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ABSTRACT

We derive constraints on a coupled quintessence model with pure momentum exchange from the public ~1000 deg? cosmic shear
measurements from the Kilo-Degree Survey and the Planck 2018 cosmic microwave background data. We compare this model
with Lambda cold dark matter and find similar x2 and log-evidence values. We accelerate parameter estimation by sourcing
cosmological power spectra from the neural network emulator COSMOPOWER. We highlight the necessity of such emulator-based
approaches to reduce the computational runtime of future similar analyses, particularly from Stage IV surveys. As an example,
we present Markov Chain Monte Carlo forecasts on the same coupled quintessence model for a Euclid-like survey, revealing
degeneracies between the coupled quintessence parameters and the baryonic feedback and intrinsic alignment parameters, but
also highlighting the large increase in constraining power Stage IV surveys will achieve. The contours are obtained in a few
hours with COSMOPOWER, as opposed to the few months required with a Boltzmann code.

Key words: methods: statistical —cosmology: observations —cosmology: theory —(cosmology:) large-scale structure of the

Universe.

1 INTRODUCTION

Current and forthcoming large-scale structure (LSS) surveys such
as the Dark Energy Survey,! ESA’s Euclid satellite mission,? and
the Vera C. Rubin Observatory’s Legacy Survey of Space and
Time (VRO/LSST)? are aiming to probe the nature of the dark
sector (dark energy and dark matter) by performing high-precision
galaxy clustering and weak gravitational lensing measurements. The
standard model of cosmology, Lambda cold dark matter (ACDM),
is currently providing the best fit to a suite of data from cosmic
microwave background (CMB) and LSS experiments (e.g. Anderson
et al. 2012; Song et al. 2015; Beutler et al. 2016; Troster et al. 2020;
Aghanim et al. 2020b; Abbott et al. 2021; Alam et al. 2021; Heymans
et al. 2021). ACDM assumes that dark energy is a cosmological
constant, A, and that General Relativity describes gravity on all
scales. It also assumes that dark energy and dark matter are non-
interacting (uncoupled). LSS surveys are aiming to constrain exotic
dark energy and modified gravity models (for reviews, see e.g.
Copeland, Sami & Tsujikawa 2006; Clifton et al. 2012).

In this work, we focus on constraining interacting dark energy
(IDE) in the form of a scalar field ¢ (quintessence) explicitly coupled
to CDM. IDE models have been widely studied and have gained
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popularity as potential alternatives to ACDM (Amendola 2000;
Pourtsidou, Skordis & Copeland 2013; Tamanini 2015; Di Valentino
et al. 2020; Lucca 2021). Here, we study a subclass of models that
only exhibit momentum exchange between dark energy and dark
matter (Simpson 2010; Pourtsidou et al. 2013; Baldi & Simpson
2015, 2017; Amendola & Tsujikawa 2020; Chamings et al. 2020;
Kase & Tsujikawa 2020). This allows them to fit CMB, supernovae,
and baryon acoustic oscillation data very well (Pourtsidou & Tram
2016; Linton, Crittenden & Pourtsidou 2021), but they have not
been tested yet with weak-lensing data marginalizing over baryonic
feedback effects.

Baryonic and dark matter non-linear effects become particularly
important in weak-lensing studies with Stage IV surveys like Euclid
and VRO/LSST, as they dominate the small, non-linear scales with
the most constraining power (Schneider et al. 2020a, b; Martinelli
et al. 2021). At the same time, the computational requirements
for accurate parameter estimation are becoming very expensive.
A typical Markov Chain Monte Carlo requires >10* evaluations
of the theoretical model under consideration, with the runtime
being dominated by the computation of cosmological power spectra
with Boltzmann codes such as CAMB (Lewis, Challinor & Lasenby
2000) or cLASS (Blas, Lesgourgues & Tram 2011; Lesgourgues
2011). This has led to the development of fast power spectra
emulators (e.g. Arico, Angulo & Zennaro 2021; Spurio Mancini
et al. 2021; Mootoovaloo et al. 2022) to accelerate the infer-
ence pipeline by replacing the Boltzmann code at each likelihood
evaluation.
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2 MODEL

The model we study belongs to the pure momentum transfer class
of theories constructed in Pourtsidou et al. (2013) and Skordis,
Pourtsidou & Copeland (2015). Its main feature is that no coupling
appears at the background level, regarding the fluid equations. This
is in contrast to the most commonly considered coupled quintessence
models, but it is also what makes this model able to fit data for a
wide range of the coupling parameter 8 (Pourtsidou & Tram 2016). In
addition, the energy-conservation equation remains uncoupled even
at the linear perturbations level. Therefore, the model provides for a
pure momentum-transfer coupling at the level of linear perturbations.

Following Pourtsidou & Tram (2016), we are going to concentrate
on the case where the action for the scalar field ¢ is written as

Sp = /dr dxa’ E(l ~28)¢* — %WW ~V@)|.

The model is physically acceptable for g < % For B — 1/2, there
is a strong coupling pathology, while for § > 1/2, there is a ghost in
the theory since the kinetic term becomes negative.

2.1 Background evolution

Assuming a flat Friedmann-Lemaitre—Robertson—Walker (FLRW)
universe, the background energy density and pressure for
quintessence are (Pourtsidou et al. 2013)

AT s _(1_,\ %
p¢=(§—ﬂ>§+V(¢): P¢=(§—ﬂ)§—v(¢), ()

and the energy conservation equations are the same as in uncoupled
quintessence:

po +3H(Py + Py) =0: pe+3Hp. =0. 2

2.2 Linear perturbations

In order to study, the observational effects of the coupled models on
the CMB and LSS, we need to consider linear perturbations around
the FLRW background. The density contrast §. = dp./p. obeys the
standard evolution equation

. ) 1.

8. = —k“0, — Eh' 3)

The momentum-transfer equation depends on the coupling parame-

ter, B, and is given by

(6HBZ +2B2)p +2BZ¢
a (,5( - 28 22)

éc = _ch + s (4)

where ¢ =¢ +¢ and Z = —¢/a. We implemented the above
equations in CLASS (Blas et al. 2011; Lesgourgues 2011) in order to
compute the CMB temperature and matter power spectra, following
the previous implementation in Pourtsidou & Tram (2016). We fix the
quintessence potential V(¢) to be the widely used single exponential
form (1EXP)

V(p) = Voe ™. ()

Our initial conditions for the quintessence field are ¢; = 107, ¢; =
0. However, the same cosmological evolution is expected for a wide
range of initial conditions (Copeland et al. 2006).
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2.3 Non-linear effects

To exploit the constraining power of forthcoming LSS data sets on
IDE models it is crucial to accurately model non-linear effects. N-
body simulations for momentum exchange in the dark sector have
been performed in Baldi & Simpson (2015, 2017), based on the
elastic scattering model presented in Simpson (2010). However,
for the model considered here there is no available non-linear
prescription or N-body data. In our analysis, we employ the non-
linear correction implemented in HMCODE (Mead et al. 2021), which
includes modelling of baryonic feedback effects. We remark that
this prescription is based on the ACDM model. Following Spurio
Mancini et al. (2019), we justify this choice with the expected
limited impact of different non-linear prescriptions on cosmological
constraints from the KiDS data set, given the range of scales probed.
However, this approach will need to be modified for applications to
future surveys, whose dark energy constraints will strongly depend
on the non-linear prescription adopted. We will return to this issue
in Section 5 in the context of IDE models and discuss ways forward.

3 DATA AND METHODS

We consider the same ~1000 deg? cosmic shear data from the KiDS
survey (KiDS-1000) used in the recent analysis of Asgari et al. (2021,
A21 in the following). Photometric redshift distributions, shear mea-
surements and data modelling are the same presented in the KiDS-
1000 papers (Giblin et al. 2021; Hildebrandt et al. 2021; Joachimi
et al. 2021). As in A21, we consider three types of cosmic shear
summary statistics, namely band powers (Schneider et al. 2002),
Complete Orthogonal Sets of E/B-Integrals (COSEBIs; Schneider,
Eifler & Krause 2010), and two-point real-space correlation functions
(2PCFs).

We sample the posterior distribution using the PYTHON wrapper
PYMULTINEST (Buchner et al. 2014) of the nested sampler MULTI-
NEST (Feroz & Hobson 2008), as embedded in MONTEPYTHON
(Brinckmann & Lesgourgues 2018). We compare constraints ob-
tained running the KiDS-1000 inference pipeline (for band powers,
COSEBIs and 2PCFs) and the Planck 2018 TTTEEE + lowE
joint polarization and temperature analysis (Aghanim et al. 2020a).
We use COSMOPOWER (Spurio Mancini et al. 2021, https://github
.com/alessiospuriomancini/cosmopower) to replace the Boltzmann
software CLASS in the computation of the matter and CMB power
spectra. All contours shown in Section 4.1 have been obtained with
COSMOPOWER. An accuracy comparison between COSMOPOWER and
CLASS contours is reported in Section 4.2, where forecast contours
are reported for a Stage IV survey configuration, obtained sourcing
power spectra from COSMOPOWER and CLASS. The technical details
of the neural network emulators are unchanged with respect to those
described in Spurio Mancini et al. (2021) .

Prior distributions for the sampled parameters are the same used
in A21, with the addition of two uniform distributions for the IDE
parameters 8 ~ U[—0.5, 0.5] and log & ~ U[—3, 0.32]. We consider
a uniform prior on logA to account for the fact that A is not
a dimensionless quantity (Mackay 2003). Choosing uninformative
priors is crucial to avoid obtaining constraints driven by the prior
assumptions (Simpson et al. 2017; Heavens & Sellentin 2018). We
also report results obtained fixing A to 1 (Copeland, Liddle & Wands
1998). The covariance matrix is the same used in A21. Its analytical
computation in ACDM is described in Joachimi et al. (2021); we do
not recompute the covariance in the IDE scenario, because similarly
to Spurio Mancini et al. (2019) we expect only a weak dependence of
the theoretical predictions for the observables on the IDE parameters,
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Table 1. Mean and marginalized 68 per cent contours on key weak lensing parameters. We also report the x2 and log-Bayes factors log Zi ‘ng values. For
the LSS probes the log-Bayes factors are always smaller than 0.5 in absolute value; following Jeffreys (1961), these values indicate that neither of the two
models is clearly favoured with respect to the other. The Planck value indicates the CMB data favour the IDE model, although not in a substantial way.

Band powers COSEBIs 2PCFs Planck

ACDM IDE IDE (A =1) ACDM IDE IDE(A=1) ACDM IDE IDE (A = 1) ACDM IDE IDE(A=1)

228 0.34170050 0.342750.083 03437008 03144007 031570060 0.318%008 02607002 0.272100% 0.27010020 0.3200000  0.31870 00 0.33570000

o8 0.71470982 0.7145096 0.722500%8 07434000 0.74570000 0.751500% 0.816700%% 0.81270 088 0.8307005% 0.813%0008 081470008 0.790%0 008

Ss 0.74970.0%% 0.75175.0%3 0.76075 030 07477500 07517005 0.76070053 0.76570.0% 0.76575.0%0 0.78070.0% 0.83910015  0.83970017 0.8357001%

x* 148.0036 148.2647 148.7240 77.9787 77.5061 78.4702 255.4080 256.4388 254.7876 980.7286 980.7316 980.5730

log ZZ:::M —0.055 £ 0.144 —0.240 & 0.140 0.136 £ 0.146  —0.048 £ 0.148 —0.048 £0.183  0.151 £0.184 0.980 4 0.277  0.402 & 0.279
values for ACDM and IDE scenarios (both varying and fixing 1)
Band Powers are similar across all three summary statistics, hence neither of the
COSEBIs two cosmological models is clearly favoured over the other, although
2PCFs the Planck data seem to mildly prefer the IDE model over ACDM.
Lo Planck Future analyses from Stage IV surveys will have the constraining
' power to provide stronger model comparison statements. It will be
g 08 interesting to explore larger prior ranges for 8, as well as different
0.6 coupling functions, which may lead to stronger alleviation of the Sg
0.4 tension. For the KiDS-1000 data used in this paper we verified that
larger, negative values of # do not help alleviate the Sg tension.
@ 0.0
-0.4 L
0 1= ’ 4.2 Forecasts for a Euclid-like survey

'é_’ -1 \ In Fig. 3, we present forecast contours for a Euclid-like Stage
S, IV survey. The simulated configuration is the same presented in
L | Spurio Mancini et al. (2019), including the prior distributions on
02 04 060810 -0202 -2-10 cosmological and astrophysical nuisance parameters. For the IDE
Qm Osg B logA parameters S and A, we use prior distributions 8 ~ U[—0.5, 0.5]

Figure 1. 68 and 95 per cent marginalized contours for key weak lensing
parameters Qpn, og, Sg, and the IDE parameters B, A. Contours for band
powers, COSEBIs and two-point correlation functions are shown in magenta,
brown, and cyan, respectively, while Planck contours in red.

verified by the weak constraints obtained on these parameters (see
Section 4.1).

4 RESULTS

4.1 Constraints from KiDS-1000 and Planck

Fig. 1 shows a comparison of marginalized 68 and 95 per cent
contours of the posterior distribution for the key parameters 2,
o3, and Sy = 03/Qm/0.3, as well as for the IDE parameters S, A.
As expected, the latter are unconstrained: differences in the matter
power-spectrum predictions for IDE models with respect to ACDM
are mostly significant at highly non-linear scales, only very mildly
probed by the KiDS-1000 data. The Planck likelihood does not con-
strain B and A either, in agreement with the fact that the CMB power
spectra are essentially insensitive to these parameters, except on very
large, cosmic variance-dominated scales (Pourtsidou & Tram 2016).

Table 1 shows the numerical values of the mean and 68 per cent
credibility intervals for Q,, o, and Sg, along with x2 and log-
evidence values, for all cosmic shear summary statistics as well as
for Planck. Fig. 2 shows contours on the 2,,—Ss plane for the ACDM
and IDE scenarios. The latter is analysed varying both 8 and A, as
well as setting & = 1. With this last choice we find an attenuation
of the tension up to ~lo. In Table 1, the x? and log-evidence

MNRASL 512, L44-1.48 (2022)

and A ~ U[0., 2.1]. We note that the prior on A differs from the one
used for the KiDS-1000 data; for future analyses of real data from
e.g. Euclid, it will be important to consider a uniform prior on log A
to account for the fact that A is not a dimensionless quantity (Mackay
2003). Here, the goal is to highlight the importance of emulator-
based approaches such as the one presented in this paper and based
on COSMOPOWER. With this emulator, we obtained the contours for
the Euclid-like survey (in blue in Fig. 3) in ~ 9 h running on 48
cores. For comparison, sourcing power spectra from the Boltzmann
code CLASS required a runtime of ~ 5 months on the same hardware
configuration (red contours in Fig. 3).

We note that this Stage IV survey configuration leads to much
stronger constraints on IDE parameters f and A, namely g =
—0.00170:02% and A = 1.23110:93% (68 per cent contours). We also see
that these IDE parameters are degenerate with nuisance parameters
Aja and 7114, modelling amplitude and redshift dependence of the
intrinsic alignment signal, respectively, as well as the HMCODE
parameters ¢, and 79, describing minimum halo concentration and
halo bloating, respectively. These degeneracies highlight the impor-
tance of developing accurate prescriptions for non-linearities and
systematics that can guarantee unbiased constraints on dark energy.

5 CONCLUSIONS

We presented constraints on an IDE model from ~1000 deg? cosmic
shear measurements from the Kilo-Degree Survey (KiDS-1000). A
comparison with Planck measurements of the CMB shows an alle-
viation up to ~1¢ of the tension in the parameter Sy = 03+/Q21,/0.3,
with respect to the ~30 tension of the ACDM analysis of Asgari
et al. (2021). Constraints on the IDE model were obtained taking
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Figure 2. 68 and 95 per cent marginalized contours in the 2, —Sg plane. The colour code is the same as in Fig. 1.
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Figure 3. Forecasts for a Euclid-like survey. The meaning of each parameter is explained in Spurio Mancini et al. (2021), whose analysis set-up is identical to
that considered here, with the sole addition of the IDE parameters B and A, introduced in Section 2.
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into account, for the first time, baryonic feedback effects. Given
the absence of bespoke non-linear prescriptions for IDE models,
we adopted the ACDM-based non-linear prescription implemented
in the software HMCODE. For applications to future surveys, proper
non-linear prescriptions for IDE models will need to be developed.
We plan to consider the Elastic Scattering model and the halo model
reaction framework (Cataneo et al. 2019; Bose et al. 2020; Troster
et al. 2021) for this purpose.

In deriving constraints, we used the neural network-based emulator
of cosmological power spectra COSMOPOWER to accelerate the
inference pipeline. We highlight the importance of such emulator-
based approaches, in particular for applications to Stage IV surveys
analyses. To demonstrate this point, we performed a forecast for a
Stage IV Euclid-like survey for the same IDE model constrained with
the KiDS-1000 data. Sourcing power spectra from COSMOPOWER
allowed us to obtain contours in a few hours, while the same contours
obtained using a Boltzmann code required a few months of run time.

The emulators trained for this analysis will remain available.
For example, following Spurio Mancini et al. (2021), we emulated
the linear matter power spectrum and a non-linear boost. As new,
bespoke non-linear corrections for IDE models become available, the
COSMOPOWER emulator for the non-linear boost can be trained on
them, while for the linear power spectrum we can reuse the emulator
trained for this analysis.
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