
����������
�������

Citation: Aprile, N.; Hartmann, B.;

Kunz, J. (Un)balanced Holographic

Superconductors with Electric and

Spin Motive Force Coupling .

Universe 2022, 8, 107. https://

doi.org/10.3390/universe8020107

Academic Editor: Norma G. Sanchez

Received: 21 December 2021

Accepted: 5 February 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

(Un)balanced Holographic Superconductors with Electric and
Spin Motive Force Coupling

Nathália P. Aprile 1, Betti Hartmann 2,* and Jutta Kunz 3

1 Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13560-970, SP, Brazil;
nathaprile@yahoo.com.br

2 Department of Mathematics, University London, Gower Street, London WC1E 6BT, UK
3 Institute of Physics, University of Oldenburg, D-26111 Oldenburg, Germany; jutta.kunz@uni-oldenburg.de
* Correspondence: b.hartmann@ucl.ac.uk

Abstract: We study holographic phase transitions in (2+1) dimensions that possess interacting phases
which result from a direct coupling between the two U(1) gauge fields. This can be interpreted as
a non-minimal interaction between the electric and spin motive forces of the dual model. We first
present a new analytical solution of the Einstein-Maxwell equations that describes a black hole with
charge non-equivalent to the sum of the asymptotic charges of the two U(1) gauge fields and briefly
discuss formation of uncharged scalar hair on this solution. We then study the formation of charged
scalar hair on an uncharged black hole background and discuss the dual description of balanced as
well as unbalanced superconductors.
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1. Introduction

Phase transitions (PT) can be grouped into universality classes which implies that
systems with different microscopic descriptions can reveal the same asymptotic behavior
for a given set of physical quantities. In recent years [1–4], the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence has been used extensively to find a dual description of
diverse phase transitions, e.g., conductor/superconductor and insulator/superconductor
phase transitions, using gravity theories in AdS space-time. When the PT is driven by
thermal fluctuations, a natural tool on the gravity side are black holes which possess (in
the classical description) the analogue of a temperature. Moreover, thermodynamical
properties of black holes can be determined, and, in asymptotically AdS (aAdS), their
specific heat is typically positive and signals thermodynamical stability. Note that this is
very different in asymptotically flat space-time, where it is well known that black holes
have normally negative specific heat and would hence evaporate. The order parameter (or
condensate) forming at the PT is then described by the formation of “hair” on the black
hole [5].

It has to be emphasized here that the main motivation for the construction of holo-
graphic superconductors has been high temperature superconductivity, i.e., the description
of superconductors whose critical temperature lies well above the usual values for so called
conventional superconductors. It is likely, in the former case, that the pairing mechanism
between the electrons, which leads to superconductivity, is the result of a strong correlation,
and is not phonon-mediated [6,7].

The range of materials that currently exhibit superconductivity is quite large: in
addition to the observation of conventional superconductors, superconductivity has been
observed in ferromagnetic materials, in organic conductors, in heavy fermion systems
and in strontium ruthenate systems. This provides strong arguments for the existence of
more exotic types of superconductivity. Hence, new types of phase transitions have to be
considered in its modeling, an example being the addition of the interaction of the spins of
the electrons.
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There exist superconducting ferromagnetic materials that can become superconducting
when a magnetic field is applied. This mechanism allows the two species involved in the
pairing phenomena to have distinct Fermi surfaces, which means that the two fermionic
species can contribute to unbalanced populations or unbalanced chemical potentials in
the superconducting phase. This process is called inhomogeneous superconductivity and
exists, e.g., in superconducting materials when doped [8], and presumably also in quantum
chromodynamics (QCD) (see e.g., [9] for a recent review).

When the coupling between the external magnetic field and the conducting electrons
is sufficiently strong, the electron pairing is broken and the system undergoes a first order
PT from the superconducting to the normal phase. The limit at which this PT appears is
called the Chandrasekhar–Clogston (CC) bound [10]. However, inhomogeneous super-
conductivity can lead to the spontaneous breaking of symmetries in the ground state and
appropriate values of the difference between the chemical potentials allow the emergence
of an anisotropically modulated gap, which can energetically favor the appearance of a
new phase in relation to the superconducting state and the non-superconducting normal
state, respectively, known as the LOFF phase [11,12].

In fact, the application of an external magnetic field to the superconducting material
generates a coupling between the orbital angular momentum of the electrons and the field,
often suppressing the Zeeman interaction also present.

If we want to look at inhomogeneous superconductivity, we have to take into account
the imbalance caused by the presence of the Zeeman effect on these electrons. This can be
done by observing the electronic population associated with the spins up and down, (n↑)
and (n↑), respectively, or directly in the imbalance between their chemical potentials, with
(µ↑) for the spin up and (µ↓) for the spin down. Although conventional superconductors
can present these imbalances, there are geometries in non-conventional superconducting
materials, such as cuprates, for example, that can favor this configuration. In this case,
precisely because superconductivity occurs in parallel planes when we apply an external
field in the direction of these planes, a perpendicular current appears between the planes
that inhibits angular coupling and allows the Zeeman effect to become dominant [13].

The LOFF phase can also appear in other physical systems, such as ultracold atoms in
the transition between the superconducting phase and the Bose–Einstein phase [14], or in
the color interaction in the formation of the quark–quark condensate at low temperatures
and high densities in QCD. In this latter case, the LOFF phase can be induced by the
difference of the chemical potentials of the quarks involved, but also through the difference
between their masses [9].

In this paper, we study a minimal model of a holographic conductor-superconductor
PT, which contains competing phases, and possesses an explicit, non-minimal interaction
between two U(1) gauge symmetries, in order to mimic a direct interaction between the
electric and spin motive forces. The model is mathematically equal to models suggested
to explain dark matter [15], but we use it in a very different context here. Moreover, as
previously mentioned, high temperature superconductivity involves complex and strongly
correlated electronic interaction mechanisms. In fact, it appears that in these superconduct-
ing systems there is the emergence of PTs associated with different order parameters; for
example, we have the emergence of a magnetic order competing with a superconducting
order in materials that undergo the ferromagnetic-superconducting transition. In this sense,
we can see our model as a two-phase s-type superconducting material. Allowing these two
scalar fields, i.e., two order parameters associated with the dual operator on the boundary,
to interact, makes our model a dual description of a multi-band superconductor [16]. The
non-homogeneity will result from introducing differences between the chemical potentials
or the charge densities, respectively. We follow the approach taken in [17] and extend the
discussion by introducing a direct interaction between the two abelian gauge fields. Similar
terms can be introduced in models of holographic p-wave superconductors [18].

In particular, we discuss the formation of scalar hair on fixed black hole space-time
backgrounds, i.e., we work in the so-called probe limit. We discuss two distinct cases here,
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considering: 1. a charged black hole as the background geometry and 2. an uncharged black
hole as the background geometry. In the first case, the two U(1) gauge fields are completely
fixed, while they are dynamical in the second case. Since the main point of this paper is to
discuss the influence of the new interaction between the gauge fields, we will focus mainly
on the second case of dynamical gauge fields. But we will do a qualitative analysis of the
charged black hole background case first and present a closed form solution.

2. The Setup

In the following, we will study a simple field theoretical model that contains two
complex valued scalar fields, both a priori gauged under a U(1) symmetry. Gravity is
minimally coupled and we introduce a negative-valued cosmological constant. The action
of this model hence reads :

S =
1

16πG

∫
d4x

√
−g(R− 2Λ + 16πGLm) , (1)

where R is the Ricci scalar, G denotes Newton’s constant and Λ = −3/`2 < 0 is the
cosmological constant with ` the AdS radius. The matter Lagrangian Lm is given by :

Lm = −Dµ ϕ(Dµ ϕ)∗ − 1
4

FµνFµν − Dµξ(Dµξ)∗ − 1
4

HµνHµν −V(ϕ, ξ) +
ε

2
FµνHµν (2)

with the covariant derivatives Dµ ϕ = ∂µ ϕ − ie1 Aµ ϕ, Dµξ = ∂µξ − ie2aµξ and the field
strength tensors Fµν = ∂µ Aν − ∂ν Aµ, Hµν = ∂µaν − ∂νaµ of the two U(1) gauge potentials
Aµ, aµ with coupling constants e1 and e2. The term proportional to ε is an interaction term
discussed previously in the context of a possible dark matter sector [15]. Here, ϕ and ξ are
complex scalar fields with potential

V(ϕ, ξ) = m2
ϕ ϕϕ∗ + m2

ξ ξξ∗ + λϕϕ∗ξξ∗ . (3)

mϕ and mξ denote the masses of the ϕ and ξ fields, respectively, and λ denotes the coupling
between these two fields.

The equations resulting from the variation of the action with respect to the metric and
matter fields then leads to a set of coupled non-linear differential equations which read

1√−g
Dµ

(√
−gDµ ϕ

)
= m2

ϕ ϕ + λϕξξ∗ ,
1√−g

Dµ

(√
−gDµξ

)
= m2

ξξ + λϕϕ∗ξ , (4)

1√−g
∂µ

[√
−g(Fµν − εHµν)

]
= ie1[ϕ

∗Dν ϕ− ϕ(Dν ϕ)∗] , (5)

1√−g
∂µ

[√
−g(Hµν − εFµν)

]
= ie2[ξ

∗Dνξ − ξ(Dνξ)∗] , (6)

Gµν −
3
`2 = 8πGTµν , Tµν = gµνLm − 2

∂Lm

∂gµν (7)

where Tµν is the energy-momentum tensor.
We assume staticity of the solutions and that all fields depend only on the coordinate

r, which can be interpreted as an energy scale with r → ∞, i.e., the AdS boundary corre-
sponding to the UV regime of the dual quantum field theory. The Ansatz for the fields in
planar coordinates t, r, x, y reads :

Aµdxµ = At(r)dt , aµdxµ = at(r)dt , ϕ = ϕ(r) , ξ = ξ(r) (8)

and the metric is
ds2 = −Nσ2dt2 +

1
N

dr2 + r2
(

dx2 + dy2
)

. (9)
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with the two metric functions N(r) and σ(r). Inserting these Ansätze into the equations of
motion (4)–(7), we obtain

ϕ′′ = −
(

2
r
+

N′

N
+

σ′

σ

)
ϕ′ −

e2
1 A2

t ϕ

N2σ2 + m2
ϕ

ϕ

N
+

λϕξ2

N
, (10)

ξ ′′ = −
(

2
r
+

N′

N
+

σ′

σ

)
ξ ′ −

e2
2a2

t ξ

N2σ2 + m2
ξ

ξ

N
+

λξϕ2

N
, (11)

A′′t = −
(

2
r
− σ′

σ

)
A′t +

2
1− ε2

(
e2

1 At ϕ2

N
+ ε

e2
2atξ

2

N

)
, (12)

a′′t = −
(

2
r
− σ′

σ

)
a′t +

2
1− ε2

(
e2

2atξ
2

N
+ ε

e2
1 At ϕ2

N

)
, (13)

N′

r
+

N
r2 −

3
`2 = 8πGTt

t ,
2σ′N

rσ
= 8πG

(
Tr

r − Tt
t
)

. (14)

The form of these equations makes clear that the case ε2 ≥ 1 would lead to a very
different theory than the original model for ε = 0. We hence restrict ourselves to values of
ε ∈ (−1 : 1) in this paper.

The equations of motion (10)–(13) have to be solved numerically. In order to reduce
the number of couplings in the model, we can use the invariance of the model under given
rescalings. First of all, there exists an invariance under the following rescaling :

r → χr , mϕ →
mϕ

χ
, mξ →

mξ

χ
, e1 →

e1

χ
, e2 →

e2

χ
, λ→ λ√

χ
, `→ χ` , (15)

where χ is a real constant. We will use this in the following to set ` ≡ 1. In addition there is
an invariance under the rescaling of the scalar and gauge fields :

ϕ→ ϕ

χ
, ξ → ξ

χ
, At →

At

χ
, at →

at

χ
, λ→ χ2λ , G → χ2G , ei → χei , i = 1, 2 , (16)

which we will use to fix the value of e1 = 1. Note that we will also use the abbreviation
α2 = 4πG. We are thus left with six parameters: α, e2, mϕ, mξ , λ and ε.

In the following, we are interested only in the probe limit, i.e., the limit of the formation
of scalar hair on a (charged or uncharged) black hole background with fixed horizon at
r = rh and without taking backreaction into account, i.e., setting α = 0. In order to
find explicit solutions to the equations of motion, we have to fix appropriate boundary
conditions. These boundary conditions depend on the two cases studied: 1. the background
corresponds to a charged black hole, or 2. the background corresponds to an uncharged
black hole. In the first case, we will present a solution in closed form, whereas in the second
case, we will integrate the equations of motion numerically.

The second case contains the major set of results of this work. In this case, in order for
the matter fields to be regular at the horizon rh, we need to impose the boundary conditions:

At(rh) = 0 , ϕ′(rh) =
m2

ϕ ϕ + λϕξ2

N′

∣∣∣∣∣
r=rh

(17)

and

at(rh) = 0 , ξ ′(rh) =
m2

ξξ + λξϕ2

N′

∣∣∣∣∣
r=rh

. (18)
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On the conformal boundary, which is a 2-dimensional plane R2, the scalar fields
should have the following behaviour :

ϕ(r � 1) =
ϕ−
rλ−

+
ϕ+

rλ+
, ξ(r � 1) =

ξ−

rλ̃−
+

ξ+

rλ̃+
, (19)

where

λ± =
3
2
±
√

9
4
+ m2

ϕ , λ̃± =
3
2
±
√

9
4
+ m2

ξ , (20)

while the U(1) gauge fields fall-off as follows :

At(r � 1) = µ1 −
ρ1

r
, at(r � 1) = µ2 −

ρ2

r
. (21)

Here µ1 and µ2 correspond to the chemical potentials with the difference between
these potentials denoted by δµ := µ1− µ2, and ρ1 and ρ2 correspond to the charge densities.
For ρ1 = ρ2, the superconductors are said to be balanced, while for ρ1 6= ρ2, they are
unbalanced. The chemical potentials µ1 and µ2 associated to the two gauge fields Aµ and
aµ, respectively, combine to effective chemical potentials of the two species present in the
superconductor as follows

µ1 =
µ↑ + µ↓

2
, µ2 =

µ↑ − µ↓
2

. (22)

In fact, one of the gauge fields represents the electrical part of the superconductivity,
while the other interacts with the spin linked to superconductivity through a Zeeman
coupling. Note that, in the literature, often µ2 = δµ corresponding to the chemical potential
mismatch which is the contribution that at T = 0 is relevant for the formation of the
LOFF phase.

The thermodynamical quantities of the black hole that we will use in the following are
the temperature T and the entropy S , which are given by

T =
σ(rh)N′|r=rh

4π
, S = πr2

h . (23)

In our numerical construction, we have found it useful to fix the horizon rh and vary
ϕ+ and ξ+, which also leads to a variation of the charge densities. Often, however, it is
useful to consider the solutions for fixed charge density. Using the rescalings in the model,
we can translate our numerical solutions into solutions that have constant charge densities
ρ∗ϕ = ρ∗ξ = 1. The ∗will denote the properties of the solution for this choice in the following.
We then have

T∗ =
T√

ρϕ + ρξ
, ϕ∗ =

ϕ+√
ρϕ + ρξ

, ξ∗ =
ξ+√

ρϕ + ρξ
. (24)

3. Formation of Scalar Hair on Charged Black Hole Backgrounds

We first consider charged black hole backgrounds. In fact, for ϕ ≡ 0, ξ ≡ 0, the
Einstein–Maxwell Equations (5), (7) have an explicit black hole solution that can be given
in closed form. This reads

N = −M
r

+
α2

r2

(
ρ2

1 + ρ2
2 − 2ερ1ρ2

)
+ r2 , σ ≡ 1 , At(r) = µ1 −

ρ1
r

, at(r) = µ2 −
ρ2
r

, (25)

where µ1 and µ2 correspond to the chemical potentials on the AdS boundary, while ρ1
and ρ2 denote the charge densities. M is an integration constant that is related to the
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charge densities and the horizon radius rh of the black hole. The temperature of the black
hole reads

T =
1

4π

[
3rh −

α2

r3
h

(
ρ2

1 + ρ2
2 − 2ερ1ρ2

)]
=

1
4π

[
3rh −

α2

rh

(
µ2

1 + µ2
2 − 2εµ1µ2

)]
. (26)

The temperature becomes zero for a black hole with horizon radius

rh =

(
α2

3

(
ρ2

1 + ρ2
2 − 2ερ1ρ2

))1/4

=

(
α2

3

(
µ2

1 + µ2
2 − 2εµ1µ2

))1/2

=

(
M
4

)1/3
. (27)

Thus, the new interaction will influence the radius of the black hole horizon and
hence its entropy S . At fixed gravitational back-reaction and charge densities (or chemical
potentials, respectively), the entropy of the extremal black hole will decrease (increase)
when increasing (decreasing) the coupling constant ε.

In order to understand the scalar field condensation in the background of this modified
RNAdS solution, we consider the space-time close to the horizon. Defining R := r− rh, the
near-extremal, near-horizon geometry of the solution reads

ds2 = −6R2dt2 +
1

6R2 dR2 + r2
h

(
dx2 + dy2

)
, At(r) =

ρ1

r2
h

R , at(r) =
ρ2

r2
h

R (28)

with rh given by (27). The geometry is, as expected, AdS2 ×R2. We can then insert this
solution into the two scalar-field equations. Dropping the 2

r term in the pre-factor of ϕ′

and ξ ′, respectively, as this can be neglected with respect to N′/N here and denoting the
derivative with respect to R by a dot this gives :

ϕ̈ +
2
R

ϕ̇−
m2

eff,ϕ

R2 ϕ = 0 , ξ̈ +
2
R

ξ̇ −
m2

eff,ξ

R2 ϕ = 0 (29)

with the effective masses

m2
eff,ϕ = m2

ϕ +
λξ2

h
6
−

e2
1ρ2

1
12α2(ρ2

1 + ρ2
2 − 2ερ1ρ2)

,

m2
eff,ξ = m2

ξ +
λϕ2

h
6
−

e2
2ρ2

2
12α2(ρ2

1 + ρ2
2 − 2ερ1ρ2)

, (30)

where the index h denotes evaluation on the horizon. Now, in the AdS2 near-horizon, near-
extremal geometry, the effective masses should drop below the 2-dimensional Breitenlohner–
Freedman (BF) bound [19,20], which is m2

BF,2 = −1/4. As (30) demonstrates, positive values
of the coupling constant λ, specifying the strength of the interaction of the scalar fields,
then make condensation harder, while negative values make condensation easier. For the
parameter ε, which can have values only between −1 and 1, and specifies the strength of
the new interaction between the vector fields, a positive value makes condensation easier,
while a negative value makes condensation harder.

4. Formation of Scalar Hair on Uncharged Black Hole Backgrounds

We now consider uncharged black hole backgrounds. In this case, the black hole
space-time is given by a solution to the vacuum Einstein equation including a cosmological
constant. It is thus the planar Schwarzschild-AdS (pSAdS) solution with metric functions
and Hawking temperature given by :

σ(r) ≡ 1 , N(r) =
r2

`2 −
M
r

=
r2

`2

(
1−

r3
h

r3

)
, T =

3rh
4π`2 . (31)
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While the fixed space-time background is not influenced by the new interaction, the two
dynamical gauge fields now interact directly and non-trivially with each other.

We have solved the coupled gauge-scalar field equations in the background of the
solution (31) using a collocation solver for boundary value problems [21]. For our numerical
construction, we have here reduced the large parameter space by choosing m2

ϕ = m2
ξ = −2.

Both choices are well above the Breitenlohner–Freedman bound m2
BF = −9/4 ensuring

stability of the conformal boundary. We have also chosen e2 = 1, leaving, thus, as free
parameters α, λ and ε. We will work in the probe limit in the following and hence set α = 0.
We have further set ϕ− = 0 and ξ− = 0 such that the respective fall-off of the scalar fields is

ϕ(r � 1) =
ϕ+

r2 , ξ(r � 1) =
ξ+
r2 . (32)

Then ϕ+ and ξ+ can be interpreted as the expectation values of operators of dimension
two in the boundary quantum field theory. Concretely, we have computed the solutions by
choosing values for ϕ+ and ξ+. This choice fixes the chemical potentials µ1 and µ2, as well
as the charge densities ρ1 and ρ2. In order to study the conductor-superconductor phase
transition at fixed chemical potentials, we can use the scaling relations (16).

We would first like to address the competition between the phases due to the presence
of the two order parameters associated with the system. Therefore, we focus on making
the system non-homogeneous by promoting the explicit difference between the charge
densities, such that, for ρ1 = ρ2, the superconductors are said to be balanced, while for
ρ1 6= ρ2, are said to be unbalanced.

We have first, as a crosscheck of the validity of our numerical construction, reproduced
known results [22,23]. In Figure 1 we demonstrate that two distinct phases appear in
the system due to the formation of scalar hair on the pSAdS black hole associated with
non-zero values for the scalar fields ϕ (red) and ξ (blue) near the horizon. The phases are
non-interacting in this case, as we have chosen λ = 0 and ε = 0 here. We have plotted the
condensates versus T∗/Tc, where Tc ≈ 1.393 is the critical temperature of ϕ. At this point,
the value of ξ+ was chosen to be 0.5, i.e., we have modelled a situation in which the order
parameter described by the ξ field has already a considerable value when the condensation
of the ϕ field sets in. For T > Tc it does not make sense to speak of a composite system as
the system associated to ϕ is above the condensation temperature. Hence the curve for ξ
stops here.

Figure 1. The dimensionless condensates ϕ1/2
+ /Tc and ξ1/2

+ /Tc associated with the scalar field ϕ (red)
and ξ (blue), respectively, as functions of T∗/Tc, where Tc is the temperature at which condensation
sets in for ϕ. Here, ε = λ = 0, i.e., the two condensates do not interact. Note, that the curve in ξ

(blue) ends at a temperature below its own condensation temperature, since the numerical parameter
used to construct the curves is the value of the field ϕ.
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4.1. Switching off the New Interaction

In the following, we present the curves for ϕ – the curves for ξ can be inferred from
Figure 1. In order to introduce an interaction between the two phases, we have first
followed [22,23] and assumed an interaction of the scalar fields. We will hence consider
ε = 0 and study the qualitative change of the system when varying λ. This is shown in
Figure 2 for the balanced (left) and the unbalanced (right) case, respectively.

Figure 2. The condensate ϕ1/2
+ /Tc as a function of T∗/Tc for ε = 0 and several values of λ. We show

the balanced case with ρ1 = ρ2 (left) and the unbalanced case with ρ1 6= ρ2 (right). Note that the
curves stop due to increased numerical difficulty to find a solution. Although the derivatives of some
of the functions for negative λ seem to diverge, we believe that all curves (if completed by improved
numerics) have finite derivatives everywhere.

As is obvious from this figure, the critical temperature Tc of the balanced system
remains unchanged when varying λ, while for the unbalanced case, the critical temperature
changes its value as compared to the λ = 0 case. Due to our choice of parameters, the
balanced system is completely symmetric under the exchange of ϕ and ξ and hence the
critical temperature should not change. The unbalanced case, on the other hand, shows
that the condensation of the ϕ field changes in the presence of the ξ condensate. In fact,
increasing λ from zero makes condensation harder—we have to decrease the temperature
in order to find the onset of condensation, while choosing λ < 0 leads to an increase of
the critical temperature, i.e., condensation becomes easier. Note that this is qualitatively
similar to the results we have obtained in the case of a charged black hole background.

Interestingly, we find that while for a positive and vanishing value of λ, the sys-
tem shows a typical second order phase transition with condensate values increasing
when lowering the temperature, this is different for negative λ. Here we find that the
condensate increases for increasing temperature. This is, of course, not a typical conductor–
superconductor phase transition, but this type of behaviour appears in so called Mott
transitions in QCD (see e.g., [24]).

We have also studied the charge densities and chemical potentials in the non-interacting,
unbalanced case. They are shown in Figure 3.

All our results are in perfect agreement with those given in [22,23]. We will now
discuss the new case where the two phases interact via the U(1) gauge fields.

4.2. Influence of the New Interaction

We now study the case ε 6= 0. Here, we first discuss the balanced case and then the
unbalanced case. Finally, we comment on the possibility of the appearance of a LOFF phase
in our model.
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Figure 3. We show the values of the chemical potentials µi and charge densities ρi, i = 1, 2, re-
spectively, as functions of the condensate value ϕ+ (left) and ξ+ (right) for the unbalanced, non-
interacting case.

4.2.1. Balanced Superconductors

We have first studied the case, where the interaction between the two phases is solely
mediated via the U(1) gauge fields. Our results for different values of ε and λ = 0 are
shown in Figure 4.

Figure 4. The condensate ϕ1/2
+ /Tc for a balanced superconductor as a function of T/Tc for λ = 0 and

several values of ε.

The black curve represents the non-interacting case, ε = 0. We find that when ε > 0
the value of the condensate decreases, while for ε < 0 it increases. Again, very similar and
in accordance with our analysis in the case of a charged black hole background, positive
(negative) ε makes condensation harder (easier).

Allowing next for both interactions in the system, we find that a competition can arise
between them. Negative values of ε with λ 6= 0 do not cause much difference—it seems
that the scalar field coupling dominates the system. However, when ε is positive it starts
to dominate the system, destroying the difference between the phases arising from the
presence of λ. This is shown in Figures 5 and 6 for ε = ±0.5 and ε = ±0.9, respectively.
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Figure 5. The condensate ϕ1/2
+ /Tc for a balanced superconductor as a function of T/Tc for several

values of λ and ε = −0.5 (left) and ε = 0.5 (right).

Figure 6. The condensate ϕ1/2
+ /Tc for a balanced superconductor as a function of T/Tc for several

values of λ and ε = −0.9 (left) and ε = 0.9 (right).

When varying ε, we also find that the qualitative dependence of the charge density
and the chemical potential vary little as compared to the ε = 0 case. Both are increasing
functions of the condensation value of ϕ+.

4.2.2. Unbalanced Superconductors

Let us now discuss the unbalanced case, which shows some interesting new features.
The most interesting question here is how the chemical potentials and charge densities
change when increasing the condensation values ϕ+ and ξ+, respectively. We can see that
ε greatly influences the charge densities and the chemical potentials of the system. When
ε takes values close to its negative lower bound, the inhomogeneous characteristic of the
system prevails (see Figure 7), but when ε takes values close to its positive upper bound
(see Figure 8), its dominance makes the unbalanced system almost approach a balanced
system so that ρ1 ' ρ2 and µ1 ' µ2.
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Figure 7. We show the chemical potentials µi and charge densities ρi, i = 1, 2, respectively, as
functions of the condensate value ϕ+ (left) and ξ+ (right) for the unbalanced case with ε = −0.9 and
λ = 0.0.

Figure 8. We show the chemical potentials µi and charge densities ρi, i = 1, 2, respectively, as
functions of the condensate value ϕ+ (left) and ξ+ (right) for the unbalanced case with ε = 0.9 and
λ = 0.0

4.2.3. Loff Phase

As discussed above, in favorable situations, such as cuprate-based superconductors,
whose superconductivity occurs in planes, the application of an external magnetic field to
the superconducting material allows the Zeeman interaction of this field with the electronic
spin to have a dominant character, so that a situation can be created in which an unbalanced
chemical potential δµ appears in the system and can be identified as the application of
the field itself (δµ = HzµB). If we allow in our model that the second gauge field aµ is
interpreted as this field applied to the system, we can associate δµ = µ2. The question
then is whether, in this situation of non-homogeneous superconductivity, the spontaneous
breaking of symmetries in the system could favor the emergence of the LOFF phase. Our
results are given in Figure 9 for λ = 0 and ε = −0.9 (left) and ε = 0.9 (right).

Figure 9. Unbalanced superconductors with ε = −0.9 (left) and ε = 0.9 (right), respectively, in the
(T/Tc, µ2) plane. The curves demonstrate that there is no sign of the formation of a LOFF phase.
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Note that µ2 in Figure 9 represents the unbalanced chemical potential. The curves
stop here due to numerical difficulties when increasing the condensation values further.
However, the qualitative form of the curves suggests that the critical temperature never
becomes zero for finite values of µ2. If it became zero, this would signal the existence of
the LOFF phase. However, as our results suggest, in the set-up described in this paper, we
have not been able to identify it.

5. Summary

The interesting thing about materials that belong to the broader class called correlated
electron materials, such as ferromagnetic unconventional superconductors, is that we can
promote the tuning between two or more phases by adjusting some parameters external
to the system, such as pressure, doping and even temperature. The corresponding phase
transitions present in these materials typically possess a quantum critical point and the
system exhibits a scale invariance, such that the main characteristics of the phase transitions
are preserved over the long range. Hence, a better understanding of the dynamics of
quantum criticality, as well as an understanding of its behavior with parameters of multiple
orders becomes necessary [6]. In this sense, holography can play a fundamental role.

In this paper, we have introduced a new type of interaction between the two order
parameters of the model. This interaction can be interpreted as a direct coupling between
the electric and spin motive forces acting on the charge carriers. We find that, in compar-
ison to the interaction mediated by a coupling in the potential of the scalar fields, this
direct coupling has a strong influence on the quantitative and qualitative behaviour of the
system. We find, e.g., when the coupling parameter associated to the new interaction is
large enough, that the value of the order parameter, as a function of the temperature, is
practically independent of the coupling constant in the scalar potential. Here, we have only
investigated a small range of parameters, and studied the system only in the probe limit,
but other parameter ranges, and the study of the system away from the probe limit, will be
discussed in a future publication.
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