-qubit setup is
favorable. The turning point seems to be around γ = 0.08 Hz,
or γ = 0.06 Hz when considering grouping the operators.

In Appendix B the decoherence rate was estimated. It was
found that the decoherence rate is expected to be at least
γ = 0.05 Hz for environmental temperatures of T � 0.5 K
(see Fig. 14). This is very close to the decoherence rate γ =
0.06 Hz, for which the three-qubit setup becomes favorable
with respect to the number of measurements needed to con-
firm the entanglement up to 99.9% confidence level. Based
on the estimation of the decoherence rate, the three-qubit
QGEM protocol provides an improvement in the number of
needed measurements compared to the original QGEM pro-
tocol. However, this is very much dependent on the expected
decoherence rate and therefore on the experimental setting.
The decoherence rate increases as the temperature of the en-
vironment increases; also it is highly dependent on the size of
the superposition particles.

To give a better understanding of how realizable the three-
qubit QGEM protocol is in terms of number of measurements,
we converted the number of measurements to experiment
time. The interaction time was taken to be τ = 2.5 s and the
time it takes to construct the superpositions and to bring the
superpositions back together was taken to be 0.5 s [10]. For
the smallest expected decoherence rate γ = 0.05 Hz, 1390
measurements were needed to confirm entanglement with
99.9% confidence in the three-qubit parallel setup. The total
experiment time would therefore be approximately (2.5 s +
2 × 0.5 s) × 1390 = 4865 s (a similar time was found in the
two-qubit case). The experiment would take about 1 h and
20 min excluding all the setup that needs to be done between
consecutive measurements; this is realizable. For comparison,
at γ = 0.1 Hz the two-qubit system measurements would take
28.4 h, while the three-qubit system measurements take 6.3 h.

Additionally, the three-qubit system was compared to the
two-qudit setups (Sec. VII). The two-qudit setup (n = 2 and
D = 6) was found to be equally resilient against the deco-
herence as the three-qubit setup, but it requires far more
measurements. The gain from switching to qudits is negated
by the increase in the number of needed measurements, while

for a three-qubit system the number of measurements stays
more feasible. For γ > 0.16 Hz the three-qubit setup can-
not witness entanglement anymore, and one could consider
switching to a three-qudit setup. However, since adding a
qubit to the setup causes a clear improvement in the rate of
entanglement generation, this begs the question of whether a
four-, five-, or six-qubit setup could provide further improve-
ments (specifically for γ > 0.16 Hz). We find that indeed
increasing the number of qubits increases the system’s re-
silience against the decoherence further. However, the extra
qubits also require more operator groups to be measured and
the key is to find a balance between these two to find the
optimal experimental system.
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APPENDIX A: WITNESSING ENTANGLEMENT

For the two-qubit parallel setup the witness is given
by [19]

W = 1
4 (1 − X ⊗ X − Y ⊗ Z − Z ⊗ Y ). (A1)

In this case, the witness is composed of four operators. The
identity term will always have an expectation value of 1 and
therefore does not need to be measured. The three operators
left, however, still needed to be measured separately when
considering the grouping rules mentioned in the main text.
Indeed, the first Pauli operators in each of the three tensor
operators do not commute with one another, therefore failing
the condition of qubitwise commutativity. There are means
to still measure these operators together as they generally
commute; however, this would require nonlocal operations
[24], which we consider not so realistic in an experiment.

For the three-qubit parallel setup the witness for the middle
qubit is

W = 1
26 (1 − 1 ⊗ 1 ⊗ X − 1 ⊗ X ⊗ X − 1 ⊗ Y ⊗ Y − 1 ⊗ Y ⊗ Z − 1 ⊗ Z ⊗ Y − X ⊗ 1 ⊗ 1 − X ⊗ X ⊗ 1

− X ⊗ X ⊗ X − X ⊗ Y ⊗ Z − X ⊗ Z ⊗ Y − X ⊗ Z ⊗ Z − Y ⊗ 1 ⊗ Y − Y ⊗ 1 ⊗ Z − Y ⊗ X ⊗ Y − Y ⊗ X ⊗ Z

− Y ⊗ Y ⊗ 1 − Y ⊗ Z ⊗ 1 − Y ⊗ Z ⊗ X − Z ⊗ 1 ⊗ Y − Z ⊗ 1 ⊗ Z − Z ⊗ X ⊗ Y − Z ⊗ X ⊗ Z − Z ⊗ Y ⊗ 1

− Z ⊗ Y ⊗ X − Z ⊗ Z ⊗ X ). (A2)

Here we can indeed group the list of 26 operators (25 when
discarding the identity term) into groups that commute qubit-
wise. As the first example of the rule, consider the first two
operators (after the identity) 1 ⊗ 1 ⊗ X and 1 ⊗ X ⊗ X . Each

operator in the tensor commutes with the operator of the same
index in the other tensor; they (qubitwise) commute and both
can clearly be measured at the same time (if one collects mea-
surements for 1 ⊗ X ⊗ X , they can use the measurements on
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the last operator to infer the expectation value of 1 ⊗ 1 ⊗ X ).
Based on this, we can group all 25 terms above into 12 groups,
presented in Table V.

APPENDIX B: ESTIMATING THE DECOHERENCE RATE

In [17] an explicit expression for γ was derived for the two-
qubit QGEM setup. Therein decoherence due to the scattering
between the environmental particles and the superpositions
was considered. Since the environmental state (the state of
the scattered particle) is dependent on the position of the test
particle, the scattered particle shares information about the
superposition state. For a large number of scatterings (so for a
large scattering rate and/or after a long time) the system will
decohere. We will use the result from Ref. [17] for the three-
qubit setup discussed in this paper. The three superpositions
are assumed to be spatially unaffected by scattering with the
environment and independent of each other.

Following [17,45], we write the final state of the scattered
particle that scattered off the system’s position state |�x〉 as

|E (�x)〉 = e−i �q �x/h̄Ŝ0ei �q �x/h̄|Ej〉. (B1)

Here �q is the momentum of the scattered environmental par-
ticle and S0 is the scattering operator acting on the scattering
center. The density-matrix element of the superposition with
the scattered particle(s) traced out is given as

ρS (�x, �x′) = |�x〉〈�x′|〈E (�x)||E (�x′)〉. (B2)

This equation is similar to Eq. (13). It is clear that the diag-
onal terms �x = �x′ are not affected by the environment. The
expression for 〈E (�x)||E (�x′)〉 was evaluated in the S-matrix
formalism in [66].

We will consider the decoherence due to the scattering
of the air molecules with the superposition, and scattering
with and absorption and emission of the blackbody photons.
These are thought to be the leading causes of decoher-
ence for a macroscopic spatial superposition [17,66,68]. For
these decoherence sources, we can simplify the decoherence
rate because for the environmental temperature considered
here they have either a much longer or shorter wavelength
compared to the superposition width �x.

TABLE V. Example of qubitwise commuting groups constructed
using the operators composing the entanglement witness of the three-
qubit setup (A2).

Group Operators

1 1 ⊗ 1 ⊗ X 1 ⊗ X ⊗ X X ⊗ 1 ⊗ 1 X ⊗ X ⊗ 1 X ⊗ X ⊗ X
2 1 ⊗ Y ⊗ Y Y ⊗ 1 ⊗ Y Y ⊗ Y ⊗ 1
3 1 ⊗ Y ⊗ Z X ⊗ Y ⊗ Z
4 1 ⊗ Z ⊗ Y X ⊗ Z ⊗ Y
5 Y ⊗ 1 ⊗ Z Y ⊗ X ⊗ Z
6 Y ⊗ Z ⊗ 1 Y ⊗ Z ⊗ X
7 Z ⊗ 1 ⊗ Y Z ⊗ X ⊗ Y
8 Z ⊗ 1 ⊗ Z Z ⊗ X ⊗ Z
9 Z ⊗ Y ⊗ 1 Z ⊗ Y ⊗ X

10 X ⊗ Z ⊗ Z
11 Y ⊗ X ⊗ Y
12 Z ⊗ Z ⊗ X

As discussed in Secs. II and III, we consider m ∼ 10−14 kg
and �x = 250 μm for the setup. Furthermore, we take the
internal temperature of the system to be Ti = 0.15 K, the pres-
sure of the environment to be 10−15 Pa, and the test masses to
be microcrystals (diamond) [10].

For an environmental temperature Te ∼ 0.15 K, the wave-
length of blackbody photons is λbb ∼ 30 mm [68]. This
is much longer than the superposition width; therefore, the
blackbody radiation can be evaluated in the long-wavelength
limit. At the temperature Te ∼ 0.15 K, the wavelength of
the air molecules is λair ∼ 0.82 nm (with the mass of the
scattering particle taken to be 28.97 u, which is the mass of
a typical air molecule in the atomic mass units) [68]. This is
much shorter than the superposition width, and the scattering
with air molecules can therefore be evaluated in the short-
wavelength limit.

For a constant superposition width, Refs. [17,45,66] found
the decoherence rate due to short-wavelength and long-
wavelength particles to be

γ = 
air + �bb�x2, (B3)

where 
air is the total scattering rate with the air molecules
(short-wavelength limit contribution) and �bb is a scattering
constant dependent on the density, velocity, and effective
cross section for the blackbody radiation (long-wavelength
limit contribution). The scattering rate 
air depends also on
the average velocity of the air molecules, the radius of the
superposition qubit (taken to be of micron size with radius
a = 10−6 m), and the number density of the particles (taken
to be N/V = 108 m−3, which corresponds to the vacuum
pressure P = 10−15 Pa). For our setup, we find


air ∼ 0.03 Hz, (B4)

where we used that 
air = λ2
air�air [68] and that �air ∼ 4 ×

1016 s−1 m−2 for the pressure, test mass size, and temperature
mentioned previously. We assumed that the environment is a
perfect gas and used the formula provided in [45]:

�air = 8

3h̄2

N

V
a2

√
2πmair(kBTe)3/2. (B5)

Now consider the scattering of the system with the blackbody
photons. We find that

�bb ∼ 0.003 s−1 m−2. (B6)

This consists of the blackbody scattering �s, emission �e,
and absorption �a, �bb = �s + �e + �a. The scattering con-
stants are determined by using the results found in [45], which
models the scattering constant for the blackbody radiation and
a particle modeled as the dielectric spheres with the radii a and
the dielectric constant ε. It is dependent also on Boltzmann’s
constant kb, the reduced Planck constant h̄, and the speed of
light c:

�s = 8!
8

9π
a6c Re

(
ε − 1

ε + 2

)2(kbTe

h̄c

)9

ζ (9). (B7)

The scattering constant depends heavily on the size of
the test mass and the temperature of the environment. The
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FIG. 14. Estimate of the decoherence rate due to interaction with the air molecules and the blackbody photons. For environmental
temperatures Te = 0.1–5 K the wavelength of the air molecules is much smaller (1–15 nm) and the wavelength of the blackbody photons
is much larger (3–98 mm) than the superposition width (250 μm). Therefore, we can use the short- and long-wavelength limits, respectively,
to study their decoherence effects for this range of temperatures. For the decoherence rate due to the scattering off the air molecules, the
number density for the gas is taken to be N/V = 108 m−3. The radius of the particles is taken to be a = 10−6 m and we used the dielectric
constant for diamond, with the internal temperature Ti = 0.15 K. (a) This plot was used in Sec. V; it is based on the calculations performed
in this Appendix. (b) Same data as in (a) but with a logarithmic scale on the y axis. From this figure we see clearly that the contribution to
the decoherence rate from the blackbody emission is nonzero. It has a constant value of ∼10−10 Hz since it is independent of the external
temperature Te.

constants were taken as described previously; furthermore,
ζ (n) is the Riemann ζ function and the dielectric constant for
diamond is ε = 5.68 + 1.1 × 10−4i. This gives

�s ∼ 3 × 10−8 s−1 m−2. (B8)

The scattering constants �e and �a were determined in [17]
by adjusting Eq. (B7) to use the probability of emission and
absorption instead of the cross section of scattering. These are
given by

�e (a) = 16π5

189
a3c Im

(
ε − 1

ε + 2

)(
kbTi (e)

h̄c

)6

. (B9)

Note that for �e we should use the temperature of the test
mass (Ti = 0.15 K), while for �a we should use the tempera-
ture of the environment (also set to Te = 0.15 K). We find that

�e = �a ∼ 0.003 s−1 m−2. (B10)

Adding all the blackbody decoherence sources together, we
get the value in Eq. (B6). Due to the blackbody photons, we
thus have 
bb = �bb�x2 ∼ 4 × 10−10 Hz.

For a higher environmental temperature of Te = 1 K, the
approximations of the short- and long-wavelength limits still
hold and we find

�e ∼ 0.003 s−1 m−2, �a ∼ 0.3 × 103 s−1 m−2,

�s ∼ 0.7 s−1 m−2, �air ∼ 7 × 1017 s−1 m−2

so that 
bb ∼ 10−5 Hz and 
air ∼ 0.07 Hz. The suspected
decoherence rate is dependent on the temperature of the en-
vironment. In Fig. 14 the decoherence rate is plotted as a
function of the environmental temperature.

Figure 14 depends greatly on the assumed experimental pa-
rameters. The expected decoherence rate decreases (increases)
when the number density N/V , the size of the superposition
a, and the external temperature Te are decreased (increased).
Changing the material (and thus the dielectric constant ε)
also changes the expected decoherence rate, although it only
influences the decoherence rate due to the blackbody photons,
which for T � 3 K is dominated by the decoherence due to the
scattering with air molecules. As can be seen from Eqs. (B5),
(B7), and (B9), the decoherence rate is highly sensitive to the
size of the test particle and the temperature of the environ-
ment.

So far we have considered decoherence sources during
the part of the experiment where the qubits are interacting
for a time τint. Additionally, decoherence plays a role while
creating and bringing back together the superpositions. In
this paper the decoherence during the creating and reuniting
of the superpositions has not been taken into account. If we
were to take this into account, we would also have to include
the entanglement generation during these steps. The influence
of the decoherence and the entanglement generation during
creation and destruction of the superposition should be the
subject of a separate paper.

APPENDIX C: SUPPLEMENTARY ANALYSIS

In Fig. 2 the entanglement entropy was shown as a function
of time for τ ∈ [0, 5] s. For an extended period of time, we
find the result given in Fig. 15. This time frame is of course not
realistic for an experiment; however, in the reader’s interest
we wanted to illustrate the cyclical behavior of entanglement
entropy.
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FIG. 15. Comparison of the entanglement entropy generated
within τ ∈ [0, 50] s. Note that, due to symmetry, for the parallel and
linear setup we have S1 = S3 and for the star setup we have S1 =
S2 = S3. The lines representing S1, n = 3 linear and S1, n = 2 linear
setups almost overlap. During the first 10 s the rate of entanglement
generated by the S2, n = 3 parallel setup is highest; however, this
timescale is unrealistic experimentally.

Figure 16 is supplemental to the analysis performed in
Sec. III, which showed that taking the partial trace over the
outer systems provided the highest rate of entanglement gen-
eration. From Fig. 2 we saw that the rate of entanglement
generation for the three-qubit system S1 compared to the two-
qubit system almost overlaps, while the rate of entanglement
generation for the three-qubit system S2 is clearly higher.

FIG. 16. The PPT entanglement witness expectation value is
plotted for the two- and three-qubit parallel setups for γ ∈
[0.02, 0.20] Hz and at τ = 2.5 s. The partial transpose for the three-
qubit setup can be taken over the second subsystem (denoted by ρT2 )
or over the first subsystem (denoted by ρT1 , which, due to the symme-
try of the setup, is the same as ρT3 ). The partition ρT2 is negative for
higher decoherence rates compared to the two-qubit setup and ρT1 .
Taking the partial transpose over the first subsystem does not give an
improvement in the witness. The dotted line indicates Tr(Wρ ) = 0.

Figure 16 shows the same but in terms of the witness. The
witness expectation value of the three-qubit setup with the par-
tial transpose of the first subsystem ρT1 almost overlaps with
the witness expectation value for the two-qubit setup. Taking
the partial transpose of the middle subsystem ρT2 provides a
witness that is more resistant against decoherence.
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