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Abstract 

Peripheral nerve injury is debilitating, causing loss of sensation and muscle control, chronic 

pain and disability. Transected nerves have the potential to regenerate following surgical 

repair, but there are serious limitations for injury sites where there are gaps as regeneration 

requires a supportive microenvironment. The clinical gold standard is to bridge the severed 

nerve ends with a nerve autograft harvested from another part of the patient’s body; however, 

donor site morbidity, limited availability and poor outcomes mean there is a clear need to 

develop alternatives. 

 

Advances in tissue engineering together with stem cell technologies provide promising routes 

for engineering living artificial nerve replacement tissues, but progress is hampered due in 

part to a lack of consensus on how to arrange materials and cells in space to maximize nerve 

regeneration. This is compounded by a reliance on experimental testing, which precludes 

extensive investigations of multiple parameters due to time and cost limitations. 

 

Here, a computational model is developed and solved to simulate growth of repairing 

peripheral nerve neurites. This model is parameterised against available literature data from 

a range of experimental setups, to provide a predictive tool to inform the design of engineered 

replacement tissues for peripheral nerve injury repair. The in silico framework is explored in a 

case study to inform the design of an engineered repair construct. This case study focuses on 

a construct comprised of collagen hydrogel with embedded synthetic biomaterial fibres to 

promote neurite growth through the provision of mechanical and directional cues. A particle 

swarm optimisation algorithm, implemented through parallel computing, is deployed to 

optimise the size and the number of fibres needed to maximize the rate of neurite regrowth; 

robustness of the predictions is explored through an extensive sensitivity analysis, and new 

design strategies are identified. The approach provides an in silico tool to inform the design of 

engineered replacement tissues, with opportunity for further development to multi-cue 

environments and validation testing. 
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1 Introduction  

Peripheral nerve injuries affect 1 M people p.a. in Europe and the US (1). In the most severe 

cases, when nerves are severed, patients experience disability and long-term neuropathic 

pain. The current gold-standard treatment for these patients is surgery where the gap is 

repaired by grafting a healthy section of nerve (nerve autograft) taken from elsewhere within 

the patient. Several limitations have been associated with this treatment including the limited 

availability of healthy nerve, morbidity at the site of the donor nerve, and limited functional 

recovery. For example, Ruijs et al. (2) performed a meta-analysis of patients with nerve injuries 

and observed that only around 50% of patients with nerve autografts experienced meaningful 

functional recovery.  

These considerations have motivated research to develop alternatives to grafting by 

engineering nerve repair construct (NRCs) to provide mechanical and chemical cues that 

promote and guide nerve growth. An NRC consists of a sheath containing materials and 

therapeutic cells, sutured into the gap between nerve stumps at the injury site (Fig. 1). Many 

designs have been developed and some have been FDA approved; however, very few have 

been translated into clinical practice (3,4). Pedrosa et al. (4) summarises the breadth of 

components that have been explored to engineer a regenerative microenvironment, including 

material scaffolds, topographical patterning, therapeutic cells, soluble factors, etc (see Fig. 1). 

Each of these components requires a number of design choices, e.g. 70 different biomaterial 

options that have been proposed for repair scaffolds (5). In addition,, the spatial organisation 

of material requires careful consideration to exploit neurite responses to their local 

environment. Given the logistical and financial constraints of experimental investigation, we 

propose a computational models of peripheral nerve regeneration to inform the design of novel 

NRCs. 
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Fig. 1: Schematic demonstrating some of the options available when designing an 
NRC. 
Schematic of (A) the positioning of nerve repair constructs (NRCs), and the design choices 
when engineering an NRC. These include parameters that define (B) the outer sheaths 
thickness, strength/stiffness and permeability as well as (C) the core material that may 
include scaffolds, therapeutic cells and durotactic and chemotactic gradients, whose spatial 
distribution needs to be carefully considered.  

Several computational models have been developed to simulate the growth of neurites in 

response to chemical cues (6–11), including through a peripheral NRC (10,11) . These models 

have provided valuable insights into how chemical factors influence neurite growth; however, 

they are limited to one spatial dimension, and do not explore the role of materials and physical 

factors in determining neurite growth and guidance. Here we develop a framework based on 

a discrete random walk, which is capable of describing neurite responses to a range of 

different cues, in a 3D environment that mimics the architecture of an NRC. Although the 

framework we propose is generic and could be applied in numerous contexts, here we focus 

on the role that material and physical cues play in determining the rate of neurite growth. Given 

the goal to use the model to inform the design of NRCs, it is essential that the computational 

framework can simulate a realistic repair setting, including the growth of thousands of neurites 

over a time period of weeks. Furthermore, we take particular care to parameterise and validate 

the predictions of the model against experimental data, and test the sensitivity of the model to 

perturbations in its defining parameters. 
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The potential of this framework is explored by applying it to a specific NRC design - a cellular, 

collagen-based hydrogel with embedded stiff fibres, as depicted in Fig. 2. Collagen is a 

promising hydrogel base for NRCs (4,12,13), and when combined with self-aligned therapeutic 

cells to form an artificial tissue has been shown to support comparable levels of nerve 

regeneration to nerve grafts in preclinical studies (12,14). One option for augmenting this 

regeneration is by embedding stiff material fibres in the hydrogel base, to provide an additional 

stiffness and directional cue to guide and accelerate neurite growth. Here we focus on the 

example of phosphate glass fibres (PGFs), which have been shown in vivo to promote growth 

(15). We focus on the geometry of a rat sciatic nerve injury repair, as it is commonly used for 

testing of nerve injury repair strategies. The in silico framework to test the balance between 

providing directional cues for regeneration by embedding fibred, whilst not limiting space 

availability and blocking the growth of neurites. Through a particle swarm optimisation (PSO) 

algorithm, we identify the number and size of fibres that maximise the number of neurites that 

reach the distal end of the NRC within 8 weeks (a typical repair testing timeframe). In this way, 

we demonstrate how to build an in silico framework tailored to available experimental data, 

and use it to make predictions that can inform future experimental work. 

 

Fig. 2: Example NRC fabricated from a collagen-based hydrogel with embedded stiff 
fibres .  
A typical NRC geometry and composition for pre-clinical studies in a rat sciatic nerve injury 
model. The NRC bridges the proximal and distal stumps, and consists of a collagen 
hydrogel with embedded PGFs, surrounded by an outer biomaterial sheath. Typical 
dimensions for a rat sciatic nerve injury repair are indicated. 

 

2 Methods  

The framework developed describes the growth of neurites in an NRC, consisting of two key 

components: 1. the meshing of an NRC geometry to provide the geometrical substrate for the 

computational model, 2. the random walk-based model for simulating the growth of neurites. 

In each case, we describe the general form of the mesh or model, and then its implementation 
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for the case study to explore embedding PGFs in a collagen-based NRC to maximise neurite 

growth.  

2.1 Geometrical Meshing of an Engineered NRC 

The model is solved on a cylindrical geometry representative of an NRC using software 

COMSOL Multiphysics (COMSOL Multiphysics® v. 3.5. www.comsol.com. COMSOL AB, 

Stockholm, Sweden). This software is able to capture complex geometries described through 

sophisticated meshes, as well as both discrete and continuous model descriptions. In the long-

term, this will enable the extension of the framework described here to account for chemotactic 

and cellular factors (16), as well as the physical and material-based cues here demonstrated. 

Here we describe the generation of numerical lattices for simulating growth of neurites using 

a random walk model, in an NRC. A typical engineered NRC for use in a rat sciatic nerve 

repair comprises of a cylinder of around 15 mm length and 1.5 mm diameter (14) (Fig 2). 

Although this can be readily meshed using  COMSOL, the discrete and continuous 

components of the model have different requirements: the continuous models require a dense 

lattice for convergence, the random walk is lattice-based and requires the spacing between 

mesh nodes to be approximately the growth rate of neurites (≈10 𝜇m. h−1 (𝛾)). The time step 

between iterations was fixed at 1 hour as it was found to be a good compromise between 

ensuring computational efficacy and space availability of nodes when simulating thousands of 

neurites.  

A standard finite element mesh comprises tetrahedral or hexahedral elements, which for a 

mesh of a 15 mm length NRC with an inter-node separation of around 10 𝜇m would make the 

model computationally prohibitive. Instead, a mesh was constructed for a circular cross-

section at either the distal or proximal end of the NRC with a resolution representative of a 

neurite growth rate (e.g. inter-node separation around 10 𝜇m) (Fig. 3 A) and then extrapolated 

down the length of the cylinder, using a COMSOL tool called “swept” (Fig.3 B) resulting in 

equally spaced nodes.  
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Fig 3: Meshing an NRC geometry.   
First of all, a circular cross-section through the proximal end of the NRC cylinder is meshed 
ensuring the nodes are at a mean distance of 10 𝜇m (A) and secondly the remaining 
geometry is meshed by ‘sweeping’ with a mean distance of 10 𝜇m along the length of the 
NRC creating copies of (A) as exemplified by the 1 to 6 cross-sections (B).  

 

We present a case study to demonstrate the computational model, where the radius (𝑟) and 

number (𝑛) of PGFs embedded in an NRC are optimised to maximise the regrowth of neurites. 

These PGFs are captured in silico by an algorithm that defines the nodes that the PGFs 

occupy, and excluding them from the available domain for neurite paths. The algorithm starts 

by considering the nodes at the proximal cross-section of the device (𝑆), and randomly 

distributing PGFs, taking account of both their radius, and proximity to neighbouring fibres and 

the edges of the NRC. The distribution algorithm ends when either the desired number of 

PGFs have been included, or when there are not enough nodes available for more fibres to 

be included. The nodes in the proximal cross-section that correspond to PGFs and excluded 

from the neurite domain, are then extrapolated down the length of the NRC.  

We assume that the PGFs provide a stiffness cue, which influences the growth rate of neurites 

that are close enough to be affected. This is achieved by associating a higher stiffness value 

to nodes within a fixed radius (𝛼) of each PGF, and again extrapolating down the length of the 

NRC. The PGF distribution algorithm is summarised in the Algorithm 1. 
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Algorithm 1: placing the PGFs within the NRC 

1: Initialise: the user decides on the number of fibres (𝒏) and the radius of the fibre (𝒓) and 
the thickness of the stiffer area surrounding the fibres (𝜶). 

2: Taking the nodes (𝑺) from the most proximal side. 
3: Pre-process 𝑺 so that it only includes nodes that are at a distances ≤ 𝒓 from the edge of 

the geometry. 
4: while 𝒊 < 𝒏  
5: A node 𝒔𝒊 ∈ 𝑺 is chosen at random.  

6: All the nodes at a distance ≤ 𝒓 from 𝒔𝒊 are found and removed from 𝑺. 
7: Then nodes at 𝒓 < distance ≤ 𝒓 + 𝜶 are given a higher stiffness values to the remaining 

𝒌𝜶 (see section 2.2.2). 
8: if there are no nodes left in 𝑺 
9: break  
10: end while  
11: ‘Sweep’ the nodes that belong to the fibres and the stiffness area along all the whole 

geometry of the NRC. 

 
 

2.2 Computational Model of Neurite Growth 

2.2.1. A General Framework for Neurite Growth 

We develop a computational model for neurite growth using a random walk framework based 

on a simplified version of the Langevin equation, which describes the Brownian motion of 

particles, which is a common approach in the literature (17,18). For a cell tip at position 

𝑞(𝑥, 𝑦, 𝑧, 𝑡) on a substratum at time t, the Langevin equation states that the movement of the 

cell can be described by: 

𝑚
𝜕2𝑞

𝜕𝑡2
= −𝜁

𝜕𝑞

𝜕𝑡
+ 𝐹(𝑡), (1) 

where 𝑚 is the mass of the cell and 
𝜕𝑞

𝜕𝑡
 and 

𝜕2𝑞

𝜕𝑡2 are the cell speed and acceleration, 

respectively. Equation (1) can be interpreted as Newton’s second law of motion under the 

assumption that the cell experiences only two forces: (1) a drag force −𝜁
𝑑𝑞

𝑑𝑡
 with drag 

coefficient 𝜁 that represents all the forces that impede cell tip movement and (2) stochastic 

motion described via 𝐹(𝑡). This description provides the components required to simulate 

cellular random motility such as stochasticity and persistence or inertia. It can be extended to 

account for directed motion by adding a term that defines, e.g. haptotaxis (19,20), chemotaxis 

(19,21,22) and galvanotaxis (23). Furthermore, a white noise term of the form 𝑑𝐵(𝑡, 𝑘(𝑞)) 

(where 𝑘(𝑞) is the stiffness of the extracellular matrix) can be included to capture the cell 

mechanisms responsible for stiffness sensing in the case of durotaxis (here 𝑞 is a constant) 

(18). 
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The work by Zubler and Douglas (7) simplifies Eq. 1,  assuming that the Reynolds number 

associated with neurite movement is small (in the order of 10-7 (24)),   

𝑑𝑞

𝑑𝑡
= ∑ 𝐹(𝑡). (2) 

Computationally, Eq. (2) can be approximated using the explicit Euler method, with the 

displacement of the cell tip (∆𝑞) at each time step (∆𝑡) given by: 

∆𝑞 = (∑ 𝐹(𝑡)) ∆𝑡. (3) 

As the model developed is lattice based, following Segev and Ben-Jacob (25)  Eq. 3 is further 

simplified by assuming ∆𝑡 is constant and in this particular case equal to 1 hour. In addition, 

the term 𝐹(𝑡), for a lattice based random walk, will be associated with the sum of cues present 

at a particular node (𝑤 = 1 … 𝑀, where 𝑀 is the total number of nodes in the mesh) in the 

mesh, hence, Eq. 3 is reduced to: 

𝑞𝑡+1 = 𝑞𝑡 + 𝐹(𝑤). (4) 

The forces associated to each 𝑤 are defined based on a formulation established by Segev 

and Ben-Jacob (25), 

𝐹(𝑤) = 𝑀(𝜃𝑤) + 𝑃𝑤(𝑡), (5) 

where, 𝑀(𝜃𝑤)represents the mechanical resistance of neurites to bending, and the term 𝑃𝑤(𝑡) 

is an aggregate representation of the environmental cues (represented by 𝑃𝑤 when evaluated 

at node 𝑤) that the neurites respond to (e.g. chemotactic, durotactic). The term 𝑃𝑤(𝑡) is 

prescribed based on an individual scenario, as demonstrated in the case study section. 

Following, the work by Segev and Ben-Jacob, the term 𝑀(𝜃𝑤) is described through a 

probability density function (PDF) that associates a probability to the angle (𝜃𝑤) that 

successive neurite segments will make between each other (see Fig 4). In Segev and Ben-

Jacob (25), 𝑀(𝜃𝑤) is defined ad-hoc, here it is informed by experimental data, as described 

through the case study. 

To the authors knowledge, there are no direct experimental data to characterise the functions 

𝑀(𝜃𝑤) and 𝑃𝑤(𝑡). To proceed, we normalized each relationship to minimise the required 

parameters to those representing the weighting of the different cues. To guarantee 
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physiologically-realistic and smooth neurite paths, the mechanical resistance term is always 

weighted higher than all the other forces simulated.  

After meshing the geometry, from the total number of nodes (𝑈) in a surface, such as in Fig. 

3 A the initial position (𝑥) of 𝑁 neurites is chosen following a normal random distribution 𝑃(𝑥) 

as: 

𝑃(𝑥) = {

1

𝑈
 𝑓𝑜𝑟 𝑥 < 𝑈

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (6) 

At each subsequent time iteration, an array (𝐿𝑁) is created that holds the nodes (𝑚) that are 

at a distance of 10±𝛿 𝜇m from each neurite, where 𝛿 is a parameter chosen to mitigate any 

directional bias. The probability associated with moving to each subsequent node is calculated 

using Eq. 5. For each neurite and at each timepoint, a sum (𝐶𝑁) is calculated of the 

probabilities of moving to each subsequent node (𝑤 = 1 … 𝜗),  

𝐶𝑁 = [𝐹(1), 𝐹(1) + 𝐹(2), 𝐹(1) + 𝐹(2) + 𝐹(3), … , 𝐹(1) + ⋯ + 𝐹(𝜗)],  (7) 

where the largest value in the array 𝐶𝑁 will be associated to the 𝑤𝑖 with the largest 𝐹𝑤 value. 

A random value (𝑋), between 0 and 𝐹(1) + ⋯ + 𝐹(𝜗), is then generated and the array 𝑇𝑁 is 

calculated as: 

𝑇𝑁 = 𝐶𝑁 − 𝑋.  (8) 

From 𝑇𝑁 the index (𝛾) of the first positive value is found, and the node chosen for next time 

iteration of the algorithm is that associated with index (𝑤𝛾). The simulation ends after 8 weeks 

(equivalent to ∆𝑡 = 1 hour). The movement of neurites within a mesh is illustrated in Fig. 4. 
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Fig. 4: Neurite movement inside a mesh. 
A. The meshed NRC geometry, as described in Fig. 3 B, comprised of a meshed cross-
section swept down the length of the NRC. Indicative cross-sections down the length are 
labelled 1,2,3,4. B. Schematic of a neurite tip starting at surface number 1, progressing to 
surface number 3 after 2 iterations. The neurite tip at surface 3 has the nodes (𝑤) at surfaces 
2, 3 and 4 to choose from for the next iteration, and the choice of this next position is 
informed by the PDF 𝑀(𝜃𝑤) (a function of the angle (𝜃) made between segments). 

 

For simulations where the term 𝑃𝑤𝑖
(𝑡) dominates the movement of neurites, the predicted 

neurite paths were not physiologically realistic due to sharp angles between neighbouring 

segments (Fig. 5 A). To mitigate this, and following the approach of Segev and Ben-Jacob 

(25), we introduce a noise reduction term that consists in finding a number (𝑁𝑅) of arrays 

𝑇𝑁𝑖 … 𝑁𝑅
 as 

𝑇𝑁𝑖 … 𝑁𝑅
= 𝐶𝑁 − [𝑋1, 𝑋2, 𝑋3 … 𝑋𝑁𝑅

].  (9) 

From each array a 𝛾𝑖 is identified as the first positive value for each array creating an array of 

indexes [𝛾1, 𝛾2, 𝛾3 … 𝛾 𝑁𝑅
]. Then a “winner takes all” methodology is implemented where the 

node selected the largest number of times is the node chosen for the next iteration. This 
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methodology ensured the neurite paths were more physiologically realistic, as shown in the 

results section (Fig. 5 B). 

 

Fig. 5: Illustration of the need for the noise reduction parameter 𝑵𝑹.  
A. 𝑁𝑅 = 1 resulting in a neurite path that frequently includes straight angles, which 
is not physiological, B. 𝑁𝑅 = 100 resulting in a much straighter path compared to A.  

Two further conditions were implemented. First of all, to prevent neurites from crossing each 

other, all nodes that have been occupied by each neurite are excluded from the node array 

𝐿𝑁. Secondly, the neurites paths are constrained by the boundary of the NRC, as they only 

have the nodes within the domain available to them.  

It is also necessary to ensure that nearby neurites do not choose the same node at the next 

iteration. When a number of neurites (𝜀) share a node in their 𝐿𝑁, an array of cumulative 

probabilities is built, where all neurites have the same probability of being chosen (
1

𝜀
, 

2

𝜀
, 

3

𝜀
…

𝜀

𝜀
). 

A random variable is generated (0 ≤ 𝑋 < 1) and the same procedure as in Eq. 7 is followed 

to choose the neurite to which the node is apportioned, and the node is removed from the 

available paths of all other neurites. 

This computational framework enables prediction of neurite paths, that incorporate 

competition for space. The framework is summarised through a pseudocode in Algorithm 2. 

Next we describe how to implement the framework for a specific scenario. All the code created 

can be found in the Supplementary material.  
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Algorithm 2: Computational Implementation of Neurite Growth Algorithm 

12: Initialise: user chooses the number of neurites simulated (𝑵) and, assuming the 
starting time is (𝒕 = 𝟎), the duration (𝒕𝒆𝒏𝒅). 

13: All 𝑵 neurites at t=0 are distributed randomly across the distal cross section of the NRC 
14: while 𝒕 < 𝒕𝒆𝒏𝒅 do 

15: Build the array 𝑳𝑵 of nodes (𝒎) at a distance < 10±𝜹𝝁m. 
16: Remove all the nodes that are occupied by neurites as well as the ones belonging to 

matrix 𝚶, which are outside the geometry of the NRC.  

17: if 𝜺 neurites detected the same node do 
18: Generate random variable 𝑿 between 0 and 1 with each neurite having probability 

𝟏

𝜺
 of being chosen.  

19: The first neurite that has [𝟎,
𝟏

𝜺
,

𝟐

𝜺
… 

𝜺

𝜺
] − 𝑿 > 𝟎 is chosen. 

20: end if 
21: Calculate 𝜽 between neurite consecutive segments. 
22: Get the value of the cues at the nodes detected (𝑷𝒘𝒊

(𝒕).)  

23: Normalize both 𝑴(𝜽𝒘𝒊
) and 𝑷𝒘𝒊

(𝒕) respectively and calculate 𝑭(𝒘𝒊) = 𝑴(𝜽𝒘) + 𝑷𝒘(𝒕). 

24: Create the cumulative array 𝑪𝑵 = [𝑭(𝟏), 𝑭(𝟏) + 𝑭(𝟐), 𝑭(𝟏) + 𝑭(𝟐) + 𝑭(𝟑),
…  𝑭(𝒘𝟏) + ⋯ + 𝑭(𝝑)], 

25: Generate random variables 𝟎 ≤ 𝑿𝑵 < ∑ 𝑭(𝒘)𝒎
𝒊=𝟏   

26: Find the node at 𝜸 which is the index of the first true value for 𝑻𝑵 = 𝑪𝑵 − 𝑿 > 𝟎. 
27: Perform step 14 and 15 𝑵𝑹 times. 
28: The next position of the neurite is the node that has been most frequently chosen.  
29: 𝒕 = 𝒕 + 𝝉, where 𝝉 is the time step considered.  
30: end while  

 

2.2.2 Case Study: Phosphate Glass Fibres Embedded in a Cellular Hydrogel 

The computational model is applied to a specific scenario to demonstrate its utility. We focus 

on an NRC with phosphate glass fibres (PGFs) embedded within an aligned cellular matrix, in 

order to provide additional directional and stiffness cues to neurites.  

Engineered Neural Tissue (EngNT) comprises an aligned cellular collagen matrix. A typical in 

vivo test for EngNT is summarised in Georgiou et al. (12), where an EngNT construct is tested 

in a 13 mm nerve gap in a rat sciatic nerve injury model. After 8 weeks, the number of neurites 

is counted in 4 cross-sections through the construct, through histological staining and 

segmentation. These 4 cross-sections are measured from the end of the nerve stump, 

specifically, 1 mm into the proximal (PS) and distal (DS) stumps and 1 mm into the proximal 

(PD) and distal (DD) parts of the repair site (see Fig. 6).  
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Fig. 6: Schematic diagram indicating the nerve repair and NRC geometry, and 
locations where neurite regeneration are assessed using histological staining.  
This represents a typical in vivo setup for assessing nerve injury repair in a rat sciatic nerve 
model. In the example scenario reported in Georgiou et al. (12), neurite numbers were 
counted in cross sections at 4 locations 1 mm into the proximal (PS) and distal (DS) stumps, 
or 1 mm into the proximal (PD) and distal (DD) parts of the repair construct, measured from 
the end of the nerve stump in each case. These data are used to inform the computational 
modelling framework. 

 

Georgiou et al. (12) counted around 4,000 neurites at the PS, of which around 50% made it 

to the PD after 8 weeks; of these, 70% were recorded at the DD. For the control scenario of 

an empty tube (no aligned matrix filling), a similar number of neurites made it from the PS to 

the PD cross-section, but only 10% made it to the DD, as summarised in Table 1.  

Table 1  

Repair construct Neurite counts 

 PS PD DD DS 

Empty tube 4,000 2,000 200 200 

EngNT 5,000 2,000 1,400 1,000 

Neurite counts extracted from Figure 4.18 of the work by Georgiou (26) 

Here we explore the scenario where, following the approach in (15), PGFs are embedded in 

the EngNT scaffold, to provide an additional directional and stiffness cue to encourage more 

neurites to reach the DD within 8-weeks. First of all, we present the provision of parameter 

values and constitutive relationships in the computational model, using the prescription of the 

environmental cue term, 𝑃𝑤(𝑡). All parameter values are summarised in Table 2. 
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Table 2   

Parameters Definition Value 

𝛾 Growth rate of neurites. 10 𝜇m.h-1 

𝛿 Standard deviation of growth rate. 0.7 𝜇m.h-1 

𝑛 Number of fibres embedded within the NRC. 
To be determined via 
optimisation 

𝑟 Radius of each of the 𝑛 fibres. 
To be determined via 
optimisation 

𝑁 Number of neurites initiated at the PS. 
2000-4000 taken from 
experimental (12) 

𝛽𝜇 Constant that represents the forward directional bias 
𝐵(𝑤) when a neurite grows within EngNT. 

Fitted 

𝛽𝑉 
 

Constant, such as 𝛽𝜇, it accounts for the forward bias, 

however, here for the empty tube. 

Fitted 

𝛼 
 
Thickness of the high stiffness zone surrounding a PGF 
 

Investigated through 
sensitivity analysis 

𝑘𝛼 The neurite bias to move forward when in the stiffer area 
surrounding the PGF’s. 

Investigated through 
sensitivity analysis 

 
𝑁𝑅 

 

The noise reduction term. (Eq. 9) Fitted 

Summary of the parameters in the computational model. Parameter values are either 
known based on experimental studies, fitted by comparing model predictions against 
neurite count data at the sections identified in Figure 6, or investigated through a model 
sensitivity analysis. Finally, the number and radius of the PGFs are determined by 
optimising to maximise the number of neurites that reach the DS. 

Based on these experimental protocols defined in Georgiou et al. (12), the duration of 

simulations (𝑡𝑒𝑛𝑑), the number of neurites simulated (𝑁) were fixed, alongside the dimensions 

on the geometry. Next we prescribe the function 𝑀(𝜃), which encapsulates the direction of 

neurite growth in the random walk model (equation (5)), based on data from Razetti et al. (6), 

which reconstructed neurite architectures in 3D based on histological staining of gamma 

neurons in a drosophila model. Razetti et al. (6) were then able to segment the architecture 

with nodes separated by 11 𝜇m and calculate the angles made between segments (Fig. 7). 

Such data resolution has yet to be achieved in rat models (although the model can be readily 

recalibrated when required).  

These data are used to inform the function 𝑀(𝜃) by, firstly, calculating the distribution of angles 

between neighbouring neurite segments, and then fitting different forms of PDF’s to the 

distributions, as demonstrated in Fig. 7. Normal, Logarithmic and Kernel distributions were all 

tested, and it is clear that the Kernel distribution comprised of the sum of normal distributions 

with a bandwidth of, approximately, 3.58 best captures the properties of the distribution.  
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Fig. 7: Prescription of the PDF 𝑴(𝜽) using data from Razetti et al. (6)  

The function 𝑀(𝜃) from Equation (5) is calculated by fitting a PDF to angle distributions 
extracted from reconstructed gamma neurite architectures from a drosophila model by 
Razetti et al. (6). Different forms of PDF were tested, with the Kernel (bandwidth of 3.58) 
chosen.  

The term 𝑃𝑤(𝑡) in the random walk model (Eq. 5) encompasses the role of environmental cues 

in determining the direction of neurite growth on the movement of neurites. Here, we consider 

the combined impact of environment cues provided by the EngNT (represented by the function 

𝐵(𝑤), which includes both durotactic and chemotactic effects, and depends on the spatial 

location through 𝑤), and the durotactic cues provided by the fibres (represented by 𝐷(∇𝑘(𝑤)), 

where ∇𝑘(𝑤) represents the stiffness gradient between the current neurite tip position and 

those at the following iteration locations, 𝑘(𝑤) ) so that  

𝑃𝑤(𝑡)= 𝐵(𝑤) + 𝐷(𝑘(𝑤)).  (10) 

To the best of our knowledge, there are no clear data to inform these relationships directly in 

the literature. It was, then, assumed that the chemotactic and durotactic cues present in 

EngNT are represented as a constant bias of neurite tips moving towards the distal surface of 

the device (𝛽𝜇(𝑤)), similarly, a constant was defined to represent the cues in an empty tube 

(𝛽𝑉(𝑤)). These two constants were then fitted, as described in the following sections, to data 

consisting of neurite counts from Georgiou et al. (2013) for the empty and EngNT construct 

(and as summarised in Table 1). The parameter space is informed by ensuring that the forward 

bias 𝐵(𝑤) cannot be larger than the mechanical resistance 𝑀(𝜃𝑤), as it would result in non-
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physiological behaviour, hence, as 𝑀(𝜃𝑤) has a value between 0 and 1; hence, as 𝑀(𝜃𝑤)  we 

assume that 𝐵(𝑤) is between 0 and 1, with 𝑀(𝜃𝑤𝑖
) ≥ 𝐵(𝑤).  

Finally, the term 𝐷(∇𝑘𝑤) in equation (9) describes the response of neurites to the embedded 

PGF fibres. In (27), the modelling literature describing how cells respond to the stiffness of the 

extracellular matrix (ECM) is reviewed. These models focus on cell processes at different 

scales: at the subcellular scale, e.g. formation of focal adhesion the dynamics of protrusion 

and stress fibres (28–30), and at the cellular scale, where the main concern is the impact cells 

have on the structure of the ECM (31,32), or 2D cell motility via durotaxis (18). Our model 

follows a similar formulation to (25), with the term 𝐷(∇𝑘𝑤) depending on the difference 

between the stiffness value at the neurite tip at time 𝑡 (𝑘(𝑤𝑡)) and sum of the stiffness values 

at all node options for the next time step (∇𝑡) neurite tip location, 𝑘(𝑤𝑡+∇𝑡). In addition, an 

assumption is made that neurite tips only respond to increases in durotaxis and ignore 

decreases. In summary,  

𝐷(𝑘(𝑤)) = {
𝑘(𝑤𝑡+∇𝑡) − 𝑘(𝑤𝑡), 𝑖𝑓 𝑘(𝑤𝑡) ≤ 𝑘(𝑤𝑡+∇𝑡)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
, (11) 

The model is informed by a description of the stiffness field induced by PGFs. As summarised 

by the schematic in Fig. 8, we assume a zone of depth 𝛼, estimated to be approximately 20 

𝜇𝑚 from experimental observations, here the directional bias cells experience when in this 

stiffer area is modulated by a factor 𝑘𝛼. Furthermore, when the neurites are within the distance 

𝛼 from a fibre, their growth rate increases by a factor of two; the implementation of this is 

explained in later sections. All the effects of a PGF on neurite growth are summarised in Fig. 

8.  
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Fig 8: Summary of the impact of a PGF on the growth rate and direction of neurites. 
The PGFs are embedded throughout the EngNT within the NRC. In a region of depth 𝛼 
around a PGF fibre (depicted in light blue), the stiffness the neurite detects increases 
compared to the surrounding cellular matrix. Besides providing a directional bias, the region 
surrounding a fibre also induces a faster growth rate (by a factor of 2).  
 

Parameterisation and Sensitivity Analyses: We parameterise the model by comparing its 

predictions against the neurite count data summarised in Table 1. Specifically, the parameters 

𝛽𝜇, 𝛽𝑉 and 𝑁𝑅 are informed through this process. The parameters 𝛽𝜇 and 𝛽𝑉 define both the 

effect of cues (chemotactic, durotactic, etc.) on the neurite growth direction in an empty tube, 

as well as the increase in these cues when neurites move within EngNT. Hence, these two 

parameters are simultaneously optimised for both the empty tube scenario (𝐵(𝑤) = 𝛽𝑉) and 

when in the presence of EngNT (𝐵(𝑤) = 𝛽𝜇). The boundaries for the parameter space are 

summarised in Table 3. For all the fitting simulations the growth rate and standard deviation 

was kept constant (𝛾 =10 𝜇m.h-1  and 𝛿 =0.7 𝜇m.h-1). 

 

Table 3   

Parameters Parameter space Reasoning 

𝛽𝜇 0 - 1 Chosen to ensure 𝑀(𝜃𝑤𝑖
) ≥ 𝐵(𝑤) (Eq. 10). 

𝛽𝑉 0 - 1 Chosen to ensure 𝑀(𝜃𝑤𝑖
) ≥ 𝐵(𝑤) (Eq. 10). 

𝑁𝑅 1 - 100 Defined ad-hoc. 

Parameter space defined for fitting, which is done by comparing model predictions against 
experimentally measured data on neurite counts at different locations along an NRC. 

The parameter space is large (several orders of magnitude), hence, a global optimisation such 

as the particle swarm optimisation (PSO) algorithm (33) was implemented. It consists in 

placing a number of particles (𝑉) distributed throughout the parameter space. At each of their 

locations, they evaluate the function being studied and then each particle estimates the move 

it is going to make by comparing its previous positions to the best (closer to the optimal value) 

location, which is perturbed by a stochastic term. The next iteration is started after all particles 
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have moved and progressively it is likely that all the particles move closer to the optimum 

value desired.  

Two parameters need to be defined in order to implement the PSO, which include the number 

of particles (𝑉) and the maximum number of iterations (𝐺). These need to be chosen to ensure 

the model converges to the right solution. Here, 𝑉 was defined as 30 and 𝐺 was chosen in the 

order of hundreds of iterations.  

The error minimized by the PSO algorithm was defined as the error between the experimental 

neurite count measurements, and the equivalent computational simulations. This error metric 

is calculated for both the empty tube scenario (𝐸𝐻) and the EngNT embedded NRC (𝐸𝐸) 

simultaneously, and perform the parameterisation by minimising the overall error function (𝐸𝑇), 

defined as the mean between 𝐸𝐻 and 𝐸𝐸. 

Due to the computational costs of the PSO algorithm, trends of the PSO simulations over the 

first tens of simulations only were investigated. Through this process it was identified that the 

parameter 𝛽𝜇 always tended to the value of 1 and, therefore, it was omitted from further 

analysis and instead we focused on the remaining two parameters (𝛽𝑉  and 𝑁𝑅). 

After optimising we quantified the dependency of the model predictions in the fitted parameter 

values, using the PAWN sensitivity analysis method devised by Pianosi and Wagener (34). 

There are several alternatives to the PAWN, the most commonly used being the Morris 

method (35); however, the Morris method requires many iterations to achieve convergence 

(36). In contrast, the PAWN method is not a moment-based method and instead uses the 

cumulative density function (CDF) of the models output (𝑦), which for the model would consist 

in the percentage of neurites that make across the device, in response to input parameter 

values (𝒙, 𝒙 = |𝑥1, 𝑥2, 𝑥3, … 𝑥𝑀|) sampled at random from a user defined range, in order to 

devise a quantitative measure (PAWN) to apportion the uncertainty of the output to each 

parameter. 

The method consists in creating, an unconditional CDF (𝐹𝑦(𝑦)), where all the parameters are 

varied at random within the ranges established for a number of samples (𝐽𝑈). For each 

parameter, a number of values (𝑗𝐶) are chosen and 𝑛𝐶 different CDFs (𝐹𝑦|𝑥𝑖
(𝑦)) are 

constructed for each parameter in turn; for each CDF a parameter value is chosen and is 

maintained constant, whilst the remaining parameters are varied randomly over a number of 

samples (𝐽𝐶). The PAWN measure consists in the Kolmogorov-Smirnov (KS) statistic between 

the 𝐹𝑦 and each 𝐹𝑦|𝑥𝑖
 for each parameter, calculated as:  
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𝐾𝑆(𝑥) = max
𝑦

|𝐹𝑦(𝑦) − 𝐹𝑦|𝑥𝑖
(𝑦)| (11) 

The parameters that have the largest KS are the ones that have a more determinant impact 

on the model outputs.  

This method is employed to test the sensitivity of the predictions of the model to the 

parameters: the growth parameter in Eq. 10 (𝛽𝑉), the noise reduction (𝑁𝑅) in Eq. 9, stiffness 

parameter (𝑘𝛼) in Eq. 11, the depth of the high-stiffness zone surrounding PGFs (𝛼) (Algorithm 

1), and the standard deviation of the growth rate (𝛿) (Algorithm 2). The parameter ranges 

chosen are summarised in Table 4. Throughout, 𝐽𝑈, 𝐽𝐶 and 𝑗𝐶 are fixed at 100, 100 and 5 

respectfully. 

Table 4 

Parameter Range 

𝜷𝑽 ±20% of the value fitted  
 

𝑵𝑹 ±20% of the value fitted  
 

𝒌𝜶 1-3 [dimensionless] 

𝜶 10-80 𝜇m 
𝜹 ±20% of the value identified in Table 2 

Ranges used to perform the PAWN analysis. 

Optimization: The aim of this work is to identify the optimal radius (𝑟) and number (𝑛) of fibres 

embedded within the device to ensure the largest number of neurites cross the full length of 

the device. Increasing the number of PGFs increases the total cues that promote growth 

towards the distal stump; however, PGFs also take up space which may become limiting, and 

therefore optima may be identified. The impact of different numbers of fibres on the behaviour 

of the neurites in a 100 𝜇m length NRC is illustrated in Fig. 9, with 5 (Fig. 9 A,B,C) or 100 (Fig. 

9 D,E,F) embedded PGFs after 0, 5 and 10 hours of simulation. The number of neurites that 

reach the distal stump is approximately 1-3% versus 80% for 5 versus 100 PGFs, respectively. 
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Fig. 9: Indicative Simulations of Neurite Growth.  
Simulations of neurite growth in the presence of 5 (top) versus 100 (bottom) PGFs, with 
simulation outputs demonstrated at 0 h (A, D), 5 h (B, E) and 10 h (C,F). Red dots indicate 
the neurite tip. For the case of 100 fibres the fibre distribution through the proximal stump 
cross-section was plotted separately (G) in order to allow for visualisation of neurites. Videos 
of these simulations can be found in the Supplementary Material.  

A PSO algorithm is utilized again, with parameter ranges for the PGF radius and number 

prescribed. The minimum PGF radius was based on feasibility of manufacture (15 𝜇m (37)), 

and the maximum was set to be the radius of NRC (750 𝜇m). The number of fibres is limited 

by the number of nodes present in the proximal surface of the mesh (approx. 14,000). For 

each particle of the PSO algorithm, a value for the two parameters is taken from the ranges 

described and the growth of 2000 neurites is simulated for 8 weeks.  

The error function is dependent on the percentage of neurites that reach the distal stump 

(against a target of 100%). The PSO was terminated when the improvement between 

iterations was less than 1%. 

Implementation: The model was developed using the LiveLink package provided by 

COMSOL  to export its mesh building functionalities into Matlab and use it to build the require 

geometries. All the code was written in Matlab, including the PGF placement algorithm (§2.1), 

the neurite growth model (§2.2.1) and the PSO algorithm. For the latter, the implementation 

available in the optimization toolbox from Matlab (33) was used. The PAWN sensitivity 
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analysis algorithm, was implemented following examples provided by the work of Pianosis et 

al. (36). 

 

3. Results  

Following the structure of the Methods section, we split the Results into three sections: 

the fitting of model parameters based on the experimental data presented in Table 1. 

(§3.1), the optimisation results for the PGF numbers and radius (§3.2), and the 

sensitivity analysis results (§3.3).  

3.1 Fitting parameters to data 

The forward bias parameters (𝛽𝜇 and 𝛽𝑉) and the noise reduction term 𝑁𝑟 were fitted 

to the neurite counts provided by Georgiou et al.(2013) (Table 1). For the parameter 

𝛽𝜇 after hundreds of iterations of the PSO the 30 particles fitted the parameter to 1 

with no variability. Hence, for the remaining analysis the parameter is going to be 

neglected and the focus will be on the 𝛽𝑉 and 𝑁𝑟 parameters. For these two 

parameters the range of parameters identified by the 30 particles is presented as box 

plots, as seen in Fig. 10. From both Fig 10 A and B it can be seen that all the particles 

converge to a set of values that varies by less than 1%. 
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Fig. 10: The result of performing a PSO algorithm to fit the parameters 𝜷𝑽 and 

𝑵𝑹 to the neurite counts for an empty tube and EngNT-filled NRC with no 
PGFs, based on experimental data on neurite counts summarised in Table 1 
(from Georgiou et al. (12)). 
Box plot of the result of the fitted parameters over 30 PSO particles, where the 
central line is the median, the box encompasses the interquartile range (25th to 75th 

percentile), the whiskers captures the whole data set and the red crosses present 
the outliers, for: (A) the 𝛽𝑉 , that equates the bias of neurites of moving towards the 
distal side of the device and (B) 𝑁𝑅, the noise reduction parameter.  

The robustness of the fit is dependent on the parameter variability, as shown in Fig. 

11, which displays a box plot of the outcome of the 30 particles in terms of the error of 

the fitting for the individual EngNT embedded (A) and the empty devices (B). From the 

fits it can be seen that, within the quartile range, all the particles converged to values 

at maximum of 1% error from the required experimental values.  
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Fig. 11: Results from the PSO algorithm implementation to fit the model 
parameters to the data by Georgiou et al. (12) over 30 particles. 
Box plot with central line representing the median and the box captures the 
interquartile range (25th to 75th  percentile), the whiskers extend to encompass the 
data set except the outliers, which are presented as the red crosses for: (A) the error 
when an empty construct is simulated and (B) similarly the mean error is plotted for 
the simulations of an EngNT embedded device. 

From the range of parameters found by the 30 particles it was assumed that for the 

following optimization the values of these parameters would be the mean of the 

particle population, as seen in Table 5. 

Table 5 

Parameter Fitted value 

𝜷𝝁 1 

𝜷𝑽 0.703 

𝑵𝒓 47.032 

The fitted parameter values.  

 

3.2 Optimization 

Here the PSO algorithm was run until all the particles converged to a solution where 

more than 90% of neurites reached the distal stump within 8 weeks simulation 

timespan and the output of the optimisation is compiled over 30 particles. After 

hundreds of simulations of the PSO all particles converged to a radius of 15 𝜇m, the 

smallest considered, with no variability between them. The optimal solution found 

consists in packing between 500 to 700 fibres with 15 𝜇m radius within EngNT, 

resulting in 91% to 95% of neurites reaching the distal stump within 8 weeks (Fig. 12). 
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Fig. 12: Outcome of the PSO of the radius and number of fibres, with the 
variability over 30 particle runs demonstrated  
Box plot representing the median and interquartile range (25th to 75th percentile), the 
whiskers encompass the whole data set, with the outliers represented by red 
crosses for: (A) the number of fibres embedded in an EngNT device and (B) the 
percentage of neurites that make it to distal side of the device. 

The PSO algorithm demonstrated that the radious of the fibres should be15 𝜇m the 

smallest manufacturable possible. A comparison of an empty tube or EngNT-filled 

NRC, for an increasing number of 15 𝜇m-radius fibres is shown in Fig. 13.  
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Fig. 13: Evaluating how varying the number of 15 𝝁m radius PGFs for an empty 
tube and EngNT-filled NRC. 
Simulations were performed for both conditions by increasing the number of PGFs 
from 1 to 900. Additionally, the experimentally measured values for those two 
conditions without PGFs are plotted as dotted lines. 
 

3.3 Sensitivity analysis 

The PAWN method was implemented to quantify the impact of changing parameters 

as described in Table 4 on the optimal predictions of model (around 650 fibres with a 

radius of 15 𝜇m, resulting in 93% of neurites reaching the distal stump in 8 weeks). 

For each 𝑛𝑐 value a CDF is constructed and Eq. 11 is used to identify each KS value, 

as presented in Fig. 14. 

 

Fig 14: Summary of the Kolmogorov-Smirnov statistic measurements made 
for each parameter evaluated.  
Each dot represents the maximum distance between one conditional CDF 
((𝐹𝑦|𝑥𝑖

(𝑦)), where the parameter being considered is kept constant and the 

remaining are varied at random, with the unconditional CDF ((𝐹𝑦(𝑦)) following Eq. 

11. 

For each parameter, in Fig. 14, 500 simulations of the model are made. All simulations 

used to produce the unconditional CDF (𝐹𝑦) were compiled into a box plot (Fig. 15), to 

observe how the number of neurites that make to distal side of the device in 8 weeks 

varies within the parameter space defined by Table 4.  
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Fig 15: Variability of number of neurites that make to the distal side of the 
NRC, when parameters are varied, within the ranges presented in Table 4 
following the PAWN method. 
A box plot of all the model outputs when creating the unconditional CDF (𝐹𝑦(𝑦)) 

where with the median and quartile range (25th to 75th percentile) represented by 
the box and the whiskers capturing the whole data set except for the outliers, which 
are plotted as red crossed, where the line. 

 

4. Discussion 

The framework developed is applied to a specific case of the use of fibres as a method 

to promote the growth of neurites across the device. The predictions made are 

dependent on a series of factors, starting with the values of the parameters of the 

model, which is tested using the PAWN method. In addition, the model predictions are 

tested when the number of neurites is increased. All these subjects are further 

explored in the following sections.  

4.1 Framework 

The work developed follows similar principles as models in the literature (7,38), e.g. 

simulating neurites in 3D as latch dependent random walks, which results in the 

number of locations available to neurites becoming limited. Additionally, the latch is 

commonly built from hexahydral elements, which provides a larger degree of freedom. 

Here a hexahydral mesh was not feasable because of the scale considered: 

thousands of neurites are simulated in a millimeter scale environment over weeks vs 

the models found, where tens to hundreds of neurites are considered within micron 
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scale environment for hundreds of iterations. The architecture of the mesh can explain 

the fact that neurites get stuck around the fibres. The model by Razetti et al. (38), also, 

observed that their simulated neurites ran out of space to move. 

Using, a PSO algorythm the parameter space can be optimally sampled arriving at a 

converging solution. The data available comprises of neurite counts and the cues 

provided by the devices considered are multi-faceted. Therefore, a qualitative 

approach was employed and as demonstrated it was possible to match the model 

predictions to data. However,  the efficacy of the parameterisation reached is sensitive 

to small changes in parameter (Fig. 10-11), as a variability smaller than 0.5% results 

in the number of neurites crossing both device designs varying by, approximately, 3%. 

In order to address this it is recommended that a future in vivo experiment should 

quantify the number of neurites at several positions within the devices and over several 

time points. 

Another set of data, taken from Razetti et al. (38), was used to parameterise the step 

size movement of neurites, which consisted in measurements from a different type of 

neurite. These data were required because of the difference in granularity of scale 

between the in vivo experiments and the in silico simulations. The data from Razetti 

et al. (38), as it described neurite movements between 10 𝜇m segments. The two sets 

of data used were aquired from different conditions, different spicies and different 

types of neurons. Regardless, this work demonstrates a workflow that allows 

parametirisation of a neurite model by different sets of data and as relevant data are 

aquired the model can, easily, be adapted. 

In addition, neurite counts from transverse sections do not allow an understanding of 

the impact of branching on the growth of neurites within these constructs, which is a 

known mechanism that neurites employ, in order to optimally sample their 

environment. However, its triggering mechanisms have not yet been properly 

characterised, therefore, models resort to making ad-hoc assumptions (7,38). Hence, 

as there are no data to properly parameterise a branching model, branching was not 

included. Without branching, which tends to be associated with temporary additional 

sprouts rather than increased functional neurite connections, the predictions of the 

model may overestimate the efficacy of the approaches under investigation. 

4.2 Optimal therapy 
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A PSO algorithm was implemented to optimise the number and radius of the fibres 

embedded within a device, in particular, an EngNT filled device. From this analysis it 

was found that between 500 and 700 fibres with 15 𝜇m radius should be embeeded in 

EngNT, resulting in a maximum efficacy of 94%. 

This result is clearly demonstrated when neurites are simulated for an increasing 

number of fibres for both empty and EngNT devices, as seen in Fig. 13. In both cases 

the optimal number of 15 𝜇m fibres was the same. Above 700 fibres the number of 

neurites that make it to the distal surface of device start dipping, which is because the 

fibres start to occupy larger amount of space. There are no simulations with a number 

of fibres above 900 because the fibre packing algorithm runs out of space to place 

them. 

When observing the trends of the simulations it can be seen that, for the empty device, 

embedding fibres never results in less than 10% efficacy, as seen experimentally, for 

an empty constructs. At, approximately, 100-200 fibres the therapeutically efficacy of 

the therapy goes beyond the levels associated experimentally with EngNT alone, and 

a maximum is reached of 90%, when between 500 to 600 fibres are embedded.  

When considering the EngNT it can be seen that, the number of neurites decreases 

down to, approximately, 60%. This is due to the distribution of stiffness cues being 

concentrated, resulting in neurites congregating around the existing fibres and running 

out of locations to move to and getting stuck, illustrating that the spatial distribution of 

these cues are crucial for the success of the therapy. Additionally, as aforementioned 

this is due to the fact that in silico the neurites are moving in a discretised and limited 

space. Moreover, as previously stated, this effect is common to other mathematical 

models.  

When the number of fibres embedded in EngNT goes above 100 this provides the 

cues required to increase the number of neurites that make it to the distal end of the 

device, reaching a number approximately the same as the one achieved through the 

PSO algorithm of 94%. This result now needs to be tested experimentally.  

Regardless of the of the number of neurites that cross the device, all simulations point 

to the fact that fibres should be as thin as possible. Going down to the minimum radius 

allowed to be simulated within the framework, of 1 𝜇m, simulations similar to the ones 

presented in Fig. 13 were performed and it was found that the placing of 1 𝜇m fibres 
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within any of the devices resulted in an improvement above their individual fibre-free 

plateaus, reaching a maximum above 95% between 1,000 to 2,000 and decreasing to 

approximately zero when the number of fibres approaches 10,000. The optimal value 

is understandable since there is a ratio of almost one fibre per neurite, hence the 

majority of neurites can experience an increase in growth rate, without running out of 

space, due to the fibres. However, all our predictions assume that the radius of the 

cue surrounding each fibre is kept constant, which has yet to be validated 

experimentaly.The simulations discussed can be seen in Fig. 16.  

 

Fig. 16: To quantify the effects of reducing the radius of fibres to 1 𝝁m on the 
predictions of the model, as in to Fig. 13, the model was simulated with an 
increasing number of fibres from 1 to 11,000. 
As before two sets of simulations were performed to account for the NRC designs 
considered; fibres embedded within the EngNT and the empty device.  

 

In summary, it is now required to investigate the translation of these predictions using 

in vitro and in vivo models. These studies can follow the protocols already developed 

by Georgiou et al. (2013) and Kim et al. (2015), however, the in vitro models need to 

mimic the spatial constraints of thousands of neurites growing and competing for 

space. 
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4.3 Robustness of predictions 

In order to understand the dependency of the predictions of the model on the model 

parameter values, the PAWN methodology (34) was chosen due to the fact that it is 

not moment dependent and it produces graphical outputs of hierarchy of the 

parameters. However, Puy et al. (36) has shown that the outputs of the PAWN are 

dependent on how it is parameterised. The limitations of this method can be easily 

observed when looking at Fig. 14 where the KS values are evaluated at 5 points for 

each parameter at random leaving the parameter space between those 5 points 

unsampled, which, as this is a nonlinear model, might result in indeterminant 

behaviour. 

Regardless, this method aims at presenting a hierarchy of the importance of parameter 

values on the predictions of the model (Fig. 14) and the outcomes of this analysis are 

consistent throughout the KS values. The parameters 𝛽𝑣 (forward bias), 𝛼 and 𝑘𝛼 

(stiffness cues surrounding the fibres). The smaller impact of the latter parameters is 

explained, as the distribution of stiffness cues is maintained within the parameter 

ranges chosen. The negligible impact of forward bias on the model is explained by the 

fact that it is modulated by the noise reduction term 𝑁𝑅, hence, although 𝛽𝑣 makes the 

probability of moving forward larger than going in any other direction, it does not get 

chosen if the noise reduction does not allow it. Additionally, it is explained by the 

assumption made that the term 𝐵(𝑤) cannot have a higher probability than the 𝑀(𝜃). 

The sensitivity to 𝑁𝑅 is clear in Fig. 14 as the KS value increases, when the parameter 

increases and decreases below the fitted value by 20%. Even when the parameter is 

varied by 10% the impact on the model output is larger than most parameters except 

𝛿.  

The importance of 𝑁𝑅 underlines the need to uncover the cellular mechanisms 

responsible for cell motility in response to durotactic cues. Here a simplified model 

was implemented to ensure the model is manageable, however, when developments 

are made in this field, the framework presented can easily be adapted. 

The PAWN method identified growth rate standard deviation (𝛿) as the most impactful 

parameter (Fig. 14), which will impact the outputs of the model in two ways: 1. neurites 

will move for a smaller distance for each iteration and 2. the neurites have less space 

to move in the case that they share nodes. Alternatively, when increasing 𝛼 the 
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impacts on the model inputs are not so severe, which is explained, in part by the range 

of values chosen for 𝛼 and the fact that the spacing between nodes is the same. In 

summary, when the quantitative measure to evaluate the importance of the different 

parameters on the predictions of the model is the distance travelled by the neurites, 

then it is rational that the choice of growth rate will lead to drastic changes in that 

measure. However, the model does handle neurites with different growth rates, as 

long as they are integer multiples of each other.  

The PAWN method allows the robustness of the model predictions to be analysed. As 

seen from the unconditional CDF (𝐹𝑦(𝑦)) in Fig. 15, the majority of the simulations 

(65%) predict that approximately 600 fibres with 15 𝜇𝑚 radius will improve the 

regenerative potential of an EngNT device by 1% to 20%. Therefore, there is a clear 

need to validate this result experimentally.  

To investigate the importance of the number of neurites simulated on the predictions 

of the model, simulations were performed, where the number of neurite is increased 

to those counted at the PS crossection (4,000) in Table 1 (Fig. 12). This requires re-

parameterisation of model, which can be found in Supplementary material.  

Neurite growth in response to an increasing number of fibres embedded was, again 

simulated (Fig. 17) and a similar trend as in Fig. 13 was observed. The most crucial 

output is that the maximum achieved, when 500 to 900 fibres are embedded, is, 

approximately, of 71%. Compared to the maximum in Fig. 13, when considering fibres 

of 15 𝜇m radius, both there is a decrease of 20%, which illustrates the limits of the 

predictive power of the model as with 4 thousand neurites and hundreds of fibres the 

number of nodes in the mesh available for neurites to move to is reduced substantially.  
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Fig. 17: Testing increasing the number of neurites.   

Again, the behaviour of the model is evaluated for an increasing number of 15 𝜇m 
fibres, however, here the number of neurites is increased by 100%. 

 

Regardless, these results demonstrate that the potential of using fibres as a 

therapeutic tool for nerve repair is strictly dependent on the number of neurites the 

device hopes to accommodate. When aiming to guide the number of neurites that are 

reported to enter the device, embedding fibres in EngNT appears to be a valuable 

strategy, conversely, when targeting the neurites counted at the PS surface the 

potential of the therapy closely matches the efficacy of embedding EngNT alone in the 

device. Hence, the device needs to be modulated to address an exact therapeutic aim, 

in order to avoid underwhelming results. In addition, when designing in vitro models to 

test different iterations of the device the spatial dynamics of an in vivo case need to 

be replicated. The common neglect of this consideration might explain the difficulty in 

translating in vitro observations to in vivo models. 
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