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Abstract

We formalize constraint-based structure learning of the “true” causal graph from observed
data when unobserved variables are also existent. We provide conditions for a “natu-
ral” family of constraint-based structure-learning algorithms that output graphs that are
Markov equivalent to the causal graph. Under the faithfulness assumption, this natural
family contains all exact structure-learning algorithms. We also provide a set of assump-
tions, under which any natural structure-learning algorithm outputs Markov equivalent
graphs to the causal graph. These assumptions can be thought of as a relaxation of faith-
fulness, and most of them can be directly tested from (the underlying distribution) of
the data, particularly when one focuses on structural causal models. We specialize the
definitions and results for structural causal models.

Keywords: ancestral graphs; causal discovery; constraint-based structure learning; faith-
fulness; structural causal models

1. Introduction

Inferring causal relationships has always been one of the main objectives in many fields
of study, ranging from philosophy to science (Holland, 1986). In the past decades, causal
models (Pearl, 2009) have been used to infer causal relationships from observed data. Ex-
tensive research has been conducted on defining, interpreting, and applying causal models,
and these models have become mainstream in statistics and computer science (Pearl, 1988;
Spirtes et al., 2000; Dawid, 2000; Hitchcock, 2018). Today, a very popular method for in-
ferring causal relationships is based on the use of statistical models over graphs with nodes
that are random variables representing the quantities of interest. Edges indicate proba-
bilistic dependence among these variables conditional on some other variables in the graph,
which with some additional assumptions can be interpreted as causal relationships. These
models are called graphical (Markov) models (Lauritzen, 1996).

Structural causal models (SCMs), also known as structural equation models, are one of
the most used causal models (Spirtes et al., 2000; Pearl, 1988). SCMs have been generally
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defined for directed acyclic graphs (DAGs) (i.e., a Bayesian network), where an arrow
implies a “direct” cause. However, for the purpose of causal inference, it may not be
possible to determine or measure all common causes. For this reason, SCMs associated to
DAG models with latent variables (represented by ancestral graphs (Richardson and Spirtes,
2002) without undirected edges) have been defined (Spirtes et al., 2000; Zhang, 2008).

A main goal of causal inference, based on graphical models, is causal discovery; in this
framework we are concerned with finding graphs, using only observed data, that represent
the causal structure, which is represented by an unknown “true” causal graph. Algorithms
for constructing or selecting such a graph are known as structural learning algorithms.
There has been a surge in defining different structural learning algorithms; they are generally
categorized as constraint-based (Spirtes et al., 2000), score-based (Chickering, 2003) —which
work on the factorization of density—, or hybrid (Tsamardinos et al., 2006) —which is a
combination of these.

We are concerned with constraint-based structure-learning algorithms for the general
case of ancestral graphs without undirected edges. These algorithms use conditional inde-
pendence statements, which are theoretically testable from observed data to find graphs
that, at best, are Markov equivalent to the true causal graph. A main sufficient condi-
tion for the algorithms to be correct or work, that is, to provide an output that is Markov
equivalent to the causal graph, is faithfulness (Zhang and Spirtes, 2008; Woodward, 1998;
Steel, 2006; Colombo and Maathuis, 2014); this sufficient condition relates the independen-
cies induced by the distribution (of the SCM) and the separations induced by the causal
graph. However, faithfulness to the unknown causal graph, or similar assumptions (Zhang
and Spirtes, 2003), are generally not testable. In addition, the (sufficient) assumption of
faithfulness is in some circumstances strong, and can be relaxed; see Section 5.

In this paper, we formalize the problem of constraint-based structure learning from
observed data. Most constraint-based structure-learning algorithms contain two tasks which
may be performed in parallel or separately: finding the undirected edges of the graph, the
skeleton; and directing the edges of the skeleton. We show that under the assumption
of faithfulness and using a formalization of faithfulness, provided in Sadeghi (2017), if
the output of such algorithms works, then pair of conditions known as ordered stability
must be satisfied with respect to the output; see Section 2.3 and Remark 12. Ordered
stability is a condition that informs us how the edges of the graph should be directed and
we propose the class of matural structure-learning algorithms, which is one that should
respect stability when directing the edges; see Definition 6. We stress that in this paper, we
do not provide specific algorithms that could be implemented, but concentrate on providing
conditions that structure-learning algorithms should satisfy. More importantly, we provide
clear assumptions, many of which are directly testable from the distribution, under which
a natural structure-learning algorithm generates the correct output.

We provide the theory for the general class of models under the assumption that the
distribution is Markovian to the true causal graph; see Theorem 25. The assumptions are
the following: the distribution satisfies ordered stability and the converse of the pairwise
Markov property with respect to the true causal graph, and also the distribution satisfies
what we call path-stability.

We will make precise our assumptions later, and we note that they can be thought of
as a relaxation of faithfulness, and in particular, in the case of DAGs our assumptions are
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logically implied by faithfulness; see Corollary 23. We also specialize the definitions and
results for SCMs; see Theorem 42, and, in particular, provide testable sufficient conditions
for the converse of the pairwise Markov property to be satisfied. We hope that the framework
provided here will be a useful theoretical tool in defining appropriate SCMs and concrete
algorithms with strong theoretical backing.

The structure of the paper is as follows: In the next section, we provide known definitions
and results needed for the theory presented in this paper. In Section 3, we formalize the
settings of the problem. Section 4 deals with the theory under the faithfulness assumption.
In Section 5, we introduce the structure learning theory without the faithfulness assumption.
Section 6 specializes on causal structure learning for SCMs. We end the paper with a
summary and discussion in Section 7.

2. Preliminaries

In this section, we provide the basic definitions and concepts as well as the known results
needed for the paper.

2.1 Graph theoretical definitions and concepts

We usually refer to a graph as an ordered pair G = (V, E'), where V is the node set and F
is the edge set. When nodes ¢ and j are the endpoints of an edge, we call them adjacent,
and write ¢ ~ j, and otherwise i ~ j. Graphs in this paper are simple, that is, they have
at most one edge between a pair of nodes. We consider two types of edges: arrows (i—j)
and bidirected edges or arcs (i<—-j). We do not consider graphs that have simultaneous
third type of edge: undirected edges or lines (i —j). The completely undirected graph,
obtained from a graph G, is called the skeleton of G, denoted by sk(G); it is obtained by
removing all arrowheads from the edges of the graph G. We say that we direct the edges
of a skeleton by assigning arrowheads at the edges, which results in a graph.

A subgraph of a graph G is graph G2 such that V(G2) C V(G1) and E(G2) C E(Gy)
and the assignment of endpoints to edges in G is the same as in G1. An induced subgraph
by nodes A C V is a subgraph that contains all and only nodes in A and all edges between
two nodes in A.

A walk is a list (vg,eq,v1,..., ek, vg) of nodes and edges such that for 1 < i < k, the
edge e; has endpoints v;—1 and v;. A path is a walk with no repeated node or edge. When
we define a path, we only write the nodes (and not the edges). A cycle is a walk with no
repeated nodes or edges except for vg = vg.

We call the first and the last nodes endpoints of the path and all other nodes inner
nodes. A path can also be seen as a certain type of connected subgraph of G; a subpath of
a path 7 is an induced connected subgraph of .

For an arrow j —~i, we say that the arrow is from j to i. We also call j a parent of ¢, i
a child of j and we use the notation pa(i) for the set of all parents of 7 in the graph. In the
cases of i—>j or i<——j we say that there is an arrowhead at j or pointing to j. A path
(1 = 140,91, ...,0n = j) is directed from i to j if all ixix1 edges are arrows pointing from iy
to igy1. If there is a directed path from j to ¢, then node j is an ancestor of ¢ and i is a
descendant of j. We denote the set of ancestors of 7 by an(i); unlike some authors, we do
not assume that i € an(q).
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A tripath is a path with three nodes. Note that Sadeghi (2013) used the term V-
configuration for such a path. We follow Kiiveri et al. (1984) and most texts by letting a
V-configuration be a tripath with non-adjacent endpoints. The inner node ¢ in each of the
three tripaths

f—t——j, 1< t<— §, i<—t<>]

is a collider (or a collider node) and the inner node of any other tripath is a non-collider
(or a non-collider node) on the tripath or, more generally, on any path of which the tripath
is a subpath; i.e., a node is a collider if two arrowheads meet. Notice that in some causal
inference literature, the term V-structure is used for a collider V-configuration. A path is
called a collider path if all its inner nodes are colliders.

In this paper, we are mainly concerned with directed ancestral graphs; these are ancestral
graphs (AGs) (Richardson and Spirtes, 2002) without lines, i.e., graphs with arrows and
arcs without a directed cycle and without an arc with one endpoint being an ancestor of
the other. Sometimes we simply refer to such graphs as “graphs,” dropping any modifiers.
Some results we use in this paper have originally been proven for the more general classes of
chain mixed graphs (CMGs) and anterial graphs (AnGs) (Sadeghi, 2016) as well as acyclic
directed mixed graphs (ADMGs) (Richardson, 2003), all of which contain directed ancestral
graphs.

The class of directed ancestral graphs also contains bidirected graphs (BGs), containing
only bidirected edges, and directed acyclic graphs (DAGs), containing only arrows and being
acyclic. DAGs have been particularly useful to describe causal Markov relations; see for
example Kiiveri et al. (1984); Pearl (1988); Lauritzen and Spiegelhalter (1988); Geiger et al.
(1990); Spirtes et al. (2000). For an extensive discussion on the subclasses of acyclic graphs
and their relationships and hierarchy, see Lauritzen and Sadeghi (2018).

2.2 Independence models and their properties

An independence model J, over a finite set V, is a set of triples (X,Y | Z), called inde-
pendence statements, where X, Y, and Z are disjoint subsets of V; Z may be empty, but
(2,Y|Z) and (X, | Z) are always included in J. The independence statement (X,Y | Z)
is read as “X is independent of Y given Z.” Independence models may have a probabilistic
interpretation, but this is not necessarily the case. Similarly, not all independence models
can be easily represented by graphs. For further discussion on general independence models,
see Studeny (2005).

In order to define probabilistic independence models, consider a set V and a collection
of random variables { X, }ocv with state spaces {X,}acy and joint distribution P. We let
X4 = {Xy}vea for each subset A of V. For disjoint subsets A, B, and C of V' we use the
short notation A Il B|C to denote that X 4 is conditionally independent of Xp given X¢
(Dawid, 1979; Lauritzen, 1996), that is, for any measurable S C X4 and P-almost all xp
and rc, we have

P(XA S S|XB :xB,Xo:a?C) :]P’(XA S S|XC:$C),

where we make suitable interpretations in terms of regular conditional probabilities when
necessary; see for example Chang and Pollard (1997). We can now induce an independence
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model J(P) by letting
(A,B|C)e J(P) < ALB|C wur.t. P.

Similarly we use the notation A} B |C for (A, B|C) ¢ J(P). In this paper, we present the
results for “P,” but in fact all the conditions and assumptions are on J(P). We remark
that all the results and conditions could be presented using an abstract independence model
J.

In order to use graphs to represent independence models, the notion of separation in
a graph is fundamental. A path 7 is connecting given C if every collider node of 7 is in
C or an ancestor of a node in C, and every non-collider node is not in C'. For pairwise
disjoint subsets (A, B,C), we write A L B|C' if there are no connecting paths between A
and B given C, and say that A and B are separated given C'. We will also use the notation
AL B|C for A and B not separated given C. This separation criterion is generally known
as the m-separation, used in Richardson and Spirtes (2002), Wermuth (2011), and Wermuth
and Sadeghi (2012), for ancestral graphs and summary graphs, and is a generalization of
the d-separation of Pearl (1988).

If A, B, or C has only one member {i}, {j}, or {k}, for better readability, we write
(i,7|k) € J instead of ({i},{j}|{k}) € J; and similarly for i L j|k and il j | k. We also
write A L B when C = @; and similarly A1l B.

A graph G induces an independence model J(G) by separation, letting

(A,B|C)e J(G) <= ALB|CinG.

A graph is called maximal if the absence of an edge between i and j corresponds to a
conditional separation statement for ¢ and j, i.e., there exists for some C' a statement of
formi L j|C. In addition, we call two graphs G and H Markov equivalent if 7(G) = J(H).
Conditions for Markov equivalence for most classes of graphs are known; see Verma and
Pearl (1990); Ali et al. (2009); Wermuth and Sadeghi (2012). Notice that two Markov
equivalent maximal graphs have the same skeleton. We require conditions for Markov
equivalence of the classes of graphs discussed here. A collider path = = (i, B, j) is called a
minimal collider path if i =~ j and there is no proper subset B’ C B such that (i, B, j) is a
collider path between ¢ and j.

Lemma 1 (Zhao et al. (2004)) Two mazimal ancestral graphs (and consequently maz-
imal directed ancestral graphs) are Markov equivalent if and only if they have the same
skeletons and minimal collider paths.

For DAGs, there is a simpler condition for Markov equivalence:

Lemma 2 (Verma and Pearl (1990)) Two DAGs are Markov equivalent if and only if
they have the same skeletons and collider V-configurations.

An independence model J over a set V' is a semi-graphoid if it satisfies the four following
properties for disjoint subsets A, B, C, and D of V:

1. (A,B|C) e J if and only if (B, A|C) € J (symmetry);
2. if (A, BUD|C) € J, then (A,B|C) € J and (A,D|C) € J (decomposition);
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3. if (A,BUD|C) € J, then (A,B|CUD) e J and (A,D|CUB) € J (weak union);
4. if (A,B|CUD) € J and (A,D|C) € J, then (A,BUD|C) € J (contraction).

Notice that the reverse implication of contraction clearly holds by decomposition and weak
union. A semi-graphoid for which the reverse implication of the weak union property holds
is said to be a graphoid; that is, it also satisfies

5. if (A,B|CUD) e J and (A,D|CUB) € J, then (A,BUD|C) € J (intersection).

Furthermore, a graphoid or semi-graphoid for which the reverse implication of the decom-
position property holds is said to be compositional, that is, it also satisfies

6. if (A,B|C) e J and (A,D|C) € J, then (A,BUD |C) € J (composition).

Another important property of independence models is singleton-transitivity (also called
weak transitivity in Pearl (1988)). For 4, j, and k, single elements in V,

7.1 (4,7 | C) € J and (i,j | CU{k}) € J, then (i,k|C) € J or (j,k|C) € J (singleton-
transitivity).

Probabilistic independence models are always semi-graphoids (Pearl, 1988), whereas
the converse is not necessarily true; see Studeny (1989). If P has strictly positive density,
the induced independence model is always a graphoid; see, for example, Proposition 3.1
in Lauritzen (1996). See also Peters (2015) for a necessary and sufficient condition for
the intersection property to hold. If the distribution P is a regular multivariate Gaussian
distribution, then J(P) is a singleton-transitive compositional graphoid; for example see
Studeny (2005) and Pear] (1988). For this reason, a different axiomatization of singleton-
transitive compositional graphoid is called a Gaussoid in Lnénicka and Matus (2007). On
the other hand, separation in graphs satisfies all these properties; see Propositions 1 and 2
in Sadeghi (2017). If J(P) satisfies any of these properties, then we may simply say that
“P satisfies that property.”

2.3 Ordered upward- and downward-stabilities

The definitions and results below are a special case of those in Section 4 of Sadeghi (2017).
Consider a partial order < over the set V. If a < b or b < a, then a and b are comparable;
otherwise they are incomparable. Henceforth, we speak of “orders” referring to “partial
orders.”

We say that a graph G = (V, E') admits a valid order < if for nodes i and j of G, i—j
implies that ¢ > j; and i<—~j implies that ¢ and j are incomparable. Notice that this
specifies the partial order via its cover relations. There may be many different orders that
are valid for a graph. However, we obtain a unique ordering for a graph as follows: Given
a graph G, if i ¢ an(j) and j ¢ an(i), then set ¢ and j to be incomparable. Otherwise,
let i« > j when i{—j. We call this ordering the minimal order for G since it gives the
fewest possible comparable pairs of nodes. It can also be seen that if G is ancestral, then
the minimal order for G is a valid order.

We now exploit the ordering for independence models in order to define two other
properties in addition to the seven properties defined in Section 2.2 (namely singleton-
transitive compositional graphoid axioms). We say that an independence model J over the
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set V respectively satisfies ordered upward- and downward-stability w.r.t. an order < of V'
if the following hold:

8. if (i,5|C) € J, then (i,j|C U{k}) € J for every k € V'\ {i,5} such that i < k or
j < k (ordered upward-stability);

9. if (i, | C) € J, then (i,j | C\{k}) € J for every k € V\{i,j} such that i £ k, j £ k,
and | £ k for every [ € C'\ {k} (ordered downward-stability).

Sometimes we refer to the pair of Conditions 8 and 9, together, simply as ordered stability.

Ordered upward-stability is a generalization of a modification of upward stability, defined
in Fallat et al. (2017), and strong union, defined in Pearl and Paz (1985), for undirected
graphs. A similar concept was used in Claassen and Heskes (2012) for the class of DAGs
for inferring causal relations; see Lemma 2 of the mentioned manuscript.

Sadeghi (2017) proved that the independence model induced by ancestral graphs sat-
isfies ordered upward- and downward-stability w.r.t. their minimal order. If an indepen-
dence model J satisfies ordered upward- and downward-stability w.r.t. the minimal order
of a graph GG, then we simply say that “J satisfies upward- and downward-stability w.r.t.
G.” In addition, similar to compositional graphoids, if J(P) satisfies ordered upward- or
downward-stability, then we may simply say that “P satisfies that property.”

2.4 Markov and faithful independence models

For a graph G = (V, E), a probability distribution defined over V satisfies the global Markov
property w.r.t. G, or is simply Markovian to G, if for disjoint subsets A, B, and C of V it
holds that

ALlB|C = Al B|C,

or equivalently J(G) C J(P). Notice that every probability distribution over V' is Marko-
vian to the complete graph with the node set V.

We say that P and a graph G are faithful if 7(P) = J(G). If P and G are faithful,
then we may sometimes also say that P is faithful to G or vice versa, although in principle
faithfulness is a symmetric relation. Thus, if P and G are faithful, then in addition to P
being Markovian to G, every conditional independence statement corresponds to a separa-
tion in G. Notice that, originally in Spirtes et al. (2000), faithfulness was defined only to
be the opposite direction to the Markov property. If there is a graph G and a distribution
P that are faithful, then we say that P is graphical and G is probabilistic.

For a given probability distribution P, we define the skeleton of P, denoted by sk(P),
to be the undirected graph that is obtained from P as follows: we define the node set of
sk(P) to be V, and for every pair of nodes i, j, we check whether i1l j | C' holds for some
C C V\{i,j}; if it does not then we draw an edge between i and j. The resulting undirected
graph is the same as the one obtained by the first step of the SGS algorithm (Glymour et al.,
1987).

Suppose that there exists an order < over V. We can uniquely direct the edges of sk(P)
based on < in order to define a G(P, <) induced by P and <. It can be seen that G(P, <)
is ancestral.

We are only interested in orderings that are minimal orders of graphs. Given P, we
define an ordering < to be P-compatible if < is the minimal order for G(P, <).
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If P is Markovian to a graph G, then sk(P) is a subgraph of sk(G); see Sadeghi (2017).
Hence, if P is Markovian to a graph G such that sk(G) = sk(P), then G has the fewest
number of edges among those to which P is Markovian. We say that P is minimally
Markovian to a graph G if P is Markovian to G and sk(G) = sk(P) (Sadeghi, 2017). Notice
that only minimally Markovian independence models to a graph can also be faithful to the
graph.

Remark 3 (Related versions of minimality) There are several similarly defined min-
imality assumptions in the literature. Notice that we do not define the concept of minimal
Markovian as an assumption in this paper, since minimality is implied by some other as-
sumptions used in this paper; see Corollary 15.

The definition given here is subtly different from the (causal) minimality assumption
(Pearl, 2009; Spirtes et al., 2000; Zhang and Spirtes, 2008; Neapolitan, 2004 ), which holds if
P is Markovian to G, but not to any proper subgraph of G — in fact, it can be seen that being
minimal Markovian implies causal minimality. It is also different from the P-minimality
assumption (Zhang, 2012), which states that no proper I-structure of G is Markovian to P,
where I-structure of G is any subgraph of G whose induced independence model is a subset
of that of G. Again, being minimal Markovian implies P-minimality since there could be a
graph with fewer edges than G that is not an I-structure of G.

The sparsest Markov representation (SMR) assumption (Raskutti and Uhler, 2018) for
G and P (originally defined for DAGs) states that P is Markovian to G and every G’ to
which P is Markovian and not Markov equivalent to G has more edges than G does. A
similar concept is the frugality assumption (Forster et al., 2018). In the special case of
interest here, where G is Markovian to P, it states that G satisfies frugality if it is in the
set of sparsest Markov representations. If G and P satisfy SMR, then G is not necessarily
minimally Markovian to P (see Figure 5 of Forster et al. (2018) as an example). It is also
possible to create two non-Markov equivalent graphs with the same skeleton, and a P that
18 Markovian to both. This implies that the minimal Markovian assumption does not imply
SMR either.

We make use of the necessary and sufficient conditions for faithfulness to directed ancestral
graphs, proven in Sadeghi (2017) for the more general case of anterial graphs:

Proposition 4 (Sadeghi (2017)) Let P be a probability distribution defined over Xy .
Then P is graphical if and only if

(A) P is a singleton-transitive compositional graphoid; and

(B) there exists a P-compatible order < over Vo w.r.t. which P satisfies ordered downward-
and upward-stability.

In addition, if (A) and (B) are satisfied, then P is faithful to G(P, ).

2.5 Structural causal models

Here we define the structural causal models (SCMs) (also known as the structural equation
models (SEMs)) (Pearl, 2009; Spirtes et al., 2000) for the class of directed ancestral graphs,
as introduced in Richardson and Spirtes (2002). Consider a graph G with N nodes, which
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in the context of causal inference may be referred to as the “true causal graph.” An SCM
¢ associated with G is defined as a collection of N equations

Xi:¢i(Xpa(i)>€i)a iE{l,...,N}, (1)

where pa(i) is defined on G, and, for any subsets A and B, we require that eg ll ep if
and only if, in G, there is no arc between any node in A and any node in B. Notice
that in the more widely-used case where G is a DAG, all the ¢; are jointly independent.
Sometimes the X; are called endogenous variables and the noises €; are also called exogenous
variables (which are generally assumed to be latent). For both mathematical and causal
discussions on SCMs with DAGs, see Peters et al. (2017). In the case where ¢; represent
multivariate linear regressions, SCMs are also known as the system of linear equations (Cox
and Wermuth, 1996).

Notice that the minimal order of G induces an order for X;s in €. In addition, by
using the equations iteratively, it is easy to see that each X; can be written as a function of
€an(i)ufi}- An SCM also entails a unique joint distribution P over the variables (X1,..., Xy).

A more complete representation of the graph associated with an SCM is obtained by
including the random variables ¢;. These graphs, called augmented graphs, are denoted by
G(X,e€). We construct the augmented graph in our setting as follows: we denote the nodes
in G by the original notation { X1, ..., Xn}; we add the nodes {e1,...,en} and add arrows
from each ¢ to X;; we also remove all arcs between X;s, and instead of every X;Xj-arc,
add an arc between ¢; and ;.

For example, in Figure 1, the graph on the right, is the augmented graph of the, graph
on the left. An SCM associated to these graphs, in which ¢; are linear is as follows:

Xi=¢e, Xzg=¢, Xo=aX;+e, Xi=pX3+e.

Voo N

Figure 1: A graph G (left) and its augmented graph G(X,¢) (right).

The above setting and construction of the augmented graph is in line with the idea
originally presented in Richardson and Spirtes (2002) for linear functions and Gaussian
distributions, although unlike in the mentioned manuscript, noises corresponding to end-
points of variables adjacent by an arc are required to be dependent. This setting is different
from the dominant setting in the literature (e.g. Peters et al. (2017)) for directed ancestral
graphs, where for every arc X; X it is assumed that there exists an exogenous variable €;;,
where, in the directed acyclic augmented graph, it points to both X; and X, and that €;;s
are mutually independent.
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Remark 5 Our setting is more general than the other alternative presented above. Notice
that we can write a noise €; as a tuple (€;5)scs, where S is the set of nodes connected to i
by an arc. However, by writing €;; = (€;, €;), we would not obtain independent noises in the
other setting.

3. General setting for structure learning

We start by assuming the existence of an unknown distribution P, which is Markovian to
an unknown (true) causal graph Go. Indeed, this setting requires additional models and
assumptions to be considered “causal.” This stems from the fact that, in the causal model,
interventional probabilities and observational conditional probabilities coincide. For more
discussion on this, see Pearl (2009); Spirtes et al. (2000); Peters et al. (2017). Neverthe-
less, the setting presented here is what is required for causal discovery using conditional
independence under any causal model.

The main goal of structure learning is to use observational data to find a graph that
belongs to the Markov equivalence class of Gy. The distribution P induces an indepen-
dence model J(P) whose elements we can test for using the observed data. Although we
can, in principle, test each statement in J(P), testing for all independence statements is
computationally intractable. In a constraint-based structural learning algorithm, one uses
some of the independence statements in J(P) to construct a graph, which is (hopefully) in
the Markov equivalence class of Gg. Notice that, in this paper, we concern ourselves only
with the oracle setting, i.e., assuming we have an oracle that will always correctly tell us
whether or not a given conditional independence relation holds in the distribution.

Indeed the exact relationship between P (or more specifically 7 (P)) and the constructed
graph depends on the specific algorithm used. Here, we propose the following class of generic
algorithms.

Definition 6 (Natural structure-learning algorithm) Let P be a joint probability dis-
tribution on Xy . We say that a natural constraint-based structure-learning algorithm is an
algorithm whose output graph with node set V', denoted by G(P), has the following proper-
ties:

1. It holds that sk(G(P)) = sk(P);

2. The distribution P satisfies ordered downward- and upward-stability w.r.t. G(P), that
is, G(P) = G(J(P),<), for a partial order <, w.r.t. which P satisfies ordered
downward- and upward-stability.

In short, the diagram below shows the relationship between the concepts used in this setting:

Markovian conditional independence

Gy T p 3 J(p) Mezhm

Markov equivalent
~Y

G(P) Go

In the same fashion as many constraint-based structural learning algorithms, the skele-
ton of the output of a natural structure-learning algorithm is the same as sk(P). Under
the faithfulness assumption of P and Gy, we will show in Section 4 that not only is G(P)
Markov equivalent to G, but also P satisfies ordered downward- and upward-stability w.r.t.
every graph Markov equivalent to Gg; thus the class of natural structure-learning algorithms

10
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contains all well-known “exact” algorithms that work under faithfulness, so we use term
“natural.” Under alternative conditions, provided in Section 5, we show that the output
G(P) is Markov equivalent to Gy. Notice again that we will always use G(P) to denote an
output of a natural structure-learning algorithm.

The algorithms in the literature, generally generate a completed partially directed acyclic
graph (CPDAGs) (Andersson et al., 1997; Spirtes et al., 2000) or partial ancestral graphs
(PAGs) (Richardson and Spirtes, 2002; Ali et al., 2009), which are a representative of the
Markov equivalence class of Gg with the fewest arrowheads. Here, we are not concerned
with making a CPDAG or a PAG from G(P).

We assume, without loss of generality, that the causal graph Gy is maximal: the reason is
that if G is not maximal, then there is always a maximal graph that is Markov equivalent to
Gy, which could be used to find graphs Markov equivalent to Gg; see Richardson and Spirtes
(2002); Sadeghi and Lauritzen (2014). Note that the first condition of the natural structure-
learning algorithm in Definition 6 also ensures that the generated G(P) is maximal.

Since Markov equivalent maximal graphs have the same skeleton, the obtained G(P)
must have the same skeleton with Gg. We are looking for conditions, under which this
holds.

Let an(i, j) = (an(z) Uan(j)) \ {¢,7}. We say that P is converse pairwise Markovian to
Gy if

idl jlan(i,j) = i~ j in Go; (2)
note that the converse of this condition is the well-known pairwise Markov property (Lau-
ritzen, 1996). To ensure the equality of the mentioned skeletons, we need the following
lemma:

Lemma 7 Suppose that the distribution P is Markovian to the causal graph Gg, and that
the following two conditions are satisfied:

(a) P is converse pairwise Markovian to Go;
(b) if there exists C, not containing i and j, such that il j|C, then il j|an(i, 7).
Then sk(Go) = sk(G(P)), where G(P) is an output of a natural structure-learning algorithm.
Proof We have on G the equivalence
i~ jin Gy < il j|an(i,j),

where assumption (a) gives the reverse direction, and the forward direction follows from the
fact that P is Markovian to Gy, and an(i, j) always separates non-adjacent 7 and j. Since
sk(P) = sk(G(P)), we have the equivalence

i jin G(P) < 3C s.t. il j|C.
Hence, assumption (b) allows us to tie these two conditions together and obtain that
i jin G(P) <= i~ jin Gy,

from which the desired result follows. [ |

11
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Remark 8 The two conditions of Lemma 7 are equivalent to the adjacency-faithfulness
condition (Ramsey et al., 2006; Zhang and Spirtes, 2008) (defined for DAGSs), which states
that for every edge between i and j in Gy, there are no independence statements i1l j|C' for
any C. This breakdown of the adjacency faithfulness assumption allows us to later provide
useful sufficient conditions (in general and for SCMs) that ensure that these two conditions
are satisfied; see also the discussion below.

We need some additional assumptions on the distributions to determine when the assump-
tions of Lemma 7 hold; i.e., when an existing edge implies dependence given the joint
ancestors, and when an arbitrary conditional independence of a pair implies their condi-
tional independence given their joint ancestors. A condition under which these assumptions
hold is faithfulness, as will be discussed in the next section. However, weaker conditions
will be provided in Section 5. Specific conditions for SCMs will also be provided in Section
6.

4. Structure learning under faithfulness

Faithfulness of P and Gy is a main assumption in the literature for structure learning.
It is well-known that under faithfulness, P is identifiable, i.e., an ancestral graph (or a
DAG) (in reality a PAG (or a CPDAG)) Markov equivalent to G can be identified (Spirtes
et al., 2000; Zhang and Spirtes, 2008). Under faithfulness, if P is faithful to Gg, then any
structure-learning algorithm should provide an output G(P) that is faithful to P, in the
setting where an oracle can be queried regarding the validity of statements of conditional
independence.

By Proposition 4, if the assumption of P being graphical holds, then P is singleton-
transitive compositional graphoid and there is an ordering < of the nodes of sk(P) w.r.t.
which P satisfies ordered downward- and upward-stability. Notice that among all these con-
ditions required for graphicality, ordered downward- and upward-stability are the only ones
that are related to, and in fact determine, the direction of the edges of sk(P); these consid-
erations also motivate the definition of natural structure-learning algorithms in Definition
6.

We work towards a proof, that under faithfulness, a natural structure-learning algorithm
works.

Proposition 9 Suppose that P is faithful to the causal graph Go. The output of a natural
structure-learning algorithm satisfies sk(Go) = sk(G(P)).

Proof We show that the conditions of Lemma 7 hold.

(a) If il j|an(i,j), then faithfulness gives, 7 L j|an(i,7) in Go, which implies that i ~ j in
Gb.

(b) If there exists a C' such that ¢l j|C, then faithfulness gives, i L j|C in Go, which
implies that ¢ = j in Gg. Since P is Markovian to Gy, we have that ¢l j|an(z,j). N

Proposition 10 Suppose that P is faithful to the causal graph Go. All potential outputs of
natural structure-learning algorithms are Markov equivalent, and they are Markov equivalent
to Go.

12
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Proof Since P is graphical, by Proposition 4, it is singleton-transitive compositional
graphoid. Let G(P) and H(P) be two potential graphs generated by a natural structure-
learning algorithm. By Proposition 9, we have that sk(Gp) = sk(G(P)) = sk(H(P)).

In addition, P satisfies ordered upward- and downward-stability w.r.t. both G(P) and
H(P). Hence, again by Proposition 4, P is faithful to both. Therefore, these graphs are all
Markov equivalent. |

In addition, the other direction of the above result also holds:

Proposition 11 Suppose that P is faithful to Go. If G is Markov equivalent to Gg, then
P satisfies ordered upward- and downward-stability w.r.t. G.

Proof The graph GG and P have to be faithful. Therefore, by Proposition 4, we know that
P satisfies ordered upward- and downward-stability w.r.t. G. |

Remark 12 Therefore, ordered downward- and upward-stability w.r.t. G(P) are also neces-
sary conditions of an output of a structure-learning algorithm that generates Markov equiv-
alent graphs to Go. This justifies Definition 6, when P is graphical. Hence, any “exact”
(as opposed to approzimate) constraint-based algorithms that work under the assumption of
faithfulness (such as the SGS and PC algorithms (Spirtes et al., 2000)) must (and, in fact,
do) ensure that, w.r.t. their output, P satisfies ordered downward- and upward-stability.

5. Conditions and assumptions for the structure-learning algorithm

Recall that the general goal of constraint-based structure learning is to consider algorithms
for which the output G(P) is Markov equivalent to (the unknown) causal graph Go. In
Section 4, we saw that under the assumption of faithfulness of P and Gy, this goal is
achieved for the class of algorithms falling under Definition 6, the class of natural structure-
learning algorithms. However, in fact, faithfulness is not necessary for this goal, as will be
shown below in Example 13; see also Example 18 for when one focuses solely on the class
of DAGs.

Example 13 (Ordered stability and faithfulness) Consider the graph in Figure 2, and
assume that it is Go in the setting of this manuscript. Let J(P) be the set of statements
implied by the global Markov property plus i1l j|k. First of all, notice that P does not
satisfy singleton-transitivity. Notice also that P is minimally Markovian to G, but P and
Go are not faithful. In addition, P satisfies ordered upward- and downward-stability w.r.t.
Go.

Howewver, all graphs, including the true causal graph Go, w.r.t. which P satisfies ordered
downward- and upward-stability are Markov equivalent. To see this, suppose that there is
a graph H with the same skeleton, w.r.t. which P satisfies ordered upward- and downward-
stability, and that H is not Markov equivalent to Gy. If, in H, k is non-collider then
k > ¢ or k > i, which, by ordered upward-stability, implies i \L £ | k; but this is not in J(P).
Now, if in H, the node ¢ is collider, then k,j > £, which by ordered downward-stability and
conditional independence kAL j | £, implies k1L j, which is again not in J(P).

13



SADEGHI AND SOO

O—O—0—)

Figure 2: Go

Below, we find assumptions under which a natural structure-learning algorithm works;
these assumptions can be thought of as a relaxation of faithfulness.

5.1 Equivalence of the skeletons of Gy and G(P)

We first need to provide assumptions so that Gy and G(P) have the same skeletons. One of
the main assumptions we employ is that P satisfies ordered downward- and upward-stability
w.r.t. Go.

Theorem 14 Consider a distribution P that is Markovian to the causal graph Gy satisfying
the following conditions:

(i) P is converse pairwise Markovian to Gop;

(ii) P satisfies ordered upward- and downward-stability w.r.t. Gy.
Then sk(Go) = sk(G(P)).

Proof It suffices to show that assumption (b) of Lemma 7 is satisfied. Suppose il j|C.
Consider all the nodes in C' \ an(i,j). Since P satisfies ordered downward-stability w.r.t.
Gy, one can remove the node ko with a lowest order in this set to obtain i1 j|C \ {ko}.
Inductively, we will obtain 1L j |C' N an(i, 7). Now, by the use of ordered upward-stability,
we add other nodes in an(i, j) to the conditioning set, and obtain i1l j |an(i, 7). [ ]

Corollary 15 Consider a distribution P that satisfies the conditions of Theorem 14. Then
P is minimally Markovian to Gg.

Remark 16 Notice that there exist cases where there is a unique Markov equivalent class
of graphs including Go to which the distribution P is Markovian, but the skeleton of G is
not the same as the skeleton of P; see Forster et al. (2018), where such examples are used
as a motivation for the assumption of frugality; see Remark 5. In such cases, conditions
of Theorem 1/ (or equivalently adjacency-faithfulness) are not satisfied. This suggests that
there could be extensions to the setting of this paper.

5.2 Markov equivalence of G(P) and Gy

In this section, we will describe under what additional testable conditions Gy and G(P) are
Markov equivalent. We provide the conditions and results both for the case where Gy is a
DAG and the structure-learning algorithm only generates DAGs, and also for the general
case where G is a directed ancestral graph and the structure-learning algorithm generates
such graphs.

We formalize the problem using the following concept: We say that a distribution P
satisfies the uniqueness property (up to Markov equivalence) when the following holds:

14
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maximal graphs with skeleton sk(P) w.r.t. which P satisfies ordered upward- and downward-
stability are Markov equivalent. For the special case of DAGs, we say that a distribution
P satisfies the DAG-uniqueness property if the graphs concerned in the definition of the
uniqueness property are restricted to DAGs.

The distribution P satisfying the uniqueness property is equivalent to the potential
outputs of the structure-learning algorithm being unique up to Markov equivalence. This
is an obvious requirement of the structure-learning algorithm so that the algorithm cannot
generate two graphs that are not Markov equivalent.

In order to ensure that the output of a natural structure-learning algorithm is correct,
we need the following important lemma;:

Lemma 17 Consider a distribution P that is Markovian to Gg. Suppose that the conditions
of Theorem 1/ are satisfied; that is, P is converse pairwise Markovian to Go and P satisfies
ordered upward- and downward-stability w.r.t. Go. Let G(P) be the output of a natural
structure-learning algorithm.

(a) If P satisfies the uniqueness property, then G(P) is Markov equivalent to Gy.

(b) If Gy is a DAG, then P satisfying the DAG-uniqueness property implies that a DAG
output G(P) is Markov equivalent to Gj.

Proof The proof follows from Theorem 14. |

In what follows, we provide and study explicit conditions under which the uniqueness prop-
erty is satisfied.

By Corollary 15, we know that, under the assumptions for P, which we have so far
utilized, P is minimally Markovian to Gg. In Example 18, we observe that, if we replace
the faithfulness assumption with the assumption of being minimal Markovian, then the
uniqueness property no longer holds.

Example 18 Let J(P) = {11.4|{2,3}, 11.4|3, 21.3|4}. For example, there is an SCM
that induces such an independence model: Let €1, €9, €3, and €4 be i.i.d. Define

X1 = maX(XQ,Xg,El); X2 = max(X4,62); X3 = max(2X4,63); X4 = €4.

It can be seen that (Xi)ieqi,.. 4y induces J(P).

First notice that P does not satisfy the uniqueness property: w.r.t. both graphs G1 and G
in Figure 3(b) and 3(c), J(P) satisfies ordered upward- and downward-stability. However,
these two graphs are not Markov equivalent.

Since P satisfies the compositional graphoid axioms (but not singleton-transitivity), this
also shows that compositional graphoid plus ordered upward- and downward-stability are not
in general sufficient for the uniqueness property to hold.

Howewver, if we assume that the structure-learning algorithm is only DAG-generating,
then there is a unique graph w.r.t. which P satisfies ordered upward- and downward-stability
(and consequently the DAG-uniqueness property holds).

From Example 13, we see that singleton-transitivity is not necessary for the uniqueness
property. We provide a (weaker) condition, which together with assumptions of Theorem
14, are still sufficient for uniqueness.

15
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Figure 3: (a) The skeleton of P with no arrows. (b) A DAG G1. (c) A graph G with arcs.

We say that an independence model J is path-unstable if there exists a path
(i =ig,i1, " ,ir,k,j), it jandi, ~jforevery r >1

in sk(J) such that i Il j | UUC and i AL j | UUCU{k}, for some C disjoint from {i, j, k}, where
U= {i1, - iy} or U =0 when r = 0. An independence model that is not path-unstable
is called path-stable.

In the case where the structure-learning algorithm is DAG-generating, the required
condition is simpler. We say that an independence model 7 is V-unstable if there exists a
V-configuration (i, k, j) in sk(J) such that i1 j|C and i1l j| C U {k}, for some C disjoint
from {4, j, k}. An independence model that is not V-unstable is called V-stable. In the same
fashion as before, if J(P) satisfies path- or V-stability then we simply say that “P satisfies
these conditions.”

Remark 19 As will be seen in the proof of Proposition 24, the path that appears in the
definition of a path-unstable P can be thought of as the skeleton of (and can be directed to be-
come) a discriminating path (Ali et al., 2009) from i to j; i.e., a path (i =1ig,i1, - ,ir,k,j)
that is a collider path, and i, € pa(j), for every 1 <n <r.

Remark 20 The well-known orientation-faithfulness assumption (which is defined as a
part of the restricted-faithfulness assumptions) (Ramsey et al., 2006) states that for all V-
configurations (j,1, k) and all subsets S C V' \ {j, k} such that j is d-connected to k given S
it holds that jJL k| S. Notice that, unlike orientation-faithfulness, V-stability (and also path
stability) are purely defined on the distribution P and not on the unknown causal graph Gy.
Indeed, if the conditions of Theorem 14 are satisfied to ensure that sk(Go) = sk(G(P)), then
orientation-faithfulness implies V-stability. However, even under these extra assumptions,
the other direction does not hold; see Example 21 below.

Example 21 Consider the true causal graph Go in Figure 4. Let J contain all the con-
ditional independence statements implied by the global Markov property on Gg, with the
addition of jUL k|s. We have that sk(J) = sk(Go). By looking at sk(J), it can be seen
that V-stability is satisfied, but orientation-faithfulness is not: Consider the V-configuration
(7,1, kY. We have that j is d-connected to k given s, but that j1L k| s.

V-stability is weaker than singleton-transitivity:

Proposition 22 Singleton-transitivity implies V-stability.
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Figure 4: A directed acyclic graph Go.

Proof Towards a contradiction, suppose that there is a V-configuration (i, k,j) in sk(P)
such that i1l j|C and il j|C U {k}, for some C disjoint from {i,j,k}. By singleton-
transitivity, i1l k| C or k1L j| C, which is absurd since both ik and jk are edges in sk(P).
|

In addition, the converse of the above result does not hold; see Example 13. Hence, we have
the following corollary:

Corollary 23 If P is faithful to a graph, then it satisfies V-stability.

Proof The proof follows from the fact that P being graphical implies it satisfies singleton-
transitivity (Proposition 4). [ |

Also notice that singleton-transitivity and path-stability do not imply each other (for one
direction, see Example 13 again), but there are considerably fewer independence statements
to test for for path-stability than for singleton-transitivity. In a similar fashion, there could
be cases where P is graphical, but path-stability is not satisfied: one can take the skeleton
of a discriminating path and direct the edges (with the path not being collider) so that the
induced independence model (by separation) is path unstable. However, notice again that
unlike faithfulness, path-stability is purely defined on P, and hence, in principle, testable.
We now have the following relationship to the uniqueness property:

Proposition 24 Let P be a distribution.
(a) If P is path-stable, then it satisfies the uniqueness property.
(b) If P is V-stable, then it satisfies the DAG-uniqueness property.

Proof We start with the proof for the case of DAGs, which is more elementary than the
general case.

(b) Suppose that P satisfies ordered upward- and downward-stability w.r.t. two orders
<" and <”. Towards a contradiction, suppose that the two DAGs, G(P,<’) and G(P,<")
are not Markov equivalent.

By Lemma 2, there is a collider V-configuration (i, k,j), say, in G(P,<’), which is a
non-collider in G(P, <") (say k >" j). Since G(P, <’) is maximal, il j| C, for some C. By
ordered downward-stability w.r.t. <', we obtain i1l j|C’, for some C’ such that k ¢ C'.
Now by ordered upward-stability w.r.t. <", we obtain i1 j | C" U {k}. This shows that P is
V-unstable, which is a contradiction.

(a) Suppose that P satisfies ordered upward- and downward-stability w.r.t. two orders
<" and <". Towards a contradiction, suppose that the two maximal graphs G(P, <) and
G(P, <") are not Markov equivalent.
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By Lemma 1, there is a minimal collider path 7, say, in G(P, <), which is not a minimal
collider path in G(P, <”). Consider a shortest minimal collider subpath 7" of 7 in G(P, <’)
that is not a minimal collider in G(P,<"”). Furthermore, we can assume that 7’ is not
a collider path in G(P,<"), since if 7’ is a collider path, but not minimal, we consider
the minimal collider subpath 7" in G(P,<"”). Note that 7 is not a minimal collider in
G(P,<’). We can then continue the proof using 7" instead of 7/, and the roles of G(P, <')
and G(P, <") reversed.

Let ¢ and j be the endpoints of 7/ which is not a collider in G(P, <"). Consider a node
k, which is a non-collider node on 7/. We show that k is adjacent to ¢ or j on 7’/. Towards a
contradiction, suppose that it is not adjacent to either. Consider a subpath of 7’ given by
(i’ h,k, £,7"). Recall that the endpoints of a minimal collider path are not adjacent. Hence
h ~ £, otherwise, (h,k, ) is a shorter minimal collider subpath in G(P,<’) that is not a
minimal collider in G(P, <”). Similarly, h ~ j' and i’ ~ . Since 7’ is a minimal collider,
the hf-edge cannot be an arc, and the hj- and if-edge have to be arrows from h to j' and £
to 4, respectively. Since directed cycles are not permissible in an ancestral graph, it is easy
to rule out the existence of an arrow from h to ¢ and vice-versa; we already ruled out the
possibility that the hf-edge is an arc, and we require that h ~ ¢, which is absurd.

Without loss of generality, assume that k is adjacent to j on 7n’. Let n’ = (i =
0,91, ,ir, k,j), where r may be 0. If » > 0, then by minimality, i, ~ j and i, —~j.
From an inductive argument along 7', if » > 0, we conclude that 7’ is a discriminating path
from ¢ to j.

Since G(P, <) is maximal, il j|C, for some C; moreover, k ¢ an(i) since otherwise i
and j are not separated. Since k is a collider in G(P, <), we have k & an(j). Therefore,
by ordered downward-stability w.r.t. <’ we obtain i1l j | C’, for some C’ such that k ¢ C".
By ordered upward-stability w.r.t. <’, and the previously established discrimination, we
obtain ¢l j|U U C’, where U = {iy,--- ,i,} (and if » = 0, then U = ). Now by ordered
upward-stability w.r.t. <", we obtain il j |U U C" U {k}, since k is not a collider node on
G(P,<"). Thus P is path-unstable, which is a contradiction. [ |

This leads to the main result, which provides conditions under which a natural structure-
learning algorithm works.

Theorem 25 Suppose that P satisfies the conditions of Theorem 14, that is, it is Marko-
vian and converse pairwise Markovian to Gy, and satisfies ordered upward- and downward-
stability w.r.t. Gy. Let G(P) be the output of a natural structure-learning algorithm.

(a) If P is also path-stable, then G(P) is Markov equivalent to Gy.

(b) If Gy is a DAG and P is V-stable, then a DAG-output G(P) is Markov equivalent to
Go.
Proof The proof follows from Proposition 24 and Lemma 17. [ |

As an example for the theorem above, we can revisit our motivating Example 13 to ob-
serve that although faithfulness is not satisfied, all the conditions of Theorem 25, and, in
particular, V-stability are satisfied.
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However, notice that, under the conditions presented here, ordered downward- and
upward-stability w.r.t. Gy are not necessary in the sense that there are cases where ordered
downward- and upward-stability are not satisfied w.r.t. Gg , but an output of the algorithm
is Markov equivalent to Gg. This stems from the fact that there could be two Markov
equivalent graphs and a P such that P satisfies ordered downward- and upward-stability
w.r.t. one but not the other; see example below.

Example 26 Consider the causal graph Go and its Markov equivalent graph G1 below. Let
J (which, in principle could be induced by a probability distribution) contain all the inde-
pendencies induced by the global Markov property plus k1. m |l and additional independence
statements implied by applying ordered upward-stability w.r.t. G1 and semi-graphoid axioms.
It can be checked that k)X m|{i,l}. Hence, J does not satisfy ordered upward-stability w.r.t.
Go. However, by definition, J satisfies ordered upward-stability w.r.t. G1. Notice also that,
in this example, V -stability (and path-stability) are satisfied.

D (D@ DD

O—O—O—C O—O—O—C
(a) (b)

Figure 5: (a) Go, (b) G1

The above discussion suggests that one can replace the condition “P satisfying ordered
upward- and downward-stability w.r.t. Go” in Theorem 25 with “P satisfying ordered
upward- and downward-stability w.r.t. a graph in the Markov equivalence class of Gy”
in order to make the condition necessary.

6. Structure learning for structural causal models

First, we give a proof for the global Markov property for general SCMs, which allow for
the possibility of arcs. Then we find conditions on the functions of the SCM to ensure the
converse pairwise Markov property; see (2).

6.1 Global Markov property for general SCMs

The main assumption used in the general setting for structure learning is that P is Marko-
vian to the causal graph Gy. A main reason for popularity of SCMs for causal learning is
that this condition is automatically satisfied for the joint distribution of an SCM. Indeed,
the joint distribution of an SCM with mutually independent errors being Markovian to the
DAG Gy is a well-known result (Verma and Pearl, 1988; Pearl, 2009), but we are not aware
of such a result in an explicit and non-parametric form when unobserved variables are exis-
tent; see Koster (1999) for a similar result in the Gaussian case and with a slightly different
type of graph. Recently, in Bongers et al. (2021), a similar result is proven for directed
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SCMs, but for a less general setting when one focuses on ancestral graphs; see Remark 5.
See also Forre and Mooij (2017) for various equivalent notions of the Markov property.

Theorem 27 The joint distribution P of an SCM is Markovian to Gjy.

The proof of the above theorem requires some definitions and results that are not used
in the subsequent sections. We provide the proof together with these definitions and results
in the remainder of this subsection. Readers may skip the proof without loss of continuity.

We first need some primary definitions and results mostly from Richardson (2003). The
district of node i, denoted by dis(i), is the set of nodes connected to ¢ by a collider path
on which every edge is an arc. We also define a set A to be ancestral if it is closed under
the ancestor relation, i.e., if AUan(A) = A. If A is an ancestral set in a graph G, and ¢
is a node in A that has no children in A, then we define the Markov blanket of i w.r.t. the
induced subgraph G[A] on A by

mb(i, A) = paga)(disga)(i)) U (disgray(i) \ {i}).

We use the notation pst(i) for the set of nodes with an order larger that i. We say that
a probability distribution satisfies the ordered local Markov property w.r.t. the ordering <,
if for any node 4, and ancestral set A such that i € A C pst(7), we have

iAL[A\ (mb(i, A) U {i})] | mb(z, A).

We have the following equivalence, which does not require any extra assumptions, originally
proven for ADMGs (which is a more general class than directed ancestral graphs):

Lemma 28 (Richardson (2003)) For a valid ordering < of the nodes of a graph G, a
distribution P satisfying the ordered local Markov property w.r.t. < is equivalent to P being
Markovian to G.

In this section, we also utilize the concept of marginalization over probability distribu-
tions and graphs. Let a(P, M) be the marginalized distribution over M C V so that
(P, M) is defined over Xy~ ;. Notice that the induced independence model of a(P, M) is
J(a(P,M))={ALB|D:(AUBUD)NM = &}.

By marginalizing over the node set M of graph G, a new graph a(G, M) is obtained
from which the node set M is removed: For every path 7 in G between 4,j ¢ M, whose
inner nodes are all non-collider and in M, we generate an edge in (G, M), which preserves
the (lack of) arrowheads pointing to i and j in 7; We apply this repeatedly until no new
edges are being generated, and then remove all the nodes in M; for more details of this
algorithm, refer to Richardson and Spirtes (2002); Sadeghi (2013). The following result is
well-known (Richardson and Spirtes, 2002; Sadeghi, 2013):

Lemma 29 For a graph G and disjoint node sets A, B, C, and M, it holds that
ALB|C ina(G,M) <= ALB|C inG.
We shall need the following corollary of this result:

Lemma 30 Suppose that a distribution P is Markovian to the graph G. Then o(P, M) is
Markovian to o(G, M).
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Proof P being Markovian to G implies that AL B|C in G implies that Al B|C.
A1 B|Cin a(G, M) implies that (AUBUC)NM = @, and also A L B|C (by Lemma 29).
(AUBUC)N M = @ implies that AL B|C exists in J(a(P,M)). Therefore, AL B|C in
a(G, M) implies AL B|C exists in J(a(P, M)). [ ]

We are now ready to provide the proof of Theorem 27.

Proof of Theorem 27 Consider the augmented graph Go(X, €) and the joint distribution
Px . Consider the ordering similar to the ordering in the SCM for X;s, and, for ¢;s, let
Xitv1 > € > X;. We show that Px . satisfies the ordered local Markov property w.r.t. this
ordering in Go(X,€). Hence by Lemma 28, we obtain that Px . is Markovian to Go(X€).
Consider a node in Gy(X,€). We have two cases:

First, assume that this node is of € form, i.e., say it is ¢;. Consider also A C pst(e;).
We have that mb(e;, A) = {¢; € A: X € dis(X;) in Go}. If mb(e;, A) = A, then 1L [A \
(mb(e;, A) U{e})] |mb(e;, A) is trivial; otherwise there is no edge between mb(e;, A) and
A\ (mb(e;, A) U {¢}) in Go(X,e€), which, by joint independence of such €;, implies that
{€;} Umb(e;, A)AL A\ (mb(e;, A) U{e;}). This, by the weak union property, implies

€L [A \ (mb(ei, A) U {EZ})] ‘ rnb(ei, A)

Secondly, assume that this node is of X form, i.e., say it is X;. Consider also A C
pst(X;) = (€, Xit1,€i41,--., Xn,€,). We have that mb(X;, A) = {&} U {Xj X €
Pag,[a)(Xi)}. However, given mb(X;, A), we have that X; is deterministic; hence, it is
independent of all disjoint random vectors including A \ (mb(X;, 4) U {X;}).

Finally, since the inner nodes of (Xj, €;,€;, X;) are non-collider in a(Go(X,¢€), it can be
seen that a(Go(X,¢€),e) = Go. Hence, Px being Markovian to Go(X,€), by Lemma 30,
implies that P is Markovian to Gy. |

6.2 Conditions and assumptions for structure learning of SCMs

The general setting for structure learning for SCMs is the same as in the previous sections,
and, in fact, the case of SCM could be considered a special case of the theory presented
above: We start by assuming the existence of an unknown SCM € associated to an unknown
causal graph G as described in Section 2.5. For structure learning (from observational
data), we find a graph that belongs to the Markov equivalence class of Gy. As discussed,
the SCM € entails a joint distribution P, which is still unknown. Therefore, the relationships
can be illustrated in the following diagram:

conditional independence Algorithm Markov equivalent
— — ~

Go+—C— P J(P) G(P) Go

We begin our discussion with a few examples. In general, the independence models of the
SCMs are not faithful to Gy. Although there are many examples where faithfulness fails, the
following simple and perhaps familiar example will help to motivate further considerations

regarding the converse pairwise Markov property.
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Example 31 (Failure of faithfulness) Consider the following SCM where 2—1, and
2 is the only parent of 1. Suppose Xo = €2 and X1 = Xo ® ¢ mod 2, where e2 and €1 are
independent Bernoulli random variables with parameter p = % It is easy to verify that Xo
1s also independent of X;.

For a continuous example, we exploit of the invariance of Lebesgue measure on the
circle. Take €1 and Xo = €3 to be independent continuous real-valued random wvariables.
Let F and G be the cumulative distribution functions for Xo and €1, respectively. Set
X1 = F(X2) ® G(e1) mod 1. It is easy to verify that Xo is independent of X .

Motivated by Example 31 and the elementary fact that a random rotation that is in-
dependent of a standard bivariate normal remains independent of the randomly rotated
bivariate normal, and more generally the connection between symmetries and independence
(Dawid, 1985), we have the following lemma.

Lemma 32 Consider the SCM with associated graph 2—1, so that 2 is the only parent
of 1. Suppose that X9 = €2, X1 = ¢1(X2,€1) and that €2 and €1 are independent. Then X,
1s independent of X1 if and only

d
$1(z2,61) = X1 (3)
for almost every o € Xs.

Note that (3) is easily satisfied if ¢; is actually a function of €; alone. In (3), it may be
helpful to think of x5 as indexing (distinct) ways of generating a random variable with law
X1, given the randomization ;.

Proof of Lemma 32 Let So C &3 and S; C &> be measurable subsets. Let QQx, and
Q¢, be the laws of Xy and €1, respectively. Since 2—1, and X3 and €; are independent,
we have

P(Xl S Sl,XQ € 52) = ]P)((Z)l(Xg,el) S Sl,XQ S Sz)
— [ [1oraen) € S)1les € SaJdQua(w2)dQu (e1)

= /S P(¢1(x2,€1) € S1)dQ x, (x2).
2
Thus if (3) holds, we have

]P)(Xl € 51,Xo € 52) = / P(Xl € Sl)dQXz('%?)
S2

P(X1 € 51)@x,(S52)
= P(X; € 51)P(Xq2 € 5y)

and the desired independence follows.
If Xo and X; are independent, then

1

R (0 A

/S P(p1(w2,€1)) € S1)dQx, (x2)
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for all measurable subsets So with Qx,(S2) > 0. By setting
SQ = {1'2 c Xy P(¢1($2,61) € 51) > P(Xl S S)},

we see that Qx,(S2) = 0. Hence together with reversing the inequality in the definition of
Sy, we obtain (3). [ |

In fact, the joint distributions of SCMs may not satisfy any of the axioms for faithfulness,
presented in Proposition 4, and discussed in the Sections 2.2 and 2.3. For a counter-example
and a thorough discussion on the intersection property, see Peters (2015). For an example
of an SCM not satisfying singleton-transitivity, see Example 18. For counter-examples for
other axioms, we provide the following examples:

Example 33 (Failure of composition and ordered upward-stability) Consider the
following SCM associated to the graph Gy in Figure 6:

Xz=€3 Xo=e; X1=Xo® X3® e mod2;

where €1, €2, and €3 are independent Bernoulli random variables, €5 and €3 with parameter
%, and €1 with parameter %

It is easy to verify that X1 Xo, and X1 1L X3, but X 0 (X2, X3) and X1 4 Xo| Xs.
Hence this is an example for an SCM not satisfying the composition property or ordered
upward-stability.

Figure 6: A directed acyclic graph Go.

Example 34 (Failure of ordered downward-stability) Consider a complete DAG with
nodes (1,2,3). Let e3 = (N3,Us) and ea = (U, Va), where N3,Us,Us, and Vo are all in-
dependent, and N3 is Poisson distributed, and Us,Us and Vo are uniformly distributed on
[0,1]. Let X3 = €3. Let Xo = ¢2(X3,€2) = (Y2(N3,Us), Va), where o is a deterministic
function such that 1¥o(ns, Us) is uniformly distributed on the integers {1,...,n3 + 1}. Let
X1 = ¢1(X3,X2) = (N3, V3). Clearly, Xo is not independent of Xs. However, conditional
on X1, we have that Xo is independent of Xs.

An important property used in the results of previous section is converse pairwise Markov
property. Here, we are mainly concerned with providing conditions for verifying this prop-
erty. For an SCM C, we provide an assumption on the joint distribution of C that implies
the converse pairwise Markov property. Consider the following extension of Lemma 32.

Proposition 35 Consider an SCM, where j—=i. Write X; = ¢i(Xpaan (1> Xy €i)- Sup-
pose that an(i, j) # 0. Then il j|an(i, j) if and only if for almost all Ton; jy € Xangij) the
conditional law of X; given X j) = Tan(i,j) S the same as the law of gzﬁi(xpa(i)\{j},xj,ei)
for almost all xj € X; in the support of the conditional distribution of X given . j)-
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Proof Let F; and F; be the o-algebras for Xj and ;. Let D : X,y 5y X (Fj, Fi) — [0,1] be
a regular conditional distribution for (Xj, X;) given X,;; j). FiX Zan(ij) € Xan(i,j)- All the
parents of i are included in an(i, j), except j. Let Q; and @; be marginal distributions of
X; and X under D, ;) = D(zan(7, j), ", ). Following the proof of Lemma 32, since j —~i
and the graph is ancestral, we have that ¢;, with law @, is independent of (X, X;).
Thus for S; € F; and S; € F;, we have

Davy(250 = [ [ 1oilamonin 00 € 501dQ;(a,)du )

n(i,5)

= /S P(di(Zpagi\ (j})> Tj» €i) € Si)dQ; ().
j
Thus, if
Qi(Si) = P(¢i(@pa@p\(j})s Tj» €i) € Si) (4)
for all Q;-almost all z; € X;, then
Dy iy (85:5:) = Q;(S5)Qi(5:)
as desired.

A routine variation of the rest of the proof of Lemma 32, gives that the condition on ¢;
expressed in (4) is also necessary for the conditional independence of X; and Xj. |

Proposition 35 includes Lemma 32 by making the suitable interpretations in the case
that an(z, j) = 0.

Proposition 35 suggests the following condition that implies the converse pairwise Markov
property, in the case that true causal graph is a DAG. We say that the (joint distribution)
of an SCM satisfies positivity if P(Xp € S|X4 = x4) > 0 almost surely, for every set of
nodes B disjoint from A and every measurable S for which P(Xp € S) > 0, for almost
every x4 € Xa.

Observe that each function ¢ in an SCM has the form

d: X X X Xy X E— Xy,

which is endowed with a product probability measure p ® Qe, the joint law of the parents
and exogenous variable on Xy x --- x X, x £, and a probability measure v = (u® Q) 0 ¢~
on X1, the law of the child. Let y/ be the projection of u to space

Xj 2:X1X--'XXj,1XXj+1X'-'XXn.

Let ¢, X = (X1,...,X,), and X; have laws Q, p, and p; respectively. We say that ¢ has
non-constant fibers if for all 1 < j < n there is some F C X7 with positive p/-measure for
each

) = (3717--~7-%'j—1733j+17---7-%'n) eF

and there is some S C AX),1; such that the function & : X; — [0, 1] given by

k(z;) =P(¢(z1,...,25,...,%n,€) €5)

is non-constant pj-almost surely. We say that an SCM has non-constant fibers if every
function in the SCM has non-constant fibers.
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Remark 36 Note that in the proof of Proposition 35, equality (4) fails if ¢; has non-
constant fibers and the SCM satisfies positivity.

Remark 37 It is easy to see that additive noise models with the form
¢(z,€) = h(z) + €

will have non-constant fibers under the mild condition that for any 1 < j <n, and any fized
Tls.eosTj—1,Tj41, .-, Tn, the function

g(ay) = hlar,. ..z 1)

18 mon-constant almost surely; assume for simplicity that all the relevant conditional dis-
tributions are equivalent to Lebesgue measure. Hence, by Remark 36, these additive noise
models will satisfy the converse pairwise Markov property, provided that the true causal
graph is a DAG.

Recall that if i <—~7, then ¢; and ¢; are dependent. In order to deal with the possibility
of arcs, we have the following restriction that allows us to preserve dependence. We say
that ¢ : X X -+ x X, x & = X111 in an SCM is noise injective if for each fixed x1, ..., zy,
the function e — ¢(x1,...,x,,e) is injective.

Lemma 38 Consider an SCM, where j<—~i. If both ¢; and ¢; are noise injective, then

i j (i, ).

Proof Fix z,,(; ). Since j<—i, all the parents of i and ¢ are included in an(i,j) and ¢;
and ¢; are dependent. The conditional distribution of (X;, X;) given Xuni i) = Tan(i,j) 18
the law of

((#s(@pagiy: €0), D5 (Zpa(j) €5))

since the graph is ancestral and the joint law of (e;,€;) remains the same under this con-
ditioning. Since ¢; and ¢; are noise injective, it follows that ¢;(2pag), €) and ¢;j(Tpa(s), €5)
are dependent if and only if ¢; and ¢; are dependent. |

From the proof of Lemma 38, we see that noise injectivity is a condition which allows us
to preserve the dependencies of the noises; in general if the random variables €; and ¢; are
dependent, we cannot conclude (like independence) that functions of €; and €; will remain
dependent. It is easy to verify that noise injectivity is satisfied by the additive noise models.

Corollary 39 The additive noise models of Remark 37 satisfy the converse pairwise as-
sumption, without the assumption that the true causal graph is a DAG.

Proof Immediate from Remark 37 and Lemma 38. [ |

We also say that an SCM is noise injective if every function in the SCM is noise injective.
Notice that these conditions do not depend on the structure of the causal graph.
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Corollary 40 Any SCM satisfying positivity, with non-constant fibers, and noise injectivity
has the converse pairwise Markvov property; furthermore, if the true causal graph is a DAG,
then the noise injectivity assumption may be dropped.

Proof Immediate from Proposition 35, Lemma 38, and Remark 36. |

Hence, under some additional assumptions, the SCMs are not only Markovian, but
minimal Markovian to their true causal graph:

Corollary 41 Consider an SCM with positivity, non-constant fibers, noise injectivity, and
ordered upward- and downward-stability w.r.t. Go. Then P is minimally Markovian to Go;
furthermore, if the true causal graph is a DAG, then the noise injectivity assumption may
be dropped.

Proof The proof follows from the Corollary 15 together with Theorem 27 and Corollary
40. |

We can now present our main result for structure learning for SCMs:

Theorem 42 Consider an SCM with positivity, non-constant fibers, and a distribution P,
which satisfies ordered upward- and downward-stability w.r.t. the causal graph Go. Consider
natural structure-learning algorithms.

1. If P is path-stable, and the SCM is noise injective, then G(P), an output of a natural
structure-learning algorithm, is Markov equivalent to Gj.

2. If Gy is a DAG, and P is V-stable, then a DAG-output of a natural structure-learning
algorithm is Markov equivalent to Gy.

Proof The proof follows from Theorem 25, Theorem 27, and Corollary 40. |

In Theorem 42, the most difficult condition to verify are ordered stabilities, which may
not be directly testable.

6.3 Specialization to specific SCMs

We consider some more restrictive assumptions on an SCM that will imply the converse
pairwise Markov property.

6.3.1 DISCRETE RANDOM VARIABLES

For discrete distributions, we have the following simple sufficient condition for an SCM to
satisfy the converse pairwise Markov property. We say that an SCM is discrete if both the
endogenous and exogenous random variables are discrete.

Proposition 43 Consider an SCM that is discrete and satisfies positivity. Suppose that
for all the nodes i, the cardinality of the support of €; is strictly less than the support of X;.

1. If P is path-stable, and the SCM is noise injective, then G(P), an output of a natural
structure-learning algorithm, is Markov equivalent to Gjy.
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2. If Gy is a DAG, and P is V-stable, then a DAG-output of a natural structure-learning
algorithm is Markov equivalent to Gy.

Proof From Theorems 25 and 27 it suffices to verify the converse pairwise Markov property
for a pair of adjacent nodes ¢ and j. Lemma 38 takes the care of the case where i <—~j.
Suppose that i—j. If the support of ¢; is strictly less than the support of X;, then pos-
itivity implies that (4) is not satisfied so that Proposition 35 gives that the conditional
independence statement i1l j | an(i,j) does not hold. [ |

The assumption on the cardinality of the supports has the interpretation that informa-
tion at a node is mot mostly noise.

In the next lemma, we show that under some assumptions, the failure of the converse
pairwise Markov property for j—i, forces the uniform distribution on both X; and ;.
Let ¢ : &1 x --- X &, x & = A, 41 be a noise injective function in a discrete SCM. Given
Tlye @y, Ty, lot @I @;Z_ denote the inverse of ¢. Suppose that for
all choices of 1 < j <n and 27 there exists Ty, 1 € Xpt1 such that

"
{07, (2 1) 12 € Xy} = €.
Then we say that ¢ is noise surjective.
Proposition 44 Consider the following SCM, where j—i and

Xi = i Xpaga)\(iys Xy» €i)-

Suppose that the joint distribution is discrete and satisfies positivity. Suppose also that ¢; is
notse injective and surjective. Ifill j|an(i, j), then ¢; and X; are both uniformly distributed
and & and X; have the same cardinality.

Proof Fix @,,(; . Note that all the parents of i, save j, are included in an(i,j), By
Proposition 35, we have

P(Xs = 2| Xan(ig) = Tan(ig)) = Ploi(Tpag\(5})> 75> €) = %)
= P& = 0.7 (2))
for all z; € X; and all x; € X}, by positivity. By noise surjectivity, substituting x; = z;, we
deduce that ¢; is uniformly distributed, with finite support &;. Thus

1

IP(XZ = xi|Xan(i,j) = xan(i,j)) = #78

for all x;. Hence it follows that X; is also uniformly distributed. |
Corollary 45 Consider a discrete SCM satisfying positivity. Suppose that all the functions

are noise injective and noise surjective. If each of the exogenous random variables are not
uniformly distributed, then the converse pairwise Markov property is satisfied.
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Proof Immediate from Proposition 44 and Lemma 38. |

Corollary 46 Consider an SCM that is discrete and satisfies positivity. Suppose that all
the functions are noise injective and noise surjective. Assume each of the exogenous random
variables are not uniformly distributed.

1. If P is path-stable, then G(P), an output of a natural structure-learning algorithm, is
Markov equivalent to Gy.

2. If Gy is a DAG, and P is V-stable, then a DAG-output of a natural structure-learning
algorithm is Markov equivalent to Gy.

Proof The previous corollary assures us that the converse pairwise Markov property is
satisfied, so that the result follows from Theorems 25 and 27. [ ]

Returning to Example 31, it is easy to verify that the simple SCM is both noise injective
and surjective. Notice that if €; is chosen with Bernoulli parameter p %, and all other
choices are left the same, then Xs is no longer independent of X;. Corollaries 45 and 46
suggest that if it is possible to avoid or exclude the possibility that the exogenous random
variables are uniformly distributed, then a natural structure-learning algorithm is more
likely to work.

6.3.2 CONTINUOUS RANDOM VARIABLES

We note that the modular addition in Example 31 is not continuous. We show that under
some regularity conditions, up to a change of coordinates, only trivial functions can result
in independence. Given ¢ : X} X --- X X, x &€ — X411, we say that ¥ is a j-change
of coordinates if there exists g : [~1/2,1/2] — & such that for all 27 € X7, there exists
hai : Xpt1 — [—1/2,1/2] such that if U is uniformly distributed on [—1/2,1/2] and

Y(zj,u) = hy o d(x1,...,%4,...,%n,g(w)),

then ¢g(U) has the law of € and ) (z;, €) is uniformly distributed on [—1/2,1/2] for all z; € &j.
We say that ¢ is regular if for fixed x;, the function ((u) = ¥(x;,u) is injective and ((u)
is monotone; note that under these conditions an easy argument given in Lemma 47 shows
that v is a reflection of the form ¢ (x;,u) = u or Y(xj,u) = —u for all z; € X; and all
u € [—1/2,1/2]. We say that ¢ is non-trivial if for each j, there does not exist a regular
j-change of coordinates. We say that an SCM is non-trivial if every function in the SCM
is non-trivial. We say that a function ¢ in an SCM is noise monotone if for all x1, ..., Ty,
the function e — ¢(x1,...,2n,€) € Xyy1 C R is monotone in e € £ C R.

Proposition 47 Consider the following SCM, where j——i and
Xi = i(Xpa@)\ (i} Xi» €i)-

Suppose that ¢; is noise injective and noise monotone. Also assume that €; is a continuous
random variable, and that for almost all T,y ;), the conditional distribution law of X; given
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Xan(i,j) 18 continuous with respect to Lebesque measure. If i1l j |an(i, ), then ¢; admits a
j-regular change of coordinates and any such change of coordinates is a reflection.

Proof Recall that if F' is the cumulative distribution function for a continuous random
variable Z, then F is non-decreasing and F'(Z) — 3 is uniformly distributed on [—1/2,1/2].
In addition, the inverse transform method tells us that F~'(U + %) has law Z if U is
uniformly distributed on [—1/2,1/2]. Hence by Proposition 35, and the absolute continuity
assumptions, it follows that ¢; has a j-regular change of coordinates 1. Fix z; € X; and
write ¢(z;,u) = ¢(u). If ¢ is increasing in w, then for z € [—1/2,1/2], we have for U
uniformly distributed on [—1/2,1/2] that

2+ 1/2=PU) <2)=PU < (2)) =¢1(2) + 1/2,

from which it follows that ¢(z;,2) = z. If ¥ is decreasing, then a similar argument gives
that ¢ (z;,2) = —z. [ |

Corollary 48 If the law of an SCM is given by a jointly continuous distribution, and the
SCM 1is noise injective and monotone, and is non-trivial, then it satisfies the converse
pairwise Markov property. Moreover,

1. If P is path-stable, then G(P), an output of a natural structure-learning algorithm, is
Markov equivalent to Gy.

2. If Gy is a DAG, and P is V-stable, then a DAG-output of a natural structure-learning
algorithm is Markov equivalent to Gy.

Proof The converse pairwise Markov property is immediate from Proposition 47 and
Lemma 38. Hence the latter assertions that a natural structure-learning algorithm works
follow from Theorems 25 and 27. |

7. Summary and discussion

We formalized the problem of structure learning from independence statements to find a
graph that is Markov equivalent to the “true causal graph,” which is the unknown graph to
which the distribution is assumed to be Markovian. In fact, all the results presented here
are also correct for an abstract independence model J instead of a probability distribution
P.

A main message of this paper is that an important property of constraint-based structure-
learning algorithms is to direct the edges of the skeleton of the probability distribution P
so that ordered upward- and downward-stability are satisfied by P w.r.t. the generated
graph. We call such algorithms a natural constraint-based structure-learning algorithm.
Among the conditions that constitute the widely-used assumption of faithfulness, provided
in Proposition 4, ordered upward- and downward-stability are the only ones that induce
an ordering, which is what is used for directing the edges in structure learning. Since,
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under faithfulness, ordered upward- and downward-stability are necessary for the output
of the algorithm, all exact structure-learning algorithms that assume faithfulness in the
literature are members of the class of natural structure-learning algorithms. Therefore, for
any (newly) proposed algorithm, to prove that the algorithm works, it is sufficient to test
whether P satisfies ordered upward- and downward-stability w.r.t. its output.

Following this line of thinking, this result could lead to finding the “optimal” natural
constraint-based structure-learning algorithm. The idea is that such an algorithm would be
designed to solely direct the edges of the skeleton to ensure an ordering w.r.t. which ordered
upward- and downward-stability are satisfied. Hence, for certain recorded independence
statements, one should perform some additional tests on whether independence is preserved
by certain additions to the conditioning set of those statements. The results of such tests
determine the direction of the edges of the output. This is a direction for future work.

Moreover, we provided two assumptions, both of which are satisfied by faithfulness, in
order to ensure that the skeleton of the output of a natural structure-learning algorithm is
the same as the skeleton of the causal graph. One condition is the converse pairwise Markov
property and the other one is satisfied by the assumption that the distribution satisfies
ordered upward- and downward-stability w.r.t. the causal graph. In order to ensure that
directing the edges of the skeleton of the output will result to a Markov equivalent graph
to the causal graph, a sufficient condition is path-stability in the general case of directed
ancestral graphs, and V-stability in the case where we only deal with DAGs.

In contrast to well-known conditions in the literature such as orientation-faithfulness,
path- and V-stability are only properties of the distribution and not the causal graph. V-
stability is also weaker than singleton-transitivity, and consequently faithfulness. However,
there are cases where faithfulness is satisfied, but not path-stability. Path- and V-stability
are easier to test than singleton-transitivity as one needs to only test independence for
the endpoints of specific paths or V-configurations in sk(P) respectively. In addition to
singleton-transitivity, out of the equivalent conditions to faithfulness, provided in Sadeghi
(2017), intersection and composition properties are not needed. In the case of a Gaussian
distribution, however, all these assumptions are automatically satisfied, and therefore, our
assumptions imply faithfulness.

It is commonplace to perform structure learning for SCMs. We have specialized the
theory for SCMs. For SCMs that we associate with directed ancestral graphs, we showed
that the main assumption of P being Markovian to the causal graph is always satisfied.

In addition, we provided simple sufficient conditions on the SCM that imply the converse
pairwise Markov property. Although converse pairwise Markov property is indeed related
to the causal graph, these sufficient conditions are not. Our key condition of having non-
constant fibers has a simple interpretation when the function of an SCM has only one
discrete endogenous variable and one exogenous variable: there is a choice of two values
for the endogenous variable, whereby the distributions of the random variables given by
evaluating the function at these two fixed values and the exogenous random variable are
distinct. In the general case where the SCM may not be a DAG, we need to impose a
further strong injectivity condition on the functions.

The assumption of distributions (of the SCM) satisfying ordered upward- and downward-
stability w.r.t. the causal graph is, in principle, not directly testable. However, in our pri-
mary study, we observe that it is difficult to come up with natural examples of distributions
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that do not satisfy these conditions when dealing with SCMs. Nevertheless, a thorough
study of these conditions for SCMs and other causal models is needed, and is subject of
future work.
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