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Abstract  27 

The control of contraction strength is a key part of movement control. In primates, both 28 

corticospinal and reticulospinal cells provide input to motoneurons. Corticospinal discharge is 29 

known to correlate with force, but there are no previous reports of how reticular formation (RF) 30 

activity modulates with different contractions. Here we trained two female macaque monkeys 31 

(body weight 5.9-6.9kg) to pull a handle which could be loaded with 0.5-6kg weights, and 32 

recorded from identified pyramidal tract neurons (PTNs) in primary motor cortex and RF cells 33 

during task performance. Population-averaged firing rate increased monotonically with higher 34 

force for the RF, but showed a complex profile with little net modulation for PTNs. This 35 

reflected a more heterogeneous profile of rate modulation across the PTN population, leading to 36 

cancellation in the average. Linear discriminant analysis (LDA) classified the force based on the 37 

time course of rate modulation equally well for PTNs and RF cells. Peak firing rate had 38 

significant linear correlation with force for 43/92 (46.7%) PTNs and 21/46 (43.5%) RF cells. For 39 

almost all (20/21) RF cells the correlation coefficient was positive; similar numbers of PTNs (22 40 

vs 21) had positive vs negative coefficients. Considering the timing of force representation, 41 

similar fractions (PTNs: 61.2%; RF cells: 55.5%) commenced coding before the onset of muscle 42 

activity. We conclude that both corticospinal and reticulospinal tracts contribute to control of 43 

contraction force; the reticulospinal tract seems to specify an overall signal simply related to 44 

force, whereas corticospinal cell activity would be better suited for fine-scale adjustments. 45 

 46 

 47 
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Significance statement 48 

For the first time, we compare coding of force for corticospinal and reticular formation cells in 49 

awake behaving monkeys, over a wide range of contraction strengths likely to come close to 50 

maximum voluntary contraction. Both cortical and brainstem systems coded similarly well for 51 

force, but whereas reticular formation cells carried a simple uniform signal, corticospinal 52 

neurons were more heterogenous. This may reflect a role in gross specification of a coordinated 53 

movement, versus more fine-grained adjustments around individual joints. 54 

  55 
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Introduction 56 

Movements occur when muscles exert forces on limbs; the control of contraction force is thus 57 

fundamental to the control of movement. Increases in force are achieved by recruitment of 58 

additional motoneurons within the pool projecting to a muscle, and also by modulating the rate 59 

of firing of motoneurons already recruited (Milner-Brown et al., 1973; Burke, 1981; Enoka and 60 

Duchateau, 2017). Increases in both rate and recruitment result from raised synaptic drive to 61 

motoneurons (Fuglevand et al., 1993). Many descending and segmental systems provide synaptic 62 

inputs to motoneurons; the relative contribution of these diverse circuits to modulation of force 63 

over its full range remains uncertain.  64 

In primates, the corticospinal tract (CST) is a major source of descending motoneuronal drive. 65 

Evarts (1968, 1969) reported that identified pyramidal tract neurons (PTNs) modulated their 66 

discharge with force, both in movements against an external load and during isometric 67 

contractions. Cheney and Fetz (1980) took cell characterization further using spike triggered 68 

averaging to identify cortico-motoneuronal (CM) cells with direct projections to wrist flexor or 69 

extensor muscles. Cell firing rate during static contractions was positively correlated with wrist 70 

torque, consistent with these monosynaptic projections contributing some of the varying 71 

motoneuron drive required for force modulation. However, subsequent studies reveal more 72 

complex relationships.  73 

In a dexterous finger movement task CM cells showed great heterogeneity, with negative as well 74 

as positive correlations to grip force (Maier et al., 1993). Corticospinal coding of force appears to 75 

be task-specific: some CM cells that are active during carefully controlled ramp-and-hold 76 

contractions are comparatively silent during ballistic movements (Cheney and Fetz, 1980). 77 
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Similarly, Muir and Lemon (1983) observed CM cells with higher firing rates during precision 78 

grip than power grip, even though the muscle target of the CM projection showed higher EMG 79 

activity during the latter. This led the authors to conclude that “during power grip their 80 

motoneurons must receive synaptic excitation from sources other than the direct 81 

corticomotoneuronal connections”.  82 

In addition to the CST, both the rubrospinal tract (Ralston et al., 1988) and reticulospinal tract 83 

(RST; Riddle et al., 2009) provide monosynaptic inputs to motoneurons in primates. Recordings 84 

from rubromotoneuronal cells reveal tonic discharge that is also modulated by static torque, 85 

although to a lesser extent than for CM cells (Cheney et al., 1988; Fetz et al., 1989). 86 

Rubromotoneuronal firing rates may instead be better tuned to movement dynamics (Cheney et 87 

al., 1988). The relationship between firing rates of RST neurons and force has not been directly 88 

explored, yet there is evidence for an important role in force generation. Lawrence and Kuypers 89 

(1968b) performed sequential lesions of two descending tracts. Loss of both CST and rubrospinal 90 

tracts left animals with impairments mainly in fine finger movements, but they retained sufficient 91 

strength to climb and run. This capacity was lost after combined CST/RST lesions (Lawrence 92 

and Kuypers, 1968a), suggesting that the RST is capable of force modulation independent of 93 

corticospinal or rubrospinal function. Furthermore, we have previously demonstrated adaptations 94 

in projections from the RST during strength training (Glover and Baker, 2020), suggesting that 95 

plastic changes in this tract underlie long-term changes in capacity for force generation. 96 

An important limitation of all prior recordings of neural activity was that only relatively low 97 

forces were examined. Direct data on how neural systems control higher forces are lacking. 98 
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This study aimed to compare the modulation of firing in the reticular formation (RF) and CST in 99 

macaque monkeys trained to perform a weight-lifting task. We explored a wide range of weights; 100 

the largest appeared close to the maximum of which the animals were capable. Both CST and 101 

reticular cells coded for force, but with important differences in the nature of coding, which 102 

suggest distinctive contributions to force control. 103 

Materials & Methods 104 

All animal procedures were performed under UK Home Office regulations in accordance with 105 

the Animals (Scientific Procedures) Act (1986) and were approved by the Animal Welfare and 106 

Research Ethics Board of Newcastle University. Experiments were conducted with two 107 

chronically implanted, purpose-bred rhesus macaques (monkeys N and L; 5.9-6.9kg; both 108 

female), which were housed together. On training days, food access was restricted in the home 109 

cage and trials of the behavioral task were rewarded with food. On rest days and when trials fell 110 

below a threshold value for two consecutive days, food was provided ad libitum. Ad libitum 111 

access to water was provided at all times. Both animals were intact prior to the study, with the 112 

exception of monkey N who had lost parts of two fingers on the right hand in an unrelated 113 

incident. 114 

Behavioral Task 115 

The behavioral task has been described previously (Glover and Baker, 2020). Briefly, animals 116 

were trained to pull a loaded handle towards the body using their right hand. Trials were self-117 

paced and successful completion marked by auditory feedback when the handle was moved at 118 

least 4cm from its rest stop. Successful trials were rewarded with food and nucleus accumbens 119 
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stimulation (see below). A pulley system enabled weights to be attached to the handle, increasing 120 

the force required to pull it.  121 

Prior to this study, the animals were extensively trained on the task until they could perform 50 122 

consecutive trials with at least 6kg attached to the handle (Glover and Baker, 2020). Animals 123 

were head-fixed to enable single unit recordings (see below) and the left arm was held in a 124 

restraint to ensure unilateral task performance.    125 

Surgical Preparation 126 

As described previously, the animals were implanted with a headpiece, bilateral electromyogram 127 

(EMG) electrodes in eight upper limb muscles (first dorsal interosseous, FDI; flexor digitorum 128 

superficialis, FDS; flexorcarpi radialis, FCR; extensor digitorum communis, EDC; biceps 129 

brachii; triceps brachii; pectoralis major, PM; and posterior deltoid muscles), and chronic 130 

stimulating electrodes in the pyramidal tract (PT). The headpiece incorporated recording 131 

chambers, allowing access to the left primary motor cortex (M1) and right RF. Unrelated to the 132 

current study, the monkeys were also implanted with chronic stimulating electrodes in the medial 133 

longitudinal fasciculus and cortical epidural electrodes. Full surgical and anesthesia details are 134 

provided in our previous report (Glover and Baker, 2020).  135 

In addition to food, stimulation of electrodes implanted in the nucleus accumbens was used as a 136 

behavioral reward (Bichot et al., 2011). Monkey L had a preexisting nucleus accumbens 137 

electrode implanted at the start of our previous study (for surgical details, see Glover and Baker, 138 

2020). However, this became less effective over a period of several months, and so a second 139 

electrode was implanted in this animal at the start of RF recordings and used successfully in 140 
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subsequent sessions. A nucleus accumbens electrode was also implanted in monkey N early in 141 

the RF recordings, but stimulation did not appear to motivate behavior and so it was not 142 

routinely used in this animal. When in use, nucleus accumbens stimulation was delivered every 143 

1-3 successful trials (1.0-2.5mA biphasic pulses, 0.2ms per phase, 200Hz frequency, 200ms train 144 

duration).  145 

M1 recordings 146 

Recordings from PTNs were made via a recording chamber mounted on the headpiece above a 147 

craniotomy centered over M1. Daily recording sessions were performed with platinum-iridium 148 

microelectrodes (Thomas Recording, Marburg, Germany); up to 5 electrodes were loaded into an 149 

Eckhorn microdrive (also Thomas Recording). The electrodes were individually advanced 150 

through the dura and into the cortex until cell activity was detected; the animals were at rest 151 

during this process. Following successful insertion of all electrodes into the cortex, the chamber 152 

was filled with agar to stabilize the electrodes for cell identification and the subsequent recording 153 

session.  154 

Cells were identified as PTNs if they met two criteria: a fixed latency response to single-pulse 155 

PT stimulation (biphasic pulses, 0.1ms per phase), and a constant collision interval (see Lemon, 156 

1984). The threshold for response to PT stimulation, antidromic latency of this response, 157 

collision interval and cell depth were noted for each cell. Only recordings from such identified 158 

PTNs were considered in the analysis of M1 data. 159 
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RF recordings 160 

Following completion of the M1 recordings, the M1 chamber was sealed to reduce the risk of 161 

infection, and a craniotomy was opened in the RF chamber. Daily recording sessions were 162 

performed with either one or two 32-channel U-probes (Plexon Inc, Dallas, TX, USA); when two 163 

electrodes were used, these were positioned 2mm apart on the anterior-posterior axis. The 164 

electrodes were individually advanced through the craniotomy, towards the brainstem, using a 165 

microdrive (Nan Instruments, Nazareth, Israel). The motor RF was identified based on location 166 

relative to brainstem landmarks such as the abducens nucleus, and because intracerebral 167 

microstimulation produced limb movements (trains of 18 biphasic pulses, 0.2ms per phase, 3ms 168 

inter-stimulus intervals; isolated constant current stimulator Model 2100, AM Systems Inc, 169 

Sequim, WA, USA). 170 

Daily recording sessions  171 

Recording sessions were performed 5 days per week, and followed the same pattern for both M1 172 

and RF recordings. During each daily session, the behavioral task was performed at seven 173 

different force levels, defined by the weights attached to the lever: 0.5kg, 1kg, 1.5kg, 2kg, 3kg, 174 

4kg and 6kg. The animals performed blocks of 10 trials at each weight, with the sequence of 175 

weights pseudo-randomized within each recording session. Between each block there was a brief 176 

pause during which the experimenter changed the weights on the task. Monkey N performed few 177 

trials with 6kg during the RF recordings, so all 6kg RF data have been excluded from analysis 178 

for this animal.  179 

Waveform recordings from microelectrodes, U probes or EMG electrodes were amplified 180 

(bandpass 1Hz-10kHz) and digitized at 25kHz sampling rate by miniature headstages (Intan 181 
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Technologies, Los Angeles, CA, USA), and stored to computer together with a signal 182 

representing the position of the lever and digital markers indicating task events. 183 

 Data analysis  184 

The aim of this study was to compare the firing rates of PTNs and RF cells across a range of 185 

weights during a weight-lifting task. All analyses were performed offline using custom scripts in 186 

MATLAB, and were conducted separately for the two animals.  187 

Task Performance  188 

We started by examining measures of task performance to determine if weight was the only 189 

variable that differed between trials. To achieve this, averages of lever position and rectified 190 

EMG were constructed across all trials of a given weight in one session. Sweeps were aligned 191 

relative to task completion (lever displacement first reaching 4cm), since this reflects the point at 192 

which success was signaled to the animal. For each session, the maximum lever displacement 193 

and the latency of this peak were calculated. To investigate the effect of weight on these 194 

parameters, linear mixed models were constructed using single-session averages, with trial 195 

weight and session ID as crossed factors. This analysis was repeated for single-session EMG 196 

peak amplitude and the latency of this peak for each muscle.  197 

Spike Discrimination 198 

Waveform recordings from M1 and RF were discriminated offline into the times of single unit 199 

spikes. For M1, this used custom clustering software (Getspike; S. N. Baker); spikes were only 200 

included if they had consistent waveforms and inter-spike intervals >1ms. Discrimination used 201 
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records of spike size and shape made during the antidromic identification process, to ensure that 202 

spikes corresponded to PTNs. For the RF, spikes were discriminated using MountainSort (Chung 203 

et al., 2017); this software has the advantage that it can track cells that move electrode contacts 204 

due to tissue instability. The MountainSort output was post-processed using custom MATLAB 205 

scripts to ensure that only cells with consistent waveforms and inter-spike intervals >1ms were 206 

included.                                                                    207 

Task-Related Modulation 208 

The relationship between cell firing rate and the task was examined by constructing peri-event 209 

time histograms (PETHs; 10ms non-overlapping bins, smoothed by convolution with a Gaussian 210 

kernel with a 20ms width parameter) relative to the task completion marker. Trials were only 211 

included if the cell had an average firing rate >5Hz (measured from 1.5s before to 1s after trial 212 

completion) and at least one spike in the ‘active’ window of the task (1s before to 0.5s after trial 213 

completion); this excluded trials from periods where the cell had been lost from the record. 214 

Furthermore, the first trial from each block was also excluded: for this trial, the weight was 215 

unknown to the animal, which often led to the monkey producing excessive or inadequate forces, 216 

depending on whether the previous block used a heavier or lighter weight. After applying these 217 

trial exclusion criteria, cells were only included in the analysis if at least 5 trials per weight 218 

remained for all weights, with the exception of RF recordings from monkey N for which no trials 219 

were performed with the 6kg weight.  220 

To determine whether the firing rate of each cell was related to task performance, a Monte Carlo 221 

resampling method was used. For each trial, the inter-spike intervals were shuffled, and the 222 

PETH recomputed. This randomized the spike times; on the null hypothesis that firing was 223 
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unmodulated by the task, shuffling should not alter the statistics of the PETH. The maximum 224 

firing rate was calculated, both for the actual PETH, and after 100 different inter-spike interval 225 

shuffles. For a given weight, a cell was considered significantly modulated if the real maximum 226 

rate was larger than at least 95/100 of the maxima measured from shuffled PETHs. If a cell was 227 

significantly modulated for all but one weight, it was considered task-modulated. Only such task-228 

modulated cells were included in the analysis.  229 

  230 
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Linear Discriminant Analysis 231 

To assess if neural firing rate could reliably predict force, we used linear discriminant analysis 232 

(LDA) to perform a pairwise classification of trials by weight. The model was trained separately 233 

for each cell and each pair of weights using single trial PETHs (compiled with 100ms non-234 

overlapping bins, smoothed by convolution with a Gaussian kernel with a 100ms width 235 

parameter) from 1000ms before to 500ms after task completion. LDA performance was assessed 236 

with a ‘leave one out’ procedure in which each trial was excluded from the training set in turn, 237 

and the model then used to classify the excluded trial. Accuracy was calculated as the number of 238 

correctly classified trials expressed as a percentage of the total. To test if the model performed 239 

significantly better than chance (50%) for each pairwise comparison, the number of correctly 240 

classified trials was compared with a binomial distribution (P<0.05). 241 

For a cell with a complete dataset of tested weights, comparisons between each pair of weights 242 

produced 21 LDA accuracy values, each with an associated P value. To produce a single 243 

accuracy value per cell, we averaged the LDA accuracy for all weights compared to the lightest 244 

weight (0.5kg). For monkey L, this was the average of 6 values (1kg, 1.5kg, 2kg, 3kg, 4kg, 6kg 245 

vs 0.5kg). For monkey N, there were only 5 values since, as described above, 6kg data was not 246 

available from the RF recordings in this animal. Thus, the overall model accuracy values are 247 

comparable between cell types within the same animal, but not between animals since they 248 

incorporate trials at different weights. To test the overall model reliability for each cell, binomial 249 

distributions were used to compare the overall model accuracy to chance (50%).  250 

Several summary statistics were computed. We calculated the percentage of cells with better than 251 

chance weight coding (‘model reliability’), for each pair of weights compared. Similarly, by 252 
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averaging model accuracy for each pair of weights across all cells, we obtained an accuracy 253 

value across the whole population. To limit this accuracy measure to cells in which the model 254 

was reliable, we found the average model accuracy for the sub-population of cells in which 255 

overall model accuracy was significantly better than chance. Finally, to provide a statistical 256 

comparison between the two cell types for each monkey, we performed unpaired t-tests on 257 

overall model accuracy values between PTNs and RF cells. This analysis was repeated for the 258 

subpopulation of cells in which the overall model accuracy was significantly better than chance.  259 

We next wanted to investigate if the peak firing rate alone could code for force. For each cell, the 260 

latency of the peak firing rate was calculated from the mean PETH across all trials. A 500ms 261 

window was defined centered on this latency and the maximum firing rate (10ms non-262 

overlapping bins, see above) for each trial was calculated within this window. Single trial peak 263 

firing rate values were entered into the LDA model described above.  264 

Correlation of Firing Rate with Force 265 

LDA provides valuable insight into the extent to which firing rate codes for force, but it does not 266 

describe the nature of this coding; for example, whether there is a positive or negative correlation. 267 

To explore the relationship between peak firing rate and force further, we identified the weight 268 

associated with the highest peak firing rate for each cell, and the latency at which this peak 269 

occurred, relative to task completion. The distribution of peak firing rate latencies was tested for 270 

normality using Kolmogorov-Smirnov tests.  271 

Furthermore, for each cell we fitted a linear regression between mean peak firing rates and trial 272 

weight. The gradient and significance of the peak firing rate vs force correlation was recorded for 273 
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each cell. Cells were classified depending on whether they had a significant positive correlation, 274 

a significant negative correlation, or no correlation. We compared the gradient of the rate vs 275 

force correlation between PTNs and RF cells, and between PTNs with positive and negative 276 

correlations, using unpaired t-tests.  277 

Relation to Anatomical Location, and Conduction Velocity of PTNs 278 

We recorded PTNs with a range of antidromic latencies and from a range of depths. Anatomical 279 

and electrophysiological studies have revealed that fast-conducting PTNs with monosynaptic 280 

CM connections originate mainly from the anterior bank of the sulcus in M1, whereas slower-281 

conducting CM cells and corticospinal cells which terminate on interneurons are found 282 

throughout M1 (Rathelot and Strick, 2009; Witham et al., 2016). To investigate if there was a 283 

relationship between conduction velocity and force coding in PTNs, for each animal we fitted a 284 

linear regression between overall model accuracy and antidromic latency. We also fitted linear 285 

regressions between peak firing rate or rate/force gradient and conduction velocity. These 286 

analyses were repeated for ‘superficial’ (<2.5mm from first recorded cell in the penetration) and 287 

‘deep’ (>2.5mm) PTNs. Independent t-tests were performed to compare the mean model 288 

accuracy per cell between ‘superficial’ and ‘deep’ PTNs.  289 

Timing of Firing Rate Changes 290 

The next analysis aimed to compare the latency of rate changes between PTNs and RF cells. To 291 

do this, it was not sufficient to align activity to task completion (as in all analysis above), 292 

because muscle activity often preceded lever movement by a few hundred milliseconds. This 293 
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timing differed between weights, with earlier EMG onset for heavier weights (see Figure 1). 294 

Instead, for analysis of timing, we re-aligned firing rates to EMG onset, as described below.  295 

EMG data were high-pass filtered at 30Hz, full-wave rectified, smoothed by convolution with a 296 

Gaussian (width parameter σ=5ms), and binned into 1ms non-overlapping bins. The frequent 297 

presence of baseline activity meant that it was not possible to detect reliably the onset of 298 

increased EMG in single trials from individual muscle recordings. Instead, an average was 299 

produced for a single trial across the five EMG channels in the right arm that gave clear task-300 

related activity: IDI, FDS, triceps brachii, biceps brachii and PM. To ensure that this combined 301 

EMG sweep was not dominated by a single channel, each channel was first normalized by 302 

dividing by its mean value across all trials.  303 

Given that the animals rarely sat completely still prior to each trial of the task, baseline EMG 304 

activity was not defined relative to task completion but instead by finding the quietest 500ms 305 

epoch across the whole sweep (1.5s before to 1s after trial completion). For each trial, EMG 306 

onset was defined by working backwards from task completion to find the first time point at 307 

which EMG activity dropped below threshold (one standard deviation above mean baseline 308 

EMG activity). Furthermore, trials were only included if the animals were relatively still prior to 309 

EMG onset. This was defined as the 500ms prior to EMG onset being below a threshold of five 310 

standard deviations above mean baseline EMG activity. Therefore, fewer trials were included in 311 

EMG onset-aligned PETHs than movement onset-aligned PETHs.  312 

To check the validity of EMG onset-aligned PETHs, we repeated the LDA analysis previously 313 

performed on movement onset-aligned data. We calculated the average model accuracy per cell 314 
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and used paired t-tests to compare these values to the equivalent values from movement onset-315 

aligned PETHs.  316 

To investigate latency effects, firing rate was compared between weights using single trial, EMG 317 

onset-aligned PETHs with 50ms non-overlapping bins (no smoothing). For each bin, the firing 318 

rate for all included trials at a given weight was compared to the firing rate for all included trials 319 

at the lightest weight (0.5kg) using independent t-tests. This enabled us to calculate the 320 

percentage of cells at each time point and each weight that had a significantly different firing rate 321 

from the lightest weight. We also identified the first time point at which a significant difference 322 

in firing rate was observed relative to the lightest weight for each cell. These values were used to 323 

construct cumulative density functions for each cell type and animal to estimate when the 324 

population of cells started coding for force relative to EMG onset.   325 

Prior to the onset of EMG activity, it can be assumed that there is no proprioceptive or cutaneous 326 

feedback regarding the weight. Therefore, if firing rate before EMG onset codes for force, this 327 

would suggest that firing rate is set in anticipation of the task requirement. By contrast, firing 328 

rate after EMG onset is likely to be heavily modulated by afferent feedback. We compared the 329 

influence of anticipation and afferent feedback by separately performing LDA with firing rates 330 

500 to 0ms before EMG onset, and 0 to 500ms after EMG onset. Single trial PETHs (EMG 331 

onset-aligned, 100ms non-overlapping bins, smoothed by convolution with a Gaussian kernel 332 

with a 100ms width parameter) were entered into the LDA to compare each pair of weights. The 333 

overall model accuracy was compared for the ‘before’ and ‘after’ conditions and between cell 334 

types with a repeated measures ANOVA; where significant effects were found, post-hoc testing 335 

was performed between the ‘before’ and ‘after’ conditions with paired t-tests, and between cell 336 
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types with unpaired t-tests. To test if the model accuracy of the cell population was better than 337 

chance, for each cell type and monkey we used one-tailed t-tests to compare the distribution of 338 

‘before’ and ‘after’ overall model accuracy values to chance (0.5).   339 

We observed two peaks in the EMG-aligned PETHs for PTNs; an early peak around 250ms 340 

before EMG onset, and a late peak around 250ms after EMG onset. To investigate the nature of 341 

these two peaks, for each trial we calculated the maximum firing rate for the early peak (500 to 342 

0ms before EMG onset; pre-EMG onset window described above) and the late peak (0 to 500ms 343 

after EMG onset; post-EMG onset window described above). These early peak and late peak 344 

values were entered separately into an LDA model. We also calculated the maximum firing rates 345 

of the early and late peaks from mean PETHs per weight per cell, and calculated the linear 346 

regression between early and late amplitudes for each cell.  347 

Results 348 

Task performance   349 

The weight lifting task was self-paced and the lever free to move beyond the 4cm target, 350 

allowing the two monkeys to adopt their own movement strategies, which varied with force. For 351 

example, with light weights both animals frequently pulled the lever beyond the 4cm target, 352 

whereas with the heaviest weights they were more likely to release the lever as soon as the 353 

reward tone was heard. Thus, trials were of shorter duration and had smaller lever movements 354 

with the heaviest weight (Figure 1A). The period up to the success tone, which was associated 355 

with the greatest EMG activity, appeared consistent across the different weights.    356 
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There was a pronounced increase in EMG activity with increasing task load, which was observed 357 

across all muscles (Figure 1B-F). This was expected, as for a larger weight the animal not only 358 

had to flex the elbow more strongly, but also grip the handle more firmly to ensure a stable grasp. 359 

We did not observe a clear trend between the latency of peak EMG activity and weight across 360 

the different muscles, suggesting that the timing of peak EMG activity was consistent relative to 361 

task completion.  362 

Firing rate vs force  363 

From an initial dataset of 125 PTNs and 210 RF cells, we excluded 19 PTNs and 124 RF cells 364 

due to having recorded activity with insufficient trials (see Methods) and a further 14 PTNs and 365 

36 RF cells since their firing rates were not task modulated. This resulted in a final dataset of 65 366 

PTNs and 34 RF cells from monkey N, and 27 PTNs and 16 RF cells from monkey L. 367 

PETHs of firing rate relative to task completion averaged over the whole RF cell population 368 

demonstrated a clear relationship between firing rate and force (Figure 1H), whereas a more 369 

complex averaged firing profile was observed for PTNs (Figure 1G). This could arise because 370 

RF cells showed a greater correlation between their firing rates and force, or alternatively, that 371 

there was more homogeneity in RF cell response. To test this, we compiled averages of the 372 

absolute change in rate at a given weight, compared to the lightest (0.5 kg) weight, with the aim 373 

of preventing cancellation across a heterogenous population. Such averages showed clearer 374 

gradation with force for both monkeys (Figure 2A).  375 

A more quantitative comparison of the ability of unit discharge to code force was carried out 376 

using LDA. For each cell, a linear model was trained to classify single trials of two different 377 
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weights. For each pair of weights, we obtained an accuracy level (percentage of trials correctly 378 

classified), and whether this was significantly different from chance (50%).  379 

Unsurprisingly, classification reliability increased as the difference between the weights 380 

increased. For example, the model performed significantly better than chance in classifying 381 

0.5kg vs 6kg trials for 95.4% of PTNs in monkey N, compared to just 33.8% of cells for 0.5kg vs 382 

1kg trials (Figure 2B). Overall, the model performed better than chance for 89.2% PTNs and 383 

76.5% RF cells for monkey N, and 96.3% PTNs and 93.8% RF cells for monkey L (Figure 2B). 384 

Considering only cells where classification was significantly better than chance, there was no 385 

significant difference in model accuracy between PTNs and RF cells for monkey L (Figure 2C; 386 

t39=1.42, p=0.163) but the model was significantly more accurate for RF cells than PTNs for 387 

monkey N (Figure 2C; t82=-3.31, p=0.001). By contrast, when looking at model accuracy across 388 

the whole population of cells, including those with no better than chance performance (Figure 389 

2D), there was no significant difference between PTN and RF cells for either monkey (Figure 390 

2E). Such a measure represents a convenient summary of overall coding efficiency of a cell 391 

population, since it is sensitive both to the fraction of cells which code for force (Figure 2B), and 392 

also to how accurately they code (Figure 2C). These results suggest that the firing rates of PTN 393 

and RF cells reliably code force to a similar extent at the whole population level. In monkey N, 394 

although a smaller percentage of RF cells reliably coded for force compared to the PTNs (Figure 395 

2B), force could be predicted from firing rate more accurately in these cells (Figure 2C). Note 396 

than although 6kg data have been presented for monkey N PTNs, these were not included when 397 

making statistical comparisons to monkey N RF cells, where no data were available at this 398 

highest force level. 399 
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The analysis of Figure 2 performed classification using the entire time course of the PETH 400 

response. To examine which component of the firing rate profile coded for force, we next 401 

simplified the LDA model to include only the peak firing rate for each trial. Although we found 402 

that this strategy performed better than chance in a smaller percentage of cells (Figure 3A; 403 

monkey N: PTN: 64.6%, RF: 88.2%; monkey L, PTN: 59.2%, RF: 81.3%) and was less accurate 404 

(Figure 3B,C), it did reveal a significant difference between PTNs and RF cells. Across the 405 

whole population, the model using peak firing rate was significantly more accurate in classifying 406 

trials for RF cells than PTNs in both monkeys (Figure 3D). This effect persisted in the 407 

subpopulation of monkey N cells in which the model performed significantly better than chance 408 

(t70=-2.68, p=0.009), but not in monkey L (t27=-0.82, p=0.419).  409 

To investigate the relationship between peak firing rate and force in more detail, we identified 410 

the weight that generated the highest peak firing rate for each cell. For PTNs in both monkeys, 411 

this was evenly distributed – individual cells could show their largest rate for anywhere from the 412 

lowest to the highest weight. By contrast, for RF cells the peak firing rate was often generated by 413 

the heavier weights (Figure 4A). To quantify the force-rate relationship further, we fitted a linear 414 

regression between peak firing rate and force for each cell, and classified cells according to 415 

whether the regression was not significant, or significant with a positive or negative slope 416 

(Figure 4B). Of the cells with significant regressions, the majority (20/21) of RF cells had a 417 

positive force-rate relationship whilst approximately equal numbers of PTNs had positive and 418 

negative correlations (22 vs 21 cells). Figure 4C shows the change in peak firing rate at a given 419 

weight, compared with the previous weight, where each line represents one cell. Figure 4D 420 

presents the distribution of the peak firing rate vs weight regression slope. These plots show that 421 

the strength of the rate-force relationship was similar for cells with positive and negative 422 
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correlations (monkey N PTNs: t22=1.15, p=0.263; monkey L PTNs: t6=-0.311, p=0.766; Figure 423 

4C,D), and there was no significant difference between the rate-force relationship of PTNs and 424 

RF cells with positive correlations (monkey N: t25=-1.90, p=0.069; monkey L: t13=-0.325, 425 

p=0.751; Figure 4C,D). Finally, Figure 4E plots the latency of the peak in firing rate for the 426 

weight with the highest rate, for each cell. For RF cells, the latency of peak firing rate formed a 427 

normal distribution (monkey N: D34=0.184, p=0.178; monkey L: D16=0.213, p=0.408) centered 428 

just before task completion. By contrast, the latency of peak firing rate in monkey N PTNs did 429 

not form a normal distribution (D65=0.180, p=0.026) but instead two distinct populations – many 430 

cells had a peak firing rate before task completion, but a smaller population of cells had peak 431 

firing rate after task completion (Figure 4E). A similar trend was observed in monkey L PTNs, 432 

although the distribution of peak firing rate latency here was not significantly different from 433 

normal (D27=0.173, p=0.357).  434 

The results presented above suggest that the RF cell population was relatively homogeneous, 435 

whereas the PTNs showed more heterogeneity. Because PTNs were identified antidromically, we 436 

were able to investigate whether this heterogeneity was associated with differences in 437 

corticospinal axon conduction velocity, measured by the antidromic latency (ADL, Figure 5A). 438 

There was no significant correlation between LDA model accuracy (measured as in Figure 2E) 439 

and ADL (Figure 5B). There was also no significant relationship between the slope of the peak 440 

firing rate vs weight relationship and ADL (Figure 5C).  441 

An alternative way of classifying PTNs is by the depth of the recording site (Kozelj and Baker, 442 

2014), which indicates whether a cell is likely to be in the New M1 or Old M1 subdivisions of 443 

Rathelot and Strick (2009). Here, we defined the border between deep and superficial PTNs at 444 



 

23 

 

2.5mm below the first recorded cells in that penetration (Figure 5D). There was no significant 445 

correlation between model accuracy and PTN depth (Figure 5E), and no significant difference 446 

between the model accuracy of ‘superficial’ vs ‘deep’ PTNs (monkey N: t63=-0.470, p=0.640; 447 

monkey L: t19.7=-0.836, p=0.413). Similarly, there was no correlation between the peak firing 448 

rate/weight slope and PTN depth (Figure 5F). These results suggest that the heterogeneity 449 

observed in our PTN population cannot be explained by differences between PTN conduction 450 

velocity, nor by the location of cells within the different sub-divisions of M1.  451 

Latency effects 452 

All of the analysis described above was carried out on PETHs aligned to task completion. This 453 

marks successful performance of the task goal, and allows measurement of firing rates. We were 454 

also interested in examining the timing of cell firing relative to muscle activity, but as shown by 455 

Figure 1, muscle activity started earlier relative to the task completion marker for heavier 456 

weights. We therefore also constructed PETHs aligned to EMG onset. Figure 6A shows PETHs 457 

averaged across cell populations with this alignment. We re-ran the LDA classifier, replicating 458 

the analysis of Figure 2E but with this new alignment (Figure 6B), and compared the average 459 

model accuracy values with those previously obtained values. LDA showed significantly worse 460 

classification using EMG-onset aligned trials for PTNs (monkey N: t63=3.48, p<0.001; monkey 461 

L: t26=2.46, p=0.021), but was not significantly different for RF cells (monkey N: t33=0.642, 462 

p=0.525; monkey L: t14=-0.951, p=0.358). However, similarly to the finding from task 463 

completion-aligned PETHs, there was no significant difference between classifier performance 464 

with PTNs and RF cells for either monkey with the EMG-onset aligned trials (Figure 6B).  465 
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To analyze how force coding developed in time, for each cell we compared the firing rate at a 466 

given moment between each weight and 0.5kg, and tested for a significant difference. Figure 6C 467 

shows how coding evolved with time across the cell population, by plotting the number of cells 468 

with a significant difference at each time point. For each cell, we then found the first 50ms bin in 469 

which firing rate was significantly different from the 0.5kg; the distributions of these times, 470 

which reflect the onset latency of force coding, are shown as cumulative distributions in Figure 471 

6D. A repeated measures ANOVA revealed no significant effect of weight (monkey N: 472 

F4,296=2.03, p=0.090; monkey L: F5,160=1.05, p=0.392) or cell type (monkey N: F1,74=0.14, 473 

p=0.710; monkey L: F1,32=0.543, p=0.467) on the latency of the first significant change in firing 474 

rate relative to trials at 0.5kg. 475 

Depending on the cell class, animal and force, between 31.3 and 79.4% of cells had an onset of 476 

force coding prior to the onset of EMG. Such coding must reflect an aspect of the central 477 

command for movement; after EMG onset, there could also be a contribution from afferent 478 

feedback. To investigate this further, we compared the ability of the LDA model to classify trials 479 

using firing rates restricted to before EMG onset (‘before’) vs after EMG onset (‘after’). LDA 480 

reliability was significantly better when using ‘after’ firing rates compared to ‘before’ rates for 481 

PTNs, but there was no significant difference in ‘before’ and ‘after’ model reliability for RF cells 482 

(Figure 7A,E). We also compared LDA accuracy in the subpopulation of cells in which 483 

classification was significantly better than chance (Figure 7B,F), and found that the LDA 484 

performed significantly better with ‘after’ firing rates compared to ‘before’ for both cell types, in 485 

both animals When we repeated this analysis including all cells (and not just those where coding 486 

was significantly better than chance), we saw the same result (monkey N: Figure 7C,D; monkey 487 

L: Figure 7G,H). Despite the worse performance of the LDA with ‘before’ firing rates, we still 488 
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found classification accuracy of the cell populations to be significantly better than chance 489 

(monkey N, PTN: t63=13.7, p<0.001; monkey N, RF: t33=11.9, p<0.001; monkey L, PTN: 490 

t26=9.76, p<0.001; monkey L, RF t14=5.98, p<0.001).  491 

We next wanted to investigate if the cell activity that occurred before and after EMG onset was 492 

part of the same phenomena, or driven by different processes. In support of the latter, in monkey 493 

N PTNs (Figure 6A) there were two clear peaks in the population firing rate, with one before and 494 

one after EMG onset. To quantify how well these separate epochs coded for force, we re-ran the 495 

LDA based on peak firing rate (Figure 3), first with single-trial peak firing rates restricted to the 496 

time before EMG onset (-500 to 0ms; early peak) and then in a separate analysis after EMG 497 

onset (0 to 500ms; late peak). Across both monkeys and cell types, LDA was significantly more 498 

accurate in classifying trials based on rates from the late peak (Figure 8A). To investigate if peak 499 

firing rate in these two periods was part of the same phenomenon, we looked at the correlation 500 

between the early and late peak rate (Figure 8B). For each cell we fitted a linear regression 501 

between the early and late peak rate and compared the R
2
 values between cell types with 502 

unpaired t-tests (Figure 8C). In monkey L, R
2
 values were significantly higher for RF cells 503 

compared to PTNs. This higher degree of correlation suggests, as can be appreciated from Figure 504 

6A, that in RF cells the changes in firing rate that occur before and after EMG onset are part of 505 

the same effect, whereas the lower degree of correlation for PTNs suggests that cells may behave 506 

differently before and after EMG onset. However, we observed no significant differences 507 

between PTN and RF R
2
 values for monkey N.    508 
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Discussion   509 

The role of the CST in force coding is well established (for review, see Cheney et al., 1991). 510 

PTN discharge is related primarily to force rather than displacement (Evarts, 1968, 1969; 511 

Humphrey et al., 1970), and discharge rates show both positive and negative correlations with 512 

force (Cheney and Fetz, 1980; Maier et al., 1993). Our findings extend this previous work to 513 

high forces - our biggest load was comparable to the animal’s body weight; pulling this with one 514 

arm probably required a near-maximal contraction. Firing rate was a strong predictor of force; 515 

approximately equal numbers of PTNs had peak firing rates positively or negatively correlated 516 

with force (Figure 4B). Furthermore, in contrast to previous studies that investigated force 517 

coding in isolated movements, our results reveal that PTN firing rate and force are also related 518 

during a gross movement involving co-contraction of multiple upper limb muscles.  519 

The RST provides both monosynaptic and disynaptic inputs to upper limb motoneurons (Riddle 520 

et al., 2009), and hence is capable of modulating motoneuron firing rate to generate different 521 

forces. We have previously demonstrated RST involvement in strength training (Glover and 522 

Baker, 2020), indirectly implicating this pathway in force generation. In support of this, similar 523 

to PTNs, we found that RF firing rate was highly predictive of force.   524 

Relative roles of CST and RST in force generation  525 

The observation that the firing rate of both PTNs and RF cells codes for force raises the question 526 

of their relative roles. Although this could reflect redundancy in the motor system, our 527 

observations highlight differences in brainstem and cortical force coding strategies.  528 



 

27 

 

When considering the complete time course of the task, firing rates of PTNs and RF cells 529 

predicted force similarly. However, when analysis was limited to peak firing rates, RF cells 530 

coded force better than PTNs. One interpretation is that RF cells provide a gross drive to 531 

motoneurons, which can be well summarized by peak firing rate. By contrast, PTNs may play a 532 

more sophisticated role, involving close modulation of rates to fine-tune movement. This can be 533 

subjectively appreciated from the population-averaged PETHs (Figure 1G,H): RF rate increased 534 

steadily prior to task completion, whilst PTN firing had a complex profile with multiple peaks. 535 

Furthermore, of the cells with a significant rate-force correlation, approximately equal numbers 536 

of PTNs showed positive and negative correlations, whilst all but one RF cells had positive 537 

gradients. This again suggests a role for the RF in gross specification of force, compared to the 538 

fine-tuning of movement by PTNs. This may be task-dependent: Muir and Lemon (1983) 539 

reported higher firing rates during a precision grip than power grip task, even though the latter 540 

activated muscles more. Similarly, in an alternating wrist flexion/extension task, PTN firing 541 

modulated more when the direction of the load changed (requiring activation of different 542 

muscles) than with force changes in one direction (Schmidt et al., 1975).  543 

It might be argued that our task was especially suited to control by the RST as it generated 544 

substantial co-contraction over multiple upper limb muscles. The CST seems most suited to 545 

producing highly fractionated movements (Zaaimi et al., 2018), reflecting the limited divergence 546 

of individual axonal projections to different motoneuron pools (Shinoda et al., 1981; Buys et al., 547 

1986). By contrast, the extensive collateralization of the RST (Peterson et al., 1975; Matsuyama 548 

et al., 1997) makes it better suited to gross movements (Davidson and Buford, 2004, 2006; Baker 549 

and Perez, 2017; Zaaimi et al., 2018). However, irrespective of the task’s specific nature, high 550 

force contractions typically involve substantial and unavoidable coactivation, often bilaterally 551 
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(Zijdewind and Kernell, 2001). A task which generated strong but isolated activation of a single 552 

muscle would be impossible to implement and poorly reflect the reality of real-life high-force 553 

tasks. A further limitation of our task was that contractions were brief, and did not include a 554 

sustained holding phase; the neural substrates controlling sustained versus phasic contractions 555 

may have important differences (Albert et al., 2020). However, CST neurons tend to reduce their 556 

activity markedly during steady holding (Baker et al., 2001), suggesting that inclusion of a hold 557 

phase would be unlikely to alter the balance between CST and RST seen here. 558 

It is also important to consider the connections between descending neurons and motoneurons. 559 

The highly phasic and brief contractions in the present study precluded identifying cells with 560 

monosynaptic connections to motoneurons with spike-triggered averaging (Fetz and Cheney, 561 

1980; Lemon et al., 1986). Nonetheless, it is unlikely that the PTN heterogeneity is explained 562 

solely by separating into cells with monosynaptic versus polysynaptic projections to 563 

motoneurons (Rathelot and Strick, 2009; Witham et al., 2016). A previous study examining only 564 

CM cells similarly showed that PTN firing rates can correlate positively or negatively with force 565 

(Maier et al., 1993). That paper reported 6/17 (39%) of correlated CM cells had negative slopes, 566 

compared to 21/43 (49%) of PTNs reported here; these proportions do not differ significantly 567 

(P=0.34, chi-squared test). Likewise, Griffin et al. (2015) reported that CM cells recorded in a 568 

two-dimensional wrist movement task fired in preferred directions which were not necessarily 569 

aligned to the direction of action of the target muscle, leading the authors to conclude that 570 

individual CM cells can control a muscle not only when it is acting as an agonist, but also in 571 

situations when it functions as antagonist, synergist or fixator. Additionally, we found no 572 

relationship between the force/firing rate gradient and either the recorded depth or ADL of PTNs. 573 

Given that fast-conducting PTNs with monosynaptic projections are predominantly found 574 
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superficially within M1 (Rathelot and Strick, 2009; Witham et al., 2016), we would predict 575 

divergence in firing rate characteristics with these properties if PTN heterogeneity could be 576 

explained by their projections. Another relevant aspect of descending connectivity is whether an 577 

axon contacts inhibitory interneurons (Jankowska et al., 1968; Jankowska et al., 1976), which 578 

would manifest in spike-triggered averages of EMG as a post-spike suppression (Kasser and 579 

Cheney, 1985). Such cells might be expected to show negative correlations with force, although 580 

as shown by Maier et al. (1993) CM cells with direct, excitatory projections to motoneurons can 581 

also, unexpectedly, have negative correlations. 582 

Force specification  583 

Our task was performed in blocks of 10 trials at the same weight. The animals typically 584 

generated inappropriate force for the first trial per block, while subsequent trials were performed 585 

with more control reflecting an accurate motor plan (Johansson and Westling, 1988). The first 586 

trial was accordingly excluded from all analysis. Firing rates which modulate with force prior to 587 

EMG onset must reflect internal storage of the required force, and a centrally-generated motor 588 

command. By contrast, rate modulation after EMG onset could be generated in response to 589 

sensory feedback from proprioceptive or cutaneous afferents. In that case, activity might still 590 

contribute differential drive to motoneuron pools, but would not signify the causal spark which 591 

ignites the specific movement.  592 

To investigate these possibilities, we examined the coding of force by firing rate before and after 593 

muscle activity onset. Unsurprisingly, for both PTNs and RF cells firing rate after muscles 594 

became active was a better predictor of force than before. However, decoding of force from 595 
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firing rate was still significantly better than chance before EMG onset for both areas, suggesting 596 

that force is specified prior to movement by both PTNs and RF cells.  597 

The finding that force is specified in M1 prior to movement agrees with much previous work. In 598 

humans, disruption of M1 by repetitive transcranial magnetic stimulation prevents subjects using 599 

prior experience to generate appropriate force levels (Chouinard et al., 2005; Berner et al., 2007), 600 

implying cortical involvement in weight storage. In monkeys, a small proportion of M1 neurons 601 

show significant force coding prior to a reach and grasp task (Hendrix et al., 2009), supporting a 602 

cortical role in force planning. Similarly, RF cells are active in the preparatory phase of a 603 

reaching movement (Buford and Davidson, 2004; Schepens and Drew, 2004). Cortical 604 

projections (including from M1) converge extensively onto the RF (Fisher et al., 2020); many of 605 

these corticoreticular projections are PTN collaterals (Keizer and Kuypers, 1989). Force coding 606 

prior to muscle activity onset in RF neurons could therefore be caused by descending instructions 607 

from the cortex.  608 

After movement onset, sensory feedback fine-tunes the pattern and force of muscle activity. Both 609 

M1 and RF receive sensory inputs (Rosén and Asanuma, 1972; Leiras et al., 2010); feedback 610 

from cutaneous and proprioceptive receptors will influence firing rates in both regions. Modern 611 

conceptions of the motor program emphasize the importance of integration of sensory feedback 612 

(Todorov and Jordan, 2002). Disruption of sensory feedback produces profound acute motor 613 

deficits (Cole and Katifi, 1991; Darian-Smith and Ciferri, 2005), which can be characterized 614 

clinically as weakness (Ng and Baker, 2021). Temporary deafferentation modifies M1 activity in 615 

both monkeys (Lewis et al., 1971) and humans (Galan et al., 2015). Our finding that PTN and RF 616 

firing rates can predict force both before and during movement suggests that force coding likely 617 
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occurs through a combination of internal storage of object weight and afferent feedback. In this 618 

context, we should note that that one of the animals studied had lost part of two digits on the 619 

hand in an unrelated incident prior to beginning training on the task. Results did not appear to 620 

differ between this animal and the one with an intact hand, but we cannot exclude that altered 621 

afferent feedback could have modified both M1 and RF activity in this monkey. 622 

Modulation of motoneuron excitability  623 

Increased descending drive to motoneurons can modulate muscle force through recruitment of 624 

additional motoneurons (Henneman, 1957) and/or increased firing rate of motoneurons (Monster 625 

and Chan, 1977). Motoneurons are also regulated by spinal circuits. For example, C-boutons, 626 

which provide cholinergic inputs to motoneurons (Witts et al., 2014), are likely necessary for 627 

high-force outputs since their genetic inactivation reduces muscle activity (Zagoraiou et al., 628 

2009). Motoneuron gain may also be regulated by persistent inward currents, which can amplify 629 

the response to synaptic inputs (Binder et al., 2020). Such mechanisms may tune motoneuron 630 

responses to a given input, but are unlikely to overcome the need for descending inputs to 631 

generate different forces. Indeed, descending inputs are required to configure these systems (e.g. 632 

descending monoamine pathways such as the raphespinal tract, which activate persistent inward 633 

currents), so that part of the impact of the rate modulation may occur via these spinal circuits, 634 

rather than by a direct action on motoneurons. 635 

Summary 636 

Firing rates of both PTNs and RF cells can predict force output. However, it is unlikely that these 637 

represent identical, redundant routes for force control. The results are consistent with RF neurons 638 

providing a simple gross drive to motoneurons, whilst PTNs fine tune activation according to the 639 
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detailed requirements of the movement. For both PTNs and RF cells, firing rates code the 640 

required force output prior to activation of muscles, but also after the onset of muscle contraction, 641 

when firing could be modulated by sensory feedback.  642 

 643 

  644 
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Figures Legends 787 

Figure 1. Average muscle activity and cell firing rates relative to lever movement  788 

Mean sweeps, averaged across all recording sessions for each animal (columns), shown per 789 

weight (see legend) and aligned to task completion (4cm deviation of lever; black dotted line). 790 

Black scale bars are 500ms. Data shown are averaged across all 36 session from monkey N (28 791 

PTN, 8 RF sessions), and 21 session from monkey L (16 PTN, 5 RF sessions). A. Mean lever 792 

displacement. Linear mixed models (see Methods) were constructed to assess the effect of trial 793 

weight on the amplitude (monkey N: F1,242=42.8, p<0.001; monkey L: F1,145=71.0, p<0.001) and 794 

latency (monkey N: F1,242=59.4, p<0.001; monkey L: F1,145=143, p<0.001) of maximum lever 795 

displacement.  B-F: Rectified mean EMG activity. Linear mixed models with single session data 796 

were used to assess the effect of trial weight on the amplitude and latency of peak EMG activity. 797 

B. First dorsal interosseous (monkey N amplitude: F1,242=903, p<0.001; monkey N latency: 798 

F1,242=48.6, p<0.001; monkey L amplitude: F1,145=586, p<0.001; monkey L latency: F1,145=6.41, 799 

p=0.012). C. Flexor digitorum superficialis (monkey N amplitude: F1,242=868, p<0.001; monkey 800 

N latency: F1,242=2.00, p=0.159; monkey L amplitude: F1,145=771, p<0.001; monkey L latency: 801 

F1,145=0.43, p=0.514). D. Triceps brachii (monkey N amplitude: F1,242=487, p<0.001; monkey N 802 

latency: F1,242=3.69, p=0.056; monkey L amplitude: F1,145=638, p<0.001; monkey L latency: 803 

F1,145=1.84, p=0.177). E. Biceps brachii (monkey N amplitude: F1,242=1578, p<0.001; monkey N 804 

latency: F1,242=19.6, p<0.001; monkey L amplitude: F1,145=1008, p<0.001; monkey L latency: 805 

F1,145=10.2, p=0.002). F. Pectoralis major (monkey N amplitude: F1,242=1361, p<0.001; monkey 806 

N latency: F1,242=0.84, p=0.360; monkey L amplitude: F1,145=1213, p<0.001; monkey L latency: 807 

F1,145=120, p<0.001). G. PETH for PTNs (monkey N: n=65; monkey: n=27). H. PETH for RF 808 

cells (monkey N: n=34; monkey L: n=16).  809 
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Figure 2. Firing rate across full task duration   810 

A. Mean absolute change in firing rate relative to trials performed with the 0.5kg weight. Sweeps 811 

are aligned to task completion, and shown per cell type per animal (subplots) and per weight (see 812 

legend). B-D: LDA comparing firing rates between each pair of weights, for each cell across the 813 

full time-course of each trial. B. Percentage of cells in which the model correctly predicted the 814 

weight of each trial significantly more often than chance (see Methods). C. Mean model 815 

accuracy in the sub-population of cells in which the overall model accuracy was better than 816 

chance (see Methods; monkey N PTN: n=58/65; monkey N RF: n=26/34; monkey L PTN: 817 

n=26/27; monkey L RF: n=15/16). D. Mean model accuracy in all cells. E. Mean model 818 

accuracy per cell type, per animal. Blue circles show mean model accuracy for individual cells. 819 

Red errors bars show mean and standard deviation across the population of cells. Mean model 820 

accuracy was compared between all PTNs and RF cells for each animal with independent two-821 

tailed t-tests (monkey N: t50.3=-0.902, p=0.372; monkey L: t41=1.44, p=0.157).   822 

  823 
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Figure 3. Prediction of trial weight by peak firing rate 824 

LDA comparing the peak firing rate between each pair of weights, for each cell. See Methods for 825 

calculation of peak firing rate. A. Percentage of cells in which the model correctly predicted the 826 

weight of each trial significantly more often than chance (see Methods). B. Mean model 827 

accuracy in the sub-population of cells in which the overall model accuracy was greater than 828 

chance (see Methods; monkey N PTN: n=42/65; monkey N RF: n=30/34; monkey L PTN: 829 

n=16/27; monkey L RF: n=13/16). C. Mean model accuracy in all cells. D. Mean model 830 

accuracy per cell type, per animal. Blue circles show mean model accuracy for individual cells. 831 

Red errors bars show mean and standard deviation across the population of cells. Mean model 832 

accuracy was compared between PTNs and RF cells for each animal with independent two-tailed 833 

t-tests (monkey N: t96=-3.85, p<0.001; monkey L: t40=-2.14, p=0.038).   834 

Figure 4. Peak firing rate  835 

A. The weight that generated the highest firing rate for each cell, expressed as a percentage of 836 

cells per weight. B. Proportion of cells with a significant positive or negative correlation (see 837 

legend) between peak firing rate and trial weight. C. Change in peak firing rate with weight, 838 

limited to the sub-population of cells with a significant positive or negative correlation between 839 

peak firing rate and trial weight. D. Histogram showing the slope of peak firing rate versus force 840 

for each cell, grouped by the direction and significance of the relationship (see legend). E. 841 

Histogram of the latency of peak firing rate, expressed as a percentage of cells. 842 

Figure 5. PTN properties 843 

A. Histogram of antidromic latency (ADL) for PTNs, shown separately for each animal 844 

(columns). B. Correlation between average LDA accuracy (see Figure 2) and ADL. Blue circles 845 

represent individual cells, and the red line shows the linear regression (monkey N: R
2
=0.004, 846 
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p=0.618; monkey L: R
2
=0.004, p=0.749). C. Correlation between peak firing rate/force slope 847 

(see Figure 4D) and ADL. Blue circles represent individual cells, and the red line shows the 848 

linear regression (monkey N: R
2
<0.001, p=0.825; monkey L: R

2
=0.022, p=0.456). D. Histogram 849 

of cell depth for PTNs, shown separately for each animal (columns). The red dotted line shows 850 

the boundary between superficial and deep PTNs (2.5mm). E. Correlation between average 851 

model accuracy (see Figure 2) and cell depth. Blue circles represent individual cells, and the red 852 

line shows the linear regression (monkey N: R
2
=0.001, p=0.804; monkey L: R

2
=0.011, p=0.609). 853 

F. Correlation between peak firing rate/force slope (see Figure 4D) and cell depth. Blue circles 854 

represent individual cells, and the red line shows the linear regression (monkey N: R
2
<0.001, 855 

p=0.977; monkey L: R
2
=0.003, p=0.766). 856 

Figure 6. EMG onset-aligned firing rate 857 

A. PETHs, averaged across all recording sessions for each animal and cell type (columns), 858 

shown per weight (see legend) and aligned to EMG-onset (black dotted line, see Methods). Black 859 

scale bars are 500ms. B. Mean LDA accuracy comparing firing rates between each pair of 860 

weights, for each cell across the full time-course of each EMG onset-aligned trial. Blue circles 861 

show mean LDA accuracy for individual cells. Red errors bars show mean and standard 862 

deviation across the population of cells. Mean LDA accuracy was compared between all PTNs 863 

and RF cells for each animal with independent two-tailed t-tests (monkey N: t96=-1.81, p=0.074; 864 

monkey L: t20=-0.841, p=0.411). C. Percentage of cells with a significant change in firing rate 865 

compared to trials at 0.5kg, shown per weight (see legend) and 50ms bin. Black dotted line 866 

shows EMG onset. D. Cumulative distribution of the first 50ms bin with a significant difference 867 

in firing rate compared to trials at 0.5kg, shown per weight (see legend). Black dotted line shows 868 

EMG onset.  869 
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Figure 7. Comparison of firing rate before and after EMG onset 870 

LDA comparing the firing rate between each pair of weights for each cell, performed separately 871 

for firing rate before EMG onset (-500 to 0ms; columns 1 and 3) and after EMG onset (0 to 872 

500ms; columns 2 and 4) for EMG onset-aligned PETHs (see Methods). Results are shown 873 

separately for monkey N (A-D) and monkey L (E-H). A,E. Percentage of cells in which the 874 

model correctly predicted the weight of each trial significantly more often than chance for each 875 

pair of weights. McNemar’s test compared the overall model reliability for each cell between the 876 

‘before’ and ‘after’ condition (monkey N PTN: p=0.020; monkey N RF: p=0.317; monkey L 877 

PTN: p=0.014; monkey L RF: p=0.083).  B,F. Mean model accuracy in the sub-population of 878 

cells in which the overall model accuracy was better than chance (monkey N PTN before: 879 

n=54/65; monkey N PTN after: n=61/65; monkey N RF before: n=30/34; monkey N RF after: 880 

n=28/34; monkey L PTN before: n=21/27; monkey L PTN after: n=27/27; monkey L RF before: 881 

n=12/16; monkey L RF after: n=15/16). A repeated measures ANOVA compared mean model 882 

accuracy between the ‘before’ and ‘after’ conditions (monkey N: F1,77=9.98, p=0.002; monkey L: 883 

F1,31=15.9, p<0.001) and cell type (monkey N: F1,77=4.91, p=0.030; monkey L: F1,31=2.85, 884 

p=0.101). Post-hoc testing compared mean model accuracy between the before and after periods 885 

for each animal and cell type with paired two-tailed t-tests (monkey N PTN: monkey N: t51=-886 

8.44, p<0.001; monkey N RF: t26=-4.82, p<0.001; monkey L PTN: t20=-7.95, p<0.001; monkey L 887 

RF: t11=-6.45, p<0.001). In monkey N, post-hoc testing compared model accuracy between cell 888 

types for each period (before: t77=-2.71, p=0.008; after: t77=-1.47, p=0.144). C,G. Mean model 889 

accuracy in all cells. D,H. Mean model accuracy per cell type and time period (before or after 890 

EMG onset), for all cells. Blue lines show mean model accuracy for individual cells, before and 891 

after EMG onset. Red errors bars show mean and standard deviation across the population of 892 
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cells. A repeated measures ANOVA compared mean model accuracy between the ‘before’ and 893 

‘after’ conditions (monkey N: F1,97=16.8, p<0.001; monkey L: F1,41=6.94, p=0.012) and cell type 894 

(monkey N: F1,97=0.80, p=0.372; monkey L: F1,41=1.71, p=0.199). Post-hoc testing compared 895 

mean model accuracy between the before and after periods for each animal and cell type with 896 

paired two-tailed t-tests (monkey N PTN: t64=-9.60, p<0.001; monkey N RF: t33=-3.59, p=0.001; 897 

monkey L PTN: t26=-9.17, p<0.001; monkey L RF: t15=-5.00, p<0.001).  898 

Figure 8. Comparison of early and late peaks 899 

A. Mean LDA accuracy per cell type and time period (early or late peak). Blue lines show mean 900 

model accuracy for individual cells, for peak firing rate in the early and late periods. Red errors 901 

bars show mean and standard deviation across the population of cells. Mean LDA accuracy of 902 

the early peak and late peak were compared for each animal and cell type with paired two-tailed 903 

t-tests (monkey N PTN: t63=-3.72, p<0.001; monkey N RF: t33=-3.58, p=0.001; monkey L PTN: 904 

t26=-2.93, p=0.007; monkey L RF: t14=-3.50, p=0.004). B. Correlation of peak firing rate in the 905 

early and late period for each weight (see legend). Individual points show peak firing rate for 906 

each weight, for each cell. C. R
2
 values for the correlations between peak firing rate in the early 907 

and late period for each cell. R
2
 values were compared between PTNs and RF cells for each 908 

monkey using unpaired t-tests (monkey N: t97=-1.49, p=0.139; monkey L: t41=-3.19, p=0.003). 909 

 910 


















