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Intracranial delivery of AAV9 gene therapy
partially prevents retinal degeneration
and visual deficits in CLN6-Batten disease mice
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Batten disease is a family of rare, fatal, neuropediatric diseases
presenting with memory/learning decline, blindness, and loss
of motor function. Recently, we reported the use of an
AAV9-mediated gene therapy that prevents disease progres-
sion in a mouse model of CLN6-Batten disease (Cln6nclf),
restoring lifespans in treated animals. Despite the success of
our viral-mediated gene therapy, the dosing strategy was opti-
mized for delivery to the brain parenchyma and may limit the
therapeutic potential to other disease-relevant tissues, such as
the eye. Here, we examine whether cerebrospinal fluid (CSF)
delivery of scAAV9.CB.CLN6 is sufficient to ameliorate visual
deficits in Cln6nclf mice. We show that intracerebroventricular
(i.c.v.) delivery of scAAV9.CB.CLN6 completely prevents hall-
mark Batten disease pathology in the visual processing centers
of the brain, preserving neurons of the superior colliculus, thal-
amus, and cerebral cortex. Importantly, i.c.v.-delivered
scAAV9.CB.CLN6 also expresses in many cells throughout
the central retina, preserving many photoreceptors typically
lost in Cln6nclf mice. Lastly, scAAV9.CB.CLN6 treatment
partially preserved visual acuity in Cln6nclf mice as measured
by optokinetic response. Taken together, we report the first
instance of CSF-delivered viral gene reaching and rescuing pa-
thology in both the brain parenchyma and retinal neurons,
thereby partially slowing visual deterioration.

INTRODUCTION
Batten disease (neuronal ceroid lipofuscinosis [NCL]) is a family of
rare, fatal, neuropediatric lysosomal storage disorders, typically pre-
senting in early childhood with memory/learning decline, blindness,
and loss of motor function.1,2 Each of these disorders is caused by
mutations in one of thirteen different genes, which encode a variety
of soluble and transmembrane NCL proteins.3 While the function of
these NCL proteins is not entirely understood, some have been impli-
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cated in intracellular trafficking, endocytosis, and lysosomal mainte-
nance, among other cellular functions, and therapeutic approaches
for transmembrane variants are complicated by the inability to
cross-correct neighboring cells.4 At the cellular level, Batten disease
primarily affects the central nervous system (CNS), where lysosomes
accumulate abundant lipofuscin, a chronic neuroimmune response de-
velops, and neurons progressively perish.5 While no cure exists for any
form of Batten disease, enzyme replacement therapy (ERT) effectively
slows progression for some patients of the secreted CLN2 sub-form
(ClinicalTrials.gov: NCT01907087),6,7 and recent clinical trials have
focused on ERTs, small molecule therapies, stem cell therapy, and
gene therapy.5

Gene therapy is an attractive strategy for disorders such as Batten dis-
ease, where the function of the disease protein is unknown. We and
others recently characterized the utility of a single, intracerebroven-
tricular (i.c.v.) injection of a self-complementary (sc) adeno-associ-
ated virus serotype 9 (AAV9) gene therapy in a mouse model of
variant late infantile CLN6-Batten disease (CLN6 disease), a variant
where patients have biallelic mutations in the CLN6 gene and loss
of the transmembrane protein and present with symptoms in child-
hood.8,9 Using a Cln6nclfmouse model, it was demonstrated that early
treatment with cerebrospinal fluid (CSF)-mediated delivery of
Clinical Development Vol. 20 March 2021 ª 2021 The Authors. 497
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scAAV9 resulted in near complete prevention of motor, memory/
learning, and survival deficits8. With these preclinical data, a phase
I/II clinical trial was initiated in 2016 (ClinicalTrials.gov:
NCT02725580). Importantly, interim outcome data reported in late
2019 showed stabilization of motor, language, and visual function,
along with a favorable safety profile.10

While our viral-mediated gene therapy for CLN6 disease appears suc-
cessful, the i.c.v. dosing strategy used in our previous study was opti-
mized for neuronal delivery in the brain parenchyma and may limit
the therapeutic potential to other Batten disease-relevant tissues
such as the eye. As Batten disease patients experience a severe decline
in quality of life as they lose vision and become blind, effective treat-
ments must target critical structures not only in the brain and spinal
cord but also in the retina. Construct targeting and distribution are
highly dependent on the viral vector and serotype, delivery route,
and dosing characteristics (i.e., timing, size, and purity), requiring
careful consideration to yield the most effective transduction of the
most vulnerable cells.11–14 Gene therapies focused on the eye, such
as the US Food and Drug Administration (FDA)-approved Luxturna
(voretigene neparvovec), have generally relied on direct delivery
routes that are most effective in reaching the retina, such as subretinal
or intravitreous delivery routes.13,15 Unfortunately, while these routes
reach the retina, they have limited penetrance to the brain. For multi-
organ diseases such as Batten disease, eye-specific routes of adminis-
tration would require multiple vectors to be dosed, at minimum, in
parallel to the brain parenchyma, increasing the potential for toxicity,
immune reaction, and other side effects. While more systemic deliv-
ery methods, such as intravenous delivery, have been shown to reach
both the eye and brain with a single dose, they require significantly
larger doses than other targeted approaches and have been linked
to acute hepato-toxicity and other side effects.16–18

Here, we sought to determine whether a single i.c.v. injection with an
AAV9 gene therapy construct is sufficient to target and prevent the
onset of pathology in both the eye and visual centers of the brain in a
mouse model of variant late infantile CLN6 disease. Cln6nclf mice
were treated at postnatal day 1 (P1) with either PBS or
scAAV9.CB.CLN6. This single CSF-administered dose prevented
Batten disease-associated pathology in visual centers of the brain, ex-
pressed in the retina and largely prevented central photoreceptor loss,
and partially preserved visual acuity in Cln6nclf mice. As such, a single,
i.c.v.-mediated administration of scAAV9 is able to express in the retina
andpreserve intermediate visual function in addition to its effects in the
brain, which will help optimize gene therapies for CLN6 disease and
other neurodegenerative diseases affecting the retina in the future.

RESULTS
i.c.v. delivery of AAV9-CLN6 prevents Batten disease pathology

in visual centers of the brain

Wild-type and Cln6nclf mice were dosed with scAAV9.CB.CLN6 (5�
1010 viral genomes (vg)/animal, 4 mL volume in phosphate-buffered
saline (PBS)) or PBS (4 mL volume) at P1 via i.c.v. injection as previ-
ously described.8 The AAV9 serotype was chosen to preferentially
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target neurons at high efficiency when paired with a hybrid
chicken-b-actin (CB) promoter and has previously been shown to
achieve widespread expression of the human CLN6 protein in the
mouse brain.8 Since loss of visual function is a key feature of CLN6
disease, and visual function relies on both the eye and the brain, we
first asked whether a single i.c.v. injection of scAAV9.CB.CLN6
impacted Batten disease pathology in visual centers of the brain.

Thalamocortical visual pathways including the dorsal lateral genicu-
late (DLG) and primary visual cortex (V1) are typically considered to
be key visual pathways in humans and are primarily responsible for
the processing of signals from cone-rich retinal regions with high vi-
sual acuity (i.e., the fovea).19 Other areas, such as the superior collicu-
lus (SC), primarily process signals from rod-rich regions located in
the retinal periphery and are important for the detection of move-
ment; in mice, the SC receives projections from 85%–90% of retinal
ganglion cells (RGCs).20,21 Therefore, we analyzed pathology within
the DLG, V1, and SC to investigate two parallel visual information
streams in Cln6nclf mice.

The accumulation of fluorescent lipofuscin within lysosomes is a
cellular signature of Batten disease.5 While the precise impact of
this storage material on disease progression is unknown, its accumu-
lation is often used as a correlate for disease burden.8 Here, we show
pronounced autofluorescent storage material (ASM) accumulation in
Cln6nclf animals in all of the central visual centers of the brain (DLG,
V1, SC), with neonatal scAAV9.CB.CLN6 treatment preventing this
characteristic accumulation at all time points examined (Figure 1).
Collectively, Batten disease is also characterized by a pronounced
and early neuroimmune response in astrocytes and microglia, as evi-
denced by increases in glial fibrillary acidic protein (GFAP) and clus-
ter of differentiation 68 (CD68) immunoreactivity.5 Similar to ASM
accumulation, Cln6nclf animals presented with robust astrocyte
(GFAP+) and microglial (CD68+) immunoreactivity in all visual cen-
ters examined, with scAAV9.CB.CLN6 treatment preventing this
response at all time points examined (Figures 2 and 3, respectively).
Lastly, as CLN6 disease is a neurodegenerative disorder, we asked
whether scAAV9.CB.CLN6 treatment prevented the loss of neurons
in these critical visual centers. Using unbiased stereological counts
on Nissl-stained sections, scAAV9.CB.CLN6 prevented the loss of
neurons in all visual centers examined, at all time points examined
(Figure 4). These results show scAAV9.CB.CLN6’s robust ability to
prevent pathology in visual centers of the brain and, importantly,
shed light on hallmark Batten disease pathology in the SC that has
not previously been characterized in detail for this form of NCL,
despite its presence even at early time points (3 months of age).

i.c.v.-delivered AAV9 expresses in the eye, preserving

photoreceptors in Cln6nclf mice

As neuronal integrity was preserved in the visual processing centers of
the brain in AAV9-treated Cln6nclf mice, we next examined neuronal
integrity in the retina to see if this pathology had also been prevented.
Untreated Cln6nclf mice progressively lost photoreceptors from 3 to
9 months of age (Figures 5A–5C, arrows). In contrast, representative
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Figure 1. CSF delivery of scAAV9.CB.CLN6 prevents classic autofluorescent storagematerial accumulation in several visual processing centers of the brain

in Cln6nclf mice

(A–C) A single, postnatal day 1 injection of scAAV9.CB.CLN6 delivered via CSF prevents storage material accumulation (ASM, green) in the (A) dorsal lateral geniculate (DLG),

(B) primary visual cortex (V1), and (C) superior colliculus (SC) until 9 months of age. n = 6/treatment for each time point, represented by equal numbers of males and females.

Mean ± SEM, one-way ANOVA for each time point, Bonferroni correction. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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images of wild-type animals show 10–12 layers of photoreceptors at
each time point examined, with scAAV9.CB.CLN6 partially preser-
ving these layers in the central retina of Cln6nclf mice until 9 months
of age (Figures 5A–5F). However, photoreceptors in the peripheral
retina continued to be lost following scAAV9.CB.CLN6 treatment
with age, beginning at 3 months of age to 9 months of age (Figures
5D–5F).

Given the unexpected degree of photoreceptor protection in the cen-
tral retina of Cln6nclf mice treated with an i.c.v. injection of
scAAV9.CB.CLN6, we asked whether human CLN6 was present in
Table 1. Optokinetic tracking sample sizes

Wild type (n) Cln6nclf (n)
Cln6nclf + scAAV9
(n)

Male Female Male Female Male Female

3 months 10 13 13 17 17 11

6 months 7 10 10 12 14 8

9 months 3 3 6 4 11 6

Related to Figure 7.
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the retina of treated mice. To characterize the expression patterns
of i.c.v.-delivered scAAV9.CB.CLN6 in the retina, we visualized
endogenous mouse Cln6 transcript (mCln6) and transgenic human
CLN6 (hCLN6) transcript with a modified in situ technique (RNA-
scope), as well as hCLN6 protein via immunostaining. A lack of com-
mercial antibodies targeting mouse Cln6 precluded dual immunolab-
eling. While endogenous mCln6 transcript was present primarily in
the inner and outer nuclear layers, with lower-level expression in
RGCs and the retinal pigmented epithelium (RPE) (Figure 6A),
hCLN6 transcript and protein was expressed widely throughout the
RGC layer, inner nuclear layer, outer nuclear layer, RPE, and choroid,
with particularly robust expression in RGCs (Figures 6B and 6D–6G;
Figure S1). Additionally, hCLN6 immunoreactivity was predomi-
nantly present in the central retina, with reduced expression in the
middle and peripheral areas (Figure 6C; Figure S2). When co-labeled
with a marker for photoreceptor outer segments (Rhodopsin [Rho]+),
RGCs (BRN3a+), bipolar cells (PKCa+), and Müller glia (glutamine
synthetase [GS+]), hCLN6 immunolabeling again colocalized primar-
ily with RGCs (Figures 6D–6G), consistent with retinal layer distribu-
tion and previous reports of predominantly neuronal expression
following subretinal delivery of AAV9.22 Taken together, a single
i.c.v. injection of scAAV9.CB.CLN6 expresses in the retina and
Therapy: Methods & Clinical Development Vol. 20 March 2021 499
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Figure 2. CSF delivery of scAAV9.CB.CLN6 prevents increased astrocyte reactivity in the DLG, V1, and SC

(A–C) A single, postnatal day 1 injection of scAAV9.CB.CLN6 delivered via CSF prevents GFAP+ astrocyte reactivity (green) in the (A) DLG, (B) V1, and (C) SC until 9 months of

age. n = 6/treatment for each time point, represented by equal numbers of males and females. Mean ± SEM, one-way ANOVA for each time point, Bonferroni correction. *p <

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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significantly preserves central retinal photoreceptors in Cln6nclf mice,
despite expression patterns that differ somewhat from endogenous
patterns.

i.c.v.-delivered AAV9 significantly preserves visual acuity in

Cln6nclf mice

To assess whether the preservation of retinal and other visual
pathway neurons rescued visual function, animals were tested for vi-
sual acuity using optokinetic response from 3 to 9 months of age
(OptoMotry, Cerebral Mechanics) (Figure 7A). Briefly, animals
were individually placed on a platform surrounded by four monitors
arranged in a square, and a gradient of varying contrasts rotated
around the mice in either a clockwise or counterclockwise fashion.
To assess visual acuity, an experimenter blinded to genotype and
treatment status observed the animal and determined whether the
animal was tracking the gradient. Beginning at 6 months of age, un-
treated Cln6nclf animals of both sexes declined in spatial visual acu-
ity (cycles/degree), with deficits progressing until the last time point
at 9 months of age (Figures 7B and 7C). At 6 and 9 months,
scAAV9.CB.CLN6-treated Cln6nclf mice maintained visual acuity in-
500 Molecular Therapy: Methods & Clinical Development Vol. 20 March
termediate of untreated Cln6nclf mice and wild-type mice, especially
in female mice, indicating some therapeutic value of i.c.v.-delivered
gene therapy on visual function. Importantly, untreated female
Cln6nclf mice had a significantly steeper decline in vision over
the 6-month period when compared to either female
scAAV9.CB.CLN6-treated Cln6nclf or wild-type control mice (Fig-
ure 7C, comparison of slope), again supporting a therapeutic effect
of i.c.v.-delivered scAAV9.CB.CLN6 on visual function.

DISCUSSION
In this study we showmarked preservation of neurons in both the cen-
tral retina and central visual pathways of the brain resulting from a sin-
gle i.c.v. dose of scAAV9.CB.CLN6 toCln6nclfmice. i.c.v. delivery led to
efficient expression of CLN6 throughout many retinal layers, preser-
ving a significant proportion of central retinal photoreceptors and par-
tial visual function in treated Cln6nclf mice until the last time point
examined. Taken together, these data suggest that i.c.v. delivery of
scAAV9.CB.CLN6 effectively protects central visual neurons within
the brain and expresses in the retina, resulting in the partial prevention
of retinal pathology and amelioration of visual decline.
2021



Figure 3. CSF delivery of scAAV9.CB.CLN6 prevents microglial activation in visual processing centers of the brain

(A–C) A single, postnatal day 1 injection of scAAV9.CB.CLN6 delivered via CSF prevents CD68+ microglial activation (red) in the (A) DLG, (B) V1, and (C) SC until 9 months of

age. n = 6/treatment for each time point, represented by equal numbers of males and females. Mean ± SEM, one-way ANOVA for each time point, Bonferroni correction. *p <

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Thalamocortical visual pathway pathology is well established in multi-
ple forms of Batten disease including CLN6 and, together with retinal
pathology, has been considered a correlate of the visual failure evident
in many forms of Batten disease.20,24–26 Indeed, in mouse models of
CLN3-Batten disease, pathology is present in the visual thalamocortical
system at 6 months of age despite a lack of retinal neurodegeneration,
suggesting a central thalamocortical cause of visual failure in CLN3 dis-
ease mice that perhaps precedes progressive photoreceptor loss in the
retina.20 Until now, the potential involvement of other retinorecipient
nuclei has been overlooked in CLN6 disease.

Our data from untreated Cln6nclf mice reveal for the first time pro-
gressive neuron loss, ASM accumulation, and glial activation in the
SC, a crucial visual center in mammals that, in mice, receives projec-
tions from up to 90% of RGCs.21 i.c.v. delivery of scAAV9.CB.CLN6
effectively prevented pathology in this region, in addition to previ-
ously identified pathology in the visual thalamocortical system
(DLG, V1).26 As these phenotypes were apparent early in Cln6nclf dis-
ease progression (3 months of age), these data are additionally indic-
ative of the severity of disease in the SC and its importance in the vi-
sual pathway of mice. These results are consistent with the therapeutic
effects of i.c.v. delivery of scAAV9.CB.CLN6 on the somatosensory
thalamocortical system, but the unanticipated beneficial impact of
Molecular
this treatment upon retinal pathology and visual acuity suggests
this i.c.v. route of administration could potentially provide some
benefit for retinal manifestations of CLN6 disease in lieu of adjunctive
injections directly treating the eye.8

While directing gene therapy to the CSF is a logical approach for treat-
ing brain manifestations of disease, it has always been considered un-
likely to exert any therapeutic effect upon the retina, as CSF does not
directly contact ocular structures other than the optic nerve.27 Indeed,
prior progress in treating visual manifestations of Batten disease have
relied primarily upon intravitreal delivery of gene, enzyme replace-
ment, or cellular therapies with varying degrees of success.28–31 How-
ever, our data reveal that i.c.v.-delivered scAAV9.CB.CLN6 not only
provides hCLN6 expression in the Cln6nclf retina but also partially
rescues retinal pathology, although with the current paradigm this is
predominantly confined to the central retina.

It is not clear why such robust pathological rescue in our study did not
lead to full functional rescue in treated Cln6nclf mice. Although our
approach preserved central retina photoreceptors, peripheral photo-
receptors in i.c.v.-treated Cln6nclf mice continued to degenerate with
age, and this process may have impacted visual acuity in older
AAV9-treated Cln6nclfmice. Previous attempts at retinal gene therapy
Therapy: Methods & Clinical Development Vol. 20 March 2021 501
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Figure 4. i.c.v. delivery of scAAV9.CB.CLN6 prevents neuronal loss in the

DLG, V1, and SC

(A–C) A single, postnatal day 1 injection of scAAV9.CB.CLN6 delivered via CSF

prevents progressive neuronal loss in the (A) DLG, (B) SC, and (C) V1 until 9 months

of age. n = 6/treatment for each time point, represented by equal numbers of males

and females. Mean ± SEM, one-way ANOVA for each time point, Bonferroni

correction. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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in NCLmice have suggested transducing bipolar cells to be important
for preserving photoreceptors and visual function.28,32 In contrast, in
this study hCLN6 expression was mainly observed in the RGC and
photoreceptor layers, with little evidence of bipolar cell expression,
yet this expression pattern preserved considerable numbers of central
photoreceptors and resulted in partial maintenance of visual function.
Therefore, it is possible that both RGCs and bipolar cells have impor-
tant roles to play in preserving photoreceptor function in Cln6nclf

mice. Additionally, there could be opportunities for improving
hCLN6 expression in cell types that show low levels of expression
in the current study, as there is considerable evidence that AAV9
transduction is more widespread than its product’s transcript or pro-
tein expression.33,34

It is also important to note that this study concluded at 9 months of
age and only assessed visual function via optokinetic tracking and not
electroretinography, in which the latter technique gives a more com-
plete and precise picture of the function of the entire retina. There-
fore, while our study shows partial preservation of visual function
in AAV9-treatedCln6nclfmice, it is possible that a more thorough lon-
gitudinal analysis would point to additional aspects of visual function
that can be improved. Nonetheless, our i.c.v.-treated Cln6nclfmice did
not show any signs of retinal toxicity, as have been reported following
subretinal delivery of various AAV vectors in mice and non-human
primates, suggesting that AAV9 did not adversely affect visual acuity
through cell death in this study.35–37

There are limited data available regarding retinal transduction via
AAV following i.c.v. injection. In the Batten disease field, Katz and
colleagues38 treated CLN2mutant canines with AAV2 via i.c.v. injec-
tion, delaying disease progression and improving survival with the
expression of canine CLN2. However, no expression was observed
in the retina of these animals, which suffered from vision loss regard-
less of pathological improvements in visual centers of the brain. This
may be due to the viral subtype used (AAV2 versus AAV9), animal
species (canine versus murine), or timing of treatment (3 months
of age versus P1), and it is unclear what parameters are necessary
for successful retinal expression via CSF delivery, including interac-
tions between capsid and promoter.39 Importantly, given the differ-
ences between visual processes of rodents and humans, our study
will need to be validated in animal models that are more reliant on
the thalamus for visual processing.

Our study also does not experimentally explain how CSF-delivered
AAV9 expresses in distantly located cells in the retina. One potential
explanation is that axons of RGCs, which travel from the retina to vi-
sual centers of the brain via the optic nerve, may facilitate retrograde
axonal transport of viral particles to cell bodies in the retina. AAV9 is
known to undergo long-distance retrograde transport in CNS neu-
rons, and it readily transduces RGCs.40–42 More difficult to explain,
however, is the expression of hCLN6 in other retinal cell classes
that do not project to the brain. While anterograde transsynaptic
transport of AAV and subsequent products has been described
following intravitreal injection,29,43 including the recent report of
2021



Figure 5. i.c.v. delivery of scAAV9.CB.CLN6 preserves photoreceptors in Cln6nclf mice

Retinal sections through the optic nerve head stained with cresyl violet show retinal lamination and photoreceptors. (A–C) A single, postnatal day 1 injection of

scAAV9.CB.CLN6 delivered via CSF largely prevents progressive photoreceptor loss in (A) 3 month, (B) 6 month, and (C) 9 month Cln6nclf mice (ONL, arrows). As observed

from representative images, wild-type animals show 10–12 rows of photoreceptor nuclei, while untreatedCln6nclfmice retain only one layer of photoreceptors by 9months of

age. In contrast, AAV9-treated Cln6nclf mice maintain 7–8 rows of photoreceptors at all time points examined. (D and E) Quantification of photoreceptor density at different

time points is presented in (D), and quantification of photoreceptor density in different retinal areas at 9 months of age is presented in (E). (F) Lastly, retinal montage images

through the optic nerve head show severe photoreceptor loss across the whole retina in untreated Cln6nclf mice at 9 months of age (arrows), while AAV9 treatment sub-

stantially preserves photoreceptors across the central retina at the same age (arrows). Peripheral photoreceptors in treatedCln6nclfmice are not preserved at 9months of age

(arrow). Abbreviations: RGC, retinal ganglion cells; INL, inner nuclear layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium. n = 6/treatment for each time point,

represented by equal numbers of males and females. Mean ± SEM, two-way ANOVA, Tukey correction. ****p < 0.0001.
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potential contralateral transfer between eyes in a human gene therapy
trial,44 retrograde transsynaptic transport has not been described, and
other retinal cell classes lack CSF-contacting projections. Lastly, while
the presence of hCLN6mRNA in our study suggests transsynaptic or
bulk CSF transportation, additional experiments will be required to
elucidate the mechanism of widespread retinal expression following
CSF delivery of AAV9.

Regardless of the mechanistic details, the demonstration of any
impact upon retinal structure and function in Cln6nclf mice following
i.c.v. delivery of scAAV9.CB.CLN6 is encouraging from a therapeutic
standpoint. Future studies should determine if i.c.v. dosing strategies
can be optimized to maintain peripheral photoreceptor integrity and
full visual acuity and whether delayed dosing strategies can provide
similar benefits. Increased doses, alternative viral serotypes, or com-
bined routes of administration may be necessary to offer the most
complete photoreceptor and visual preservation. Taken together,
this first report of CSF-mediated AAV9 delivery to the retina has ther-
apeutic promise and will help determine optimal viral dosing strate-
gies for CLN6 disease and other similar neurodegenerative diseases in
the future.

MATERIALS AND METHODS
Ethics statement/animals

Mice were maintained on a C57BL/6J background and housed under
identical conditions. Cln6nclf animals (The Jackson Laboratory,
#003605) had an additional cysteine in exon 4 of theCln6 gene, result-
ing in a frameshift mutation and premature stop codon as previously
Molecular
described.26 Wild-type animals lacked this mutation. All animal
studies were conducted in an AAALAC (Association for Assessment
and Accreditation of Laboratory Animal Care International)-ac-
credited facility under National Institutes of Health (NIH) guidelines
and approved by Sanford Institutional Animal Care and Use Com-
mittee (IACUC; United United States Department of Agriculture li-
cense 46-R-0009).

i.c.v. injection of either scAAV9.CB.CLN6 (5 � 1010 vg/animal, 4 mL
volume in PBS) or PBS (4 mL volume) was performed on P1 as pre-
viously described.8 The injection method and timing were selected
to target specific neuronal populations that are relevant in CLN6
Batten disease patients. Animals were sedated via hypothermia during
the procedure, monitored until fully recovered, and genotyped as pre-
viously described.26

Tissue analyses

Animals were sacrificed at 3, 6, or 9 months of age via CO2 euthanasia
and transcardial perfusion with PBS (n = 3/sex/treatment group for
each time point). Brains were removed and bisected along the midline
into left and right hemispheres. One hemisphere was placed in 4%
paraformaldehyde for 24 h followed by transferring to 30% sucrose
solution overnight for cryoprotection, while the second hemisphere
was bisected again for flash freezing and tissue banking. Eyes were
also removed, cornea punctured, and fixed in 4% paraformaldehyde
for 1 h. Eyes were sunk in a sucrose gradient, beginning at 10% su-
crose solution for 1 h, 20% sucrose solution for 1 h, and lastly 30%
sucrose solution overnight.
Therapy: Methods & Clinical Development Vol. 20 March 2021 503
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Figure 6. i.c.v. delivery of scAAV9.CB.CLN6 expresses throughout the retinal layers, enabling the local translation of hCLN6 in Cln6nclf mouse retinas

(A and B) Endogenous mouse Cln6 (mCln6) expression in a wild-type animal as detected by RNAscope (A) localized primarily to the inner and outer nuclear layers, showing a

different expression pattern as compared to the human CLN6 (hCLN6) transgene (B). (C) Retinal whole-mounts immunolabeled with anti-human CLN6 (red) antibodies

detected hCLN6 primarily in the central retina. Quantification is also shown in (C). (D–F) AAV9-treatedCln6nclfmice immunolabeledwith anti-humanCLN6 (red) and rhodopsin

(photoreceptor outer segments, green; D), BRN3a (retinal ganglion cells, green; E), PKCa (rod bipolar cells, green; F), or anti-glutamine synthetase (Müller glia, green; G),

show hCLN6 colocalization primarily in RGCs, and also in the INL, ONL, RPE, and choroid. This indicates scAAV9.CB.CLN6 preferentially targeted RGC, INL, ONL, and

epithelial layers using this dosing strategy. n = 6/treatment for each time point, represented by equal numbers of males and females. Mean ± SEM, One-way ANOVA, Tukey

post-hoc. *p<0.05, ****p<0.0001.

Molecular Therapy: Methods & Clinical Development
4% paraformaldehyde fixed and cryoprotected brains were sectioned
using a Microm H430 freezing microtome (Microm International,
Walldorf, Germany) with a Physitemp BFS 40MOA freezing stage
(Physitemp Instruments, Clifton, NJ, USA) to obtain 40 mm thick cor-
onal sections. A 1 in 6 series of sections was then selected for analysis
of ASM, staining for Nissl substance with cresyl fast violet, and immu-
nohistochemistry, respectively.
Cresyl fast violet staining

Sections were stained for cresyl fast violet as previously described.45,46

Briefly, a 1 in 6 series of 40 mm coronal brain sections were mounted
on slides and air-dried overnight. Slides were stained in 0.05% cresyl
fast violet solution with 10% glacial acetic acid for 1 h at 60�C fol-
lowed by differentiation in 70%, 80%, 90%, 95%, 100% EtOH, 50/
50% EtOH/xylene, and 100% xylene. Slides were coverslipped using
a xylene-based mountant, DPX.
Visualization of autofluorescent storage material

A 1 in 6 series of 40 mm coronal brain sections was mounted on to
Superfrost Plus (Thermo Fisher) slides and air-dried before coverslip-
504 Molecular Therapy: Methods & Clinical Development Vol. 20 March
ping with DAPI (40,-diamidino-2-phenylindole-dihydrochloride)
Fluoromount G (SouthernBiotech).
Immunohistochemistry

A 1 in 6 series of 40 mm coronal brain sections were mounted on
slides and briefly air-dried. Slides were blocked in 15% normal
goat serum (Vector Laboratories, Burlingame, CA, USA) in Tris-
buffered saline (TBS) with Triton-X (Alfa Aesar, Ward Hill, MA,
USA) followed by simultaneous incubation in primary antibodies
for astrocytes (rabbit polyclonal to GFAP, DAKO cat. no. Z0334,
1:1,000 dilution) and microglia (rat anti-mouse CD68, Bio-Rad,
cat. no. MCA1957, 1:400 dilution). Sections were rinsed in TBS
and incubated in secondary antibody solution (goat anti-rabbit
Alexa Fluor 488, Invitrogen cat. no. A11008, 1:200 dilution and
goat anti-rat 546 Alexa Fluor 546, Invitrogen cat. no. A11081,
1:200 dilution). Slides were rinsed and treated with 1� TrueBlack
(Biotium, cat. no. 23007) before coverslipping with DAPI Fluoro-
mount-G (SouthernBiotech).

Eyes were embedded in OCT (optimal cutting temperature com-
pound) and stored at �80�C. Horizontal 10 mm sections were cut
2021



Figure 7. Cerebrospinal fluid delivery of scAAV9.CB.CLN6 partially maintains visual function in Cln6nclf mice

(A) Schematic of OptoMotry optokinetic tracking equipment. The test mouse sits on a platform surrounded by four monitors that display a rotating virtual gradient, and the

experimenter monitors the animal’s visual tracking using an overhead camera. (B and C) A single, postnatal day 1 injection of scAAV9.CB.CLN6 delivered via CSF partially

restores visual acuity in male (B) and female (C) Cln6nclf mice. When linear fits are compared, untreated female Cln6nclf mice have a significantly steeper decline than both

female wild-type and AAV9-treated Cln6nclf mice (C). Ordinary two-way ANOVA, Tukey correction. For linear fit, slopes were compared using an ordinary one-way ANOVA,

Tukey post hoc. Ns are presented in Table 1. Mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Image in panel (A) obtained from CerebralMechanics

promotional and published materials (http://cerebralmechanics.com/ 23).
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on a cryostat (Leica CM1950), with four sections/slide, and were
collected in five series (50 mm apart). One series was stained with
cresyl violet for assessing retinal lamination and the other sections
were used for immunohistochemistry. Briefly, sections were washed
with PBS, blocked in 2% horse serum and 0.3% Triton X-100, and
incubated with the following primary antibodies overnight at room
temperature: rhodopsin (1:1,000, MAB5356, Millipore), glutamine
synthetase (1:1,000, cat. no. 302, Millipore), Brn-3a (1:250, cat. no.
sc-31984, Santa Cruz), PKCa (1:250, cat. no. sc-208, Santa Cruz),
and human CLN6 (1:250, gift from Stella Lee8). Secondary antibodies
were goat anti-rabbit Cy3 and goat anti-mouse-Alexa 488. Sections
were counterstainedwithDAPI (Life Technologies). For negative con-
trol, sections were treated without primary or secondary antibodies.

RNAscope

Presence of mCln6 transcript and hCln6 transcript were visualized in
retinal sections by RNAscope using the Multiplex Fluorescent V2
Assay kit (ACDBio cat. no. 323110) in accordance with the manufac-
turer’s protocol. Sections were labeled with either a human CLN6
probe or a mouse Cln6 probe (ACDBio), counterstained with
DAPI, and mounted on slides using an aqueous mounting medium
(Dako Faramount, Agilent).

Imaging and data analysis

Stereological analysis

Estimates of neuron population counts in the DLG nucleus, SC, and
V1 were performed using a design-based optical fractionator method
in a 1 in 6 series of cresyl fast violet stained sections using Stereo
Investigator software (MBF Bioscience).47 Cells were sampled with
counting frames (90 � 100 mm) distributed over a sampling grid
(DLG, 300 � 300 mm; SC, 400 � 400 mm; V1, 600 � 600 mm) that
was superimposed over the region of interest at 100� magnification.

Thresholding image analysis

Slides for analysis of ASM and immunohistochemistry were scanned
using a Zeiss Axio Scan.Z1 (Zeiss, Jena, Germany) at 10�magnifica-
tion. Scanned images were then analyzed using ImagePro Premier 10
Molecular
software (Media Cybernetics, Chicago, IL, USA) to manually mark
appropriate anatomical regions (DLG, SC, V1) and to select appro-
priate unique thresholds for individual antibodies and ASM. Thresh-
olds were applied uniformly across all images of a particular region
and antibody. Results were reported as percentage positive immuno-
reactivity (or % fluorescence for ASM).

Retinal sections were examined and images taken using a Leica DM
6000B microscope (Leica Microsystems, Wetzlar, Germany) with Je-
noptik camera. Photoreceptors were quantified over a 400 mm length
of retina near the optic head, and quantification was performed from
3–5 animals/group. 41 images were obtained from wild-type animals
(3–9 months), 25 images from untreated Cln6nclf animals, and 31 im-
ages from Cln6nclf animals + scAAV9.CB.CLN6. Photoreceptors were
counted and analyzed using ImageJ threshold and analyze particles
functions. The number of photoreceptor layers was gathered from
representative images, counting the number of nuclei across the outer
nuclear layer. Photoreceptor layer metrics are representative observa-
tions, rather than direct quantifications.

CLN6 antibody-stained retinal whole-mounts were evaluated and
imaged with an Olympus BX51 Upright Microscope. Twelve im-
ages/retina (3 images from central, middle, and peripheral parts of
the retina from each quarter, as illustrated in Figure S1) were taken
from each retina (n = 3) with fluorescence microscope at 10�magni-
fication. The quantification of fluorescent signals was performed us-
ing ImageJ software (NIH) with the threshold and the analyze parti-
cles functions.

Optokinetic response

At 3, 6, and 9 months of age, male and female Cln6nclf and wild-type
mice were placed in an OptoMotry optokinetic tracking chamber
(Cerebral Mechanics, http://cerebralmechanics.com/).23 Briefly, the
chamber consisted of four computer monitors facing the animal, dis-
playing a rotating black and white contrast gradient. Blinded experi-
menters observed whether the animal appeared to see the gradient by
intentional head tracking and scored the animal accordingly using
Therapy: Methods & Clinical Development Vol. 20 March 2021 505
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Cerebral Mechanics software. Visual acuity was averaged from both
eyes in cycles/degree. n = 11–17 animals/sex at 3 months of age;
n = 5–15 animals/sex at 6 months of age; n = 3–11 animals/sex at
9 months of age.

Statistical analysis

Specific statistical tests were calculated using Graphpad Prism and are
described in each figure legend. All graphs are represented as mean ±

SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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