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Abstract: Signalized intersections dominate traffic flow in urban areas, resulting in increased energy consumption and travel delay for the vehicles 

involved. To mitigate the negative effect of traffic lights on eco-driving control of electric vehicles, a multi-intersections-based eco-approach and 

departure strategy (M-EAD) is proposed to improve vehicle energy efficiency, traffic throughput, and battery life, while maintaining acceptable driving 

comfort. M-EAD is a two-stage control scheme that includes efficient green signal window planning and speed trajectory optimization. In the upper 

stage, the traffic light green signal window planning is formulated as a shortest path problem, which is solved using an A* algorithm for travel delay 

reduction. In the lower stage, the speed optimization problem is solved by resorting to a receding horizon framework, in which the energy consumption 

and battery life losses are minimized using an iterative dynamic programming algorithm. Finally, Monte Carlo simulation with randomized traffic signal 

parameters is conducted to evaluate the performance of the proposed M-EAD strategy. The results show the various advancements of the proposed M-

EAD strategy over two benchmark methods, constant speed and isolated-intersection-based eco-approach and departure strategies in terms of energy 

efficiency, travel time, and battery life in stochastic traffic scenarios. In addition, the performance of M-EAD on actual road conditions is validated by 

on-road vehicle test. 

Keywords: electric vehicle, connected vehicle, energy-efficient driving, speed planning, real-world vehicle experiment 

 

1. Introduction 

The increasing interest in environmental protection and resource conservation has prompted researchers to develop 
eco-friendly technologies to reduce vehicle energy consumption [1-3]. A promising method involves driving the vehicle 
at an appropriate speed, which is also called eco-driving control [4]. By operating vehicles at smooth speeds, eco-driving 
can reduce excessive energy consumption and greenhouse emissions, and even improve traffic throughput [5, 6]. Eco-
driving is considered to have great commercialization potential in the near future [7].  

The emerging connected and automated vehicle (CAVs) technology has redefined eco-driving. By utilizing the shared 
look-ahead traffic information, the CAVs can optimize their speed trajectory to improve vehicle operating efficiency [8-
10]. Predictive cruise control, an eco-driving application for vehicles on highways, uses road geometry information, such 

Acronyms 

CAV Connected and automated vehicle I-EAD Isolated-intersection-based EAD 

CS Constant speed M-EAD Multi-intersections-based EAD 

DP Dynamic programming  OCP Optimal control problem  

EAD Eco-approach and departure RHVO Receding horizon velocity optimization  

EVs Electric vehicles SPaT Signal phase and timing  

IDP Iterative dynamic programming V2I Vehicle-to-infrastructure  
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as road grades and curvatures, to develop a look-ahead cruising strategy with variable speeds [11, 12]. To execute 
predictive cruise in the real world, some studies have considered the influence of preceding vehicles [13]. Another typical 
application of eco-driving is eco-approach and departure (EAD) control at signalized intersections [14]. It principally 
involves avoiding stop-and-go behavior by optimizing the vehicle speed to improve the vehicle's energy efficiency. 
Different studies focus on the EAD strategy, which can be divided into isolated-intersection-based EAD (I-EAD) and 
multi-intersections-based EAD (M-EAD) strategies. 

Most existing research on EAD control focuses on speed optimization at isolated signalized intersections. Katsaros et 
al. [15] developed a green light optimized speed advisory system for fuel consumption minimization by avoiding stopping 
at the red signal. Simulation results indicated that a higher EAD system penetration rate could future improve the energy 
efficiency of on-road vehicles. To enhance the eco-driving strategy in real traffic situations, Li et al. [16] proposed an 
energy-saving departure strategy for a connected vehicle at an intersection, which calculates the vehicle speed using the 
Legendre Pseudo Spectral algorithm and considers the constraints of the preceding vehicle. However, the speed profiles 
of the preceding vehicle are known as a priori, which is impractical. Ye et al. [17] developed an enhanced EAD strategy 
with speed forecasting of the preceding vehicle. Dong et al. [18] proposed a hierarchical eco-approach control algorithm 
that considers the vehicle queue at a signalized intersection. The vehicle arrives at the intersection stop line just as the last 
queued vehicle is discharged by predicting the movement of the vehicle queue. Zeng et al. [19] proposed a globally 
optimal speed planning strategy for a vehicle running on a given route with multiple stop signs, traffic lights, turns, and 
curved segments. After converting traffic light and road geometry to spatial-temporal constraints, the optimization 
problem was solved using dynamic programming (DP). Another study presented by Shao et al. [20, 21] proposed a fuel-
efficient control framework that integrates speed optimization and traffic states (i.e., traffic flow speed and density) 
prediction. This control framework can be used in partially connected traffic scenarios and extended to multiple 
intersections or multi-lane scenarios in the future. In addition, Hao et al. [22] and Sun et al. [23] investigated the effect 
of actual traffic signals with uncertain signal phase and timing (SPaT) on eco-driving. A modified EAD strategy was 
proposed to for enhanced robustness. With the development of artificial intelligence, reinforcement learning has been 
utilized to design the EAD strategy, which demonstrates robust performance under complex driving conditions [24-26].  

The I-EAD strategy has been shown effective in the context of a single intersection scenario. However, the performance 
of an I-EAD degrades when it is applied to multi-intersection conditions owing to the spatial-temporal correlation among 
multiple traffic signals. Accordingly, some recent studies have investigated EAD control among multiple intersections. 
Du et al. [27] and Chalaki et al. [28] developed a distributed eco-driving strategy for CAVs in multiple unsignalized 
intersections, which improved vehicle fuel efficiency and traffic throughput via vehicle speed planning. To enhance the 
eco-driving strategy in real traffic situations, Asadi et al. [29] utilized the preview information of traffic SPaT to design 
a rule-based EAD control strategy and proposed a speed tracking controller for collision avoidance with preceding 
vehicles. Dong et al. [30] considered spatial and temporal constraints from multiple signalized intersections and vehicle 
queues and proposed a two-level controller with energy-economy speed optimization and safe intervehicle distance for 
CAVs. Another EAD was proposed by Yang et al. [31], where a modular and scalable eco-driving system rapidly 
calculates a fuel-optimized speed while traversing more than one signalized intersection. To improve the multi-
intersections EAD problem solving efficiency, Lin et al. [32, 33] extracted near-optimal operating rules from the results 
obtained by optimally solving a single intersection crossing problem. As such, the problem of multiple intersections is 
addressed by combining the two- or three-stage near-optimal operating rules. Nevertheless, only simulation tests were 
conducted; therefore, the performance of the proposed method in the real-world application is uncertain. Wu et al. [34] 
proposed a computationally efficient algorithm for EAD along signalized corridors with a hierarchal framework by 
combining target traffic signal cycle determination and optimal trajectory planning, and conducted a field implementation 
in a sheltered traffic environment. Although explicit vehicle dynamics and powertrain models are included, the study was 
optimized based on a parabolic speed trajectory, which may not be able to optimize vehicle speed. In addition, the 
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aforementioned multiple intersections EAD studies are all based on internal combustion engine vehicles (ICEVs). 
However, the future of road vehicle powertrains is electric, which could lead to drastically different eco-driving behavior 
due to different powertrain characteristics and control objectives, such as motor dynamics and battery health. 

This paper proposes an M-EAD strategy for electric vehicles (EVs) with a two-stage control framework to optimize an 
aggregated cost involving energy efficiency, travel time, battery life degradation, and driving comfort. The major 
contributions of this study are threefold: First, we propose an optimal control problem (OCP) formulation for the multiple-
intersection crossing of an EV with consideration of a comprehensive cost that accounts for vehicle energy efficiency, 
travel time, battery life, and driving comfort goals. Second, the formulated multi-objective OCP is addressed by a novel 
two-stage M-EAD strategy that incorporates an efficient green signal window planning stage and speed trajectory 
optimization stage to efficiently solve the OCP. The former is solved by an improved A* algorithm, while the latter is 
addressed by a receding horizon velocity optimization (RHVO) strategy based on an iterative dynamic programming (IDP) 
algorithm. Third, we conduct a Monte Carlo simulation case study to evaluate the robustness of the proposed M-EAD 
strategy under stochastic traffic conditions. In addition, a field experiment is conducted to validate the proposed method 
in real-world driving scenarios. 

The remainder of this paper is organized as follows. Section 2 introduces the model of multi-intersections and vehicle 
dynamics. In Section 3, the OCP of EAD for multiple intersections driving is formulated, and the control framework of 
M-EAD is introduced. Sections 4 and 5 develop an efficient green signal window planning method and the RHVO strategy, 
respectively. The performance of the proposed method is evaluated by simulation and real-world vehicle experiments in 
Sections 6 and 7, respectively. Finally, Section 8 concludes the paper.  

2. Multiple Signalized Intersections Model and Vehicle Dynamics 

This section introduces the driving scenario of the connected EVs, which is to be driven along a predefined route with 
multiple signalized intersections. For brevity, we use “green window” to represent the green traffic signal interval in the 
rest of this paper. In addition, models of multiple intersections and vehicle dynamics are presented. 

2.1 Multiple Signalized Intersections Model 

We define a generic route, as shown in Fig. 1, with 𝑁! signalized intersections as a set ℛ = {ℱ, 𝒮}, where ℱ is the 
frame of the route, and 𝒮 = {𝒮"|𝑘 ∈ ℐ} (where ℐ = {1, 2,⋯ ,𝑁!}) is the set of all traffic signals. The subset 𝒮" of the 
𝑘th traffic light that collects its position, 𝑆", and SPaT information, is defined 𝒮" = {𝑆" , 𝑇#" , 𝑃" , 𝑇$" , 𝑇%" , 𝐶"}, where 𝑇#" 
is the initial indication of the transition time when the host vehicle approaches, 𝐶" is the accumulated number of cycles 
of the traffic signal, and 𝑃" is the initial indication of the traffic signal. Without loss of generality, let 𝑃" = 1 denote 
the green signal and 𝑃" = 0 denote the red signal. Finally, 𝑇$" and 𝑇%" are the intervals of the green and red signals (for 
safety purposes, the yellow signal is simply treated as a red one), respectively. The host vehicle is equipped with a vehicle-
to-infrastructure (V2I) communication device (4G or LTE-V), thus the traffic information (i.e., route distance, traffic 
signal SPaT, and speed limits) can be accessed by communicating with Road Side Units or the Cloud. 
 

 

Fig. 1. The travel route with multiple signalized intersections. 

 

Fig. 2. Graphical representations of the traffic signal cycle. Each 
colored block represents a signal phase. 
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The road speed limit set is defined as 𝕍&'( = 6𝑣&'() , ⋯ , 𝑣&'(
*! 8 and 𝕍&+, = 6𝑣&+,) , ⋯ , 𝑣&+,

*! 8, where 𝑣&'("  and 𝑣&+,"  
are the minimum and maximum speed limits for road segments between intersections, respectively. Let the total length 
of the route be 𝐷- , then the position of the traffic signal 𝑆" ∈ 60, 𝐷-8, and the set 𝕊! = [𝑆), ⋯ , 𝑆*!].The distances 
between two traffic signals 𝑆" and 𝑆".) is defined as 𝐷" as Eq. (1). 

𝐷" = =𝑆
"																			𝑖𝑓	𝑘 = 1
𝑆" − 𝑆".)				𝑖𝑓	𝑘 > 1

 (1) 

In general, a traffic signal is operated with an independent signal-clock period. Fig. 2 shows a graphical representation 
of a typical signal cycle for a through-movement lane. To simplify counting the signal states, it is assumed that a full 
signal cycle starts with the beginning of the red (or yellow) light and ends with the ends of the green light. As such, the 
initial signal cycle length 𝑇/" and the standard signal cycle length 𝑇0" are defined by Eqs. (2) and (3), respectively with 
two typical examples illustrated in Fig. 2. 

With the initial signal cycle length, the accumulated number of cycles 𝐶" of traffic signal 𝒮" at any moment 𝑡, can 
be calculated using Eq. (4). 

where ceil(𝑢) yields the least integer greater than or equal to 𝑢. Finally, the starting times of the green and red signals 
for the 𝐶"th cycle are defined as 𝑡$,2"

"  and 𝑡%,2"
"  respectively, as shown in Eqs. (5) and (6) 

2.2 Vehicle Dynamics 

2.1.1 Vehicle longitudinal dynamics 
Since this paper investigates the daily driving scenario, the vehicle is driven with a reasonable margin to the limit of 

tire adhesion. Thus, tire slip is not considered and only the longitudinal dynamics are formulated as Eqs. (7) and (8). 

where 𝑑 and 𝑣 are the position and velocity of the vehicle, respectively. 𝐹3 is the vehicle force, that is, positive for 
propulsion and negative for braking. 𝑚 is the mass of the vehicle, 𝛿 is the vehicle rotational inertia coefficient, 𝑔 is 
the acceleration due to gravity, 𝑓 is the rolling resistance coefficient, 𝐶4  is the aerodynamic drag coefficient, 𝐴 is the 
vehicle frontal area, 𝜌 is the air density, and 𝜃 is the road gradient. 

For EVs, the vehicle force is supplied by the electric motor during propulsion and the vehicle braking force includes 
the motor generation and friction braking forces. Thus, the vehicle force is expressed by Eq. (9). 

𝑇/" = =
𝑇#" + 𝑇$" 		𝑃" = 0,
𝑇#" 													𝑃" = 1.

 (2) 

𝑇0" = 𝑇$" + 𝑇%"	 (3) 

𝐶" = ceil U
𝑡 − 𝑇/"

𝑇0"
V + 1 (4) 

𝑡$,2"
" =

⎩
⎪
⎨

⎪
⎧[0 																																																									𝐶" = 1	and	𝑃" = 1
𝑇#" + 𝑇%"(𝐶" − 1) + 𝑇$"(𝐶" − 2) 𝐶" > 1	and	𝑃" = 1

=
𝑇#" 																																																							𝐶" = 1	and	𝑃" = 0
𝑇#" + 𝑇%"(𝐶" − 1) + 𝑇$"(𝐶" − 1) 𝐶" > 1	and	𝑃" = 0

 (5) 

𝑡%,2"
" =

⎩
⎪
⎨

⎪
⎧=
N/A 																																																				𝐶" = 1	and	𝑃" = 1
𝑇#" + 𝑇%"(𝐶" − 2) + 𝑇$"(𝐶" − 2) 𝐶" > 1	and	𝑃" = 1

[0 																																																									𝐶" = 1	and	𝑃" = 0
𝑇#" + 𝑇%"(𝐶" − 2) + 𝑇$"(𝐶" − 1) 𝐶" > 1	and	𝑃" = 0

 (6) 

𝑑̇ = 𝑣 (7) 

𝑣̇ =
𝐹3 − (𝑚𝑔𝑓 𝑐𝑜𝑠 𝜃 +𝑚𝑔 𝑠𝑖𝑛 𝜃 + 0.5𝐶4𝐴𝜌𝑣5)

𝑚𝛿
 (8) 

𝐹3 = h
𝐹&𝑖!𝜂!												Propulsion
𝐹&𝑖!
𝜂!

+ 𝐹6-						Braking
 (9) 



5 
 

where 𝐹& is the desired motor force, 𝐹6- is the friction braking force, 𝑖! is the transmission ratio including the gearbox 

and final drive, and 𝜂! is the driveline efficiency. The wheel force of the EVs is affected by the propulsion and braking 
torque allocation strategies. In this study, the propulsion force of each wheel in the front axle was equally allocated, and 
the regenerative braking strategy proposed in [35] was used. 

2.1.2 Quasi-static Motor Model 
Consider 𝜂&	the motor working efficiency, which is depicted in Fig. 3 as a look-up table. The quasi-static model was 

used to calculate the energy loss of the motor, as shown in Eq. (10). 

where sign( ) is the signum function, 𝑃&_08## is the motor power loss. 𝑃& is the required motor power, positive for 
propulsion and negative for generation, as given in Eq. (11) 

where 𝑟9 the wheel radius and 𝜔 the motor rotational speed.  

2.1.3 Battery Model 
The battery provides electricity when the vehicle is in traction, and recovers energy when the vehicle is in the 

regenerative braking mode. The required instantaneous battery power 𝑃6 was calculated using Eq. (12). 

where 𝑃+ is the accessory power. We used a simplified equivalent circuit model to represent the dynamics of the battery 
[36]. The changing rate of battery state of charge (SOC) was calculated using Eq. (13). 

where 𝑉8: is the open-circuit voltage, 𝑅6 is the internal resistance, 𝑄6 is the maximum capacity of the battery. The 
relationships of 𝑉8: and 𝑅6, with respective to 𝑆𝑂𝐶, respectively, are displayed in Figs. 4 and 5, which were obtained 
from the experimental results. The battery power loss 𝑃6_08## was calculated using Eq. (14). 

where 𝐼6 is the battery current, which is expressed as 𝐼6 = 𝑃6/(𝑉8: − 𝐼6𝑅6). In addition, the state of health model for 
the battery considers the battery life during vehicle speed optimization. Because the discharge/charge rate and depth of 
discharge are identified as the main factors leading to battery aging, a widely used semi-empirical model is adopted here 
to calculate the battery capacity loss 𝑄08## [37], as described in Eq. (15) 

where 𝐼: is the instantaneous battery discharge/charge rate, 𝑇6 is the absolute temperature of the battery, 𝑅 is the ideal 
gas constant, and z is the exponential factor. 𝐵(𝐼:) is the impact factor determined by 𝐼:, as shown in Fig. 6, where the 
relationship is obtained by fitting experimental data. 𝐸+(𝐼:) is the activation energy, which was calculated by 𝐸+ =
31700 − 370.3𝐼:. 𝐴; is the discharge/charge Ah-through-flow, determined by 𝐴; = ∫ 𝐼6 d𝑡/3600. 

3. Problem Formulation and Control Framework 

This section introduces the OCP of EAD control, which aims to simultaneously minimize the energy consumption and 
travel time required to drive through multiple signalized intersections. Then, the framework of the M-EAD strategy that 
addresses the OCP is formulated. 

𝑃&_08## = 𝑃& ∙ �𝜂&.<=>?(A#) − 1� ∙ sign(𝑃&) (10) 

𝑃& =
𝐹&𝑟9𝜔
9.55 =

𝐹&𝑟9
9.55 ∙ 60

𝑣
2𝜋𝑟9

𝑖$𝑖/ (11) 

𝑃6 = 𝑃& + 𝑃&_08##sign(𝑃&_08##) + 𝑃+ (12) 

𝑆𝑂𝐶̇ = −
𝑉8: − �𝑉8:5 − 4𝑃6𝑅6

2𝑄6𝑅6
 (13) 

𝑃6_08## = 𝐼65𝑅6 (14) 

𝑄08## = 𝐵(𝐼:) ∙ expU
−𝐸+(𝐼:)
𝑅𝑇C

V (𝐴;)D (15) 
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Fig. 3. Map of motor working efficiency.                  Fig. 4. Open circuit voltage of battery cell.  

 

              

Fig. 5. Inner resistance of battery cell.               Fig. 6. Correlation of the impact factor and discharge rate. 

3.1 Problem Formulation  

Two common strategies for a vehicle driving through route ℛ are defined in Section 2.1: the constant speed (CS) and 
I-EAD strategies. Fig. 7 shows the possible position profiles of CS, I-EAD, and M-EAD strategies while passing through 
a route with multiple intersections. 

The CS strategy emulates a traditional human-driven vehicle, which tends to drive at a constant speed and to decelerate 
to a stop at a constant rate when facing a red traffic light. When the traffic light switches to green, the vehicle applies a 
constant acceleration until it reaches the desired constant speed [38]. The blue dashed line in Fig. 7 represents a typical 
case of the CS strategy. The vehicle has to stop for the second and third traffic signals, which leads to increased vehicle 
energy consumption and travel delay due to inefficient stop-and-go operations.  
 

 

Fig. 7. Position profiles of vehicles passing through three consecutive intersections. 
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The I-EAD is the most common eco-driving strategy for multiple intersections crossing scenarios, which divides the 
multi-intersections driving problem into single intersection crossing problems and successively optimizes the vehicle 
speed profile for efficiently driving through each intersection in order. The I-EAD is designed from a local perspective 
(for an isolated intersection) while ignoring the spatial relationship of traffic light positions and the temporal relationship 
of traffic light SPaT, therefore its control solution could still yield suboptimal solutions in multiple-intersection scenarios. 
The dashed-dotted trajectory in Fig. 7 shows a typical solution of the I-EAD. As it can be seen, the strategy can avoid the 
stop-and-go operation at the first and second signalized intersections; however, the vehicle has to stop for the third 
intersection, which incurs a delay.  

Therefore, this study uses the information of multiple intersections to optimize the vehicle speed profile for the entire 
mission, as indicated by the green solid line in Fig. 7. The OCP of multi-intersections eco-driving control is formulated 
as shown in Eqs. (16) and (17), where the objective is designed to reduce energy losses, travel time, and battery 
degradation while maintaining acceptable driving comfort 

where 𝑥 = [𝑑, 𝑣]E is the state vector, 𝑢 = 𝐹3	is the control input, and the different equation Eq. (17a) follows the vehicle 
longitudinal dynamics given in Eqs. (7)-(8). 𝑇F is the travel time for the entire trip. 𝑢&'( < 0 and 𝑢&+, ≥ 0 are the 
maximum braking and propulsion forces, respectively.  

In Eq. (16), the first term improves the vehicle energy efficiency by minimizing the vehicle energy losses, that is, motor 
and battery loss. The second term reduces the increment in acceleration/deceleration for smooth speed change, which is 
related to the driving comfort. The third term minimizes the battery capacity loss during operation to prolong the battery 
life. To improve overall traffic throughput, travel time is also minimized. 𝛼), 𝛼5, 𝛼G, and 𝛼H are the weighing factors 
for the four objectives. Several constraints are defined in Eq. (17) to satisfy the system differential equation (Eq. (17a)), 
the initial and terminal states (Eq. (17b)), speed limits (Eq. (17c)), physical operation bounds (Eq. (17d)), and intersection 
requirements (Eq. (17e)). 

3.2 Control Framework  

The formulated OCP is a highly non-convex optimization problem, it is difficult to directly calculate the optimal control 
rule or vehicle speed trajectory because of the nonlinear objectives (battery and motor losses and battery capacity loss), 
and a variety of constraints (such as initial and terminal boundary constraints, states constraint, control constraint, and 
mixed constraint). Thus, this paper proposes a hierarchical control scheme, namely, the M-EAD strategy, as depicted in 
Fig. 8. The M-EAD strategy is composed of two stages: efficient green window planning and vehicle speed optimization. 
In the upper stage, the travel time is minimized by planning the green window of each intersection for mobility efficiency. 
The formulated travel time minimization problem was solved using an A* shortest path algorithm. In the lower stage, an 
RHVO strategy is proposed based on the IDP to find the speed trajectory that simultaneously optimizes the energy 
efficiency, battery life, and driving comfort.  

Minimize
𝒖∈𝑼

				𝐽(𝑢, 𝑥) = � �𝛼)�𝑃&_08## + 𝑃6_08##�+𝛼5|𝑎̇| + 𝛼G𝑄08##�𝑑𝑡
E$

/
+ 𝛼H 𝑇F (16) 

s.t  

𝑥̇ = 𝑓(𝑥, 𝑢) (17a) 

𝑥(0) = [0, 𝑣#]E, 𝑑�𝑇F� = 𝐷- (17b) 

𝑣&'( ≤ 𝑣 ≤ 𝑣&+, (17c) 

𝑢&'( ≤ 𝑢 ≤ 𝑢&+, (17d) 

𝑥 = [𝑆" , 0]E 𝑖𝑓	𝑑 = 𝑆"	and	𝑡 ∈ �𝑡%,2"
" , 𝑡%,2"

" + 𝑇%"�, ∀𝑘 

𝑥 = [𝑆" , 𝑣]E 𝑖𝑓	𝑑 = 𝑆"	and	𝑡 ∈ �𝑡$,2"
" , 𝑡$,2"

" + 𝑇$"�, ∀𝑘 
(17e) 
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Fig. 8. The control scheme of the proposed M-EAD strategy. 
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of M-EAD calculates a series of green windows for each intersection. The problem of green window planning is first 
described as a directed graph, and then solved using the shortest path method, that is, the A* algorithm. The derived green 
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4.1 Green Window Planning Problem 

First, we define a set ℂ" as a collection of feasible green windows for traffic signal 𝒮" that the vehicle can reach 
subject to maximum and minimum speed limits. The set ℂ" is determined by the set of feasible 𝑘th intersection passing 
intervals 𝕥F", traffic SPaT information, vehicle initial states, and road speed limits. Assuming that the vehicle acceleration 
is constant for the feasible passing interval calculation, we can use Eqs. (18) and (19) to predict the passing time at 
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where 𝑡F_&'(" ∈ ℕM and 𝑡F_&+," ∈ ℕM are the minimum and maximum passing times, respectively. 𝑣+3$ is the average 

speed of vehicle driving along the given route, which is determined by the historical data. 𝑎L and 𝑎6 are the desired 
acceleration and deceleration, respectively, which meet the driving comfort requirements. Then, 𝕥F" ∈ ℕM =
6𝑡F_&'(" : 1: 𝑡F_&+," 8 if the sampling time is 1 s. 

In addition, the incoming time at each intersection segment (i.e., [𝑆".), 𝑆"]) should be mapped into the global time 
domain. When 𝑘 = 1 that corresponds to the first intersection segment, the incoming time is the start time of the entire 
mission. For 𝑘 > 1, the incoming time of the 𝑘th intersection segment equals the crossing time of the vehicle at the 
previous intersection 𝑘 − 1. Therefore, the incoming time at each intersection segment is expressed by Eq. (20). 

where 𝕥+" ∈ ℕ is the set of incoming times in the	𝑘th intersection segment. Eqs. (18)-(20) reveal the relationship between 
the incoming and passing times at an intersection and it can be observed that the sets of incoming and passing times have 
the same size. Then, by using the traffic signal model summarized in Eq. (4), the set of feasible green windows ℂ!  is 
calculated using Eq. (21). 

Fig. 9 shows the typical sets of green windows for a vehicle driving through three signalized intersections, where the 
dotted gray lines represent potential driving profiles. The set of the feasible green window for intersections are ℂ) =
[2, 3], ℂ5 = [3, 4, 5, 6] and ℂG = [2, 3, 4]. Instead of directly minimizing the travel time, this section searches for the 
shortest path for green windows, that is, the green window planning problem is transformed into a directed graph 
representation. Then, the shortest path problem is formulated to derive the shortest path from 𝑆) to 𝑆*! (a series of 𝐶" 

subject to the feasible set ℂ" for each signal) to minimize the travel time: 

 

Fig. 9. Typical example of possible green windows for a vehicle driving through three signalized intersections  
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¤¥𝑡F_&'(
O
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O

".)

OP)
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ℂ" = §ceil U
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V + 1, ceil U
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Minimize
{𝐶" ∈ ℂ"}"P)

*! 				𝐽 =¥𝐶'
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4.2 Heuristic A* algorithm 

This study uses the A* algorithm [39] to solve the shortest path problem formulated in Eq. (22). We defined each 
intersection as a node, as shown in Fig. 9, and the path cost of the current node is the number of traffic signal cycles 𝐶'. 
Then, the evaluation function 𝛹(𝑗) of the A* algorithm is calculated using Eq. (23).  

where	𝑔:(𝑗) is the exact cost at the 𝑗th node, and ℎ:(𝑗) is the heuristically estimated cost from 𝑗th traffic signal to the 
last one. More specifically, 𝑔:(𝑗) is the sum of the optimal signal cycles, 𝐶F_8F!" , from the first intersection to the current 
intersection along the selected optimal path, as shown in Eq. (24) 

and ℎ:(𝑗) is the minimum sum of signal cycles from the 𝑗th to the last node, 

where 𝐶F
O is an associated feasible traffic signal cycle. In the A* algorithm, the heuristic function ℎ:(𝑗) directly affects 

the optimal path searching performance. Suppose that the exact cost from the 𝑗th node to the final node is 𝐻(𝑗). ℎ:(𝑗) <
𝐻(𝑗) suggests that many search paths cause low operation efficiency, but the optimal path can be searched; if ℎ:(𝑗) >
𝐻(𝑗), there are fewer search paths and the calculation efficiency is high, but it is usually difficult to find the optimal path. 
Otherwise, ℎ:(𝑗) = 𝐻(𝑗) represents an ideal situation in which the search is performed along the shortest path with the 
highest efficiency. Thus, substituting Eq. (21) into Eq. (25), the heuristic cost function for green window prediction is 
accessed. 

Ultimately, the efficient green window sequence ℂF_8F!  and time interval sequence 𝕋F_8F!	 are obtained, that is, 
ℂF_8F! = [𝐶F_8F!) , ⋯ , 𝐶F_8F!

*! ] and 𝕋F_8F!	 = �6𝑇F_&'() , 𝑇F_&+,) 8,⋯ , [𝑇F_&'(
*! , 𝑇F_&+,

*! ]�, where, 𝑇F_&'(
O  and 𝑇F_&+,

O  are the 
starting and ending times of efficient green window, respectively, which are calculated using Eqs. (26) and (27), 
respectively. 

5. Predictive Speed Optimization 

Taking the derived efficient green windows as the input for speed optimization, this section optimizes the speed 
trajectory in the spatial domain. The RHVO strategy focuses on minimizing energy consumption and prolonging battery 
life while meeting the driving comfort requirements.  

5.1 Distance-based Receding Scheme and Optimal Control Problem 

The proposed RHVO divides the entire route into multiple phases in the spatial domain. Each intersection segment is 
defined as one phase, and the adjacent phases are connected by boundary conditions (vehicle speed, and travel time). The 
receding optimization phase of the entire route equals the number of intersections, that is, 𝑘 = 1,2,… ,𝑁! . In each 
receding optimization phase, the vehicle initial states are the terminal states of the previous phase, that is, 𝑣"(0) =
𝑣".)(𝑆".))	 and 𝑡"(0) = 𝑡".)(𝑆".)). Note that the initial states of the vehicle in the first phase are defined as the 

𝛹(𝑗) = 𝑔:(𝑗) + ℎ:(𝑗) (23) 

𝑔:(𝑗) =¥𝐶F_8F!
O

O

)

 (24) 

ℎ:(𝑗) = min¥𝐶F
O 	

*!

O

 (25) 

𝑇F_&'(
O = max U𝑡F_&'(

O , 𝑡
$,2$_&$!

'
O V (26) 

𝑇F_&+,
O = minU𝑡F_&+,

O , 𝑡
$,2$_&$!

'
O + 𝑇$

OV (27) 
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vehicle states when the trip starts. In addition, the terminal time is subjected to the efficient green window intervals 
derived from Section 4, that is, 𝑇F" ∈ �𝑇F_&'(" , 𝑇F_&+," �.  

Because the route distance is fixed for any route ℛ, the time-domain OCP (Eqs. (16) and (17)) is transformed into the 
spatial domain as shown in Eq. (28). 

where ∆𝑑 is the sampling distance. 𝑙 is the total number of distance steps, that is, 𝑙 = 𝐷"/∆𝑑 + 1. 𝛼∗ is the weighting 
factor for the different objectives. 𝑥(𝑛) is the state vector, that is, 𝑥(𝑛) = [𝑣(𝑛), 𝑡(𝑛)]E, and 𝑢(𝑛) is the control input, 
that is, 𝑢(𝑛) = 𝐹3(𝑛). 𝑡4(𝑛) is the time required to travel from (𝑛 − 1)th distance step to the next and is approximated 
using Eq. (29).  

For ease of computation, the terminal distance and velocity conditions in Eqs. (17) are converted into the soft 
constraints in Eq. (28) with 𝛼H and 𝛼R weighting factors for the latter terms, which can drive the states to the desired 
terminals. In addition, the travel time of the host vehicle in the	𝑘th phase is limited by 𝑇F_&'("  and 𝑇F_&+," . 

5.2 Iterative Dynamic Programming 

This subsection uses IDP to solve the formulated OCP. Principally, IDP involves refining the search space iteratively 
to improve the calculation efficiency of the regular DP algorithm [40]. For a regular DP, the transitional cost-to-go 
function from 𝑘 to step 𝑘 + 1 𝐿�𝑢(𝑘), 𝑥(𝑘)� and the penalty function for the terminal states 𝐺*(𝑥(𝑛)) are defined in 
Eqs. (30) and (31), respectively. 

The formulated OCP is solved recursively by following the Bellman Principle [41]. 
𝑛 − 1 step: 

𝑘 step: 
𝐽"�𝑥(𝑘)� = min

S∈𝑼
[𝐿�𝑢(𝑘), 𝑥(𝑘)� + 𝐽"M)∗ (𝑥(𝑘 + 1))] (33) 

where 𝐽"�𝑥(𝑘)� is the minimum cost-to-go value at the moment 𝑘.  
To reduce the computational burden of DP, the grid size of vehicle states and control input can be increased. However, 

a coarse grid may affect the calculation accuracy. This study proposes a new dynamic programming algorithm with 
boundary tuning and grid size scaling strategies, IDP, to realize a trade-off between calculation speed and accuracy. The 
mesh generation principle of the IDP is shown in Fig. 10, in which coarse grids are first employed, and the density of the 
grid points and the feasibility region of states and control input change gradually to recursively derive the optimal solution.  

In the first iteration, a coarse grid is defined (𝛥𝑥) and 𝛥𝑢)) to find the optimal control rule 𝑢8F!,) and state trajectory 

Minimize
S∈𝑼

				𝐽�𝑢(𝑛), 𝑥(𝑛)� =𝛼)¥�𝑃&(&))(𝑛) + 𝑃6(&))(𝑛)�
(P0

(P)

𝑡4(𝑛) + 𝛼5¥𝑄08##(𝑛)
(P0

(P)

𝑡4(𝑛) + 𝛼G¥|Δ𝑎(𝑛)|
(P0

(P)

 

+𝛼H(𝑣(𝑙) − min(𝑣&+," , 𝑣&+,"M)))5 + 𝛼R�𝑡(𝑙) − 𝑇F_&'(" �5 

(28) 

s.t. 
𝑢&'((𝑛) ≤ 𝑢(𝑛) ≤ 𝑢&+,(𝑛) 

𝑣&'(" ≤ 𝑣(𝑛) ≤ 𝑣&+,"  
𝑇F_&'(" ≤ 𝑡(𝑙) ≤ 𝑇F_&+,"  

𝑣(𝑛) = �𝑣5(𝑛 − 1) + 2𝑎(𝑛)∆𝑑 

𝑡4(𝑛) =
∆𝑑

0.5(𝑣(𝑛 − 1) + 𝑣(𝑛)) (29) 

𝐿�𝑢(𝑘), 𝑥(𝑘)� = 𝛼) �𝑃&_08##(𝑘) + 𝑃6_08##(𝑘)�∆𝑡4 + 𝛼5𝑄08##(𝑘)∆𝑡4 + 𝛼G|Δ𝑎(𝑘)| (30) 

𝐺*�𝑥(𝑛)� = 𝛼H(𝑣(𝑛) −min(𝑣&+," , 𝑣&+,"M)))5 + 𝛼R�𝑡(𝑛) − 𝑇F_&'(" �5 (31) 

𝐽(.)�𝑥(𝑛 − 1)� = min
S∈𝑼

[𝐿�𝑢(𝑛 − 1), 𝑥(𝑛 − 1)� + 𝐺*(𝑥(𝑛))] (32) 
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𝑥8F!,). Then, the boundaries of the control inputs and states in the (𝑖 + 1)th iteration (𝑥&'(,'M), 𝑥&+,,'M)) and (𝑢&'(,'M), 
𝑢&+,,'M)) are determined using the results of the previous iteration, respectively, 

𝑥&'(,'M) = max�𝑥8F!T,' − 𝜏𝛥𝑥' , 𝑥&'(�, 𝑥&+,,'M) = min�𝑥8F!U,' + 𝜏𝛥𝑥' , 𝑥&+,� (34) 

𝑢&'(,'M) = max�𝑢8F!T,' − 𝜎𝛥𝑢' , 𝑢&'(�, 𝑢&+,,'M) = min�𝑢8F!U,' + 𝜎𝛥𝑢' , 𝑢&+,�,  (35) 

where 𝑥8F!U,', 𝑥8F!T,', 𝑢8F!U,' and 𝑢8F!T,' are the maximum and minimum values of the state and control input at the ith 
iteration, respectively.	𝜏 ≤ 1	and 𝜎 ≤ 1 are the boundary tuning factors for the constraints of the state and control 
variables, respectively. 𝛥𝑥' and 𝛥𝑢' are the grid sizes for the ith iteration, respectively, which are defined by scaling 
factors 𝛾 < 1 and 𝜆 < 1, that is, 𝛥𝑥'M) = 𝛾𝛥𝑥' and 𝛥𝑢'M) = 𝜆𝛥𝑢'. 

Consider the maximum number of allowed iterations 𝐼&+, . The IDP algorithm terminates when the following 
conditions are satisfied,  

𝐸8F!,' ≤ 𝜗𝐸8F!,'.) or 𝑖 > 𝐼&+, (36) 
where 𝐸8F!,' is the optimized energy consumption, and 𝜗 is the leverage factor of the IDP’s accuracy and convergence 

speed. In other words, the IDP continuously rescales and solves the resulting OCP unless the solution converges or the 
maximum number of iterations is reached. The convergence of the IDP to a global or near-to-global optimum is shown 
in [40]. Notably, the parameters 𝜏, 𝜎, 𝛾, 𝜆, and ϑ can affect the calculation speed and optimization accuracy. From the 
IDP calculation, the vehicle optimal state profile 𝕩# and control input profile 𝕦#	in each phase can be obtained. The 
implementation algorithm for IDP is presented in Algorithm 1. 
 

 

Fig. 10. Mesh generation principle of proposed IDP. Note that the green line is the optimal solution. 

 

Algorithm 1 Implementation algorithm for the IDP 
Input: 𝑣(0), 𝑡(0), 𝑑(0), 𝑢(0), 𝑇!_#$%, 𝑇!_#&', 𝜗, 𝐼#&', 𝑥#&', 𝑥#$%, 𝑢#&', 𝑢#$%, 𝜏, 𝜎, 𝛾, 𝜆, ∆𝑥, ∆𝑢, 𝑙, ϑ 
Output: 𝕩(, 𝕦( 
1. Initial by setting 𝑖 = 1, 𝑥#$%,* = 𝑥#$%, 𝑥#&',* = 𝑥#&', 𝑢#$%,* = 𝑢#$%, 𝑢#&',* = 𝑢#$%, 𝛥𝑥* = ∆𝑥, 𝛥𝑢* = ∆𝑢 
2. while 𝐸+!,,$ ≤ 𝜗𝐸+!,,$-* or 𝑖 > 𝐼#&' 
3.   Mesh generation 𝑥 = ;𝑥#$%,$: 𝛥𝑥$: 𝑥#&',$=, 𝑢 = ;𝑢#$%,$: 𝛥𝑢$: 𝑢#&',$= 
4.   for 𝑛 = 𝑙: −1: 1 
5.      Reverse optimization based on the Bellman Principle in Eqs. (30)-(33) 
6.      Calculate the optimal control policy 
7.   end for 
8.   for 𝑛 = 1: 1: 𝑙 
9.      Forward calculation with vehicle initial states 𝑣(0), 𝑡(0), 𝑑(0), 𝑢(0) 
10.     Obtain the vehicle optimal states set 𝕩$, the control input set 𝕦$, and 𝐸+!,,$ 
11.  end for 
12.  Set 𝑥+!,.,$ ← max(𝑥$), 𝑥+!,/,$ ← min(𝑥$), 𝑢+!,.,$ ← max(𝑢$), 𝑢+!,/,$ ← min(𝑢$)	
13.  Redefine bounds of states 𝑥#&',$0* ← minG𝑥+!,.,$ + 𝜏𝛥𝑥$ , 𝑥#&'J, 𝑥#$%,$0* ← maxG𝑥+!,/,$ − 𝜏𝛥𝑥$ , 𝑥#$%J 
14.  Redefine bounds of control inputs 𝑢#&',$0* ← minG𝑢+!,.,$ + 𝜎𝛥𝑢$ , 𝑢#&'J, 𝑢#$%,$0* ← maxG𝑢+!,/,$ − 𝜎𝛥𝑢$ , 𝑢#$%J 
15.  Scale state and control input grids 𝛥𝑢$0* ← 𝜆𝛥𝑢$, 𝛥𝑥$0* ← 𝛾𝛥𝑥$ 
16.  𝑖 ← 𝑖 + 1 
17. end while 
18. Set 𝕩( ← 𝕩$, 𝕦( ← 𝕩$ 

Δx1, Δu1

( )nu2D

( )1-nx
( )1-2 nx

First iteration  Second iteration

Δx2 = γΔv1 , Δu2 = λΔu1
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The vehicle optimal states set 𝕩8F! and control input set 𝕦8F! in the entire route after completing the optimization at 
each stage using the IDP are denoted by Eqs. (37) and (38), respectively: 

𝕩8F! = 6𝕩#), ⋯ , 𝕩#
*!8 (37) 

𝕦8F! = 6𝕦#), ⋯ , 𝕦#
*!8 (38) 

For clarity, the RHVO solution at multiple intersections is summarized in Algorithm 2. 
 
Algorithm 2 Implementation algorithm for the RHVO 

Input: 𝑁,, 𝕊,, 𝕍#&', 𝕍#$%, 𝑢#&', 𝑢#$%, 𝕋!_+!,	 
Output: 𝕩+!,, 𝕦+!, 
1. Initial by setting 𝑘 = 1 
2. while 𝑘 ≤ 𝑁, 
3.   if 𝑘 = 1 
4.     Initial by setting 𝑙 = 𝐷2/∆𝑑 + 1, 𝑣*(0) = 𝑣(, 𝑡*(0) = 0, 𝑑*(0) = 0, 𝑢*(0) = 0 
5.   else 
6.     Initial by setting 𝑙 = 𝐷2/∆𝑑 + 1, 𝑣2(0) = 𝑣2-*(𝑙), 𝑡2(0) = 𝑡2-*(𝑙), 𝑑2(0) = 𝑑2-*(𝑙), 𝑢2(0) = 𝑢2-*(𝑙) 
7.   end if 
8.   (𝕩(2, 𝕦(2) = IDP (𝑣2(0), 𝑡2(0), 𝑑2(0), 𝑢2(0), 𝑇!_#$%2 , 𝑇!_#&'2 , 𝐼#&', 𝑥#$%2 , 𝑥#&'2 , 𝑢#$%2 , 𝑢#&'2 , 𝜏, 𝜎, 𝛾, 𝜆, ∆𝑥, ∆𝑢, 𝑙, ϑ) 
9.   𝑘 ← 𝑘+1 
10. end while 
11. Set 𝕩+!, ← ;𝕩(*, ⋯ , 𝕩(

3!=, 𝕦+!, ← ;𝕦(*, ⋯ , 𝕦(
3!= 

6. Simulation and Results 

To evaluate the benefits of the proposed M-EAD strategy, several simulations were conducted on a PC with an Intel 
Core i7-8700 @ 3.20GHz CPU and 16GB RAM. The M-EAD strategy is first compared to the benchmark strategies in a 
given route with complete SPaT information and then evaluated using Monte Carlo simulation, in which the traffic signal 
initial states were random in each stochastic simulation. 

6.1 Given Route and Simulation Setup 

The test route is located at Jiangjun Avenue, Nanjing, China, and an overview of the path is shown in Fig. 11. The total 
length of the route is 6794 m. The SPaT of all traffic signals along the route is fixed, as summarized in Table 1. The main 
EVs parameters are listed in Table 2. The sampling distance in RHVO was 5 m. The weighting factors of the OCP in Eqs. 
(28) are set to 𝛼) = 1 , 𝛼5 = 2 × 10V , 𝛼G = 0.1 , 𝛼H = 0	or	10)/ , and 𝛼R = 200 , which find a good compromise 
between vehicle energy efficiency, travel time, battery life, and driving comfort, as verified by a systematic simulation 
analysis for various weight factors. 
Table 1  

Information on traffic signal and road speed limit. 

ID  Location	𝑆 (m) 
Green signal 

interval 𝑇4 (s) 

Signal cycle time 

𝑇5 (s) 

Initial states Maximum speed  

𝑣#&' (km/h) 

Minimum speed  

𝑣#$% (km/h) Signal indication	𝑃 Transition time	𝑇( (s) 

1 460 28 97 Red 26 60 

30 

2 1060 50 77 Green 46 60 

3 1625 48 97 Red 9 60 

4 2315 30 104 Green 8 60 

5 3015 40 86 Green 6 50 

6 3325 35 79 Green 5 50 

7 3945 34 105 Red 62 60 

8 4865 35 110 Red 43 60 

9 5740 35 97 Red 34 70 

10 6790 45 89 Green 7 70 
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Furthermore, we conducted a systematic analysis to obtain the parameter group of the IDP with respect to the trade-off 
between computational efficiency and optimization accuracy. The sampling distance (5 m) and time grid size (0.1 s) in 
the IDP are fixed, and the vehicle speed grid size (initial value is 10 km/h) and the control force grid size (initial value is 
50 N) are iteratively scaled. The scaling factors are τ = 0.4, σ = 0.3, γ = 0.02, and λ = 0.3. The allowance factor ϑ is set as 
0.95, that is, the iteration will stop when the step improvement of IDP is less than 5%.  

6.2 Benchmark Strategies 

The proposed M-EAD strategy is compared with two existing strategies: CS and I-EAD [18] for benchmarking 
purposes. In the CS strategy, the host vehicle approaches and departs from the intersection at a constant cruising speed. 
The constant cruising speed is the average speed of the proposed M-EAD strategy. When the traffic signal is red, the 
vehicle decelerates to a stop and accelerates to pass through the intersection when the traffic signal turns green. The 
vehicle acceleration and deceleration are defined as 2 m/s2 and –2 m/s2, respectively, and the standstill spacing between 
the stop line is 0 m when blocked by a red sign. The I-EAD strategy uses the isolated intersection SPaT information to 
calculate the energy-optimal passing through speed as introduced in Section 3.1. In addition, when the average speed of 
a vehicle passing through the intersection stop line at the start of the green signal is lower than the minimum speed limit, 
we define this as a stopping inevitable condition. Then, the I-EAD optimizes the energy-optimal stopping speed to arrive 
at the intersection stop line. 
 

 

Fig. 11. Urban network map of Jiangjun Avenue, Nanjing, China. 

6.3 Simulation Results 

Table 3 lists the optimized efficient green windows. As observed, the time interval of the efficient green window was 

Starting

Shengtai Rd

Hanfu Rd

Nanyou Rd

Tianyuan Rd

Guojian Rd

Kanghou Rd

Foucheng Rd

Chengxin Ave

Changqing St

Jiyin Ave
Ending

Jiangjun Ave

Table 2 

Vehicle parameters. 

Component Parameter Value 

Motor 
Maximum torque 120 Nm 

Maximum speed 8000 rpm 

Li-ion 

Battery 

Rated capacity 𝑄6 52.8 Ah 

Open circuit voltage 𝑉+7 360 V 

Ideal gas constant 𝑅 8.31 

Exponential factor 𝑧 1.82 

Vehicle 

Mass 𝑚  1005 kg  

Front area 𝐴 2.02 m2 

Air drag coefficient 𝐶8 0.3 

Air density 𝜌 1.206 kg/m3 

Rotational inertia coefficient 𝛿 1.022 

Rolling resistance coefficient 𝑓 0.015 

Tire radius 𝑟9 165/65 R15 0.280 m 

Accessory power 𝑃&  300 W 

Acceleration of gravity 𝑔 9.8 m/s2 

Transmission ratio 𝑖, 10.609 

Desired acceleration 𝑎: 2 m/s2 

Desired deceleration 𝑎6 –2 m/s2 

Initial velocity 𝑣(  50 km/h 
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mostly less than the corresponding full green window interval. If the host vehicle can cross the intersection at the start 
time of an efficient green window, the travel delay will be further reduced. However, it may be difficult to achieve a 
trade-off between mobility and energy efficiency. Therefore, two sub-strategies are proposed based on the control 
purposes, that is, M-EAD A and M-EAD B. In M-EAD A, the start time of an efficient green window is defined as a 
terminal constraint, to ensure that host vehicles pass through intersections with optimal time-saving speed. In M-EAD B, 
the intersection passing time is relaxed and only restricted within the range of an efficient green window interval, thus 
achieving the energy-optimal goal. For a fair comparison, two versions of the CS strategy are defined: CS (M-EAD A) 
and CS (M-EAD B), which correspond to the average speed in M-EAD A and M-EAD B, respectively. 
 

6.3.1. Computational burden reduction of IDP 
The benefit of IDP in terms of computational efficiency compared to DP is revealed in this subsection. The range of 

the vehicle speed and control force for optimization are shown in Figs. 12 and 13, respectively. As observed, compared 
to DP, IDP can reduce boundary ranges, thereby reducing computational complexity. From the computation time and the 
resulting cost listed in Table 4, IDP can improve the calculation speed by 89 % compared to DP, whereas the optimality 
is sacrificed by only 3.88 %.  

 

 

Fig. 12. Boundary of vehicle speed.                           Fig. 13. Boundary of vehicle control force. 
 

Table 4 

Comparison between the DP and IDP. 

Parameter 
Calculation time Cost 

Value  Reduction Value Increase 

DP 2152.3 s — 53112.89 — 

IDP 236.8 s 89 % 55171.84 3.88 % 

 
6.3.2. Effectiveness of proposed M-EAD strategy 

Now, we compare the M-EAD against two benchmark strategies, CS and I-EAD, to further verify the effectiveness of 
the M-EAD. Figs. 14-16 show the profiles of the travel distance, vehicle speed, vehicle acceleration/deceleration of the 
CS, I-EAD, M-EAD A, and M-EAD B strategies. Tables 5 and 6 list the values and comparison results of energy 
consumption, travel time, and battery capacity loss obtained from each method, respectively. Notably, different strategies 
may result in different final driving speeds at the destination. To make a fair comparison, the total energy consumption 
of each strategy combines both the consumed energy and the differences between the initial and terminal kinetic energy 
of the vehicle. 

Table 3  

Results of green window planning. 

Intersection ID 1 2 3 4 5 6 7 8 9 10 

Efficient traffic signal cycle 1 2 2 3 4 5 3 4 5 7 

Full green window interval (s) [27, 54] [74, 123] [107, 154] [187, 216] [225, 264] [231, 265] [273, 306] [374, 408] [423, 457] [497, 541] 

Efficient green window interval (s) [29, 54] [74, 113] [109, 148] [187, 191] [238, 242] [261, 265] [299, 306] [374, 408] [423, 457] [497, 541] 
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Fig. 14. Travel distance profile in simulation. 
 

 

Fig. 15. Vehicle speed profile in simulation. 
 

 

Fig. 16. Vehicle acceleration/deceleration profile in simulation. 

 

TABLE 5  

Simulation results for CS, I-EAD, and M-EAD strategies. 

Strategy CS (M-EAD A) CS (M-EAD B) I-EAD M-EAD A M-EAD B 

Energy Consumption 2589.41 kJ 2287.13 kJ 2068.54 kJ 2565.84 kJ 1911.93 kJ 

Travel time 510.2 s 673.9 s 628.6 s 497.5 s 539.3 s 

Battery capacity loss 0.0016 % 0.0015 % 0.0014 % 0.0016 % 0.0013 % 

 

TABLE 6  

Energy efficiency, travel time, and battery life comparison for CS, I-EAD, and M-EAD strategies. 

Strategy CS (M-EAD A) CS (M-EAD B) I-EAD 

Energy efficiency 

improvement 

M-EAD A 0.91 % — -24.04 % 

M-EAD B — 16.40 % 7.57 % 

Travel time reduction 
M-EAD A 2.48 % — 20.86 % 

M-EAD B — 19.97 % 14.21 % 

Battery life extending 
M-EAD A 0 % — -14.29 % 

M-EAD B — 13.33 % 7.14 % 
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As shown in Figs. 14 and 15, the host vehicle in CS (M-EAD A), CS (M-EAD B), and I-EAD were blocked by the red 
signal at the 3rd and 8th intersections; 4th, 6th, 7th, 8th, and 10th intersections; and 5th and 6th intersections, respectively. 
In contrast, both M-EAD A and M-EAD B drove through all intersections without stopping. In Tables 5and 6, both M-
EAD A and M-EAD-B achieved travel time reductions compared to the CS and I-EAD strategies. However, the energy 
consumption for M-EAD A is higher than that of CS, whereas M-EAD B achieves both energy consumption and travel 
time reduction, compared with CS. Compared to M-EAD A, M-EAD B reduced the energy consumption by 25.49 % with 
only an 8.4 % travel time extension. In addition, the battery capacity loss for the three strategies corresponds to their 
energy efficiencies.  

A plausible explanation for these results is that the vehicle at CS needs to stop at the intersection (see Fig. 14). Although 
the I-EAD can optimize the energy-optimal speed by utilizing the isolated intersection SPaT information, it is incapable 
of passing every intersection without stops because it neglects the spatial-temporal correlation among intersections (see 
Fig. 14); thus, the travel time was also extended. The large changes in velocity are inevitable in the stop-and-go operation 
(see Fig. 15); therefore, the energy consumption of CS and I-EAD is higher than that of M-EAD B. The M-EAD A and 
B strategies both optimize the efficient green window at the beginning of the trip for travel delay reduction. Since the 
shorter travel time corresponds to a higher average driving speed that tends to increase energy usage, the energy 
consumption of M-EAD A is higher than M-EAD B, which represents a compromise solution method between energy 
efficiency and travel time. In addition, the vehicle velocity and acceleration/deceleration profiles of M-EAD B are 
smoother than those of CS, I-EAD, and M-EAD A strategies with improved overall energy efficiency.  

Owing to the coordination superiority of vehicle energy saving and traffic efficiency of M-EAD B, M-EAD B is 
assumed to be representative of the proposed M-EAD strategy, and abbreviated “M-EAD.” Although the effectiveness of 
the M-EAD is promising, it is not clear if significant improvement in average vehicle energy efficiency and travel time 
reduction can be achieved with the M-EAD if the initial states in all traffic signals are varied. In the following subsection, 
we discuss the average effects of the proposed method. 

6.4 Performance Discussion of M-EAD Strategy with Stochastic Traffic Signal Initial States 

In reality, the fixed SPaT of traffic signals is easy to access, but the initial states of multiple traffic signals are difficult 
to obtain synchronously. Therefore, to elucidate the average effects of the proposed method, we conducted a series of 
stochastic simulations. We evaluate a statistically significant number of cases with randomly generated initial states, 
which is a variant of a Monte Carlo simulation. The investigation involved 600 individual simulation trials for the given 
test route. The initial signal indication and transition time were randomized, and the full cycle length, red and green 
indication intervals were kept constant. The histograms of the improvement of energy consumption, travel time reduction, 
and battery capacity loss reduction of 600 stochastic tests are shown in Figs. 17-19. The average improvement results of 
the energy consumption, travel time, and battery capacity loss are summarized in Table 7.  
 

  

(a) M-EAD vs. CS                                       (b) M-EAD vs. I-EAD 

Fig. 17. Energy economy improvement during 600 stochastic simulations.  
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(a) M-EAD vs. CS                                       (b) M-EAD vs. I-EAD 

Fig. 18. Travel time reduction during 600 stochastic simulations. 

 

  

(a) M-EAD vs. CS                                       (b) M-EAD vs. I-EAD 

Fig. 19. Battery capacity loss reduction during 600 stochastic simulations. 

 

Table 7  

Average energy efficiency improvement, travel time reduction, and battery capacity loss reduction during 600 stochastic simulations. 

 Average energy efficiency improvement  Average travel time reduction Average battery capacity loss reduction 

M-EAD vs. CS 10.65 % 19.04 % 10.51 % 

M-EAD vs. I-EAD 6.55 % 14.79 % 5.01 % 

 
As shown in Figs. 17-19, the energy efficiency improvement, travel time reduction, and battery capacity loss reduction 

for the M-EAD are dispersed. Compared with CS, the minimum and maximum improvements in terms of energy 
efficiency, travel time, and battery capacity loss of M-EAD are 1.84 % and 19.98 %, 1.18 % and 35.95 %, and 1.03 % 
and 20.00 %, respectively. When compared with I-EAD, M-EAD can reduce the vehicle energy consumption, travel time, 
and battery lifetime degradation by up to 13.95 %, 29.93 %, and 10.00 %, respectively, when compared with I-EAD. The 
superiority of the proposed M-EAD may be attributable to the traffic signal conditions. Specifically, whether to stop and 
the number of stops in a route is related to the initial signal indication and transition time of the traffic lights. For example, 
when the vehicle excludes the stop operations of CS and I-EAD strategies, the energy consumption, travel time, and 
battery capacity loss of the three strategies are similar; therefore, the advantage is not prominent in the M-EAD strategy. 
However, if the vehicle includes the stop operations of the CS and I-EAD strategies, as displayed in Section 6.3, the 
advantages of the energy economy, time savings, and battery life extension in M-EAD are evident. 

In addition, the results in Table 7 indicate that, for the test route described and with stochastic initial states of traffic 
signals, an average of 10.65 %, 19.04 %, and 10.51 % increase in the energy economy, travel time saving, and battery life 
can be expected compared with the CS strategy, and 6.55 %, 14.79 %, and 5.01 %, respectively, compared with the I-
EAD strategy. These results indicate that the proposed M-EAD has marked advantages in terms of energy economy and 
traffic efficiency, and its robustness in stochastic traffic scenarios is good.  
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7. Experiment and Results 

7.1 Facilities 

A field test was conducted based on a developed CAV platform, Chery Little-Ant as shown in Fig. 20. The CAV is 
equipped with a global navigation satellite system/inertial navigation system, millimeter-wave radar, LiDAR, several 
cameras, V2I device, and an on-board computing platform with an Intel Core i7-7700 @ 3.6GHz CPU. The global 
navigation satellite system/inertial navigation system provides precise positioning information, and the initial SPaT 
information of all downstream intersections can be accessed by an on-board V2I device via 4G communication. Because 
all signal controllers along the test route are operated in a fixed-time strategy, the future signal states can be predicted. 
Using the acquired information, the proposed M-EAD calculates the optimized speed profile, which is sent to the lower-
level vehicle controller. Then, the test vehicle controls the traction motor and braking system to maintain the optimized 
speed using the Proportion-Integration-Differentiation controller. The communication and control framework of the test 
vehicle is shown in Fig. 21, it is based on the Robot Operating System. In addition, the experimental results, including 
vehicle speed, position, and SOC were recorded at 20 Hz. 

The test route is the same as that used in the simulation, as shown in Fig.11. The test vehicle received all traffic signal 
information 1000 m ahead of the starting position, including positions of an intersection stop line, traffic signal phases 
and timing, and speed limits. The driving lane, starting and ending positions for the host vehicle were defined before the 
experiment. The process of the experiment is as follows: 1) The M-EAD strategy is triggered for optimal speed derivation 
while the traffic signal information is received with V2I communication. Before entering the test zone, the vehicle is 
controlled by the driver, who drives the vehicle at a pre-defined speed. The human machine interface prompts the driver 
to arrive at the start position of the test road at the appointed time and defined speed. 2) Once the vehicle reached the 
marked starting position of the test road, the automated driving mode is activated manually, and the test vehicle is 
controlled to follow the pre-defined driving trajectory and optimized speed. The experiment results, including host vehicle 
speed, position, and battery SOC are recorded. 3) When the test vehicle passes the ending position of the test road, the 
experiment and data recording mode are terminated. After that, the driver will take over the control of the vehicle. Noted 
that in step 2 of the experiment, the requirement to reach the starting position at the specified time and speed may be 
strong. To impose this, we first found the time consumption of calculating the optimal vehicle speed through the 
preliminary test, which required about 250 s. In this context, we stipulate the arrival time of the test vehicle at the starting 
point is 280 s. Based on the traffic light model, initial states, and SPaT information, the optimal speed trajectory from 280 
s is calculated. The cruise speed is 10 km/h before the optimal speed is derived. After that, the driver adjusts the speed 
based on experience and reaches the starting point at about 280 s. 

 

   

Fig. 20. The CAV experiment platform.                          Fig. 21. Software node in ROS. 
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7.2 Experiment Results 

Since we cannot obtain the instantaneous battery energy consumption of the test vehicle, only the SOC value was 
recorded. To make a fair comparison between different strategies, the changes in the SOC and vehicle kinetic energy are 
combined to evaluate the energy efficiency of the different strategies, as shown in Eq. (39).  

𝐸3 = 3600𝑉8:𝑄6 �𝑆𝑂𝐶(0) − 𝑆𝑂𝐶�𝑇F�� − 0.5𝑚 �𝑣5�𝑇F� − 𝑣5(0)� (39) 

where 𝐸3 is the approximated vehicle energy consumption.  
Figs. 20-22 show the speed, distance, and battery power profiles obtained from the experiment, respectively. Note that 

the ideal trajectory is derived using I- and M-EAD strategies, and the real trajectory is the real movement of the test 
vehicle in both scenarios. Table 8 lists the results of SOC, energy consumption, and travel time obtained by all methods.  

 

Fig. 20. Vehicle distance profile in the experiment.  
 

 

Fig. 21. Vehicle velocity profile in the experiment. 
 

 

Fig. 22. Battery power profile in the experiment. 
 

Table 8 

Experiment results comparison for CS, I-EAD, and M-EAD strategies. 

Strategy 
State of charge Approximated energy consumption Travel time 

Initial value (%) Final value (%) Value (kJ) Improvement Value (s) Reduction (%) 

CS 75.36 71.98 2399.10 4.66 (I-EAD vs. CS) 

15.00 (M-EAD vs. CS) 

10.84 (M-EAD vs. I-EAD) 

748.12 13.01 (I-EAD vs. CS) 

13.57 (M-EAD vs. CS) 

0.64 (M-EAD vs. I-EAD) 

I-EAD (real) 83.67 80.41 2287.25 650.78 

M-EAD (real) 81.31 78.40 2039.28 646.61 
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As observed in Fig. 20, the vehicle with the M-EAD and I-EAD strategies drove the vehicle through all intersections 
without stopping, while the vehicle with CS strategy ended up with several stop-and-go operations. Compared to the CS, 
the battery energy consumption and travel time are reduced by 15.00 % and 13.57 % when M-EAD is applied, and 4.66% 
and 13.01 % of the I-EAD (see Table 8). This is because that the M-EAD and I-EAD can drive more smoothly compared 
to the CS by taking the intersection position and SPaT information into account so that inefficient acceleration and 
deceleration operations are reduced, so does the battery energy consumption (see Fig. 22). In addition, by reducing stop-
and-go operations, M-EAD and I-EAD strategies result in shorter travel times. The M-EAD further improves energy 
efficiency by 10.84 % compared with I-EAD without incurring additional travel time. The main reason is that M-EAD 
takes all traffic signals positions and SPaT information along the path into account, which enables a more energy-efficient 
driving profile throughout the mission (see Figs. 21 and 22). 

In terms of the tracking performance, the ideal and real speed profiles shown in Fig. 21 are compared. As it can be 
seen, the smooth optimal speed profile can be accurately tracked with the maximum speed tracking error of 3.98 % and 
4.77 % for M-EAD and I-EAD strategies, respectively.  

8. Conclusion  

This paper proposes an eco-approach and departure strategy, namely M-EAD, which can enable a connected vehicle 
to drive through multiple signalized intersections with consideration of four key aspects during driving, energy 
consumption, travel time, and battery capacity loss, and driving comfort. A two-stage control scheme is proposed to 
coordinate efficient green signal window planning and vehicle speed optimization over the entire route. In the upper stage, 
the traffic signal green window is planned by formulating the shortest path problem which is solved with the A* algorithm; 
in the lower stage, the RHVO framework is designed to optimize the speed trajectory, where the energy efficiency, 
mobility, and battery life are optimized simultaneously by using the IDP algorithm. The M-EAD was validated evaluated 
using both offline Monte Carlo simulation tests and vehicle-on-road experiments carried out in an urban area of Nanjing. 

The findings in this paper provide a new perspective on urban network eco-driving control in the context of connected 
EVs. More specifically, we first conduct a Monte Carlo simulation with randomized traffic light initial states. The 
comparative results against the CS strategy indicate that the proposed M-EAD strategy can noticeably improve the 
performance of the traditional control strategies. In contrast with the CS approach, the energy efficiency improvement 
and travel time saving of M-EAD can be up to 19.98 % and 35.95 %. The results also show that the average energy 
efficiency improvement and travel time saving of the M-EAD are respectively 6.55 % and 14.79 % when compared with 
the I-EAD strategy. Our results suggest that it is extremely beneficial to consider the SPaT information of the multiple 
intersections when designing an EAD strategy. Second, the proposed M-EAD strategy considers battery life. The 
simulation results demonstrate that with the aforementioned improvements in terms of energy efficiency and travel time, 
battery life can be prolonged by 10.51 % and 5.01 % on average utilizing M-EAD as compared to CS and I-EAD 
strategies, respectively. Since the longer battery life is a crucial performance index for EVs, it is necessary to consider 
battery health in the eco-driving strategy for EVs. Third, ride comfort is usually compromised when maximizing energy 
and travel time saving. The results shown in this paper demonstrate that the various savings led by the M-EAD in terms 
of energy, travel time, and battery life cost are achieved without sacrificing ride comfort. The experimental validation 
further confirms the benefits of M-EAD as compared to the traditional I-EAD and CS strategies. 

In future, we will attempt to address more dynamic traffic conditions, including actuated traffic signal, nonstationary 
preceding traffic, by integrating intersection pass through probability prediction and optimal lane selection algorithm into 
the multiple intersections EAD control framework. 
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