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Abstract

Modern DNA sequencing has instituted a new era in human cytomegalovirus (HCMV) genomics. A key development has
been the ability to determine the genome sequences of HCMV strains directly from clinical material. This involves the appli-
cation of complex and often non-standardized bioinformatics approaches to analysing data of variable quality in a process
that requires substantial manual intervention. To relieve this bottleneck, we have developed GRACy (Genome
Reconstruction and Annotation of Cytomegalovirus), an easy-to-use toolkit for analysing HCMV sequence data. GRACy
automates and integrates modules for read filtering, genotyping, genome assembly, genome annotation, variant analysis,
and data submission. These modules were tested extensively on simulated and experimental data and outperformed ge-
neric approaches. GRACy is written in Python and is embedded in a graphical user interface with all required dependencies
installed by a single command. It runs on the Linux operating system and is designed to allow the future implementation of
a cross-platform version. GRACy is distributed under a GPL 3.0 license and is freely available at https://bioinformatics.cvr.ac.
uk/software/ with the manual and a test dataset.
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1. Introduction

Human cytomegalovirus (HCMV; species Human betaherpesvirus
5) infects 60–70 per cent of adults in developed countries and up
to 100 per cent in developing countries (Zuhair et al. 2019).
Infection is often asymptomatic but can cause severe disease in
immunodeficient or immunocompromised people such as neo-
nates or transplant recipients (Griffiths et al. 2015). HCMV geno-
mics has been significantly advanced in recent years by high-
throughput sequencing, which has resulted in the publication
of genome sequences for >250 strains. A significant number of
these sequences have been derived directly from clinical mate-
rial by target enrichment and Illumina sequencing (Houldcroft
et al. 2016; Lassalle et al. 2016; Suárez et al. 2019a,b; Suárez et al.

2020). Processing the short-read data of variable quality
obtained in this way into an annotated HCMV genome currently
involves many steps with significant manual intervention and
would benefit from a bioinformatics toolkit that automates and
integrates the components.

The HCMV genome is a linear, double-stranded DNA mole-
cule of approximately 236 kbp (Davison et al. 2013). Its overall
configuration may be described as ab–UL–b0a0c0–US–ca, in which
UL (193 kbp) and US (35 kbp) are unique regions flanked by
inverted repeats ab/b0a0 (1 kbp) and a0c0/ca (3 kbp); component
sizes vary among strains. In addition, the 30 end of each DNA
strand terminates with an unpaired nucleotide: an A residue at
the left end and a complementary T residue at the right end. To
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avoid assembly problems due to the inverted repeats, a genome
is initially constructed from short-read data in a trimmed form
that lacks most of ab at the left end and most of ca at the right
end. The genome is completed by locating the sequences corre-
sponding to the genome termini at the b0a0 and a0c0 junctions
and adding the reverse complemented versions to the ends of
the trimmed genome.

Challenges are also inherent in annotating an HCMV ge-
nome, which contains �170 tightly packed canonical protein-
coding genes (Gatherer et al. 2011). In most strains, at least one
of these genes is present as a pseudogene, commonly due to an
in-frame termination codon or an insertion or deletion (indel)
causing a frameshift (Sekulin et al. 2007; Cunningham et al.
2010; Sijmons et al. 2014, 2015; Suárez et al. 2019a). Also, al-
though most genes are well conserved among strains, some are
hypervariable, each existing as several distinct, stable geno-
types (Pignatelli et al., 2004; Puchhammer-Stckl and Grzer 2011).
Finally, recombination during HCMV evolution has essentially
obliterated genetic linkage and generated a huge number of dif-
ferent strains (Rasmussen et al. 2003; Sijmons et al. 2015; Suárez
et al. 2019a). These aspects of diversity limit the effectiveness of
reference-guided genome assembly and of automatic transfer
of annotations from a reference.

Although hypervariable genes create challenges to annota-
tion, they are useful for determining the number of HCMV
strains present in a clinical sample. This is an important consid-
eration, as multiple-strain infections exhibit far more diversity
than single-strain infections, and failure to recognize their pres-
ence can compromise genome determination and result in
gross overestimation of intrahost evolutionary rate (Hage et al.
2017; Cudini et al. 2019; Suárez et al. 2019a; Suárez et al. 2020).
One approach to monitoring strain composition is to count the
occurrences in the reads of a single sequence motif (21–24
nucleotides (nt)) that is specific to each genotype of a hypervari-
able gene and conserved in all known sequences of that geno-
type (Suárez et al. 2019a,b). Although this approach is largely
effective, its blindness to occasional new polymorphisms in the
motifs indicates a need for a more sensitive approach.
Monitoring strain composition also provides a means of detect-
ing apparent cross-contamination of samples, which may occur
at any of the steps involved in sample processing, library prepa-
ration, and sequencing. In addition, the bioinformatic steps in-
volved in assembling and analysing HCMV sequence data must
take into account the vicissitudes of data quality.

Here, we present GRACy (Genome Reconstruction and
Annotation of Cytomegalovirus), a toolkit for analysing HCMV se-
quence data that addresses the shortcomings of current
approaches. GRACy is written in Python and is embedded in a
graphical user interface (GUI) with all required dependencies
installed by a single command. It runs on the Linux operating sys-
tem and is designed to allow the future implementation of a
cross-platform version. The GUI presents six modules: read filter-
ing, genotyping, genome assembly, genome annotation, variant
analysis, and database submission. These modules were tested
extensively on simulated and experimental data and outper-
formed generic approaches. We intend GRACy to provide an easy-
to-use, expandable toolkit in support of HCMV genomics research.

2. Materials and methods
2.1 Datasets

Four primary datasets were produced in silico to mimic sequence
data for single HCMV strains generated using the Illumina

platform (Supplementary Table S1). Two of these simulated
even coverage (EC) depth of the HCMV genome, and two simu-
lated uneven coverage (UC) depth in order to resemble typical
experimental data, which are highly influenced by local effects
on the efficiency of target enrichment and polymerase chain re-
action (PCR) amplification. Datasets merlinEC and merlinUC were
generated from the strain Merlin reference sequence (Merlin;
GenBank accession AY446894.2) using ART 2.5.8 (Huang et al.
2012). Each consisted of 150 nt paired-end reads derived from
genome fragments having an average size of 500 nt (SD ¼ 50 nt)
and a sequence error profile typical of the Illumina HiSeq 2500
platform. Dataset merlinUC was derived by dividing Merlin into
1,000 nt fragments using an adjacent window approach (win-
dow step ¼ 500 nt). Paired-end reads were then generated from
each window with a mean coverage depth chosen randomly be-
tween 5 and 4,000 reads/nt, and pooled. Datasets merlinVarEC

and merlinVarUC were produced similarly and mimicked data
for a different HCMV strain, the reference sequence of which
(MerlinVar) was produced by using SimuG 1.0 (Yue et al. 2019) to
introduce 4000 random substitutions into Merlin; this number is
typical of the difference between two HCMV strains (Suárez
et al. 2019a). Four series of subsampled datasets (e.g. merlin20k

EC

containing 20,000 paired-end reads from merlinEC) were then
derived randomly from the primary datasets (Supplementary
Table S2). Also, datasets simulating mixtures of the two HCMV
strains were generated by concatenating merlin3200k

EC with vari-
ous proportions of reads from merlinVarEC or by concatenating
merlin3200k

UC with various proportions of reads from merlinVarUC

(e.g. mixedStrains28k
EC contained 28,000 paired-end reads from

merlinVarEC, which thus comprised 0.9% of the total;
Supplementary Table S3).

In addition to the simulated datasets, seven experimental
datasets derived directly from clinical material by target enrich-
ment and Illumina sequencing were downloaded from public
databases (Supplementary Table S4). Four originated from con-
genitally infected infants whose amniotic fluid (JER4755, PAV6,
and PAV25) or urine (JER851) had been sampled (Suárez et al.
2019a). Three (LON2_T1, LON2_T2, and LON2_T3) originated
from blood samples from an HCMV-positive infant collected at
different time points during infection (Houldcroft et al. 2016).
All samples had been characterized as containing a single
strain, and genotyping data, genomes and annotations were
available (Houldcroft et al. 2016; Suárez et al. 2019a).

2.2 Performance statistics

Where appropriate, modules were evaluated in terms of false
discovery rate (FDR) and sensitivity. FDR was calculated as the
ratio between the number of false-positive values (FP) and the
sum of FP and true-positive values (TP), and sensitivity was cal-
culated as the ratio between TP and TP plus false-negative val-
ues (FN).

For the genome assembly module, the sequence produced
by GRACy was aligned with the expected genome (Merlin or
MerlinVar for the simulated data, and the deposited genome for
the experimental data) using MAFFT v. 7.310 (Katoh 2002). In
this context, TP corresponded to nucleotides that matched in
the alignment, FP to nucleotides that were present only in the
sequence produced by GRACy, and FN to nucleotides that were
present only in the expected sequence. Sequences produced by
GRACy were also evaluated by computing N50 values, which are
a measure of assembly continuity (Earl et al. 2011), and by
counting the number of undetermined nucleotides (N). For the
experimental data, GRACy was compared with the viral genome
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de novo assembly pipeline vrap (https://www.rna.uni-jena.de/re
search/software/vrap-viral-assembly-pipeline/).

For the variant analysis module, TP, FP, and FN were consid-
ered to be the number of single nucleotide polymorphisms
(SNPs) that were simulated and detected correctly, not simu-
lated and detected incorrectly, and simulated and not detected,
respectively.

For the annotation module, the numbers of exons and their
predicted coordinates were compared withthose in published
data.

3. Software implementation

The main steps of each GRACy module are described below (fur-
ther details are provided in Supplementary File S1). Each mod-
ule is embedded within a GUI written using the Qt graphics
library and can be run independently. Output data are gener-
ated in the form of text files or plots (Supplementary Table S5).
Third-party software components were used with default
parameters unless otherwise specified.

3.1 Read filtering

Despite the use of target enrichment, a dataset from a sample
with low HCMV load may contain a significant proportion of hu-
man reads. The viral reads may also be highly clonal owing to
excessive PCR amplification, and this may compromise the ge-
nome and, particularly, subsequent variant analysis. In addi-
tion, the reads may contain portions of the adapters
incorporated during library preparation, especially when the
fragments are shorter than the anticipated read length. In this
module, an original dataset undergoes the following steps: 1) re-
moval of human reads using Bowtie 2 v. 2.3 (Langmead and
Salzberg 2012; Keel and Snelling 2018) under the –local and –end-
to-end options with the human reference genome (Hg38; http://
bowtie-bio.sourceforge.net/bowtie2/manual.shtml); 2) trimming
of default or user-specified adapters and low-quality nucleoti-
des using Trim Galore v. 0.6.4 (bioinformatics.babraham.ac.uk);
3) removal (deduplication) of clonal reads using FastUniq v. 1.1
(Xu et al. 2012), which detects duplicates on the basis of read
pairs sharing the same sequences; and 4) alignment of reads to
Merlin using Bowtie 2 to derive data on coverage breadth (the
proportion of the genome covered by reads) and mean coverage
depth (reads/nt) of positions matching �1 read.

Alternative methods for read filtering are used by the ge-
nome assembly and variant analysis modules.

3.2 Genotyping

This module uses a motif-based approach to genotype 13 hyper-
variable HCMV genes (in order along the genome: RL5A, RL6,
RL12, RL13, UL1, UL9, UL11, UL20, UL73, UL74, UL120, UL146, and
UL139). In contrast to using a single motif for each genotype
(Suárez et al. 2019a,b), it utilizes all possible motifs (as kmers,
k¼ 17) for each genotype based on publicly available HCMV
genomes, and therefore the number of kmers for a genotype is
variable, ranging from 2 (UL73/G4C) to 1007 (RL12/G5)
(Supplementary Fig. S1). All kmers in the reads are counted, and
a dictionary is created using Jellyfish v. 2.2 (Marçais and
Kingsford 2011), which associates each kmer with the reads in
which it is present. The dictionary is searched using Jellyfish for
genotype-specific kmers derived from a large collection of
HCMV genomes, and the relevant reads are listed non-
redundantly and enumerated. If the number of reads for a

genotype exceeds a user-specified proportion of the average
coverage depth of the genome, the data are reported as the ratio
between the number of reads identifying each individual geno-
type divided by the total number of reads identifying any geno-
type for that gene. These values are reported in a text file and
presented visually as doughnut plots, and may be used for
strain enumeration (Suárez et al. 2019a) (Fig. 1).

3.3 Genome assembly

This module constructs the genome from the original datasets.
The paired-end dataset files are quality filtered using PRINSEQ
v. 0.20 (Schmieder and Edwards 2011) and interleaved, and the
resulting single dataset is normalized using scripts from the
khmer v. 3.0 suite (Crusoe et al. 2015) to reduce the negative im-
pact of uneven genome coverage depth on subsequent steps
(Brown et al. 2012). Since dataset subsampling is known to im-
prove the efficiency of de novo assembly (Hug 2018), several sub-
sampled datasets containing 20–100 per cent of the reads
selected randomly are assembled individually into contigs using
SPAdes v. 3.12 (Bankevich et al. 2012). The contig set with the
highest N50 value is aligned to Merlin in order to determine
contig position and orientation, and the contigs are joined using
a combination of Scaffold_builder v. 2.0 (Silva et al. 2013) and
Ragout v. 2.2 (Kolmogorov et al. 2014) to form a scaffold with
gaps corresponding to the regions that failed de novo assembly.
These gaps are resolved by locating the flanking 100 nt regions
in a large collection of HCMV genomes using blastn v. 2.9. If
close similarity is found to the same genome for both flanking
regions, the reads are aligned to a sequence consisting of these
regions and the intervening sequence, differences indicated by
the alignment are corrected, and the consensus is incorporated
into the genome. Attempts are made to fill any remaining gaps
using GapFiller 1.11 (Boetzer and Pirovano 2012).

At this stage, the internal repeat region containing the b0a0

and a0c0 sequences (especially b0) frequently contains errors, and
an attempt is made to improve the sequence. The reads are
aligned to the internal repeat region in Merlin (approximately

Figure 1. Doughnut plot reporting the results of a genotyping analysis. Each

dataset is depicted as an annulus divided into sections representing the 13 hy-

pervariable genes analysed. The size of the coloured bars within each section in-

dicate the proportion of the genotypes detected, according to the key on the

right. The analyses of three datasets are plotted concentrically to facilitate

comparison.
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10,000 nt), the read pairs for which at least one member is
aligned are extracted and assembled de novo using SPAdes, and
the contigs are scaffolded against the internal repeat region in
Merlin using Scaffold_builder. This step generally results in a
more reliable version of the internal repeat region that is used
to replace the original one.

The reads are then aligned to the genome using Bowtie 2,
and the coverage depth is calculated at each position. Regions
resulting from potential misassembly errors are detected as
having low or zero coverage depth and are removed from the
assembly, thus creating gaps, which are filled using an internal
algorithm that exploits read overlap to extend the flanking
regions, a method known as overlap/layout/consensus (OLC).
The terminal ab and ca inverted repeats are generated by re-
verse complementing the internal b0a0 and a0c0 sequences. If ei-
ther of these sequences does not overlap the genome (which is
in trimmed form at this stage), gaps are introduced and filled
using OLC. Finally, major variants (substitutions or indels, the
latter including variations in homopolymer length) are detected
using Varscan v. 2.4 (Koboldt et al. 2012) and, if necessary, the
genome is amended to contain the most frequent variants. This
step also corrects any residual errors in the genome.

3.4 Genome annotation

This module predicts the functional protein-coding sequences
(CDSs) in a genome, based on those annotated in Merlin. Briefly,
the amino acid sequences of the 170 canonical proteins are
mapped to the genome using tblastn v. 2.9 (Altschul et al. 1990).
The best-matching variant for each protein in Uniprot (https://
www.uniprot.org; accessed 1 December 2019) is then identified
and mapped using exonerate v. 2.4 (Slater and Birney 2005),
which is able to annotate splice sites and potential disruptions.
This two-step approach is much faster than using exonerate
alone. After retrieving the CDS coordinates, an internal algo-
rithm performs a quality control on the annotation. If a CDS
does not start with an ATG start codon or end with a stop codon
(TAA, TGA, or TAG), due, for example, to substitutions in these
triplets, the annotation is refined by searching for a nearby start
or stop codon in the appropriate reading frame. If a valid anno-
tation is not found at this stage, the exonerate alignment is re-
peated under the -refine full option (a more time-consuming
dynamic programming strategy), followed, if necessary, by a
further round of refinement to identify start and stop codons.
The output files are fasta files for the CDS nucleotide and amino
acid sequences, a genome annotation gff3 file, and a log file
reporting disruptive mutations and refinements of start and
stop codons.

3.5 Variant analysis

This module takes a conservative approach to automating the
alignment of reads to a genome in order to detect variants. The
original reads are trimmed using Trim Galore, quality-filtered
using PRINSEQ under stringent parameters (-min_qual_mean 25 -
trim_qual_right 30 -trim_qual_window 5 -trim_qual_step 1 -min_len
80 -trim_ns_right 20), and aligned to the genome using Bowtie 2.
The aligned reads are extracted and deduplicated using Picard
v. 2.21 (http://broadinstitute.github.io/picard), which marks
paired-end reads sharing the same coordinates in the align-
ment. Nucleotides with a Phred quality score of �30 form the
basis for calling SNPs using LoFreq v. 2.1.4 (Wilm et al. 2012),
which considers one read pair for each marked duplicate. The
module reports the position and frequency of each SNP, the

name of the affected gene, the altered codon and, for a non-
synonymous SNP, the amino acid substitution. The results can
be filtered easily to focus on mutations in specific genes (e.g.
those involved in antiviral drug resistance) or disruptive muta-
tions, or to divide SNPs into synonymous and nonsynonymous
categories.

3.6 Database submission

This module automates the submission of read datasets to the
European Nucleotide Archive (ENA) short-read database. The
user provides basic information in tabular format on the sam-
ples, the sequencing protocol, and the project under which the
samples are submitted. The module produces intermediate
XML files and submits the datasets using Webin-cli v. 3.0. The
submission can be directed to the ENA test web space, thus
allowing checks to be carried out before submission to the offi-
cial ENA database.

4. Software evaluation using simulated data
4.1 Genotyping

The performance of the multi-motif approach in this module
was compared with the single-motif approach using three of
the datasets subsampled from merlinUC and merlinVarUC

(Supplementary Table S2). As anticipated, the multi-motif ap-
proach reported more matching reads for each genotype
(Supplementary Table S6). Both approaches were successful
with all merlinUC datasets, but the multi-motif approach was
more effective for the merlinVarUC datasets, failing only for ge-
notype UL73, probably due to the low number of motifs specific
for genotype G4D (Supplementary Fig. S1), whereas the single-
motif approach failed in genotyping six genes. Detection of arte-
factual kmers was more prominent with larger datasets, espe-
cially for the multi-motif approach, probably as a result of
simulated sequencing errors. For this reason, this module
implements a user-defined cut-off value for filtering out geno-
types detected in extremely low proportions.

4.2 Genome assembly

This module was tested using the datasets subsampled from
merlinUC and merlinVarUC (Supplementary Table S2). It pro-
duced a single scaffold covering the complete Merlin genome
from merlinUC-derived datasets containing �40,000 reads but
not from one containing 20,000 reads (Supplementary Table S7).
The lower efficiency for the latter dataset was due to portions of
the merlin genome that were not represented in merlin20k

UC be-
cause of UC (Supplementary Table S2).

Assembly of datasets from samples containing multiple
HCMV strains is more challenging due to the presence of reads
derived from variants having highly similar sequences. The
ability of the module to assemble Merlin was tested using the
datasets simulating two mixed strains containing merlinEC-de-
rived reads and a proportion of merlinVarEC-derived reads, or
merlinUC-derived reads and a proportion of merlinVarUC-de-
rived reads, with the proportion ranging from 0.9 to 25.9 per
cent (Supplementary Table S3). A scaffold representing the com-
plete Merlin genome was produced for all datasets with high
sensitivity and low FDR (Supplementary Table S8). The lower
sensitivity observed for the highest proportion (25.9%) of
merlinVarEC-derived reads, in comparison with merlinVarUC-de-
rived reads, may have been due to the effects of UC depth.
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Genome assembly was typically completed in <90 minutes
on an Intel(R) Xeon(R) E7-4890 CPU running at 2.80 GHz with a
maximum of 16 threads. The longest times were observed for
lower coverage datasets due to the increased number of gap-
closing attempts, and at higher coverage depth due to the more
intensive computation required for higher numbers of reads.

4.3 Variant calling

This module was also evaluated using the datasets simulating
two mixed strains (Supplementary Table S3). An FDR of 0 was
achieved for all datasets analysed, whereas sensitivity
depended on the proportion of the minor strain (Supplementary
Table S3). The module reported >97 per cent of simulated SNPs
for the merlinEC/merlinVarEC series when the proportion of the

second strain was 1.7 per cent, and >99.9 per cent when it was
higher (Supplementary Fig. S2). A similar trend was observed for
the merlinUC/merlinVarUC series, but sensitivity never exceeded
90 per cent, which may again have been due to the effects of UC
depth.

4.4 Annotation

This module was evaluated using Merlin, and produced CDS
coordinates in accordance with those in the reference annota-
tion. In this annotation, gene UL30A is unusual in featuring an
alternative start codon (ATA), and therefore was recorded by
the module as a pseudogene lacking a start codon (ATG).
Annotation of merlinVar retrieved all the relevant CDSs, with a
report on the amino acid sequence differences from Merlin and

Figure 2. Genome assembly statistics for experimental datasets: (a) sensitivity, (b) FDR, (c) N50 values and (d) unidentified nucleotides (N).
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the presence of several pseudogenes due to in-frame stop
codons or nonsynonymous mutations in start or stop codons.

5. Software evaluation using experimental
data
5.1 Genotyping

As with simulated data, the multi-motif approach implemented
in this module proved superior to the single-motif approach.
For example, the former approach classified gene UL1 as geno-
type G3 in JER851 on the basis of 2098 reads, but the latter did
not identify reads matching this or any other genotype
(Supplementary Table S9), due to deletion of a 218 nt region con-
taining the genotype G3 single motif. The module also improved
the classification of low coverage datasets such as Lon2_T1. For
gene UL9, the single-motif approach identified genotype G9 on
the basis of 2 reads (Suárez et al. 2019a), whereas genotype G1
was identified in datasets from the other two samples from the
same patient (Lon2_T2 and Lon2_T3). The module produced a
more consistent and well-supported classification, with geno-
type G1 being identified in all Lon2 datasets (Supplementary
Table S9).

5.2 Genome assembly

This module was compared with the virus genome assembly
pipeline vrap, and found to be superior. The module produced a
single scaffold for all datasets, with a sensitivity ranging be-
tween 98.20 per cent (Lon2_T1) and 100 per cent (JER851,
JER4755, and PAV6) (Fig. 2A). FDR ranged from 0 (JER4755,
JER851, PAV25, and PAV6) to 0.009 (Lon2_T2) (Fig. 2B), with
higher values due to misassembly in the inverted repeat regions
(Supplementary Table S10). The module was also superior in
terms of N50 value, improving this by between 42,014 nt
(JER4755) and 217,313 nt (PAV25) (Fig. 2C). However, it was not
generally superior in terms of number of unidentified

nucleotides in the genome (Fig. 2D). Overall, execution times
were in line with those observed for simulated datasets.

Each difference between the genome generated by this mod-
ule and the corresponding deposited genome was investigated
by counting the number of reads supporting the alternatives in
datasets deduplicated using Picard (Supplementary Table S10).
Indels were the most common difference and always occurred
in homopolymeric tracts, which are prone to length variation
during viral replication and because of DNA polymerase slip-
page during PCR. The sequences produced by GRACy were sup-
ported by a higher number of reads in 14/16 instances, the two
exceptions in Lon2_T1 being due to insufficient coverage depth
preventing improvement during the last step of genome assem-
bly. The ab inverted repeats in PAV25 were misassembled by
GRACy, resulting in the absence of the first 698 nt of the ge-
nome, and an extraneous 1939 nt sequence was added at the
left end of the genome in Lon2_T2 and Lon2_T3. Several SNPs
and indels were reported in a region of the PAV25 genome (posi-
tions 140703–140728) consisting of tandem GGT repeats in a G-
rich context (Supplementary Fig. S3), which is a situation known
to promote sequencing errors (Meacham et al. 2011). Finally, the
nucleotide alternative to that in the deposited genome was
called by the module for nine positions with SNPs in Lon_T1,
and each was supported by the highest number of reads.

5.3 Variant calling

This module was used to investigate the genetic variability rep-
resented in the datasets. The reads were aligned to the depos-
ited genome with or without deduplication using Picard, and
variants were called (Fig. 3). In general, a lower number of SNPs
was detected for deduplicated reads, as PCR-derived duplicates
tend to lead to an increase in the number of reads supporting
variant calls (DePristo et al. 2011). However, an unusually high
number of SNPs was called for deduplicated PAV25, presumably
because deduplication led to a significant decrease in average
coverage depth (from >250 to <50 reads/nt), a scenario in which
contaminating reads from other libraries with less clonality

Figure 3. Distribution of the numbers of SNPs in experimental datasets as a function of coverage depth (reads/nt). The distributions are shown for the original (blue)

and deduplicated (red) datasets. Av cov, average coverage.
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sequenced on the same run tend to become detectable. The
number of variants was linked to the number of strains repre-
sented in the datasets, as reads originating from a minor strain
result in many SNPs when aligned to the genome of the major
strain. Indeed, PAV25 and PAV6 were predicted to contain reads
from additional strains, probably originating from contamina-
tion, with the deeper sequencing of the latter enhancing the
number of SNPs.

The output files from the module also provided insights into
the possible biological relevance of some SNPs. For example,
analysis of Lon2_T3 revealed 1 and 7 nonsynonymous muta-
tions in genes UL97 and UL54, respectively, with which resis-
tance to anti-HCMV drugs is associated (Table 1). Indeed,
patient Lon2 was reported to have developed resistance muta-
tions in these two genes during antiviral treatment (Houldcroft
et al. 2016). The module detected these mutations plus two
others in UL54 that resulted in the amino acid changes E756D
and R904L, the former having been reported previously as a re-
sistance mutation (Lurain and Chou 2010). The greater sensitiv-
ity of the module to SNPs may be due to operation of the read
filtering module prior to variant calling.

5.4 Genome annotation

This module was tested on the deposited genomes
(Supplementary Table S4). The resulting annotations differed
minimally from the originals (Supplementary Table S11). Gene
UL30A was always reported as a pseudogene due to its non-
canonical start codon (ATA), and differences in the annotations
of genes RL5A and RL6 were observed when a start or a stop co-
don could not be identified. Additional differences were ob-
served when alternative start codons were present close
together at the start of a CDS. For example, slightly longer CDSs
were reported for gene UL6 in JER4755 and gene UL72 in PAV25.
Minor variations of this sort are also apparent in deposited
annotations.

6. Conclusion

GRACy was developed with the benefit of having analysed
HCMV sequence data by more laborious methods and takes into
account the characteristics of the HCMV genome and the limita-
tions of sequence data obtained by target enrichment and
Illumina sequencing. The six modules within the toolkit were
tested and verified extensively on simulated and experimental
datasets. The genotyping module employs a multi-motif ap-
proach that is superior to the single-motif approach used in pre-
vious studies. The genome assembly module features several
steps aimed at exploiting the data within the bounds of their

quality, and showed better performance in comparison with
earlier routines. The genome annotation and data submission
modules automate a process that, due to the degree of variation
among HCMV strains, had previously required extensive man-
ual intervention. The variant analysis module provides a means
of detecting minority genomes with maximum stringency and
specificity, and produces output files suitable for biological
interpretation.

GRACy has been designed with future capabilities in mind.
Underlying improvements will arise from the availability of ad-
ditional genomes, including better definitions of genotype-
specific kmers, the use of additional HCMV genes for genotyping
and greater likelihood of closing gaps. They will also address
features of the HCMV genome that present challenges to auto-
mated analysis, such as resolution of regions that are difficult
to sequence (e.g. the inverted repeat regions), the inclusion of
alternative start codons (gene UL30A), the resolution of how cer-
tain genes (RL5A and RL6) are translated and the incorporation
of additional annotations of the Merlin reference. The package
will also incorporate further tools for analysing HCMV sequence
data. Finally, it is possible that the approach taken with GRACy
will also be applicable to intensive genomic studies on other
large DNA viruses.

Data availability

GRACy is distributed under a GPL 3.0 license and is freely avail-
able at https://bioinformatics.cvr.ac.uk/software/.

Supplementary data

Supplementary data are available at Virus Evolution online.
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Table 1. SNPs detected by the variant-calling module in genes UL97 and UL54 for dataset Lon2_T3.

Gene Position in genome Position in protein Frequency (%) Nucleotide change Codon change Amino acid change

UL97 142,842 460 11.5 T! G ATT! ATG I!M
UL54 78,631 987 1.6 C! T GCC! GTC A! V
UL54 78,877 905 2.8 G! T CGG! CTG R! L
UL54 79,165 809 5.0 C! T GCG! GTG A! V
UL54 79,187 802 4.3 C! A CTG! ATG L!M
UL54 79,323 756 2.3 G! T GAG! GAT E! D
UL54 79,858 578 14.8 T! A CTG! CAG L! Q
UL54 80,052 513 4.2 T! G AAT! AAG N! K

Variants previously reported in this dataset (Houldcroft et al. 2016b) are shown in italic font.
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