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1 Introduction

The monic Laguerre polynomials L
(α)
n (x) = (−1)nn!L

(α)
n (x) can be defined as

[1, 13,21,28]

L(α)
n (x) = (−1)n (α + 1)n F1 1

( −n
α + 1

∣∣∣∣x) (1.1a)

=
n∑
k=0

(−1)n−k
(
n

k

)
(α + 1 + k)n−k xk (1.1b)

where rn
def
= r(r + 1) · · · (r + n − 1); note that they are polynomials (with integer

coefficients) jointly in x and α. The monic Laguerre polynomials have the exponential
generating function

∞∑
n=0

L(α)
n (x)

tn

n!
= (1 + t)−(α+1) ext/(1+t) . (1.2)

For α > −1 they are orthogonal with respect to the measure xαe−x dx on (0,∞).
Using Kummer’s first transformation for the confluent hypergeometric function 1F1

[13, eq. (1.4.11)], eq. (1.1a) can also be rewritten as

L(α)
n (x) = (−1)n (α + 1)n ex F1 1

(
α + 1 + n

α + 1

∣∣∣∣ − x) . (1.3)

Now fix an integer r ≥ 1. The multiple Laguerre polynomials of the first kind
of type II [13, section 23.4.1], denoted L

(α)
n (x) where α = (α1, . . . , αr) and n =

(n1, . . . , nr), can be defined by a straightforward generalization of (1.3):

L(α)
n (x) = (−1)|n|

( r∏
i=1

(αi + 1)ni

)
ex Fr r

(
α1 + 1 + n1, . . . , αr + 1 + nr

α1 + 1, . . . , αr + 1

∣∣∣∣ − x)
(1.4)

where |n| def= n1 + . . . + nr. It follows from known properties of the hypergeometric
function Fr r that the right-hand side of (1.4) is an entire function of x that behaves
asymptotically at infinity like x|n|; therefore it is a (monic) polynomial in x, of degree
|n|.1 In fact, we have the explicit expression, which generalizes (1.1b):2

L(α)
n (x) =

n1∑
k1=0

· · ·
nr∑
kr=0

(−1)|n|−|k|

(
r∏
i=1

(
ni
ki

)
(αi + 1 +k1 + . . .+ki)

ni−ki

)
x|k| . (1.5)

1This reasoning goes back at least to Hille [12, p. 52]. The needed asymptotic expansion of Fr r

can be found in [18, section 5.11.3] or [29].

2This formula follows from (1.4) by application of Karlsson’s [16] identity for hypergeomet-
ric functions where the numerator and denominator parameters differ by integers, combined with

F0 0(
—
— | −x) = e−x at the final stage. See also Srivastava [26] for a very simple proof of Karlsson’s

identity; and see [3, 19] for some interesting generalizations.
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When α1, . . . , αr > −1 with αi − αj /∈ Z for all pairs i 6= j, these polynomials
are multiple orthogonal [13, Chapter 23] with respect to the collection of measures
xαie−x dx on (0,∞) with 1 ≤ i ≤ r. Finally, the multiple Laguerre polynomials have
the multivariate exponential generating function [17]

∞∑
n1=0

· · ·
∞∑

nr=0

L(α)
n (x)

tn1
1

n1!
· · · t

nr
r

nr!
=

( r∏
i=1

(1 + ti)
−(αi+1)

)
exp

[
x
(

1−
r∏
i=1

1

1 + ti

)]
.

(1.6)

Remark/Question. The multiple Laguerre polynomial L
(α)
n (x) is invariant un-

der joint permutations of n and α: this is manifest in (1.4) and (1.6), but is far from
obvious in the explicit formula (1.5). Is there some easy way of deriving this symme-
try from (1.5)? And is there an alternate explicit formula in which this symmetry is
manifest? �

The purpose of the present paper is twofold: (a) to give a combinatorial inter-
pretation of the multiple Laguerre polynomials (1.4)/(1.5), generalizing the digraph
model found by Foata and Strehl [9] for the ordinary Laguerre polynomials; and (b)
to give an explicit integral representation for these polynomials, showing that they
form a multidimensional Stieltjes moment sequence whenever x ≤ 0.

2 Combinatorial model

Three decades ago, Foata and Strehl [9] introduced a beautiful combinatorial
interpretation of the Laguerre polynomials. Let us define a Laguerre digraph to be
a digraph in which each vertex has out-degree 0 or 1 and in-degree 0 or 1. It follows
that each weakly connected component of a Laguerre digraph is either a directed path
of some length ` ≥ 0 (where a path of length 0 is an isolated vertex) or else a directed
cycle of some length ` ≥ 1 (where a cycle of length 1 is a loop). Let us write LDn for

the set of Laguerre digraphs on the vertex set [n]
def
= {1, . . . , n}; and for a Laguerre

digraph G, let us write cyc(G) [resp. pa(G)] for the number of cycles (resp. paths) in
G. Foata and Strehl [9] then showed that the monic unsigned Laguerre polynomials

L(α)
n (x)

def
= n!L(α)

n (−x) = (−1)n L(α)
n (−x) (2.1)

have the combinatorial representation

L(α)
n (x) =

∑
G∈LDn

xpa(G) (α + 1)cyc(G) . (2.2)

Indeed, the proof of (2.2) is an easy argument using the exponential formula [27,
chapter 5], or equivalently, the theory of species [2]: the number of directed paths on
n ≥ 1 vertices is n!, so with a weight x per path they have exponential generating
function xt/(1−t). The number of directed cycles on n ≥ 1 vertices is (n−1)!, so with
a weight α+1 per cycle they have exponential generating function −(α+1) log(1−t).
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A Laguerre digraph is a disjoint union of paths and cycles, so by the exponential
formula it has exponential generating function

exp
[ xt

1− t
− (α + 1) log(1− t)

]
= (1− t)−(α+1) ext/(1−t) , (2.3)

which coincides with (1.2) after x→ −x and t→ −t. Foata and Strehl [9] also gave
a direct combinatorial proof of (2.2) based on the definition (1.1); this requires a bit
more work [9, Lemma 2.1].

Our first result is a combinatorial interpretation of the multiple Laguerre polyno-
mials that extends the Foata–Strehl interpretation to r > 1. For n = (n1, . . . , nr) ∈
Nr, we define a digraph Gn = (Vn, ~En) with vertex set

Vn = {(i, j) : 1 ≤ i ≤ r and 1 ≤ j ≤ ni} (2.4)

and edge set
~En =

{−−−−−−−→
(i, j) (i′, j′) : i ≤ i′

}
. (2.5)

The vertex set is thus the disjoint union of “layers” Vi ' [ni] for 1 ≤ i ≤ r; the
edge set consists of all possible directed edges (including loops) within each layer Vi,
together with all possible edges from a layer Vi to a layer Vi′ with i′ > i. We then
write LDn for the set of Laguerre digraphs that are spanning subdigraphs of Gn, i.e.
Laguerre digraphs of the form (Vn, A) with A ⊆ ~En. Note that in a Laguerre digraph
G ∈ LDn, every cycle must lie in a single layer Vi; we denote by cyci(G) the number
of cycles in layer Vi. We then have:

Theorem 2.1. The monic unsigned multiple Laguerre polynomials

L(α)
n (x)

def
= (−1)|n| L(α)

n (−x) (2.6)

have the combinatorial representation

L(α)
n (x) =

∑
G∈LDn

xpa(G)

r∏
i=1

(αi + 1)cyci(G) . (2.7)

The proof of this result is a simple generalization of the argument just given for
the Foata–Strehl formula (2.2):

Proof of Theorem 2.1. Denote the right-hand side of (2.7) by L̂(α)
n (x), and

consider its multivariate exponential generating function

F (t1, . . . , tr)
def
=

∞∑
n1=0

· · ·
∞∑

nr=0

L̂(α)
n (x)

tn1
1

n1!
· · · t

nr
r

nr!
. (2.8)

We again argue using the exponential formula. The multivariate exponential gener-
ating function for a single directed cycle in layer Vi is, as before, −(αi + 1) log(1− ti).
Let us now look at paths. Every path P in the digraph Gn is of the following form:
In each layer Vi choose a directed path Pi; the Pi are allowed to be empty, provided
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that they are not all empty. Let i1 < i2 < . . . < ik be the indices with Pi nonempty,
and construct the path P obtained from the union of the Pi by adjoining the edge
linking the final vertex of Pi1 to the initial vertex of Pi2 , the edge linking the final ver-
tex of Pi2 to the initial vertex of Pi3 , etc. With a weight x per path, the multivariate
exponential generating function for a single such path is

x
( r∏
i=1

1

1− ti
− 1

)
. (2.9)

Therefore, by the exponential formula we have

F (t1, . . . , tr) = exp

[
−

r∑
i=1

(αi + 1) log(1− ti) + x
( r∏
i=1

1

1− ti
− 1

)]
, (2.10)

which coincides with (1.6) after x→ −x and ti → −ti. �

Remarks. 1. We leave it as an open problem to devise a direct combinatorial
proof of (2.7) based on the explicit formula (1.5).

2. The combinatorial representation (2.7), unlike the explicit formula (1.5), man-

ifestly exhibits the invariance of L(α)
n (x) under joint permutations of n and α, since

there is a weight-preserving bijection between the digraphs contributing to the right-
hand side of (2.7) for the original and permuted cases. I thank an anonymous referee
for pointing this out.

3. For the case r = 2, a slightly different combinatorial interpretation of the
multiple Laguerre polynomials was found by Drake [6, Theorem 3.5.2]. But also this
representation fails to manifestly exhibit the permutation symmetry. �

3 Stieltjes moment representation

For the ordinary Laguerre polynomials (r = 1), a well-known integral representa-
tion [28, Theorem 5.4] asserts that

L(α)
n (x) = n!L(α)

n (−x) = e−xx−α/2
∞∫
0

yn e−y yα/2 Iα(2
√
xy) dy for α > −1 ,

(3.1)
where Iα is a modified Bessel function of the first kind [30, p. 77]:

Iα(z) =
∞∑
k=0

(z/2)α+2k

k! Γ(α + k + 1)
(3.2a)

=
1

Γ(α + 1)
(z/2)α F0 1

(
—

α + 1

∣∣∣∣ z2/4) . (3.2b)
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Since Iα is nonnegative on [0,∞), it follows from (3.1) that the sequence (L(α)
n (x))n≥0

is a Stieltjes moment sequence whenever α ≥ −1 and x ≥ 0: that is,

L(α)
n (x) =

∞∫
0

yn dµα,x(y) (3.3)

where

dµα,x(y) =


e−x F0 1

(
—

α + 1

∣∣∣∣xy) 1

Γ(α + 1)
yα e−y dy for α > −1

x e−(x+y) F0 1

(
—

2

∣∣∣∣xy) dy for α = −1

(3.4)

is a positive measure on [0,∞).3

We now give an integral representation for the multiple Laguerre polynomials that
generalizes (3.1) to r > 1:

Theorem 3.1. Let α1, . . . , αr ≥ −1 and x ≥ 0. Then the multisequence (L(α)
n (x))n∈Nr

of monic unsigned multiple Laguerre polynomials is a multidimensional Stieltjes mo-
ment sequence: that is, there exists a positive measure µα,x on [0,∞)r such that

L(α)
n (x) =

∫
[0,∞)r

yn dµα,x(y) (3.5)

for all n ∈ Nr, where yn def
=

r∏
i=1

yni
i . In fact, for α1, . . . , αr > −1 we have the explicit

formula

dµα,x(y) = e−x F0 r

(
—

α1 + 1, . . . , αr + 1

∣∣∣∣xy1 · · · yr) r∏
i=1

1

Γ(αi + 1)
yαi
i e−yi dyi .

(3.6)

Proof. We begin from the exponential generating function (1.6) with x→ −x:

e−x
( r∏
i=1

(1+ti)
−(αi+1)

)
exp

[
x

r∏
i=1

1

1 + ti

]
= e−x

∞∑
n=0

xn

n!

r∏
i=1

(1+ti)
−(αi+1+n) . (3.7)

We now assume that α1, . . . , αr > −1 and insert the integral representation

(1 + ti)
−(αi+1+n) =

1

Γ(αi + 1 + n)

∞∫
0

e−tiyi yn+αi
i e−yi dyi . (3.8)

3All this was observed a half-century ago by Karlin [14, p. 62] [15, pp. 440–441].
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It follows that

e−x
( r∏
i=1

(1 + ti)
−(αi+1)

)
exp

[
x

r∏
i=1

1

1 + ti

]
=

∫
[0,∞)r

e−t·y dµα,x(y) (3.9)

where

dµα,x(y) = e−x
∞∑
n=0

xn

n!

r∏
i=1

yn+αi
i e−yi

Γ(αi + 1 + n)
dyi (3.10a)

= e−x F0 r

(
—

α1 + 1, . . . , αr + 1

∣∣∣∣xy1 · · · yr) r∏
i=1

1

Γ(αi + 1)
yαi
i e−yi dyi .

(3.10b)

Extracting the coefficient of tn/n!, we conclude that

L(α)
n (x) =

∫
[0,∞)r

yn dµα,x(y) . (3.11)

This shows that (L(α)
n (x))n∈Nr is a multidimensional Stieltjes moment sequence when-

ever α1, . . . , αr > −1; and it holds also for α1, . . . , αr ≥ −1 since the set of multidi-
mensional Stieltjes moment sequences is closed under pointwise limits. �

In particular, Theorem 3.1 implies:

Corollary 3.2. Let α1, . . . , αr ≥ −1 and x ≥ 0, and fix a multi-index k ∈ Nr.
Then the sequence (L(α)

nk (x))n≥0 is a Stieltjes moment sequence: that is, there exists
a positive measure µα,x,k on [0,∞) such that

L(α)
nk (x) =

∫
[0,∞)

yn dµα,x,k(y) (3.12)

for all n ≥ 0.

Corollary 3.2 can be restated in the language of total positivity. Recall that
a finite or infinite matrix of real numbers is called totally positive (TP) if all its
minors are nonnegative, and totally positive of order r (TPr) if all its minors of
size ≤ r are nonnegative. Background information on totally positive matrices can
be found in [8, 10, 15, 20]; they have application to many fields of pure and applied
mathematics. In particular, it is known [11, Théorème 9] [20, section 4.6] that an
infinite Hankel matrix (ai+j)i,j≥0 of real numbers is totally positive if and only if the
underlying sequence (an)n≥0 is a Stieltjes moment sequence. So Corollary 3.2 asserts

that, for every k ∈ Nr, every minor of the infinite Hankel matrix (L(α)
(i+j)k(x))i,j≥0 is

a polynomial in x and α1, . . . , αr that is nonnegative whenever α1, . . . , αr ≥ −1 and
x ≥ 0.

But much more appears to be true: namely, it seems that we have coefficientwise

Hankel-total positivity [22–24] in the variables x and βi
def
= αi + 1:
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Conjecture 3.3 (Coefficientwise Hankel-total positivity of the multiple Laguerre

polynomials). For each multi-index k ∈ Nr, the sequence
(
L(β−1)
nk (x)

)
n≥0 is coeffi-

cientwise Hankel-totally positive in the variables x and β = (β1, . . . , βr): that is,

every minor of the infinite Hankel matrix
(
L(β−1)

(i+j)k(x)
)
i,j≥0 is a polynomial in x and β

with nonnegative coefficients.

By symbolic computation using Mathematica, I have verified this conjecture
for the following cases:

• r = 1 and k = (1) up to the 11× 11 Hankel matrix;

• r = 2 and k = (1, 1) up to the 9× 9 Hankel matrix;

• r = 2 and k = (2, 1) up to the 8× 8 Hankel matrix;

• r = 2 and k = (3, 1) up to the 8× 8 Hankel matrix;

• r = 2 and k = (3, 2) up to the 8× 8 Hankel matrix;

• r = 3 and k = (1, 1, 1) up to the 7× 7 Hankel matrix;

• r = 3 and k = (2, 1, 1) up to the 6× 6 Hankel matrix;

• r = 3 and k = (2, 2, 1) up to the 6× 6 Hankel matrix;

• r = 4 and k = (1, 1, 1, 1) up to the 6× 6 Hankel matrix;

• r = 4 and k = (2, 1, 1, 1) up to the 5× 5 Hankel matrix;

• r = 5 and k = (1, 1, 1, 1, 1) up to the 4× 4 Hankel matrix.

For the case of ordinary Laguerre polynomials (r = 1), this result was conjectured a
few years ago by Sylvie Corteel and myself [4] and was proven very recently by Alex
Dyachenko, Mathias Pétréolle and myself [7]. Our proof is based on constructing
a quadridiagonal production matrix for the monic unsigned Laguerre polynomials
L(α)
n (x) and then proving its total positivity; this construction is strongly motivated

by the work of Coussement and Van Assche [5] on the multiple orthogonal polynomials
associated to weights based on modified Bessel functions of the first kind [cf. (3.1)].
We have not yet succeeded in extending this proof to r > 1.
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