

Original research

Multimodal prognostic features of seizure freedom in epilepsy surgery

Ali Alim-Marvasti 💿 ,^{1,2} Vejay Niranjan Vakharia 💿 ,¹ John Sidney Duncan¹

ABSTRACT **Objective** Accurate preoperative predictions of

on these features.

comparisons.

models.

seizure freedom following surgery for focal drug

and should be included in the future models.

resistant epilepsy remain elusive. Our objective was to

surgery with seizure freedom as the primary outcome, to

identify clinical features that are consistently prognostic

Methods We searched PubMed and Cochrane using

free-text and Medical Subject Heading (MeSH) terms

according to Preferred Reporting Items for Systematic

Reviews and Meta-Analyses. This study was registered

on PROSPERO. We classified features as prognostic, non-

prognostic and uncertain and into seven subcategories:

'pathology'. We propose a structural causal model based

Results We found 46 features from 38 meta-analyses

across meta-analyses: febrile convulsions, hippocampal

sclerosis, focal abnormal MRI, Single-Photon Emission

Computed Tomography (SPECT) coregistered to MRI.

lobe resections, complete excision, histopathological

IIb. Severe learning disability was predictive of poor prognosis. Others, including sex and side of resection,

were non-prognostic. There were limited meta-analyses

investigating genetic contributions, structural connectivity

or multimodal concordance and few adjusted for known

Significance Seizure-free outcomes have not improved

over decades of epilepsy surgery and despite a multitude

of models, none prognosticate accurately. Our list of

multimodal population-invariant prognostic features

and proposed structural causal model may serve as

of plausible confounders for use in high-dimensional

PROSPERO registration number CRD42021185232.

Epilepsy surgery can be curative for focal drug-

quality of life³ and is classified according to the

an objective foundation for statistical adjustments

confounders or performed corrections for multiple

lesions, tumours and focal cortical dysplasia type

over 22 years. The following were consistently prognostic

focal ictal/interictal EEG, EEG-MRI concordance, temporal

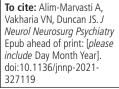
'clinical', 'imaging', 'neurophysiology', 'multimodal

concordance', 'genetic', 'surgical technique' and

systematically evaluate all meta-analyses of epilepsy

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx. doi.org/10.1136/jnnp-2021-327119).

¹Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London Faculty of Brain Sciences, London, UK ²Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Department of Medical Physics and Biomedical Engineering, University College London, London, UK


Correspondence to

Dr Ali Alim-Marvasti, Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London Faculty of Brain Sciences, London, UK; Alijesus.alimmarvasti@nhs.net

Received 13 May 2021 Accepted 18 January 2022

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

seizures eventually relapse.¹² Postsurgical outcomes include seizure freedom, discontinuation of antiseizure medications, neuropsychological and psychiatric outcomes or morbidity. Seizure freedom is the strongest predictor of improved health-related

INTRODUCTION

Key messages

What is already known on this topic

Surgery can be curative for some individuals with focal drug-resistant epilepsy but not others. Although various clinical prognostic features - such as unifocal temporal lobe lesions carrying a favourbale prognosis - are well-known, there are discrepancies in the scientific literature with regards to whether other features have prognostic value or not. Additionally, we have no accurate method to prognosticate. Therefore, this study reviewed meta-analyses that evaluated prognostic features of postsurgical seizure freedom.

What this study adds

This study defines a list of 'Essential Prognostic Features' that were consistently prognostic across 38 evaluated meta-analyses of epilepsy surgery that had seizure-freedom as the primary outcome. We outline a structural causal model for statistical adjustments of plausible confounders and use in high-dimensional models. We propose a five-step plan for personalised seizure-freedom predictions, including collaborative multi-variable modelling.

How this study might affect research, practice or policy

Our list of essential prognostic features might be especially useful in machine learning models of big-data on postsurgical seizure freedom. The proposed structrual causal model could be used in future research to adjust for known confounders. Instead of more meta-analyses, an international collaboration pursuing our proposed five-step plan may impel us towards attaining accurate personalised prognostication for epilepsy surgery.

ILAE or Engel systems.⁴ These outcomes can be used as ordinal scales, binarised into seizure-free and not seizure-free categories at specified postoperative time points or binarised at each year following surgery to build proportional Hazards models.

Prognostic features can be related to patient characteristics (eg, age, seizure semiology, variability of seizures and genetics), investigation findings (focal lesion on MRI and localising epileptic activity on EEG), surgical factors (resection margins or technique) and combinations of the above (concordance of imaging with neurophysiology). Favourable

clinically relevant prognostic features have been identified from many individual studies, including clearly localising and lateralising semiology, well-circumscribed unilateral, unifocal and temporal lesions, EEG-MRI concordance and complete excision of the evaluated epileptogenic zone.⁵⁶

Other features are prognostic in some studies but not in others such as focal to bilateral tonic-clonic seizures (FBTCS)⁵⁻¹⁰ and age at seizure onset.⁷⁻⁹¹¹ A feature may erroneously appear prognostic in a single-centre study due to publication bias or overfitting from investigating many unadjusted variables. Conversely, a feature may appear falsely non-prognostic in small studies due to low statistical power. Most individual studies are small retrospective observational studies from single centres and are prone to such biases.

Meta-analyses aggregate data while accounting for different levels of heterogeneity among patients and between studies. Their strength lies in combining data to achieve greater statistical power while adjusting for heterogeneity and confounders, and attributing weights to studies resulting in summary effect size estimates with wider CIs than unweighted methods.

Nevertheless, accurately predicting seizure freedom prior to surgery has remained elusive. Machine learning models show promise, but have almost entirely been trained on temporal lobe (TL) surgeries.¹² Other recent developments, such as the Epilepsy Surgery Nomogram and the modified Seizure Freedom score,¹⁰ are not better than clinical heuristics¹³ which have not resulted in improved surgical outcomes over recent decades.^{14 15} This highlights the need for a review of the evidence in epilepsy surgery, which we present here by evaluating meta-analyses for prognostic features of postsurgical seizure freedom. In the search for clinical features with robust prognostic value, we consider meta-analyses, because they are considered the pinnacle of evidence-based data.

Our objectives are to address these questions:

- Which features are consistently prognostic, and could be used in models of seizure freedom? This list should also preclude the need for further metaanalyses on these features,^{16 17} other than to adjust for po-
- tential confounders.2. Which features do not have prognostic value and could be excluded from future machine-learning models and meta-analyses? This would risk the potential loss of only very weak prognostic variables in exchange for better generalisability.
- What variables have not been evaluated in meta-analyses and how can we improve postsurgical prognostication?

Methods

Search strategy and Criteria

The study was registered on international prospective register of systematic reviews. The search was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines on PubMed, MEDLINE and Cochrane updated 1 December 2020, using a combination of free-text and Medical Subject Heading (MeSH) terms. We screened titles and abstracts for inclusion criteria and full texts for exclusion criteria for individual prognostic features. Full search strategy and exclusions are in online supplemental methods.

Inclusion criteria

We included studies for full-text review that were meta-analyses of prognostic features for seizure freedom in epilepsy surgery. The neurosurgical resections had to have been performed for patients with drug-resistant focal epilepsy with curative intent.

Data collection

Two neurologists and a neurosurgeon independently screened articles for inclusion criteria, then one collected data and checked against exclusion criteria (AA-M) and the other two checked decisions. Disagreements were resolved through discussion.

The following data, where available, were extracted for each meta-analysis: investigated feature(s) (whether prognostic or not), specified population (resected lobe, adults, specified lesion), numbers of patients and individual studies for each feature or their upper bounds, definition and duration of seizure freedom, effect sizes and method used (univariate, multivariate logistic regression, fixed effect, random effects, network analysis, meta-regression or other). Qualitative evaluation of certainty of evidence was performed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines (online supplemental references 11–17).¹⁸ Trial sequence analyses were assessed for bias using an additional checklist.¹⁹ Where possible, we used the current International League against Epilepsy seizure classification.²⁰

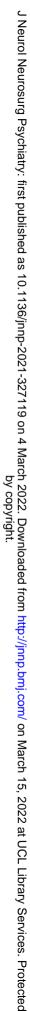
Data presentation

Features from the same investigation modality were grouped into seven categories (online supplemental table 2).

Features were further split into essential prognostic features (EPF), uncertain prognostic feature (UPF), and non-prognostic feature (NPF) based on consistency of value across meta-analyses such that if all effect sizes were in the same direction (eg, all favoured postsurgical seizure freedom), then this feature was classified as EPF; whereas, UPF included features that in some meta-analyses favoured seizure freedom, while in others showed no effect or worse outcomes. NPFs were non-significant in all meta-analyses.

Statistical analysis

Effect sizes were inverted such that OR and relative risks over 1 indicate better outcomes favoured good outcome. If effect sizes or CIs were not quoted, these were estimated from the raw data (online supplemental methods). When quoting effect sizes across meta-analyses for the same feature, we used range of effect sizes (ROES) for both point estimates and 95% CIs (min, max).


RESULTS

Overview, PRISMA flowchart and meta-analytical methods

From 50 meta-analyses, 12 were excluded on full-text review, leaving 38 from which data were collected (PRISMA flowchart figure 1). Excluded meta-analyses had lower median numbers of individual studies than those from which data were extracted (11 (IQR 7–22) vs 22 (IQR 15–37)), and lower median number of patients (71 (IQR 33–87) vs 1034 (IQR 320–1999)). The largest number of individual studies in any meta-analysis was 258,²¹ and the highest number of included patients was 16 855 from the Cochrane review.²² Two multicentre studies were included, one from eight centres and another from 37.^{23 24}

The main meta-analytical methods and upper bounds on numbers of studies and patients are summarised in table 1.

Online supplemental table 1 lists features from each metaanalysis with GRADE scoring, and online supplemental table 2 categorises these under seven modalities.

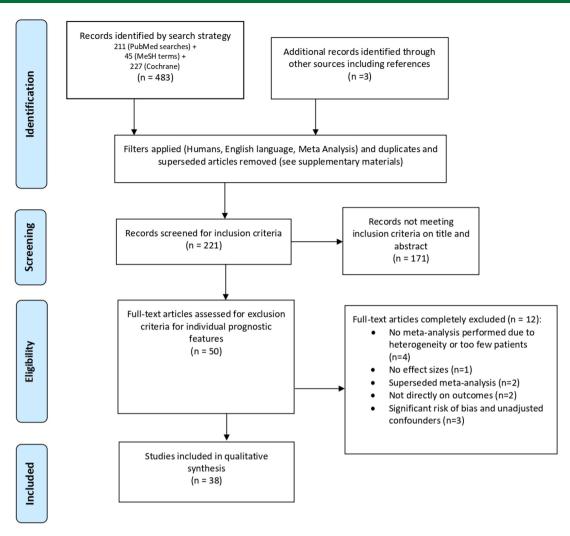


Table 2 presents EPF that were consistently prognostic in all meta-analyses, and table 3 shows consistently NPF with individual GRADE scores. Online supplemental tables 3,4 provide more details on EPFs, features with UPFs and NPFs.

EPF for epilepsy surgery

Thirteen features were regarded as EPF, as they were consistently prognostic. Three clinical features, from six metaanalyses over 21 years, were severe learning disability including IQ < 75, with the largest effect size estimates from the paediatric tuberous sclerosis population (ROES RR 0.26-0.66 (0.14 to 0.94), OR 0.14-0.61 (0.04 to 0.82)), presence of febrile convulsions (RR 1.09 (1.01 to 1.17)) and lack of acute postoperative seizures (OR 4.2 (2.97 to 5.93)) (table 2 and online supplemental table 3).

Prognostic imaging features included the presence of hippocampal sclerosis (RR 1.17 (1.12 to 1.23)) and abnormal Single-Photon Emission Computed Tomography (SPECT) coregistered with MRI (ROES 2.44–3.28 (1.34 to 5.67)). Abnormal MRI was consistently prognostic in 10 metaanalyses with the largest effect sizes from children having hemispherectomies (ROES RR 1.28–1.64 (1.20 to 2.08), OR 1.27–4.6 (1.14 to 16.62)).

Type of meta-analysis	Number of meta- analyses	Total number of included individual studies (upper bound)	Total number of patient participants (upper bound)
·· · ·			
Univariate (tests of proportions, ANOVA, t-test or crude effect sizes)	9	215	6351
Proportional Hazards models (Cox regression)	1	19	187
Fixed or random (mixed) effects models	17	1122	55 502
Meta-regressions (including logistic regression)	6	372	16 006
Bayesian) network analyses (NMA)	4	325	6471
lierarchical/multi-level	0	0	0
Other: partial least squares (projection to latent space)	1	20	186

Alim-Marvasti A, et al. J Neurol Neurosurg Psychiatry 2022;0:1–10. doi:10.1136/jnnp-2021-327119

EPF		Prognostic value and sup	porting evidence base			
Feature	Population(s) or subgroup(s)	Range of effect sizes for seizure freedom	Comments	Meta-analytical references	Publication year (first, last)	GRADE score
Clinical features						
Severe developmental delay and IQ≤75	Children and adults, TLE, structural lesions, tuberous sclerosis, hemispherectomies	RR 0.14–0.66 (0.04, 0.94)	Favours absence of severe learning disability	Chelune, Naugle; Fallah, Guyatt; Hu, Zhang	1998–2019	++ Low
Febrile convulsions (FC)	TL and ET in children and adults	OR 2.08 (1.2, 3.7) RR 1.09(1.01, 1.17)	Favours presence of FC	Tonini, Beghi; West, Nevitt	2004–2019	+ Very low
Without acute postoperative seizures (APOS)	Children and adults, TLE and ET	OR 4.2–5.7 (2.97, 9.8)	Favours absence of APOS within 30 days of surgery	Giridharan, Horn	2016	++ Low
Imaging features						
Hippocampal sclerosis (HS)	Adults and children with TLE	OR 2.13 (1.57, 2.86) RR 1.17(1.12, 1.23)	Favours presence of Mesial Temporal Sclerosis or HS	Tonini, Beghi; West, Nevitt	2004–2019	++ Low
Abnormal or lesional MRI	Adults and children with TLE and ET, FCD, frontal lobe, occipital lobe and posterior quadrant epilepsies, hemispherectomies	RR 1.28–1.64 (1.20, 2.08) OR 1.27–4.6 (1.14, 16.62)	Favours abnormal MRI, see online supplemental table 3) for comments on two borderline meta-analyses	Tonini, Beghi; Téllez-Zenteno, Ronquillo; Yin, Kang; West, Nevitt; Rowland, Englot; Englot, Wang; Englot, Rolston; Harward, Chen; Widjaja, Jain; Cao, Liu	2004–2020	++ Low
SPECT: subtraction SPECT co- registered to MRI (SISCOM)	TL and ET	OR 2.44–3.28 (1.34, 5.67)	Favours ictal and inter-ictal SPECT- SISCOM abnormalities	Chen and Guo	2016	++ Low
Neurophysiological features						
Focal Ictal or interictal or invasive EEG	Adults, children, repeat resections, MRI-negative TLE, tuberous sclerosis, ET	OR 1.55–3.89 (1.24, 9.08) Positive prognostic value on PLS also.	Favours focal EEG changes, for comments on notable exceptions from 2012 to 2013 ^{15 35} see online supplemental table 3	Krucoff, Chan; Wang, Zhang; Fallah, Guyatt; Ibrahim, Morgan; Englot, Breshears	2013–2017	+ Very Low
Multimodal concordance						
EEG-MRI concordance	TL and ET children and adults, tuberous sclerosis, hemispherectomies	RR 1.25 (1.15, 1.37) OR 2.17–4.9 (1.07–13.5) Prognostic value on PLS	Favours EEG and MRI concordance	Tonini, Beghi; West, Nevitt; Fallah, Guyatt; Ibrahim, Morgan; Hu, Zhang	2013–2019	+++ Moderate
Surgical technique or anatomic	features					
Temporal lobe (vs ET) resections	Adults and children with FCD, repeat surgery, low grade gliomas	OR 1.35–2 (0.8, 3.45)	Favours surgery for TLE	Rowland, Englot; Chen, Chen; Krucoff, Chan; Widjaja, Jain; Shan, Fan; Lamberink, Otte	2012–2020	+ Very Low
Complete excision (vs subtotal resection)	Adults and children with FCD, FLE, repeat resections, TLE, low grade gliomas	OR 2.6–12.5 (1.3, 20) RR 1.11–1.99 (1.03, 2.84)	Favours complete excision	Rowland, Englot; Chen, Chen; Englot, Wang; Krucoff, Chan; West, Nevitt; Widjaja, Jain; Shan, Fan	2012–2020	+++ Moderate
Pathological features						
Presence of tumours	Children and adults, TLE and ET, gangliogliomas, DNET, neuroepithelial tumours	RR 1.23 (1.14, 1.32) OR 1.27–2.78 (1.12, 3.57)	Favours tumours over multiple other lesions. See comments in online supplemental table 3	Tonini, Beghi; West, Nevitt; Lamberink, Otte	2004–2020	+++ Moderate
Focal cortical dysplasia (FCD)	Adults and children, TLE and ET	FCD: RR 0.90 (0.85, 0.95) FCD type II(b): OR 1.38– 1.92 (1.01, 3.57)	Favours the absence of FCD, otherwise favours FCD type IIb	Rowland, Englot; Chen, Chen; West, Nevitt; Lamberink, Otte	2012–2019	++ Low
Lesional pathology vs non- lesional	Adults and children, FLE, TLE, ET, repeat resections, occipital lobe and posterior quadrant.	RR 1.67 (1.36, 28.6) OR 1.08–3.2 (1.02, 5.3)	Favours presence of focal pathological lesion except in MRI neg TLE (see online supplemental table 3) comments)	Englot, Wang; Englot, Rolston; Krucoff, Chan; Wang, Zhang; Harward, Chen; Englot, Breshears; Widjaja, Jain	2012–2017	++ Low

The essential prognostic features (EPFs).

See online supplemental table 3 for more details and full list of references.

ET, extratemporal; FCD, focal cortical dysplasia.; FLE, frontal lobe epilepsy; OR/RR, OR and relative risks over 1 indicate better outcomes; PLS, projection to latent space; TL, temporal lobe; TLE, Temporal Lobe Epilepsy.

Neurophysiological features were ictal and interictal (uni-) focal EEG abnormalities, this effect largely persisted irrespective of whether the MRI was abnormal or if initial epilepsy surgery had failed (ROES OR 1.55–3.89 (1.24 to 9.08)).

Concordant MRI and EEG abnormalities were consistently associated with a good prognosis (ROES OR 2.17–4.9 (1.07 to 13.5)). There were no genetics features in EPF.

Surgical technique EPFs were TL resections (in populations that excluded repeat resections and surgery for low grade gliomas) (ROES OR 1.35-2 (1.06 to 3.45)) and complete excision of lesions (ROES RR 1.11-1.99 (1.03 to 2.84)).

Favourable histopathological features were: (1) presence of tumours (RR 1.23 (1.14 to 1.32)), (2) focal cortical dysplasia type IIb (FCD) (ROES OR 1.38–1.92 (1.01 to 3.57)), (3) presence of any focal pathological lesion (ROES OR 1.08–3.2 (1.02 to 5.3)). One meta-analysis, however, showed non-significance for focal histopathology in MRInegative temporal lobe epilepsy (TLE),²⁵ suggesting that the basis of favourable outcomes in individuals with focal imaging abnormalities is a histopathological abnormality (see structural causal model (SCM) in online supplemental materials).

Concordance and complete excision had moderate quality of evidence scores, other results were of low or very low quality.

Uncertain prognostic features

Eighteen features had mixed results with some meta-analyses suggesting prognostic value and others suggesting nonsignificance: previous head injury, central nervous system (CNS) infections, focal semiology, infantile spasms, seizure frequency, age at onset, age at surgery (investigated by 18 separate

NPF features		Non-prognostic evidence base					
Feature	Population(s) or Subgroup(s)	Comments	Individual patients*	Individual studies *	Meta-analytical references	Publication years (first, last)	GRADE score
Clinical features							
Sex: male vs female	Adults and children with FLE, TLE, ET, tuberous sclerosis, MRI neg TLE, repeat surgery, hemispherectomies, low grade gliomas	All were non-significant, a large proportion even on weighted univariate tests, which otherwise tend to overestimate significance. Individual unweighted effect sizes ranged from OR 0.83 (0.42, 1.64) ^c in repeat surgery for focal DRE ¹⁴ to OR 1.44 (0.86, 2.41) in MRI negative TLE. ²⁵	5974	148	Englot, Wang: Englot, Rolston; Zhang, Hu; Fallah, Guyatt; Ibrahim, Morgan; Wang, Zhang; Krucoff, Chan; Englot, Breshears; Hu, Zhang; Shan, Fan; Cao, Liu	2012–2018	+++ Moderate
Epilepsia partialis continua (EPC)	Children undergoing hemispherectomies	Not significant on unweighted univariate testing and result is from only one meta-analysis.	127	7	Cao, Liu	2016	++ Low
Imaging features							
Number of cortical tubers	Tuberous sclerosis	Numbers of tubers did not predict outcomes. See online supplemental table 5 for observations on methodology, sample sizes, adjustments and heterogeneity.	286	24	Zhang, Hu; Fallah, Guyatt; Ibrahim, Morgan	2013-2015	++ Low
Magnetic ¹ H spectroscopy	TLE adults and children	Probably no more valuable than conventional MRI abnormality (online supplemental table 5).	121	22	Willmann, Wennberg	2006	+ Very low
Encephalomalacia	Adults and children	Encephalomalacia was NS in the Cochrane meta- analysis, it was also not significant on subgroup analyses. ²²	317	ъ	West, Nevitt	2019	+ Very Low
Enhancement, oedema, and/or mass effect	Low grade gliomas in adults	These combined features are not clinically prognostic of low-grade glioma resection for seizure freedom. Although NS, the point estimate and Cl are unavailable.	2641	23	Shan, Fan	2018	+ Very low
Vascular lesions	Adults and children with TL and ET	Only one meta-analysis investigated this in 2004, comprising only three individual studies, its pathological counterpart was also NS. ²²	<<3511	m	Tonini, Beghi	2004	+ Very low
Neurophysiological features							
Intraoperative invasive EEG	Children and adults with FLE	Electrico-corticography did not effect outcomes	1024	21	Englot, Wang	2012	+++ Moderate
Video telemetry and long-term monitoring	Children and adults with FLE, lesional and non-lesional TLE and ET	Lesional TLE cases do well, and this was the only subgroup in which long-term monitoring had a point effect size estimate greater than 1.	1738	65	Englot, Wang; Kobulashvili, Kuchukhidze	2012, 2018	+ Very low
Surgical technique or anatomic features							
Mesial vs lateral TL focus	MRI neg TLE	Mesial or lateral TLE, as determined by sEEG, subdural grids, or ATUSAH vs neocortectomy, are not significant.	92	œ	Wang, Zhang	2016	+ Very low
Side of resection (left vs right)	Children and adults, Non-lesional, TLE, FLE, ET, MRI negative TLE, repeat surgery, hemispherectomies	This feature is unlikely to be prognostic—see online supplemental table 5.	6550	188	Tonini, Beghi; West, Nevitt; Willmann, Wennberg, Ansari, Tubbs; Englot, Wang Englot; Rolston; Wang, Zhang; Krucoff, Chan; Englot, Breshears; Hu, Zhang; Ansari, Maher	2004–2019	+++ Moderate
Frontal, central, or posterior resections vs other	ET, adults, non-lesional	Not prognostic	81	ć	Ansari, Tubbs	2010	+ Very low

Alim-Marvasti A, et al. J Neurol Neurosurg Psychiatry 2022;0:1–10. doi:10.1136/jnnp-2021-327119

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2021-327119 on 4 March 2022. Downloaded from http://jnnp.bmj.com/ on March 15, 2022 at UCL Library Services. Protected by copyright.

Table 3 Continued							
NPF features		Non-prognostic evidence base					
Feature	Population(s) or Subgroup(s) Comments	Comments	Individual patients*	Individual studies*	Meta-analytical references	Publication years (first, last)	GRADE score
Geographical location of surgery	Tuberous sclerosis in children	Only one meta-analysis investigated North America vs Elsewhere, and the GRADE score is from this meta- analysis alone.	186	20	Ibrahim, Morgan	2015	+++ Moderate
Pathological features							
Neuro-migrational defects	TL and ET children and adults	There was a trend whereby neuromigrational deficits were negative prognostic factors, but the number of participants in this analysis was unclear.	ذ	ى	Tonini, Beghi	2004	+ Very Low
Astrocytoma vs non-astrocytoma	Low grade gliomas in adults	The exact numbers of patients were not provided for this particular analysis.	<2641	<23	Shan, Fan	2018	+ Very Low
See online supplemental table 5 for more details and online supplemental materials for full list of references. *Upper bound of estimate, not including subgrup analyses. ", multivariate; ', univariate; ', calculated (usually unweichted) effect size; ET, extratemporal; FLE, frontal lobe	letails and online supplemental mate Jbgroup analyses. Jsually unweighted) effect size; ET, e:	See online supplemental table 5 for more details and online supplemental materials for full list of references. "Upper bound of estimate, not including subgroup analyses. ", unitivariate: ', univariate: ', calculated (usually unweighted) effect size; ET, extratemporal; FLE, frontal lobe epilepsy; MCD, malformations of cortical development; NS, not significant; PLS, projection to latent space; TL, temporal lobe.	ons of cortical de	evelopment; NS, I	tot significant: PLS, projection to laten	nt space; TL, temporal lo	e e

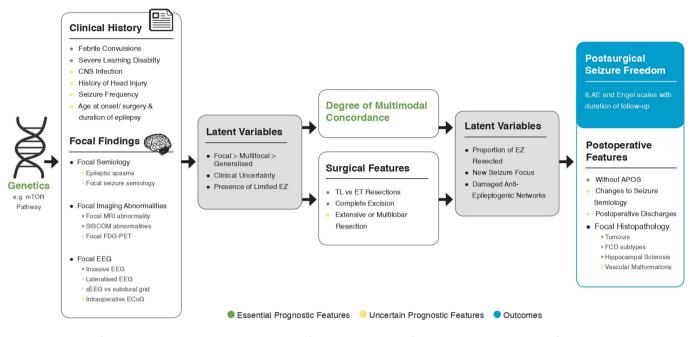
meta-analyses), duration of epilepsy (15 meta-analyses), interictal fluorodeoxyglucose positron emission tomography (FDG-PET) focal hypometabolism, preoperative invasive EEG or choice of subdural versus depth electrodes, presence of interictal spikes, lateralising ictal or interictal EEG, extensive surgical resections and vascular pathology (online supplemental table 4).

Non-prognostic features

Fifteen non-prognostic features (table 3 and online supplemental table 5) comprised: sex, epilepsia partialis continua, number of cortical tubers, magnetic spectroscopy abnormality, encephalomalacia, enhancement or mass effect of low grade gliomas, performing intraoperative invasive electrocorticography, use of video-EEG telemetry, mesial versus lateral temporal focus, side of resection, frontal-central or posterior extratemporal lobe resections, geographical location of surgery (North America vs elsewhere), presence of neuronal migration abnormalities on imaging and astrocytoma versus non-astrocytoma.

DISCUSSION

We identified 46 features from 38 meta-analyses on prognostication in epilepsy surgery, only 15 of which were in the 2019 Cochrane review.²² We categorised features that were consistently prognostic. When investigating other variables for associations with seizure outcomes, EPFs can be used to adjust for confounders.


EPF for epilepsy surgery

EPF is a minimum essential list based on current bestevidence. Our objective was to determine a minimum list of *a priori* features for use in future models, to improve personalised prognosis and outcomes (table 2). We further +propose grouping these features into an *a priori* SCM, to determine if it would be appropriate to adjust for these variables in future studies (see SCM in online supplemental materials, summarised in figure 2).²⁶

A 2006 assessment of 3511 patients from 47 articles²⁷ suggested that the following were associated with a higher chance of seizure remission: prolonged febrile seizures, unilateral EEG epileptiform abnormalities, MRI abnormalities, hippocampal sclerosis, SPECT ictal focal hyperperfusion, PET TL abnormalities and extent of mesial temporal resections. Head trauma, postoperative epileptiform EEG changes, developmental abnormalities with hippocampal sclerosis and acute postoperative seizures were negatively prognostic.²⁷ Due to unadjusted confounders and heterogeneous definitions of features and seizure freedom, such findings were considered preliminary.^{27 28} Another meta-review of 10 reviews and meta-analyses identified lesional, abnormal MRI, focal seizures, complete resection, unifocal ictal EEG abnormality and extensive lobectomy versus tuberectomy, in patients with tuberous sclerosis, as positive predictors. Severe developmental delay, non-localised or bilateral EEG, FCD type 1, abnormal postoperative EEG and tuberectomies were negative predictors.²⁹

Lesional and abnormal MRI

A meta-analysis with low study heterogeneity concluded an OR of 2.5 (2.1 to 3.0) in favour of lesional cases with an overall RR of 1.4 (p<0.001; 2860 lesional, 697 non-lesional, 40 studies).³⁰ This trend was maintained for temporal and extratemporal subgroups. Similar results were found in other meta-analyses for occipital lobe epilepsy and in patients undergoing repeat surgery.

Figure 2 Outline of a structural causal model with latent variables for postsurgical seizure freedom. ET, extratemporal; FCD, focal cortical dysplasia; TL, temporal lobe; ILAE, international league against epilepsy; EZ, epileptogenic zone; FDG-PET, fluorodeoxyglucose positron emission tomography; EEG, electroencephalogram.

When lesions were defined by pathology, MRI abnormalities still had a non-significant trend to higher rates of seizure freedom.¹⁴ Another meta-analysis found a prognostic trend for abnormal pathology even in MRI-negative TLE (p=0.06, OR=1.36 (0.7 to 2.63)).²⁵ Within lesional-epilepsies, FCD type IIb is further associated with better outcomes.³¹

Although it is well established that lesional epilepsies have better postsurgical outcomes, ¹⁴ ²¹ ²² ²⁵ ³⁰ ³² ³³ and that complete lesionectomy is required ¹⁵ ²¹ ²² ³¹ ³⁴ ³⁵ the overwhelming majority of studies did not adjust for these.

A meta-analysis of 1999 patients across 35 articles, found outcomes after stereo-electroencephalogram (SEEG), were better than after subdural grids in patients undergoing temporal resections with lesional-MRI (seizure freedom for subdural grid (51.5% to 61.9%) vs SEEG (64.4% to 81.6%)).³⁶ Such a comparison is limited by ascertainment bias and the differing indications for these methods. Interactions between features have not been formally investigated in meta-analyses, except in specific subpopulations and imaging-EEG concordance.

Multimodal concordance

Five meta-analyses attested the value of concordant MRI and EEG,^{22 28 37-39} but none looked at the value of semiological concordance with other modalities. In our SCM, the prominent causal pathway node is multimodal concordance, which should be further studied as a valuable predictor of seizure freedom (figure 2).

Features of uncertain significance

Even meta-analyses may be underpowered, contributing to lack of statistical significance (online supplemental reference 64). PET results were mixed, but when concordant with EEG, PET could predict good seizure outcomes in non-lesional TLE with a positive predictive value of 71% (online supplemental reference 27).

Most meta-analyses reported non-significance of age at seizure onset, age at surgery and duration of epilepsy; however, there

is a mixed picture. For every extra year of duration of epilepsy at time of surgery, one metaregression reported overall odds of seizure freedom reduced by a factor of 0.83 and another analysing data from 1545 patients across 12 studies found shorter duration of epilepsy was associated with higher rates of postsurgical seizure freedom with RR ranging from 1.20 to 1.33 (online supplemental reference 57). Conversely, age at surgery and duration of epilepsy before surgery have been documented as having 'no association' with outcomes.²⁷

Longer duration of epilepsy may result in worse surgical outcomes due to selection bias (more difficult cases being deferred) or progressive cerebral damage. Strikingly, these three features of age at onset, age at surgery and duration of epilepsy have not been explored for three-way interactions.

Uncertain features can be reclassified into the essential or non-prognostic categories, when future studies that evaluate their value adjust for essential prognostic variables. While such models would clarify to what extent uncertain features may be prognostic over and above the essential features, this may not always be clinically desirable. For example, CNS infections may result in glial scars, and adjusting for imaging lesions may not be clinically desirable. Instead, an SCM could be used (see five-step plan below).

Non-prognostic features

Side of resection and sex were both investigated in 11 metaanalyses but were not prognostic, consistent with a meta-review from 2013.²⁹ Nevertheless, studies have continued to investigate them. Their use in predictive models risks overfitting and compromising generalisability.

Prognostication: common pitfalls and recommendations Unmodelled features

As there has not been significant improvement in postoperative outcomes, there are likely to be variables that have not been included .^{14 15} This is problematic for two reasons. First, studies

are unable to adjust for unknown confounders. Second, without these features, individualised predictions will not be accurate. It is, therefore, critical to discuss notable missing features.

No meta-analysis has investigated the role of family history or detailed seizure semiology despite the fact that monitoring seizure semiology is integral to presurgical evaluation. Five metaanalyses reviewed MRI-EEG concordance, but none considered semiological concordance; the closest corollaries were FBTCS, epilepsia partialis continua and epileptic spasms. Future studies should evaluate interactions between semiology, epileptogenic zone, imaging and neurophysiology in patients with both favourable and unfavourable surgical outcomes.

The importance of genetics in seizure-free outcomes is belied by relatively few publications. Individuals with mutations affecting synaptic transmission or ion channels (5 articles, 14 patients) were less likely to benefit from epilepsy surgery than those with mutations in the mechanistic target of rapamycin (mTOR) pathway (10 articles, 30 patients). This was despite six of eight patients with SCN1A mutations having concordant semiology and colocalised MRI lesions.⁴⁰ This meta-analysis was the only one to investigate genetics but it met our exclusion criteria as a large proportion of the small samples were lesional and no attempt at adjustments had been made (online supplemental tables).⁴⁰ High-frequency oscillations and fast ripples were also excluded in our final synthesis (figure 1) due to lack of appropriate effect sizes (online supplemental references 1,6 and online supplemental table 1). This should impel us towards multicentre data sharing in comprehensive models (figure 2).

Other notable factors omitted from meta-analyses include analysis of cerebral structural connectivity (online supplemental reference 65) and resection of the piriform cortex as part of anterior TL resections (online supplemental reference 66).

Towards personalised seizure freedom predictions

Meta-analyses have been widely used for over five decades to quantitatively integrate a collection of studies. They are useful to identify important features based on best-available evidence, but cannot identify new features or provide personalised quantitative prognostication. The majority of studies did not statistically correct for multiple comparisons, potentially introducing false positives.

Machine learning models and nomograms have been proposed to predict outcomes, without prospective validation.¹⁰ ¹² These models included three features of uncertain significance (duration of epilepsy, frequency of seizures and generalised seizures), one non-prognostic factor (sex) and one EPF (pathological aetiology); it is perhaps unsurprising that the model was not generalisable.¹³ We advocate, therefore, that to improve prognostication and outcomes, a five-step plan is adopted:

1. All relevant factors for epilepsy surgery outcome prediction are curated in an agreed international, multicentre endeavour, which include the essential prognostic list curated here. Practically, the preoperative clinical variables should take precedence over postoperative features, for example, *severe developmental delay* should take priority over *acute postoperative seizures* and *FCD type IIb* as the latter two are only known after surgery.

The final curated features would then form the starting point for building predictive models.

2. An SCM is devised that links outcomes to prognostic factors, to enable adjusting for EPFs when investigating other variables.

- 3. Identification of the degree to which polygenic risk scores, family history, seizure semiology and concordance may contribute to outcomes as indirect measures of seizure focality within the SCM.
- 4. Curation of an international multicentre, high-quality, anonymised retrospective and prospective data set of patients who have undergone epilepsy surgery with features and outcomes, similar to the retrospective collaboration on surgical histopathology.²⁴

A challenge in multicentre data collection will be to ensure that clinical and investigatory data are collected in a consistent and standardised manner, the details of which should be finalised in the protocols of the multicentre collaboration.

5. Machine learning models suitable for binary features and outcome classification on the international dataset.

The current study addressed the first two steps including R code to generate and amend SCMs (see online supplemental materials section on SCM for details on R codes for a simplified and complete SCM, and the two online supplemental files: SCM dagitty V.5 super simplified and SCM dagitty V.4). We can verify the value of EPFs and the SCM by building high-dimensional predictive models from international collaborations using SCM to adjust for covariates, subsequently showing that the resulting model predicts outcomes better than current methods.

Limitations

Meta analyses were our unit of analysis, each assuming sufficient homogeneity for estimation of pooled effects.¹⁸ Only Englishlanguage articles were searched and we did not check for overlaps between meta-analyses, we, therefore, quote upper limits of numbers of patients and individual studies. We adopted the same definitions of seizure freedom in terms of Engel or ILAE class and duration of follow-up as the meta-analyses, but inconsistent definitions and differing durations meant that we could not adjust for these. Most studies defined seizure freedom as Engel I, potentially compromising results, as this includes patients with ongoing seizures, implying incomplete resection of the epileptogenic zone or multifocal epilepsy.

Meta-analyses improve power, but unless they are hierarchical, lose the granularity of applicability to subgroups. To reduce type I errors, we did not include variables that were significant on unweighted tests, but this can reduce power. Nevertheless, moderate or lowquality evidence from meta-analyses can lead to strong assertions on whether a feature is prognostic (online supplemental reference 13).

Many variables in individual articles of epilepsy surgery outcomes are clinically widely used, contributing to a circular logic, whereby features already considered significant are pooled in meta-analyses. This is why we also discussed unmodelled features.

Whether a feature is of positive or negative prognostic value may be comparable across meta-analyses but due to differing patient populations and seizure-free definitions, diversity of models, unadjusted confounders and unobserved heterogeneity, the magnitude will almost certainly not be, precluding comparisons of effect sizes.²² Cochrane-Mantel-Haenszel stratification, multinomial logistic regression or projection to latent space³⁷ attempt to adjust for between-feature correlations; nevertheless, this mitigation is limited if important features are omitted. By not fully adjusting for covariates such as focal MRI abnormality or duration of follow-up, incorrect conclusions may be drawn. This limitation is well known³⁷ but has not been universally addressed with a definitive set of prognostic features—which was the objective of this study. As we looked at shared prognostic features across all types of operations and anatomical lobes, our minimum list of EPFs may underidentify variables that may be prognostic for a particular type of operation but not another, such a selective amygdalohippocampectomy as opposed to anterior TL resection. These variables can be identified by further predictive models that adjust for confounders using this list of EPFs. Ultimately interaction terms (deep machine learning models) could adequately stratify seizure freedom.

SUMMARY AND CONCLUSIONS

Personalised prognostication in epilepsy surgery outcomes has remained elusive and outcomes have not improved with time. We curated features into prognostic and uncertain groups and conclude that more meta-analyses on these are not needed; rather, we need predictive models that quantify their relative contributions to outcomes. We proposed a five-step plan towards personalised seizure freedom predictions and addressed the first two steps in this study. EPFs would be particularly useful in machine learning models of a big-data international collaboration to better predict epilepsy surgery outcomes.

Twitter Ali Alim-Marvasti @Alim_Marvasti and Vejay Niranjan Vakharia @ vejayvakharia

Acknowledgements We thank Narges Marvasti of NMar Graphic Design for help with illustrations.

Contributors AA-M conceived the study and conducted the literature search. All three authors screened titles and abstracts for inclusion criteria. AA-M screened for exclusion criteria and VNV and JSD checked decisions independently. AA-M wrote the manuscript, VNV and JSD edited the manuscript. JSD conceived and supervised the study. AA-M acts as guarantor. All authors approved the final manuscript.

Funding This study was funded by Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) (203 145Z/16/Z).

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study does not involve human participants.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information. All data pertaining to included studies are available in the main manuscript and supplementary materials. The list of titles and abstracts screened for inclusion criteria are available upon request as excel files.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/ licenses/by/4.0/.

ORCID iDs

Ali Alim-Marvasti http://orcid.org/0000-0002-7811-0344 Vejay Niranjan Vakharia http://orcid.org/0000-0002-9476-4225

REFERENCES

 Bell GS, de Tisi J, Gonzalez-Fraile JC, et al. Factors affecting seizure outcome after epilepsy surgery: an observational series. J Neurol Neurosurg Psychiatry 2017;88:933–40.

- 2 de Tisi J, Bell GS, Peacock JL, et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 2011;378:1388–95.
- 3 Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. *Lancet Neurol* 2008;7:525–37.
- 4 Epilepsy surgery outcome scales, 2016. Available: http://seizure.mgh.harvard.edu/ engel-surgical-outcome-scale/
- 5 Baud MO, Vulliemoz S, Seeck M. Recurrent secondary generalization in frontal lobe epilepsy: predictors and a potential link to surgical outcome? *Epilepsia* 2015;56:1454–62.
- Spencer SS, Berg AT, Vickrey BG, et al. Predicting long-term seizure outcome after resective epilepsy surgery: the multicenter study. *Neurology* 2005;65:912–8.
 Bossherk F, Schulz R, May T, et al. Lateralizing semiology predicts the seizure
 - Boesebeck F, Schulz R, May T, *et al.* Lateralizing semiology predicts the seizure outcome after epilepsy surgery in the posterior cortex. *Brain* 2002;125:2320–31.
- 8 Ferrier CH, Engelsman J, Alarcón G, et al. Prognostic factors in presurgical assessment of frontal lobe epilepsy. J Neurol Neurosurg Psychiatry 1999;66:350–6.
- 9 Yun C-H, Lee SK, Lee SY, *et al*. Prognostic factors in neocortical epilepsy surgery: multivariate analysis. *Epilepsia* 2006;47:574–9.
- 10 Jehi L, Yardi R, Chagin K, et al. Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: a retrospective analysis. Lancet Neurol 2015;14:283–90.
- 11 Ivanovic J, Larsson PG, Østby Y, et al. Seizure outcomes of temporal lobe epilepsy surgery in patients with normal MRI and without specific histopathology. Acta Neurochir 2017;159:757–66.
- 12 Senders JT, Staples PC, Karhade AV, et al. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg 2018;109:476–86.
- 13 Gracia CG, Chagin K, Kattan MW, et al. Predicting seizure freedom after epilepsy surgery, a challenge in clinical practice. Epilepsy Behav 2019;95:124–30.
- 14 Krucoff MO, Chan AY, Harward SC, et al. Rates and predictors of success and failure in repeat epilepsy surgery: a meta-analysis and systematic review. Epilepsia 2017;58:2133–42.
- 15 Englot DJ, Wang DD, Rolston JD, et al. Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis. J Neurosurg 2012;116:1042–8.
- 16 Ioannidis JPA. The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. *Milbank Q* 2016;94:485–514.
- 17 Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? *PLoS Med* 2010;7:e1000326.
- 18 Nakagawa S, Noble DWA, Senior AM, et al. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol 2017;15:1–14.
- 19 Shah A, Smith AF. Trial sequential analysis: adding a new dimension to meta-analysis. *Anaesthesia* 2020;75:15–20.
- 20 Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League against epilepsy: position paper of the ILAE Commission for classification and terminology. *Epilepsia* 2017;58:522–30.
- 21 Widjaja E, Jain P, Demoe L, *et al*. Seizure outcome of pediatric epilepsy surgery: systematic review and meta-analyses. *Neurology* 2020;94:311–21.
- 22 West S, Nevitt SJ, Cotton J, et al. Surgery for epilepsy. Cochrane Database Syst Rev 2019;101.
- 23 Chelune GJ, Naugle RI, Hermann BP, et al. Does presurgical IQ predict seizure outcome after temporal lobectomy? Evidence from the Bozeman epilepsy Consortium. *Epilepsia* 1998;39:314–8.
- 24 Lamberink HJ, Otte WM, Blümcke I, et al. Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: a retrospective multicentre cohort study. *Lancet Neurol* 2020;19:748–57.
- 25 Wang X, Zhang C, Wang Y, et al. Prognostic factors for seizure outcome in patients with MRI-negative temporal lobe epilepsy: a meta-analysis and systematic review. Seizure 2016;38:54–62.
- 26 Vandenbroucke JP. The history of confounding. *Soz Präventivmed* 2002;47:216–24.
- 27 Beghi E, Tonini C. Surgery for epilepsy: assessing evidence from observational studies. *Epilepsy Res* 2006;70:97–102.
- 28 Tonini C, Beghi E, Berg AT, et al. Predictors of epilepsy surgery outcome: a metaanalysis. Epilepsy Res 2004;62:75–87.
- 29 Zhang J, Liu W, Chen H, *et al*. Identification of common predictors of surgical outcomes for epilepsy surgery. *Neuropsychiatr Dis Treat* 2013;9:1673.
- 30 Téllez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F, et al. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. *Epilepsy Res* 2010;89:310–8.
- 31 Chen J, Chen X, Huang C, et al. Predictors of seizure recurrence in patients with surgery for focal cortical dysplasia: pairwise and network meta-analysis and trial sequential analysis. Childs Nerv Syst 2019;35:753–67.
- 32 Harward SC, Chen WC, Rolston JD, *et al*. Seizure outcomes in occipital lobe and posterior quadrant epilepsy surgery: a systematic review and meta-analysis. *Neurosurgery* 2018;82:350–8.
- 33 Pellino G, Gencarelli J, Bertelli S, et al. Epilepsy in isolated parenchymal neurocutaneous melanosis: a systematic review. Epilepsy Behav 2020;107:107061.
- 34 Rowland NC, Englot DJ, Cage TA, et al. A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. J Neurosurg 2012;116:1035–41.

Epilepsy

- 35 Englot DJ, Rolston JD, Wang DD, et al. Seizure outcomes after temporal lobectomy in pediatric patients. J Neurosurg Pediatr 2013;12:134–41.
- 36 Toth M, Papp KS, Gede N, et al. Surgical outcomes related to invasive EEG monitoring with subdural grids or depth electrodes in adults: a systematic review and metaanalysis. Seizure 2019;70:12–19.
- 37 Ibrahim GM, Morgan BR, Fallah A. A partial least squares analysis of seizure outcomes following resective surgery for tuberous sclerosis complex in children with intractable epilepsy. *Childs Nerv Syst* 2015;31:181–4.
- 38 Fallah A, Guyatt GH, Snead OC, et al. Predictors of seizure outcomes in children with tuberous sclerosis complex and intractable epilepsy undergoing resective epilepsy surgery: an individual participant data meta-analysis. PLoS One 2013;8:e53565.
- 39 Hu W-H, Zhang C, Zhang K, WH H, Zhang K, et al. Hemispheric surgery for refractory epilepsy: a systematic review and meta-analysis with emphasis on seizure predictors and outcomes. J Neurosurg 2016;124:952–61.
- 40 Stevelink R, Sanders MW, Tuinman MP, et al. Epilepsy surgery for patients with genetic refractory epilepsy: a systematic review. Epileptic Disord 2018;20:99–115.

Page **1** of **193**

Supplementary Materials

Multimodal Prognostic Features of Seizure-Freedom in Epilepsy Surgery: Towards Personalised Seizure-Freedom Predictions

Ali Alim-Marvasti MRCP¹⁻⁴, Vejay Vakharia MRCS^{1,4} PhD, John S Duncan DM FRCP FMedSci^{1,4}

¹ Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK

Correspondence

Email: a.alim-marvasti@ucl.ac.uk

² Department of Medical Physics and Biomedical Engineering, UCL

³ Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS)

⁴ National Hospital for Neurology and Neurosurgery, London, UK

Page **2** of **193**

Table of Contents

Sι	upplem	entar	y Materials	. 1
			Prognostic Features of Seizure-Freedom in Epilepsy Surgery: Towards Personalised edom Predictions	. 1
1	Sup	plem	entary Methods	. 5
	1.1	Sear	ch Strategy	. 5
	1.2	Excl	usion Criteria	. 5
	1.3	GRA	DE Quality of Evidence Scoring	. 6
	1.4	Colle	ection of Effect Sizes	. 6
	1.5	Num	bers of studies and participants	. 6
	1.6	Estir	nating Missing Effect Sizes	. 7
	1.7	Stru	ctural Causal Model	. 7
2	Sup	plem	entary Results	. 8
	2.1 Surger		plementary Table 1: Individual Meta-Analyses of Prognostic Features for Epilepsy	. 9
	2.1.3		*Chelune, Naugle (20) (1998)	
	2.1.2	2	Excluded Devous, Thisted (23) (1998)	
	2.1.3	3	Tonini, Beghi (24) (2004)	
	2.1.4	4	Excluded as superseded article ⁴	
	2.1.	5	Willmann, Wennberg (26) (2006)	
	2.1.	6	Willmann, Wennberg (27) (2007)	18
	2.1.	7	Téllez-Zenteno, Ronquillo (5) (2010)	20
	2.1.	8	Ansari, Tubbs (18) (2010)	21
	2.1.9	9	Ansari, Maher (28) 2010	23
	2.1.	10	Rowland, Englot (29) (2012)	25
	2.1.	11	Englot, Wang (30) (2012)	27
	2.1.	12	Yin, Kang (31) (2013)	30
	2.1.	13	Englot, Rolston (32) (2013)	31
	2.1.	14	Zhang, Hu (33) (2013)	34
	2.1.	15	Josephson, Dykeman (34) (2013)	36
	2.1.	16	Fallah, Guyatt (35) (2013)	37
	2.1.	17	Englot, Breshears (37) (2013)	10
	2.1.	18	Kuang, Yang (38) (2013)	13
	2.1.	19	Excluded ³⁹ (2013): Review of Reviews	14
	2.1.2	20	Hu, Zhang (40) (2013)	15
	2.1.2	21	Excluded Höller, Kutil (6) (2015)	16

Page **3** of **193**

2.1.	22 Ibrahir	m, Morgan (36) (2015)4	17
2.1.	23 Exclud	led Bonney, Glenn (41) (2015)5	50
2.1.	24 Exclud	led West, Nolan (2) (2015)5	50
2.1.	25 Ruan,	Yu (42) (2015)	51
2.1.	26 Cao, Li	iu (43) (2016)	53
2.1.	27 Wang,	, Zhang (44) (2016)5	55
2.1.	28 Giridh	aran, Horn (45) 2016 5	59
2.1.	29 Hu, Zh	nang (46) 2016 6	51
2.1.	30 Chen a	and Guo (47) (2016)6	53
2.1.	31 Exclud	led Ampie, Choy (48) (2016)6	55
2.1.	32 Harwa	ard, Chen (49) 20176	56
2.1.	33 Krucof	ff, Chan (50) (2017)6	57
2.1.	34 * Exclu	uded Nevitt, Staba (1) (2017)7	0'
2.1.	35 *Exclu	ided Genetic Stevelink, Sanders (7) (2018)7	1′
2.1.	36 Exclud	led Pilipović-Dragović, Ristić (9) (2018)7	2
2.1.	37 Jain, T	omlinson (52) 2018	73
2.1.	38 Shan,	Fan (53) (2018)	74
2.1.	39 Shang	-Guan, Wu (54) (2018)7	<i>'</i> 6
2.1.	40 Kobula	ashvili, Kuchukhidze (55) (2018)7	78
2.1.	41 Harris,	, Phillips (56) 2019	30
2.1.	42 Bjellvi,	, Olsson (57) (2019)	32
2.1.	43 West,	Nevitt (3) 2019	34
2.1.	44 Chen,	Chen (58) (2019)	92
2.1.	45 Toth, F	Рарр (59) 2019 9	94
2.1.	46 Exclud	led Pellino, Gencarelli (8) (2020)9) 5
2.1.	47 Widjaj	ja, Jain (60) 20209	96
2.1.	48 Exclud	led Brændholt and Jensen (61) (2020)9	99
2.1.	49 Lambe	erink, Otte (62)(2020))0
2.1.	50 Remic	k, Ibrahim (63) (2020))5
2.2	Supplemen	tary Table 2: Individual Prognostic Features Across All Meta-Analyses 10)7
2.3	Supplemen	tary Table 3: Essential Prognostic Features for Epilepsy Surgery (EPF)	51
2.4	Structural C	Causal Models	37
2.4.	1 A Simp	plified SCM 18	38
2.4.	2 A Mor	e Complete SCM 18	39
Referenc	æs		90

Page **4** of **193**

Page **5** of **193**

1 Supplementary Methods

1.1 Search Strategy

The free-text search terms used to search PubMed and MEDLINE were:

"epilep*" AND "surg*" AND ("seizure-free" OR "outcome*") AND "meta analys*"

This returned 202 results. With the Humans filter, this reduced to 174, and with a further English language filter, there were 172 articles, of which 111 were meta-analyses. There were a further nine articles included from a non truncated free text search:

"epilepsy" AND "surgery" AND ("seizure-free" OR "outcome*") AND "meta analysis*"

We also used the following MeSH terms:

"Treatment Outcome"[Mesh] AND "surgery" [Subheading] AND "Epilepsy"[Mesh] AND "Meta-Analysis" [Publication Type]

This returned 45 results. Humans and Meta Analyses filters returned the same 45, English language filter reduced this to 43.

Additionally, the same free-text terms were used to search the Cochrane database

Returning 227 Cochrane reviews, of which 104 remained after using the Neurology topic filter. 4 of these were duplicates from PubMed search, leaving 100 unique Cochrane reviews to be screened for inclusion criteria.

After removing duplicated, the above were screened for inclusion criteria based on title and abstract, and if inclusion criteria met, then full-text reviewed for exclusion criteria and prognostic features to extract.

1.2 Exclusion Criteria

- Generalised epilepsy
- Non-resective interventions such as disconnections, neuromodulation, and ablative therapies
- Resections performed primarily for other indications (not directly on outcomes)
- Superseded meta-analyses (2014 Cochrane review replaced in 2017¹ or another 2015 Cochrane review² updated in 2019³, and 2005 article updated in 2010^{4, 5})
- Conference presentations and abstracts
- If there was clear and serious concern about risk of bias and unadjusted confounders for any specific feature e.g., attempting meta-analyses using small number of studies/patients or for a feature which was heavily confounded by known prognostic factors.^{1, 6-8}
- No meta-analysis attempted or no effect sizes
- Meta-analysis pooling data from only a single study (e.g. surgical techniques³).

Page 6 of 193

• Although we included pooled unweighted crude effect sizes of features from individual participant meta-analyses that were non-significant, we excluded such features if they were significant,⁹ as unweighted measures can overestimate true effect sizes (Cochran-Mantel-Haenszel confidence intervals are wider).

We did not exclude hemispherectomies or multicentre meta-analyses.

1.3 GRADE Quality of Evidence Scoring

Baseline GRADE quality of each feature from individual meta-analysis were set at "low" (++ out of ++++) by default due to an overwhelming majority of observational studies, except where the majority of constituent studies were randomised or the pooled number of patients were large (>1000) and analyses to investigate bias and/or heterogeneity were performed through sensitivity or subgroup analyses, in which case the preliminary rating for the feature was "moderate" (+++).

+ = Very Low. ++ = Low. +++ = Moderate. ++++ = High.¹⁰⁻¹⁷

When performing GRADE scoring, regarding indirectness of evidence, although it may be argued that because of the presumed differences in the maturing brain, paediatric and adult epilepsy surgery populations should be investigated separately or as subgroups, we did not rate down for indirectness of evidence if adult and paediatric populations were mixed (Supplementary Table 1 caption).

1.4 Collection of Effect Sizes

If multiple subgroups were reported, e.g., Engel I and Engel Ia for multiple years of follow-up, then we collected the effect size estimates for the strictest outcome (Engel IA) and for the longest duration of follow-up; but where relevant, did consider all the effect sizes when considering inconsistency on the GRADE scale. Where the Cochrane reviews adjusted effect seizes for outcomes, this was quoted. We considered outcomes worse than Engel I or follow-up durations less than 12 months as indirect evidence of good outcomes.

1.5 Numbers of studies and participants

For calculation of medians and IQR of number of individual studies and participants in the main manuscript results section, there were 2 missing datapoints not reported in the meta-analyses. These were imputed using the medians of the rest of the datapoints for numbers of individual articles and numbers of participants.^{18, 19} For this calculation, the 8 multicentre study was considered to be from 8 articles ²⁰.

Where there were no numbers for participants or studies for a specific feature in a meta-analysis, total participants across all features in the meta-analysis were used, this, along with the possibility of individual study overlap across meta-analyses, results in the frequency counts of participants and individual studies in main manuscript Tables 2 through 4 to be upper bound estimates.

For summary Table 1 in the main manuscript, we summed all the total individual studies and participants for each category of meta-analysis, irrespective of overlap of individual studies between meta-analyses, and so these are upper bounds of the number of unique individual studies and participants. If a meta-analysis used more than one method, the total number of studies and patients were duplicated for both methods. This was because some studies did not specify exactly

Page **7** of **193**

which method was used for which feature and how many studies/participants that involved. The missing values were not imputed for main manuscript Table 1, and were defaulted to zero.

In the few cases of uncertain statements on specific features without forest plots and without quoting effect sizes or the univariate test(s) used, the features were excluded with comments (in red colour in Supplementary Table 1).

1.6 Estimating Missing Effect Sizes

When calculating odds ratios for raw data and their confidence intervals, where the effect size was not provided but the raw data was, these were calculated according to Altman 1991.²¹ These are marked by a ^c to indicate the effect size was calculated from the data provided in the literature, and a * where the confidence interval was also estimated.

1.7 Structural Causal Model

The structural causal model outline was designed using dagitty from daggity.net.²² We used two different levels of complexity, one encompassing all possible relationships and the other simplified to generate causal pathways that are easier to follow diagrammatically. These codes, attached as text files, can be copy-pasted onto http://www.dagitty.net/dags.html to reproduce the causal pathway figures included in the supplementary results below. The R codes used to generate the figures, for reproducibility and future amendment, can also be obtained from pasting the contents of the attached text files to the above website.

Page **8** of **193**

2 Supplementary Results

The Table of 44 meta-analyses and their features with GRADE quality of evidence scores are presented in Supplementary Table 1. Supplementary Table 2 shows the same data after collating and reorganising similar features into seven categories.

Page **9** of **193**

2.1 Supplementary Table 1: Individual Meta-Analyses of Prognostic Features for Epilepsy Surgery

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	sing the GRA	ADE guidelines	13	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁵	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Author, Year of publication Years of literature search	e.g. 12 studies, 100 patients, ILAE 1 or 2 outcomes at least 12months post- surgery random- effects model	Feature 1 120 patients in the 7 studies from which feature 1 was extracted Feature 2 200 (9)	TLE, FLE Age Other	НП, ОП [95% СІ]	Heterogenous outcome follow-ups Exclusion of known prognostic factors and statistical adjustments Selective Reporting Serious -1 V. serious -2	Widely spread effect sizes as assessed by point estimates, CI, and statistical tests of heterogeneity. Serious -1 V. serious -2	Populations, interventions and/or outcomes being studied differ from those of interest: e.g.: unseparated paediatric and adult ages, less than 12 months or more than ILAE 2	Large and/ or skewed Cl Serious -1 V. serious -2	"undetected" "suspected" -1 "strongly suspected" -2	at least a two-fold reduction or increase in risk (OR>4 or <0.25) +1 5-fold or more change in RR (OR >10 or <0.1) +2	Dose response gradient +1	All plausible residual confounders or biases would reduce a demonstrated effect, or suggest a spurious effect when results show no effect. +1	High ++++ Moderate ++ Low + Very Low

Page **10** of **193**

Meta-	# included	Feature	Population:	Effect		Ratir	ig the quality of	the meta-analy	sis evidence u	sing the GR/	ADE guidelines	13	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Studies	wodel(3)	sidules											

Page **11** of **193**

2.1.1 *Chelune, Naugle (20) (1998)

Chelune, Naugle (20) 1998 Baseline Quality: +++	8 centres. 1034 patients Outcome: no more than 2 post- operative seizures excluding auras at 6 months or 1 year.	Low IQ total sample 1034 (8) IQ scores were on average 2.3 lower in not seizure-free group (p<0.009)	TLE Age ≥16 yrs With and without structural lesions	NS RR 0.66 [0.54, 0.94*]	presence of structural lesions interaction checked	Multicentre not meta-analysis	-2 both duration of follow-up and definition of seizure freedom differ	No CI provided, but could be estimated from data presented	-1 suspected, untested	+1 Higher seizure- freedom rates in higher IQs (their table 3)	+1 Adjusted for lesions	++
	Individual participant one-way ANOVA.	Low presurgical IQ ≤75 in patients with structural lesions other than HS (cf high IQ and lesional) 150 lesional (8)		RR 0.26 [0.14, 0.50]*							Absence of significant interaction with centres, or duration of epilepsy	+

*Found though other sources (see PRISMA flowchart)

Page **12** of **193**

2.1.2 Excluded Devous, Thisted (23) (1998)

Excluded as not directly on outcomes, and the data presented on outcomes are proportions of seizure freedom with SPECT, but no other baseline to compare to derive effect sizes. Abstract only.

Page **13** of **193**

2.1.3 Tonini, Beghi (24) (2004)

Meta-	# included	Feature	Population:	Effect		Rating	the quality of t	he meta-analys	is evidence us	ing the G	RADE guidelin	es ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Tonini, Beghi (24) (2004) 1984-2001 Odds ratios inverted so that OR>1 Represents good outcomes +++	47 studies 10 were prospective 2 were both retro and prospective total of 3,511 patients >12 months follow up Fixed- effects and mixed effects	febrile seizures (5)	TL and ET Subgroup analysis showed no change when only TL was considered Children and adults from 1 through to 86 years	OR 2.08 [1.2, 3.7]	sample size of at least 30 patients, MRI performed in at least 90% of cases, English, Italian, French, German, or Spanish	Q=7.9, p=0.093	mixed populations -1 Engel outcomes in 22 studies and other definitions in 25						÷
		mesial temporal sclerosis in TLE (15) +++		OR 2.13 [1.57, 2.86]		Q=21.9, p=0.082							++
		Tumours (13) +++		OR 1.74 [1.25, 2.5]		Q=19.3, p=0.08							++

Page **14** of **193**

abnormal MRI (9) +++	OR 2.27 [1.54, 3.45]	One outlier with poor results but wide CI Q=4.9, p=0.768		++
extensive surgical resection (10) +++	OR 4.27 [2.06, 8.85]	Q=26.9,p=0.001 → used random effects		++
EEG/MRI concordance (6)	OR 2.36 [1.07, 5.26]	Heterogenous Q=11.4, p=0.044 → used random effects		+
Post operative discharges (3)	OR 0.28 [0.08, 0.95]	-1 @bias : Only 3 studies Heterogenous Q=6.7, p=0.035 → random effects		+
Intracranial monitoring (6)	OR 0.37 [0.22, 0.63]	Q=3,p=0.7		+
Neuro- migrational,defects (6)	NS OR 0.66 [0.42, 1.03]	Q=9.8, p=0.08		+
CNS infections (2)	NS OR 0.73 [0.29, 1.82]	-1 @Bias: Only 2 studies		+
		Q=2.1, p=0.146		

Page **15** of **193**

Vascular disorders (3)	NS OR 0.66 [0.30, 1.46]	-1 @bias: 3 studies Q=945, p=0.6			+
interictal spikes (3)	NS OR 1.82 [0.86, 3.88]	-1 @bias: 3 studies	-1 skewed		+
side of resection (4)	NS OR 0.85 [0.54, 1.34]				+

Page **16** of **193**

2.1.4 Excluded as superseded article ⁴

See exclusion criteria. This article was superseded by ²⁵

Page **17** of **193**

2.1.5 Willmann, Wennberg (26) (2006)

Meta-	nalysis Studies, Patients # of total		Population:	Effect		Rating	the quality of th	e meta-analysis	evidence usi	ng the GI	RADE guideling	es ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies		# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Willmann, Wennberg (26) (2006) 1992-2003	22 studies 121 pts Engel 1 Studies exclusively reporting on patients with brain tumors or on children were excluded Engel I Unclear if fixed or mixed effects but likely fixed effects CMH	¹ H spectroscopy: ipsilateral magnetic spectroscopy abnormality (ipsilateral to lobe of resection)	TLE 3-66 years old	OR 4.9 [1.97– 12.17]	Fifteen centers performed chemical shift imaging and seven centers used single-voxel spectroscopy. Most studies were obtained at 1.5 T	Q=2.7	-2 The EZ was mostly defined by EEG data	-1 Large Cl		PPV = 82% +1 OR>4			+
		lpsilateral magnetic spectroscopy	Non- lesional MRI and TLE	NS									+

Page **18** of **193**

2.1.6 Willmann, Wennberg (27) (2007)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analy	sis evidence u	sing the GR	ADE guideline	5 ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Willmann, Wennberg (27) (2007) 1992-2006 Studies exclusively reporting on patients with brain tumors or on children were excluded.	46 articles (11 TLE and ET, 35 TLE) 153 patients Follow up >12 months Unweighted crude odds ratios	FDG-PET (46) FDG-PET (35)	TLE and ET Adults TLE Adults	NS Unweighted crude NS Unweighted crude	-1 None of the odds ratios of any test combination was significant The analyses were complicated by significant differences in study design and often by lack of precise patient data. the tracer injection dose from 1 to 15 mCi, and the time for data acquisition after tracer injection from		PET does not appear to add value in patients localized by ictal scalp EEG and MRI.						+ +
		Left vs right temporal	TLE Adults	NS	5 to 60 min								++

Page **19** of **193**

lobe surgery	Unweighted crude					
	OR 0.569 [0.26, 1.24]					

Page **20** of **193**

2.1.7 Téllez-Zenteno, Ronquillo (5) (2010)

Téllez- Zenteno, Ronquillo (5) (2010) 1995-2007 +++	40 studies 3557 (2860 lesional and 697 non- lesional cases) Engel I	Lesional vs non-lesional TL lesional vs TL non- lesional	Adults and children	OR 2.5 [2.1, 3.0] RR 1.4 OR 2.7 [2.1, 3.5]	-1 Heterogenous SF definitions. But similar results in subgroups: adults, children, TL,	Q=35.6, p=0.43	They also investigated whether lesion definition by MRI or histopathology made a difference – it didn't	? non lesional were significantly higher in ET cases (45%) than in TL (24%)		++
	>1 year follow-up Random- effects	ET lesion vs ET non lesion		OR 2.9 [1.6, 5.1]	ET. Two studies favoured non- lesional epilepsy					

Page **21** of **193**

2.1.8 Ansari, Tubbs (18) (2010)

Meta-	# included	Feature	Population:	Effect Sizes		Rating	the quality of t	he meta-analys	is evidence us	ing the GF	ADE guideline	es ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	(seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Ansari, Tubbs (18) (2010) >1990 +	? 131 patients Engel classification Outcome at 1 year Fisher's exact and ANOVA	age at onset	adults extratemporal non lesional	NS	-1 Small sample sizes form multiple centres, heterogenous outcome reporting								+
		age at surgery		NS									+
		epilepsy duration		NS									+
		focal vs generalised seizures 62 ()		NS									+
		FCD or gliosis 115 ()		NS									+
		Frontal, central, posterior or		NS									+

Page **22** of **193**

other resections 81 ()						
Lateralisation	NS					+
Abnormal MRI 61 ()	NS					+ excluded as ET non lesional population
Intracranial monitoring 108 ()	NS					+

Page **23** of **193**

2.1.9 Ansari, Maher (28) 2010

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analys	sis evidence us	sing the GF	ADE guideline	es ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Ansari, Maher (28) 2010	17 studies 95 pts	Age at seizure onset <95 (<17)	ET nonlesional children	NS ^u			?outcome duration of follow up		-1 suspected				+
1990-2009	Engel I Univariate ANOVA and Fisher's exact tests	Mean duration of epilepsy <95 (<17) At age surgery and outcome <95 (<17)		NS ^u NS ^u	Report as marginally significant but NS p =0.073								+ +
		Seizure semiology grouped into complex partial, generalized, infantile spasms and other which included simple partial and mixed types. 65 (?)		Did not perform CMH or meta- analysis besides univariate Fisher's	No direct results between groups								Rejected as significant on univariate tests only
		Histopathology: cortical		As above									As above

Page **24** of **193**

dysplasia, gliosis, oth (included neuronal le encephaliti polymicrog ulegyria, chronic inflammatii and "norma	ss, s, yria,						
Types of surgery (frontal, posterior a other)	nd	marg signi but N =0.0 univa whicl not b signi on multi CMH	ificant ivariate /				+
Seizure lateralizatio	n NS	S ^u					+
Abnormal		bias	onal				+ rejected as it was ET non lesional
Intracrania monitoring	NS	Su					+

Page **25** of **193**

2.1.10 Rowland, Englot (29) (2012)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analy	sis evidence u	sing the GRA	ADE guidelines	13	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Rowland, Englot (29) (2012) 1971 to 2011 +++	37 studies 2,014 patients Engel outcomes random- effects meta- analysis	Partial (focal) vs generalised seizures (10)	Adults and Children with FCD	OR 1.46 [1.18, 1.82]					-1 No funnel plots/trim fill etc Only 1 forest plot shown for complete resection				++
		Temporal lobe resections (20) Abnormal MRI		OR 1.35 [1.13, 1.61] OR 1.67									++
		(14) FCD Type II (Palmini) (17)		[1.33, 2.16] OR 1.38 [1.22, 1.57]									++

Page **26** of **193**

Complete resection (15)	OR 3.91 [3.03, 5.32]					++
Age (<18 yrs vs >18yrs) (13)	NS OR 1.14 [0.96, 1.35]					++
Unilateral EEG vs bilateral ictal EEG (10)	NS OR 1.03 [0.82, 1.31]					++

Page **27** of **193**

2.1.11 Englot, Wang (30) (2012)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analy	sis evidence u	sing the GR	ADE guideline	S ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Englot, Wang (30) (2012) 1990-2010 Significance set at 0.02 +++	21 studies 1,199 patients Engel I >48 months Chi- squared/t- tests then random- effects model	Lesional 825 (16) ++	FLE Adults and Children	RR 1.67, [1.36, 28.6]	Lesion: tumour, CD, or other lesion vs non-lesional: traumatic, infectious			-1 Wide CI	Funnel plots: undetected (not shown)				+
		abnormal pre-operative MRI 627 (14)		RR 1.64, [1.32, 2.08]									++
		localised frontal resections (vs more extensive frontal +/- extrafrontal resections) 651 (11)		RR 1.71, [1.26, 2.43]									**

Page **28** of **193**

								1
le	omplete ssion xcision	RR 1.99, [1.47, 2.84]						++
34	45 (7)							
ge se	ocal vs eneralized eizure emiology 69 ()	NS P=0.05 magnitude not provided			-1 Magnitude not provided and p value borderlin			+
Aq	ıge <18 yrs s >18 yrs	NS 43% vs 54% p=0.22						++
Di	Duration of pilepsy	NS	-1 Limited info					+
	eizure equency	NS						+
Sil SL	ide of urgery	NS						+
ge	ender	NS p0.99 Males 53% females 54%						++
in El pe	tracranial EG erformed	NS	-1 Limited info					+
L1 vie	TM with ideo-EEG	NS						+

Page **29** of **193**

localised ictal EEG	NS					+
lateralised interictal EEG	NS					+
focal PET abnormality	NS					+
intraoperative EcOG 1024 ()	NS p=0.14 Pooled ind particicpant OR° 1.23 [0.95, 1.62]					+++

Page **30** of **193**

2.1.12 Yin, Kang (31) (2013)

Meta-analysis	# included	Feature	(seizur	Effect Sizes			Rating t	he quality of the meta-an	alysis evidence using t	he GRADE guideli	nes 13		
Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	(seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Yin, Kang (31) (2013) 1995-2012	22 studies 2171 patients >6 months follow up: majority over 1 year, 3 studies <1 year Fixed- effects	lesion on neuroimaging	TL and ET Children and adults	OR 2.03 [1.67, 2.47]	English and Chinese studies	l ² =0%	-1 short follow ups: 3 studies <1 year follow up		undetected				++
	11 studies 1228 pts +++	lesion in temporal resection (11)	TLE Children and adults	OR 1.76 [1.34, 2.32]		I ² =19%, p=0.26 Note that the caption to Fig 3 doesn't fit with the p and I-squared values in the forest plot							**
	5 studies 203 pts	lesion in extratemporal resection (5)	ET Children and adults	OR 2.88 [1.53, 5.43]		l ² =0%							+

Page **31** of **193**

2.1.13 Englot, Rolston (32) (2013)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analy	sis evidence u	sing the	GRADE guidel	ines 13	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Englot, Rolston (32) (2013) 1993-2012 ++	36 studies 1,318 patients Engel I minimum of 1 year random- effects model after significance on univariate tests.	lesional (FCD, tumour, tuber, vascular malformation) vs non lesional (included HS, trauma, infection) 945 (29) focal seizures (partial) vs generalised 425 (11) without daily seizures 103 (5)	Paediatric TL	OR 1.08 [1.02, 1.15] OR 1.36 [1.20, 1.56] none given OR ^c individual participant 2.98	-1 small number of studies reported this: no		-1 Lesional excludes HS		Funnel plots: undetected				+ ++ ++
		abnormal MRI 802 (26)		[1.24, 7.16]] OR 1.27 [1.16, 1.40]	formal CMH Meta- Analysis attempted.								++

Page **32** of **193**

Age (17)	NS t-test	Individual				+
Gender/sex: male vs female 553 (14)	NS Pooled individual participant (crude) OR° 1.22 [0.90, 1.85]	participant pooling of data, chi- squared tests or paired t tests failed to show significant and so CMH random				++
mean duration of epilepsy (12)	NS t-test	effects not performed				++
localising ictal EEG	NS					++
445 (14)	Pooled crude individual participant OR ^c 1.23 [0.73, 2.06]					
side of surgery	NS					++
537 (15)	OR ^c crude 1.07 [0.72, 1.60]					
use of electrocorticography (ECoG) 462 (13)	NS OR ^c crude 1.31 [0.84, 2.04]					++
Type of surgery: ATL vs lesionectomy vs	"NS"					Excluded as no data looking at

Page **33** of **193**

lesionectomy plus additional vs SAH			the substrata CMH. In
			CMH. In
			the text
			mentioned
			and in
			table p=0.02
			p=0.02
			but no
			meta
			analysis available.
			available.

Page **34** of **193**

2.1.14 Zhang, Hu (33) (2013)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of t	he meta-analys	is evidence us	ing the GR	ADE guidelines	¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Zhang, Hu (33) (2013) 1990-2012	13 studies 229 patients Engel as reported Mean or median follow up of>12months Random and fixed-effects models	tuberectomy vs lobectomy 189 (10)	tuberous sclerosis	OR 0.51 [0.27, 0.99]		l ² =0% as few numbers	-1 Heterogenous definitions of seizure freedom without sensitivity analyses	-1 CI approaches OR of 1	-1 No funnel plots				+
		seizure onset before 12 months of age 200 (10) unilateral		OR 0.47 [0.24, 0.92] OR 2.48		I ² =0% as few numbers							+
		ictal EEG 159 (8) unilateral interictal		[1.17, 5.24] OR 2.42 [1.11,	1.17, .24] DR 2.42	l ² =0% as few numbers							+

Page **35** of **193**

127 (6)						
<5yrs vs >5yrs of age (at surgery) 194 (11)	NS OR 1.05 [0.58, 1.88]					+
Gender: males vs females 186 (10)	NS OR 0.94 [0.52, 1.71]					+
partial vs generalised 65 (6)	NS OR 1.15 [0.42, 3.11]					+
Normal vs mental retardation 108 (4)	NS OR 1.36 [0.61, 3.05]	@bias: no definition of "mental retardation"				+
number of cortical tubers <=4 vs >4 105 (4)	NS OR 1.12 [0.49, 2.57]					+
intracranial EEG performed vs not preformed 144 (7)	NS OR 1.6 [0.76, 3.37]					+
Infantile spasms (IS) 157 (7)	OR 0.45 [0.24, 0.85	l ² =45%				+

Page **36** of **193**

2.1.15 Josephson, Dykeman (34) (2013)

Meta-	# included	Feature	Population:	Effect		Ratir	g the quality of	the meta-analy	sis evidence u	sing the GRA	DE guidelines	13	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Josephson, Dykeman (34) (2013)	11 studies 1,203 patients Engel I outcomes but also Engel I and II fixed- effects	ATLR vs SAH +++	TLE Children and adults	RR 1.32 [1.12, 1.57] Random effects: RR 1.36 [1.09, 1.7]	The result remained significant when 2 studies that contained fewer than 15 participants in at least 1 arm were excluded and in analyses restricted to hippocampal sclerosis and when a study specific to paediatric patients was excluded	(I ² = 29%; df =10, p=0.17	children and adults – but also excluded paediatric only study and results were very similar		undetected	summary risk difference (8%, 95% CI 3%–14%) translates to an NNT of 13 (95% CI 7–33) for 1 additional patient to achieve an Engel Class I outcome following ATL			+++
	10 studies 1092 pts	ATL vs SAH +++	TLE and HS subgroup Children and adults	RR 1.26 [1.05, 1.51].		l²=0%							+++

Page **37** of **193**

2.1.16 Fallah, Guyatt (35) (2013)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analys	sis evidence usi	ng the GR	ADE guideline	S ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Fallah, Guyatt (35) (2013) Same data as in Ibrahim, Morgan (36)	20 articles 181 pts Engel I Univariate meta- analysis Bivariate logistic regression for each eligible independent variable, adjusting for the maximum length of follow-up.	absence of generalised semiology	Tuberous Sclerosis At least 90% less than 19 years old	OR = 3.1 [1.2, 8.2]	-1 Although a list of biologically plausible predictors was developed a priori; due to the small sample sizes of individual studies (median: 7; range 3–25 patients), and the variable inclusion of predictors across	See publication bias comments on inability to assess hetergoeneity			-1 Suspected but "because of the very small number of participants per study, we could not assess between- study heterogeneity or publication bias."				+
		no or mild developmental delay		OR = 7.3 [2.1– 24.7]	studies, unable to conduct a multivariable analysis or			-1 Wide CI		+1 OR>4			++
		Unifocal ictal scalp EEG abnormality		OR = 3.21, [1.35– 7.58]	adjust								+

Page **38** of **193**

MRI/EEG concordance	OR = 4.9, [1.8– 13.5]		-1 Wide CI	+1 OR>4		+
						+
Gender (female)	NS OR 1.09 [0.48, 2.48]					+
age at seizure onset (Log base 10)	NS OR 1.52 [0.77, 2.99]					+
Pre-op seizure frequency (Log base 10)	NS OR 2.3 [0.34, 15.51]					+
infantile spasms	NS OR 0.84 [0.35, 2.03]					+
age at surgery (Log base 10)	NS OR 1.21 [0.56, 2.62]					+
preoperative IQ	NS OR 1.01 [0.94, 1.08]					+
less tuber burden	NS OR 1.01 [0.96, 1.07]					+

Page **39** of **193**

int EE	o or unifocal terictal scalp EG bnormality	NS OR 1.54 [0.73, 3.26]	-1 @Bias: unusual feature dichotomization See publication bias comments on inability to assess hetergoeneity				+

Page **40** of **193**

2.1.17 Englot, Breshears (37) (2013)

Meta-	# included	Feature	Population:	Effect		Rating th	ne quality of the	meta-analysis	evidence usin	g the GI	RADE guide	elines 13	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Larg e effe ct size ? ⁶	"Dose" respons e? ⁶	All plausible residual confoundin g? ⁶	Quality of the body of evidence (GRADE)
Englot, Breshears (37) 2013	36 studies 1259 patients Engel I	Shorter epilepsy duration (≤ 7 years, the median value in this study) <1259 (8)	Extratemporal paediatric population	OR 1.52 [1.07, 2.14]	-1 suspected as no adjustments reported	Friedman and Kendall's W tests and Cochrane Q statistics			Not detected on funnel plots Although to our eyes				+
	Chi-squared / unpaired t- tests	Lesional epilepsy (aetiology) 695 (28)		OR 1.34, [1.19, 1.49					figure 2 C shows possible asymmetry for partial				+
	significance correction for multiple comparisons at 0.02. Then fixed	absence of generalized seizures 206 (11)		OR 1.61 [1.18, 2.35]					generalized seizure semiology				+
	effects.	localizing ictal electroencephalographic findings		OR 1.55 [1.24, 1.93]									+
		226 (13)											
]												
		Mean age at surgery		NS ^u OR									+

Page **41** of **193**

<1259 (17)						
Gender male vs female 303 (15)	NS ^u OR ^{c*} 1.16 [0.74, 1.83]					+
Daily seizures (yes vs no) 158 (4)	NS OR ^{uc*} 0.54 [0.28, 1.07]					+
Abnormal preoperative MRI 506 (23)	NS OR ^{uc*} 1.44 [0.98, 2.12]					+
Interictal EEG lateralizing Vs non-lateralizing 130 (10)	NS OR ^{uc*} 2.22 [0.98, 5.05]					+
Operative variables, surgical lobe (frontal, parietal, Rolandic, occipital, multilobed) 537 (26)	NS ^u See their table 1					+
Surgery side left vs right 326 (15)	NS OR ^{uc*} 0.99 [0.64, 1.53]					+

Page **42** of **193**

Extent of lesionectomy: gross-total (complete) vs subtotal 75 (5)	NS ^u OR ^{uc*} 13.89 [3.30, 58.38]	nui	few umbers and ide CI		Rejected as significant only on univariate unweighted analysis
	→ meta analysis weighted: not shown or reported on the article				
ECoG used vs not used 433 (20)	NS ^u OR ^{uc*} 0.77 [0.50, 1.19]				+

Page **43** of **193**

2.1.18 Kuang, Yang (38) (2013)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analy	sis evidence u	sing the GRA	DE guidelines	13	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Kuang, Yang (38) (2013) 1989 - 2008	6 studies: RCTs 626 patients Engel I 1 year post operatively	ATL vs SAH 626 (6)	TLE	NS RR 1.01 [0.54, 1.09]		No evidence of inconsistency found							
	Fixed effect												

Page 44 of 193

2.1.19 Excluded ³⁹ (2013): Review of Reviews

10 reviews or meta-analyses identified. No formal meta-analysis. Qualitative synthesis.

Table 6 includes common predictors of seizure outcome for

- lesional and non-lesional TLE,
- lesional ET, and
- Tuberous Sclerosis:

Positive Predictors:

- Lesional, abnormal MRI, partial seizures, complete resection
- As above
- No or mild developmental delay, unifocal ictal EEG abnormality, extensive resection (lobotomy)

Negative Predictors:

- Nonlesional epilepsy, poorly localised EEG, bilateral or multifocal MRI lesions, generalized seizures, FCD type 1, need for ictal EEG, incomplete resection, abnormal post-operative EEG
- Generalized seizures and as above
- Severe developmental delay, corpus callosotomy or tuberectomy

Non-Prognostic:

- Age at surgery, sex, duration of epilepsy, ictal EEG, side of surgery
- Seizure frequency and as above
- Infantile spasms, invasive EEG, PET findings, tuber burden

However, no common predictors of seizure outcome were identified in nonlesional ETLE.

Page **45** of **193**

2.1.20 Hu, Zhang (40) (2013)

Meta-	# included	Feature	Population:	Effect Sizes		Rating	g the quality of	the meta-analys	sis evidence us	ing the GR	ADE guideline	S ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	(seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Hu, Zhang (40) (2013) 1993-2012	13 studies 1397 patients (686 total SAH, 711 total ATL) Engel I Mean or median follow up >1 year Fixed or random effects	SAH vs ATL	TLE	Overall OR 0.65 [0.51, 0.82] Transsylvian SAH OR (4) 0.60 [0.41, 0.87] Transcortical SAH OR (5) 0.68 [0.49, 0.96] Unknown or multiple approaches OR (2) 0.7 [0.25, 1.95]	Also included subgroups of transcortical or transsylvian SAH. Used NOS scale. The sensitivity analysis demonstrated that the significance of seizure outcome was not altered with the exclusion of low-quality studies (OR 0.57 [95% CI 0.43–0.76], p = 0.0001).	Trans-sylvian approach I ² = 74% and p =0.009 Overall I ² = 43%, p= 0.06 Otherwise, no significant heterogeneity Insufficient to mark down given the subgroup analysis		Only 2 studies for mixed approaches and hence may lack power with wide CI, whereas the other subgroup analyses show clear benefit for ATL	-1 Mild bias on funnel plot, did not further investigate or use trim and fill				++

Page **46** of **193**

2.1.21 Excluded Höller, Kutil (6) (2015)

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	sing the GR/	DE guidelines	13	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Höller, Kutil (6) (2015)	11 studies ILAE 1/Engel la Random- effects model	HFO resection ratios (:= proportion of HFO electrodes in the resected lobe, compared to total number of HFO electrodes).	Children and adults	Difference between SF and NSF resection ratios quoted: Ripples 0.18 [0.1, 0.27] Fast ripples 0.17 [0.01, 0.33]	-2 10 studies looked at ripples (80- 200Hz) while 7 looked at fast ripples (>200Hz) Diff of HFO ratio quoted, not OR/RR of outcomes. No adjustments.	Q-statistic significant (p =0.025, for ripples and p<0.001 for fast ripples) with I ² = 53%, 77% respectively.	-1 Difference of resection ratios between SF and NSF groups of 0.184 and 0.167, respectively.	In 9 of 10 studies resection ratio was higher for SF but in 5 of the 9 ripples studies the CI overlapped with zero 5 of 7 fast ripples studies resection ratio > for SF; but in 2 of 5 CI overlapped with zero.	Funnel plots, trim and fill	At best a rather small positive effect The effect sizes found in the meta- analysis are small but significant.			Rejected as no effect size of HFO resection ratio on outcome. Difference in resection ratio quoted.

Page **47** of **193**

2.1.22 Ibrahim, Morgan (36) (2015)

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	sing the G	RADE guidelir	ies ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Ibrahim, Morgan (36) (2015) Same data as in ³⁵ ++ 2000 to 2011	20 articles 186 paediatric cases Engel ordinal, median duration of follow up was 2.3yrs [1.3, 4.3] Individual participant meta analysis: Singular value decomposition and partial least squares method used on 11 features. Only 2 were significant. partial least squares (PLS) to model multidimensional variance and study significant patterns in data that are associated with	Concordance EEG-MRI	Paediatric tuberous sclerosis	+ Note no traditional effect sizes as used SVD and PLS (latent variable space)			Only for TS patients		undetected			+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes	+++

Page **48** of **193**

seizure outcomes								
	Focal ictal EEG	+						+++
	generalised seizure semiology	NS			-1 Fig 1 shows bootstrapping Cl just about crosses zero, otherwise significant prognostic value			**
	focal interictal EEG	NS			-1 Skewed bootstrapping CI suggestive of possible positive effect			**
	gender	NS		-				+++
	tuber burden on MRI	NS						+++
	Epileptic spasms	NS						+++
	age at surgery	NS						+++
	lobe of resection	NS						+++
	age at onset	NS		_				+++
	Lesionectomy / multilobar resection surgery type	NS						+++

Page **49** of **193**

lo	Geographical ocation of surgery: N	NS					+++
A	America vs elsewhere						

Page **50** of **193**

2.1.23 Excluded Bonney, Glenn (41) (2015)

Data not fully extracted as explicitly state due to heterogeneity no formal meta-analysis was performed. Population was for gangliogliomas.

NB Fig 2 shows age at seizure onset to have inverse relationship with seizure freedom proportions, as well as mean or median duration of epilepsy having an inverse relationship with proportion seizure free.

2.1.24 Excluded West, Nolan (2) (2015)

Superseded by Cochrane review in 2019

Page **51** of **193**

2.1.25 Ruan, Yu (42) (2015)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analys	is evidence us	sing the GR	ADE guideline	S ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Ruan, Yu (42) 2015 1996 – 2014	10 594 patients Engel I At least 12 months Fixed or random effects based on I ²	Extended excision of surrounding haemosiderin	Mainly Adults with cavernomas (but also few children)	234 of 316 in extended excision (74%) Vs 189 of 278 in limited cavernoma resection (68%) were Engel I OR 1.61 [1.10, 2.38]	-1 missing data in limitations Note using their raw figures from 10 studies: OR 1.32 ^{uc} [0.94, 1.92] More significant in males than females, in Europe and Asian studies than American studies, and more significant in cohort than case control studies. Also more significant in follow up durations less than 3 years and cavernomas greater than 2cm	I ² = 28% p=0.16 Did perform sensitivity analyses to removing each of the 13 studies	Some studies used MRI others histology to determine if haemosiderin was resected		Egger's test normal				+

Page **52** of **193**

Page **53** of **193**

2.1.26 Cao, Liu (43) (2016)

Meta-	# included	Feature	Population:	Effect Sizes	Rating the quality of the meta-analysis evidence using the GRADE guidelines ¹³									
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	ts nd Age it	(seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)	
Cao, Liu (43) (2016) 1995-2015	15 articles 380 sample size Engel I Min mean/median follow up time of 5 years Univariate then fixed or random effects	Seizure onset age ? (13)	Children with epilepsy undergoing hemispheric surgery	SMD = 0.26, [0.03, 0.49] P = 0.028		I square result was 40.2%, and the P value of the heterogeneity test was 0.116			Funnel and Egger				++	
		Age at surgery ?(13)		NS ^u									++	
		Seizure duration ?(5)		NS ^u									++	
		Seizure type focal vs		Invert NS ^u OR ^{c*} 1.43 [0.58, 3.52]									++	

Page **54** of **193**

generalized 212(8)						
Etiology	NS ^u					++
epilepsia partialis continua 127 (7)	Invert NS ^u OR ^{c*} 0.46 [0.19, 1.15]]					++
Surgical side ?(7)	NS ^u					++
Gender male vs female 231 (10)	Invert NS ^u OR ^{c*} 1.15 [0.66, 2.01]					++
MRI findings: abnormal vs normal ? (8)	OR 4.6 [1.27, 16.62]		-1 wide CI	Note unweighted OR is 1.49		+

Page **55** of **193**

2.1.27 Wang, Zhang (44) (2016)

Meta-	# included	Feature	Population:	Effect		Rati	ng the quality o	of the meta-analysis	evidence usin	g the GR	ADE guideline	S ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	s # of total patients with and without up ns (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Wang, Zhang (44) (2016)	18 studies 391 patients Mainly Engel I as	Shorter epilepsy duration 128 (9)	(MRI neg TLE)	OR = 2.57 [1.21, 5.47]	NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale	l ² = 1%		-1 All have large CI and/or few patient numbers especially per study (imprecision/bias)	Forrest plots				+
	per constituent studies in Table 1 random- effects model	Ictal EEG localised to temporal lobe 125 (6)		OR = NOS scores ranged [1.66, from 4 to 6 9.08] Newcastle- Ottawa Scale				+					
		Interictal EEG localised to temporal lobe 149 (7)		OR 3.38 [1.57, 7.25]	NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale	l ² = 0%							+
		PET scan results 127 (5)		NS p=0.06 OR = 2.11	NOS scores ranged from 4 to 6 stars Newcastle-	l ² = 0%							+

Page **56** of **193**

	[0.95, 4.65]	Ottawa Scale					
Gender: male vs female 146 (11)	NS OR 1.44 [0.86, 2.41] P=0.17	-1 2/11 studies had zero SF cases amongst males and 5 male and 5 females each or 2 males and 5 females - very few numbers with large CI Collected data from even studies with very few cases NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale	l ² = 0%, p=0.51				+
Age at onset: children < 18 yrs vs >18yrs 69 (6)	NS OR 0.68 [0.22, 2.08]	NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale	l ² = 0%, p=0.79				+

Page **57** of **193**

Age at surgery <18 yrs vs >18yrs 78 (6)	NS OR 1.09 [0.38, 3.07]	NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale					+
Side of surgery 320 (15)	NS Slightly favours Left TL OR 1.33 [0.84, 2.08]	NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale	l ² = 0%,				+
Positive pathology	NS (p=0.36) OR=1.36 [0.7, 2.63]	NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale	l ² = 6%				+
Mesial vs lateral TL epileptic focus (as determined on sEEG, subdural grid; or ATL/SAH vs neocortectomy) 92 (8)	NS Sightly favours mTL OR 1.39 [0.61, 3.2]	NOS scores ranged from 4 to 6 stars Newcastle- Ottawa Scale					+

Page **58** of **193**

Page **59** of **193**

2.1.28 Giridharan, Horn (45) 2016

Giridharan, Horn (45) 2016 1986-2012 Baseline Quality of evidence: +++	17 studies, 2028 patients Engel class I outcome > 1 year post- operatively Random- effects model, meta- regressions (logistic regression)	Without APOS within 30 days of surgery Overall: 1983 (17) Paediatric: 730 (6) Earlier onset of APOS (within 24hrs) 222 (6)	TLE and ETE Mixed paediatric and adult. Subgroup analysis for overall APOS persistent in both.	Overall OR 4.2 [2.97, 5.93] (Without APOS 73.5% seizure- free, vs with APOS 39%) Paediatric subgroup OR 5.71 [3.32, 9.8] NS 1.87 [0.89, 3.95]	-1 64.8% had presurgical lesion, not adjusted Variable APOS definitions (7- 30 days) but used meta- regression to explore this for under 24hrs only	Not detected Subgroup analyses for paediatric, time of occurrence, semiology and meta- regressions to explore heterogeneity were performed	-1 towards positive Seizure- freedom more likely, but statistically not significant	-1 Funnel plots and Egger's regression showed no bias. However, we note asymmetry in overall APOS, paediatric APOS and semiology group funnel plots in their Fig e1.	+1 large effect sizes for without APOS		++
		Postsurgical semiology different from presurgical 109 (3)		NS 4.24 [0.93, 19.25]			-1 towards positive Seizure- freedom more likely, but statistically				+

Page **60** of **193**

		not significant		
Subgroup meta- regression: mean age at surgery	NS			++
Subgroup meta- regression: mean duration of epilepsy	NS			++
Subgroup meta- regression: proportion with lesion	No data			No data, rejected

Page **61** of **193**

2.1.29 Hu, Zhang (46) 2016

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	vsis evidence u	sing the G	RADE guidelir	nes ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Hu, Zhang (46) 2016	56 studies 1528 pts mean or median follow-up period ≥ 1 year fixed and random effects	Developmental disorders 1041 (26)	Hemispheric	OR 0.61, 95% Cl 0.46– 0.82, p = 0.001		I ² and Q statistics not significant heterogeneity detected			Funnel plots undetected				+++
		Focal vs Generalized seizures 403 (15)		OR 1.84, [1.18, 2.89], p = 0.008									++
		Lateralized findings on interictal EEG 413 (7)		OR 1.66, [1.03, 2.67], p = 0.0									++

Page **62** of **193**

Lateralized findings on ictal EEG 414 (7)	ictal: OR 1.88, [1.15, 3.07], p = 0.01					++
contralateral MRI abnormalities 332 (6)	OR 0.46, [0.27, 0.77], p = 0.004					++
002 (0)						
Male vs female 575 (24)	NS OR 1.15, 95% CI 0.79– 1.67, p = 0.46					++
Side of resection	NS					++
539 (29)	OR 1.17, [0.79, 1.73], p = 0.43					

Page **63** of **193**

2.1.30 Chen and Guo (47) (2016)

Meta-	# included	Feature	Population:	Effect	es izure Risk of Inconsistency of Indirectness Imprecision ⁴ Publication Large "Dose" All plausible Quality of									
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)	
Chen and Guo (47) (2016) 1995-2015	11 studies 320 patients 275 patients undergoing epilepsy surgery Engel I Univariate then fixed effects and random effects also quoted in Fig 2	subtraction ictal and inter-ictal SPECT co- registered to MRI (SISCOM)	TL and ET	unweighted positive rate of SISCOM was 85.9% (275/320).					-1 Funnel plot was asymmetric and that there was publication bias				Rejected as unsuitable metrics, not an effect size, used non surgical data and unweighted (instead of Trim and Fill)	
		concordant lateralized and localized to EZ	TL and ET	unweighted concordant rate of SISCOM was 65.3% (203/311)		$f^2 = 61.0\%, Q = 0.2938, p = 0.0042$	-1 71 pts used presumed EZ, 240 used actual resection		-1 p value of the Egger test was 0.0042				As above	
	Fixed effects	Concordance SISCOM with EZ 275 (11)	TL and ET	OR 3.28 [1.90, 5.67]		l ² = 16.6%, p=0.285)			Egger's and Begg's test not significant				++	

Page **64** of **193**

Fixed Concorr effects SISCOI with EZ 209 (11	DM ET [1.34, 4.4 Z	$\hat{F} = 10.6\%, Q = 10.06, p = 0.345$	Egger's and Begg's test not significant			++
---	-----------------------	--	--	--	--	----

Page 65 of 193

Meta-	# included	Feature	Population:	Effect		Rat	ing the quality c	of the meta-anal	ysis evidence	using the G	RADE guidelin	es ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Ampie, Choy (48) 2016 2005-2013	39 articles 88 patients of which 3 had only a biopsy with adjuvant radiotherapy (n=85) "seizure- freedom" no definition, median of 24 months follow up Fisher's exact	Gross total resection (vs subtotal resection)	Angiocentric gliomas Majority of tumour locations was temporal lobe (39%) 2 – 79 years (average = 16 years)	36/37 GTR SF Vs 9/16 STR SF OR 28 [3.04, 258]°	-2 included individual case reports Did not clearly state what features were being compared for seizure freedom. Did not define seizure freedom.			-2					Excluded as significant risk of bias, unweighted univariate statistics effect sizes overestimate true effect sizes (exclusion criteria)

"Eight patients who presented with seizures (9%) reported seizure recurrence after surgical resection. GTR, when compared to STR, was associated with improved rates of seizure control ($\mathbf{p} = 0.0005$). The remaining patients were seizure free post-operatively. In the 37 patients undergoing GTR, only one (2.7%) patient had seizure recurrence, occurring 15 months following surgery. Of the 16 patients undergoing STR, seven (44%) had recurrence of seizures in the post-operative period."

Page **66** of **193**

2.1.32 Harward, Chen (49) 2017

Harward, Chen (49) 2017 1990-2015 Baseline Quality: ++	27 series, 584 patients, Engel class I outcome >1 year post- operativel	Age<18 yrs 9+21+13+9+7 +36+16 = 111 (7) (at surgery)	Occipital Lobe and posterior quadrant. Mixed adult and paediatric	OR 1.54 [1.13, 2.18]	Attempted to minimise selection bias: variables selected only if at least 80 patients across 5 studies	Salanova 1992 study seems to have an outlying large point effect for age, without attempts at subgroup explanation.	Note all 7 studies' CI overlap OR of 1 but that of the overall effect does not	Undetected on funnel plots		+
	y Mixed- effects model.	Focal pathological lesion 167 (9)		OR 2.08 [1.58, 2.89]	-1 No statistical adjustments "impossible to perform a multivariate analysis looking for					+
		Abnormal pre- operative MRI 132 (7)		OR 3.24 [2.03, 6.55]	interactions across variables" e.g. didn't adjust for lesions	Liava 2014 is the only study out of 7 without a Cl overlapping OR of 1.				+

Page **67** of **193**

2.1.33 Krucoff, Chan (50) (2017)

Krucoff, Chan (50) (2017) 1989-2016 ++	36 studies 782 patients Engel I >12	"Congruent" (=focal) electrophysiology (ictal/interictal or invasive EEG) Table 2 & Fig 3: 192 (8)	patients who received repeat resective surgery for refractory focal	OR = 3.6, [1.6, 8.2]					++
	months Overall Engel I in 47% (n=369) of patients. NB weights attributed	Lesional (pathology: tumour, cyst, vascular malformation) Table 2 & Fig 3: 507 (12)	epilepsy	OR = 3.2, [1.9, 5.3]					++
	to each study data are not shows on their forest plots. Random- effects and pooled univariate	surgical limitations over disease-related failure of first resection (incomplete resection) vs new emergent seizures or palliative cases Table 2 & Fig 3: 273 (11)		OR = 2.6, [1.3, 5.3]	-1 heterogenous categorisations				+
		invasive monitoring Table 2 & Fig 3: 210 (?)		OR = 0.4, [0.2, 0.9]					++

Page **68** of **193**

trend whereby temporal were more likely to become seizum free than extratemporal resections Table 2 & Fig 3 943 (1 st surger = 447pts and 2 ⁱ resection = 496pts) (12)	(0.8, 3.0)	No clear trend in 1 st and 2 nd resection subgroups, TL surgeries may have higher rate of redos?		Large CIs of individual studies			++
Abnormal vs normal preop MRI (cf lesiona pathology) Table 2 & Fig 3 196 (7)							++
Non prognosti factors: e [*] Gender 140 (?) Epilepsy duratic 60 (?) Age at surgerie	n Only univariate estimates can be calculated from the data in table 2	Seizure generalisations showed a non- significant trend towards worse outcomes		-1 imprecise and effect sizes and CIs estimated			+ no quantitative data on effect estimates provided, but calculated
Age at surgene 1st surgery 194 (?) 2nd/last surgery 164 (?) Time between resections 188 (?)	Gender male vs female NS OR ^{e*} 0.83 [0.42, 1.64]						

Page **69** of **193**

Laterality of resections 1 st surgery 218 (?) 2 nd /last surgery 209 (?) Seizure generalization 145 (?)	operation #1 OR ^{c*} 0.73 [0.43, 1.25] Operation #2 OR ^{c*} 0.77 [0.44, 1.33] Focal vs generalised seizures:				
Focal onset seizures with impaired awareness vs aware or other seizures 206 (3)	Non pau weighted ser	o meta- lalysis due to lucity of # of miology udies			+ no quantitative data on effect estimates provided

Page **70** of **193**

2.1.34 * Excluded Nevitt, Staba (1) (2017)

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	sing the GRA	DE guidelines	13	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Systematic Review Nevitt, Staba (1) (2017) +	2 studies 11 patients Engel 1 12months follow up	ictal HFOs for epilepsy surgery decision making		NS Found seizure free rates (Engel I) to be 55% - which isn't dissimilar to general seizure- freedom rates	Neither study compared surgical results guided by HFOs versus surgical results guided without HFOs.								+ Rejected as too few patients for formal meta- analysis and no effect sizes

This supersedes 51

Rejected as 2 papers, 11 patients, no effect sizes.

*Found though other sources

Page **71** of **193**

2.1.35 *Excluded Genetic Stevelink, Sanders (7) (2018)

*Found though other sources

Stevelink, Sanders (7) (2018) <2016 24 studies, 82 total patients, 38 patients with positive genetics, 15 different genetic	5 studies 12 patients Engel I Last reported follow-up Raw proportions	Germline Mutations in mTOR > synaptic or ion channel related mutations 38 genetics positive (24)	Genetic Epilepsies Any Lobe	RR° = (7/12) / (2/14) = 4.08 [1.04, 16.06]	-2 8 of 12 germline mTOR mutations were lesional	-1 15 different genetic aetiologias grouped into three categories	-1 Very small numbers and large CI			Excluded as few numbers and all lesional without adjustments; and no RR calculations
aetiologias grouped into three categories Raw proportions	6 studies 18 patients Last follow up	Somatic or Mosaic mTOR mutations >synaptic/ion ch mutations	Genetic Epilepsies Any Lobe	RR° = 15/18 / 2/14 = 5.833 [1.59, 21.40]	-2 All 18 mosaic mTOR were lesional					Excluded as few numbers and all lesional and no RR calculations
	2 studies 12 patients Last follow up	Other: microdeletions	Majority lesional	Sz free = 10/12 = 75%						Excluded as few numbers and all lesional and no RR calculations
	3 studies 21 patients	Other: NF1	HS or low- grade tumours	12/21 = 57%	-2 majority were lesional					Excluded as few numbers and all lesional and no RR calculations

Page **72** of **193**

2.1.36 Excluded Pilipović-Dragović, Ristić (9) (2018)

Pilipović- Dragović, Ristić (9) (2018) 1993-2017	7 studies 253 patients Engel I univariate meta- regression	Localised interictal EEG	Parietal Lobe	No effect sizes given besides a univariate "b". e ^b would give the OR, unadjusted e ^b =4.80=OR	-2 univariate meta regression without inverse variance weighting for features. No adjustments.	-1 Significant heterogeneity in the meta- analysis (Q p<0.001, l ² =80%	Poor quality, CI of porportions exceed 1 in "Engel Forrest Plot" Figure 1	coefficient o and estimat freedom, so paper. Even The intere significant as	f logistic regres e the CI, their f we didn't feel then, the resu sting ones wer prognostic feat	ssion quoted. igure 1 show we could relia Its are genera e presence o cures which w	Although we c ed CI exceedir ably deduce eff ally consistent f aura and som e didn't find in	usting for other fac ould calculate the 1g proportion of 1 f ect sizes from the with included meta hatosensory aura r other meta-analys tudy, again no eff	effect size for seizure rest of the t-analyses. not being ses. Imaging
	regression	Tumour pathology		e ^b =1.4=OR									Excluded as above
		Age at onset, duration of epilepsy, age at surgery, mean follow up, imaging done, presence of aura, somatosensory aura, GTCS, imaging lesion, localized ictal EEG, invasive study, MCD, right sided surgery		NS univariate meta- regression	NB: invasive EEG, ictal EEG localization and GTCS are shown in other meta- analyses to be prognostic								Excluded As bove

Page **73** of **193**

2.1.37 Jain, Tomlinson (52) 2018

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	sing the GR/	ADE guidelines	5 ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Jain, Tomlinson (52) 2018 Used GRADE	19 compared ATL vs SAH ?pts	ATL vs SAH (mix of transcortical, transsylvian and subtemporal approaches)	Mainly adults	NS OR 1.14, 95% CI 0.93 to 1.39; p=0.201									++ ⁵² 2018
	Engel Ia or ILAE 1 or Engel 1, 12 months follow up Bayesian random effects			NS OR 1.15, 95% credible interval (Crl) 0.84-1.15									
	NMA												

Page **74** of **193**

2.1.38 Shan, Fan (53) (2018)

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	ising the GI	RADE guidelin	es ¹³	-
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Shan, Fan (53) 2018 1965-2016	23 studies 2641 patients Engel at last point of follow up 1mo to 17 yrs Fixed- effects	Age >= 45 yrs ++ (at surgery) 1065 (6)	Supratentorial low grade gliomas in adults	RR 1.12 [1.01, 1.23]	NOS scale for individual studies GRADE evidence scale used		-1 Engel I at 1 month post-surgery also included		undetected				+
		Focal seizures +++ 796 (3) Prolonged history of seizures >1		RR 0.76 [0.67, 0.85] RR 0.82 [0.75, 0.91]	Looked at generalized seizures and focal separately which was seems redundant	Note the caption on Fig 3 is incorrect and confusing.							+ +

Page **75** of **193**

	++						
	<2641 (<23)						
	Gross total resection cf subtotal resesction	RR 1.47 [1.37, 1.59]					+
	++						
	1379 (16)						
	Tumor location TL vs ET	NS NA					+
	++						
	<2641 (<23)						
		NS NA					
	Sex	NS NA					+
	++						
	<2641 (<23)						
	Tumor histology astro vs non astro	NS NA					+
	++						
	<2641 (<23)						
	Imaging characteristics (enhancement, oedema, mass effect)	NS NA					+
	No GRADE score provided						
	<2641 (<23)						

Page **76** of **193**

2.1.39 Shang-Guan, Wu (54) (2018)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analys	sis evidence u	sing the (GRADE guideli	ines ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Shang- Guan, Wu (54) (2018) 1967-2017	7 studies 245 patients Follow up >6 months Fixed/random effects	extended lesionectomy with lesionectomy (:=resection of lesion and surrounding hemosiderin is sufficient) 245 (7)	any	NS OR 1.30 [0.66, 2.56] Removed 1 article with selection bias: OR 0.96 [0.44, 2.08]	NOS>4 only included, English, case reports excluded Sensitivity analysis		-1 f/up 6 months		Eggers and Beggs				+
		Average age <18 yrs excluded as only 1 trial		NS see table 2									Only 1 study
		Average >18yrs vs other at surgery		NS OR 0.95 [0.38, 2.37]									+

Page **77** of **193**

Year of publication <2010 vs >2010	NS OR see table 2					+
NOS > 6	NS OR 0.51 [0.21, 1.26] see table 2					+
Seizure duration in years	NS OR see table 2					+
Follow up in months	NS OR see table 2					+

Page **78** of **193**

2.1.40 Kobulashvili, Kuchukhidze (55) (2018)

Meta-analysis	# included	Feature	Population:	Effect		Rating	the quality of th	ne meta-analysis	s evidence usi	ng the GR	ADE guideline	s ¹³	
Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
55 2018 1990 – 2015	48 of 94 eligible for meta- analysis (40 for subgroup analysis) 534 patients subgroup analysis Completely seizure free (IA, 1) At least 12 months univariate random- effects meta- analytical models	Long-term monitoring (LTM / VT) localising vs non- localising in subsequent seizure outcome (sensitivity total studies = 44) (specificity total studies = 34)	All Lesional TLE n=406 (33)	Sensitivity 0.7 [0.6, 0.8] Sensitivity higher in tumours for outcomes Specificity 0.4 [0.27, 0.54] Sensitivity 0.85 [0.81, 0.89] highest in MCD/FCD ~0.95 [~0.71, 1] Spec 0.19 [0.13, 0.28] Specificity high for gliosis in	Also looked at covariates: lesional on MRI, TLE vs ETE, pathology including HS, length of follow-up, invasive and non-invasive LTM in their supplementary tables	Sensitivity: -1 Very large differences I ² = 94.9% P<0.0001 Specificity: -1 Very large heterogeneity I ² = 92.6% P<0.0001					With certain sensitivities yes, such as increased specificity with ETE and increased sensitivity with proportion of concordant LTM/MRI	+2 investigated covariates and sensitivity analyses including TLE, ETE, and abnormal MRI etc	+ Very Low

Page **79** of **193**

	Nonlesional TLE n=14 (3) Lesional ETE n=108 (16) Nonlesional	lesional TLE 0.41 [0.18, 0.69] Sens 0.47 [0.36, 0.58] Spec 0.35 [0.21, 0.53]							
Long-term monitoring (LTM / VT) Odds ratios representing the odds of being seizure-free if the LTM is localizing and concordant with the surgical resection compared to non localizing LTM	ETE n=6 (2) Lesional TLE Lesional ETE Nonlesional TLE Nonlesional ETE	OR 1.41 [0.79, 2.53] OR 0.46 [0.2, 1.07] OR 0.6 [0.01, 35.86] 1 [0.06, 17.51]		-1 indirect evidence as their chose of definitions for LTM consists of focal and prognosis (see their discussion)	-1 imprecision for Nonlesional cases as few cases		See above	See above	+ Very Low

Page **80** of **193**

2.1.41 Harris, Phillips (56) 2019

Harris, Phillips (56) 2019 1992- 2016 Baseline Quality: ++	19 articles, 187 children Engel I outcome at the longest reported follow-up time. Individua I participa nt	Younger age at onset Younger age at surgery	Rasmus sen's Paediatri c	HR 0.91" [0.85, 0.96] NS HR 0.95" [0.87, 1.04] HR 0.93" [0.89, 0.97] NS ^m	HR 1.10" [1.04, 1.18] NS HR 1.05" [0.96, 1.15] HR 1.08" [1.03, 1.12] NS ^m HR 1.05" [1.0, 1.11]	-1 Adjusted for the variable length of follow-up, but not lesional or other known factors The NS features were not adjusted for known	Probably not significant		-1 suspected but "unable to measure between- study heterogen eity and publication bias due to the very limited sample size per study"		Note not significant on adjustment for follow up	+
	univariat e and multivari ate Cox			HR 0.95 ^m [0.90, 1.0]		features in multivariate analyses						
	regressi on analysis.	Shorter duration of epilepsy		HR 0.92 [0.88, 0.97]	HR 1.09 [1.03, 1.14]	-1 Reporting bias: 7 out of 19 studies						+
		Hemisphere ctomy (vs resective)		HR 0.28 ^u [0.18, 0.45] HR 0.30 ^m [0.18, 0.49]	HR 3.57" [2.22, 5.56] HR 3.33 ^m [2.04, 5.56]	had ≤ 5 patients					Remained significant on multivariate analysis but it seems only adjusted for length of follow up	+
		General seizure semiology		NS HR 0.8 [0.43, 1.51]	NS HR 1.25 [0.66, 2.33]							+

Page **81** of **193**

deve	elopmen I delay		IS HR 1.56).76, 3.23]										+
------	--------------------	--	---------------------------	--	--	--	--	--	--	--	--	--	---

Page **82** of **193**

2.1.42 Bjellvi, Olsson (57) (2019)

Bjellvi, Olsson (57) (2019) Baseline Certainty: ++ Except for <10 yrs vs >10 yrs +++ as over 1000	12 studies 1,545 patients Engel I >12months (although some exceptions were made) Random- Effects	Shorter duration of epilepsy at different points <2 vs >2yrs 388 (3)	Children and adults, all lobes	RR 1.2- 1.33 (Risk difference 0.15 to 0.21) RR 1.20 [1.05, 1.39]	"Moderate risk of bias" "did not justify downgrading the evidence level"	-1 3/12 studies reported no association between duration and outcome 1/12 study was in favour of longer duration l ² = 9%	"some concerns" "did not justify downgrading the evidence level"	Studies that only reported mean or median duration of epilepsy for patients grouped by seizure outcome were not included.	Evaluated <5 yrs vs >10yrs To investigate if a larger time gap in epilepsy duration resulted in a larger effect – not present	++ GRADE score provided by study
		<5 vs >5yrs 551 (4)		RR 1.24 [1.08, 1.42]		l ² = 55%				
		<10 vs >10 1376 (10)+++ <20 vs <20 346 (3)		1.25 [1.09, 1.43] 1.33 [1.08; 1.65]		$I^2 = 66\%$ (p=0.002) $I^2 = 20\%$				
		<5 vs >10		1.32 [1.19; 1.46]		l ² = 0%				

Page **83** of **193**

	430 (4)						

Page **84** of **193**

2.1.43 West, Nevitt (3) 2019

West, Nevitt (3) 2019 1984-2013 Baseline Quality: +++ 182 studies (9	43 studies 3999 patients Combined good outcomes, various follow up Fixed effects	abnormal pre- operative MRI 3999 (43)		RR 1.28 [1.20, 1.37]	-1†	I ² = 38.57% p=0.01, no difference between subgroups by outcome				++ Unclear why they didn't use Random effects here
RCTs, 29 multivariat e studies) 16855 participant s Engel I or Ia, variably between 1 year and 5 years follow-up. Fixed and Mixed-	21 studies 1547 patients Combined good outcomes, various follow up Fixed effects	invasive monitoring 1547 (21)		RR 0.85 [0.78, 0.93]	-1†	I ² = 37.28% p=0.04;, no difference between subgroups by outcome				++ Unclear why they didn't use Random effects here
Effects Note this study already includes GRADE scores per features and this is used as the starting	1 study 70 pts GRADE: ++ Engel la at 1 yr Fixed effects	Complete / total vs partial resection 70 (1)	Adults >18yrs	RR 1.82 [1.12, 2.93]	-1 Insufficient information regarding methods of randomization and allocation concealment in the study†					+ Only 1 study

Page **85** of **193**

point individually despite overall the study being rated as +++ by us.	46 studies 4430 patients Combined good outcomes, various follow up Fixed	mesial temporal sclerosis 4430 (46)	TLE	RR 1.17 [1.12, 1.23]	-1†	$l^2 = 27.79\%$ p=0.04; no difference between subgroups by outcome (l^2 63% p 0.06) and certainly not by effect estimates				++ Unclear why they didn't use Random effects here
	23 studies 1778 patients Combined good outcomes, various follow up Fixed	MRI and EEG concordance 1778 (23)		RR 1.25 [1.15, 1.37]	-1 †	I ² = 26%, no difference between subgroups by outcome				++
	15 1368 Combined good outcomes, various follow up Fixed	Febrile seizures 1368 (15)		RR 1.09 [1.01, 1.17]	-1 †	-1 $l^2 = 32\%$, p=0.11; >1 yr SF subgroup had good outcomes with febrile seizures but the other subgroups did not (subgroup l^2 49%, p 0.14)				+
	46 3572 Combined good outcomes, various follow up	presence of FCD 3572 (46)		RR 0.90 [0.85, 0.95]	-1 †	l ² 28%, no significant different between outcome subgroups (l ² 0%, p 0.83)				++

Page **86** of **193**

Fixed									
41 3357 Combined good outcomes, various follow up Random- Effects	presence of tumour 3357 (41)		RR 1.23 [1.14, 1.32]	-1†	Mixed effects used as I ² 40.59% p=0; no significant outcome subgroup differences				++
37 2976	right-sided resection 2976 (37)		NS RR 0.96 [0.91, 1.01]	-1 †	l ² 28.22% p0.06 for total of 47 studies. l ² 0% p0.6 for subgroup heterogeneity. l ² 30% p=0.05 for total of the TLE vs ET subgroup analyses with TLE vs ET subgroups themselves not significant. Unclear why TLE/ET subgroup has fewer studies.	-			++
Pg. 35 Analysis 4.11 18 studies 1414 pts	unilateral interictal spikes vs bilateral 1414 (18)	Mixed	Poole d RR 1.14 [1.05, 1.24]	CI adjusted for outcome scale Definition was likely to have influenced the analysis, e.g. non- lateralising vs contralateral	-1 I ² = 67% overall and mixed effects using only Engel outcomes is non- significant: RR [0.88, 2]. Subgroup	-1 small studies with imprecise results. Mixed- effects model RR has no statistical significance.		In best case scenario of pooled effect rather than mixed- effects, the point estimation	+

Page **87** of **193**

Various outcome scales Fixed effects				spikes, focal vs non-focal spikes †	analyses (TLE vs ET) do not explain these differences.			is 14% better. E.g. if bilateral 60% SF, unilateral spokes, 70% SF. This variable only explains one-third of the missing outcome variance, with NNT around 10.	
40 3013 Various outcome scales Fixed effects	Complete resection (extent of resection) vs incomplete 2930 (39) Temporal 1266 (13) ET 30 (1) Mixed TLE and ET 1634 (25)		RR 1.41 [1.32, 1.50] TL subgro up RR 1.11 [1.03, 1.2] ET RR 2.0 [0.76, 5.29]	-1†	-1 I ² 77.76% with p <0.0001; outcome subgroup differences also significant I ² 89.51% p<0.0001altho ugh the direction of effects are similar. Extratemporal subgroup ommited as only 1 study.				+ Unclear why random effects method was not used ET subgroup Only 1 study
1 study 47 pts GRADE: ++ randomis ed	Subtemporal vs transsylvian approach to SAH 47 (1)	TLE Adults>18 yrs	NS RR 0.92 [0.59, 1.46]	Participants not completing one year of follow-up measures were excluded from the study†	//				+ Only 1 study

Page 88 of 193

ILAE 1 at 1 year									
1 study 40 patients GRADE: ++ randomis ed Engel 1 and IA at 1 and 5 years	ATL vs parahippocam pectomy PHC Engel IA 5yrs 28(1)	TLE Adults >18yrs	NS RR 0.57 [0.21, 1.52]	Outcome assessors were not blinded†	Excluded children from the study	-1 Despite the CI overlap, point estimates favour ATL, whether at 1 or 5 yrs or Engel I or IA.			+ Only 1 study
Fixed effects	SAH vs PHC Engel IA at 5 yrs 29 (1)	TLE Adults >18yrs	NS RR 0.54 [0.21, 1.39]	Outcome assessors were not blinded†		-1 Despite the CI overlap, point estimates favour SAH, whether at 1 or 5 yrs or Engel I or IA.			+ Only 1 study
	ATL vs SAH 29 (1)	TLE Adults >18yrs	NS RR 1.07 [0.53, 2.16]	Outcome assessors were not blinded†					+ Only 1 study
1 study 207 pts GRADE: +++	2.5cm vs 3.5cm ATL resection 207 (4)	TLE Adults >18yrs	NS RR 1.02	†					++

Page **89** of **193**

randomis ed Engel 1 at 1 yr			[0.86, 1.2]						
1 study 70 patients GRADE: randomis ed ILAE 1 at 1yr Fixed effects	Total hippocampect omy > partial 70 (1)	TLE	RR 1.82 [1.12, 2.93]	t					++ Couldn't find a Cochrane GRADE, so rated the study as 3+ as it was randomised . Only 1 study
1 study 58 patients GRADE: ++ Engel Ib at least, between 25- 36months Fixed effects	ATL>stereotac tic radiosurgery 58 (1)	TLE Adults >18yrs	RR 1.52 [1.01, 2.22]	Insufficient information regarding methods of randomization and allocation concealment in the study†		Note the limit approaches 1 and not fully adjusted, so could have confounders			+ Only 1 study
1 study 43 patients GRADE: ++ randomis ed	Resection ± corpus callosotomy vs resection alone in LGS 43 (1)	LGS Children < 18 yrs	NS for all three 5yrs: RR 1.09 [0.53, 2.21]	Outcomes split into three follow-up groups of 1,3 and 5 years Inadequate method of quasi- randomisation. Unclear if blinded.†					+

Page **90** of **193**

Engel 1 at 1, 3 and 5 years Fixed effects									
1 study 60 patients GRADE: +++ randomis ed Engel 1 at 2 years Fixed effects	ATL + CCT vs ATL alone. 60 (1)	TLE Children and Adults	NS RR 1.22 [0.85, 1.76]	Inadequate method of quasi- randomisation. Unclear if blinded.†					++
7 studies 551 patients Combined good outomces, various follow up Fixed	History of Head injury 551 (7)		NS RR 0.99 [0.86, 1.13]	-1†	-1 I ² 46%, p 0.08, subgroup analyses by outcome were very different and inconsistent				+
5 317 Combined good outomces, various follow up Fixed	Encephalomal acia 317 (5)		NS RR 0.78 [0.52, 1.17]	-1†	No significant difference between outcome subgroups				+

Page **91** of **193**

6 542 Combined good outomces, various follow up Random- effects and Fixed for temporal subgroup	postoperative discharges 542 (6)	NS Adjust ed for outco mes RR 0.91 [0.68, 1.22] For TLE subgro up RR 0.81 [0.70, 0.94]	-1 †	Different total results for subgroups TLE/ET vs outcome subgroups, but both NS.				++
Analysis 4.10 19 studies 1488 pts	vascular malformations 1488 (19)	NS pooled RR 1.07 [0.94, 1.21] adj for outco mes scale	-1†	No broad changes to result according to outcomes scales (Engel, Other or seizure freedom for 1 yr).	I ² = 0% for both overall heterogeneit y and subgroup differences			++

Page **92** of **193**

2.1.44 Chen, Chen (58) (2019)

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	sing the GRA	DE guidelines	13	
analysis Publicat	Patients	# of total patients	Lobe	Sizes (seizure	Risk of Bias or Internal	Inconsistency of Results ²	Indirectness of	Imprecision ⁴	Publication bias⁵	Large effect	"Dose" response? ⁶	All plausible residual	Quality of the body
year	Outcomes, Model(s)	with and without	Age	freedom)	Validity ¹	ornesuits	Evidence ³		bias	size? ⁶		confounding? ⁶	
Years of individuation studies		(# of studies)											(GRADE)

Chen, Chen (58) (2019) 1991-2018 +++	48 studies 1580 Engel I and II Combinations of fixed- effects, random-	FCD type I vs type II 1580 +++ (34)	Patients with focal dysplasia Any lobe Children and adults	OR 0.52 [95%Cl 0.41, 0.65]	Trial sequence analysis, sensitivity analyses including removing individual studies Subgroup analyses for	I ² =14%, p=0.24 Not in subgroup analyses in asia (OR=1.24 []0.75, 2.04]	-1 Engel II was considered seizure free	Begg rank correlation test and Egger linear regression test with trim and fill as necessary			++
	effects and network- analyses (NMA).	FCD and incomplete resection		OR 0.08 [95%Cl	geographical locations.	l ² =0%, p=0.68			+2 large OR<0.1		+++
		567 ++ (16)		0.05, 0.14]	Palmini system of FCD (no FCD type III which was developed by IALE in 2011)						

Page **93** of **193**

FCD and extratemporal location 370 (12)	0.52 (95%Cl 0.29, 0.94]	l ² =0%, p=0.8			+
FCD IIb in network meta- analyses of FCD subtypes	OR 1.89 [1.01, 3.57]	P=0.048	CI of OR proached		+

Page **94** of **193**

2.1.45 Toth, Papp (59) 2019

Toth, Papp (59) 2019 1996-2017	31 studies 1999 patients Engel I, >6 months Random- effects	sEEG > subdural overall: 1999 (31) Nonlesional: 237 (15) Lesional: 665 (21) TL: 470 (17) ET: 420 (14)	TL and ET Adults and Children (but not data from children only)	Overall RR = 64.7% [59.2, 69.8] / 55.9% [50.9, 60.8] NS Nonlesional NS RR = 52% [37.3, 66.3] / 54.4% [40.6, 67.6] Lesional RR = 71.6% [61.6, 79.9] / 57.3% [48.7, 65.6] TL RR = 73.9% [64.4, 81.6] / 56.7% [51.5, 61.9] ET RR = (61% [51, 70.2]) / (46.7% [36.5, 57.2]) = 1.31	-1 average follow up for SEEG was 10 months while for SDG it was nearly 19months. Significant differences overall ($p = 0.02$), lesional ($p = 0.031$), and also, temporal sugroups ($p = 0.002$)	Overall SEEG: I2 = 11.86%;p = 0.318 subdural grid: I2 = 54.47%;p = 0.002	-1 studies <6 months follow-up durations; we are interested in at least 12 months		Funnel plots, Egger's tests: no overall changes or subgroup changes			[Unlcear if ET was significant or not as it mentions lesional in the text whereas it should mention ET]	+
---	---	---	---	--	---	---	---	--	--	--	--	--	---

Page **95** of **193**

2.1.46 Excluded Pellino, Gencarelli (8) (2020)

Meta-	# included	Feature	Population:	Effect		Ratin	g the quality of	the meta-analys	sis evidence u	sing the (RADE guideli	nes ¹³	
analysis <i>Publication</i> <i>year</i> Years of individual studies	Studies, Patients Outcomes, Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Pellino, Gencarelli (8) (2020)	21 articles 24 patients univariates	Distribution of neurocutaneous melanosis (focal)	Children with parenchymal Neurocutaneous melanosis	Bilateral or isolated amygdala involvement carried the best rates of seizure- freedom 100% cf multiple localisations 58% (>6 months, 24 paediatric cases amongst 21 studies).	Few patients, averaging 1 patient per study								Excluded as no summary effect size, not a meta- analysis and few numbers

Page **96** of **193**

2.1.47 Widjaja, Jain (60) 2020

Widjaja, Jain (60) 2020 1990-2017 Baseline Quality: +++	258 studies, 4891 patients "seizure- freedom" ≥12month s follow- up, Random- effects, meta- regressio n and network meta- analysis	Lesional epilepsy (=abnormal MRI) 883 (10) Pathologies Tumour, HS > Rasmussen > MCD, TS > HH	No mention of distribution by lobe Paediatric	OR 1.85 [1.14, 2.94] Propor tions only	Sensitivity analysis performed by removing the single RCT from results. Newcastle- Ottawa Quality Assessment Scale for observational studies.	2 of 10 studies had a reverse OR point estimate, one of which was a small study, l ² <50%, p=0.01.	-1 SF not clearly defined, some individual studies included Engel Classes I and II	Funnel plots and trim and fill test to impute bias effect estimates: difference between observed and imputed <10% NB the MR for study quality score showed for			Age at surgery and age at seizure onset associated with seizure freedom in general and especially for TLE and ETE (age at surgery only) but not for hemisphere- ctomies, tumors or MCD	+ +
		Complete resections 893 (15)		OR 7.69 [4.76, 12.5]		consistent		subgroups of tumour and ETE, higher quality was associated	+1			++
		Age at seizure onset in general (MR) ? (<30)		SF % coeffic ient +0.34 6 [0.21, 0.49]				with reduced SF percentages - although not statistically significant, the		+1 meta- regression		++
		Age at surgery in general (MR) ? (<30)		SF % - 0.19 [- 0.27, 0.12]				magnitude of effect was significant (-0.31 and		+1 meta- regression		++
		Surgery Locations hemispheric (NMA) ? (~23)		Vs medic al OR 13.1 [4.3, 41]		NMA Surgical locations cf with medical therapy, pairwise comparisons		-0.16 respectively)	Large OR only vs medical			+

Page **97** of **193**

	But NS for vs ET	similar except for TLE vs ETE			
Surgery Locations Temporal Lobe (NMA) ? (~23)	OR 9.3 [3.3, 27] vs medic al		0	irge OR inly vs nedical	+
	Also signific ant for vs ET: OR 2				
	[1.4, 2.9] direct and NMA p=0.0 25				
Surgery Locations Extratemporal Lobe (NMA) ? (~23)	OR 4.7 [1.7, 14] vs medic al		Lar or m	irge OR only vs nedical	+
	But NS except for worse cf TL as				
	above				

Page **98** of **193**

Page **99** of **193**

2.1.48 Excluded Brændholt and Jensen (61) (2020)

6 original studies, 59 patients.

iMSI can reliably localize the EZ in focal epilepsy, but not clearly predictive of outcomes. Sensitivity and specificity are provided for EZ predictions in seizure free and non-seizure free groups, and compared with that of icEEG. The latter which is usually either non-prognostic or has a negative prognostic value. The effect sizes were for EZ prediction rather than outcomes per se.

Page **100** of **193**

2.1.49 Lamberink, Otte (62)(2020)

Meta- analysis	# included Studies, Patients	Feature	Population:	Effect Sizes	Rating the c	juality of the meta	-analysis evidence ι	ising the GRADE	guidelines ¹³				
Publication year Years of individual studies	s of ridual ies berink, 37 collaborating low-grade epilepsy	Lobe Age	(seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)	
Lamberink, Otte (62) 2020 Jan 1, 2000, and Dec 31, 2012	tertiary referral	associated	Children and Adults	80.4%	89-5% of patients had outcomes followed up for 2 years (8191 pts) Missing data (8191 pts) Missing data were imputed (39% of outcome data at 5yrs and 10% of outcome data at 2 years were missing, as well as 18-5% of	Heterogeneity between centres was modelled through random intercepts.	Reference was LEAT which was a mixture of LGNET, DNET, gangliogliomas and others. Vascular is a mixture of cavernomas and other vascular malformations. Other mixed categories are MCD-other, LEAT, and non-LEAT and Encephalitis. These are rated down. -1		Pooled data from 37 centres. "We acknowledge that not including patients of whom no histopathological data were available, such as those undergoing disconnection surgery, could have introduced a bias when assessing the association between cause and outcome."	Proportion with Engel I around 70% or greater had significant ORs and were concluded to be positively prognostic, whereas in the 50%s were negatively prognostic.		Adjusted for age at surgery and duration of epilepsy and lobe of surgery +1	+++

Page **101** of **193**

retrospective,	672		duration				
multicentre,			of				
longitudinal,			epilepsy				
cohort study	DNET	74.8%	data -1)				
	484						
random-effects	-						
logistic	vascular	74.0%					++
regression models	malformation (cavernomas and	NS					
	others)						
	443	OR 0.79 [0·60 -					
all ORs are cf to LEAT		[0·60 - 1·06]					
LEAT							
	Cavernomas	77 40/					
	323	77·1%					
	Others	65.8%					
	120						
	hippocampal	71.5%					+++
	sclerosis	OR 0.79					
	2948	0R 0.79 [0·65 - 0·89]					
		0.89]					
	FCD type I or MCD	Negative					+++
	426	50.0%					
		OR 0.38					
		[0.28 -					
		0.49]					
	Other MCD	Negative					++
	(Hypothalamic	52.3%					
	hamartomas,						
	tubers and others)						

Page **102** of **193**

			-			
405	OR 0.44 [0·29 - 0·63]					
No	Negative					+++
histopathological lesion (comprised of gliosis and	53.5%					
normal tissue)	OR 0.36 [0·30 -					
740	0.46]					
FCD type II	64.9%					+++
796	NS					
	OR 0.8 [0·61 -					
 	1.09]					
Encephalitis	59.7%					++
(rasmussen's and limbic, herpes,	OR 0.43 [0·22 -					
neurocysticercosis)	0.73]					
124						
Encephalitis - Rasmussen's	72·2%					
subgroup						
72						
Glial scar	59.4%					+++
261	OR 0.53					
	[0·39 - 0·70]					
Non-LEAT	68.4%					++
(astrocytoma, oligodendroglioma,	NS					, .
cysts,						
ependymoma,						

Page 103 of 193

meningioma, neurocytoma, and pleomorphic xanthoastrocytoma) 310	OR 0.75 [0·54 - 1·02]					
Year of surgery ? but rated +1 as likely >1000	NS					+++
Duration in years for LEAT	0.97 [0·96 - 0·99]					+++
Duration interaction with all other pathologies	NS					
Lobe of surgery TL reference had the highest compared to all other lobes, all significant (multilobar, parietal, occipital, frontal, hypothalamus)	Significant no effect size					+++
? (rated +1 as likely >1000)						

Table 1: Individual Meta-Analyses of postsurgical prognostic features, with quality of evidence rating using the GRADE system for each meta-analysis

¹Study limitations (risk of bias or internal validity): Differential surveillance for outcome between studies, failure of accurate measurement of all known prognostic factors and to match for prognostic factors and/or lack of adjustment in statistical analysis. Includes selective reporting bias. ¹² ¹⁴

²Inconsistency of results: If some studies suggest substantial prognostic value using relative measures while others suggest no effect or negative prognostic value then it may be appropriate to rate down for quality. Criteria for evaluating consistency include similarity of point estimates, extent of overlap of confidence intervals, and statistical criteria including tests of heterogeneity and I². If inconsistent results cannot be explained by differences in subgroups (populations undergoing surgery, surgical intervention, or outcome definitions and follow-up), then the quality of the body of evidence is rated down. ¹⁵

Page 104 of 193

³Indirectness of evidence: If there are differences in the populations, interventions and/or outcomes being studied compared to what we are interested in, or if interventions are compared without direct head-tohead comparisons, studies can be rated down ¹⁶. We only rate down if there is a compelling reason to believe the populations studied differ from the population of interest that the magnitude of effect would differ significantly. We rate down if there is an outcomes discrepancy, whereby the seizure-freedom duration of follow-up in the inclusion criteria is less than that of interest (at least 12months). We consider ILAE 1 and 2 seizure free, which is equivalent to Engel Ia/Ib (we consider undifferentiated Engel I otherwise not reported to be seizure-free) and only rate down inclusion criteria that specifically include Engel II or ILAE 3.

⁴Imprecision: e.g. for a single meta-analysis, effect sizes which overlap the neutral point (for RR and OR, 1) suggesting the feature is not prognostic, but the boundaries of the confidence interval are skewed significantly in one direction such that the largest plausible effect is that the feature is either positively or negatively correlated with outcomes. ¹¹

⁵Publication bias: clinical features that are non-prognostic and smaller effect sizes are less likely to be published and these can be assessed by funnel plots. Cumulative iterative meta-analyses could be indirectly inferred from the publication dates to ascertain time-lag bias. Risk of publication bias is probably larger for small, observational, and industry-funded studies. ¹⁴

⁶Rating up: relative risks above 2 (below 0.5) are rated up one level, and above 5 (below 0.2) are rate up two levels unless the CI overlaps significantly with these thresholds. If the baseline proportion of outcomes is low, odds ratios are treated similarly, otherwise a higher threshold is used. Studies were also rated up if a dose response was present or if all plausible residual confounders or biases would reduce a demonstrated effect, or suggest a spurious effect when results show no effect ¹⁷

TLE: Temporal Lobe Epilepsy. ETE: Extratemporal lobe Epilepsy. APOS: Acute Postoperative Seizures. NS: Not Significant. CI: confidence aura. HS: Hippocampal Sclerosis. MCD: Malformations of Cortical Development. HH: Hypothalamic Hamartoma. TS: Tuberous Sclerosis. OR: Odds Ratio. RR: Relative Risk Ratio. SF: Seizure Freedom. NMA: Network Meta-Analysis. ATL: Anterior Temporal Lobectomy. SAH: Selective Amygdalohippocampectomy. NA: Not Available.

*: Our calculated CI from their data. ^c: Effect size derived from article data. ^u: Univariate analyses. ^m: Multivariate analyses. [†]A weakness of the Cochrane review is that they "did not class any of the pre-operative prognostic factors of interest...as confounders" so in general our GRADE score is one lower.

Page **105** of **193**

2.1.50 Remick, Ibrahim (63) (2020)

Meta-	# included	Feature	Population:	Effect		Ratir	ng the quality of	the meta-analy	sis evidence u	sing the GR	ADE guideline:	3 ¹³	
analysis Publication year Years of individual studies	Studies, Patients Outcomes, Follow-up Durations Model(s)	# of total patients with and without (# of studies)	Lobe Age	Sizes (seizure freedom)	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence (GRADE)
Remick, Ibrahim (63) (2020) 2020 1999 – 2018	33 462 Mixed effects meta analysis PCA and multivariable logistic regression of principle components	SEEG vs SDE SEEG 127/235 (17) SDE 146/227 (18) (33)	All	NS SDE 64.3% [61.1, 67.5] SEEG 54% [50.8, 57.3] It is likely adjusted p value in the text is p = 0.0565 OR ^{cu} 0.65 [0.45, 0.95] p=0.025 ^{cu}	Cox proportional hazards investigated length of follow-up -1 some outcome data unavailable for SEEG and SDE "the difference between seizure freedom rates following SEEG- or SDE- informed resection decreased with long- term follow- up"	-1 "SEEG- informed resections were associated with a lower rate of postresection seizure freedom than SDE-informed resections (p = 0.0247)." But also "Our results demonstrate that while there was no difference in seizure freedom rates regardless of resection (p = 0.0565)"	-2 does not include studies directly comparing SEEG vs SDG						+ Very low

Page **106** of **193**

						1
						1
						1
						1
						1

Page **107** of **193**

2.2 Supplementary Table 2: Individual Prognostic Features Across All Meta-Analyses

Feature	Population	Effect	Ratin	ng the quality of t	he meta-analyti	c evidence behi	nd the potenti	al progno	stic value usir	ng GRADE guidelin	nes 13
	# patients (# studies, #meta- analyses)	Sizes	Risk of Bias or Internal Validity ¹	Inconsistency of Results ²	Indirectness of Evidence ³	Imprecision ⁴	Publication bias ⁵	Large effect size? ⁶	"Dose" response? ⁶	All plausible residual confounding? ⁶	Quality of the body of evidence
Example	TLE, FLE Age Other	RR, OR	Heterogenous outcome follow-ups Exclusion of known prognostic factors and statistical adjustments Selective Reporting	Widely spread effect sizes as assessed by point estimates, CI, and statistical tests of heterogeneity.	Populations, interventions and/or outcomes being studied differ from those of interest: e.g.: unseparated paediatric and adult ages, less than 12 months or more than ILAE 2	Large and/ or skewed Cl	"undetected" "suspected" -1 "strongly suspected" -2	at least a two-fold reduction or increase in risk +1 5-fold or more increase in RR +2	+1	All plausible residual confounders or biases would reduce a demonstrated effect, or suggest a spurious effect when results show no effect. +1	+ Very Low ++ Low +++ Moderate High ++++
				1. C	linical Feat	ures					
Low IQ	TLE Age ≥16 yrs With and without structural lesions 1034 (8, 1)	RR 0.66 [0.54, 0.94]* IQ on average 2.3 lower in not seizure-free group (p<0.009)	Adjusted for presence of structural lesions Chelune, Naugle (20) Absence of significant interaction with centres, or duration of epilepsy Chelune, Naugle (20)	Multicentre not meta-analysis Chelune, Naugle (20)	-2 duration of follow-up and definition of seizure freedoms differ Chelune, Naugle (20)	No Cl provided, but could be estimated from data presented Chelune, Naugle (20)	-1 suspected, untested Chelune, Naugle (20) Zhang, Hu (33)		+1 Higher seizure- freedom rates in higher IQs (their table 3)	+1 Adjusted for lesions	+ Chelune, Naugle (20) 1998
IQ ≤75 "mental retardation"	non-HS structural lesions in TLE >16 yrs 150 (8, 1) Tuberous sclerosis 108 (4)	RR 0.26 [0.14, 0.50]* NS OR 0.74 [0.33, 1.64]			-1Heterogenous definitions of seizure freedom without sensitivity analyses. No definition of mental						÷

Page **108** of **193**

				retardation. Zhang, Hu (33)					
				Zhàng, Hù (55)					Zhang, Hu (33) (2013)
Severe developmental delay	Tuberous Sclerosis; at least 90% less than 19 years old <181 (<20)	OR 0.14 [0.04, 0.48]				-1	+1 OR< 0.25		++ Fallah, Guyatt (35) (2013)
Pre-operative IQ (note all the others are severe low IQ)	TS in 90% <19yrs	NS OR" 1.01 [0.94, 1.08]	-1 Small samples (median 7, IQR[3,25]), could not adjust Fallah, Guyatt (35)		-1 Wide CI Fallah, Guyatt (35)	Small samples, did not assess heterogeneity or bias Fallah, Guyatt (35)			+ Fallah, Guyatt (35) (2013)
Moderate to severe developmental delay	Paedaitric Rasmussen's <187 (<19) Children and adults hemispherectomy 1041 (26)	NS HR ^u 0.64 [0.31, 1.32] OR 0.61, 95% CI	-1 Reporting bias: 7 out of 19 studies had < 5 patients			-1 suspected but "unable to measure between-study heterogeneity and publication bias due to the very limited sample size per study"			+ Harris, Phillips (56) 2019 +++ Hu, Zhang (46) 2016

Page **109** of **193**

		0.46–0.82, p = 0.001						
History of Head injury	Adults and children 551 (7)	NS RR 0.99 [0.86, 1.13]	-1†	-1 I ² 46%, p 0.08, subgroup analyses by outcome were very different and inconsistent				+ West, Nevitt (3) 2019
febrile convulsions	TL and ET Children and adults 1368 (20, 2)	OR 2.08 [1.2, 3.7], RR 1.09 [1.01, 1.17]	-1†	Q=7.9, p=0.093 Tonini, Beghi (24) -1 l ² = 32%, p=0.11; >1 yr SF subgroup had good outcomes with febrile seizures but the other subgroups did not (subgroup l ² 49%, p 0.14) West, Nevitt (3) 2019	-1 Engel outcomes in 22 studies and other definitions in 25			+, + Tonini, Beghi (24) (2004), West, Nevitt (3) 2019
CNS infections	TL and ET Children and adults ? (2, 1)	NS OR 0.73 [0.29, 1.82]	-1 Only 2 studies	Q=2.1, p=0.146	-1 Engel outcomes in 22 studies and other definitions in 25			+ Tonini, Beghi (24) (2004)
Focal (partial) seizure semiology (vs generalized)	ET, Adults, Non- lesional 62 (?, 1)	NS ^u (univariate Fisher's)	-1 Small sample sizes form multiple centres, heterogenous outcome reporting Ansari, Tubbs (18)			-1		+ Ansari, Tubbs (18) (2010) ++

Page **110** of **193**

Adults and Child with FCD 2014(1 1) Adults and Child with FLE 269 (< 1)	0, [1.18, 1.82] en NS P=0.05			-1 Magnitude not provided and p value borderline Englot, Wang (30)	No funnel plots/trim fill etc Rowland, Englot (29) Zhang, Hu (33) Fallah, Guyatt (35)			Rowland, Englot (29) (2012) + Englot, Wang (30) (2012)
TL in Children 4 (11, 1)	OR 1.36 [1.20, 1.56]				Undetected Englot, Rolston (32)			Englot, Rolston (32) (2013) +
Tuberous Sclero 65 (6) Tuberous Sclero in at least 90% le than 19 years o (~children) 181 (5	OR = 3.1 [1.2, 8.2] sis ss But same data NS	-1 Small samples (median 7, IOR[3,25]), could not adjust Fallah, Guyatt (35)	-1 Heterogenous definitions of seizure freedom without sensitivity analyses Zhang, Hu (33) -1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt (35)	-1 Fig 1 shows bootstrapping CI just about crosses zero, otherwise significant prognostic value. Ibrahim, Morgan (36)			+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes. Ibrahim, Morgan (36)	Zhang, Hu (33) (2013) + *Fallah, Guyatt (35) (2013) ++ *Ibrahim, Morgan (36) (2015)

Page **111** of **193**

								*=same data different methods
Focal vs generalized Focal onset with impaired awareness vs aware or other seizures	Repeat surgery for focal DRE 145 (?)	NS ^u OR ^{e*} 1.84 [0.93, 3.61]			1 imprecise and effect sizes and Cls estimated. Krucoff, Chan (50) (2017)			+ Krucoff, Chan (50) (2017) + Krucoff, Chan (50) (2017)
Seizures	Repeat surgery for focal DRE 206 (?)	NS ^{u⁺} OR 1.61 [0.93, 2.8]						
	Paediatric Rasmussen <187 (<19)	p=0.089						+ Harris,
		NS HR 1.125 [0.66, 2.33]	-1 Reporting bias: 7 out of 19 studies had ≤ 5 patients			-1 suspected but "unable to measure between-study heterogeneity and publication bias due to the very limited sample size per study"		+ Englot, Breshears (37) 2013
	Paediatric ET 206 (11)							++

Page **112** of **193**

		OR 1.61 [1.18, 2.35]							Hu, Zhang (46) 2016
	Children and adults hemispherectomy 403 (15)	OR 1.84, [1.18, 2.89], p = 0.008							+ Shan, Fan (53) 2018
	Adults with supratentorial low grade gliomas 796 (3)	RR 0.76 [0.67, 0.85]	Note the caption on Fig 3 seems						++ Cao, Liu (43) (2016)
	Children hemispherectomy 212(8)	NS ^u	incorrect and confusing.						
Infantile/epileptic spasms	Tuberous sclerosis <343 (<27, 2), 90% <19yrs in ref ³⁵	OR 0.45 [0.24, 0.85, NS OR 0.84 [0.35, 2.03] also NS on PLS	-1 Small samples (median 7, IOR[3,25]), could not adjust Fallah, Guyatt	l ² =45% Zhang, Hu (33) (2013)	-1 Heterogenous definitions of seizure freedom without sensitivity analyses Zhang, Hu (33) (2013)	-1 No funnel plots Zhang, Hu (33) (2013) -1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt		+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes. Ibrahim, Morgan (36)	+, + Zhang, Hu (33) (2013) *Fallah, Guyatt (35) (2013) +++ *Ibrahim, Morgan (36) (2015)

Page **113** of **193**

								* = same data different methods
Gender (male vs female)	Adults and Children with FLE <1199 (<21,1)	NS p=0.99 Males 53% females 54%			Funnel plots: undetected Englot, Wang (30)			++ Englot, Wang (30) (2012)
	Children with TLE 553 (14, 1)	NS ^u crude OR ^c 1.22 [0.90, 1.85]	-1 Heterogenous definitions of seizure		-1 No funnel plots Zhang, Hu (33)		+1 Permutation testing was performed/to evaluate the	+ Englot, Rolston (32) (2013)
	Tuberous Sclerosis <186 (<30, 2)	NS OR 0.94 [0.52, 1.71], NS 0.92 [0.40, 2.08] also NS on PLS	freedom without sensitivity analyses Zhang, Hu (33) -1 Small samples (median 7, IQR[3,25]), could not adjust Fallah, Guyatt		-1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt		significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes	+, + Zhang, Hu (33) (2013) *Fallah, Guyatt (35) (2013) +++ *Ibrahim,
								Morgan (36) (2015) *=same data different methods +

Page **114** of **193**

MRI neg TLE 146 (11)	NS OR 1.44 [0.86, 2.41] P=0.17	-1 2/11 studies had zero SF cases amongst males and 5 females each					Wang, Zhang (44) (2016)
Repeat surgery in focal DRE 140 (?)	NS OR° [*] 0.83 [0.42, 1.64]	or 2 males and 5 females – very few numbers with large CI. Collected data from even studies with very few cases. NOS scores ranged from 4 to 6 stars Wang, Zhang (44)		-1 imprecise and effect sizes and Cls estimated			+ Krucoff, Chan (50) (2017)
Paediatric ET 303 (15)	NS ^u OR ^{c∗} 1.16 [0.74, 1.83]						+ Englot, Breshears (37) 2013 ++ Hu, Zhang
Children and adults hemispherecromy 575 (24)	NS OR 1.15, 95% CI 0.79– 1.67, p = 0.46						(46) 2016 + Shan, Fan (53) 2018

Page **115** of **193**

	sex in low grade gliomas in adults <2641 (<23)						++
		NS NA					Cao, Liu (43) (2016)
	children hemispherectomy 231 (10)						
		NS ^u NA					
Seizure Frequency	Adults and children with FLE <1199 (<21, 1)	NS ^u	-1 Limited info Englot, Wang (30)				+ Englot, Wang (30) (2012)
Without daily seizures	TL in Children 103 (5)	OR ^{o*} individual participant 2.98 [1.24, 7.16]]	small number of studies reported this: no formal CMH Meta- Analysis attempted Englot, Rolston (32)				+ Englot, Rolston (32) (2013)
	Paediatric ET 158 (4)	NS OR ^{uc*} 1.85 [0.93, 3.57]					+ Englot, Breshears (37) 2013
Age at seizure onset	ET, Adults, Non- lesional	NS	-1Small sample sizes form multiple				+

Page **116** of **193**

	131 (?, 1)		centres, heterogenous outcome reporting					+1	Ansari, Tubbs (18) (2010)
seizure onset before 12 months of age (dichotomised)	Tuberous sclerosis 200 (10, 1)	OR 0.47 [0.24, 0.92]		l ² =0% Zhang, Hu (33) (2013)	-1 Heterogenous definitions of seizure freedom without sensitivity nalyses Zhang, Hu (33) (2013)	-1 No funnel plots Zhang, Hu (33) (2013)		Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and	+ Zhang, Hu (33) (2013)
Log base 10 of age at onset	Tuberous Sclerosis in 90% <19 yrs <181 (<20)	NS OR 1.52 [0.77, 2.99] also NS on PLS	-1 Small samples (median 7, IQR[3,25]), could not adjust Fallah, Guyatt			-1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt		ordinal Engel outcomes classes. Ibrahim, Morgan (16	+, +++ *Fallah, Guyatt (35) (2013) *Ibrahim, Morgan (36) (2015) *=same data different methods
<18 yrs vs >18 yrs	MRI neg TLE 78 (6)	NS OR 1.09 [0.38, 3.07]	NOS scores ranged from 4 to 6 stars						+ Wang, Zhang (44) (2016) +
Younger age at onset	Paediatric Rasmussen's <187 (<19)	NS HR 0.91º [0.85, 0.96] HR 0.95 ^m [0.87, 1.04]	-2 Adjusted for the variable length of follow-up, but not lesional or other known factors. Reporting bias: 7 out of 19 studies			-1 suspected but "unable to measure between-study heterogeneity and publication bias due to the very limited			Harris, Phillips (56) 2019

Page **117** of **193**

			had ≤ 5 patients		sample size per study"		++
							Widjaja, Jain (60) 2020
	Paediatrics (and paedaitric subgroups: TL, but not ET, hemispherectomy, tumors or MCD) ? (<30)	Meta Regression overall = $e^{0.346}$ = OR^c =1.41 (p<0.001)		-1 SF not clearly defined, some individual studies included Engel Classes I and II			
		TL e ^{0.144} = OR ^c =1.15 (p=0.023)					+
	ET non lesional children						Ansari, Maher (28) 2010
	<95 (<17)	NS ^u					
	Children hemispherectomy <380 (13)						Cao, Liu (43) (2016)
		SMD = 0.26, [0.03, 0.49]					
		P = 0.028					
Age at epilepsy surgery Continuous	ET, Adults, Non- lesional 131 (?, 1)	NS (ANOVA)	-1 Small sample sizes form multiple				+ Ansari, Tubbs (18)
			centres, heterogenous outcome reporting				(2010)

Page **118** of **193**

<18 yrs vs >18yrs	Adults and Children with FCD <2014 (13, 1)	NS OR 1.14 [0.96, 1.35]			-1 plots/trim fill Rowland, Englot (29) Zhang, Hu (33)			++ Rowland, Englot (29) (2012)
<18 yrs vs >18yrs	Adults and Children with FLE <1199 (<21, 1)	NS 43% vs 54% p=0.22 (OR° ~0.64)			Funnel plots: undetected Englot, Wang (30)			++ Englot, Wang (30) (2012) + Englot, Rolston
Continuous	Children with TLE <1318 (17, 1)	NS t-test ^u						(32) (2013)
<5yrs vs >5yrs Log base 10 age at surgery	Tuberous Sclerosis <375 (<31, 2)	NS OR 1.05 [0.58, 1.88]; NS OR 1.21 [0.56, 2.62] Also NS on PLS	-1 Small samples (median 7, IQR[3,25]), could not adjust Fallah, Guyatt	-1 Heterogenous definitions of seizure (reedom without sensitivity analyses Zhang, Hu (33)	-1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt		+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes. Ibrahim, Morgan (36)	+, + Zhang, Hu (33) (2013), Fallah, Guyatt (35) (2013) +++ Ibrahim, Morgan (36) (2015)

Page **119** of **193**

<18 yrs vs > 18 yrs at surgery	MRI neg TLE 78 (6)	NS OR 1.09 [0.38, 3.07]	NOS scores ranged from 4 to 6 stars Wang, Zhang (44) (2016)	Not detected. Subgroup analyses for paediatric, time of occurrence, semiology and meta-regressions to explore heterogeneity were performed. Girdharan, Horn		-1 Funnel plots and Egger's regression showed no		Wang, Zhang (44) (2016)
Subgroup meta- regression: mean age at surgery	TLE and ET children and adults <1983 (<17)	NS		(45) Salanova 1992 study seems to have an outlying large point effect for age, without attempts at subgroup explanation.		bias. However, we note asymmetry in overall APOS, paediatric APOS and semiology group funnel plots in their Fig e1. Giridharan, Horn (45)		++ Giridharan, Horn (45) 2016
Age<18 yrs	Occipital Lobe and posterior quadrant. Mixed adult and paediatric 111 (7)	OR 1.54 [1.13, 2.18]	Attempted to minimise selection bias: variables selected only if at least 80 patients across 5 studies1 No statistical adjustments "impossible to perform a multivariate analysis looking for interactions	Harward, Chen (49)	-1 imprecise and effect sizes and Cls estimated. Krucoff, Chan			+ Harward, Chen (49) 2017
	Repeat surgery focal DRE 1st surgery 194 (?)		variables" e.g. didn't adjust for lesions		(50)			+ Krucoff, Chan (50) (2017)
Age at surgery	2nd/last surgery 164 (?)	NS ^u						

Page **120** of **193**

						+ Harris, Phillips (56) 2019
Paediatric Rasmussen's <187 (<19)	HR 0.93" [0.89, 0.97] NS ^m HR 0.95 ^m [0.90, 1.0]	-2 Adjusted for the variable length of follow-up, but not lesional or other known factors. Reporting bias: 7 out of 19 studies had ≤ 5 patients		-1 suspected but "unable to measure between-study heterogeneity and publication bias due to the very limited sample size per study"		++ Widjaja, Jain (60) 2020
Paediatric Meta Regression ? (<30) Overall	Meta regression				+1 meta- regression	2020
TL ET But NS for	e ^{-0.189} = OR ^c = 0.83 overall p<0.001					
hemispherectomy, tumors, MCD	e- ^{0.093} = OR ^c = 0.91 TL p=0.031					+ Englot, Breshears
	e ^{-0.173} = OR ^c = 0.84 ET p 0.004					(37) 2013
Paediatric ET						+
<1259 (17)						Shan, Fan (53) 2018

Page **121** of **193**

Age>= 45 yrs	Low grade gliomas in adults 1065 (6)	NS ^u					+ Ansari, Maher (28)
	ET non lesional children <95 (<17)	RR 1.12 [1.01, 1.23]					Maher (28) 2010 ++ Cao, Liu
		NS ^u					(43) 2016
	Children hemispherectomy <380(13)						+ Shang- Guan, Wu (54) (2018)
	Cavernomas adults and children >18 vs other <245 (<7)	NS ^u					
		NS 0.95 [0.38, 2.37]					
Duration of epilepsy prior to surgery	ET, Adults, Non- lesional 131 (?, 1)	NS	-1 Small sample sizes form multiple centres, heterogenous outcome reporting		Funnel plots: undetected		+ Ansari, Tubbs (18) (2010)
		NS NA	-1				+

Page **122** of **193**

	Adults and Children with FLE <1199 (<21, 1)		Limited information given					Englot, Wang (30) (2012)
Mean duration		NS t-test						++
	TLE in Children <1318 (12, 1)							Englot, Rolston (32) (2013)
Shorter epilepsy duration		OR = 2.57 [1.21, 5.47]	NOS scores					+ Wang, Zhang (44)
	MRI neg TLE 128 (9)		ranged from 4 to 6 stars					(2016)
Subgroup meta- regression: mean duration of epilepsy		NS		Not detected. Subgroup analyses for paediatric, time of occurrence,		-1		++ Giridharan,
	TLE and ET children and adults <1983 (<17)			semiology and meta-regressions to explore heterogeneity were performed. Giridharan, Horn		Funnel plots and Egger's regression showed no bias. However,		Horn (45) 2016
		NS ^u (t-test)		(45)		we note asymmetry in overall APOS, paediatric APOS and semiology		+
	Repeat surgery for focal DRE					group funnel plots in their Fig e1. Giridharan, Horn (45)		Krucoff, Chan (50) (2017)
Time between resections	60 (?)	NS ^u (t-test)						+
resections								Krucoff, Chan (50) (2017)

Page **123** of **193**

	Repeat surgery for focal DRE 188 (?)							
Shorter duration of epilepsy	Paediatric Rasmussen's <187 (<19)	HR 0.92 ^u [0.88, 0.97] (NS likely on adjustment)	-2 Not even adjusted for the variable length of follow-up, let alone not lesional or other known factors. Reporting bias: 7 out of 19 studies had ≤ 5 patients			-1 suspected but "unable to measure between-study heterogeneity and publication bias due to the very limited sample size per study"		+ Harris, Phillips (56) 2019
<2 vs >2yrs 388 (3) <5 vs >5yrs 551 (4) <10 vs >10 1376 (10) <20 vs <20 346 (3)	Children and adults all lobes	RR 1.20 [1.05, 1.39] RR 1.24 [1.08, 1.42] 1.25 [1.09, 1.43] 1.33 [1.08; 1.65]	"Moderate risk of bias" "did not justify downgrading the evidence level"	-1 3/12 studies reported no association between duration and outcome 1/12 study was in favour of longer duration		Studies that only reported median duration of epilepsy for patients grouped by seizure outcome were not included.	Evaluated <5 yrs vs >10yrs To investigate if a larger time gap in epilepsy duration resulted in a larger effect – not present	+ Bjellvi, Olsson (57) (2019) Except for <10 vs >10 yrs: ++ Bjellvi, Olsson

Page **124** of **193**

<5 vs >10 430 (4)		1.32 [1.19; 1.46]					(57) (2019)
Shorter epilepsy duration (≤ 7 years, the median value in this study)	Paediatric ET <1259 (8)	OR 1.52 [1.07, 2.14]					+ Englot, Breshears (37) 2013
More than 1 year history of seizures	Adults with low grade gliomas <2641 (23)	RR 0.82 [0.75, 0.91]					+ Shan, Fan (53) 2018 + Ansari, Maher (28)
	ET nonlesional children <95 (<17)	NS ^u					Maher (28) 2010 ++

Page **125** of **193**

		NS ^u								Cao, Liu (43) (2016)
	Children hemispherectomy <380 (5)	NS			-1 f/up 6 months					+ Shang- Guan, Wu (54) (2018)
	Cavernomas adults and children <245 (<7)									
Duration in years	Children and Adults with low-grade epilepsy associated neuroepithelial tumour (LEAT)	0.97 [0·96 – 0·99]								+++ Lamberink, Otte (62)
	Duration does not interact with any other pathology	NS								
Postsurgical: without acute postoperative seizures (APOS) within 30days after surgery	TLE and ETE Mixed paediatric and adult. 1983 (17) Paediatric: 730 (6)	Overall OR 4.2 [2.97, 5.93] (Without APOS 73.5% seizure-free, vs with APOS 39%)	Subgroup analysis for overall APOS persistent in both. -1 64.8% had presurgical lesion, not adjusted Variable APOS definitions (7- 30 days) but used meta-	Not detected Subgroup analyses for paediatric, time of occurrence, semiology and meta-regressions to explore heterogeneity were performed			-1 Funnel plots and Egger's regression showed no bias. However, we note asymmetry in overall APOS, paediatric APOS and semilogy group funnel plots in their Fig 1e.	Large effect size +1		++ Giridharan, Horn (45) 2016
	TLE and ET 222 (6)	Paediatric subgroup OR 5.71 [3.32, 9.8]	regression to explore this for under 24hrs only			-1 towards positive Seizure- freedom more				+

Page **126** of **193**

Earlier onset of APOS (within 24hrs)		NS 1.87 [0.89, 3.95]		likely, but statistically not significant			Giridharan, Horn (45) 2016
Postsurgical semiology different from presurgical	TLE and ET adults and children 109 (3)	NS 4.24 [0.93, 19.25]	Not detected Subgroup analyses for paediatric, time of occurrence, semiology and meta-regressions to explore heterogeneity were performed	-1 towards positive Seizure- freedom more likely, but statistically not significant	-1 Funnel plots and Egger's regression showed no bias. However, we note asymmetry in overall APOS, paediatric APOS and semilology group funnel plots in their Fig e1.		+ Giridharan, Horn (45) 2016
epilepsia partialis continua (EPC)	Children undergoing hemispherectomies 127 (7)	NS ^u					++ Cao, Liu (43) (2016)

Page **127** of **193**

				2. Imaging	g Features								
	Consistently prognostic												
mesial temporal sclerosis	TLE Children and adults 4430 (61, 2)	OR 2.13 [1.57, 2.86] RR 1.17 [1.12, 1.23]	-1 †	Q=21.9, p=0.082	-1 Engel outcomes in 22 studies and other definitions in 25					++, ++ Tonini, Beghi (24) (2004), West, Nevitt (3) 2019			
Abnormal MRI (lesional MRI)	Adults and children, TL and ET <13238 (<114, 4) TL lesion vs TL no lesion <4785 (<51, 2) ET lesion vs ET no lesion <3760 (<45, 2)	OR 2.27 [1.54, 3.45]; OR 2.5 [2.1, 3.0] (RR 1.4); OR 2.03 [1.67, 2.47], RR 1.28 [1.20, 1.37] OR 2.7 [2.1, 3.5]; OR 1.76 [1.34, 2.32] OR 2.9 [1.6, 5.1]; OR 2.88 [1.53, 5.43]	-1 Heterogenous SF definitions. English and Chinese studiesYin, Kang (31); Two studies favoured non- lesional epilepsy Téllez- Zenteno, Ronquillo (5) -1 †	One outlier with poor results but wide Cl ²⁴ Q=4.9, p=0.768 Q=35.6, p=0.43	-1 Engel outcomes in 22 studies and other definitions in 25 Tonini, Beghi (24); -1 short follow ups in 3 studies Yin, Kang (31). Téllez-Zenteno, Ronquillo (5) also investigated whether lesion definition by MRI or histopathology made a difference – it didn't.	-1 Non lesional significantly more frequent in ET cases (45%) than in TL (24%) ⁵ ; undetected Yin, Kang (31) -1 No funnel plots/trim fill Teillez-Zenteno, Ronquillo (5),				++, ++, ++, ++ Tonini, Beghi (24) (2004), Téllez- Zenteno, Ronquillo (5), Yin, Kang (31) (2013) <i>West, Nevitt</i> (3) 2019 +++, ++ Téllez-Zenteno, Ronquillo (5), Yin, Kang (31) (2013) +++, +			

Page **128** of **193**

Adults and Children with FCD <2014 (14, 1)	OR 1.67 [1.33, 2.16]				Funnel plots: undetected (not shown)Rowland, Englot (29)		++ Rowland, Englot (29) (2012)
FLE, Adults and Children 627 (14, 1)	RR 1.64, [1.32, 2.08]						++ Englot, Wang (30)
TL in Children 802 (26, 1)	OR 1.27 [1.16, 1.40]						(2012) ++ Englot, Rolston (32) (2013)
Occipital Lobe and posterior quadrant. Mixed adult and paediatric. 132 (7)	OR 3.24 [2.03, 6.55]	-1 No statistical adjustments "impossible to perform a multivariate analysis looking for interactions across variables" e.g. didn't adjust for lesions. Harward, Chen (49)	Liava 2014 is the only study out of 7 without a CI overlapping OR of 1.				(2013) + Harward, Chen (49) 2017
Repeat surgery for focal DRE 196 (7)	NS OR 1.9 [0.6, 5.4]		-1				++ Krucoff, Chan (50) (2017)

Page **129** of **193**

	Paediatric 883 (10)	OR 1.85 [1.14, 2.94]	Sensitivity analysis performed by removing the single RCT from results. NOS	SF not clearly defined, some individual studies included Engel Classes I and II			Funnel and trim and fill: difference between observed and imputed <10%			+ Widjaja, Jain (60) 2020
	Paediatric ET 506 (23)	NS OR ^{uc*} 1.44 [0.98, 2.12]								+ Englot, Breshears (37) 2013
	Children hemispherectomy <380 (8)	OR 4.6 [1.27, 16.62]				1 wide CI				+ Cao, Liu (43) (2016)
Number of cortical tubers <=4 vs > 4 "less tuber burden"	Tuberous Sclerosis <286 (<24, 2)	NS OR 1.12 [0.49, 2.57]; NS OR 1.01 [0.96, 1.07] also NS on PLS	-1 Small samples (median 7, IQR[3,25]), could not adjust Fallah, Guyatt		-1 Heterogenous definitions of seizure freedom without sensitivity analyses Zhang, Hu (33)		-1 No funnel plots Zhang, Hu (33) -1 Small samples, did not assess heterogeneity or		+1 Permutation testing was performed to evaluate the significance of the component, and bootstrapping was used to	+, + Zhang, Hu (33) (2013) *Fallah, Guyatt (35) (2013)

Page **130** of **193**

							bias Fallah, Guyatt		identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes Ibrahim, Morgan (36) (2015)	+++ * Ibrahim, Morgan (36) (2015)
¹ H spectroscopy: magnetic spectroscopy abnormality ipsilateral to lobe of resection	TLE adults and children TLE, adults and children, normal MRI 121 (22, 1)	OR 4.9 [1.97, 12.17] NS	Fifteen centers performed chemical shift imaging and seven centers used single- voxel spectroscopy. Most studies were obtained at 1.5 T	Q=2.7 Only valuable in lesional MRI cases	-2 The EZ was mostly defined by EEG data (rather than resection)	-1 Large Cl		PPV = 82% but no benchmark		+ Willmann, Wennberg (26) (2006) Probably no more valuable than conventional MRI abnormality
Vascular disorders	TL and ET Children and adults ? (3, 1)	NS OR 0.66 [0.30, 1.46]	-1 3 studies	Q=945, p=0.6	-1 Engel outcomes in 22 studies and other definitions in 25					+ Tonini, Beghi (24) (2004)

Page **131** of **193**

FDG-PET focal interictal hypometabolism	TLE and ET Adults 153 (46, 1) TLE Adults ? (35, 1) Adults and Children with FLE <1199 (<21,1) MRI negative TLE 127 (5, 1)	NS ^u (unweighted crude) NS ^u (unweighted crude) NS ^u (Chi- squared tests then random effects if significant)	-1 The analyses were complicated by significant differences in study design and often by lack of precise patient data. the tracer injection dose from 1 to 15 mCi, and the time for data acquisition after tracer injection from 5 to 60 min			Funnel plots: undetected		+ Willmann, Wennberg (27) (2007) PET does not appear to add value in patients localized by ictal scalp EEG and MRI. + Englot, Wang (30) (2012)
		NS p=0.06 OR = 2.11 [0.95, 4.65]	6 Wang, Zhang (44)					+ Wang, Zhang (44) (2016)
Encephalomalacia	Adults and children 317 (5)	NS RR 0.78 [0.52, 1.17]	-1†	No significant difference between outcome subgroups				+ West, Nevitt (3) 2019
Enhancement, oedema, mass effect	Low grade gliomas in adults <2641 (<23)	NS NA						+ Shan, Fan (53) 2018

Page **132** of **193**

SPECT: SISCOM concordance with resection area	TL and ET 275 (11)	OR 3.28 [1.90, 5.67]	l ² = 16.6%, p=0.285)		Egger's and Begg's test not significant		++ Chen and Guo (47) (2016)
subtraction ictal and inter-ictal SPECT co- registered to MRI (SISCOM)	ET subgroup 209 (11)	OR 2.44 [1.34, 4.43]	f ^e = 10.6%, Q = 10.06, p = 0.345		Signinicant		(11) (2010)

Page **133** of **193**

			3	3. Neurophy	siological	Features			
Postoperative discharges	TL and ET Children and adults 1547 (9, 2)	OR 0.28 [0.08, 0.95] NS Adjusted for outcomes RR 0.91 [0.68, 1.22] RR 0.81	-1 Only 3 studies -1 †	Heterogenous Q=6.7, p=0.035j used random effects	-1 Engel outcomes in 22 studies and other definitions in 25				+, ++ Tonini, Beghi (24) (2004), West, Nevitt (3) 2019
Intracranial / invasive Monitoring / EEG (performed vs not performed)	<542 (<6) TL and ET Children and adults 1547 (27, 2)	[0.70, 0.94] OR 0.37 [0.22, 0.63], RR 0.85 [0.78, 0.93]	1†	Q=3,p=0.7	-1 Engel outcomes in 22 studies and other definitions in 25				 +, ++ Tonini, Beghi (24) (2004), West, Nevitt (3) 2019
	ET, Adults, Non- lesional 108 (?, 1)	NS	-1 Small sample sizes form multiple centres, heterogenous outcome reporting						+ Ansari, Tubbs (18) (2010) +
	Children and adults with FLE <1199, <21, 1)	NS	-1 Limited information provided				Funnel plots: undetected Englot, Wang (30) Englot, Rolston (32)		Englot, Wang (30) (2012) +
	Tuberous Sclerosis 144 (7)	NS OR 1.6 [0.76, 3.37]			-1 Heterogenous definitions of seizure freedom without sensitivity analyses Zhang, Hu (33)		-1 No funnel plots Zhang, Hu (33)		Zhang, Hu (33) (2013)

Page **134** of **193**

								++
								Englot, Rolston (32) (2013)
ECoG performed	Children with TLE 462 (13)	NS OR ^c crude 1.31 [0.84, 2.04]						++
Invasive monitoring	Repeat surgery							Krucoff, Chan (50) (2017)
	on focal DRE 210 (?)	OR = 0.4, [0.2, 0.9]						+
								Englot, Breshears (37) 2013
	Paediatric ET 433 (20)	NS ^u OR ^{uc*} 0.77 [0.50, 1.19]						+ Ansari, Maher (28) 2010
	ET nonlesional children <95 (<17)	NS ^u						
sEEG vs subdural grid	TL and ET adults and children (but not from children only studies) 1999 (31)	Overall RR = 64.7% [59.2, 69.8] / 55.9% [50.9, 60.8] = 1.16°	-1 average follow up for SEEG was 10 months while for SDG it was	Overall SEEG: $l^2 = 11.86\%;$ p = 0.318 subdural grid: $l^2 = 54.47\%;$ p = 0.002	-1 studies <6 months follow-up durations; we are interested in	Funnel plots, Egger's tests: no overall changes or subgroup changes		+ Toth, Papp (59) 2019

Page **135** of **193**

Nonlesional 237 (15) Lesional 665 (21)	Nonlesional NS RR = 52% [37.3, 66.3] / 54.4% [40.6, 67.6] = 0.96 Lesional RR = 71.6% [61.6, 79.9] / 57.3% [48.7, 65.6] = 1.25	nearly 19months. Significant differences overall (p = 0.02), lesional (p = 0.031), and also, temporal sugroups (p = 0.002)	at least 12 months			
TL 470 (17)	TL RR = 73.9% [64.4, 81.6] / 56.7% [51.5, 61.9] = 1.30					
ET 420 (14)	ET RR = (61% [51, 70.2]) / (46.7%[36.5, 57.2]) = 1.31					
all	OR ^{cu} 0.65 [0.45, 0.95] p=0.025 ^{cu} It is likely adjusted p value in the text is p = 0.0565 Therefore NS	See individual paper Remick et al for GRADE scores for this feature				+ ⁶³ 2020

Page **136** of **193**

Intraoperative ECoG	Children and adults with FLE 1024, <21, 1)	NS p=0.14 Pooled ind particicpant OR ^c 1.23 [0.95, 1.62]					Funnel plots: undetected (not shown)		++++ Englot, Wang (30) (2012)
Interictal spikes	TL and ET Children and adults ? (3, 1)	NS OR 1.82 [0.86, 3.88]	-1 Only 3 studies			-1 Skewed			+ Tonini, Beghi (24) (2004)
Lateralised/ unilateral interictal EEG	Children and adults with FLE <1199, <21, 1) Tuberous	NS	-1 limited information provided Englot, Wang (30)				Funnel plots: undetected Englot, Wang (30)		+ Englot, Wang (30) (2012)
	Sclerosis 127 (6)	OR 2.42 [1.11, 5.27]		l ² =0% Zhang, Hu (33) (2013)	-1 Heterogenous definitions of seizure freedom without sensitivity analyses Zhang, Hu (33) (2013)		-1 No funnel plots Zhang, Hu (33) (2013)		+ Zhang, Hu (33) (2013)
Unilateral interictal spikes vs bilateral	Adults and children 1414 (18)	RR 1.14 [1.05, 1.24],	-1 CI adjusted for various outcome scale Definition was likely to have influenced the analysis, e.g. non-lateralising vs contralateral spikes, focal vs non-focal spikes †	-1 I ² = 67% overall and mixed effects using only Engel outcomes is non-significant: RR [0.88, 2]. Subgroup analyses (TLE vs ET) do not explain these differences.		-1 small studies with imprecise results. Mixed- effects model RR has no statistical significance.		In best case scenario of pooled effect rather than mixed-effects, the point estimation is 14% better. E.g. if bilateral 60% SF, unilateral spokes, 70% SF. This variable only explains one- third of the missing outcome variance, with	+ West, Nevitt (3) 2019

Page **137** of **193**

	Paediatric ET 130 (10) Adults and children hemispherectomy	NS OR ^{uc*} 2.22 [0.98, 5.05] OR 1.66, [1.03, 2.67]					NNT around 10.		+ Englot, Breshears (37) 2013 ++ Hu, Zhang (46) 2016
Unifocal interictal scalp EEG abnormality (or no interictal abnormality)	413 (7) Tuberous Sclerosis 90% <19yrs <181 (<20,1)	NS OR 1.54 [0.73, 3.26] Also NS on PLS	-1 unusual feature dichotomization -1 Small samples (median 7, iOR[3,25]), could not adjust Fallah, Guyatt		-1 Skewed bootstrapping Cl suggestive of possible positive effect Ibrahim, Morgan (36)	-1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt		+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes	+ *Fallah, Guyatt (35) (2013) ++ *Ibrahim, Morgan (36) (2015) * = same data different methods
Interictal EEG localised to temporal lobe	MRI neg TLE 149 (7)	OR 3.38 [1.57, 7.25]	NOS 4-6	- 1 large Cl Wang, Zhang (44)					+

Page **138** of **193**

							Wang, Zhang (44) (2016)
Focal ictal/interictal/invasive EEG	Repeat resective surgery for focal DRE 192 (8)	OR = 3.6, [1.6, 8.2]					++ Krucoff, Chan (50) (2017)
Unilateral vs bilateral ictal EEG (Lateralized ictal EEG)	Adults and Children with FCD <2014 (10, 1)	NS OR 1.03 [0.82, 1.31]	I ² =0% Zhang, Hu (33)		-1 No funnel plots/trim fill Rowland, Englot (29) Zhang, Hu (33)		++ Rowland, Englot (29) (2012)
	Tuberous Sclerosis 159 (8)	OR 2.48 [1.17, 5.24]		-1 Heterogenous definitions of seizure freedom without sensitivity analyses Zhang, Hu (33)			+ Zhang, Hu (33) (2013)
	Adults and children hemispherectomy 414 (7)	ictal: OR 1.88, [1.15, 3.07], p = 0.01					++ Hu, Zhang (46) 2016

Page **139** of **193**

Localized/unifocal ictal (scalp) EEG	Children and adults with FLE <1199, <21, 1)	NS ^u	-1 limited information provided		Funnel plots: undetected			+ Englot, Wang (30) (2012)
	Children with TLE 445 (14, 1)	NS [⊍] crude OR⁰ 1.23 [0.73, 2.06]						++ Englot, Rolston (32) (2013)
	Tuberous Sclerosis; at least 90% less than 19 years old <186 (<20)	OR = 3.21, [1.35–7.58] Positive prognostic value (PLS)	-1 Small samples (median 7, IORI3,25)), could not adjust Fallah, Guyatt (15)		-1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt (15)		+1 Permutation testing was performed'to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes Ibrahim, Morgan (36)	+ *Fallah, Guyatt (35) (2013) +++ *Ibrahim, Morgan (36) (2015) * = same data, different methods
Ictal EEG localized to temporal lobe	MRI neg TLE 125 (6) Paediatric ET 226 (13)	OR = 3.89 [1.66, 9.08] OR 1.55 [1.24, 1.93]	NOS 4-6	- 1 large Cl Wang, Zhang (44)				+ Wang, Zhang (44) (2016) + Englot, Breshears (37) 2013

Page **140** of **193**

Video-Telemetry (VT)	Children and adults with FLE <1199, <21, 1)	NS (chi- squared tests then random effects if significant)	-1 limited information provided		Funnel plots: undetected		+ Englot, Wang (30) (2012)
(Long Term Monitoring, LTM)	TLE, ETE, lesoinal and nonlesional, (assumed adults and children as not explicitly mentioned) (534, 44)		A high risk of bias was observed in a considerable proportion of included studies; the quality of evidence was assigned as "very low"				+ Very low Kobulashvili, Kuchukhidze (55) (2018)
	Lesional TLE	OR 1.41 [0.79, 2.53]	Note the trend wotwards LTM predicting				
	Lesional ETE	OR 0.46 [0.2, 1.07]	seizure free outcomes in lesional TLE only, which is a confounder of good outcomes in lesional TLE.				
	Nonlesional TLE Nonlesional ETE	OR 0.6 [0.01, 35.86] 1 [0.06, 17.51]	THESIONAL TEE.				

Page **141** of **193**

				4. Mul	timodal Co	oncordance	9			
EEG/MRI Concordance	TL and ET Children and adults 1778 (29, 2)	OR 2.36 [1.07, 5.26] RR 1.25 [1.15, 1.37]	-1†	Heterogenous Q=11.4, p=0.044 used random effects	-1 Engel outcomes in 22 studies and other definitions in 25					+, ++ Tonini, Beghi (24) (2004), West, Nevitt (3) 2019
	Tuberous Sclerosis; at least 90% less than 19 years old <186 (<20, 2)	OR = 4.9, [1.8–13.5] Positive prognostic value (PLS)	-1 Small samples (median 7, IOR(3,25)), could not adjust Falah, Guyatt			-1 Wide CI Fallah, Guyatt (35)	-1 Small samples, did not assess heterogeneity or bias Fallah, Guyatt undetectedIbrahim, Morgan (36) (2015)	+1 OR>4	+1 Permutation testing evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcome classes. (36)	++ *Fallah, Guyatt (35) (2013) +++ *Ibrahim, Morgan (36) (2015) * = same data, different methods
Concordance same side	Children and adults hemispherectomy 332 (6)	OR 2.17 [1.30, 3.7]								++ Hu, Zhang (46) 2016

Page **142** of **193**

Page **143** of **193**

			5. Gen	etics			

Page **144** of **193**

				6. Surgica	I Features	1				
Extensive surgical resection	TL and ET Children and adults <3511 (10, 1)	OR 4.27 [2.06, 8.85]		Q=26.9,p=0.001 used random effects	-1 Engel outcomes in 22 studies and other definitions in 25					++ Tonini, Beghi (24) (2004)
Extensive frontal +/- extra-frontal vs more localised frontal resections	FLE, adults and children 651 (11, 1)	RR 0.58 [0.41, 0.79]					Funnel plots: undetected Englot, Wang (30) Josephson, Dykeman (34)			++ Englot, Wang (30) (2012)
Lobectomy (extensive) vs tuberectomy (focal)	tuberous sclerosis									+ Zhang, Hu (33) (2013)
	189 (10, 1)	OR 1.96 [1.01, 3.7]		l²=0% as few numbers Zhang, Hu (33)	-1 Heterogenous definitions of seizure freedom without sensitivity	-1 CI approaches OR of 1 Zhang, Hu (33)	-1 No funnel plots Zhang, Hu (33)	summary risk difference 8 [3%– 14%] translates		
ATL (extensive) vs SAH (selective)	TLE children and adults 1203 (11,	RR 1.32	Result remained significant on	l ² = 29%; df =10, p=0.17 Josephson,	analyses Zhang, Hu (33)			to NNT of 13 [7, 33] for 1 additional		
	1) TLE and HS subgroup children and adults 1092 (10,	[1.12, 1.57] (also quoted a separate random effects figure to the above fixed effects) RR 1.26 [1.05,	suppling and on multiple sensitivity analyses	Dykeman (34)	children and adults – but also excluded paediatric only study and results were			patient to achieve an Engel Class I outcome following ATL Josephson, Dykeman (34)		+++ Josephson, Dykeman (34) (2013)
	1)	1.51]		l ² =0% Josephson, Dykeman (34)	very similar Josephson, Dykeman (34)					
ATL vs SAH (mix of transcortical, transsylvian and subtemporal approaches)	Mainly adults ? (19)	NS OR 1.14, 95% CI 0.93 to 1.39; p=0.201								++ Jain, Tomlinson (52) 2018

Page **145** of **193**

ATL vs SAH	TLE 626 (6)	NS RR 1.01 [0.54, 1.09]						+++ Kuang, Yang (38) (2013)
	SAH vs ATL in TLE 1397 (13)	Overall OR 0.65 [0.51, 0.82]			-1 Mild bias on funnel plot, did not further investigate or use trim and fill			++ Hu, Zhang (40) (2013)
Lesionectomy / multilobar resection surgery type <186 (<20)	Tuberous sclerosis children	NS on PLS					+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes. Ibrahim, Morgan (36)	+++ Ibrahim, Morgan (36) (2015)
Hemispherectomy (vs resective)	Rasmussen's Paediatric <187 (<19)	HR 0.28 ^u [0.18, 0.45] HR 0.30 ^m [0.18, 0.49]	-2 Adjusted for the variable length of follow- up, but not lesional or other known factors. Reporting bias: 7 out of 19 studies had ≤ 5 patients		-1 suspected but "unable to measure between-study heterogeneity and publication bias due to the very limited sample size per study"v		Remained significant on multivariate analysis but it seems only adjusted for length of follow up	+ Harris, Phillips (56) 2019

Page **146** of **193**

3.5cm (extensive) vs 2.5cm (limited) ATL resection	TLE Adults >18yrs 207 (4)	NS RR 0.98 [0.83, 1.16]	t		-1 Despite the CI overlap, point estimates favour SAH, whether at 1 or 5 yrs or Engel I or IA.			+ West, Nevitt (3) 2019
Extended lesionectomy vs limited lesionectomy confined to cavernoma and hemosiderin	Cavernomas in adults and children 245 (7)	NS OR 0.96 [0.44, 2.08]	Removed 1 article with bias	-1 f/up 6 months				+ Shang-Guan, Wu (54) (2018)

Page **147** of **193**

Extensive resection of surrounding haemosiderin vs no excision of haemosiderin in cavernomas	Mainly Adults with cavernomas (but also few children)	OR 1.61 [1.10, 2.38]						+ Ruan, Yu (42) 2015
								++ West, Nevitt (3) 2019
Temporal Lobe (vs ET) resections	Adults and Children with FCD <2384 (32, 2)	OR 1.35 [1.13, 1.61] OR 1.92 [1.06, 3.45]	Trial sequence analysis, sensitivity analyses incluiding removing individual studies.Subgroup analyses for geographical locations. Chen, Chen (58) (2019)	-1 Engel II was considered seizure free Chen, Chen (58) (2019)	-1 No funnel plots/trim fill etc Rowland, Englot (29) Begg rank correlation test and Egger linear regression test with trim and fill Chen, Chen (58)			++, + Rowland, Englot (29) (2012), Chen, Chen (58) (2019)
Lobe of resection	Tuberous Slceorisis in children <186 (<20, 1)	NS on PLS method					+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify	+++ Ibrahim, Morgan (36) (2015)
TL vs ET	Repeat surgery in focal DRE 943 (12)	NS OR=1.5 [0.8, 3.0]	No clear trend in 1 st and 2 nd resection subgroups				significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes	++ Krucoff, Chan (50) (2017)

Page **148** of **193**

						classes. Ibrahim, Morgan (36)	
TL vs ET	Paediatrics ? (~23)	OR 2 [1.4, 2.9] direct and ~NMA p=0.025					+ Widjaja, Jain (60) 2020
		NS					
	Paediatrics ?						+
ET vs	(~23)						Widjaja, Jain (60) 2020
hemispherectomy							(60) 2020
		NS ^u					
	Paediatric ET	See their table 1					
surgical lobe	(frontal, parietal, Rolandic, occipital, multilobed)						+
	537 (26)						Englot, Breshears
							(37) 2013
		NS NA					
	Low grade gliomas in adults TL vs ET <2641						+
	IL vs ET <2641 (<23)						Shan, Fan (53) 2018

Page **149** of **193**

	Type of surgery (frontal, posterior and other) in ET non lesional children <95 (<17)	NS						+ Ansari, Maher (28) 2010
Lobe of surgery TL reference had the highest compared to all other lobes, all significant (multilobar, parietal, occipital, frontal, hypothalamus) >1000	Children and adults	Significant but no effect size given						+++ Lamberink, Otte (62)
Mesial vs lateral TL epileptic focus (as determined on sEEG, subdural grid; or ATL/SAH vs neocortectomy)	MRI neg TLE 92 (8)	NS OR 1.39 [0.61, 3.2]	NOS scores ranged from 4 to 6 stars					+ Wang, Zhang (44) (2016)
Complete excision (of lesion)	Adults and Children with FCD <2581 (31, 2) Adults and Children with FLE 345 (7, 1)	OR 3.91 [3.03, 5.32] OR 12.5 [7.14, 20] RR 1.99, [1.47, 2.84]	Trial sequence analysis, sensitivity analyses removing individual studies. Subgroup analyses for geographical locations. Chen, Chen (58)	-1 Engel II was considered seizure free Chen, Chen (58)	-1 No furnel plots/trim fill Rowland, Englot (29) Begg rank correlation test and Egger linear regression test with trim and fill as necessary Chen, Chen (58)	+2 large OR<0.1 or OR >10		++, +++ Rowland, Englot (29) (2012), Chen, Chen (58) (2019)

Page **150** of **193**

	Repeat resective surgery for focal DRE 273 (11)	OR = 2.6, [1.3, 5.3]	-1 heterogenous categorisations						++ Englot, Wang (30) (2012)
		RR 1.41 [1.32,				Funnel plots: undetected			+ Krucoff, Chan (50) (2017)
	Adults and children 2930 (39) Adults and	1.50] TL RR 1.11	-1 †	-1 I ² 77.76% with p <0.0001; outcome subgroup differences also					+ West, Nevitt
	children TL subgroup 1266 (13)	[1.03, 1.2]		subgroup differences also significant I ² 89.51% p<0.0001 although the direction of effects are similar. Extratemporal subgroup ommited as only 1 study.					(3) 2019
	Paediatrics 893 (15)	OR 7.69 [4.76, 12.5]		consistent			+1 large OR >4		++ Widjaja, Jain (60) 2020
Gross total resection vs subtotal resection	Low grade gliomas in adults 1379 (16)	RR 1.47 [1.37, 1.59]							+ Shan, Fan (53) 2018

Page **151** of **193**

Side of resection (left vs right)	TL and ET Children and adults 2976 (41, 2)	NS OR 0.85 [0.54, 1.34], NS RR 1.04 [0.99, 1.1]	-1†	-1 Engel outcomes in 22 studies and other definitions in 25	undetected		+, ++ Tonini, Beghi (24) (2004), West, Nevitt (3) 2019
	TLE adults ? (35)	NS Unweighted crude OR 0.57 [0.26, 1.24]					++ Willmann, Wennberg
	ET, Adults, Non- lesional 131 (?, 1)	NS	-1 Small sample sizes form multiple centres, heterogenous outcome reporting				(27) (2007) + Ansari, Tubbs (18) (2010)
	Adults and children with FLE <1199 (<21, 1) Children with TLE	NS NA	-1 Limited info				+ Englot, Wang (30) (2012)
	537 (15, 1) MRI neg TLE 320	NS ^u OR ^c crude 1.07 [0.72, 1.60]					++ Englot, Rolston (32) (2013)
	(15)	NS, slightly favours Left TL, OR 1.33 [0.84, 2.08]	NOS 4-6 stars Wang, Zhang (44) (2016)				+ Wang, Zhang (44) (2016)

Page **152** of **193**

Side of resection L v R	Repeat surgery for focal DRE 1 st surgery 218 (?) 2 nd /last surgery 209 (?)	NS ^u Surgery #1 OR ^{e*} 0.73 [0.43, 1.25] NS ^u Surgery #2 OR ^{e*} 0.77 [0.44, 1.33]		-1 imprecise and effect sizes and Cls estimated. Krucoff, Chan (50)			+ Krucoff, Chan (50) (2017)
	Paediatric ET 326 (15)	NS OR ^{uc*} 0.99 [0.64, 1.53]					+ Englot, Breshears (37) 2013
	Children and adults hemispherectomy 539 (29)	NS OR 1.17, [0.79, 1.73], p = 0.43					++ Hu, Zhang (46) 2016
	ET non lesional children <95 (<17)	NS"					+ Ansari, Maher (28) 2010

Page **153** of **193**

Frontal, central, posterior vs other resections	ET, Adults, Non- lesional 81 (?, 1)	NS	-1 Small sample sizes form multiple centres, heterogenous outcome reporting					+ Ansari, Tubbs (18) (2010)
Geographical location of surgery N America vs elsewhere	Tuberous Sclerosis in children <186 (<20, 1)	NS on PLS					+1 Permutation testing was performed/to evaluate the significance of the component, and bootstrapping was used to identify significant contributors to the component. PLS accounted for latent structure of data and ordinal Engel outcomes classes	+++ Ibrahim, Morgan (36) (2015)
Year of surgery >1000	Children and adults	NS						++++ Lamberink, Otte (62)

Page **154** of **193**

				7	. Pathology				
Presence of Tumours	TL and ET Children and adults 3357 (54, 2)	OR 1.74 [1.25, 2.5] RR 1.23 [1.14, 1.32]	-1†	Q=19.3, p=0.08	-1 Engel outcomes in 22 studies and other definitions in 25				++ Tonini, Beghi (24) (2004) ++ West, Nevitt (3)
low-grade epilepsy associated neuroepithelial tumour (LEAT) majority were gangliogliomas and DNET	Children and adults 1325 (<37)	77·5% (SF) No OR as used as baseline							Lamberink, Otte (62)
Ganglioglioma 672		80.4%							
DNET 484		74.8%							
FCD Type II vs other FCD (Palmini Classification)	Adults and Children with FCD	OR 1.38 [1.22, 1.57]	Trial sequence analysis, sensitivity analyses including	I ² =14%, p=0.24 Not in subgroup analyses in asia	-1 Engel II was considered		-1 No funnel plots/trim fill		++ Rowland,
	<2014 (17, 1)		removing individual studies	(OR=1.24 []0.75, 2.04] Chen, Chen (58)	seizure free Chen, Chen (58)		Rowland, Englot (29)		Englot (29) (2012)
FCD type 2 vs type 1 Palmini	Children and adults FCD 1580 (34)	OR 1.92 [1.54, 2.44]	Subgroup analyses for geographical locations. Chen, Chen (58)				Begg rank correlation test and Egger linear regression test with trim and fill as necessary Chen, Chen (58)		++ Chen, Chen (58) (2019)
FCD type IIb in network meta-analyses of subtypes (NMA)	Adults and children with FCD	OR 1.89 [1.01, 3.57]				-1 CI of OR approached 1			+ Chen, Chen (58) (2019)

Page **155** of **193**

"lesional": tumours, CD, or other lesion (tuber, vascular malformation) i.e. positive pathology vs	FLE Mixed Adults and Children 825 (16, 1)	RR 1.67, [1.36, 28.6]			1 Wide Cl	Funnel plots: undetected (not shown in Englot, Wang (30)) Harward, Chen (49)		+ Englot, Wang (30) (2012)
"non-lesional": traumatic, infectious (Englot, Rolston (32) included HS in non- lesional)	TL in Children 945 (29, 1)	OR 1.08, [1.02, 1.15]						+ Englot, Rolston (32) ++
	Repeat resective surgery for focal DRE 507 (12)	OR = 3.2, [1.9, 5.3]						Krucoff, Chan (50) (2017)
Focal pathological lesion	MRI neg TLE 167 (7)	NS (p=0.36) OR=1.36 [0.7, 2.63]	NOS 4-6 stars Wang, Zhang (44)					+ Wang, Zhang (44) (2016)
	Occipital Lobe and posterior quadrant. Mixed adult and paediatric 167 (9)	OR 2.08 [1.58, 2.89]	-1 No statistical adjustments "impossible to perform a multivariate analysis looking for interactions across variables" e.g. didn't adjust for lesions. Harward, Chen (49)					+ Harward, Chen (49) 2017

Page **156** of **193**

	Paediatric ET 695 (28)	OR 1.34, [1.19, 1.49						++ Englot, Breshears (37) 2013
Neuro-migrational defects	TL and ET Children and adults ? (6, 1)	NS OR 0.66 [0.42, 1.03]		Q=9.8, p=0.08	-1 Engel outcomes in 22 studies and other definitions in 25			+ Tonini, Beghi (24) (2004)
FCD vs gliosis	ET, Adults, Non- lesional 115 (?, 1)	NS	-1 Small sample sizes form multiple centres, heterogenous outcome reporting					+ Ansari, Tubbs (18) (2010)
Presence of FCD (vs absence)	Adults and children TLE and ET 3572 (46)	RR 0.90 [0.85, 0.95]	-1†					++ West, Nevitt (3) 2019
Vascular malformation	Adults and Children 1488 (19)	NS pooled RR 1.07 [0.94, 1.21] adj for outcomes scale	- 1 † Cavernomas not evaluated separately so uncertain of significance	No broad changes to result according to outcomes scales (Engel, Other or seizure freedom for 1 yr).	I ² = 0% for both overall heterogeneity and subgroup differences			++ West, Nevitt (3) 2019 ++

Page **157** of **193**

Vascular malformation (cavernomas and others) vs low grade neuroepithelial Cavernomas Others	Children and Adults 443 (<37) 323 120	NS 74·0% OR 0.79 [0·60 - 1·06] 77·1% 65·8%		Indirect evidence that vascular malformations are as prognostic as LEATs			Lamberink, Otte (62)
Tumour, HS > Rasmussen > MCD, TS > HH	Proportions only			-1 SF not clearly defined, some individual studies included Engel Classes I and II	Funnel plots and trim and fill test to impute bias effect estimates: difference between observed and imputed <10% higher quality was associated with reduced SF percentages - although not statistically significant, the magnitude of effect was significant		+ Widjaja, Jain (60) 2020
Astro vs non astrocytoma	Low grade gliomas in adults <2641 (<23)	NS NA					+ Shan, Fan (53) 2018
hippocampal sclerosis 2948 vs Low grade neuroepithelial tumours	Children and adults 2948 (<37)	71·5% OR 0.79 [0·65 - 0·89]					+++ Lamberink, Otte (62)

Page **158** of **193**

FCD type I or MCD Vs LEAT 426	Children and adults	Negative 50·0% OR 0.38 [0·28 - 0·49]					+++ Lamberink, Otte (62)
Other MCD (Hypothalamic hamartomas, tubers and others) 405	Children and adults	Negative 52·3% OR 0.44 [0·29 - 0·63]					++ Lamberink, Otte (62)
No histopathological lesion (comprised of gliosis and normal tissue) 740	Children and adults	Negative 53·5% OR 0.36 [0·30 - 0·46]					+++ Lamberink, Otte (62)
FCD type II 796	Children and adults	64·9% NS OR 0.8 [0·61 - 1·09]		Indirectly supports type II as + prognostic feature, as not significantly worse than LEAT			++ Lamberink, Otte (62)
Encephalitis (Rasmussen's and limbic, herpes, neurocysticercosis) 124 Encephalitis - Rasmussen's subgroup 72	Children and adults	59·7% OR 0.43 [0·22 - 0·73] 72·2%					++ Lamberink, Otte (62)

Page 159 of 193

Glial scar 261	Children and adults	59·4% OR 0.53 [0·39 - 0·70]					+++ Lamberink, Otte (62)
Non-LEAT (astrocytoma, oligodendroglioma, cysts, ependymoma, meningioma, neurocytoma, and pleomorphic xanthoastrocytoma) 310	Children and adults	68·4% NS OR 0.75 [0·54 - 1·02]					++ Lamberink, Otte (62)

¹Study limitations (risk of bias or internal validity): Differential surveillance for outcome between studies, failure of accurate measurement of all known prognostic factors and to match for prognostic factors and/or lack of adjustment in statistical analysis. Includes selective reporting bias. ^{12 14}

²Inconsistency of results: If some studies suggest substantial prognostic value using relative measures while others suggest no effect or negative prognostic value then it may be appropriate to rate down for quality. Criteria for evaluating consistency include similarity of point estimates, extent of overlap of confidence intervals, and statistical criteria including tests of heterogeneity and l². If inconsistent results cannot be explained by differences in subgroups (populations undergoing surgery, surgical intervention, or outcome definitions and follow-up), then the quality of the body of evidence is rated down. ¹⁵

³Indirectness of evidence: If there are differences in the populations, interventions and/or outcomes being studied compared to what we are interested in, or if interventions are compared without direct head-tohead comparisons, studies can be rated down ¹⁶. We only rate down if there is a compelling reason to believe the populations studied differ from the population of interest that the magnitude of effect would differ significantly e.g. because of the presumed differences in the maturing brain, paediatric and adult epilepsy surgery populations should be investigated separately or as subgroups to avoid reduced population applicability. We also rate down if there is an outcomes discrepancy, whereby the seizure-freedom duration of follow-up is less than that of interest (at least 12months) e.g. in the inclusion criteria. We consider ILAE 1 and 2 seizure free, which is equivalent to Engel Ia/Ib and thus also rate down inclusion criteria that include undifferentiated Engel I.

⁴Imprecision: e.g. for a single meta-analysis, effect sizes which overlap the neutral point (for RR and OR, 1) suggesting the feature is not prognostic, but the boundaries of the confidence interval are skewed significantly in one direction such that the largest plausible effect is that the feature is either positively or negatively correlated with outcomes. ¹¹

⁵Publication bias: clinical features that are non-prognostic and smaller effect sizes are less likely to be published and these can be assessed by funnel plots. Cumulative iterative meta-analyses could be indirectly inferred from the publication dates to ascertain time-lag bias. Risk of publication bias is probably larger for small, observational, and industry-funded studies. ¹⁴

Page 160 of 193

⁶Rating up: relative risks above 2 (below 0.5) are rated up one level, and above 5 (below 0.2) are rate up two levels unless the CI overlaps significantly with these thresholds. If the baseline proportion of outcomes is low, odds ratios are treated similarly, otherwise a higher threshold is used. Studies were also rated up if a dose response was present or if all plausible residual confounders or biases would reduce a demonstrated effect, or suggest a spurious effect when results show no effect ¹⁷

TL(E): Temporal Lobe (Epilepsy). ETE: Extratemporal lobe Epilepsy. APOS: Acute Postoperative Seizures. NS: Not Significant. CI: confidence aura. HS: Hippocampal Sclerosis. MCD: Malformations of Cortical Development. FCD: Focal Cortical Dysplasia. HH: Hypothalamic Hamartoma. TS: Tuberous Sclerosis. OR: Odds Ratio. RR: Relative Risk Ratio. SF: Seizure Freedom. NMA: Network Meta-Analysis. ATL: Anterior Temporal Lobectomy. SAH: Selective Amygdalohippocampectomy. NA: Not Available. HS: Hippocampal Sclerosis. ECoG: Electrocorticography. PLS: partial least squares. NOS: Newcastle-Ottawa Scale.

*: Our calculated CI from their data.^c: Effect size derived from article data.^u: Univariate analyses.^m: Multivariate analyses. †A weakness of the Cochrane review is that they "did not class any of the pre-operative prognostic factors of interest...as confounders" so in general our GRADE score is one lower.

Page **161** of **193**

2.3 Supplementary Table 3: Essential Prognostic Features for Epilepsy Surgery (EPF)

E	PF	Prognostic Value and Supporting Evidence Base						
Feature	Population(s) or Subgroup(s)	Range of Effect Sizes for Seizure- Freedom	Comments	Units of Analysis (Individual Patients*)	Individual Studies*	Meta- Analytical References	Publication Year of meta- analysis (first, last)	GRADE score
			1. Clinical Features					
Severe developmental delay/learning disability and IQ ≤75	≥16 yrs TLE ≥16 yrs TLE non-HS structural lesions Children TS Children and Adults with hemispherectomy	RR 0.66 [0.54, 0.94] RR 0.26 [0.14, 0.50] OR 0.14 [0.04, 0.48] OR 0.61 [0.46, 0.82]	Five meta-analyses evaluated developmental delay and learning disability as a negative prognostic factor, three of which were significant, ^{20, 35, 46} while two others were not significant for <i>"moderate</i> to severe developmental delay" in paediatric Rasmussen's, ⁵⁶ undifferentiated "mental retardation" in tuberous sclerosis ³³ or <i>continuous</i> pre-operative IQ scores. ³⁵ The presence of moderate developmental delay in the dichotomised category and continuous IQ scores (on average only 2.3 lower in not seizure-free group, p<0.009) ²⁰ may have masked the subgroup significance for IQ<75.	2256	54	Chelune, Naugle (20) 1998 Fallah, Guyatt (35) 2013 Hu, Zhang (46) 2016	1998 – 2019	++ Low Favours absence of severe learning disability
Febrile Convulsions (FC)	TL and ET in both Children and Adults	OR 2.08 [1.2, 3.7] RR 1.09 [1.01, 1.17]	 >1 yr SF subgroup had good outcomes with febrile seizures but the other subgroups did not (subgroup I² = 49%, p 0.14).³ Non-Engel outcomes in more than half of individual studies.²⁴ It is expected for FC to be favourable in TLE and unfavourable in ET. 	4879	20	Tonini, Beghi (24) 2004, West, Nevitt (3) 2019	2004 – 2019	+ Very Low Favours presence of FC

Page **162** of **193**

Postsurgical: Without Acute Postoperative Seizures (APOS) within 30 days	Children and Adults, TLE and ET Paediatric subgroup	Overall OR 4.2 [2.97, 5.93] OR 5.71 [3.32, 9.8]	 There was a rather large effect: without APOS 73.5% seizure-free, vs with APOS 39%. Results of subgroup analyses were similar. A metaregression showed earlier onset of APOS within 24hrs was NS 1.87 [0.89, 3.95]. Note however, like most meta-analyses, although over 64% had presurgical lesions, no adjustment was made. Although they reported no significant bias, we note asymmetry in overall and paediatric APOS funnel plots (their Fig 1e). The clinical significance of the absence APOS is questionable, as it is both postsurgical, and it is logically expected that seizure-free patients would be a subset of those without APOS. 	1983	17	Giridharan, Horn (45) 2016	2016	++ Low Favours absence of APOS
			2. Imaging Features					
Mesial Temporal Sclerosis (MTS) or Hippocampal Sclerosis (HS)	Adults and Children with TLE	OR 2.13 [1.57, 2.86] RR 1.17 [1.12, 1.23]	12 out of 15 individual studies from Tonini, Beghi (24) had point estimates favouring HS; 5 of the 15 were prospective and a further sixth study was combined retrospective and prospective in design. Amongst those with MTS, 74% were seizure free, compared to 62% of those without MTS. This included patients with MTS on imaging or pathology. ³	4430	61	Tonini, Beghi (24) 2004 West, Nevitt (3) 2019	2004 – 2019	++ Low Favours presence of HS
Abnormal or Lesional MRI	Adults and Children with TLE and ET TL subgroups ET subgroups Adults and Children with FCD Adults and Children with	OR 2.27 [1.54, 3.45] OR 2.5 [2.1, 3.0] OR 2.03 [1.67, 2.47] RR 1.28 [1.20, 1.37] OR 2.7 [2.1, 3.5] OR 1.76 [1.34, 2.32] OR 2.9 [1.6, 5.1] OR 2.88 [1.53, 5.43] OR 1.67 [1.33, 2.16] RR 1.64 [1.32, 2.08]	An odds ratio of 2.5 for abnormal MRI in a meta-analysis from 2010 of any population translates to a relative risk of RR 1.4, ⁵ which is comparable to the RR effect size of 1.28 from the 2019 Cochrane review and a RR of 1.64 in patients with FLE. ^{3, 30} Non lesional cases were significantly more frequent in ET (45%) than in TL (24%), ⁵ however, when funnel plots and trim and fill were performed, either no publication bias was observed, ^{29, 31} or the difference between observed and imputed results varied by under 10% (for the paediatric population). ⁶⁰	18076	193	Tonini, Beghi (24) 2004 Téllez-Zenteno, Ronquillo (5) 2010 Yin, Kang (31) 2013 West, Nevitt (3) 2019	2004 – 2020	++ Low Favours abnormal MRI, see comments on two borderline meta- analyses.

Page **163** of **193**

			The only groups for which moto such as			Dowland		
	Children with TLE	OR 1.27 [1.16, 1.40]	The only groups for which meta-analyses seemed to be non-significant were in 196			Rowland,		
	Children with TLE	OR 1.27 [1.16, 1.40]	•			Englot (29)		
			patients with repeat surgery from 7 studies			2012		
	Adults and Children with	OR 3.24 [2.03, 6.55]	done in 2017, and 506 children with					
	Occipital Lobe and		extratemporal resections from 23 studies			Englot, Wang		
	Posterior Quadrant		performed in 2013. Yet in both of these, the			(30) 2012		
	Epilepsy		effect sizes and skewed confidence intervals					
			still favoured abnormal MRI with odds ratios			Englot, Rolston		
	Children	OR 1.85 [1.14, 2.94]	of 1.9 [0.6, 5.4] and an unweighted OR of 1.44 respectively. ^{37, 50}			(32) 2013		
	Children with		· <i>,</i>			Harward, Chen		
	hemispherectomy	OR 4.6 [1.27, 16.62]				(49) 2017		
		011 110 [1127] 10102]				(43) 2017		
						Widjaja, Jain		
						(60) 2020		
						(ap. 1). (42)		
						Cao, Liu (43)		
						2016		
SPECT: Subtraction Ictal	TL and ET 275 (11)		Odds ratios were favourable for SISCOM	275	11	Chen and Guo	2016	++
	TL and ET 275 (II)	OR 3.28 [1.90, 5.67]		275	11		2010	
and Inter-ictal SPECT co-			abnormalities, for both TL and ET patients			(47) 2016		Low
registered to MRI			across 11 studies. Overall heterogeneity was					
(SISCOM)	ET subgroup 209 (11)	OR 2.44 [1.34, 4.43]	non-significant (I2 = 16.6%, p=0.29)					Favours SPECT-
								SISCOM
								abnormality
			3. Neurophysiological Features					
			of the an opiny store great i catal es					
Focal Ictal or Interictal	Repeat resective surgery	OR 3.6 [1.6, 8.2]	Favours focal EEG changes at any point and via	878	54	Krucoff, Chan	2013 - 2017	+
or Invasive EEG	for focal DRE (n=192)		any method with comparable odds ratios			(50) 2017		Very Low
of invasive LLG	101 10cul Dite (11-132)		between 3 and 4 (lower in paediatric			(30) 2017	Notable	Very Low
			extratemporal epilepsy, OR<1.93).			Wang, Zhang	exceptions	Favours focal EEG
			extratemporal epilepsy, OR<1.95).					
Interictal EEG localised			The first sector of the 2012 and			(44) 2016	from 2012- 2013 ^{30, 32}	changes, with
	MRI neg TLE (n=149)44	OR 3.38 [1.57, 7.25]	The two earliest meta-analyses from 2012 and				201350,52	notable
to temporal lobe			2013 – in children and adults with FLE, and			Fallah, Guyatt		inconsistency
			children with TLE – did not find unifocal ictal			(35) 2013		
			scalp EEG to be significant for seizure-					
	Tuberous Sclerosis in	OR 3.21 [1.35, 7.58]	freedom. ^{30, 32} The former's GRADE score was			Ibrahim,		
Localised/unifocal ictal	Children	Positive prognostic value	"very low" while the latter's was "low" with			Morgan (36)		
(scalp) EEG		on PLS also.	445 participants across 14 studies and OR ^c			2015		
			1.23 [0.73, 2.06]. These discrepancies bring					
			the overall quality of evidence down to very			Englot,		
	MRI neg TLE (n=125)44	OR 3.89 [1.66, 9.08]	weak.			Breshears (37)		
		211 0100 [2100, 5100]				Di Concuis (57)		
						2012		
						2013		

Page **164** of **193**

lctal EEG localised to temporal lobe	Children ET	OR 1.55 [1.24, 1.93]	Other meta-analyses with combined unusual dichotomised features (unifocal interictal scalp EEG abnormality or no interictal abnormality at all) were non-significant on both weighted OR 1.54 [0.73, 3.26] and partial least squares. ^{35, 36}					
			4. Multimodal Concordance					
EEG-MRI Concordance	TL and ET Children and adults Children with Tuberous Sclerosis Children and adults hemispherectomy	OR 2.36 [1.07, 5.26] ²⁴ RR 1.25 [1.15, 1.37] ³ OR 4.9 [1.8–13.5] Positive prognostic value on PLS OR 2.17 [1.30, 3.7]	One of the highest qualities of evidence ratings and most consistent results was for EEG and MRI concordance. However, concordance between other modalities, such as semiology and neurophysiology or imaging have not been investigated in meta-analyses. Note that the largest effect size (OR 4.9) and widest confidence interval belongs to the earliest meta-analysis (2013) with the fewest number of patients. ³⁵ For full limitations and GRADE scores and comments for individual meta-analysis see Supplementary Table 2.	2296	55	Tonini, Beghi (24) 2004 West, Nevitt (3) 2019 Fallah, Guyatt (35) 2013 Ibrahim, Morgan (36) 2015 Hu, Zhang (46) 2016	2013 – 2019	+++ Moderate Favours EEG and MRI concordance
			5. Genetics: none					
		6	. Surgical Technique or Anatomic Fea	atures				
Temporal Lobe (vs ET) resections	Adults and children with FCD Repeat surgery in focal DRE (n=943) Children	OR 1.35 [1.13, 1.61] OR 1.92 [1.06, 3.45] NS OR 1.5 [0.8, 3.0] OR 2 [1.4, 2.9]	It is well established from numerous individual studies from many centres that surgery for TLE carries the best prognosis. This is only true as far as the diagnosis is correct, and like other surgical features, is more about patient selection and diagnosis than which lobe is resected. Nevertheless, meta-analyses have	15012	127	Rowland, Englot (29) 2012 Chen, Chen (58) 2019 Krucoff, Chan	2012 – 2020	+ Very Low Favours surgery for TLE
	Low grade gliomas in adults (n<2641)	NS NA	confirmed that surgery for TLE carries a favourable prognosis. ^{29, 58, 60}			(50) 2017		

Page **165** of **193**

			This only applies to TLE, and meta-analyses investigating other lobes or ET vs hemispherectomy did not find significant results. ^{36, 60 28, 37} Nevertheless, TLE is not associated with better outcomes in low grade gliomas in adults, nor in cases where the first surgery for presumed TLE fails, i.e. the second surgery does not carry better prognosis (although the point estimate confirms this trend), presumably due to diagnosis and patient selection rather than the lobe of resection per se. ⁵⁰			Widjaja, Jain (60) 2020 Shan, Fan (53) 2018 Lamberink, Otte (62) 2020		
Complete Excision Gross total resection vs subtotal resection	Adults and children with FCD (n<2581) Adults and children with FLE (n=345) Repeat resective surgery for focal DRE (n=273) Adults and children (n=2930) ³ Adults and children TL subgroup ³ (n=1266) Children (n=893) Low grade gliomas in adults (n=1379)	OR 3.91 [3.03, 5.32] OR 12.5 [7.14, 20] RR 1.99 [1.47, 2.84] OR 2.6 [1.3, 5.3] RR 1.41 [1.32, 1.50] TL subgroup RR 1.11 [1.03, 1.2] OR 7.69 [4.76, 12.5] RR 1.47 [1.37, 1.59]	Complete excision of lesions or structural abnormalities are unanimously associated with better outcomes in both adults and children, irrespective of the nature of the lesion, across 7 meta-analyses. The definition of complete excision wasn't always specified, but is usually interpreted through imaging and histology. The largest effect sizes (OR 12.5 and 7.69) belong to two of the latest published in 2019 and 2020, the former also used trial sequential analysis can prevent over 90% of false positive results in conventional meta-analyses. ⁶⁴ However, Engel II was also considered SF. ⁵²	8401	119	Rowland, Englot (29) 2012 Chen, Chen (58) 2019 Englot, Wang (30) 2012 Krucoff, Chan (50) 2017 West, Nevitt (3) 2019 Widjaja, Jain (60) 2020 Shan, Fan (53)	2012 – 2020	+++ Moderate Favours complete excision
			7. Pathological Features					

Page **166** of **193**

Presence of Tumours Low-grade epilepsy associated neuroepithelial tumours (LEAT) vs HS LEAT vs FCD type I or MCD LEAT vs Hypothalamic hamartomas, tubers and other MCD LEAT vs Encephalitis Vs Glial scars	Children and Adults TLE and ET Children and adults (mainly gangliogliomas and DNET) 	OR 1.74 [1.25, 2.5] RR 1.23 [1.14, 1.32] OR 2.78 [2.17, 3.33] OR 1.27 [1.12, 1.54] OR 2.63 [2.04, 3.57] OR 2.27 [1.59, 3.45] OR 0.43 [0.22 - 0.73] OR 0.53 [0.39 - 0.70]	Epilepsy surgery for tumours has good outcomes, compared to non-tumour causes, or even compared to HS or multiple other pathologies but not compared to glial scars and encephalitis. ⁶²	8261	91	Tonini, Beghi (24) 2004 West, Nevitt (3) 2019 Lamberink, Otte (62) 2020	2004 – 2020	+++ Moderate Favours Tumours
FCD Presence of FCD (vs absence) Type II vs Other Type II vs Type I Type IIb in Network Meta-Analysis of Subtypes	Adults and children TLE and ET (n=3572) Adults and Children with FCD (n<2014) Children and adults FCD (n=1580) ⁵⁸ Adults and children with FCD ⁵⁸	RR 0.90 [0.85, 0.95] OR 1.38 [1.22, 1.57] OR 1.92 [1.54, 2.44] OR 1.89 [1.01, 3.57]	 FCD Type III was developed by ILAE in 2011, and one study investigated pre-2011 Palmini Classification.²⁹ Overall there has been better outcomes in the absence of FCD (vs presence) amongst 3572 adults and children in 2019 in the Cochrane review,³ while in 2010 there was no significant difference between FCD vs gliosis amongst 115 extratemporal adults.¹⁸ When FCD is present, two reports have shown direct evidence that Type II has better prognosis than other subtypes,^{29, 58} and another shows indirect evidence as type I is associated with worse outcomes compared to neuroepithelial tumours, whereas type II is not.⁶² 	Presence or absence of FCD 3572 FCD subtypes 3594	Presence or absence of FCD 46 FCD subtypes 51	Rowland, Englot (29) 2012 Chen, Chen (58) 2019 West, Nevitt (3) 2019 Lamberink, Otte (62) 2020	2012 - 2019	++ Low Favours the absence of FCD, otherwise favours FCD type II(b)

Page **167** of **193**

Lesional Pathology vs Non-Lesional	FLE Mixed Adults and Children (n=825)	RR 1.67 [1.36, 28.6]	Lesional was defined as positive or focal pathology e.g., tumours, MCD, tubers or vascular malformation vs non-lesional which	3306	101	Englot, Wang (30) 2012	2012 - 2017	++ Low
	TL in Children (n=945)	OR 1.08 [1.02, 1.15]	included traumatic and infectious causes			Englot, Rolston		Favours presence of focal
	TE III Children (II=945)	OR 1.08 [1.02, 1.15]	(Englot, Rolston (32) included hippocampal sclerosis in non-lesional). Despite the			(32) 2013		pathological
	Repeat resective surgery	OR 3.2 [1.9, 5.3]	heterogeneity, all studies except for one			Krucoff, Chan		lesion
	for focal DRE (n=507)		favoured positive pathology, and this study was in MRI negative TLE. ⁴⁴ This suggests the			(50) 2017		
	MRI neg TLE (n=167)	NS (p=0.36)	causal prognostic pathway of imaging			Wang, Zhang		
	Occipital Lobe and	OR 1.36 [0.7, 2.63]	abnormality and presence of pathological abnormality are shared, and adjusting for one			(44) 2016		
	posterior quadrant. Mixed adult and paediatric	OR 2.08 [1.58, 2.89]	may render the other non-prognostic.			Harward, Chen (49) 2017		
	(n=167)		Within lesion on pathology in children, tumours and hippocampal sclerosis predict			Englot,		
	Paediatric ET (n=695)	OR 1.34 [1.19, 1.49]	better outcomes than Rasmussen's, which in turn has better postsurgical prognosis than			Breshears (37) 2013		
			malformations of cortical development and					
			tuberous sclerosis, followed by hypothalamic			Widjaja, Jain		
			hamartomas. ⁶⁰			(60) 2020		

Supplementary Table 3: The **essential** prognostic features (EPF). OR/RR=Odds Ratios and Relative Risks over 1 indicate better outcomes. *=upper bound of estimate. NS=Not-significant. ^c=calculated (usually unweighted) effect size. MCD=malformations of cortical development. ^u=univariate. ^m=multivariate. TL=Temporal Lobe. ET=Extratemporal. FLE=Frontal Lobe Epilepsy. PLS=Projection to Latent Space.

Page **168** of **193**

2.4 Supplementary Table 4: Uncertain Prognostic Features (UPF)

UPF			Mixed	Results Evide	ence Base			
Feature	Population(s) or Subgroup(s)	Range of Effect Sizes for Seizure-Freedom	Comments	Individual Patients*	Individual Studies*	Meta- Analytical References	Publication Year (first, last)	GRADE score
			1. Clinical Features					
History of Head Injury	Adults and Children	NS RR 0.99 [0.86, 1.13]	Although there was no overall effect, subgroup analyses by outcome were very different and inconsistent. ³	551	7	West, Nevitt (3) 2019	2019	+ Very Low Unclear
CNS Infections	TL and ET in Children and Adults	NS OR 0.73 [0.29, 1.82]	Non-Engel outcomes in more than half of individual studies. ²⁴	<<3511	2	Tonini, Beghi (24) 2004	2004	+ Very Low Unclear

Page **169** of **193**

Focal (partial) Seizure Semiology	ET non-lesional Adults,	NS	When significant, focal seizures were	Total =	Total = 124	Ansari, Tubbs	2010 - 2019	+
vs	Adults and Children with	OR 1.46	always a positive predictor of seizure-	4965		(18) 2010		Very Low
Generalised	FCD		freedom, except for one study on					
			gliomas in which even TL surgery		Significant =	Rowland,		Possible positive
	Adults and Children with	NS (p=0.05)	wasn't associated with better	Significant	70	Englot (29)		prognostic feature,
	FLE		outcomes.53	studies		2012		given the right
				=		E		patient selection
	TL in Children	OR 1.36 [1.20, 1.56]	One group used two separate techniques in two different studies for	4025	NS	Englot, Wang (30) 2012		and circumstances
			the same set of patients. In bivariate		=	(50) 2012		
	TS	NS OR 1.15 [0.42, 3.11]	logistic regression, OR was 3.1; ³⁵	NS studies =	- 54	Englot, Rolston		
	15	N3 ON 1.15 [0.42, 3.11]	whereas using partial least squares, the	940	54	(32) 2013		
			effect was still positive but the	540		(32) 2013		
	TS in Children	OR = 3.1 [1.2, 8.2]	bootstrapped CI just crossed point of			Zhang, Hu (33)		
			non-significance; instead, focal ictal			2013		
	Repeat Surgery	NS	EEG was significant on PLS, ³⁶					
			suggesting a correlation between focal			Fallah, Guyatt		
	Children with Rasmussen's	NS HR 0.8 [0.43, 1.51]	seizure semiology and focal ictal EEG as			(35) 2013		
			if observing the same factor from					
	ET in Children	OR 1.61 [1.18, 2.35]	different points in their causal			Ibrahim,		
			pathway.			Morgan (36)		
	Adults and Children with	OR 1.84, [1.18, 2.89]				2015		
	hemispherectomy		Those with less than ~250 individual					
	Addition of the second second second		participants were less likely to show			Krucoff, Chan		
	Adults with supratentorial		significance. On balance, likely to be a positive			(50) 2017		
	low grade gliomas	RR 0.76 [0.67, 0.85]	prognostic feature with low power and			Harris, Phillips		
	Children with	NS	in need of adjusting for other			(56) 2019		
	hemispherectomy	115	confounders.			(30) 2013		
	inerinoprie: cecorriy					Englot,		
						Breshears (37)		
						2013		
						Hu, Zhang (46)		
						2016		
						Shan, Fan (53)		
						2018		
						(ac 1in (42)		
						Cao, Liu (43) 2016		
						2010		

Page **170** of **193**

Epileptic (Infantile) Spasms	TS TS in Children	OR 0.45 [0.24, 0.85] NS OR 0.84 [0.35, 2.03] NS on PLS	Data for TS patients only. Heterogenous definitions of seizure freedom without sensitivity analyses and no funnel plots to investigate publication bias. ³³ Small samples (median 7, IQR [3,25]), did not assess heterogeneity nor bias. ³⁵ One meta-analysis had a moderate GRADE score for spasms. ³⁶	343	27	Zhang, Hu (33) 2013 Fallah, Guyatt (35) 2013 Ibrahim, Morgan (36) 2015	2013 – 2015	+ Very Low Unclear
Low Seizure Frequency or Without daily seizures	Adults and Children with FLE Paediatric ET TL in Children	NS NS unclear	Although two meta-analyses found seizure frequency to be non-significant, another in TLE in Children included 103 patients from 5 individual studies and the unweighted effect size seemed promising OR ^c 2.98 [1.24, 7.16], ³² but no further attempt at inverse variance weighting was performed and it is unclear if this would have remained significant.	1357	25	Englot, Wang (30) 2012 Englot, Breshears (37) 2013	2012 – 2013	+ Very Low Unclear

Page **171** of **193**

Age at Seizure Onset	Adults with non-lesional ET	NS	Age at onset was higher in seizure free patients in a metaregression of	1252	115	Ansari, Tubbs (18) 2010	2010 - 2020	+ Very Low
Dichotomised <1yr	TS	OR 0.47 [0.24, 0.92]	children with and without TLE but not ET, hemispherectomy, tumours or			Zhang, Hu (33)		Unclear
Log10 age at onset	13	01(0.4) [0.24, 0.52]	MCD. ⁶⁰ Age over 1 year was also associated with better outcomes in			2013		oncicul
Dichotomised <18yrs	TS in Children	NS OR 1.52 [0.77, 2.99]; also	TS. ³³			Fallah, Guyatt		
Younger age at onset		NS on PLS	However, it was non-significant in at least 5 other meta-analyses.			(35) 2013		
Meta Regression	MRI negative TLE	NS OR 1.09 [0.38, 3.07]	One study had a significant HR of 0.91			Ibrahim, Morgan (36)		
	Children with Rasmussen's	HR ^u 0.91 [0.85, 0.96] NS HR ^m [0.87, 1.04]	(favouring younger age at onset) on univariate, but NS on multivariate			2015		
	Children and children with	overall: OR ^c = e ^{0.346} = 1.41	testing adjusted for the length of follow-up ⁵⁶ .			Wang, Zhang (44) 2016		
	TLE subgroup	(p<0.001) TLE: OR ^c = e ^{0.144} = 1.15	Even when results were significant,			Harris, Phillips		
		(p=0.023)	they weren't too dissimilar e.g., seizure onset age tended to be younger by			(56) 2019		
	Children with non lesional ET	NS	about 5 months in the Engel Class II to IV group compared with the Engel			Widjaja, Jain (60) 2020		
	Children with	SMD = 0.26, [0.03, 0.49] P =	Class I group (median 3.6 months vs 8.4 months, p=0.006). ⁴³			Ansari, Maher		
	hemispherectomy	0.028	0.4 montas, p=0.000j.			(28) 2010		
						Cao, Liu (43) 2016		
Age at Surgery	Adults non lesional ET	NS (ANOVA)	Many results from multiple meta- analyses are non-significant.	10798	221	Ansari, Tubbs (18) 2010	2010 – 2020	++ Low
<18 yrs at surgery	Adults and Children FCD	NS	The only significant results were on			Rowland,		Probably not
<18 yrs at surgery	Adults and Children FLE	NS	unadjusted univariate hazard ratios for children with Rasmussen's, ⁵⁶			Englot (29)		prognostic
Continuous	Children with TLE	NS (t-test)	metaregression on paediatric			2012		
Log base 10 or <5yrs	TS	NS	epilepsies where younger age at surgery was associated with better outcomes overall and for TL and ET			Englot, Wang (30) 2012		
<18 yrs at surgery	MRI negative TLE	NS OR 1.09 [0.38, 3.07]	subgroups (but not for			Englot, Rolston		
Metaregression of mean age and	Children and Adults	NS	hemispherectomy, tumours or MCD) ⁶⁰ , and older age at surgery for low grade			(32) 2013		
outcomes	TLE/ET		gliomas in adults with a cut-off value of 45 yrs. ⁵³			Zhang, Hu (33) 2013		
Age < 18 yrs	Occipital Lobe and Posterior Adults and	OR 1.54 [1.13, 2.18]	Two studies looked at					
	Children		hemispherectomy / Rasmussen's in					

Page **172** of **193**

		NS	children, one was NS ⁴³ and the other	Fallah, Guyatt	
	Repeat Surgery in focal		had a significant HR of 0.93 on	(35) 2013	
	DRE		univariate, but NS on multivariate		
	first or last surgery		testing adjusted for the length of	Ibrahim,	
		HR 0.93 ^u [0.89, 0.97]	follow-up ⁵⁶ ; a third study was NS in the	Morgan (36)	
	Children Rasmussen's	NS ^m HR 0.95 ^m [0.90, 1.0]	hemispherectomy subgroup. ⁶⁰	2015	
				2020	
		Overall: OR ^c = e ^{-0.189} = 0.83	Most other studies were variations on	Wang, Zhang	
	Children overall	(p<0.001)	adults or children, TL or ET, lesional or	(44) 2016	
Metaregression	TL	TL: OR ^c = e ^{-0.093} = 0.91	non-lesional and all were non-	(, 2020	
Ŭ	ET	(p=0.031)	significant. Two studies looked at TS,	Giridharan,	
		ET: $OR^c = e^{-0.173} =$	although both NS, both also very weak	Horn (45) 2016	
		0.84 (p 0.004)	on quality of evidence rating. ³³ , ³⁵	10111 (43) 2010	
			on quanty of endence rating, y	Harward, Chen	
	Children ET	NS	On balance, it is probable that the lack	(49) 2017	
			of adjusting for known prognostic	(43) 2017	
			factors and heterogeneous follow-up	Krucoff, Chan	
	Low grade gliomas in	RR 1.12 [1.01, 1.23]	times has resulted in falsely significant	(50) 2017	
Age > 45 yrs	Adults	(((1.12 [1.01, 1.23]	results.	(50) 2017	
16C + 45 415	, addres		i courto.	Harris, Phillips	
	Children non lesional ET	NS		(56) 2019	
	children non resional Er	115		(50) 2015	
	Children			Widjaja, Jain	
	hemispherectomy	NS 0.95 [0.38, 2.37]		(60) 2020	
	hemispherectomy	105 0.35 [0.36, 2.37]		(00) 2020	
	Cavernomas Adults and			Englot,	
Dichotomised age >18 yrs	Children			Breshears (37)	
Dichotoffilsed age >18 yrs	Children			2013	
				2013	
				Shan, Fan (53)	
				2018	
				2018	
				Ansari, Maher	
				(28) 2010	
				Cao, Liu (43)	
				2016	
				2016	
				Shang-Guan,	
				-	
				Wu (54) 2018	

Page **173** of **193**

Duration of Epilepsy Prior to	Adults non-lesional ET	NS		Overall	Overall	Ansari, Tubbs	2010 - 2020	+
Surgery			Upper bound estimates for participants	18645	185	(18) 2010		Very Low
	Adults and Children with		were nearly half-and-half split between					
	FLE	NS	significant and non-significant meta- analyses. All significant studies	NS	NS	Englot, Wang		Likely favours
Mean duration	TLE in Children	NS (t-test)	favoured shorter duration.	5786	98	(30) 2012		shorter duration
Mean duration	TEE IN Children	NS (t-test)		Favours	Favours	Englot, Rolston		
			Studies that favoured shorter duration	Shorter	Shorter	(32) 2013		
Shorter duration	MRI neg TLE	OR 2.57 [1.21, 5.47]	had relative risk point estimates	Duration	Duration	(52) 2015		
		0	between 1.2 – 1.32 and odds ratios	12859	87	Wang, Zhang		
Duration or time between surgeries	Repeat surgery for focal	NS (t-test)	between 1.52 – 2.57 which are			(44) 2016		
-	DRE		compatible as odds ratios tend to	Favours	Favours			
			overestimate. Although one study	Longer	Longer	Giridharan,		
Shorter duration	Paediatric Rasmussen's	HR 0.92 ^u [0.88, 0.97]	showed possible increases in the effect	Duration	Duration	Horn (45) 2016		
			sizes when longer durations of 10 and	0	0			
			20 years until surgery were			Krucoff, Chan		
<2 vs >2yrs		RR 1.20 [1.05, 1.39]	considered, ⁵⁷ another subgroup			(50) 2017		
<5 vs >5yrs	Children and	RR 1.24 [1.08, 1.42]	metaregression was non-significant.45			Krucoff, Chan		
<3 V3 >3 ¥13	adults	NN 1.24 [1.08, 1.42]				(50) 2017		
<10 vs >10yrs	all	RR 1.25 [1.09, 1.43]	Both age at onset and age at surgery			(50) 2017		
-10 10 - 10 1.0	lobes		from Harris, Phillips (56) lost their			Harris, Phillips		
<20 vs <20yrs	I	RR 1.33 [1.08; 1.65]	significance when adjusted for			(56) 2019		
			outcome follow up variability,					
<5 vs >10yrs	l.	RR 1.32 [1.19; 1.46]	however, they did not seem to report			Bjellvi, Olsson		
			the same multivariate result for			(57) 2019		
	I		duration of epilepsy. Given the			Englot,		
Subgroup Metaregression		NS	univariate HR approaches 0.97 in			Breshears (37)		
< 7. years	Paediatric ET	OR 1.52 [1.07, 2.14]	children with Rasmussen's, this feature			2013		
≤ 7 years	Paediatric El	OR 1.52 [1.07, 2.14]	would, we suspect, also become non-			2013		
Duration \geq 1 year	Adults with low grade	RR 0.82 [0.75, 0.91]	significant on adjusting and we			Shan, Fan (53)		
,	gliomas		therefore include the patients and			2018		
	-		individual studies in the non-significant					
	Children and Adults with	0.97 [0.96 – 0.99]	category. ⁵⁶			Lamberink,		
	low-grade epilepsy		There were no clear patterns to the			Otte (62) 2020		
	associated neuroepithelial		populations or ages studied, and no			Amari Mash		
	tumour		clear adjustments or interactions with			Ansari, Maher		
	ET poplacional children	NC	TL resections made. Given TL			(28) 2010		
	ET nonlesional children	NS	connectivity and involvement in			Cao, Liu (43)		
	Children		propagation, interaction between			2016		
	hemispherectomy	NS	duration of epilepsy in TL and ET would					
	·-····)		be useful. On balance, there may be			Shang-Guan,		
	Cavernomas adults and		better prognosis with shorter duration			Wu (54) 2018		
	children	NS						

Page **174** of **193**

			of epilepsy but this is confounded by selection bias of clearer diagnoses of focal epileptogenic zones.					
Postsurgical: Postoperative Semiology Different to Presurgical Semiology	Adults and Children, TL and ET	NS 4.24 [0.93, 19.25]	Although results suggest when semiology changes postoperatively there is a higher chance of seizure freedom, this depends on the definition of "seizure-freedom" and with 109 participants across only 3 studies, was not statistically significant.	109	3	Giridharan, Horn (45) 2016	2016	+ Very Low Unclear
			2. Imaging Features					
FDG-PET Focal Interictal Hypometabolism	Adults with TLE and ET Adults TLE? (35, 1) Adults and Children with FLE MRI negative TLE	NS NS NS OR 2.11 [0.95, 4.65]	PET does not appear to add value in patients localized by ictal scalp EEG and/or MRI. One meta-analysis looked at MRI negative TLE, in which 127 patients across 5 studies was NS, however, the OR was 2.11 and the confidence interval was skewed (p=0.06), favouring a positive prognostic effect. ⁴⁴	1479	107	Willmann, Wennberg (27) 2007 Englot, Wang (30) 2012 Wang, Zhang (44) 2016	2007 – 2016	+ Very Low PET may have prognostic value for MRI negative TLE
		3.	Neurophysiological Features					
Postoperative interictal discharges	TL and ET Children and adults TLE subgroup	OR 0.28 [0.08, 0.95] NS Adjusted for outcomes RR 0.91 [0.68, 1.22] RR 0.81 [0.70, 0.94]	Although we would expect postoperative discharges to be correlated with seizures and poor outcomes, and this is reflected in the overall OR of 0.28, RR <1, and TLE subgroup effect size, when adjusted for outcomes, the overall effect was not statistically significant. ³ 2019	1547	9	Tonini, Beghi (24) 2004 West, Nevitt (3) 2019	2004 – 2019	+ Very Low Probably favours lack of postoperative discharges in at least TLE

Page **175** of **193**

Preoperative intracranial (invasive)	TL and ET		Of the 0 meta analyses investigating	4198	105	Tonini Poghi	2004 2010	+
EEG Monitoring	Children and adults 1547 (27, 2)	OR 0.37 [0.22, 0.63], RR 0.85 [0.78, 0.93]	Of the 9 meta-analyses investigating the presence or absence of invasive monitoring, only 2 were of ++ "low"	4196	105	Tonini, Beghi (24) 2004	2004 – 2019	Very Low
(EcoG, electrico-corticography, includes subdural grids and stereoEEG – see below for	ET, Adults, Non-lesional	NS	quality on the GRADE score, compared with 7 with + "very low" rating. Both of the higher rated meta-analyses found			West, Nevitt (3) 2019		Most likely favours lack of invasive monitoring
comparison between invasive methods)	Children and adults with FLE	NS	that performing intracranial EEG was associated with worse outcomes with a relative risk for seizure freedom of 0.85			Ansari, Tubbs (18) 2010		
	Tuberous Sclerosis	NS OR 1.6 [0.76, 3.37]	and odds ratios of 0.4.3.50 This may be expected due to selection bias of the most difficult cases. The Cochrane			Englot, Wang (30) 2012		
	Children with TLE	NS OR ^c crude 1.31 [0.84, 2.04]	review included the largest number of participants at 1547 across 21 individual studies. ³			Zhang, Hu (33) (2013)		
	Repeat surgery on focal DRE	OR = 0.4, [0.2, 0.9]	The other studies suffered from one or more limitations, including no funnel			Englot, Rolston (32) 2013		
	Paediatric ET	NS OR ^c 0.77 [0.50, 1.19]	plots to investigate publication bias, ³³ having small sample sizes from multiple centres with heterogenous			Krucoff, Chan (50) 2017		
	ET nonlesional children <95 (<17)	NS	outcome reporting, ¹⁸ ²⁴ providing limited information on the actual effect size, ³⁰ and most did not adjust for other variables which could also affect the power to detect significance.			Englot, Breshears (37) 2013 Ansari, Maher (28) 2010		
			, ,			(28) 2010		
sEEG vs Subdural Grid	TL and ET adults and children (but not from children only studies) Nonlesional (n=237)	Overall RR = 64.7% [59.2, 69.8] / 55.9% [50.9, 60.8] = 1.16 ^c NS RR = 52% / 54.4% = 0.96	While there were significant differences favouring sEEG overall (p = 0.02), in lesional (p = 0.031), and temporal subgroups (p = 0.002), the average follow-up for sEEG was 10	2461	64	Toth, Papp (59) 2019 ⁶³ 2020	2019, 2020	+ Very Low Note that this is a
	Lesional (n=665)	RR = 71.6% / 57.3% = 1.25	months while for subdural grids was nearly 19months but no adjustment was made for duration of follow up.					complex feature, likely confounded by many others,
	TL (n=470)	RR = 73.9% / 56.7% = 1.30	Furthermore, while there wasn't significant heterogeneity in the sEEG					and interactions with other clinical
	ET (n=420)	RR = 61% / 46.7% = 1.31	studies ($l^2 = 11.86\%$; p = 0.318), there was in the subdural group ($l^2 = 54.47\%$; p = 0.002)					features have not been investigated.
	Any	SDE 64.3% [61.1, 67.5] SEEG 54% [50.8, 57.3] OR ^{cu} 0.65 [0.45, 0.95] p=0.025 ^{cu}	Funnel plots and Egger's tests resulted in no overall or subgroup changes.					Possibly favours sEEG overall and specifically in

Page **176** of **193**

		there was no difference in seizure freedom rates regardless of resection (p = 0.0565)	On balance, although the subdural grid cases were more likely to progress to surgery in both meta analyses, likely to due to more straightforward cases, it's possible that the results favour sEEG specifically for lesional cases when there is considerable uncertainty about the epileptogenic zone localisation.					lesional cases, but uncertain.
Interictal Spikes (presence of)	TL and ET Children and adults	NS OR 1.82 [0.86, 3.88]	The evidence base of this feature is uncertain, although the point estimate supports a positive prognostic feature with a somewhat skewed confidence interval, this is not statistically significant. Tonini, Beghi (24) investigated 3511 patients across 47 studies for 13 features, interictal spikes comprised only 3 individual studies and the exact number of cases was not presented but proportionally would be on the order of ~224.	<<3511	3	Tonini, Beghi (24) 2004	2004	+
Lateralised (Unilateral) Interictal EEG Unilateral vs bilateral interictal spikes	Children and adults with FLE Tuberous Sclerosis (n=127) Adults and children (n=1414) Paediatric ET (n=130) Adults and children hemispherectomy (n=413)	NS OR 2.42 [1.11, 5.27] RR 1.14 [1.05, 1.24], NS OR ^c 2.22 [0.98, 5.05] OR 1.66, [1.03, 2.67]	Two meta-analyses were non- significant, one without further data and the other raw data presented showing a calculated OR of 2.22. ^{30, 37} Note the lack of TLE subgroup. The largest was the Cochrane review with 1414 patients with RR 1.14 for unilateral vs bilateral interictal spikes. Let's <i>assume</i> 70% seizure-freedom for unilateral spikes, if a presurgical patient's interictal EEG shows bilateral spikes – everything else being equal – we should reduce this expectation from 70% down by a factor of 1/1.14 i.e., 61%. (NNT ~11–25 depending on definition of seizure freedom).	3283	62	Englot, Wang (30) 2012 Zhang, Hu (33) 2013 West, Nevitt (3) 2019 Englot, Breshears (37) 2013 Hu, Zhang (46) 2016	2012 – 2019	+ Very Low Likely favours unilateral interictal EEG

Page **177** of **193**

Unilateral vs Bilateral Ictal EEG (Lateralized Ictal EEG)	Adults and Children with FCD Tuberous Sclerosis (n=159) Adults and Children hemispherectomy (n=414)	NS OR 1.03 [0.82, 1.31] OR 2.48 [1.17, 5.24] OR 1.88 [1.15, 3.07]	Two meta-analyses estimated odds ratios around 2 for better seizure free outcomes for lateralised ictal EEG in TS and hemispherectomy at any age.Zhang, Hu (33), Hu, Zhang (46) Another found no significance in FCD.Rowland, Englot (29) As with all other features, it must be remembered that even if EEG lateralises, there are other factors such as correct localisation and complete resection of the epileptogenic zone. Therefore, on balance, probably supports favourable outcomes in unilateral ictal EEG abnormalities.	2587	25	Rowland, Englot (29) 2012 Zhang, Hu (33) 2013 Hu, Zhang (46) 2016	2012-2016	+ Very Low Probably favours unilateral ictal EEG
		4. N	Iultimodal Concordance: None					
			5. Genetics: None					
		6. Surgio	al Technique or Anatomic Featu	ures				
Extensive Surgical Resection Extensive frontal vs localised	TL and ET Children and adults (n<3511) FLE, adults and children (n=651)	OR 4.27 [2.06, 8.85] RR 0.58 [0.41, 0.79]	As a supercategory comprising of ATL (vs SAH), lobectomy or hemispherectomy (vs lesionectomy), or extended lesionectomy vs limited resections, it isn't clear whether extensive surgical resection results in better SF.	9494	120	Tonini, Beghi (24) 2004 Englot, Wang (30) 2012 Zhang, Hu (33)	2004 – 2019	
Lobectomy (extensive) vs tuberectomy	Tuberous sclerosis (n=189)	OR 1.96 [1.01, 3.7]	Meta-analyses supporting extensive resections include those for all			2013 Josephson,		
ATL (extensive) vs SAH (selective)	TLE children and adults (n=1203) TLE and HS subgroup (n=1092)	RR 1.32 [1.12, 1.57] RR 1.26 [1.05, 1.51]	patients, ²⁴ tuberous sclerosis, ³³ TLE ³⁴ ⁴⁰ , and paediatric Rasmussen's ⁵⁶ . If no significant study favoured limited resections, this would not have been unexpected, given at one end of the extreme spectrum, total brain removal			Dykeman (34) 2013 Jain, Tomlinson (52) 2018		
ATL vs SAH	TLE mainly adults (n=?)	NS OR 1.14 [0.93, 1.39] p=0.201	might be expected to result in SF. However, extensive frontal lobe resections resulted in worse outcomes			Kuang, Yang (38) 2013		
ATL vs SAH	TLE (n=626)	NS RR 1.01 [0.54, 1.09]	compared to limited resections. ³⁰ This was the only result which favoured limited resections.			Hu, Zhang (40) 2013		
	SAH vs ATL in TLE (n=1397)	Overall OR 0.65 [0.51, 0.82]	If taken at face value, non-inferiority or worse SF outcomes for selective procedures, except for frontal lobe					

Page **178** of **193**

Lesionectomy vs multilobar resection surgery) Hemispherectomy (vs resective) 3.5cm (extensive) vs 2.5cm (limited) ATL resection Extended vs limited lesionectomy	Tuberous sclerosis children (n=186) Rasmussen's Paediatric (n<187) TLE Adults >18yrs (n=207) Cavernomas in adults and children (n=245) Extensive resection of surrounding haemosiderin vs resection of cavernoma only	NS on PLS HR 0.28 ^u [0.18, 0.45] HR 0.30 ^m [0.18, 0.49] NS RR 0.98 [0.83, 1.16] NS OR 0.96 [0.44, 2.08] OR 1.61 [1.10, 2.38]	 patients, may suggest a role for healthy frontal cortex in seizure inhibition (and conversely indicate the role of TL for seizure propagation), or suggest selection bias where large resections are made when there is less clear localisation, the former which warrants further investigation if the effect persists after adjustment. On balance, ATL results in better SF, but has other detrimental outcomes including on cognition, more cortical thinning than SAH especially in the frontal and insular cortices ["Remote effects of epilepsy surgery: long-term morphological changes after surgical resection" Poster, AES 2020] Even for ATL, some studies supported better outcomes, ^{34 40} whilst other did not. ^{52 38} There was no clear time or quality of study trend, nor by technique (trans-sylvian, transcortical 			Ibrahim, Morgan (36) 2015 Harris, Phillips (56) 2019 West, Nevitt (3) 2019 Shang-Guan, Wu (54) 2018 Ruan, Yu (41) 2015		
			or subtemporal). 7. Pathological Features					
Vascular Malformations	Adults and Children	NS RR 1.07 [0.94, 1.21] NS OR 0.79 [0∙60 - 1∙06]	Vascular malformations are non- prognostic when adjusted for different outcomes scales, on pathology or imaging. ²⁴ As a group, they are also not statistically significant when compared to low grade neuroepithelial tumours, and this provides indirect evidence that vascular malformations may be prognostic. Cavernomas especially, are likely prognostic (77.1% Engel I) compared to others (65.8%). ⁶²	1931	56	West, Nevitt (3) 2019 Lamberink, Otte (62) 2020	2019 – 2020	++ Low Not Prognostic

Supplementary Table 4: Features with inconclusive or conflicting prognostic value for epilepsy surgery. *=upper bound of estimate, not including subgroup analyses. NS=Not-significant. ^c=calculated (unweighted) effect size. MCD=malformations of cortical development. ^u=univariate. ^m=multivariate. TL=Temporal Lobe. ET=Extratemporal. FLE=Frontal Lobe Epilepsy. PLS=Projection to Latent Space.³⁶

Page **179** of **193**

Page **180** of **193**

Page **181** of **193**

2.5 Supplementary Table 5: Non-Prognostic Features (NPF)

NPF Features		Non-Pro	gnostic Evid	ence Base			
Feature Population(s) of Subgroup(s)	r Range of Effect Sizes for Seizure-Freedom	Comments	Individual Patients*	Individual Studies*	Meta- Analytical References	Publication Years of meta- analyses (first, last)	GRADE score
		1. Clinical Features					
Sex: Adults and Children v male vs female Adults and Children v FLE Children with TLE, Tuberous Sclerosis MRI neg TLE, Repeat surgery in fo DRE, Paediatric ET Children and adult hemispherectomy Low grade gliomas adults Children with hemispherectomy	al	All were non-significant, a large proportion even on weighted univariate tests which otherwise tend to overestimate significance. Individual unweighted effect sizes ranged from OR 0.83 [0.42, 1.64] ^c in repeat surgery for focal DRE ⁵⁰ to OR 1.44 [0.86, 2.41] in MRI negative TLE. ⁴⁴	5974	148	Englot, Wang (30) 2012 Englot, Rolston (32) 2013 Zhang, Hu (33) 2013 Fallah, Guyatt (35) 2013 Ibrahim, Morgan (36) 2015 Wang, Zhang (44) 2016 Krucoff, Chan (50) 2017 Englot, Breshears (37) 2013 Hu, Zhang (46) 2016 Shan, Fan (53) 2018	2012 - 2018	+++ Moderate Non-Prognostic

Page **182** of **193**

						Cao, Liu (43) 2016		
Epilepsia Partialis Continua (EPC)	Children undergoing hemispherectomies	NS	Not significant on unweighted univariate testing which is more likely to make a statistical type I error. Although result is from 1 meta-analysis, the population required to have sufficient numbers with EPC is unlikely to be found in vast numbers elsewhere.	127	7	Cao, Liu (43) (2016)	2016	++ Low Non-Prognostic
			2. Imaging Features					
Number of Cortical Tubers ≤ 4 vs > 4 tubers "Less tuber burden"	Tuberous Sclerosis	NS OR 1.12 [0.49, 2.57] NS OR 1.01 [0.96, 1.07] Also NS on PLS.	Note that the patients from two of these meta-analyses were the same patients, albeit in one they were reported to be 186 and in another 181, the main difference was in the methodology, where the 2015 paper used PLS. Overall there were few sample sizes, no adjustment except in PLS, and they either did not perform funnel plots, ^{33, 35} or did not assess heterogeneity, ³⁵ or used heterogenous seizure-freedom definitions without sensitivity analyses.Zhang, Hu (33)	286	24	Zhang, Hu (33) 2013 Fallah, Guyatt (35) 2013 Ibrahim, Morgan (36) 2015	2013 – 2015	++ Low Non-Prognostic
Magnetic ¹ H Spectroscopy Abnormality: Ipsilateral to Resected Lobe	TLE adults and children TLE, adults and children, normal MRI	OR 4.9 [1.97, 12.17] NS	There was a single meta-analysis that we found and it showed that there was no more value to spectroscopy compared to conventional MRI for patients 3 to 66 years of age. "Fifteen centers performed chemical shift imaging and seven centers used single-voxel spectroscopy. Most studies were obtained at 1.5 T"	121	22	Willmann, Wennberg (26) 2006	2006	+ Very Low Probably no more valuable than conventional MRI abnormality
Encephalomalacia	Adults and children	NS RR 0.78 [0.52, 1.17]	Encephalomalacia was NS in the Cochrane meta-analysis, it was also not significant on subgroup analyses. ³	317	5	West, Nevitt (3) 2019	2019	+ Very Low Not Prognostic
Enhancement, oedema, and/or mass effect	Low grade gliomas in adults	NS	These combined features are not clinically prognostic of low-grade glioma resection for seizure freedom. Although NS, the point estimate and confidence interval are unavailable.	2641	23	Shan, Fan (53) 2018	2018	+ Very Low Not Prognostic

Page **183** of **193**

Vascular Lesions	Adults and Children TL and ET	NS OR 0.66 [0.30, 1.46]	Only 1 meta-analysis investigated this in 2004, comprising only 3 individual studies, its pathological counterpart was also NS. ³	<<3511	3	Tonini, Beghi (24) 2004	2004	+ Very Low Not Prognostic	
			3. Neurophysiological Feature	S					
Intraoperative Invasive EEG (EcoG, electrico- corticography)	Children and adults with FLE	NS p=0.14 OR ^c 1.23 [0.95, 1.62]		1024	21	Englot, Wang (30) 2012	2012	+++ Moderate NotPrognostic	
Video Telemetry and Long Term Monitoring	Children and adults with FLE Lesional and non-lesional TLE and ET	NS (chi-squared) All confidence intervals overlap with 1, with only a trend for OR>1 in lesional TLE subgroup (confounder)	Limited information on effect size provided. Lesional TLE cases do well, and this was the only subgroup in which long term monitoring had a point effect size estimate greater than 1.	<<1199 539	<21 44	Englot, Wang (30) 2012 Kobulashvili, Kuchukhidze (55) 2018	2012, 2018	+ Very Low Not Prognostic	
			4. Multimodal Concordance: No	ne					
			5. Genetics: None						
	6. Surgical Technique or Anatomic Features								
Mesial vs Lateral TL focus	MRI neg TLE 92	NS OR 1.39 [0.61, 3.2]	Mesial or lateral TLE, as determined by sEEG, subdural grids, or ATL/SAH vs neocortectomy, are not significant.	92	8	Wang, Zhang (44) 2016	2016	+ Very Low Not Prognostic	

Page **184** of **193**

Side of Resection (Left vs Right)	TL and ET Children and adults TLE adults ET, Adults, Non-lesional Adults and children with FLE Children with TLE MRI neg TLE Repeat surgery for focal DRE Surgery #1 Surgery #2 Paediatric ET Children and adults hemispherectomy ET non lesional children	NS OR 0.85 [0.54, 1.34] RR 1.04 [0.99, 1.1] NS ^u OR 0.57 [0.26, 1.24] NS NS OR 1.07 [0.72, 1.60] NS OR 1.33 [0.84, 2.08] OR ^c 0.73 [0.43, 1.25] OR ^c 0.77 [0.44, 1.33] OR ^c 0.77 [0.44, 1.33] OR ^{uc} 0.99 [0.64, 1.53] OR 1.17, [0.79, 1.73], p = 0.43 NS ^u	Although there are some methodological issues which result in the quality of evidence GRADE score for side of resection for each meta-analysis not exceeding ++ "low", such as heterogenous outcome reporting, 11 meta-analysis spanning 15 years were unanimous in not finding significance in side of resection, given a low prior for theoretically considering that there may be better outcomes base on left or right sided surgery, this feature is unlikely to be prognostic irrespective of how many further analyses investigate it.	6550	188	Tonini, Beghi (24) 2004 West, Nevitt (3) 2019 Willmann, Wennberg (27) 2007 Ansari, Tubbs (18) 2010 Englot, Wang (30) 2012 Englot, Rolston (32) 2013 Wang, Zhang (44) 2016 Krucoff, Chan (50) 2017 Englot, Breshears (37) 2013 Hu, Zhang (46) 2016 Ansari, Maher (28) 2010	2004 - 2019	+++ Moderate Not Prognostic
Frontal, Central, or Posterior Resections vs Other	ET, Adults, Non-lesional	NS		81	?	Ansari, Tubbs (18) 2010	2010	+ Very Low Not Prognostic
Geographical Location of Surgery: N America vs Elsewhere	Tuberous Sclerosis in Children	NS on PLS	Only one meta-analysis, and so the GRADE score reflects the quality of the investigated feature from this meta- analysis alone.	186	20	Ibrahim, Morgan (36) 2015	2015	+++ Moderate Not Prognostic

Page **185** of **193**

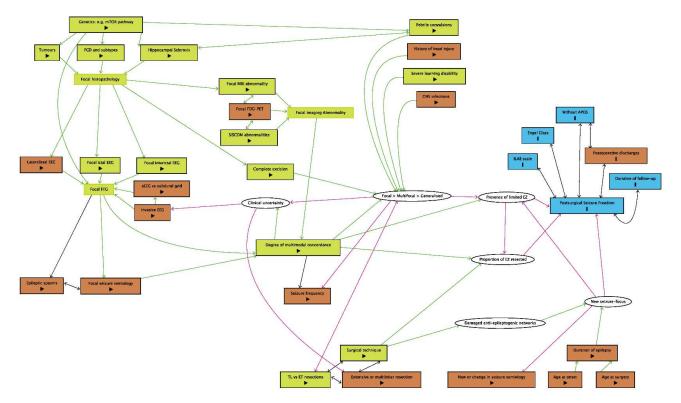
7. Pathological Features								
Neuro-migrational defects	TL and ET Children and adults	NS OR 0.66 [0.42, 1.03]	There was a trend whereby neuromigrational deficits were negative prognostic factors, but the number of participants in this analysis is unclear.	? (<<3511)	6	Tonini, Beghi (24) 2004	2004	+ Very Low Not Prognostic
Astrocytoma vs non- astrocytoma	Low grade gliomas in adults	NS NA	The exact numbers of patients were not provided for this particular analysis.	<2641	<23	Shan, Fan (53) 2018	2018	Very Low Not-Prognostic

Supplementary Table 5: Non-prognostic features. *=upper bound of estimate, not including subgroup analyses. NS=Not-significant. ^c=calculated (usually unweighted) effect size. MCD=malformations of cortical development. ^u=univariate. ^m=multivariate. TL=Temporal Lobe. ET=Extratemporal. FLE=Frontal Lobe Epilepsy. PLS=Projection to Latent Space.

Page **186** of **193**

Page **187** of **193**

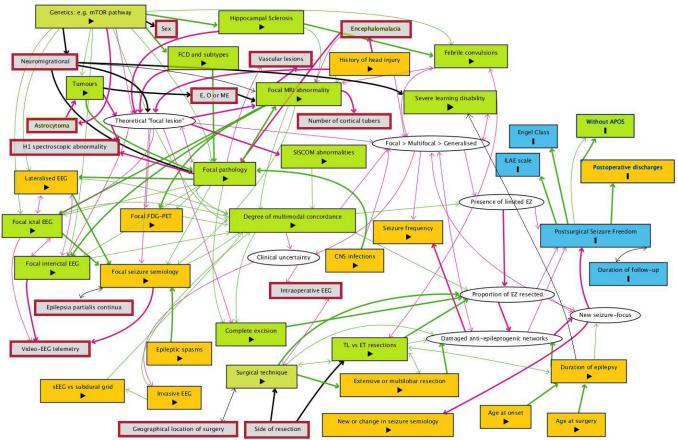
2.6 Structural Causal Models


The attached text file, "SCM dagitty v5 super simplified" generates the simplified SCM when used on <u>http://www.dagitty.net/dags.html</u> (Supplementary Fig. 1, colour coded).

Similarly, "SCM dagitty v4" generates the complete SCM with all of the prognostic, non-prognostic and uncertain features and their relationships (Supplementary Fig. 2, colour coded).

The R codes can also be obtained from dagitty after pasting the contents of the text files. The output of dagitty also states which relationships are direct or biases, and when a specific model is specified, which variables are independent and no adjustment would be necessary.

Page 188 of 193


2.6.1 A Simplified SCM

Supplementary Figure 1: Simplified structural causal model outline for adjusting between variables. In blue are the outcome variables. Latent variables are in oval shapes. Essential prognostic factors are in green and uncertain prognostic factors are in orange. Non-prognostic factors have been omitted for simplicity. Green arrows are causal paths, red arrows are biasing paths. Image created by authors using dagitty v3 (<u>http://www.dagitty.net/dags.html</u>) and can be recreated by pasting the text of supplementary file "SCM dagitty v5 super simplified" onto this website.

Page 189 of 193

Supplementary Figure 2: A more complete structural causal model outline for adjusting between variables. In blue are the outcome variables. Latent variables are in oval shapes. Essential prognostic factors are in green, uncertain prognostic factors in amber, and non-prognostic factors have red borders. Green arrows are causal paths, red arrows are biasing paths. Image created by authors using dagitty v3 (http://www.dagitty.net/dags.html) and can be recreated by pasting the text of supplementary file "SCM dagitty v4" onto this website.

Page **190** of **193**

Supplementary References

1. Nevitt SJ, Staba R, Gloss D. The role of high-frequency oscillations in epilepsy surgery planning. The Cochrane Database of Systematic Reviews. 2017;2017(10).

2. West S, Nolan SJ, Cotton J, Gandhi S, Weston J, Sudan A, et al. Surgery for epilepsy. Cochrane Database Syst Rev. 2015(7):Cd010541.

3. West S, Nevitt SJ, Cotton J, Gandhi S, Weston J, Sudan A, et al. Surgery for epilepsy. Cochrane Database of Systematic Reviews. 2019(6).

4. Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain. 2005;128(5):1188-98.

5. Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy research. 2010;89(2-3):310-8.

6. Höller Y, Kutil R, Klaffenböck L, Thomschewski A, Höller PM, Bathke AC, et al. High-frequency oscillations in epilepsy and surgical outcome. A meta-analysis. Frontiers in human neuroscience. 2015;9:574.

7. Stevelink R, Sanders MW, Tuinman MP, Brilstra EH, Koeleman BP, Jansen FE, et al. Epilepsy surgery for patients with genetic refractory epilepsy: a systematic review. Epileptic Disorders. 2018;20(2):99-115.

8. Pellino G, Gencarelli J, Bertelli S, Russo A, Fiumana E, Faggioli R. Epilepsy in isolated parenchymal neurocutaneous melanosis: A systematic review. Epilepsy & Behavior. 2020;107:107061.

9. Pilipović-Dragović S, Ristić AJ, Bukumirić Z, Trajković G, Sokić D. Long-term seizure outcome following epilepsy surgery in the parietal lobe: a meta-analysis. Epileptic Disorders. 2018;20(2):116-22.

10. Nakagawa S, Noble DW, Senior AM, Lagisz M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC biology. 2017;15(1):1-14.

Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6.
 Rating the quality of evidence—imprecision. Journal of clinical epidemiology. 2011;64(12):1283-93.
 Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines: 4.
 Rating the quality of evidence—study limitations (risk of bias). Journal of clinical epidemiology. 2011;64(4):407-15.

 Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. Journal of clinical epidemiology. 2011;64(4):401-6.
 Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, et al. GRADE guidelines: 5. Rating the quality of evidence—publication bias. Journal of clinical epidemiology. 2011;64(12):1277-82.

Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 7.
 Rating the quality of evidence—inconsistency. Journal of clinical epidemiology. 2011;64(12):1294-302.

Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 8.
 Rating the quality of evidence—indirectness. Journal of clinical epidemiology. 2011;64(12):1303-10.
 Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, et al. GRADE guidelines:

9. Rating up the quality of evidence. Journal of clinical epidemiology. 2011;64(12):1311-6.
 18. Ansari SF, Tubbs RS, Terry CL, Cohen-Gadol AA. Surgery for extratemporal nonlesional epilepsy in adults: an outcome meta-analysis. Acta Neurochir (Wien). 2010;152(8):1299-305.

19. Chandra PS, Vaghania G, Bal CS, Tripathi M, Kuruwale N, Arora A, et al. Role of concordance between ictal-subtracted SPECT and PET in predicting long-term outcomes after epilepsy surgery. Epilepsy Res. 2014;108(10):1782-9.

20. Chelune GJ, Naugle RI, Hermann BP, Barr WB, Trenerry MR, Loring DW, et al. Does presurgical IQ predict seizure outcome after temporal lobectomy? Evidence from the Bozeman Epilepsy Consortium. Epilepsia. 1998;39(3):314-8.

21. Altman DG. Practical statistics for medical research: CRC press; 1990.

Page **191** of **193**

22. Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust causal inference using directed acyclic graphs: the R package 'dagitty'. International journal of epidemiology. 2016;45(6):1887-94.

23. Devous MD, Sr., Thisted RA, Morgan GF, Leroy RF, Rowe CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med. 1998;39(2):285-93.

24. Tonini C, Beghi E, Berg AT, Bogliun G, Giordano L, Newton RW, et al. Predictors of epilepsy surgery outcome: a meta-analysis. Epilepsy research. 2004;62(1):75-87.

25. Téllez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89(2-3):310-8.

26. Willmann O, Wennberg R, May T, Woermann F, Pohlmann-Eden B. The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery: a meta-analysis. Epilepsy research. 2006;71(2-3):149-58.

27. Willmann O, Wennberg R, May T, Woermann F, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: a meta-analysis. Seizure. 2007;16(6):509-20.

28. Ansari SF, Maher CO, Tubbs RS, Terry CL, Cohen-Gadol AA. Surgery for extratemporal nonlesional epilepsy in children: a meta-analysis. Childs Nerv Syst. 2010;26(7):945-51.

29. Rowland NC, Englot DJ, Cage TA, Sughrue ME, Barbaro NM, Chang EF. A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. Journal of neurosurgery. 2012;116(5):1035-41.

30. Englot DJ, Wang DD, Rolston JD, Shih TT, Chang EF. Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis. Journal of neurosurgery. 2012;116(5):1042-8.

31. Yin Z-r, Kang H-c, Wu W, Wang M, Zhu S-q. Do neuroimaging results impact prognosis of epilepsy surgery? A meta-analysis. Journal of Huazhong University of Science and Technology [Medical Sciences]. 2013;33(2):159-65.

32. Englot DJ, Rolston JD, Wang DD, Sun PP, Chang EF, Auguste KI. Seizure outcomes after temporal lobectomy in pediatric patients: a systematic review. Journal of Neurosurgery: Pediatrics. 2013;12(2):134-41.

33. Zhang K, Hu W-h, Zhang C, Meng F-g, Chen N, Zhang J-g. Predictors of seizure freedom after surgical management of tuberous sclerosis complex: a systematic review and meta-analysis. Epilepsy research. 2013;105(3):377-83.

34. Josephson CB, Dykeman J, Fiest KM, Liu X, Sadler RM, Jette N, et al. Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery. Neurology. 2013;80(18):1669-76.

35. Fallah A, Guyatt GH, Snead OC, 3rd, Ebrahim S, Ibrahim GM, Mansouri A, et al. Predictors of seizure outcomes in children with tuberous sclerosis complex and intractable epilepsy undergoing resective epilepsy surgery: an individual participant data meta-analysis. PLoS One. 2013;8(2):e53565.

36. Ibrahim GM, Morgan BR, Fallah A. A partial least squares analysis of seizure outcomes following resective surgery for tuberous sclerosis complex in children with intractable epilepsy. Child's Nervous System. 2015;31(2):181-4.

37. Englot DJ, Breshears JD, Sun PP, Chang EF, Auguste KI. Seizure outcomes after resective surgery for extra–temporal lobe epilepsy in pediatric patients: A systematic review. Journal of Neurosurgery: Pediatrics. 2013;12(2):126-33.

38. Kuang Y, Yang T, Gu J, Kong B, Cheng L. Comparison of therapeutic effects between selective amygdalohippocampectomy and anterior temporal lobectomy for the treatment of temporal lobe epilepsy: a meta-analysis. British Journal of Neurosurgery. 2014;28(3):374-7.

39. Zhang J, Liu W, Chen H, Xia H, Zhou Z, Mei S, et al. Identification of common predictors of surgical outcomes for epilepsy surgery. Neuropsychiatric disease and treatment. 2013;9:1673.

Page **192** of **193**

40. Hu W-H, Zhang C, Zhang K, Meng F-G, Chen N, Zhang J-G. Selective

amygdalohippocampectomy versus anterior temporal lobectomy in the management of mesial temporal lobe epilepsy: a meta-analysis of comparative studies: a systematic review. Journal of Neurosurgery. 2013;119(5):1089-97.

41. Bonney PA, Glenn CA, Ebeling PA, Conner AK, Boettcher LB, Cameron DM, et al. Seizure Freedom Rates and Prognostic Indicators After Resection of Gangliogliomas: A Review. World Neurosurg. 2015;84(6):1988-96.

42. Ruan D, Yu XB, Shrestha S, Wang L, Chen G. The Role of Hemosiderin Excision in Seizure Outcome in Cerebral Cavernous Malformation Surgery: A Systematic Review and Meta-Analysis. PLoS One. 2015;10(8):e0136619.

43. Cao K, Liu M, Wang C, Liu Q, Yang K, Tao L, et al. Five-year long-term prognosis of epileptic children after hemispheric surgery: A systematic review and meta-analysis. Medicine. 2016;95(23).

44. Wang X, Zhang C, Wang Y, Hu W, Shao X, Zhang J-g, et al. Prognostic factors for seizure outcome in patients with MRI-negative temporal lobe epilepsy: A meta-analysis and systematic review. Seizure. 2016;38:54-62.

45. Giridharan N, Horn PS, Greiner HM, Holland KD, Mangano FT, Arya R. Acute postoperative seizures as predictors of seizure outcomes after epilepsy surgery. Epilepsy Res. 2016;127:119-25.

46. Hu W-H, Zhang C, Zhang K, Shao X-Q, Zhang J-G. Hemispheric surgery for refractory epilepsy: a systematic review and meta-analysis with emphasis on seizure predictors and outcomes. Journal of neurosurgery. 2016;124(4):952-61.

47. Chen T, Guo L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: a meta-analysis. Seizure. 2016;41:43-50.

48. Ampie L, Choy W, DiDomenico JD, Lamano JB, Williams CK, Kesavabhotla K, et al. Clinical attributes and surgical outcomes of angiocentric gliomas. J Clin Neurosci. 2016;28:117-22.

49. Harward SC, Chen WC, Rolston JD, Haglund MM, Englot DJ. Seizure outcomes in occipital lobe and posterior quadrant epilepsy surgery: a systematic review and meta-analysis. Neurosurgery. 2017;82(3):350-8.

50. Krucoff MO, Chan AY, Harward SC, Rahimpour S, Rolston JD, Muh C, et al. Rates and predictors of success and failure in repeat epilepsy surgery: A meta-analysis and systematic review. Epilepsia. 2017;58(12):2133-42.

51. Gloss D, Nolan SJ, Staba R. The role of high-frequency oscillations in epilepsy surgery planning. Cochrane Database of Systematic Reviews. 2014(1).

52. Jain P, Tomlinson G, Snead C, Sander B, Widjaja E. Systematic review and network metaanalysis of resective surgery for mesial temporal lobe epilepsy. Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(11):1138-44.

53. Shan X, Fan X, Liu X, Zhao Z, Wang Y, Jiang T. Clinical characteristics associated with postoperative seizure control in adult low-grade gliomas: a systematic review and meta-analysis. Neuro-oncology. 2018;20(3):324-31.

54. Shang-Guan H-C, Wu Z-Y, Yao P-S, Chen G-R, Zheng S-F, Kang D-Z. Is Extended Lesionectomy Needed for Patients with Cerebral Cavernous Malformations Presenting with Epilepsy? A Meta-Analysis. World Neurosurgery. 2018;120:e984-e90.

55. Kobulashvili T, Kuchukhidze G, Brigo F, Zimmermann G, Höfler J, Leitinger M, et al. Diagnostic and prognostic value of noninvasive long-term video-electroencephalographic monitoring in epilepsy surgery: A systematic review and meta-analysis from the E-PILEPSY consortium. Epilepsia. 2018;59(12):2272-83.

56. Harris WB, Phillips HW, Chen JS, Weil AG, Ibrahim GM, Fallah A. Seizure outcomes in children with Rasmussen's encephalitis undergoing resective or hemispheric epilepsy surgery: an individual participant data meta-analysis. Journal of Neurosurgery: Pediatrics. 2019;1(aop):1-10.

57. Bjellvi J, Olsson I, Malmgren K, Ramsay KW. Epilepsy duration and seizure outcome in epilepsy surgery: A systematic review and meta-analysis. Neurology. 2019;93(2):e159-e66.

Page **193** of **193**

58. Chen J, Chen X, Huang C, Zhu H, Hou Z, An N, et al. Predictors of seizure recurrence in patients with surgery for focal cortical dysplasia: pairwise and network meta-analysis and trial sequential analysis. Child's Nervous System. 2019;35(5):753-67.

59. Toth M, Papp KS, Gede N, Farkas K, Kovacs S, Isnard J, et al. Surgical outcomes related to invasive EEG monitoring with subdural grids or depth electrodes in adults: A systematic review and meta-analysis. Seizure. 2019;70:12-9.

60. Widjaja E, Jain P, Demoe L, Guttmann A, Tomlinson G, Sander B. Seizure outcome of pediatric epilepsy surgery: Systematic review and meta-analyses. Neurology. 2020;94(7):311-21.
61. Brændholt M, Jensen M. Evidence From Meta-Analysis Supports Ictal

Magnetoencephalographic Source Imaging as an Accurate Method in Presurgery Evaluation of Patients With Drug-Resistant Epilepsy. Clinical EEG and Neuroscience. 2020:1550059420921534.

62. Lamberink HJ, Otte WM, Blümcke I, Braun KP, Aichholzer M, Amorim I, et al. Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: a retrospective multicentre cohort study. The Lancet Neurology. 2020;19(9):748-57.

63. Remick M, Ibrahim GM, Mansouri A, Abel TJ. Patient phenotypes and clinical outcomes in invasive monitoring for epilepsy: An individual patient data meta-analysis. Epilepsy Behav. 2020;102:106652.

64. Imberger G, Thorlund K, Gluud C, Wetterslev J. False-positive findings in Cochrane metaanalyses with and without application of trial sequential analysis: an empirical review. BMJ open. 2016;6(8):e011890.

65. Gleichgerrcht E, Keller SS, Drane DL, Munsell BC, Davis KA, Kaestner E, et al. Temporal lobe epilepsy surgical outcomes can be inferred based on structural connectome hubs: a machine learning study. Annals of Neurology. 2020;88(5):970-83.

66. Galovic M, Baudracco I, Wright-Goff E, Pillajo G, Nachev P, Wandschneider B, et al. Association of piriform cortex resection with surgical outcomes in patients with temporal lobe epilepsy. JAMA neurology. 2019;76(6):690-700.

dag {

bb="0,0,1,1" "Age at onset" [exposure,pos="0.746,0.924"] "Age at surgery" [exposure,pos="0.850,0.942"] "CNS infections" [exposure,pos="0.524,0.574"] "Clinical uncertainty" [latent,pos="0.419,0.576"] "Complete excision" [exposure,pos="0.371,0.740"] "Damaged anti-epileptogenic networks" [latent,pos="0.730,0.757"] "Degree of multimodal concordance" [exposure,pos="0.432,0.484"] "Duration of epilepsy" [exposure,pos="0.869,0.823"] "Duration of follow-up" [outcome,pos="0.927,0.604"] "E, O or ME" [adjusted, pos="0.317, 0.213"] "Engel Class" [outcome,pos="0.787,0.296"] "Epilepsia partialis continua" [adjusted,pos="0.125,0.688"] "Epileptic spasms" [exposure,pos="0.266,0.783"] "Extensive or multilobar resection" [exposure,pos="0.590,0.854"] "FCD and subtypes" [exposure,pos="0.301,0.121"] "Febrile convulsions" [exposure,pos="0.695,0.117"] "Focal > Multifocal > Generalised" [latent,pos="0.636,0.321"] "Focal FDG-PET" [exposure,pos="0.225,0.484"] "Focal MRI abnormality" [exposure, pos="0.441, 0.201"] "Focal ictal EEG" [exposure,pos="0.049,0.497"] "Focal interictal EEG" [exposure,pos="0.078,0.590"] "Focal pathology" [exposure,pos="0.333,0.380"] "Focal seizure semiology" [exposure,pos="0.215,0.609"] "Genetics: e.g. mTOR pathway" [exposure,pos="0.135,0.027"] "Geographical location of surgery" [adjusted, pos="0.264, 0.961"] "H1 spectroscopic abnormality" [adjusted, pos="0.097, 0.328"] "Hippocampal Sclerosis" [exposure,pos="0.386,0.040"] "History of head injury" [exposure,pos="0.546,0.134"] "ILAE scale" [outcome,pos="0.764,0.359"]

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s) J Ne

"Intraoperative EEG" [adjusted,pos="0.452,0.650"] "Invasive EEG" [exposure,pos="0.258,0.881"] "Lateralised EEG" [exposure,pos="0.069,0.399"] "New or change in seizure semiology" [exposure,pos="0.573,0.943"] "New seizure-focus" [latent,pos="0.893,0.705"] "Number of cortical tubers" [adjusted,pos="0.508,0.270"] "Postoperative discharges" [outcome,pos="0.926,0.374"] "Postsurgical Seizure Freedom" [outcome,pos="0.879,0.518"] "Presence of limited EZ" [latent,pos="0.740,0.452"] "Proportion of EZ resected" [latent,pos="0.749,0.659"] "SISCOM abnormalities" [exposure,pos="0.478,0.341"] "Seizure frequency" [exposure,pos="0.602,0.510"] "Severe learning disability" [exposure,pos="0.665,0.220"] "Side of resection" [adjusted, pos="0.410, 0.961"] "Surgical technique" [exposure,pos="0.387,0.834"] "TL vs ET resections" [exposure,pos="0.546,0.772"] "Theoretical \"focal lesion\"" [latent,pos="0.222,0.270"] "Vascular lesions" [adjusted, pos="0.415, 0.132"] "Video-EEG telemetry" [adjusted,pos="0.076,0.781"] "Without APOS" [outcome,pos="0.893,0.272"] "sEEG vs subdural grid" [exposure,pos="0.123,0.866"] Astrocytoma [pos="0.078,0.280"] Encephalomalacia [pos="0.555,0.064"] Neuromigrational [adjusted,pos="0.068,0.137"] Sex [adjusted, pos="0.246, 0.063"] Tumours [exposure,pos="0.126,0.188"] "Age at onset" -> "Duration of epilepsy" "Age at surgery" -> "Duration of epilepsy" "CNS infections" -> "Focal > Multifocal > Generalised" [pos="0.576,0.374"] "CNS infections" -> "Focal pathology" [pos="0.576,0.385"] "Clinical uncertainty" -> "Intraoperative EEG"

"Clinical uncertainty" -> "Invasive EEG" [pos="0.169,0.713"]

"Complete excision" -> "Proportion of EZ resected"

"Damaged anti-epileptogenic networks" -> "New seizure-focus"

"Damaged anti-epileptogenic networks" -> "Postsurgical Seizure Freedom"

"Damaged anti-epileptogenic networks" -> "Seizure frequency"

"Damaged anti-epileptogenic networks" <-> "Focal > Multifocal > Generalised" [pos="0.665,0.562"]

"Degree of multimodal concordance" -> "Clinical uncertainty"

"Degree of multimodal concordance" -> "Complete excision" [pos="0.344,0.598"]

"Degree of multimodal concordance" -> "Focal > Multifocal > Generalised"

"Degree of multimodal concordance" -> "Presence of limited EZ"

"Degree of multimodal concordance" -> "Proportion of EZ resected"

"Duration of epilepsy" -> "Damaged anti-epileptogenic networks"

"Duration of epilepsy" -> "New seizure-focus"

"Duration of epilepsy" -> "Severe learning disability" [pos="0.780,0.591"]

"Duration of epilepsy" <-> "TL vs ET resections" [pos="0.665,0.787"]

"Duration of follow-up" <-> "Postsurgical Seizure Freedom" [pos="0.921,0.556"]

"E, O or ME" -> "Focal MRI abnormality"

"Epilepsia partialis continua" <-> "Focal seizure semiology" [pos="0.124,0.653"]

"Epileptic spasms" -> "Focal seizure semiology" [pos="0.257,0.705"]

"Extensive or multilobar resection" -> "Damaged anti-epileptogenic networks"

"Extensive or multilobar resection" <-> "TL vs ET resections" [pos="0.609,0.797"]

"FCD and subtypes" -> "Focal pathology"

"FCD and subtypes" -> "Theoretical \"focal lesion\"" [pos="0.205,0.169"]

"Febrile convulsions" -> "Focal > Multifocal > Generalised" [pos="0.573,0.171"]

"Febrile convulsions" <-> "Focal MRI abnormality"

"Febrile convulsions" <-> "TL vs ET resections" [pos="0.774,0.366"]

"Focal > Multifocal > Generalised" -> "Clinical uncertainty" [pos="0.583,0.498"]

"Focal > Multifocal > Generalised" -> "Presence of limited EZ"

"Focal > Multifocal > Generalised" -> "Seizure frequency"

"Focal > Multifocal > Generalised" <-> "New seizure-focus" [pos="0.638,0.566"]

"Focal > Multifocal > Generalised" <-> "Severe learning disability" [pos="0.717,0.288"]

- "Focal MRI abnormality" -> "Degree of multimodal concordance" [pos="0.390,0.379"]
- "Focal MRI abnormality" -> "Focal FDG-PET" [pos="0.269,0.325"]
- "Focal MRI abnormality" -> "Focal ictal EEG"
- "Focal MRI abnormality" -> "Focal interictal EEG" [pos="0.173,0.414"]
- "Focal MRI abnormality" -> "Focal seizure semiology" [pos="0.412,0.402"]
- "Focal MRI abnormality" -> "Number of cortical tubers" [pos="0.519,0.203"]
- "Focal MRI abnormality" -> "Vascular lesions"
- "Focal ictal EEG" -> "Degree of multimodal concordance" [pos="0.194,0.422"]
- "Focal ictal EEG" -> "Focal seizure semiology"
- "Focal ictal EEG" -> "Video-EEG telemetry" [pos="0.001,0.606"]
- "Focal ictal EEG" <-> "Focal interictal EEG"
- "Focal ictal EEG" <-> "Lateralised EEG"
- "Focal interictal EEG" -> "Degree of multimodal concordance"
- "Focal interictal EEG" -> "Video-EEG telemetry" [pos="0.036,0.641"]
- "Focal interictal EEG" <-> "Lateralised EEG" [pos="0.110,0.470"]
- "Focal pathology" -> "Complete excision" [pos="0.300,0.619"]
- "Focal pathology" -> "Degree of multimodal concordance" [pos="0.275,0.434"]
- "Focal pathology" -> "Focal FDG-PET"
- "Focal pathology" -> "Focal MRI abnormality"
- "Focal pathology" -> "Focal ictal EEG"
- "Focal pathology" -> "Focal interictal EEG"
- "Focal pathology" -> "Focal seizure semiology"
- "Focal pathology" -> "H1 spectroscopic abnormality"
- "Focal pathology" -> "Lateralised EEG"
- "Focal pathology" -> "Vascular lesions" [pos="0.353,0.238"]
- "Focal pathology" <-> "Theoretical \"focal lesion\""
- "Focal seizure semiology" -> "Degree of multimodal concordance" [pos="0.334,0.548"]
- "Focal seizure semiology" -> "Video-EEG telemetry" [pos="0.224,0.729"]
- "Genetics: e.g. mTOR pathway" -> "Degree of multimodal concordance" [pos="0.267,0.465"]
- "Genetics: e.g. mTOR pathway" -> "FCD and subtypes"

- "Genetics: e.g. mTOR pathway" -> "Febrile convulsions" [pos="0.660,0.002"]
- "Genetics: e.g. mTOR pathway" -> "Focal ictal EEG" [pos="0.001,0.162"]
- "Genetics: e.g. mTOR pathway" -> "Focal interictal EEG" [pos="0.124,0.480"]
- "Genetics: e.g. mTOR pathway" -> "Focal pathology" [pos="0.309,0.255"]
- "Genetics: e.g. mTOR pathway" -> "Hippocampal Sclerosis"
- "Genetics: e.g. mTOR pathway" -> "Lateralised EEG" [pos="0.014,0.199"]
- "Genetics: e.g. mTOR pathway" -> "Theoretical \"focal lesion\""
- "Genetics: e.g. mTOR pathway" -> Astrocytoma [pos="0.181,0.263"]
- "Genetics: e.g. mTOR pathway" -> Neuromigrational
- "Genetics: e.g. mTOR pathway" -> Sex
- "Genetics: e.g. mTOR pathway" -> Tumours
- "Geographical location of surgery" <-> "Surgical technique"
- "Hippocampal Sclerosis" -> "Febrile convulsions"
- "Hippocampal Sclerosis" -> "Focal MRI abnormality" [pos="0.488,0.082"]
- "Hippocampal Sclerosis" -> "Theoretical \"focal lesion\"" [pos="0.170,0.090"]
- "History of head injury" -> "Focal > Multifocal > Generalised"
- "History of head injury" -> "Focal MRI abnormality"
- "History of head injury" -> "Theoretical \"focal lesion\"" [pos="0.234,0.154"]
- "History of head injury" -> Encephalomalacia
- "Intraoperative EEG" <-> "Surgical technique" [pos="0.477,0.695"]
- "Invasive EEG" -> "Degree of multimodal concordance" [pos="0.169,0.770"]
- "Invasive EEG" -> "sEEG vs subdural grid"
- "Lateralised EEG" -> "Degree of multimodal concordance" [pos="0.206,0.402"]
- "Lateralised EEG" -> "Focal seizure semiology"
- "New seizure-focus" -> "New or change in seizure semiology" [pos="0.855,0.767"]
- "New seizure-focus" -> "Postsurgical Seizure Freedom" [pos="0.850,0.627"]
- "Postoperative discharges" -> "Without APOS" [pos="0.867,0.342"]
- "Postsurgical Seizure Freedom" -> "Engel Class"
- "Postsurgical Seizure Freedom" -> "ILAE scale"
- "Postsurgical Seizure Freedom" -> "Postoperative discharges"
- "Postsurgical Seizure Freedom" -> "Without APOS" [pos="0.832,0.352"]

- "Presence of limited EZ" -> "Postsurgical Seizure Freedom" [pos="0.790,0.480"]
- "Presence of limited EZ" -> "Proportion of EZ resected"
- "Proportion of EZ resected" -> "Damaged anti-epileptogenic networks"
- "Proportion of EZ resected" -> "New seizure-focus"
- "Proportion of EZ resected" -> "Postsurgical Seizure Freedom"
- "SISCOM abnormalities" -> "Degree of multimodal concordance"
- "Side of resection" -> "Surgical technique"
- "Side of resection" -> "TL vs ET resections" [pos="0.479,0.850"]
- "Surgical technique" -> "Damaged anti-epileptogenic networks" [pos="0.518,0.684"]
- "Surgical technique" -> "Extensive or multilobar resection"
- "Surgical technique" -> "Proportion of EZ resected" [pos="0.484,0.652"]
- "Surgical technique" <-> "TL vs ET resections"
- "TL vs ET resections" -> "Damaged anti-epileptogenic networks"
- "TL vs ET resections" -> "Proportion of EZ resected"
- "Theoretical \"focal lesion\"" -> "Complete excision" [pos="0.299,0.516"]
- "Theoretical \"focal lesion\"" -> "Focal > Multifocal > Generalised"
- "Theoretical \"focal lesion\"" -> "Focal FDG-PET"
- "Theoretical \"focal lesion\"" -> "Focal MRI abnormality"
- "Theoretical \"focal lesion\"" -> "Focal ictal EEG" [pos="0.231,0.372"]
- "Theoretical \"focal lesion\"" -> "Focal interictal EEG" [pos="0.191,0.324"]
- "Theoretical \"focal lesion\"" -> "Focal seizure semiology"
- "Theoretical \"focal lesion\"" -> "H1 spectroscopic abnormality"
- "Theoretical \"focal lesion\"" -> "SISCOM abnormalities"
- "sEEG vs subdural grid" -> "Degree of multimodal concordance" [pos="0.345,0.553"]
- Astrocytoma -> Tumours
- Encephalomalacia -> "Focal MRI abnormality" [pos="0.486,0.095"]
- Encephalomalacia -> "Focal pathology" [pos="0.496,0.074"]
- Neuromigrational -> "Focal MRI abnormality" [pos="0.292,0.154"]
- Neuromigrational -> "Focal pathology" [pos="0.095,0.297"]
- Neuromigrational -> "Severe learning disability" [pos="0.559,0.164"]
- Neuromigrational -> "Theoretical \"focal lesion\"" [pos="0.219,0.168"]

Tumours -> "E, O or ME" [pos="0.193,0.207"] Tumours -> "Focal pathology" [pos="0.119,0.283"] Tumours -> "Theoretical \"focal lesion\"" } dag {

bb="0,0,1,1" "Age at onset" [exposure,pos="0.828,0.888"] "Age at surgery" [exposure,pos="0.904,0.888"] "CNS infections" [exposure,pos="0.633,0.208"] "Clinical uncertainty" [latent,pos="0.376,0.466"] "Complete excision" [exposure,pos="0.383,0.384"] "Damaged anti-epileptogenic networks" [latent,pos="0.730,0.757"] "Degree of multimodal concordance" [exposure,pos="0.425,0.568"] "Duration of epilepsy" [exposure,pos="0.869,0.823"] "Duration of follow-up" [outcome,pos="0.934,0.407"] "Engel Class" [outcome,pos="0.787,0.296"] "Epileptic spasms" [exposure,pos="0.038,0.660"] "Extensive or multilobar resection" [exposure,pos="0.551,0.888"] "FCD and subtypes" [exposure,pos="0.127,0.095"] "Febrile convulsions" [exposure,pos="0.630,0.034"] "Focal > Multifocal > Generalised" [latent,pos="0.597,0.449"] "Focal EEG" [pos="0.124,0.433"] "Focal FDG-PET" [exposure,pos="0.352,0.238"] "Focal Imaging Abnormality" [pos="0.459,0.247"] "Focal MRI abnormality" [exposure,pos="0.348,0.177"] "Focal histopathology" [pos="0.126,0.166"] "Focal ictal EEG" [exposure,pos="0.126,0.368"] "Focal interictal EEG" [exposure,pos="0.219,0.369"] "Focal seizure semiology" [exposure,pos="0.142,0.661"] "Genetics: e.g. mTOR pathway" [exposure,pos="0.135,0.027"] "Hippocampal Sclerosis" [exposure, pos="0.230, 0.095"] "History of head injury" [exposure, pos="0.630, 0.092"] "ILAE scale" [outcome,pos="0.764,0.359"] "Invasive EEG" [exposure,pos="0.205,0.483"] "Lateralised EEG" [exposure,pos="0.037,0.367"]

"New or change in seizure semiology" [exposure,pos="0.717,0.888"] "New seizure-focus" [latent,pos="0.893,0.705"] "Postoperative discharges" [outcome,pos="0.905,0.345"] "Postsurgical Seizure Freedom" [outcome,pos="0.861,0.466"] "Presence of limited EZ" [latent,pos="0.740,0.452"] "Proportion of EZ resected" [latent,pos="0.734,0.603"] "SISCOM abnormalities" [exposure,pos="0.351,0.301"] "Seizure frequency" [exposure,pos="0.439,0.685"] "Severe learning disability" [exposure,pos="0.631,0.152"] "Surgical technique" [exposure,pos="0.524,0.823"] "TL vs ET resections" [exposure,pos="0.436,0.888"] "Without APOS" [outcome,pos="0.843,0.246"] "sEEG vs subdural grid" [exposure,pos="0.219,0.425"] Tumours [exposure,pos="0.046,0.095"] "Age at onset" -> "Duration of epilepsy" "Age at surgery" -> "Duration of epilepsy" "CNS infections" -> "Focal > Multifocal > Generalised" [pos="0.554,0.201"] "Clinical uncertainty" -> "Extensive or multilobar resection" [pos="0.292,0.686"] "Clinical uncertainty" -> "Invasive EEG" "Complete excision" -> "Focal > Multifocal > Generalised" "Damaged anti-epileptogenic networks" -> "New seizure-focus" "Degree of multimodal concordance" -> "Clinical uncertainty" "Degree of multimodal concordance" -> "Focal > Multifocal > Generalised" "Degree of multimodal concordance" -> "Presence of limited EZ" "Degree of multimodal concordance" -> "Proportion of EZ resected" "Degree of multimodal concordance" -> "Seizure frequency" "Duration of epilepsy" -> "New seizure-focus" "Duration of follow-up" <-> "Postsurgical Seizure Freedom" [pos="0.932,0.570"] "Engel Class" <-> "Postsurgical Seizure Freedom" "Epileptic spasms" <-> "Focal seizure semiology" "Extensive or multilobar resection" <-> "Surgical technique"

"Extensive or multilobar resection" <-> "TL vs ET resections"

- "FCD and subtypes" -> "Focal histopathology"
- "Febrile convulsions" -> "Focal > Multifocal > Generalised" [pos="0.453,0.102"]
- "Febrile convulsions" <-> "Hippocampal Sclerosis"
- "Focal > Multifocal > Generalised" -> "Clinical uncertainty"
- "Focal > Multifocal > Generalised" -> "Presence of limited EZ"
- "Focal > Multifocal > Generalised" -> "Seizure frequency"
- "Focal > Multifocal > Generalised" <-> "TL vs ET resections"
- "Focal EEG" -> "Degree of multimodal concordance" [pos="0.164,0.599"]
- "Focal EEG" -> "Epileptic spasms"
- "Focal EEG" -> "Focal seizure semiology"
- "Focal FDG-PET" -> "Focal Imaging Abnormality"
- "Focal FDG-PET" <-> "Focal MRI abnormality"
- "Focal FDG-PET" <-> "SISCOM abnormalities"
- "Focal Imaging Abnormality" -> "Degree of multimodal concordance"
- "Focal MRI abnormality" -> "Focal Imaging Abnormality"
- "Focal histopathology" -> "Complete excision"
- "Focal histopathology" -> "Focal MRI abnormality"
- "Focal histopathology" -> "Focal ictal EEG"
- "Focal histopathology" -> "Focal interictal EEG"
- "Focal histopathology" -> "Lateralised EEG"
- "Focal ictal EEG" -> "Focal EEG"
- "Focal interictal EEG" -> "Focal EEG"
- "Focal seizure semiology" -> "Degree of multimodal concordance"
- "Genetics: e.g. mTOR pathway" -> "FCD and subtypes"
- "Genetics: e.g. mTOR pathway" -> "Febrile convulsions"
- "Genetics: e.g. mTOR pathway" -> "Focal EEG" [pos="0.007,0.232"]
- "Genetics: e.g. mTOR pathway" -> "Hippocampal Sclerosis"
- "Genetics: e.g. mTOR pathway" -> Tumours
- "Hippocampal Sclerosis" -> "Focal histopathology"
- "History of head injury" -> "Focal > Multifocal > Generalised" [pos="0.480,0.109"]

"ILAE scale" <-> "Postsurgical Seizure Freedom"

"Invasive EEG" -> "Focal EEG"

"Invasive EEG" -> "sEEG vs subdural grid"

"Lateralised EEG" -> "Focal EEG"

"New seizure-focus" -> "New or change in seizure semiology"

"New seizure-focus" -> "Postsurgical Seizure Freedom"

"New seizure-focus" -> "Presence of limited EZ"

"Postoperative discharges" <-> "Postsurgical Seizure Freedom"

"Postoperative discharges" <-> "Without APOS" [pos="0.866,0.292"]

"Postsurgical Seizure Freedom" <-> "Without APOS" [pos="0.850,0.338"]

"Presence of limited EZ" -> "Postsurgical Seizure Freedom"

"Presence of limited EZ" -> "Proportion of EZ resected"

"Proportion of EZ resected" -> "Postsurgical Seizure Freedom"

"SISCOM abnormalities" -> "Focal Imaging Abnormality"

"Severe learning disability" -> "Focal > Multifocal > Generalised" [pos="0.519,0.142"]

"Surgical technique" -> "Damaged anti-epileptogenic networks"

"Surgical technique" -> "Proportion of EZ resected"

"Surgical technique" <-> "TL vs ET resections"

"sEEG vs subdural grid" -> "Focal EEG"

Tumours -> "Focal histopathology"

}