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Abstract

Replay can consolidate memories through offline neural reactivation related to past experiences. Category knowledge is learned
across multiple experiences, and its subsequent generalization is promoted by consolidation and replay during rest and sleep.
However, aspects of replay are difficult to determine from neuroimaging studies. We provided insights into category knowledge
replay by simulating these processes in a neural network which approximated the roles of the human ventral visual stream
and hippocampus. Generative replay, akin to imagining new category instances, facilitated generalization to new experiences.
Consolidation-related replay may therefore help to prepare us for the future as much as remember the past. Generative replay was
more effective in later network layers functionally similar to the lateral occipital cortex than layers corresponding to early visual
cortex, drawing a distinction between neural replay and its relevance to consolidation. Category replay was most beneficial for newly
acquired knowledge, suggesting replay helps us adapt to changes in our environment. Finally, we present a novel mechanism for the
observation that the brain selectively consolidates weaker information, namely a reinforcement learning process in which categories
were replayed according to their contribution to network performance. This reinforces the idea of consolidation-related replay as an
active rather than passive process.
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Introduction
Memory consolidation-related replay
Memory replay refers to the reactivation of experience-
dependent neural activity during resting periods. First
observed in rodent hippocampal cells during sleep
(Wilson and McNaughton 1994), the phenomenon has
since been detected in humans during rest (Tambini
and Davachi 2013; Hermans et al. 2017; Schapiro et al.
2018; Liu et al. 2019; Wittkuhn and Schuck 2021) and
sleep (Schönauer et al. 2017; Zhang et al. 2018). These
investigations have revealed replayed experiences are
more likely to be subsequently remembered; therefore,
replay has been proposed to strengthen the associated
neural connections and to protect memories from
being forgotten. Replay which supports memory con-
solidation can be viewed as distinct from task-related
replay, the neural reactivation observed during task
performance which supports cognitive processes such
as memory recall (Jafarpour et al. 2014; Michelmann
et al. 2019; Wimmer et al. 2020), visual understanding
(Schwartenbeck et al. 2021), decision-making (Liu et al.
2021), planning (Momennejad et al. 2018), and prediction
(Ekman et al. 2017). While traditional perspectives view
memory consolidation as a gradual process of fixation,

whereby memories are stabilized (Squire and Alvarez
1995; McGaugh 2000), in this paper, we advocate the more
contemporary view that offline consolidation-related
replay is more dynamic in nature (Mattar and Daw 2018).
Using a computational approach, we test hypotheses that
offline replay may be a creative process to serve future
goals, that it matters exactly where in the brain replay
occurs, that it helps us at particular stages of learning,
and that the brain might actively choose the optimal
experiences to replay.

Generative replay of category knowledge
Neural replay which supports memory consolidation
during rest and sleep has been traditionally assumed
to be veridical such that we commit the events of that
day to long-term memory by replaying the episodes
as they were originally experienced. However, there
are circumstances in which this may be suboptimal
or impractical. For example, a desirable outcome of
category knowledge consolidation is to generalize to
new experiences rather than recognize past instances.
This phenomenon has been observed after sleep in
infants (Gómez et al. 2006; Friedrich et al. 2015; Horváth
et al. 2016) and in adults (Lau et al. 2011). Sleep also
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recovers the generalization of phonological categories
(Fenn et al. 2003), preserves generalization performance
in perceptual category learning (Graveline and Wamsley
2017), and assists in the abstraction of gist-like prototype
representations (Lutz et al. 2017). It is still not understood
how the brain consolidates and replays memory in the
service of generalization. In addition, although sleep
benefits category learning for a limited number of
well-controlled experimental stimuli (Schapiro et al.
2017), in the real world, category learning takes place
over many thousands of experiences, and storing
each individual experience for replay is an impractical
proposition. For these reasons, we propose the replay
of novel, prototypical category instances would be a
more efficient and effective solution. In fact, given
the role of the hippocampus in both replay (Zhang
et al. 2018) and the generation of prototypical concepts
(Hassabis et al. 2007), we consider this as the most
likely form of category replay. While evidence for such
generative replay of category knowledge has yet to be
discovered in the human brain, replay of sequences
immediately following task performance in humans
has been shown to be flexible in that items can be
reordered based on previously learned rules (Liu et al.
2019). This is reminiscent of “preplay” observed during
task performance in rodents, where hippocampal “place
cells” observed to fire in specific locations reactivate in a
different order to represent a route which has not been
taken before (Gupta et al. 2010).

Drawing inspiration from these observations, here, we
test the idea that replay which facilitates memory con-
solidation, occurring over extended offline time periods
including sleep, might also be generative in nature and
that its flexibility may not just apply to the reorga-
nization of learned sequences but to the creation of
entirely new instances of a category. While decoding the
reordering of stimuli or route knowledge from brain data
during replay has been shown to be a tractable approach,
detecting entirely new instances of complex categories
from the brain represents a significant challenge and has
yet to be demonstrated.

One approach to address this question is to simulate
these processes in an artificial neural network. Prior
research with artificial neural networks has modeled
the replay of generated image stimuli (van de Ven
et al. 2020). While revealing a promising avenue of
investigation, the results of this study cannot be easily
extrapolated to the brain or human visual experience.
For example, the structure of only 5 convolutional layers
in the network employed represents just a fraction
of the size of larger models which have been shown
to extract visual representations similar in nature to
those processed by the brain (Schrimpf et al. 2018),
whose complex structure can be compared to the
ventral visual stream processing pathway, indicating
a possible correspondence in functional architecture
(Khaligh-Razavi and Kriegeskorte 2014; Güçlü and van
Gerven 2015; Devereux et al. 2018), and whose object

recognition performance approaches that of humans (He
et al. 2015). Further, the networks employed by van de
Ven et al. (2020) had limited visual experience, having
been pretrained on just 10 categories of objects. By
contrast, an adult human brain will harbor a lifetime of
visual knowledge which facilitates the learning of novel
concepts. Therefore, to simulate the learning and genera-
tive replay of new categories realistically in adults, using
an experienced network which contains a preexisting
vast body of knowledge about a range of other categories
is an essential starting point. Another feature of the
aforementioned study which limits the comparison to
humans is that the stimuli used were low-resolution
photographs measuring 32 × 32 pixels, which do not
reflect the complexity of human visual experience. To
accurately simulate human learning and replay, much
larger, high-resolution images which go some way toward
approaching the complexity and richness of everyday
human visual experience are required as training stimuli.
Finally, prior attempts at replay in neural networks,
whether generative (Kemker and Kanan 2017; van de
Ven et al. 2020) or veridical (Hayes et al. 2021), have
been deployed to address the “catastrophic forgetting”
problem—the tendency of artificial networks to forget
old categories when new ones are learned (Robins 1995;
French 1999). While this has been proposed as a potential
mechanism for why biological agents do not suffer from
catastrophic forgetting, empirical evidence in support
of this hypothesis has not been forthcoming to date. In
addition, other solutions have been put forward on how
brains and models may avoid catastrophic interference,
such as Adaptive Resonance Theory (Grossberg 2013) and
elastic weight consolidation (Kirkpatrick et al. 2017).

In this study, we investigated whether offline gener-
ative replay of novel concepts facilitated subsequent
generalization to new experiences using models which
attempt to simulate the human brain and approximate
more closely the visual environment in which it learns.
To do this, we implemented generative replay in a well-
studied deep convolutional neural network (DCNN),
which consists of a complex architecture organized into
5 blocks of convolutional layers and boasts of a high
“brain-score,” indicating the representations it extracts
bear a similarity to those extracted by the brain, and it
performs favorably to humans in a categorization task
(Schrimpf et al. 2018). The network had prior experience
of learning 1,000 diverse categories of objects from over
a million high-resolution complex naturalistic images,
a process which is the network equivalent of a lifetime
of visual experience and which yields within the model
an optimized, high-functioning visual system. We tasked
the model with learning 10 novel categories it had not
seen before using similarly high-resolution naturalistic
images to those it has seen before, with an average
resolution of around 400 × 350 pixels (Deng et al. 2009),
representing an approximate 140-fold increase in visual
details from stimuli used in prior work. A comparable
learning experience in humans would be coming across
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10 new categories we had not seen before and using
our lifelong experience in processing visual information
to extrapolate the relevant identifying features. After
learning periods, we then simulated generative replay
in the network, which attempted to mimic human
consolidation during sleep and monitored the network’s
performance when it “woke up” the next day to ascertain
if we could provide computational support for the
theory that such a process underlies the overnight
improvements in generalization observed in humans.

Effective neural loci of replay
Another outstanding question regarding replay is, despite
being associated with subsequent memory (Zhang et al.
2018), it is not clear where in the brain replay makes
a demonstrable contribution toward generalization.
Replay has been observed throughout the brain, early
in the ventral visual stream (Ji and Wilson 2007; Deuker
et al. 2013; Wittkuhn and Schuck 2021), in the ventral
temporal cortex (Tambini et al. 2010; de Voogd et al.
2016), the medial temporal lobe (Staresina et al. 2013;
Schapiro et al. 2018) the amygdala, (Girardeau et al. 2017;
Hermans et al. 2017), motor cortex (Eichenlaub et al.
2020), and prefrontal cortex (Peyrache et al. 2009). It is
not known if replay in lower-level brain regions actually
contributes to the observed memory improvements or
whether the key neural changes are made in more
advanced areas, and this question cannot be answered
using current neuroimaging approaches. One prior study
has implemented replay within an artificial neural
network from a single location at the end of the
network (van de Ven et al. 2020). However, because the
compact architecture of this network did not have a clear
functional correspondence with information processing
pathways in the brain, and because replay from other
locations within the network was not also implemented
for comparison, it is difficult to yield predictions from
these results regarding effective replay locations in the
human brain. In the current study, because we simulated
replay in a neural network which processes images
in a manner reflective of the human ventral visual
stream, we could compare the effectiveness of replay
from different layers with a purported representational
correspondence to specific regions in the brain. In doing
so, we aimed to make predictions about the effective
cortical targets of offline memory consolidation in
humans.

A time-dependent role for replay
Another open question regarding human replay is the
duration of its involvement throughout the learning
of novel concepts. It can take humans years to learn
and consolidate semantic or conceptual knowledge
(Manns et al. 2003), but neuroimaging studies of replay
are limited to a time-span of a day or 2, therefore
it is still not known how long replay contributes to
this process. Humans are thought to “reconsolidate”
information every time it is retrieved (Dudai 2012),

suggesting replay might play a continual role in the
lifespan of memory. However, recordings in rodents
have shown that replay diminishes with repeated
exposure to an environment over multiple days (Giri
et al. 2019), suggesting the brain may only replay
recently learned, vulnerable information. Answering this
question in humans remains a challenge because of the
impracticalities of tracking replay events for extended
periods. Simulation in a human-like neural network
represents a possible alternative to predict the relative
contribution of replay to consolidation over long time
periods, an approach which has not been attempted to
date. Here, we interleaved daily learning with nights of
offline replay in a neural network, which simulates the
brain to understand at what stage in learning replay may
be most effective in humans.

Replay of weakly learned knowledge
An additional poorly understood principle of replay
which we investigated in this study is why consolidation
tends to selectively benefit weakly learned over well-
learned information (Kuriyama et al. 2004; Drosopoulos
et al. 2007; McDevitt et al. 2015; Schapiro et al. 2018).
Here, we modeled a candidate mechanism for how
this occurs in the brain by adding an auxiliary model
(theoretically analogous to the hippocampus) to the
neocortical-like model, which could autonomously learn
the best consolidation strategy, determining what to
replay and when.

Hypotheses
In addressing these outstanding questions regarding
replay in the brain, we made a number of predictions.
Because earlier brain regions are thought to extract
equivalent basic features from all categories, we pre-
dicted replay of experience would be more effective in
promoting learning at advanced stages of the network.
We hypothesized the replay of “imagined” prototypical
replay events would be as effective as veridical replay
in helping us to generalize to new, unseen experiences,
thus supporting our conceptualization of replay as a
creative process. We predicted that the benefits of replay
may be confined to early in the learning curve when
novel category knowledge is being acquired. Finally,
we hypothesized that a dynamic interaction between
hippocampal- and neocortical-like models would result
in the prioritization of weakly learned items, which is in
line with behavioral studies of memory consolidation.

Materials and methods
Neural network
To simulate the learning of novel concepts in the brain
and to test a number of hypotheses regarding replay,
we trained a DCNN on 10 new categories of images.
The neural network was VGG-16 (Simonyan and Zisser-
man 2014). This network is trained on a vast dataset
of 1.3 million high-resolution complex naturalistic
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photographs known as the ImageNet database (Deng
et al. 2009), which contains recognizable objects from
1,000 categories in different contexts. The network learns
to associate the visual features of an object with its cat-
egory label until it can recognize examples of that object
which it has never seen before, simulating the human
ability to generalize prior knowledge to new situations.
The network takes a photograph’s pixels as input and
sequentially transforms this input into more abstract
features. It learns to perform these transformations by
adjusting 138,357,544 connection weights across many
layers. Its convolutional architecture reduces the number
of possible training weights by searching for informative
features in any area of the photographs.

In these experiments, we task the VGG-16 network
with learning 10 new categories of images. To do this,
we retained the pretrained “base” of this network, which
consisted of 19 layers, organized into 5 convolutional
blocks. Within each block, there were convolutional
layers and a pooling layer with nonlinear activation
functions. To this base, we attached 2 fully connected
layers, each followed by a “dropout” layer, which
randomly zeroed out 50% of units to prevent overfitting
to the training set (Srivastava et al. 2014). At the end
of the network, a SoftMax layer was attached, which
contained just 10 outputs rather than the original 1,000
and predicted which of 10 classes an image belonged to.
To facilitate the learning of 10 new classes, the weights
of layers attached to the pretrained base were randomly
initialized. All model parameters were free to be trained.
In total, 10 new models were trained, each learning 10
new and different classes.

Stimuli
Photographic stimuli for new classes were drawn
randomly from the larger ImageNet 2011 fall database
(Russakovsky et al. 2015) and were screened manually by
the experimenter to exclude classes which bore a close
resemblance to classes which VGG-16 was originally
trained on. In total, 100 new classes were selected and
were randomly assigned to the 10 different models to
be trained. Within each class, a set of 1,170 training
images, 130 validation images, and 50 test images were
selected. The list of the selected classes is available in
Supplementary Table 1.

Baseline training
We first trained a model without implementing replay
to serve as a baseline measure of network performance
and compared with other conditions which implemented
replay. Ten models were trained on 10 new and different
classes. To further prevent overfitting to the training set,
images were augmented before each training epoch. This
is similar to a human viewing an object at different loca-
tions, or from different angles, and facilitates the extrac-
tion of useful features rather than rote memorization of
experience. Augmentation could include up to 20◦ rota-
tion, 20% vertical or horizontal shifting, 20% zoom, and

horizontal flipping. Any blank portions of the image fol-
lowing augmentation were filled with a reflection of the
existing image. Images were then preprocessed in accor-
dance with Simonyan and Zisserman (2014). Depending
on the experiment, the network was trained for 10 or
30 epochs. We used the Adam optimizer (Kingma and
Ba 2014) with a learning rate of 0.0003. A small learning
rate was chosen to reflect the fact that learning new
categories in an adult human reflects a “fine-tuning”
of an already highly trained visual system. The training
batch size was set to 36. The training objective was
to minimize the categorical cross-entropy loss over the
10 classes. Training parameters were optimized based
on validation set performance. We report the model’s
performance metrics from the test set only. This is a
collection of novel images from each category which the
network is tasked with classifying. The network has not
previously learned these images nor had its parameters
tuned based on them. Therefore performance on these
images reflects the model’s ability to generalize to new
stimuli after training, and is thus termed “generaliza-
tion performance” in the figures. Training was performed
using TensorFlow version 2.2.

Replay
Replay was conducted between training epochs to simu-
late “days” of learning and “nights” of offline consolida-
tion. We conceptualized replay representations as gen-
erative, in other words, they represented a prototype of
that category never seen before from a particular point
in the network. To generate these representations, the
network activations induced by the training images from
the preceding epoch were extracted from a particular
layer in the network using the Keract toolbox (Remy
2020). For each class separately, a multivariate distri-
bution of activity was created from these activations
using the SciPy toolbox (https://scipy.org/). This multi-
variate normal distribution is an extension of the 1D
normal distribution to higher dimensions and is specified
by its mean and covariance matrix. This resulted in a
single unique distribution for each specific class, which
represented the relationship between units of the layer
which had been previously observed for that class. We
then sampled randomly from this distribution, creating
novel activation patterns for that class at that point in
the network (Fig. 1A). These novel activation patterns
represented a prototype of that category. The end result
was a representation that was a rough approximation of
the layer’s representations of that category if a real image
was processed but was novel in nature (see Supplemen-
tary Fig. 1). The human brain equivalent would be the
approximate pattern of neural activity which is represen-
tative of that category at a particular stage in the ventral
visual stream. In the brain, these hypothetical prototyp-
ical concepts would be likely generated from more high-
level regions such as the hippocampus and prefrontal
cortex (Hassabis et al. 2007; Bowman et al. 2020). Our
model was generative as it could create new samples;
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Fig. 1. The effects of generative replay from different layers of a model of the human ventral visual stream on generalization to new exemplars. A)
The VGG-16 network attempts to simulate the brain’s visual system by looking at photographs and extracting relevant features to help categorize the
objects within. We trained this network on 10 new categories of objects it had not seen before. In between learning episodes, to simulate sleep-facilitated
consolidation in humans, we implemented offline memory replay as a generative process. In other words, the network “imagined” new examples of a
category based on the distribution of features it has learned so far for that object (activation space) and used these representations (novel representation)
to consolidate its memory. The network did not create an actual visual stimulus to learn from; rather it recreated the neuronal pattern of activity that
it would typically generate from viewing an object from that category. We display here an example of replaying from a midpoint in the network, but
all 5 locations where replay was implemented are indicated by the colored circles. The brain regions which have been reported to contain functionally
similar representations to different network layers, derived from Güçlü and van Gerven (2015), are listed beneath. B) The effects of memory replay
from different layers on the network’s ability to generalize to new examples of the 10 categories throughout the course of 10 learning episodes. Plotted
values represent the mean accuracies from 10 different models which each learned 10 new and different categories. C) The final recognition accuracies
(+/−S.E.M.), averaged across 10 models, on the new set of photographs after 10 epochs of learning. We reveal the location in a model of the ventral
stream where replay maximally enhances generalization performance is an advanced layer which bears an approximate functional correspondence to
the LOC in humans. The benefits of replay from other locations were less pronounced, with the earliest layer showing the least benefit to generalization.
D) The benefits of replay from layer 4 on generalization performance with limited numbers of exemplars E) The effect of generative replay from layer 4
on the generalization performance of classes when learned alongside diverse categories or where all are conceptually similar.
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however, it offered several advantages over traditional
generative models. We were not limited by a bottleneck
symmetrical architecture, and our procedure allowed the
model to learn generative samples at multiple levels of
representation. Further, our model represented a proper
vision model which showed parallels with the functional
architecture of the ventral visual stream in the brain,
whereas current generative models do not show this
correspondence or scale well to such a deep architecture.
Finally, our model is specialized for object recognition,
with the resulting generated representations shaped by
these task pressures.

The number of novel representations created for
replay was equivalent to the number of original training
images (1,170). To test where in the network replay is
most effective, this process was performed at 1 of 5
different network locations, namely the max pooling
layers at the end of each block (Fig. 1A). For the first
4 pooling layers, creating a multivariate distribution
from such a large number of units was computationally
intractable, therefore, activations for each filter in these
layers were first downsampled by a factor of 8 for layer
1, by 4 for layers 2 and by 3 and 2 for layer 4. The
samples drawn from the resulting distribution were then
upsampled back to their original resolution. These lower-
resolution samples are also theoretically relevant in that
they were created to mimic the schematic nature of
mental and dream imagery which takes place during rest
and sleep. To replay these samples through the network,
the VGG-16 network was temporarily disconnected at the
layer where replay was implemented, and a new input
layer was attached which matched the dimensions of
the replay representations. This truncated network was
trained on the replay samples using the same parameters
as regular training. We assume that the brain actively
chooses to replay each concept learned that day by
reactivating the prototypical representations extracted
from many experiences and the associated category label
together during sleep. After each epoch of replay training,
the replay section of the network was reattached to
the original base, and training on real images through
the whole network resumed. To assess the effects of
generative replay on stimuli disambiguation, we took 10
classes from the 100 which were highly similar (plants,
see Supplementary Table 2) and trained an additional
network on these categories. We then assessed whether
replaying similar classes in the same model led to a
greater relative increase in class performance from
baseline accuracies. We did this by dividing the increase
in generalization performance resulting from replay by
the original baseline performance. To find out how many
exemplars are needed for generative replay to have a
beneficial effect on category learning, we trained the
same models with 20, 40, 60, 80, and 100 images, again
for 10 “days,” and replayed an equivalent number of gen-
erated representations in each case. To simulate veridical
replay, in other words, the replay of each individual
experience as it happened, rather than the generation

of new samples, we used the activations for each object
at that layer in the network during replay periods. These
were not downsampled during the process. Given how
many examples of a concept we generally encounter,
veridical replay of all experience is not a realistic
prospect, which is why prior attempts to simulate
replay in smaller-scale networks have also avoided this
scenario in their approaches (Kemker and Kanan 2017;
van de Ven et al. 2020). To additionally demonstrate the
improvements that replay affords on each day relative
to the previous day, we calculated the performance
improvement from day n to day n + 1, divided by the
difference between model performance on day n and 1,
which represents the potential room for improvement.

Replay within a reinforcement learning
framework
We tested a process through which items that are most
beneficial for replay might be selected in the brain. We
proposed that such selective replay may involve an inter-
action between the main concept learning network (VGG-
16) and a smaller network which learned through rein-
forcement which concepts are most beneficial to replay
through the main network during offline periods. The
neural analog of such a network could be thought of
as the hippocampus, as the activity of this structure
precedes the widespread reactivation of neural patterns
observed during replay (Zhang et al. 2018). This approach
is similar to the “teacher–student” meta-learning frame-
work which has been shown to improve performance
in deep neural networks (Fan et al. 2018). The side net-
work was a simple regression network with 10 inputs,
1 for each class, and 1 output, which was the predicted
value for replaying that class through the main network.
Classes were chosen and replayed one at a time, with
a batch size of 36. To train the side network, a value
of 1 was inputted for the chosen class, with 0s for the
others. The predicted reward for the side network was
the change in performance of the main network after
each replay instance, which was quantified by a change
in chi-square; a measure of the difference between the
maximum number of possible correct predictions by the
main network, versus its actual correct predictions. A
positive reward was therefore a reduction in chi-square,
which resulted in an increase in the side network’s weight
for that class. This led to the class being more likely
to be chosen in future, as the network’s weights were
converted into a SoftMax layer from which classes were
selected probabilistically for replay. Through this iter-
ative process, the side network learned which classes
were more valuable to replay and continually updated its
preferences based on the performance of the main net-
work. Reducing the chi-square in this dynamic manner
improves the overall network accuracy as it progressively
reduces the disparity between the network’s classifica-
tions and the actual class identities. To generate initial
values for the side network, 1 batch of each class was
replayed through the main network. The Adam optimizer
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was used with a learning rate of 0.001 and the objective
was to minimize the mean squared error loss. The side
network was trained for 50 epochs with each replay
batch. The assessment of network improvement was
always performed on the validation set, and the reported
values are accuracy on the test set, reflecting the ability
of the network to generalize to new situations.

Results
Localizing where in the ventral visual stream
generative replay is likely to enhance
generalization
We first sought to establish where in the visual brain
the replay of category knowledge might be most effec-
tive in helping to generalize to new experiences, as the
functional relevance of replay observed in many differ-
ent brain regions has yet to be established. To obtain
a baseline measure of how the network would perform
without replay, the network learned 10 new categories in
the absence of offline replay. Next, we implemented gen-
erative memory replay. To do this, we captured the “typ-
ical” activation of the network for a category and sam-
pled from this gist-like representation to create novel,
abstracted representations for replay (Fig. 1A).

We simulated generative replay from different layers
in the DCNN, which were equivalent to different brain
regions along the ventral stream. Specifically, we trained
the network over 10 epochs, mimicking 10 days of learn-
ing in humans, and replayed prototypical representations
after each training epoch, simulating 10 nights of offline
consolidation during sleep. In Fig. 1B, we show how
replay affects the ability of the network to generalize
to new exemplars of the categories over the course of
learning. Replay substantially speeds up the learning
process, with replay from layer 4 already reaching
the final baseline generalization performance 3 days
earlier. Figure 1C shows the final best performing models
in each replay condition. A 1-way repeated-measures
ANOVA on the final models revealed a difference
across conditions (F(5, 45) = 7.23, P < 0.001), with planned
Bonferroni-corrected post hoc comparisons revealing
that only replay from layer 4 (t(9) = −4.31, P = 0.002) was
significantly higher than baseline. We performed an
additional analysis to confirm that the downsampling
of earlier layers did not explain this finding by further
downsampling the replay representations in layer 4 by
a factor of 7, and generalization performance in this
layer was still be significantly higher than baseline (see
Supplementary Fig. 2). Therefore, there is a differential
benefit of replay throughout the network, where replay
in the early layers is of limited benefit, whereas replay
in the later layers boosts generalization performance to
a greater degree. This predicts that early visual areas in
the brain may not store sufficiently complex category-
specific representations, curtailing the effectiveness of
generated replay representations, whereas areas further
along the ventral visual stream, such as the lateral

occipital cortex (LOC), might be better positioned to
support the generation of novel, prototypical concepts,
which accelerates learning in the absence of real
experience and helps us to generalize to new situations.
We further investigated if generative replay could benefit
category learning where few exemplars are available. In
Fig. 2D, we show that generative replay from layer 4 could
improve generalization when learning and replaying just
20, 40, or 60 exemplars (all t-tests below Bonferroni-
corrected threshold of P = 0.01). We also assessed the
effects of replay on class disambiguation in this layer
by training a model containing conceptually highly
similar classes collated from all of the other models
and by comparing the relative increase in generalization
performance from the original class accuracies. Figure 2E
shows a replay-induced performance increase for con-
ceptually similar items, but this did not reach statistical
significance (t(9) = −2.10, P = 0.065).

Tracking the benefits of replay across learning
In the second experiment, we extended training to
30 days of experience, which were interleaved with nights
of offline generative replay, to simulate learning over
longer timescales and predict when in learning replay
might be more effective (Fig. 2A). Guided by the results of
experiment 1, we implemented replay from an advanced
layer corresponding to the LOC. A mixed between-within
ANOVA showed an interaction between condition and
day (F(29,522) = 5.03, P < 0.001) with planned post hoc
Bonferroni-corrected comparisons (P < 0.00167) revealing
a difference between generative replay and baseline
for days 2–6 and 8 (Fig. 2B). Visualizing the network’s
improvement in performance from day to day relative to
the potential room for improvement from the previous
day confirmed that the benefits of generative replay
were limited to early learning (Fig. 2C). Therefore, offline
generative replay might be more effective at improving
generalization to new exemplars at the earliest stages
of learning. This suggests replay might facilitate rapid
generalization, which maximizes performance, given a
limited set of experiences with a category.

We were interested to compare generative replay with
the unlikely veridical, high-resolution scenario, whereby
humans could replay thousands of encounters with
individual objects exactly as they were experienced. We
termed this “veridical replay” (Fig. 2A), which involved
capturing the exact neural patterns associated with each
experienced object during learning and replaying these
from the same point in the network. A mixed between-
within ANOVA did not reveal any difference between
generative and veridical replay in terms of generaliza-
tion performance (F(1,18) = 0.16, P = 0.696), nor was an
interaction effect observed between day and condition
(F(29,522) = 0.29, P = 0.999, Fig. 2B). Therefore, generative
replay was comparably effective to veridical replay
of experience in consolidating memory despite being
entirely imagined from the networks prior experience.
This provides tentative support for the hypothesis that
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Fig. 2. The facilitatory effects of memory replay across category learning.
We simulate the long-term consolidation of category memory by extend-
ing training to 30 days. A) Schematic showing the different experimental
conditions. “No replay” involves the model of the visual system learning
the 10 new categories without replay in between episodes. “Generative
replay” simulates the brain imagining and replaying novel instances of
a category during “night” periods of offline consolidation from a layer
bearing some functional approximation to the LOC. “Veridical replay”
simulates the hypothetical performance of a human who, each night,
replays every single event which has been experienced the preceding
day. “Continuous replay” simulates a single day of learning, followed by
days and nights of replay, investigating the potential benefit afforded by
replay given only brief exposure to a category. For both daytime learning
of real images and nighttime consolidation of generated representations,
the number of training stimuli was always 1,170 for each class. B) The
ability of the network to generalize to new exemplars of a category
during each day throughout the learning process. Generalization perfor-
mance is measured by the proportion (+/−S.E.M.) of correctly recognized
test images across 10 models. Generative replay maximally increases
performance early in training, suggesting it might be optimal for new
learning and recent memory consolidation. Despite being comprised of

generative replay is a putative form of category replay in
humans, as it would appear to be vastly more efficient to
imagine new concepts from an extracted prototype.

The aforementioned results simulated the benefits
of replay under optimal conditions where humans
encounter the same categories every day, however,
there are instances where exposure will be limited.
To what extent can offline replay compensate for this
limited learning? We simulated this in our model of
the ventral stream by limiting the learning of actual
category photographs to 1 day and substituted all
subsequent learning experiences with offline replay,
which was termed “continuous replay” (Fig. 2A). Despite
the absence of further exposure to the actual objects,
we found the network could increase its generalization
accuracy from 32% to 83% purely by replaying imagined
instances of concepts it has partially learned. This result
may inform our understanding of the human ability
to quickly learn from limited experience. However, a
mixed between-within ANOVA revealed a statistically
significant interaction effect between day and condition
(F(29,522) = 3.78, P < 0.001), with planned Bonferroni post
hoc comparisons revealing a difference between genera-
tive replay and continuous replay from day 3 onward (all
P < 0.00167). Therefore, replayed representations appear
to be dynamic in nature, as the prototypes generated
from that first experience were not sufficient to train the
network to its maximum performance, as is observed
when learning and replay are interleaved. This suggests
that replayed representations continue to improve as
they are informed by ongoing learning, therefore, gen-
erative replay in the human brain throughout learning
may be envisaged as a constantly evolving “snapshot” of
what has been learned so far about that category.

Determining how the brain might select
experiences for replay
We proposed that replay may be a learning process in
itself, whereby the hippocampus selects replay items
and learns through feedback from the neocortex the
optimal ones to replay. In our previous simulations, we
selected all categories for replay in equal number; how-
ever, to simulate the autonomous nature of replay selec-
tion in the brain, we supplemented our model of the
ventral visual stream with a small reinforcement learn-
ing (RL) network, approximating the theoretical role of
the hippocampus in deciding what to replay (Fig. 3A).
The hippocampus-like model could choose one of the
10 categories to replay and received a reward from the
main network for that action based on the improvement
in network performance.

We trained our model of the visual system on 10 novel
categories, implementing replay during offline periods
as before and compared its generalization performance
with that of the dual interactive hippocampal-cortical
model. In terms of overall accuracy, although generative
RL replay appeared to lag briefly behind generative replay
at the beginning of training, both approaches performed
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similarly, with a mixed between-within ANOVA reveal-
ing no difference between the 2 conditions in terms of
generalization performance (F(1,18) = 0.15, P = 0.704), nor
was an interaction effect observed between day and
condition (F(29,522) = 1.28, P = 0.153, Fig. 3B). Figure 3C plots
the difference between the 2 conditions across learning.
However, the RL network which simulated the hippocam-
pal replay systematically selected categories which were
originally relatively weakly learned more often (R2 = 0.24,
F(1, 98) = 31.15, P < 0.001, Fig. 3D), which resulted in their
selective improvement (R2 = 0.18, F(1, 98) = 21.15, P < 0.001).
However, this came at a cost, with originally well-learned
categories being replayed less often and with a drop in
their generalization accuracy. We present the idea that
such a RL process may underlie the “rebalancing” of
experience in the brain and that replay may therefore
help to compensate for the fact that some categories are
more difficult to learn than others.

Discussion
We simulated the consolidation of category knowledge in
a large-scale neural network model which approximates
the functional aspects of the human ventral visual sys-
tem by replaying prototypical representations thought to
be formed and initiated by the hippocampus. The notion
that replay of visual experiences might be generative in
nature has been suggested by limited-capacity models
which have been trained on low-resolution photographic
images (van de Ven et al. 2020). However, our results using
a model of the visual brain, whose representations has
compared favorably with actual brain data, represent
more persuasive evidence that humans are unlikely to
replay experiences verbatim during rest and sleep to
improve category knowledge and might be more likely to
replay novel, imagined instances instead. In addition, the
large number (117,000) of high-resolution complex nat-
uralistic images we used for training in this experiment
more closely reflected real-world learning and facilitated
the extraction of gist-like features. While empirical
evidence exists that humans replay novel sequences
of stimuli (Liu et al. 2019), our work suggests that the
brain might go further and use learned features of
objects to construct entirely fictive experiences to replay.
We speculate that this creative process is particularly
important for the consolidation of category knowledge as
opposed to the replay of episodic memory (Deuker et al.
2013; Schapiro et al. 2018; Zhang et al. 2018) because of
the requirement to abstract prototypical features and
use these to generalize to new examples of a category.
We propose that generative replay confers additional
advantages, such as constituting less of a burden on

memory resources, as not all experiences need to be
remembered. Further, our replay representations were
highly effective in consolidating category knowledge
despite being downsampled, and these compressed, low-
resolution samples would reduce storage requirements
further. Perhaps the simulation that most favorably
supported the hypothesis that category replay in the
brain likely adopts this compressed, prototypical format
is that it aided generalization to a similar degree as
the exact veridical replay of experience in boosting
generalization performance. Therefore, the main advan-
tage to generative replay over veridical replay is that
it represents a feasible, efficient solution to memory
consolidation without compromising effectiveness. In
addition, generative replay can add to events which
have been experienced. Our findings therefore encourage
a reconceptualization of the nature of consolidation-
related replay in humans that it is not only generative but
also low resolution or “blurry,” as is the case with inter-
nally generated imagery in humans (Giusberti et al. 1992;
Lee et al. 2012). In fact, the kind of replay we propose
here may be the driving force behind the transformation
of memory into a more schematic, generalized form
which preserves regularities across experiences while
allowing unique elements of experience to fade (Love
and Medin 1998; Winocur and Moscovitch 2011; Sweegers
and Talamini 2014). The challenge for future empirical
studies in humans to confirm our hypothesis will be to
decode prototypical replay representations during rest
and sleep. In addition, future modeling and empirical
work should address the sequential nature of learning
and replay, as life experience does not consist of still
snapshots of experience, such as those used in these
experiments. Prior modeling work has shown that a video
game-playing agent can improve its performance by
learning inside its own generated environment (Ha and
Schmidhuber 2018), which is more akin to an unfolding
dream during sleep and may provide inspiration for
modeling the generative replay of video-like events to
support category learning.

Simulating replay in a human-like network also
allowed us to answer a question not currently tractable
in neuroimaging studies: Where in the visual stream
is replay functionally relevant to consolidation? In a
prior simulation of replay in a neural network, van de
Ven et al. (2020) demonstrated generative replay could
attenuate forgetting when performed after the final con-
volutional layer, but its effectiveness was not compared
to earlier layers, and the network employed, consisting of
5 convolutional layers, had not been compared with the
human visual system. Deeper networks, such as the one
used here, consisting of 23 layers in total, organized

internally generated fictive experiences, generative replay was comparably effective to veridical replay throughout the learning process, positing it as
an attractive, efficient, and more realistic solution to memory consolidation which does not involve remembering all experiences. Continuous replay
after just 1 day of learning substantially improved generalization performance but never reached the accuracy levels of networks which engaged
in further learning. C) The improvement in performance that generative replay affords on each day relative to the possible improvements from the
previous day.
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Fig. 3. Replay as a RL process simulates the brain’s tendency to consolidate weaker knowledge. A) Replay in a model which approximates the visual
system is controlled by a RL network which aims to assume the role of the hippocampus. The RL network selects 1 of 10 categories to replay through
the visual system and receives a reward based on the improved performance, learning through trial and error which categories to replay. B) Overall
generalization performance on new category exemplars was similar for both generative replay and generative replay controlled by a RL network.
Generalization performance represents mean accuracy (+/−S.E.M) on test images across 10 models which each learned 10 new categories. C) The
difference between generative replay and generative RL replay performance for each day. D) The RL network learns to replay categories which were
originally more difficult for the model of the visual system and improves their accuracy. This effectively “rebalanced” memory such that category
knowledge was more evenly distributed and offers a candidate mechanism as to how the brain chooses weakly learned information for replay. Plotted
values represent the 100 categories across 10 models. A proportion of the generalization performance values are overlapping.

into 5 blocks of convolutional layers, not only extract
useful category features from naturalistic images but
representations in network layers have also demon-
strated a degree of representational correspondence with
specific brain regions along the ventral visual stream
(Khaligh-Razavi and Kriegeskorte 2014; Güçlü and van
Gerven 2015; Devereux et al. 2018), albeit not capturing
all observable variance (Xu and Vaziri-Pashkam 2021).
In keeping with our observation that low-resolution,
coarse, schematic replay was effective in helping the
network to generalize, we found the most effective
location for replay to be in the most advanced layers
of the network, layers which are less granular in their
representations. This region shares some functional
similarities with the LOC in humans, a region which
represents more complex, high-level features (Güçlü and
van Gerven 2015). By contrast, generative replay from
the earliest layers corresponding to early visual cortex
was less effective. These layers are sensitive to low-
level visual features, such as contrast, edges, and color,
therefore generating samples from these layers will yield
rudimentary-level category-specific information, which

is of limited utility for replay and generalization. High-
level representations on the other hand, may contain
more unique combinations and abstractions of these
lower-level features. We also found that replay from
the penultimate layer was more effective than the final
layer, suggesting the optimal replay location represents
a balance between the presence of sufficiently complex
category information and the number of downstream
neuronal weights available to be updated based on
replaying these features. These findings may encourage a
reevaluation of the functional relevance of replay in early
visual cortices in both animals and humans and generate
specific hypotheses for potential perturbation studies
to investigate the effects of disruptive stimulation at
different stages of the ventral stream during offline
consolidation.

Our simulations also revealed a phenomenon never
before tested in humans that the effectiveness of replay
depends on the stage of learning. We acquire factual
information about the world sporadically over time
across contexts, for example, we may encounter a
new species at a zoo 1 day and subsequently see the

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac054/6537049 by U

niversity C
ollege London user on 14 M

arch 2022



Daniel N. Barry and Bradley C. Love | 11

same animal on a wildlife documentary, and so on.
Ultimately, the consolidation of semantic information
in the neocortex can take up to years to complete
(Manns et al. 2003). However, our simulations suggest
that replay may be most beneficial during the initial
encounters with a novel category, when we are still
working out its identifiable features and have not yet
learned to generalize perfectly to unseen instances. It
is therefore possible that humans replay a category
less and less with increasing familiarity, and there is
some support for this idea in the animal literature
(Giri et al. 2019). We speculate that, if this is the case,
the enhanced effectiveness for recent memories may
have an adaptive function, allowing us to generalize
quickly with limited information. In fact, our simulations
showed that after a single learning episode, replay can
compensate substantially for an absence of subsequent
experience. Our results provide novel hypotheses for
human experiments, testing for an interaction between
the stage of category learning and the extent of replay.
The fact that replay early in the learning process was
more effective provides further support for our proposal
that vague, imprecise replay events are useful for gen-
eralization, as the networks imaginary representations
at that stage would be an imperfect approximation of
the category in question. We acknowledge there may
be a “ceiling effect,” whereby later in training there is
no further room for improvement; however, we would
posit that over the human lifespan, we are operating in
the nonconverged portion of the learning curve that we
display here.

Our results also represent the first mechanistic
account of how the brain selects weakly learned
information for replay and consolidation (Kuriyama
et al. 2004; Drosopoulos et al. 2007; McDevitt et al. 2015;
Schapiro et al. 2018). The hippocampus triggers replay
events in the neocortex (Zhang et al. 2018), with a loop
of information back and forth between the two brain
areas (Rothschild et al. 2017), although the content of this
neural dialog is not known. Our simulations suggest that
the hippocampus may learn the optimal categories to
replay based on feedback from the neocortex. Our results
showed that such a process resulted in the “rebalancing”
of experience in an artificial neural network, where
generalization performance was improved for weakly
learned items and attenuated for items which were
strongly learned. A reorganization of knowledge of
this kind has been observed in electrophysiological
investigations in rodents, where the neural represen-
tations of novel environments are strengthened through
reactivation at the peak of the theta cycle, while those
corresponding to familiar environments are weakened
through replay during the trough (Poe et al. 2000). This
more even distribution of knowledge could be adaptive in
both ensuring adequate recognition performance across
all categories and forming a more general foundation
on top of which future conceptual knowledge can be
built. There have been recent theoretical accounts and

empirical demonstrations of how items get selected for
replay within a reinforcement learning framework. These
include the prioritization of events for replay which were
most surprising during learning (Momennejad et al.
2018), and the replay of events that are more likely to
be encountered in future and which lead to the highest
reward (Mattar and Daw 2018; Liu et al. 2021). However,
these accounts do not explain why even in the absence of
such prediction errors, or without knowing the likelihood
of future events, knowledge which has been weakly
learned during waking periods is consistently targeted
for replay and consolidation during sleep (Kuriyama
et al. 2004; Drosopoulos et al. 2007; McDevitt et al. 2015;
Schapiro et al. 2018). Our interactive networks suggest
that offline RL could account for the selection of weakly
learned knowledge during the replay process itself, and
future experiments could assess whether our models
choose the same categories for replay as humans when
trained on the same stimuli.

Conclusion
In summary, our simulations provide supportive evi-
dence that category replay in humans is a generative
process and make the prediction that it is functionally
relevant at advanced stages of the ventral stream.
We have generated hypotheses about when during
learning replay is likely to be effective and offer a
novel account of replay as a learning process in and
of itself between the hippocampus and neocortex. We
hope these findings encourage a closer dialog between
theoretical models and empirical experiments. These
findings also add credence to the emerging perspective
that deep learning networks are powerful tools which
are becoming increasingly well positioned to resolve
challenging neuroscientific questions (Richards et al.
2019).
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