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Abstract
Westudy hyperelliptic curves y2 = f (x) over local fields of odd residue characteristic.
We introduce the notion of a “cluster picture” associated to the curve, that describes the
p-adic distances between the roots of f (x), and show that this elementary combinato-
rial object encodes the curve’s Galois representation, conductor, whether the curve is
semistable, and if so, the special fibre of its minimal regular model, the discriminant
of its minimal Weierstrass equation and other invariants.
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1 Introduction

In this paper we study hyperelliptic curves y2 = f (x) over local fields of odd residue
characteristic. To a curvewe associate a “cluster picture”, defined by the combinatorics
of the root configuration of f , and show that it encodes many arithmetic invariants
of the curve and its Jacobian. We use cluster pictures to get hold of a curve’s Galois
representation and conductor, determine whether it is semistable and if so obtain the
special fibre of its minimal regular model, the discriminant of its minimal Weierstrass
model and other invariants. A similar construction to our clusters was used by Bosch
[7, Sect. 5] to determine the stable type of hyperelliptic curves.

For the purposes of applications to arithmetic over number fields, the key features
of our approach are that cluster pictures address whole classes of curves at a time, and
that the input data is only basic information about the polynomial f (x). This is used
in [20], which employs a case-by-case analysis of cluster pictures as an ingredient in
establishing the parity conjecture for semistable abelian surfaces, and in [1], which
uses clusters to construct explicit hyperelliptic curves over Q of arbitrarily high genus
whose Galois image on JacC[�] is the maximal possible.

Based on the present article, for semistable hyperelliptic curves Betts [5] has given
a description of the Tamagawa number of the Jacobian in terms of clusters, and Kun-
zweiler [25] has found a simple formula for the other local “fudge factor” |ω/ωo|
in the Birch–Swinnerton-Dyer formula for the L-value, as well as a description of a
basis of integral differentials on the minimal regular model. For hyperelliptic curves
with tame reduction, Faraggi and Nowell [21] have described the special fibre of the
minimal SNC model.

We would like to alert the reader to the companion paper [3], which summarises
the results in this paper along with the subsequent works mentioned in the paragraph
above, and illustrates them with examples. This explains why examples are virtually
non-existent in this, already too long, paper.
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1.1 Setup

Throughout the paper K will be a local field, with normalised valuation v, ring of
integers OK , uniformiser π , and finite residue field k of characteristic p �= 2. We
use the shorthand mod m to denote reduction to the residue field. We write GK =
Gal(K sep/K ) for the absolute Galois group, and IK < GK for the inertia subgroup.

We work with hyperelliptic curves1 C/K given by Weierstrass equations

C : y2 = f (x).

We write R for the set of roots of f (x) in K sep and c f for its leading coefficient, so
that

f (x) = c f

∏

r∈R
(x − r).

We denote by g the genus of the curve so that |R| = 2g + 1 or 2g + 2.
Themain invariant thatwe are interested in is the configuration of distances between

the roots of f . This is captured in the following:

Definition 1.1 A cluster is a non-empty subset s ⊂ R of the form s = D ∩ R for
some disc D = {x ∈ K̄ | v(x − z)≥d} for some z ∈ K̄ and d ∈ Q. If |s| > 1, we say
that s is a proper cluster and define its depth ds to be

ds = min
r ,r ′∈s

v(r − r ′).

The depth is the maximal d for which s is cut out by such a disc.

It turns out that the cluster data carries a huge amount of information about the
arithmetic of C/K . To fix ideas, let us begin with an example.

Example 1.2 Let C/Qp be the hyperelliptic curve of genus 3 given by

C : y2 = (x−1) · (x−(1+ p2)) · (x−(1− p2)) · (x− p) · x · (x− p3) · (x+ p3).

The set of roots is R = {1, 1+ p2, 1− p2, p, 0, p3,−p3}. There are four proper
clusters:

{1, 1+ p2, 1− p2}, {0, p3,−p3}, {p, 0, p3,−p3}, R,

of depths 2,3,1 and 0, respectively. We draw cluster pictures by drawing roots r ∈ R
as , and draw ovals around roots to represent a proper cluster:

2 2 1 0

1 hyperelliptic curves will always be assumed to have genus at least 2; we will not consider double covers
of general conics.
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Here we have ordered the roots as they appear in the equation for C . The subscript of
the top cluster R is its depth. For all other clusters it is their “relative depth”, that is
the difference between their depth and that of their parent cluster.

This simple picture, along with the fact that f (x) is monic, lets us deduce the
following. The curve C/Qp is semistable (Thm. 1.9 (1)), with conductor exponent
1 (Thm. 1.21), the model for C is a minimal Weierstrass equation (Thm. 1.24) with
discriminant of valuation v(�C ) = 36 (Thm. 1.26). The special fibre C

F̄p
of the

minimal regular model C/Znr
p has two components of genus 1 (Z and Z ′, say) and

two of genus 0, intersecting as shown on the right (Thms. 1.15(2), 1.11); in particular,
the homology of its dual graph ϒC is isomorphic to Z = 〈�〉 with length pairing

〈�, �〉 = 2.
The localGalois representation is the following: for l �= p, a Frobenius element Frob ∈
GQp and τ : IQp → Zl an l-adic tame character, there is a basis for H1

ét(C,Zl)⊗Zl Q̄l

such that σ ∈ IQp and Frob act as

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 τ(σ )
0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
and

⎛

⎜⎜⎜⎜⎜⎜⎝

α 0 0 0
0 β 0 0
0 0 α′ 0
0 0 0 β ′

ε 0
0 ε p

⎞

⎟⎟⎟⎟⎟⎟⎠

respectively, where ε ∈ {±1}, and α, β are the Frobenius eigenvalues for Z/Fp, and
α′, β ′ those for Z ′/Fp (Thm. 1.20 and Remark 10.2).

Let us stress that all of this information is encoded in the above picture (with
Galois action) together with v(c f ). Slightly finer data about f (x) also tells us that
ε = (−1

p

)
and that both Z and Z ′ are given by y2 = x3 − x (see Definition 1.13 and

Theorem 1.11).

The general philosophy of the paper is that the local arithmetic of C/K should be
visible from its cluster picture, that is from the rootsR viewed as an abstract set with
Galois action and its collection of clusters and depths (see Definition 1.27). Of course,
we also need to know something about the leading term c f , and some invariants require
finer information. Here is a result that formalises some of this. Here εs(Frob) ∈ {±1} is
an explicit value associated to some clusters s, that generalises ε in the above example
(see Definition 1.13).

Theorem 1.3 (see Theorem 18.4, Lemma 18.2, Theorem 16.2) For a hyperelliptic
curve C/K, its cluster picture with IK -action and the value of v(c f ) determine
H1
ét(C,Zl) ⊗Zl Q̄l as an IK -module, and, in particular, the conductor exponent of

C and whether the curve is semistable. If C/K is semistable, then together with the
action of Frobenius on proper clusters and the values of εs(Frob) for clusters s that
contain an even number of roots, these also determine the dual graph of the special
fibre of its minimal regular model (with genera of components and Frobenius action),
whether the curve is deficient, and the Tamagawa number and root number of the Jaco-
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bian. If, moreover, |k| > 2g + 1, these also determine the valuation of the minimal
discriminant of the curve.

We now explain how to explicitly obtain this data and more from the cluster infor-
mation:

In Sect. 1.2 — the reduction type of C and its Jacobian;
In Sect. 1.3 — for semistable C , the special fibre of the minimal regular model, the

homology of its dual graph, and whether the curve is deficient;
In Sect. 1.4 — the Galois representation and conductor exponent of C ;
In Sect. 1.5— for semistableC , the discriminant of aminimalWeierstrass equation;
In Sect. 1.6 — the relation of cluster pictures to isomorphism classes of curves;
In Sect. 1.7 — how much the coefficients of f (x) can be varied without affecting

arithmetic invariants;
In Sect. 1.8 — a classification of semistable curves of genus 2 and their invariants.
Wefirst need some terminology toworkwith clusters; see alsoTable 6 inAppendixE

for a summary.

Definition 1.4 If s′ � s is a maximal subcluster, we write s′ < s and refer to s′ as a
child of s, and to s as the parent of s′. We write s = P(s′).

For two clusters (or roots) s1, s2 write s1 ∧ s2 for the smallest cluster containing
them.

Definition 1.5 A cluster s is a twin if |s| = 2, and it is odd/even if its size is odd/even.
A proper cluster is übereven if it has only even children. A cluster s is principal except
when:

• |s| ≤ 2, or
• s has a child of size 2g, or
• s = R is even and has exactly two children.

Definition 1.6 For a proper cluster s �= R we define its relative depth to be

δs = ds − dP(s).

1.2 Reduction of C and its Jacobian

One of the main outcomes of the cluster approach is that it easily detects the reduction
behaviour of the curve C and its Jacobian JacC . It requires one extra invariant, which
feels the leading coefficient of f (x):

Definition 1.7 For a cluster s set

νs = v(c f )+
∑

r∈R
dr∧s.

Definition 1.8 We say that C/K satisfies the semistability criterion if the following
conditions hold:

(1) The extension K (R)/K has ramification degree at most 2.
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(2) Every proper cluster is IK -invariant.
(3) Every principal cluster s has ds ∈ Z and νs ∈ 2Z.

Theorem 1.9 (=Theorem 10.3) Let C/K be a hyperelliptic curve of genus g. Then

(1) C is semistable (⇔ JacC semistable)
⇔ C/K satisfies the semistability criterion.

(2) C has good reduction
⇔ K (R)/K is unramified, there are no proper clusters of size < 2g + 1 and
νs ∈ 2Z for the unique principal cluster.

(3) C has potentially good reduction
⇔ there are no proper clusters of size < 2g + 1.

(4) C is tame2 (⇔ JacC is tame)
⇔ K (R)/K is tame.

(5) JacC has good reduction
⇔ K (R)/K is unramified, all clusters s �= R are odd, and principal clusters
have νs ∈ 2Z.

(6) JacC has potentially good reduction
⇔ all clusters s �= R are odd.

(7) The potential toric rank of JacC equals the number of even non-übereven clusters
excluding R, less 1 ifR is übereven.

(8) JacC has potentially totally toric reduction
⇔ every cluster has at most two odd children.

1.3 Special fibre of theminimal regular model

For semistable curves we write down explicit charts for a regular model (Proposi-
tion 5.5). This then gives us an explicit construction for the special fibre of the minimal
regular model in terms of clusters (see Theorem 8.6). We give a simplified statement
here.

Definition 1.10 A centre zs of a proper cluster s is any element zs ∈ K sep such that
v(zs − r) ≥ ds for all r ∈ s; equivalently the cluster s can be written as D ∩ R for
the disc D = zs + πdsOK sep . If s = {r} is a singleton, its centre is zs = r .

Theorem 1.11 Suppose C/K is semistable. The special fibre of the minimal regular
model of C over OK nr consists of components �s for every principal cluster s, linked
by chains of P

1s. The normalisation of �s is given as follows. Fix a choice of centre
zs for each cluster. Then

�̃s : y2 = cs
∏

odd o<s

(x − reds(o)),

where cs = c f

π
v(c f )

∏
r /∈s

zs−r
πds∧r mod m and reds(o) = zo−zs

πds mod m.

2 By ‘tame’ we mean semistable over some tamely ramified extension of K ; this is automatically the case
if p > 2g + 1.
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IfR is principal then the chains of P
1s are given explicitly as follows. If s′ < s are

principal, then there is one chain with δs′
2 −1 P

1s (resp. two chains with δs′ −1 P
1s)

between �s and �s′ if s′ is odd (resp. even); if a chain has length 0 the components
�s and �s′ intersect. Every twin t < s with δt >

1
2 gives a chain of 2δt−1 P

1s from
�s to itself.

In particular we obtain a description of the dual graph of the special fibre and its
homology in terms of clusters. The latter has a particularly simple description: roughly
speaking, the set of even clusters corresponds to a basis of the homology group. Recall
that this homology group is related to theGalois representation, the Tamagawa number
of the Jacobian (Lemma 2.22) and the character group of the toric part of the Raynaud
parametrisation of the Jacobian (Lemma 2.21). In order to keep track of the Galois
action on the dual graph (an analogue of split/non-split multiplicative reduction for
elliptic curves) we need an extra invariant εs, which generalises ε in Example 1.2.

Definition 1.12 A cotwin is a non-übereven cluster that has a child of size 2g.
For a cluster s that is not a cotwin we write s∗ for the smallest cluster s∗ ⊇ swhose

parent is not übereven (and s∗ = R if no such cluster exists). If s is a cotwin, we write
s∗ for its child of size 2g.

Definition 1.13 For even clusters s fix a choice of θs = √c f
∏

r /∈s(zs − r), where zs
is some (any) centre for s. If s is either even or a cotwin, define εs : GK → {±1} by

εs(σ ) ≡ σ(θs∗)

θ(σs)∗
mod m.

For all other clusters s, set εs(σ ) = 0.

Remark 1.14 (see Remark 8.4) Note that εs does not depend on the choice of centre
zs∗ . When s is even or a cotwin, εs restricts to a character on the stabiliser of s that is
also independent of the choice of the sign of θs∗ . This character is unramified if and
only if |IK /Is∗ |(v(c f )+∑r /∈s∗ dr∧s∗) is even, where Is < IK denotes the stabiliser of
s. When s is not a cotwin, this is equivalent to ord2 |IK /Is|(v(c f )+∑r /∈s dr∧s) ≥ 1.

Theorem 1.15 (see Theorem 9.3, Corollary 8.7) Suppose C/K is semistable. Let ϒC

denote the dual graph of the special fibre of the minimal regular model of C over
OK nr , with its natural action of Gal(k̄/k). Let A be the set of even non-übereven
clusters excluding R. Then

(1) rkZ(H1(ϒC ,Z)) =
{
#A − 1 ifR is übereven,
#A otherwise.

(2) The number of components in the special fibre is

mC =
∑

s odd,
|s|�=1, 2g+1

δs

2
+
∑

s �=R,
even

2δs + 1− rk H1(ϒC ,Z).

(3) H1(ϒC ,Z) =
{∑

s∈A as�s
∣∣∣ as ∈ Z,

∑
s∈B as = 0

}
, where B is the subset of

clusters s ∈ A such that s∗ = R.
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(4) The length pairing is given by

〈�s1 , �s2〉 =
⎧
⎨

⎩

0 if s∗1 �= s∗2,
2(d(s1∧s2) − dP(s∗1)) if s∗1 = s∗2 �= R,
2(d(s1∧s2) − dR) if s∗1 = s∗2 = R.

(5) σ ∈ Gal(k̄/k) acts on H1(ϒC ,Z) by σ(�s) = εs(σ )�σ(s).
Our description of the special fibre of the minimal regular model of C also allows

us to easily determine whether C is deficient, i.e. has no K -rational divisor of degree
g − 1. Deficiency is used to determine whether the Tate-Shafarevich group of the
Jacobian of a curve over a number field has square order (see Sect. 8 of [30]).

Theorem 1.16 (=Theorem 12.4) Suppose C/K is semistable. Then C is deficient if
and only if it has even genus and either

(1) R = s1
∐

s2 with s1, s2 odd, GK -conjugate and δsi odd, or
(2) R is übereven with εR(Frob) = −1 and for all non-übereven s such that s∗ = R,

either ds /∈ Z or the Frob-orbit of s has even size, or
(3) R is a cotwin, its principal child r is übereven with εr(Frob)=−1, and for all s

such that s∗=r, either ds /∈ Z or the Frob-orbit of s has even size.

In fact, even for curves that are not semistable, we construct a regular model over
a field F/K where the curve becomes semistable. The special fibre of the minimal
regular model ofC overOFnr comes with a natural action ofGK , not justGFnr (= IF ),
see Sect. 2.4. We describe it explicitly in Theorems 8.6 and 8.8 as well.

1.4 Galois representation

Knowing the explicit Galois action on the special fibre lets us determine the l-adic
Galois representation of arbitrary hyperelliptic curves.We use the following shorthand
notation:

Notation 1.17 For a curve X/k and a prime l �= p write

H1
ét(X) = H1

ét(Xk̄,Ql),

and similarly for curves over K .

Notation 1.18 For a cluster s we write Gs = Stab(s) for its stabiliser in GK and
Is < Gs for the corresponding inertia subgroup.

As mentioned above, if C acquires semistable reduction over F , the full Galois
group GK acts on the special fibre of the minimal regular model of C over OFnr . In
particular, the étale cohomology groups H1

ét(�s) of the components have an induced
action of the stabiliser Gs, which is closely linked to the étale cohomology of C and
which we are able to control explicitly. We obtain the following description.
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Notation 1.19 For a cluster s we define s̃ to be the set of odd children of s and write

λ̃s = 1

2
(v(c f )+ |s̃|ds +

∑

r /∈s
ds∧r ).

Theorem 1.20 (= Theorem 10.1) Let C/K be a hyperelliptic curve. Let H1
ét(C) =

H1
ét(C)ab ⊕ H1

ét(C)t ⊗ Sp2 be the decomposition into ‘toric’ and ‘abelian’ parts.
Then

H1
ét(C)t =

⊕

s

IndGK
Gs
εs � εR,

the sum taken over representatives of GK -orbits of even non-übereven clusters.Writing
�s for the components of the special fibre in Theorem 1.11 over a Galois extension
where C acquires semistable reduction, we have

H1
ét(C)ab =

⊕

s

IndGK
Gs

H1
ét(�̃s),

the sum taken over representatives of GK -orbits of principal non-übereven clusters.
For every such cluster s, there is an isomorphism of Is-modules

H1
ét(�̃s)

∼= γ̃s ⊗ (Ql [s̃] � 1) � εs,

where γ̃s : Is → Q̄
×
l is any character 3 whose order is the prime-to-p part of the

denominator of |IK /Is| λ̃s.
When C/K is semistable one can in fact also recover the Frobenius action on

H1
ét(�̃s), as we explain in Remark 10.2. Briefly, one can pick the centres zs in The-

orem 1.11 to lie in Ks, the field cut out by Gs, which makes �̃s naturally a curve
over the residue field ks of Ks. The action of Gs on H1

ét(�̃s) in Theorem 1.20 is then
simply via the quotientGs/Is = Gal(k̄/ks) and the usual action of Gal(k̄/ks) on étale
cohomology. One may recover the Frobenius eigenvalues for this action from point
counts on �̃s over extensions of ks. In a forthcoming paper [17] we will explain how
to reconstruct H1

ét(C) as a full GK -representation from point counts even when C/K
is not semistable.

From the explicit description of the Galois representation we deduce the following
formula for the conductor.

Theorem 1.21 (Theorem 11.3, Corollary 9.4) Let C/K be a hyperelliptic curve.
Decompose the conductor exponent of JacC into its tame and wild parts, nC =
nC,tame + nC,wild.

3 Although γ̃s is Q̄
×
l -valued, the tensored representation is realisable over Ql , and we view it as a Ql -

representation in this formula.
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(i) The wild part is given by

nC,wild =
∑

r∈S
v(�K (r)/K )− [K (r) : K ] + fK (r)/K ,

where S is any set of representatives of GK -orbits ofR,�K (r)/K is the discrim-
inant of K (r) over K , and fK (r)/K is the residue degree.

(ii) The tame part is given by nC,tame = 2g − dim H1
ét(C)

IK with

dim H1
ét(C)

IK = #{IK -orbits on U } − #{IK -orbits on V } −
{
1 if |R| and v(c f ) are even,
0 otherwise,

U = {s �= R odd cluster
∣∣ ξP(s)(λ̃P(s)) ≤ ξP(s)(dP(s))

}
,

V = {s proper non-übereven cluster
∣∣ ξs(λ̃s) = 0

};

here ξs(a) = ord2(b) where b is the denominator of |IK /Is|a, with ξs(0) = 0.
(iii) If C/K is semistable then

nC = #A −
{

1 ifR is übereven,
0 otherwise,

where A is the set of even non-übereven clusters s �= R.

1.5 Weierstrass equations

By their very nature, clusters are designed to work with Weierstrass equations. We
establish criteria in terms of clusters for an equation to be integral (Theorem 13.3) and
to be a minimal Weierstrass equation, and give a formula for its discriminant.

Definition 1.22 We say that the Weierstrass equation y2 = f (x) for C is integral if
f (x) ∈ OK [x]. Its discriminant is�C = 16gc4g+2

f disc
( 1
c f

f (x)
)
. We say that such an

equation is minimal if v(�C ) is minimal amongst all integral Weierstrass equations
for C .

Remark 1.23 One can consider more general Weierstrass equations for C of the form
y2 + Q(x)y = P(x) for Q, P polynomials of degree at most g + 1 and 2g + 2
respectively, and define integral and minimal equations accordingly. Since we work
in odd residue characteristic, we can always find a minimal equation with Q(x) = 0.

Our notion of integral Weierstrass equation differs slightly from that of Liu used
in [28, Definition 2]. However the resulting notion of minimal equation and minimal
discriminant (Definition 3 of op. cit.) is easily seen to coincide. Several additional
notions of minimal discriminant appear in the literature for both hyperelliptic curves
and more general curves. See for example [24,36] and [33] for a discussion of these,
and [27] for the relationship between them for hyperelliptic curves of genus 2.

Theorem 1.24 (see Theorem 17.2) Suppose C : y2 = f (x) is a semistable hyperel-
liptic curve over K with f (x) ∈ OK [x], and that |k| > 2g + 1. Then C defines a
minimal Weierstrass equation if and only if one of the following conditions hold:
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(1) there are two clusters of size g + 1 that are swapped by Frobenius, dR = 0 and
v(c f ) ∈ {0, 1},

(2) there is no cluster of size > g+1 with depth > 0, but there is some GK -stable
cluster s of size |s| ≥ g + 1 with ds ≥ 0 and v(c f ) = −∑r /∈s dr∧s.

Note that even if C is not semistable or if |k| ≤ 2g+1 but y2= f (x) satisfies (2) in the
above theorem, then it is automatically a minimal Weierstrass equation, as it becomes
minimal after a finite field extension. In particular (taking s=R and dR= 0 in (2)),
we immediately obtain the following general criterion for the equation to be minimal:

Corollary 1.25 Let C : y2= f (x) be a hyperelliptic curve over K with f (x) ∈ OK [x].
If f (x) mod m has at least two distinct roots in k̄, but no root of multiplicity >g+1,
and the leading coefficient of f (x) is a unit, then this is aminimalWeierstrass equation.

We also obtain the following result on the discriminant.

Theorem 1.26 (=Theorem 16.2) Let C/K be a hyperelliptic curve. The valuation of
its discriminant �C is given by

v(�C ) = v(c f )(4g + 2)+
∑

s proper

ds
(
|s|2 − �

s′<s
|s′|2
)
.

If C/K is semistable and |k| > 2g+1, then the valuation of the discriminant�min
C of

a minimal Weierstrass model of C is determined by the formula

v(�C )− v(�min
C )

4g + 2
= v(c f )− E + dR(|R| − g − 1)+

∑

g+1<|s|<|R|
δs(|s| − g − 1),

where E = 0 unless there are two clusters of size g+1 that are permuted by Frobenius
and v(c f ) is odd, in which case E = 1.

1.6 Cluster pictures

As discussed in the beginning, we extract most of our arithmetic data purely from the
‘cluster picture’ of the roots of f (x). Effectively this is how we propose to think about
hyperelliptic curves over local fields. To formalise this slightly, we consider an abstract
cluster picture purely combinatorially, without reference to roots of a polynomial.

Definition 1.27 Let X be a finite set and � a collection of non-empty subsets of X ;
elements of � are called clusters. Attach depth ds ∈ Q to every cluster s of size > 1.
Then � (or (�, X , d)) is a cluster picture if

(1) Every singleton (‘root’) is a cluster, and X is a cluster.
(2) Two clusters are either disjoint or contained in one another.
(3) dt > ds if t � s.
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Two cluster pictures (�, X , d) and (�′, X ′, d ′) are isomorphic if there is a bijection
φ : X → X ′ which induces a bijection from � to �′ and ds = d ′

φ(s).

For a polynomial f (x) ∈ K [x] or a hyperelliptic curve C : y2 = f (x), the cluster
picture� f or�C is the collection of all clusters of the roots of f , as in Definition 1.1.

As explained inTheorem1.3, cluster pictures carry a lot of arithmetic data.Different
models for the same curve can have different cluster pictures, however, even this can be
largely seen from the combinatorics of the roots. There is a purely combinatorial notion
of “equivalence” of cluster pictures (Definition 14.7) that keeps track of isomorphisms
of curves:

Theorem 1.28 (Theorem 14.4, Corollary 14.7) If C and C ′ are isomorphic hyperellip-
tic curves over K , then their cluster pictures are equivalent. Conversely, if an abstract
cluster picture � is equivalent to �C for some hyperelliptic curve C, then there is a
hyperelliptic curve C ′/K̄ that is K̄ -isomorphic to C and whose cluster picture is �.

It is worth mentioning that every equivalence class of cluster pictures has a canonical
representative, a ‘balanced cluster picture’ (see Lemma 15.1). For semistable hyper-
elliptic curves Theorem 15.2 and Corollary 15.3 explain how to find an isomorphic
curve with such a cluster picture.

1.7 Perturbing the curve

The cluster picture is a fairly coarse invariant of the polynomial f (x). In particular
small perturbations of the coefficients of f (x) will not change its associated cluster
picture and hence many of the invariants of the corresponding curve. Here is a precise
statement (see Theorem 19.1 for a more general result).

Theorem 1.29 (=Corollary 19.3) Suppose C1 : y2 = c1g1(x) and C2 : y2 = c2g2(x)
are two hyperelliptic curves with c1, c2 ∈ K× and g1(x), g2(x) ∈ OK [x] monic
polynomials. If c1c2 ∈ K×2 and g1(x) ≡ g2(x) mod πd+1 where d is the largest depth
among the depths of all proper clusters of C1, then

• H1
ét(C1) ∼= H1

ét(C2) as GK -modules for every l �= p, and C1 and C2 have the
same conductor exponent and the same root number.

• If C1 is semistable then so is C2. In this case, the special fibres of their minimal
regular models over OKnr are isomorphic as curves with an action of Frobenius,
their Jacobians have the same Tamagawa number, C2 is deficient if and only if C1
is and, if |k| > deg g1(x), the valuations of their minimal discriminants are equal.

1.8 Classification of semistable curves

As in Theorem 1.3, cluster pictures together with the signs of εs(Frob) determine a
range of arithmetic information for semistable curves (see also Theorem 18.4). In view
of the semistability criterion (Theorem 1.9(1)), it is easy to list and classify all possible
cluster pictures that correspond to semistable hyperelliptic curves.We present here the
classification one obtains for curves of genus 2, together with their various arithmetic
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invariants; this is discussed more fully in Sect. 18. We propose a notation for cluster
pictures that carries this extra data in Notation 18.5.

Notation 1.30 For a cluster picture we write the relative depth on all proper clusters
(except for R which is decorated with its depth) at the bottom right corner of the
cluster. For every even cluster s such that s=s∗ we write a sign+ or− on its top right
corner to indicate εs(Frob). For every cluster, we link its children that are in the same
Frobenius orbit by lines.

For the dual graph of the special fibre ϒC , the numbers inside the vertices indicate
their genus (no number meaning genus 0), an edge of length n indicates a chain of
n edges between n−1 genus 0 vertices, and the black arrows represent the action of
Frobenius on the graph.

Theorem 1.31 (see Theorem 18.8) Suppose the residue field of K has size |k|>5.
Every semistable genus 2 curve C/K admits a model y2= f (x), with f (x)∈OK [x]

and one of the listed cluster pictures in Table 1. Conversely, every genus 2 curve
y2 = f (x) with one of the cluster pictures in Table 1 is semistable and, if
f (x) ∈ OK [x], then this is a minimal Weierstrass model.
Moreover, Table 1 gives the invariants of such curves: mC is the number of com-

ponents in the special fibre of the minimal regular model of C, n is the conductor
exponent,w is the local root number, c is the Tamagawa number of Jac(C), Def indi-
cates whether the curve is deficient (−) or not (+). The column H1(ϒC ,Z) lists the
isomorphism class of the lattice together with automorphism (induced by Frobenius)
and pairing (induced by the length pairing on ϒC), in the notation of [4] Thm 1.2.2.

How to determine the reduction type (first column of Table 1) of a semistable genus
2 curve direct from its cluster picture is explained in Theorem 18.7 and Table 3 in
Sect. 18.

1.9 Layout

In Sect. 2 we review some facts about models of general curves over local fields and
étale cohomology.

In Sect. 3we show that cluster configurations (or, rather, certain collections of discs)
give rise to a regular model of P

1
K nr and describe its properties (Proposition 3.13). In

Sect. 4 and Sect. 5, we study double covers of thosemodels, and deduce explicit regular
models of hyperelliptic curves that satisfy the semistability criterion (Definition 1.8).
This approach is similar to that of Kausz [24], and has also been exploited by Bouw-
Wewers [10] and Srinivasan [36], though each of these works in a slightly different
generality to us. In particular, we construct the models under the assumptions of
the semistability criterion and so in particular do not assume that all Weierstrass
points are rational. We find the minimal regular model (Sect. 5.4), describe the dual
graph of its special fibre (Theorem 5.18), give explicit equations for its components
(Theorem 5.20) and describe the reduction map from the generic to the special fibre
(Prop. 5.23); we deduce the stable model in Sect. 5.8.

In Sect. 6 we turn to non-semistable curves and study the natural Galois action on
themodel thatwe have over an extensionwhere the curve becomes semistable.We then
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Table 1 Local invariants of semistable genus 2 curves

Notation: r̄ = 0 if 2|r and r̄ = 1 if 2 � r ; ñ = 2 if 2|n and ñ = 1 if 2 � n;
d = gcd(m, n, k); t = nm + nk + mk

deduce the semistability criterion (Theorem 7.1), and in Sect. 8 describe the Galois
action on the special fibre in terms of clusters. In Sect. 9 we extract the homology of
the dual graph of the special fibre (Theorem 9.3), and, consequently, the toric part of
the étale cohomology (Corollary 9.6). The abelian part is addressed in Sect. 10, and
as a consequence, we get Theorems 1.20 (=10.1) and 1.9 (=10.3). In Sect. 11 we then
find the formula for the conductor, and classify deficient curves in Sect. 12.
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In Sect. 16 and Sect. 17 we study the discriminant and the minimal Weierstrass
equation of a hyperelliptic curve, proving Theorems 1.24 (=17.2) and 16.2 (=16.2).
This is primarily a combinatorial cluster yoga, relying on the semistability criterion
to convert semistability into cluster language. In Sect. 18 we propose a notion of a
‘reduction type’ of a semistable curve, and give classfication in genus 2. In Sect. 19
we study the variation of the coefficients of a curve that does not affect its primary
arithmetic invariants, and prove Theorem 19.1 and Corollary 1.29 (=19.3).

In Appendix Awe review affine automorphisms of (possibly singular) hyperelliptic
equations. Appendices B and C prove some technical results concerning centres of
clusters and equivalent forms of the semistability criterion. Finally, Appendix D links
the results of this paper to its combinatorial predecessor [18].

For convenience of the reader, Appendix E lists the notation and terminology used
in different parts of the paper, together with their definitions or references to where
they are given.

2 Curves and Jacobians over local fields

In this section we review some facts about models of curves over local fields and étale
cohomology. We refer the reader to [12, Sect. 2], [10,23,35], and especially [19] for
details. All of this is standard, except we want the residue field to be non-algebraically
closed, and so have to keep track of the Galois action throughout the section.

Let K be a local4 field, with uniformiser π and residue field k. Suppose C/K is a
non-singular projective curve, of genus g ≥ 2.

A model of C/K is a flat proper scheme C/OK together with a K -isomorphism
of its generic fibre with C . It is a regular model if C is regular, and such a model can
always be obtained from a given model by repeated blowups. Among regular models,
there is a unique one dominated by all the others, the minimal regular model

Cmin −→ SpecOK .

A model is semistable if its special fibre Ck is geometrically reduced and has only
ordinary double points as singularities, and when such a model exists we say that
C/K is semistable or has semistable reduction. Such a model always exists over some
finite extension F/K [13]. When one exists over K , the minimal regular model is
semistable as well, and blowing down certain components of the special fibre yields
a stable model

Cst −→ SpecOK ,

characterised among semistable models by the fact that its special fibre has a finite
automorphism group (i.e. it is a stable curve). It is again unique, though it is not
necessarily regular, and it commutes with base change, as opposed to the regular
model.

4 In fact, here and in Sect. 2.2, K could be any complete discretely valued field with perfect residue field.
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Qp Fp Qp Fp Qp(3√p) Fp

C/Zp : y2 = x3 + p2 Cmin/Zp Css/Zp[ 3
√
p]

original model minimal regular model semistable model

Fig. 1 Models of y2 = x3 + p2 over Qp and Qp( 3
√
p)

Example 2.1 Take K = Qp (p > 3), and

C/K : y2 = x3 + p2,

an elliptic curve with additive reduction. The defining equation gives a model C/Zp

that is neither regular (the ideal (0, 0, p) gives a singular point) nor semistable (the
special fibre has a cusp). Its minimal regular model Cmin/Zp has three P

1s meeting
at a point as a special fibre (Kodaira type IV). The curve C becomes semistable over
Qp( 3

√
p), since

y2 = x3 + π6 ∼= y2 = x3 + 1 (π = 3
√
p), (2.2)

and the latter has good reduction: the special fibre is an elliptic curve over y2 = x3+1
over Fp.

We begin by reviewing special fibres of semistable models.

2.1 Semistable curves over the residue field

We follow [23, pp. 469–474] closely, except our description of X(T ) in (2.5) is slightly
tweaked.

Let Y/k be a semistable curve, that is Y is complete, connected, not necessarily
irreducible, and the only singularities of Yk̄ = Y ×k k̄ are ordinary double points.
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Write

n = normalisation map Ỹ → Y ,
I = set of singular (ordinary double) points of Yk̄,
J = set of irreducible components of Yk̄(=connected comps. of Ỹk̄),
K = n−1(I); this comes with two canonical maps

φ : K → I, P �→ n(P),
ψ : K → J , P �→ component of Ỹk̄ on which P lies,

ϒ = dual graph of Yk̄ .

2.1.1 Dual graph

By a metric graph we mean a topological space G homeomorphic to a finite (combi-
natorial) graph, equipped with a set V (G) of vertices (containing (at least) all points
x ∈ G of degree �= 2), a set E(G) of edges, and a length function l : E(G)→ R>0.
Graph isomorphisms are homotopy classes of homeomorphisms that preserve vertices,
edges and lengths. We allow loops and multiple edges and note that automorphisms
may permute multiple edges and reverse the direction of loops. Note that automor-
phisms act naturally on the first singular homology group H1(G,Z).

The dual graphϒ is the metric graph with vertex set J and edge set I. The setK is
the set of edge endpoints, the maps φ and ψ specify adjacency, and each edge is given
length 1. It comes with a natural ‘genus’ marking g : V (ϒ)→ Z≥0 which associates
to each vertex the (geometric) genus of the component to which it corresponds. Note
that a graph automorphism of ϒ is precisely the data of bijections K → K, I → I
and J → J that commute with φ and ψ .

2.1.2 Character group

The normalisation map n is an isomorphism outside I, and yields an exact sequence
of sheaves on Y ,

1 −→ O×
Y −→ n∗O×

Ỹ
−→ I −→ 0,

with I concentrated in I. Consider the long exact sequence on cohomology,

0 → H0(Y , O×
Y )→ H0(Ỹ , O×

Ỹ
)→ H0(Y , I)→ H1(Y , O×

Y )→ H1(Ỹ , O×
Ỹ
)→ 0.

The global sections of I are in bijection with invertible functions on K modulo those
pulled back from I. In other words,

H0(Y , I) = coker((k̄×)I φ∗−→ (k̄×)K),
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where φ∗ takes a function I → k̄× to K → k̄× by composing it with φ. With ψ∗
defined in the same way, the exact sequence above becomes

0−→ k̄×−→(k̄×)J ψ∗
−→ (k̄×)K

φ∗((k̄×)I)
−→Pic Y (k̄)−→Pic Ỹ (k̄)−→0. (2.3)

In fact, there is an exact sequence of algebraic groups

0 −→ T −→ Pic0(Y ) −→ Pic0(Ỹ ) −→ 0, (2.4)

with T the largest torus in Pic0(Y ). Then (2.3) gives a canonical identification of its
character group X(T ) = Hom(Tk̄,Gm,k̄) as

X(T ) = ker(ZK (φ,ψ)−→ Z
I × Z

J ). (2.5)

On the other hand, write the dual graph ϒ as the union ϒ = U ∪ V , where U is the
union of open edges, and V is the union of small open neighbourhoods of the vertices.
Then the Mayer-Vietoris sequence reads

0 −→ H1(ϒ,Z) −→ Z
K (φ,ψ)−→ Z

I × Z
J −→ Z −→ 0,

since H0(U ) = Z
I , H0(V ) = Z

J , H0(U ∩ V ) = Z
K and all their higher homol-

ogy groups vanish. Therefore, the character group of T and its Z-linear dual are,
canonically,

X(T ) = H1(ϒ,Z), X(T )∗ = H1(ϒ,Z). (2.6)

On the level of Tate modules Tl , l �= char k, the sequence (2.4) becomes

0 −→ X(T )∗ ⊗Z Zl −→ Tl Pic
0 Y −→ Tl Pic

0(Ỹ ) −→ 0. (2.7)

There is a length pairing on H1(ϒ,Z): let 〈e, e〉 = 1 and 〈e, e′〉 = 0 for edges e �= e′
of ϒ , and extend to singular chains by linearity. This descends to a pairing on H1,

〈, 〉 : H1(ϒ,Z)× H1(ϒ,Z) −→ Z. (2.8)

Finally, it is clear that I, J , K, X(T ), X(T )∗, H1(ϒ,Z), Tl are all Gk-modules,
and (2.6), (2.7), (2.8) are compatible with Gk-action, as everything is canonical.

2.2 Semistable Jacobians

Now we go back to C/K , and suppose it has semistable reduction. Then the Jacobian
A = JacC is a semistable abelian variety over K . Let
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C/OK = semistable model of C over OK base changed to OK nr , with special fibre
C̄/k̄.

N /OK = Néron model of A/K nr base changed to OK nr , with special fibre N̄/k̄; the
identity component N̄ 0 is Pic0 C̄ .

�(k̄) = (finite) group of components N̄/N̄ 0.
T /k̄ = toric part of Pic0 C̄ , as in (2.4).

By the work of Raynaud ([23,31] Sect. 9), there is a smooth commutative group
scheme A/OK nr , unique up to a unique isomorphism, characterised by the following
properties: it is an extension

0 −→ T −→ A −→ B −→ 0,

with T /OK nr a torus and B/OK nr an abelian scheme, and A ⊗ (OK nr/mi
K nr ) is the

identity component of N ⊗ (OK nr/mi
K nr ). Noting that B(OK nr ) = B(K nr) as B is

proper, from the commutative diagram

0 T (OK nr ) A(OK nr ) B(OK nr ) 0

0 T (K nr) A(K nr) B(K nr) 0

we have

A(K nr)

A(OK nr )
∼= T (K nr)

T (OK nr )
= Hom(X(T ), (K nr)×)

Hom(X(T ),O×
K nr )

= Hom(X(T ),Z) = X(T )∗. (2.9)

By the rigidity of tori, we have X(T ) = X(T ) and so X(T )∗ = X(T )∗.
The dual abelian variety At/K nr has semistable reduction as well, and there is a

sequence as above with T ∗,A∗ and B∗ ∼= Bt ([23] Thm. 5.4). Raynaud constructs a
canonical map X(T ∗) ↪→ A(K nr), inducing a GK nr -isomorphism

A(K̄ ) ∼= A(K̄ )/X(T ∗).

In the case of elliptic curveswith split multiplicative reduction, this is Tate’s parametri-
sation E(K̄ ) ∼= K̄×/qZ.

Combining X(T ∗) ↪→ A(K nr) with (2.9), we get an inclusion

n : X(T ∗) ↪→ Hom(X(T ),Z) (2.10)

with finite cokernel, which is canonically isomorphic to the group of components
�(k̄). We may view n as a non-degenerate bilinear pairing, the monodromy pairing,

X(T ∗)× X(T ) −→ Z. (2.11)
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If K ′/K is a finite extension, then X(T ) and X(T ∗) remain the same modules by
uniqueness of Raynaud parametrisation, and the map n becomes eK ′/K n, see [23,
10.3.5]. Because A is a Jacobian, it has a principal polarisation A

∼=−→ At , inducing
A ∼= A∗, T ∼= T ∗, B ∼= B∗. The pairing (2.10) becomes a symmetric bilinear pairing
([23] Sect. 10.2)

X(T )× X(T ) −→ Z, (2.12)

and it coincides with (2.8), up to identifying X(T ) = X(T ). Because�(k̄) ∼= coker n,
we get a perfect symmetric pairing

�(k̄)×�(k̄) −→ Q/Z. (2.13)

Finally, as in Sect. 2.1, Gk acts on everything, and (2.11), (2.12), (2.13) are Gk-
equivariant.

2.3 Galois and inertia

As K is a local field, GK = Gal(Ksep/K ) fits into an exact sequence

1 −→ IK −→ GK −→ Gk −→ 1,

with IK the inertia group, and Gk ∼= Ẑ topologically generated by the map x �→ xq .
Any of its lifts to GK is called an (arithmetic) Frobenius element Frob. Write χl :
GK → Z

×
l = GL1(Zl),

χl : IK �→ 1, Frob �→ q

for the l-adic cyclotomic character, and Zl(n) = χ⊗n
l for the Tate twist of the trivial

module Zl .
The inertia group IK has a unique p-Sylow subgroup, the wild inertia PK , and we

have a short exact sequence

1 −→ PK −→ IK −→
∏

l �=p

Zl −→ 1.

The tame inertia IK /PK projects onto Zl via the l-adic tame character

τ : IK −→ lim←−μln = Zl(1)

σ �−→ σ(π1/ln )

π1/ln .
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2.4 General curves

Fix

C/K = arbitrary non-singular projective curve of genus ≥ 1,
A/K = Jacobian of C ,
F/K = finite Galois extension over whichC is semistable, with residue field kF ,

ring of integers OF and uniformiser π ,
Cmin/OFnr =minimal regular model ofC/Fnr, with special fibre C̄ (semistable curve),

and normalisation ˜̄C ,
N /OF = Néron model of A/Fnr, with special fibre N̄ ,

J = set of connected components of ˜̄C ,
ϒ = dual graph of C̄ , as in Sect. 2.1.

For σ ∈ GK , the model Cσmin is again a stable model of C/F , and so Cσmin
∼= Cmin,

canonically. As explained in [19] (see also [12, p. 13] and [35, p. 497]), this implies that
the Galois action GK üC(K̄ ),A(K̄ ) extends to a semilinear action on the geometric

points of the special fibres C̄ , N̄ and ˜̄C ,

s : GK → Aut C̄(k̄) (→ Aut N̄ (k̄)). (2.14)

It is computed as follows. Let C̄ns(k̄) ⊂ C̄(k̄) be the non-singular locus. Write red
for the reduction map

red : C(Fnr)
=−→ Cmin(Onr

F )
reduce−→ C̄ns(k̄). (2.15)

It is surjective by Hensel’s Lemma, so take a section red−1 : C̄ns(k̄)→ C(Fnr). Then
on C̄ns(k̄), the map s is the composition (cf. [19, Thm 1.5], except there red−1 is
chosen to land in C(F̄), which is a bit more general)

s(σ ) : C̄ns(k̄)
red−1−→ C(Fnr)

σ−→ C(Fnr)
red−→ C̄ns(k̄). (2.16)

The reduced curve C̄ has a natural structure of a k-scheme; denote by � : C̄ → C̄
the absolute Frobenius map, acting on K (C) by raising everything to the power |k|.
If σ = Frobn τ for some n ∈ Z≥0 and τ ∈ IK , then s(σ ) = �n g̃ for some k-
linear automorphism g̃ of C̄ . In particular, n = 0 for σ in the inertia group IK , and
s(IK ) = IF/K is finite, acting through honest kF -scheme automorphisms. Note that
for every σ in the Weil group of K (i.e. of the form σ = Frobn τ as above, but with
n ∈ Z), either s(σ ) or s(σ−1) is a morphism of schemes, so that (a) (2.16) determines
it uniquely (on the whole of GK , as the Weil group is dense in it), though it is only
defined on the non-singular points, and (b) the action of s extends naturally to the

action on ˜̄C(k̄),

s̃ : ˜̄C(k̄)→ ˜̄C(k̄), (2.17)

on N (k̄), and on the dual graph ϒ .
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Applying this to the l-power torsion points of A = Pic0(C), from (2.6), (2.7) and
[10, Prop. 2.6] (see also [12, p.14]) we find an isomorphism of GK -representations
Vl A ∼= (Vl A)t⊗Sp2 ⊕(Vl A)ab, with

(Vl A)t ∼= H1(ϒC ,Z)⊗Z Ql ,

(Vl A)ab ∼=
⊕

�∈J /GK

IndGK
Stab(�) Vl Pic

0(�), (2.18)

and GK acting through s on the spaces on the right. Twisting by Ql(1) gives a similar
decomposition for the étale cohomology group H1

ét(CK̄ ,Ql). See [19, Cor 1.6] for
details, noting that H1(ϒC ,Z)⊗Z Ql ∼= H1(ϒC ,Z)⊗Z Ql as a GK -module, since a
rational representation is self-dual.

Example 2.19 Consider the curve from Example 2.1 over K = Qp (p > 3),

C/K : y2 = x3 + p2.

Fix a primitive 3rd root of unity ζ ∈ K̄ and π = 3
√
p. Let K ′ = K (π), and F =

K (ζ, π), its Galois closure. Thus, Gal(F/K ) ∼= S3 if p ≡ 2 mod 3, and F = K ′
withGal(F/K ) ∼= C3 otherwise. In either case, the inertia group IF/K isC3, generated
by τ that sends π → ζπ . Let� be a Frobenius element of K ′; so� fixes π and sends
ζ → ζ p. So

G = Gal(Fnr/K ) = 〈τ,�〉 ∼= C3 � Ẑ.

Recall from 2.1 that C acquires good reduction over K ′, and thus over F as well,
and the special fibre of its minimal model is the curve C̄ : y2 = x3 + 1. Using the
isomorphism (2.2), the reduction map (2.15) becomes

red : C(Fnr) −→ C̄(F̄p)

(x, y) �−→ ( x
π2 ,

y
π3 ) mod π.

The semilinear action s of GK in (2.16) factors through G and is given by

s(τ ) : C̄(F̄p) −→ C̄(F̄p)

(x, y) �−→ (ζ x, y)
s(�) : C̄(F̄p) −→ C̄(F̄p)

(x, y) �−→ (x p, y p)

We refer the reader to [16, Sect. 6] and [15, Sect. 3-4] and [10] for additional examples,
and explicit computations of Galois representations attached to curves.

We also recall the formula for the local root number of the Jacobian in the semistable
case:

Theorem 2.20 Let C/K be a semistable curve. Then the local root number of the
Jacobian A = JacC is

wA = (−1)a,

where a is the multiplicity of the trivial representation of Gk in the homology of the
dual graph H1(ϒ,Q) of C.
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Proof This is a standard root number computation, see e.g. [14, Prop. 3.23] with τ = 1
and X(T ) = X(T ) = H1(ϒ,Z) by (2.6). ��

Lemma 2.21 Let C/K be a semistable curve. Then H1(ϒC ,Z) ∼= X(T ) as Z[Frob]-
modules with pairing.

Proof Again, X(T ) = X(T ) = H1(ϒ,Z) by (2.6); for the compatibility with the
pairing, see (2.12). ��

Lemma 2.22 Suppose C/K is semistable. Let� be the component group of the Néron
model of the Jacobian of C over K nr. Then � is isomorphic, as a Gk-module, to the
cokernel of

H1(ϒC ,Z) −→ Hom(H1(ϒC ,Z),Z), � �→ 〈�, ·〉.

Proof Apply [9, Thm. 9.6/1] over K nr. ��

Remark 2.23 The size of the Gk-invariants of � is known as the Tamagawa number
of the Jacobian of C over K .

3 Regular semistable models of P
1

In this section we show how certain finite collections of discs (see Definition 3.2) give
rise to regular semistable models of the projective line over K nr. We then describe
(Proposition 3.13) the divisor of a polynomial on this model. In the next section, given
a hyperelliptic curve C/K : y2 = f (x) satisfying the semistability criterion we use
this to associate to C a particular model of P

1
K nr on which the divisor of f (x) has nice

properties (see Proposition 4.16). We then deduce that the normalisation of this model
in the function field K nr(C) is a regular model of C/K nr (Theorem 5.2) from which
several of our main theorems follow.

The relationship between discs and models of the projective line is not new and
roughly proceeds as follow. To each disc there is a naturally associated valuation on
K̄ (x) (we recall this construction in Sect. 3.1.2). Now by [32, Proposition 3.4] (see
also [29, Sect. 5]) there is a one to one correspondence between normal models ofP

1
K nr

and finite non-empty collections of ‘inductive’ valuations on K nr(x), the map taking a
model to the set of valuations corresponding to the local rings at the generic points of
the components of its special fibre. Our model is the one yielding the same collection
of valuations as that associated to the collection of discs. To facilitate in the analysis
of the model however we construct it below using explicit charts. That these two
descriptions agree follows from Proposition 3.13. For a more general correspondence
between normal models ofP

1
K nr and collections of ‘rigid diskoids’ see [32, Proposition

4.4], [29, Sect. 5.1].
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3.1 Discs and associated valuations

3.1.1 Discs

A disc is a subset

D = Dz,d := {x ∈ K̄ | v(x − z) ≥ d}

for some z ∈ K̄ and d ∈ Q. Here d is an invariant of the disc, its depth, denoted dD .
If D has depth dD and z ∈ D then D = Dz,dD ; we call any z ∈ D a centre of D. We
say a disc is integral if it has a centre in K nr and integer depth. For an integral disc D
we denote by P(D) its ‘parent’ integral disc P(D) = DzD,dD−1 for any zD ∈ D. We
say integral discs D and D′ are adjacent if one is the parent of the other.

3.1.2 The valuation associated to a disc

Each disc D = DzD,dD defines a valuation νD on the function field K̄ (x) extending v
(see e.g. [2, Sect. 1.4.4]). Explicitly, for a polynomial f (x) ∈ K̄ [x], letting ci denote
the coefficient of xi in f (x + zD) we have

νD( f ) = mini {v(ci )+ dDi}.

WritingR ⊆ K̄ for the (multi)set of roots of f (x) and c f for its leading coefficient,
factoring f (x) as a product of linear polynomials it follows from the fact that νD is a
valuation extending v that

νD( f ) = v(c f )+
∑

r∈R
min{dD, v(zD − r)}. (3.1)

3.2 Admissible collections of discs

The following collections of discs will correspond to regular semistable models of
P
1
K nr .

Definition 3.2 Call a finite non-empty collection D of integral discs admissible if

(i) D has a maximal element Dmax with respect to inclusion,
(ii) if D1, D2 ∈ D with D1 ⊆ D2 then every integral disc D1 ⊆ D ⊆ D2 is in D

also.

To suchD we associate the finite connected rooted tree TD with vertices {vD | D∈D}
and root vDmax , where vD and vD′ are joined by an edge when D and D′ are adjacent.
We write Di (resp. D≤i ) for the subset of D consisting of discs whose associated
vertices are a distance i (resp. at most i) from the root.

Remark 3.3 We will see in Proposition 3.10 that TD is canonically the dual graph of
the model of P

1
K nr associated to D.
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3.3 Themodel of P
1
Knr associated to an admissible collection of discs

Notation 3.4 For the rest of this section we fix an admissible collection of discs D,
along with a choice of centre zD ∈ K nr for each D ∈ D.

In what follows denote byO the ring of integers of K nr and, as in the introduction,
let π denote a fixed choice of uniformiser for K . We now associate to D a model
YD/O of P

1
K nr , first introducing some objects and notation which will be useful for

the construction.

Remark 3.5 The choice of centres above is minor—in particular the model YD/O
which we associate to D in Definition 3.8 is, up to isomorphism over O, independent
of this.

3.3.1 The schemes UD,WD and YD

Definition 3.6 To each disc D ∈ D we associate schemes

UD = Spec O[xD] and WD =
{
Spec O[tD] D = Dmax,

Spec O[sD, tD]/(π − sDtD) else.

We denote by YD the glueing of UD and WD over the subsets {xD �= 0} and {tD �= 0}
via the isomorphsim xD = 1/tD .

For D = Dmax we have YD = P
1
O with variable xD . We denote its special fibre

EDmax . For D �= Dmax, YD is the result of blowing up A
1
O with variable sD at the

origin on the special fibre (see e.g. [26, Lemma 8.1.4]). Its special fibre consists
of two irreducible components intersecting transversally at the single closed point
sD = tD = 0. One component (the exceptional fibre of the blow up) is isomorphic to
P
1
k̄
with variable xD and we denote it ED . The other is isomorphic to A

1
k̄
with variable

sD . It is contained entirely in the complement of UD and we denote it FD .

Definition 3.7 Let D ∈ D. We define a ‘reduction’ map D → k̄ (which depends on
the choice of centre zD for D) by setting

redD(z) = z − zD
πdD

(mod m).

Note that this gives a bijection between closed points on the special fibre of UD and
maximal integral subdiscs D′ of D, sending D′ to the point xD = redD(zD′) for any
zD′ ∈ D. Since this does not depend on the choice of centre zD′ we henceforth write
redD(D′) in place of redD(zD′).

We denote by PD the finite set of points on the special fibre of UD corresponding
to maximal integral subdiscs of D which are in D. Similarly, letQD denote the finite
set of closed points on the special fibre of WD of the form

sD = zD′ − zD
πdD−1 (mod m)
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for D′ ∈ D a ‘sibling’ of D (i.e. such that D′ �= D is a maximal integral subdisc of
P(D)).

In what follows we will at times wish to consider the scheme WD PD, viewing
both PD and WD as subsets of YD to form the complement.

3.3.2 The modelYD

We now glue the schemes YD with certain points removed to form the model YD.
We will do this in such a way that for D �= Dmax the component FD of YD glues
onto the component EP(D) of YP(D), identifying the setQD with PP(D) less the point
xD = redP(D)(D) in the process.

Definition 3.8 (The model YD) For i ≥ 0 we construct inductively schemes YD≤i

which will be covered by

{YD (PD ∪QD) | D ∈ D≤i−1} and {YD QD | D ∈ Di }.

In this way we talk about components ED of YD≤i . We will denote by∞ the point on
YD≤i corresponding to tDmax = 0 on the generic fibre of YDmax , and denote by {∞} its
closure in the model. We then define YD to be equal to YD≤n for n minimal such that
D = D≤n .

First, set YD≤0 =YDmax . We make this a model of P
1
K nr (thought of with variable x)

via the change of variable x = πdDmax xDmax + zDmax .

Now given YD≤i we obtain YD≤i+1 by blowing up YD≤i at the finite set
⋃

D∈Di
PD

of closed points on its special fibre.
Explicitly, since blowing up is a local process,YD≤i+1 is given by glueing each of the

schemes YD QD for D ∈ Di+1 ontoY ′
D≤i

:= YD≤i

⋃
D∈Di

PD over the open subsets
given by removing ED from the special fibre of YD QD (D ∈ Di+1), and removing
{∞} ∪⋃D′ �=P(D) ED′ from Y ′

D≤i
. The glueing maps are given, for D ∈ Di+1, by

sD = xP(D) + zP(D) − zD
πdP(D)−1 .

Remark 3.9 In the function field of YD we have, for each D ∈ D,

xD = x − zD
πdD

, tD = 1/xD, and sDtD = π.

Moreover, we see from the construction thatYD is covered by the open subsetsUD PD

andWD (QD∪PD) as D ranges over all elements ofD. In particular, every closed point
of the special fibre of YD is either the point at infinity (i.e. tDmax = 0) on EDmax , the
single point of intersection between ED and EP(D) (visible as the point sD = tD = 0
on WD (QD ∪ PD)) for some D �= Dmax, or a point of the form xD = redD(D′) on
ED for D′ /∈ D a maximal proper integral subdisc of some D ∈ D, visible onUD PD .
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3.3.3 Properties of the model

Proposition 3.10 Let D be an admissible collection of discs and YD/O the associ-
ated model of P

1
K nr . Then YD is proper regular and semistable with dual graph TD

(Definition 3.2), the vertex vD corresponding to the component ED. The valuation on
K nr(x) corresponding to ED is (the restriction to K nr(x) of) νD.

Proof SinceYD is obtained by iteratively blowing upP
1
O at a finite set of closed points

on the special fibre it follows that YD is proper and regular. Since none of these points
were intersection points between components of the special fibre, YD is semistable
(as can also be seen from the explicit charts covering YD). The dual graph is equal to
TD by construction.

Finally, write μD for the valuation associated to ED . It is the valuation on K nr(x)
associated to the prime ideal (π) of O[xD], where x = πdD xD + zD . Since both νD
and μD are valuations, to show that they are equal it suffices to show they agree on all
polynomials. Now for f (x) ∈ K nr[x], it follows from the definition of νD that

π−νD( f ) f (x) = π−νD( f ) f (πdD xD + zD)

is in O[xD] but not in the ideal (π). Thus μD(π
−νD( f ) f (x)) = 0 and the result

follows. ��

3.4 The divisor of a polynomial on themodelYD

We now describe the divisor of a polynomial f (x) ∈ K nr[x] on the model YD, first
introducing some notation with which to describe the result.

Definition 3.11 Let D be an integral disc and f (x) ∈ K nr[x]. Define

κD( f ) = νD( f )− νP(D)( f ).

Note that if f (x) is a polynomial with (multi)set of rootsR then (3.1) gives

κD( f ) = |D ∩R| +
∑

r∈R
dD−1<v(r−zD)<dD

v

(
r − zD
πdD−1

)
≥ 0. (3.12)

Proposition 3.13 Let D be an admissible collection of discs, YD/O the associated
model of P

1
K nr and f (x) ∈ K nr[x] a polynomial with (multi)set of roots R ⊆ K̄ . Let

Z ∈ Div(YD) denote the divisor

Z = div( f )+ deg( f ){∞},

and let Zver (resp. Zhor) denote its vertical (resp. horizontal) parts.
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(i) We have

Zver =
∑

D∈D
νD( f )ED.

(ii) Zhor does notmeet any of the intersection points between components of the special
fibre of YD if and only if

κD( f ) = |D ∩R| for all D ∈ D with D �= Dmax. (3.14)

Suppose that (3.14) holds. Then

(iii) for each D ∈ D, Zhor meets ED precisely at the points xD = redD(D′) for D′ a
maximal integral subdisc of D with D′ /∈ D and κD′( f ) > 0, unless D = Dmax
and κD( f ) < deg( f ), in which case it additionally meets ED at the point at
infinity.

(iv) Zhor is regular if and only if

κDmax( f ) ∈ {deg( f ), deg( f )− 1}

and for all integral discs D with P(D) ∈ D and κD( f ) ≥ 2, we have D ∈ D
also.

We postpone the proof to the end of the section, beginning by defining certain
auxilliary polynomials associated to f (x).

Definition 3.15 Let f (x) ∈ K nr[x] and D ∈ D. We define

fD(xD) = π−νD( f ) f (πdD xD + zD) ∈ O[xD].

If D = Dmax we define

gD(tD) = tdeg( f )D fD(1/tD) ∈ O[tD],

whilst if D �= Dmax we define

gD(sD, tD) =
∑

i≥0

ĉi s
v(ci )+dDi−νD( f )
D t

v(ci )+(dD−1)i−νP(D)( f )
D ∈ O[sD, tD],

where ci is the coefficient of xi in f (x + zD) and ĉi = ciπ−v(ci ).

Remark 3.16 Inside K nr(YD) we have (cf. Remark 3.9)

fD(xD) = π−νD( f ) f (x), gDmax(tDmax) = tdeg( f )Dmax
π−νD( f ) f (x)

and

gD(sD, tD) = s−νD( f )D t
−νP(D)( f )
D f (x).
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In particular, upon proving Proposition 3.13(i) it follows that, for each D, fD (resp.
gD) gives a local equation for Zhor on UD PD (resp. WD (PD ∪QD)).

Lemma 3.17 Let f (x) ∈ K nr[x] have (multi)set of roots R ⊆ K̄ . Let D ∈ D with
D �= Dmax and let RD denote the intersection point between the two components of
the special fibre of WD. Then RD lies on the closed subscheme {gD(sD, tD) = 0} of
WD if and only if

κD( f ) �= |D ∩R|.

Proof Note that RD corresponds to themaximal ideal (sD, tD)ofO[sD, tD]/(π − sDtD).
To simplify notation, for each 0 ≤ i ≤ deg( f ) write λi = v(ci )+ (dD − 1)i , so that
νD( f ) = mini {λi + i}, νP(D)( f ) = mini {λi } and

g(sD, tD) =
∑

i

ĉi s
λi+i−νD( f )
D t

λi−νP(D)( f )
D

for ĉi as in Definition 3.15. Now (sD, tD) does not lie on {gD(sD, tD) = 0} if and only
if gD(sD, tD) has non-zero constant term, or equivalently if and only if

mini {λi + i} = mini {λi } + j

where j is the smallest integer such that λ j = mini {λi }. That is, if and only if κD( f ) =
j for 0 ≤ j ≤ deg( f ) as above.
Considering the Newton polygon of the polynomial f (πdD−1x+zD), the valuation

of the i th coefficient of which is λi , we see that j is equal to the sum of the lengths of
the projections onto the horizontal axis of all segments in the Newton polygon having
strictly negative slope. By standard properties of Newton polygons this is equal to the
number of roots of f (πdD−1x+ zD) having strictly positive valuation or, equivalently,
equal to the number of roots r of f (x) satisfying v(r− zD) > dD−1. From (3.12) we
see that κD( f ) is equal to the number of such roots if and only if κD( f ) = |D∩R|. ��
Lemma 3.18 Let f (x) ∈ K nr[x].
(i) Let D′ be a maximal integral subdisc of some D ∈ D. Then the closed subscheme

{ fD(xD) = 0} of UD meets the point xD = redD(D′) on the special fibre of UD

if and only if κD′( f ) > 0, and if this is the case, is regular at this point if and
only if κD′( f ) = 1.

(ii) The closed subscheme {gDmax(tDmax) = 0} of WDmax meets the point tDmax = 0
on the special fibre if and only if κDmax( f ) < deg( f ), in which case it is regular
here if and only if κDmax( f ) = deg( f )− 1.

Proof (i) Fix a centre zD′ of D′ so that the point xD = redD(D′) in question
corresponds to the maximal ideal n = (π, xD − αD′) of O[xD], where αD′ =
(zD′ − zD)/πdD . Denoting by ci the coefficient of xi in f (x + zD′) we have

vD′( f ) = mini {v(ci )+ (dD + 1)i}
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and

fD(xD) =
∑

i

c′i (xD − αD′)i

where c′i = ciπ idD−νD( f ). Now fD(xD) is in n if and only if v(c′0) > 0 and, when
it is, O[xD]/( fD(xD)) is regular at n if and only if fD(xD) /∈ n2 (see [26, Lemma
4.2.2]). This happens if and only if either v(c′0) = 1 or v(c′1) = 0 (or both).

Now v(c′0) > 0 (resp. v(c′0) = 1 or v(c′1) = 0) if and only if

mini {v(c′i )+ i} > 0 (resp. mini {v(c′i )+ i} = 1)

and since

mini {v(c′i )+ i} = mini {v(ci )+ (dD + 1)i − νD( f )} = νD′( f )− νD( f ) = κD′( f )

we are done.
(ii) This may be proved analogously to (i). ��

Proof of Proposition 3.13 (i) Follows from Proposition 3.10 which shows that νD is
the valuation on K nr(x) corresponding to ED .

(ii) Follows from Lemma 3.17 noting that by Remark 3.16, for any D �= Dmax,
gD(sD, tD) is a local equation for Zhor onWD (PD∪QD), where the intersection
point between ED and EP(D) corresponds, in the notation of the lemma, to the
point RD .

(iii) and (iv). The argument is similar to that of (ii) and follows by combining
Remark 3.16, Lemma 3.18 (ii) and the description of the closed points on the
special fibre of YD afforded by Remark 3.9. We note that the condition D ∈ D
in (iv) ensures that the point xP(D) = redP(D)(D) is removed from UP(D) when
forming the model.

��

4 An explicit model of P
1 assuming the semistability criterion

Suppose now thatC/K : y2 = f (x) is a hyperelliptic curve satisfying the semistability
criterion (Definition 1.8). In this section we associate to C an admissible collection
of discs (in the sense of Definition 3.2) which we call ‘valid discs’, and which are
closely related to the cluster picture of C . Using the results of the previous section we
then study the divisor of f (x) on the associated model of P

1
K nr , the main result being

Proposition 4.16. This shows in particular that the conditions of [36, Lemma 2.1] are
satisfied, so that the normalisation of this model of P

1
K nr in the function field K nr(C)

is a regular proper model of C/K nr. This, and its consequences, are treated in Sect. 5.
We remark that this approach to constructing regular models of hyperelliptic curves
in not new and appears in [24,36] and [10], although each of these assumes that all
roots of f (x) lie in K (or at least K nr). In particular, these constructions do not cover
all curves satisfying the semistability criterion as is needed in our situation.
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4.1 Notation

In this section we freely apply the notation and terminology associated to clusters as
set out in Table 6 in Appendix E. As in the introduction we denote byR ⊆ K̄ the set
of roots of f (x). We also frequently use the following additional definition.

Definition 4.1 If s ⊆ R is a proper cluster we call the unique smallest disc cutting it
out the defining disc of s, and denote it D(s).

Note that for any proper cluster s, the disc D(s) has depth ds and, in the notation
of Defintion 1.7 and Sect. 3.1.2, it follows from (3.1) that νD(s)( f ) = νs.

We also note here that by part (1) of the semistability criterion, all roots of f (x)
are defined over the unique quadratic extension of K nr. In particular, every proper
cluster s ⊆ R has depth ds ∈ 1

2Z, and if r ∈ R with r /∈ K nr then denoting by r ′ its
inertia-conjugate root we have v(r − r ′) ∈ 1/2+ Z.

4.2 The collection of valid discs

To first approximation the set of valid discs consists of all discs of the form D(s) for
a proper cluster s, along with all integral discs between them. However, the precise
definition is slightly more complicated, mainly owing to the failure of some proper
clusters to have integer depth. The following lemma characterises this phenomenon.

Lemma 4.2 Let s ⊆ R be a proper cluster. Then s has a centre in K nr. Moreover,
ds ∈ Z unless we have either

(i) s = {r , r ′}, or
(ii) s = R has a unique proper child s′, which has size 2g, and s s′ = {r , r ′},
for two inertia-conjugate roots r , r ′ /∈ K nr. In these cases we have ds ∈ 1/2+ Z.

Proof Since the hyperelliptic curveC : y2 = f (x) satisfies the semistability criterion,
R is tamely ramified and every proper cluster inertia invariant. In particular, every
proper cluster has centre in K nr by Lemma B.1. Now for a proper cluster s, if s =
{r} ∧ {r ′} for two inertia-conjugate roots r , r ′ /∈ K nr, then ds = v(r − r ′) ∈ 1/2+Z,
whence s is not principal (see Definition 1.5). An easy case by case analysis shows
that this forces s to fall into one of cases (i) or (ii) above. Otherwise, for any two
(not necessarily proper) children s1 and s2 of s we may find centres z1 and z2 in K nr

respectively. Then v(z1 − z2) is an integer and it follows that ds, being the minimum
of such valuations as s1, s2 vary over all children of s, is an integer also. ��
Remark 4.3 The lemma shows that for any proper cluster s, the disc D(s) is integral
save when s falls into one of the cases (i) or (ii) above.

Definition 4.4 (Valid discs) Call R exceptional (of type A resp. B) if:

(A) R has a unique proper child s, which has size 2g, and dR ∈ 1/2+ Z,
(B) R has size 2g + 2 and a child of size 2g + 1.
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We define the integral disc Dmax as follows. IfR is not exceptional set Dmax = D(R).
If R is exceptional of type A define Dmax to be the maximal integral disc cutting out
the child of size 2g, and ifR is exceptional of type B let Dmax be the defining disc of
the child of size 2g + 1.

Wenow say that an integral disc D is valid if it is contained in Dmax and |D∩R| ≥ 2.
We denote the collection of all valid discs by D, noting that D is admissible in the
sense of Definition 3.2.

Remark 4.5 When R is exceptional of type A, if zs ∈ K nr is a centre for the child
s of size 2g then Dmax = Dzs,dR−1/2. Moreover, it follows from Lemma 4.2 that
dR ∈ 1/2+ Z alone forces R to be exceptional of type A.

Notation 4.6 For the rest of this section fix a choice of centre zD ∈ K nr for each valid
disc D (this is necessary to use the notation of the previous section when talking about
the model of P

1
K nr associated to the collection of valid discs, since such a choice was

made in Sect. 3.3).

4.3 The quantity �D(f)

By Proposition 3.13, to study the divisor of f (x) on the model associated to the
collection of valid discs we wish to understand the quantities νD( f ) and κD( f ) for
integral discs D. We begin by considering the second of these functions.

Lemma 4.7 Let D be an integral disc. Then κD( f ) = |D ∩ R| unless either of the
following hold:

(i) R is exceptional of type A and D = Dmax, in which case κD( f ) = deg( f )− 1,
(ii) D = Dzt,�dt for t a twin with dt ∈ 1

2 +Z and zt a centre5 for t in K nr, in which
case D ∩R = ∅ and κD( f ) = 1.

In particular, if D �= Dmax is a valid disc then κD( f ) = |D ∩R|.
Will will need the following easy lemma, whose proof we omit.

Lemma 4.8 Let D be a disc with centre in K nr and non-integral depth dD. Then D has
a unique maximal proper integral subdisc given by DzD,�dD for any zD ∈ D ∩ K nr.

Proof of Lemma 4.7 Fix an integral disc D = DzD,dD with zD ∈ K nr and suppose
κD( f ) �= |D ∩R|. By (3.12) we have

κD( f )− | D ∩R |=
∑

r∈R
dD−1<v(r−zD)<dD

v

(
r − zD
πdD−1

)
.

Fix r ∈ R contributing non trivially to the right hand side. Then necessarily r /∈ K nr

and, denoting by r ′ its inertia-conjugate root,

dD − 1/2 = v (r − zD) = v(r ′ − zD).

5 any two choices for zt give the same disc, c.f. Lemma 4.8 below.

123



Arithmetic of hyperelliptic curves...

Let s = {r} ∧ {r ′} and pick a centre zs ∈ K nr. Note that ds = v(r − r ′) /∈ Z and as
also v(zD − r) /∈ Z we must have

v(zD − r) = v (zD − zs + zs − r) = v(zs − r) = ds.

Thus zD is a centre for s and we deduce that D is the maximal integral subdisc of D(s)
afforded by Lemma 4.8. By Lemmas 4.2 and 4.8, D is now one of the discs claimed
and the rest follows. ��

4.4 The parity of �D(f)

Lemma 4.9 Let s be a proper cluster with ds ∈ Z. Then νs is even unless s = R has
size 2g + 2 and R = s1 � s2 is a union of two odd children with one of the δsi odd
(equivalently both if they have size ≥ 3, cf. Lemma C.6).

Proof By the semistability criterion every principal cluster shas νs even.Nowcombine
Lemma 4.2 with Lemma C.5. ��

We now use this to characterise the valid discs D for which νD( f ) is odd (resp.
even).

Lemma 4.10 Let D be a valid disc and s = D ∩R. Then νD( f ) is odd if and only if
one of the following hold:

(i) BothsanddD−dsare odd (in particular D is not the defining disc of a cluster), or
(ii) D = Dmax and R = s1 � s2 is a union of two odd proper children with δs1 odd

(equivalently δs2 odd, cf. Lemma C.6).

Proof First note that by Lemma 4.7 if D1 ⊆ D2 are valid discs and D′ ∩R = D1∩R
for each intermediate integral disc D1 ⊆ D′

� D2 then

νD1( f ) = νD2( f )+ |D1 ∩R|(dD2 − dD1). (4.11)

To prove the lemma, note first that if D(s) is integral and νs even then we conclude
by applying (4.11) with D1 = D(s) and D2 = D. If D = Dmax and R = s1 � s2
is a union of two odd proper children then we conclude by applying (4.11) with
D1 = D(s1) and D2 = Dmax. Now by Lemmas 4.2 and 4.9 the only remaining case
is s a twin with δs ∈ 1/2 + Z. Applying (4.11) with D1 = D and D2 = D(P(s))
shows that νD( f ) is even as desired, since νP(s) is even by Lemma 4.9. ��

4.5 Themodel of P
1 associated to the collection of valid discs

Definition 4.12 Define Ydisc/O to be the regular, proper, semistable model of P
1
K nr

associated to the collection of valid discs via Definition 3.8.

We retain the notation of Sect. 3 to talk about Ydisc. Thus the components of its
special fibre are indexed by discs D ∈ D, the component corresponding to a disc D
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being isomorphic to P
1
k̄
with variable xD , and denoted ED . The point at infinity on the

generic fibre of Ydisc is denoted∞, and {∞} denotes the closure of this point in Ydisc.
Its intersection with the special fibre is the point at infinity on the component EDmax .

Definition 4.13 We denote by B ∈ Div(Ydisc) the divisor

B = div( f )hor + (2g + 2){∞} +
∑

D∈D
ωD( f )ED

where ωD( f ) ∈ {0, 1} is such that ωD( f ) ≡ νD( f ) (mod 2), and div( f )hor denotes
the horizontal part of the divisor of f (x).

Remark 4.14 In the next section we will consider the normalisation of Ydisc in the
function field of C : y2 = f (x), which we denote Cdisc. We show in Theorem 5.2 that
the divisor B above is the branch locus of the associated morphism Cdisc → Ydisc.

To describe the divisor of f (x) on Ydisc it will be convenient to introduce the
following notation.

Notation 4.15 For a proper cluster s with D(s) strictly contained in a valid disc D,
by redD(s) we mean redD(zs) (Definition 3.7) for any centre zs of s. Note that this is
independent of the choice of centre for s. For s = {r} a singleton, for any valid disc
D containing r we define redD(s) := redD(r).

Proposition 4.16 LetC/K : y2 = f (x)beahyperelliptic curve satisfying the semista-
bility criterion and let Ydisc/O and B ∈ Div(Ydisc) be as above. Then B is effective,
regular, and div( f ) ≡ B (mod 2) inside Div(Ydisc). Moreover, the horizontal part
Bhor of B meets the special fibre of Ydisc at precisely the following points:

• the point at infinity on EDmax if deg( f ) = 2g + 1 or R is exceptional,
• the points xD = redD(s′) on ED if D = D(s) for a proper cluster s and s′ < s
is either a singleton, or a twin with ds′ = ds + 1/2 (note that these points are
distinct as we vary s′),

• the point xD = redD(t) on ED if D ∩R = t for t a twin with dt = dD + 1/2.

Proof It follows from Proposition 3.13 (i) along with the definition of ωD( f ) that
B ≡ div( f ) (mod 2), and it’s clear that B is effective.

Combining Proposition 3.13 (iii), (iv) and (v) with Lemma 4.7, we see that Bhor
is regular and meets the special fibre Ydisc,k̄ of Ydisc precisely at the points claimed
(in particular Bhor does not meet any intersection points between the components of
Ydisc,k̄).

Next it follows from Lemma 4.10 that if D1 and D2 are adjacent valid discs then
νD1( f ) and νD2( f ) are not both odd. As any two components ED1 and ED2 are
individually regular, and intersect if and only if D1 and D2 are adjacent, we deduce
that the vertical part Bver of B is regular.

To conclude we claim that Bhor and Bver are disjoint, i.e. that if Bhor meets ED then
νD( f ) is even. This follows from Lemma 4.10. ��
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4.6 The dual graph ofYdisc

By Proposition 3.13 the dual graph ofYdisc is the graph TD associated to the collection
of valid discs as in Definition 3.2. Here we describe this graph in terms of clusters.
We begin with an explicit description, and then recast this in terms of the purely
combinatorial notions introduced in [18]. For convenience, we summarise the relevant
parts of that paper in Appendix D.

Notation 4.17 Let T̂D denote the graph obtained from TD by removing from the
vertex set (keeping the underlying metric space the same) all vD corresponding to
discs D �= Dmax for which there is a smaller valid disc cutting out the cluster D ∩R.

Lemma 4.18 The graph T̂D is, via vD ↔ vD∩R, the metric graph with:

• one vertex vs for each cluster s which is not

– a twin t with δt = 1/2,
– R if either R has size 2g + 2 and a child of size 2g + 1, or a child s with

|s| = 2g and δs = 1/2,

• an edge of length #δs$ between vs and vP(s) (should P(s) yield a vertex).

Proof This follows from Lemma 4.2 and the definition of the collection of valid discs.
��

In Example D.2 it is shown how, to f (x), one may associate a purely combinatorial
object called a metric cluster picture (Definition D.1). To this one may then formally
associate a certain metric graph called a BY tree (this procedure is explained in Def-
inition D.6) which is very closely related to the dual graph of (the special fibre of)
Ydisc, as the following result shows. This will be important later since it enables us to
apply combinatorial results of [18] to hyperelliptic curves.

Lemma 4.19 Let� denote themetric cluster picture associated to f (x), and T� denote
the associated BY tree. Define T ′

� to be the graph obtained from T� by (in order)

• halving the length of all yellow edges,
• replacing each edge of length l ∈ 1/2+ Z joining a leaf v to a vertex v′, with an
edge of length #l$ (identifying v and v′ if #l$ = 0),

• adding a vertex vR on the edge joining vs1 and vs2 , at a distance δs1 from vs1 , if
R has size 2g + 2 and is a disjoint union of two proper clusters s1 and s2.

Then the map sending a vertex vD ∈ T̂D to the vertex vD∩R ∈ T ′
� is an isomorphism

of metric graphs.

Proof Combine Lemma 4.18 with the description of T� given in Definition D.6. ��
Remark 4.20 When all the roots of f (x) lie in K nr, so that all relative depths are
integers, it follows from Lemma 4.19 that T̂D is simply the result of halving the length
of all yellow edges in T� (up to possibly adding in a vertex corresponding to the cluster
R).
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5 A regular model of C assuming the semistability criterion

As in Sect. 4 letC/K : y2 = f (x) be a hyperelliptic curve satisfying the semistability
criterion (Definition 1.8). We begin by using the results of the previous section to give
an explicit regular proper model of C/K nr. We then use this to determine the minimal
proper regular model ofC and show that it is semistable. Having done this, we proceed
to describe the special fibre of the minimal regular model and relate this to the cluster
picture of f (x).

We continue to denote the ring of integers of K nr by O. As in Notation 4.6 we
fix centres zD ∈ K nr for each valid disc D (see Definition 4.4). Let Ydisc/O be the
model of P

1
K nr associated to the collection of valid discs as in Definition 4.12, and let

B ∈ Div(Ydisc) be as in Definition 4.13, so that by Proposition 4.16 B is effective,
regular, and congruent to div( f ) modulo 2.

Definition 5.1 Define the scheme Cdisc/O as the normalisation of Ydisc/O in the func-
tion field K nr(C) of C/K nr. Denote by φ : Cdisc → Ydisc the associated normalisation
morphism. We write Cdisc,k̄ for the special fibre of Cdisc.

Theorem 5.2 Let C/K : y2 = f (x) be a hyperelliptic curve satisfying the semista-
bility criterion. Then Cdisc/O is a proper regular model of C and φ : Cdisc → Ydisc is
finite flat of degree 2 with branch locus B.

Proof That the normalisation morphism is finite flat of degree 2 is standard (the degree
being equal to the degree of K nr(C)/K nr(x)). In particular, Cdisc/O is proper since
both φ and Ydisc/O are. That Cdisc is regular is a consequence of the regularity of both
Ydisc and B (the latter requiring the semistability criterion, see Proposition 4.16), and
follows from [36, Lemma 2.1] (taking Y = Ydisc and f = f (x) in the statement).
Indeed, from the definition of B, one sees that, writing div( f ) =∑i∈I mi�i as in the
notation of loc. cit., the divisor B is equal to

∑
i∈I m̄i�i for m̄i ∈ {0, 1} congruent

to mi modulo 2. It’s then clear that regularity of B forces the hypotheses (a) and (b)
of loc. cit. to be satisfied, guaranteeing the regularity of the normalisation of Ydisc in
K nr(C). Finally, the claim about the branch locus follows from the description of the
normalisation of the local rings given in the proof of loc. cit., noting that for a point P
of Ydisc, P lies on B if and only if, in the expression for div( f ) as

∑
i∈I m̄i�i above,

mi is odd for a �i which contains P . ��
Remark 5.3 Since we have defined Cdisc as the normalisation in K nr(C) of a model
of P

1
K nr it follows that the hyperelliptic involution on C (which on function fields is

the generator of the Galois group of K nr(C)/K nr(x)) extends to an involution ι on
Cdisc/O and identifies Ydisc with the quotient Cdisc/ι. In particular, ι swaps the two
points in the fibre over any point of Ydisc B.

5.1 Explicit equations for themodel Cdisc

We now give explicit charts covering the model Cdisc. Recall from Remark 3.9 that
Ydisc is covered by the open subschemesUD PD andWD (QD∪PD) (Definitions 3.6
and 3.7) as D ranges over all valid discs.
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Definition 5.4 Define, for each valid disc D, the schemes

UD = Spec
O[xD, yD](

y2D − πωD( f ) fD(xD)
)

and

WD =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Spec O[tD ,wD ](
w2

D−πωD ( f )tλDgD(tD)
) if D = Dmax,

Spec O[sD ,tD ,wD ](
π−sDtD , w2

D−s
ωD ( f )
D t

ωP(D)( f )

D gD(sD,tD)

) else,

where λ ∈ {0, 1} is such that λ ≡ deg( f ) (mod 2) and the polynomials fD and gD
are as in Definition 3.15.

Denote by φD,1 : UD → UD and φD,2 : WD → WD the morphisms induced by
the obvious inclusions of rings.

Proposition 5.5 The model Cdisc is covered by the charts UD φ
−1
D,1(PD) and

WD φ
−1
D,2(PD ∪QD) as D ranges over all valid discs. The restriction of the normali-

sation morphism to a map UD φ
−1
D,1(PD)→ UD PD (resp.WD φ

−1
D,2(PD ∪QD)→

WD (PD ∪QD)) is given by φD,1 (resp. φD,2). Inside K nr(C) we have the relations

xD = x − zD
πdD

, tD = 1/xD, sDtD = π, yD = π(ωD( f )−νD( f ))/2y

and

wD =
{
x−#deg( f )/2$
D yD if D = Dmax,

s(ωD( f )−νD( f ))/2
D t

(ωP(D)( f )−νP(D)( f ))/2
D y else.

Proof Since Ydisc is covered by the open subschemes UD PD and WD (QD ∪ PD),
and normalisation is local on the base, it suffices to show that for each valid disc D,
φD,1 : UD φ

−1
D,1(PD) → UD PD realises the normalisation of UD PD in K nr(C),

as well as the analogous result for φD,2. We prove this for φD,1, the argument in the
other case being identical. Viewing UD PD as a subscheme of Ydisc it follows from
Remark 3.16 that the divisor of πωD( f ) fD(xD) on UD PD is equal to B ∩ (UD PD)

and as such is regular. Note also that the ringO[xD] is regular. Now for any h ∈ O[xD]
such that the open subscheme {h �= 0} of UD is contained in UD PD , it follows that
both the ring A = O[xD]h and the closed subscheme V (πωD( f ) fD(xD)) of SpecA are
regular. From this it follows easily that the ring A′ = A[y]/(y2 − πωD( f ) fD(xD)) is
regular (this is the algebraic result underpinning the proof of Theorem 5.2). Moreover,
appealing to Remark 3.16 once again we see that πωD( f ) fD(xD) and f (x) differ by
a square in K nr(x) = FracA (indeed, by an even power of π ). Thus Frac(A′) =
K nr(x)[y]/(y2 − f (x)) = K nr(C). Since A′ is regular, finite over A and Frac(A′) =
K nr(C), it follows that A′ is the integral closure of A in K (C). Thus the (map on
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schemes associated to the) inclusion of A into A′ realises the normalisation of SpecA
in K nr(C). It remains only to note that UD PD is covered by the schemes O[xD]h as
we vary h, and that normalisation is local on the base.

The relationship between the various variables follows from combining Remark 3.9
and Remark 3.16. ��
Remark 5.6 The extension of the hyperelliptic involution to Cdisc acts on the charts of
Proposition 5.5 as yD �→ −yD (resp. wD �→ −wD).

Remark 5.7 The proof of Proposition 5.5 shows that locally over a sufficiently small
U = SpecA ⊆ Ydisc, φ−1(U ) ⊆ Cdisc is given by SpecA′ where A′ = A[u]/(u2 − t)
for t a local equation for B onU . From this we deduce the following. Suppose that D
is a valid disc with ωD( f ) = 1 (i.e. νD( f ) odd). Then φ−1(ED) consists of a single
component Z of multiplicity 2 in Cdisc,k̄ and the restriction of φ to a map Zred → ED

is an isomorphism.6 Indeed, our assumptions mean that ED is contained entirely in
B, so that locally over some U as above, ED corresponds to a prime ideal p of A
containing t . The fibre of φ over the generic point of ED is then Spec k(p)[u]/(u2)
where k(p) denotes the residue field at p. Thus there is a unique component over
ED with multiplicity 2 in Cdisc,k̄ . Moreover, the unique prime q of A′ lying over p is
generated by p and u whence the map A/p → A′/q is an isomorphism. As this is just
the map Zred ∩ φ−1(U )→ ED ∩U and such U cover Ydisc, we are done.

The following lemma describes the reduction mod m of the polynomials fD and
gDmax appearing in the above charts, and will facilitate in the study of the special fibre
of Cdisc.

Definition 5.8 For a valid disc D define cD ∈ k̄× as

cD = c f

πv(c f )

∏

r∈R D

(
zD − r

πv(zD−r)

)
(mod m).

For a proper cluster s for which D(s) is valid we set cs = cD(s).

Lemma 5.9 Let D be a valid disc and write s = D ∩R.

(i) We have

fD(xD) (mod m) =
{
cs
∏

s′<s
(
xD − redD(s′)

)|s′|
D = D(s)

cD (xD − redD(s))|s| else.

(ii) For D = Dmax we have

tλDgD(tD) (mod m) = t2g+2−|D∩R|
D cD

∏

r∈D∩R
(1− redD(r)tD)

where, as in Definition 5.4, λ ∈ {0, 1} is such that λ ≡ deg( f ) (mod 2).

6 here Zred denotes the component Z with its reduced structure.
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Proof By the definition of fD(xD) and (3.1) we have

fD(xD) (mod m) = c f

πv(c f )

∏

r∈R

(
πdD xD + zD − r

πmin{dD,v(zD−r)}

)
(mod m).

Noting that r ∈ D if and only if min{dD, v(zD − r)} = dD we have

fD(xD) (mod m) = cD
∏

r∈D
(xD − redD(r))

from which part (i) follows. For (ii), note that when D = Dmax we have tλDgD(tD) =
t2g+2
D fD(1/tD). Now apply (i). ��
Remark 5.10 In (i), two factors (xD − redD(s′)) and (xD − redD(s′′)) are distinct for
distinct s′, s′′ < s.

5.2 Types of valid disc

We now describe the special fibre of Cdisc. To do this we will frequently break into
cases, which we set out here. We remark that if all roots of f (x) lie in K nr then cases
II, III and IV do not occur as then all proper clusters have integer depth.

Definition 5.11 Let D be a valid disc. We define the type of D as follows.

(I.1) D = D(s) for a non-übereven cluster swith νs even, and D is not of type II.1,
(I.2) D = D(s) for an übereven cluster s and D is not of type II.2,
(II.1) D = D(s)where s < R is such that δs = 1/2, |s| = 2g, and s is not übereven,
(II.2) D = D(s) where s < R is such that δs = 1/2, |s| = 2g, and s is übereven,
(III) D = Dmax and there is a cluster s < R with |s| = 2g and δs = n + 1/2 for

n ≥ 1 an integer,
(IV) D ∩R = t for t a twin with dt = dD + 1/2,
(V) νD( f ) is odd (i.e.ωD( f ) = 1, equivalently either D = Dmax andR = s1�s2

is a union of two odd proper children with ds1 − dR odd, or bothR ∩ D and
dD − dR∩D are odd, c.f. Lemma 4.10),

(VI.1) D does not fall into cases I-V and |D ∩R| is odd,
(VI.2) D does not fall into cases I-V and |D ∩R| is even.

5.3 The special fibre of Cdisc

In the following proposition we describe, for each component ED of the special fibre
ofYdisc, the component(s) of the special fibre of Cdisc which lie over this. Later in The-
orem 5.18 we explain how these components fit together, drawing on the description
of the dual graph of Ydisc,k̄ afforded by Lemma 4.19.

In the statement below, for a proper cluster s we write g(s) for the genus of s, thus
g(s) is 0 if s is übereven and is otherwise detemined by |s̃| = 2g(s)+ 1 or 2g(s)+ 2
where s̃ denotes the set of odd children of s.

123



T. Dokchitser et al.

Proposition 5.12 Let D be a valid disc, ED the associated component of the special
fibre of Ydisc and φ : Cdisc → Ydisc the normalisation morphism. Then φ−1(ED)

consists7, according to the type of D, of:

(I.1,II.1) one component of multiplicity 1, with geometric genus g(s), and one node
for each twin t < s with dt = ds + 1/2, plus one additional node if D has
type II.1. The normalisation of this component is the hyperelliptic curve

�̃s : y2 = cs
∏

odd s′<s
(x − reds(s

′)).

(I.2,II.2) two components of multiplicity 1, each isomorphic to P
1
k̄
and intersecting

transversally at one point for each twin t with dt = ds + 1/2, and at one
additional point if D has type II.2.

(III,IV) two components of multiplicity 1, isomorphic to P
1
k̄
and intersecting

transversally at 1 point.
(V) a single component isomorphic to P

1
k̄
, with multiplicity 2 and self intersec-

tion −1.
(VI.1) one component of multiplicity 1, isomorphic to P

1
k̄
,

(VI.2) two disjoint components of multiplicity 1, each isomorphic to P
1
k̄
.

Moreover, all intersections between components of Cdisc,k̄ are transversal.
Remark 5.13 When all roots of f (x) lie in K nr (e.g. if we are willing to construct the
model only over a suitable extension of the base field) all components are individually
smooth, no two components lying over the same component of Ydisc intersect, and, as
above, types II, III and IV never arise.

The proof of Proposition 5.12 is given after Lemmas 5.14 and 5.15.

Lemma 5.14 Let D be a valid disc, ED the associated component of the special fibre
of Ydisc,k̄ and φ : Cdisc → Ydisc the normalisation morphism. Then

(i) If D = D(s) for a proper cluster s with νs even then φ−1(ED) consists of two
multiplicity 1 components if s is übereven (types I.2 and II.2), and one otherwise
(types I.1 and II.1). The (geometric) genus of the component(s) is g(s).

(ii) IfωD( f ) = 0 and D is not of the form D(s) for a proper cluster s then φ−1(ED)

consists of two multiplicity 1 components of genus 0 if |D ∩ R| is even (types
III, IV and VI.2), and one otherwise (type VI.2).

(iii) If D has type V then φ−1(ED) consists of a single multiplicity 2 component,
which is an exceptional curve8, and meets all other components transversally.

Proof (i) and (ii). In what follows, let us temporarily denote the reduction of fD(xD)
mod m as fD(xD). Let ηD be the generic point of ED . From Proposition 5.5 we see
that the fibre over ηD is

Spec k̄(xD)[yD]/
(
y2D − fD(xD)

)

7 here and below, by φ−1(ED) we formally mean the scheme Cdisc ×Ydisc ED .
8 isomorphic to P

1
k̄
with self intersection −1.
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and as fD(xD) is non-zero the associated component(s) has multiplicity 1. That the
number of components is as claimed follows since, by Lemma 5.9, if D is not the
defining disc of s = D∩R then fD(xD) is a square in k̄(xD) if and only if |s| is even,
whilst if D = D(s) then fD(xD) is a square if and only s is übereven. To determine the
geometric genus of the components note that when fD(xD) is a square the fibre over
the generic point of ηD is isomorphic to two copies of k̄(x) from which it follows that
both components have genus 0. Now note that, for fD(xD) non-square, the genus of

the function field k̄(xD)[yD]/
(
y2D − fD(xD)

)
is precisely the number of odd degree

factors of fD(xD) and we conclude by Lemma 5.9.
(iii). By Remark 5.7 we see that if ωD( f ) = 1 then there is a unique component

over ED , �D say, which has multiplicity 2 and is isomorphic to P
1
k̄
. It remains to show

that �D has self intersection−1. Combining parts (i) and (ii) with Lemma 4.10 we see
that ED meets precisely two components of the special fibre of Ydisc, ED1 and ED2

say, and there is one multiplicity 1 component of the special fibre of Cdisc lying over
each of these, �D1 and �D2 say. In particular, as divisors we have φ∗(ED1) = �D1 ,
φ∗(ED2) = �D2 and φ∗(�D) = ED . By the projection formula [26, Theorem 9.2.12]
we have �D · �D1 = ED · ED1 = 1 and �D · �D2 = 1 similarly. Thus �D intersects
�D1 and �D2 transversally. Finally as the intersection of �D with the whole special
fibre is 0 it follows that �2

D = −1. ��
Lemma 5.15 Let D be a valid disc not of type V. Then φ−1(ED) has precisely one
singular point for each twin t with dt = dD + 1/2, unless D = Dmax, when it has an
additional singular point (lying over the point at infinity on EDmax ) ifR is exceptional
of type A (i.e. if Dmax has type II or III). Each singular point of φ−1(ED) is an ordinary
double point.

Proof Let P be a closedpoint ofφ−1(ED), letQ = φ(P) and suppose thatQ ∈ B∩ED

(if not φ is étale at P whence, since ED is smooth, P is a smooth point of φ−1(ED)).
If Q ∈ Bver then as ωD( f ) = 0, P is a point of intersection between φ−1(ED) and a
component lying over some ED′ withωD′( f ) = 1. By Lemma 5.14 such intersections
are transverse whence (see e.g. [26, Lemma 10.3.1]) they are smooth points of the
individual components. Next, suppose Q ∈ Bhor ∩ ED and is not the point at infinity
on EDmax . Then by Proposition 4.16 Q corresponds to a point xD = redD(s) where s
is a child of D ∩R and is either a singleton, or a twin with ds = dD + 1/2. Now by
Proposition 5.5 and again writing fD(xD) for the reduction of fD(xD)mod m, locally
around P , φ−1(ED) is given by

Spec k̄[xD, yD]/(y2D − fD(xD))

with P the point (redD(s), 0). By Lemma 5.9 redD(zD′) is a root of multiplicity 1 if
s is a singleton, and 2 if s is a twin. One checks (see e.g. [26, Example 10.3.4]) that
P is a smooth point in the first instance, and an ordinary double point in the second.
The case D = Dmax and Q the point at infinity on EDmax is similar. Our assumption
that Q ∈ Bhor forces deg( f ) = 2g+ 1 orR exceptional. Arguing as above and using
Lemma 5.9 (ii) one sees that P is smooth if deg( f ) = 2g + 1 or R is exceptional of
type B, and is an ordinary double point ifR is exceptional of type A. ��
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Proof of Proposition 5.12 (I.1, II.1): By Lemma 5.14 φ−1(ED) consists of a unique
component of geometric genus g(s) whose function field is

k̄(xD)[yD]/(y2D − fD(xD)).

The equation for �̃s follows from Lemma 5.9. That the nodes of �s are as claimed is
Lemma 5.15. (I.2, II.2): by Lemma 5.14 φ−1(ED) consists of two components each of
geometric genus 0 and by Lemma 5.15 the singular points of φ−1(ED) are all ordinary
double points and are in bijection with the twins t < s with dt = ds + 1/2, plus one
additional ordinary double point for type II.2. For each such, P say, we have φ(P) ∈ B
whence P is the unique point lying over φ(P). In particular, it lies on both components
of φ−1(ED). It now follows from [26, Lemma 10.3.11] that P is a smooth point of
each individual component, and that these components intersect transversally at P . In
particular, each component is smooth hence isomorphic to P

1
k̄
. (III, IV): Follows from

Lemma 5.14 and Lemma 5.15 similarly to cases I.2 and II.2. (V): Lemma 5.14 (iii).
(VI): Combine Lemmas 5.14 and 5.15 (the latter shows φ−1(ED) is smooth).

Finally we show that all intersections are transverse. Let P ∈ Cdisc,k̄ be a point
lying on distinct components Z1 and Z2. If φ(Z1) = φ(Z2) then both Z1 and Z2 lie
in φ−1(ED) for some valid disc D of type I.2, II.2, III or IV, and the intersection is
transverse as above. Similarly, if one of Z1 or Z2 has multiplicity 2 we are done by
Lemma 5.14 (iii). Otherwise Q = φ(P) is disjoint from B whence φ is étale at P
and, moreover, Q is a point of transverse intersection between the distinct components
φ(Z1) and φ(Z2) of Ydisc. Thus the intersection is transverse in this case also. ��

5.4 Theminimal regular model of C/Knr

Having constructed a regularmodel ofC/K nr and described the components of its spe-
cial fibre, it is a simplematter to describe theminimal regularmodel Cmin/O ofC/K nr,
which we do now. In particular, we use the explicit description we obtain to show that
Cmin is semistable. This proves the ‘semistability criterion implies semistability’ part
of Theorem 1.9 (1) (see also Theorem 7.1).

Theorem 5.16 Let C/K be a hyperelliptic curve satisfying the semistability criterion.
Then the model of C obtained from Cdisc by contracting each of the components
corresponding to valid discs of type V is semistable, and is the minimal regular model
of C/K nr.

Proof Note first that by Proposition 5.12 (iv) the components we contract are disjoint,
and are all exceptional curves. Thus we may contract them and the resulting model,
which we temporarily denote C/O, is again proper and regular. Moreover, again by
Proposition 5.12, the components contracted are precisely those with multiplicity
greater than one. Fix one such, �D say. Then as in the proof of Lemma 5.14(iii) it
intersects precisely two components of Cdisc,k̄ , say Z1 and Z2 (which do not themselves
meet), both transversally. By [26, Lemma 3.35], after contracting �D to a point the
components Z1 and Z2 intersect transversally there. Thus the special fibre of C is
reduced with normal crossings (away from the contracted components the same is
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true for the special fibre of Cdisc by Proposition 5.12, and the contraction map is an
isomorphism here). Thus C is semistable.

Since C is a proper regular model of C , to show that C is the minimal such we must
show there are no exceptional curves in its special fibre. Note that such components
appear in the dual graph of Ck̄ as genus 0 vertices of degree 1. Theorem 5.18 below
shows that the dual graph of C is (after removing vertices of degree 2 and genus 0 from
the vertex set) a hyperelliptic graph in the sense of [18, Definition 3.2] and in particular
contains no genus 0 vertices of degree 1 as desired (the statement of Theorem 5.18
refers to the dual graph of Cmin,k̄ however the proof in fact uses the description of
Cmin,k̄ as the model C considered here, and does not assume minimality in the proof).
Alternatively one may proceed via Proposition 5.12 and the description of the dual
graph of Ydisc,k̄ afforded by Lemma 4.19. ��

5.5 The dual graph of the special fibre of theminimal regular model

Having shown that Cmin is semistable, we may talk about the dual graph of its special
fibre, which we now describe.

Notation 5.17 Let C/K be a hyperelliptic curve satisfying the semistability criterion.
We denote by ϒC the dual graph of the special fibre of its minimal regular model.

Recall from Sect. 2.1.1 that ϒC has vertex set the set of irreducible components of
Cmin,k̄ , edge set the set of ordinary double points of Cmin,k̄ , and, for an ordinary double
point P , the edge-endpoints at P are the points lying above P under the normalisation
morphism

n : C̃min,k̄ → Cmin,k̄

(we refer to these points as the tangents at P). The graph ϒC carries a natural genus
marking,with a vertex being given the genus of the component towhich it corresponds.
Finally, by uniqueness of the minimal regular model, the hyperelliptic involution on
C extends (necessarily uniquely) to an involution ι on Cmin which then acts on ϒC via
its action on components, ordinary double points and tangents.

As we did in Sect. 4.6 for Ydisc, we will describe the graph ϒC using the combina-
torial framework developed in [18] and summarised in Appendix D. In particular, as
explained in Example D.2, toC (or rather to f (x)), one may associate ametric cluster
picture �, which is a purely combinatorial object. Then, via Definitions D.6 and D.9,
one can associate to � a BY tree T� , and a metric hyperelliptic graph G� , where the
latter is a metric graph coming equipped with a genus marking and involution, the
quotient by which is canonically the result of halving the length of all edges in T� .
This graph is (by design) very closely related to ϒC , as the following result shows.

Theorem 5.18 Let C/K be a hyperelliptic curve satisfying the semistability criterion.
Denote by ϒ̂C the graph obtained fromϒC by removing from the vertex set all vertices
of genus 0 and degree 2, and let � denote the metric cluster picture associated to C.
Then there is a genus preserving isomorphism of metric graphs ϒ̂C ∼= G� identifying
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the hyperelliptic involutions and inducing a canonical identification of the quotient
ϒ̂C/ι with the graph obtained from T� by halving the length of all edges.

In particular ϒ̂C , along with its genus marking and hyperelliptic involution, is a
hyperelliptic graph in the sense of [18, Definition 3.2].

Proof The basic idea is that G� is by definition a certain ramified double cover of T�
(up to slightly adjusting the metric), whilst our explicit construction of Cmin shows
that ϒC is essentially a ramified double cover of the dual graph of Ydisc. The latter is
related to T� via Lemma 4.19. We now flesh out the details. In what follows, we will
need to understand the action of the hyperelliptic involution on Cmin and do this by
noting that where Cdisc and Cmin are isomorphic the two extensions of the hyperelliptic
involution must agree, since they do so on the generic fibre.

We first describe the dual graph of Cdisc,k̄ , which we temporarily denote �C .9

By Remark 5.3, whenever the fibre over a point of Ydisc contains two points the
hyperelliptic involution swaps these. In particular, applying this to the generic point
of a component ED of Ydisc,k̄ , if φ

−1(ED) consists of two components then ι swaps
these. Similarly, if there are two points lying over an intersection point of components
ED and ED′ then ι swaps these also.

Now consider the (topological) quotient graph �C/ι. Its vertices either arise as
ι-orbits of vertices of�C - we get one vertex in�C/ι for each valid disc this way, cor-
responding to φ−1(ED) - or as the midpoint of an edge whose endpoints are swapped
(i.e. is ‘ι-anti-invariant’). Similarly, the edges of�C/ι are ι-orbits of edges of�C , but
in the case of an ι-anti-invariant edge e, the resulting edge of�C/ι has length half that
of e.

As ι swaps components if and only if they lie over the same component of Ydisc,
an edge of �C can only be ι-anti-invariant if it corresponds to an ordinary double
point on φ−1(ED) for some valid disc D (as opposed to an ordinary double point
arising as the intersection between components whose images in Ydisc are distinct).
Moreover, each such edge is in fact ι-anti-invariant. Indeed, for edges corresponding
to intersection points between two components of some φ−1(ED) this is clear, whilst
for those corresponding to a node lying on a single component, say a node P , ι must
swap the tangents at P else by [26, Proposition 3.48 (b)] φ(P) would not be a smooth
point of Ydisc.

From the above discussion we see that �C/ι is the graph obtained from the dual
graph of Ydisc by adding a vertex for each ordinary double point of Cdisc,k̄ lying over a
single component ED , joined to the vertex corresponding to ED by an edge of length
1/2. It now follows from Lemma 5.15 and Lemma 4.19 that, defining �̂C as for ϒ̂C ,
the quotient �̂C/ι is canonically the result of halving all yellow edges in T� . Finally
(c.f. Lemma 4.10), one obtains ϒ̂C/ι from �̂C/ι by halving the length of those edges
corresponding to blue edges of T� to account for contracted components.

To conclude, we now note that by Proposition 5.12 the map ϒ̂C → ϒ̂C/ι ramifies
precisely over the part of ϒ̂C/ι which corresponds to the blue part of T� , so that
the canonical isomorphism ϒ̂C/ι ∼= G�/ι above lifts to a (in general noncanonical)
isomorphism ϒ̂C ∼= G� identifying the hyperelliptic involutions. ��
9 We have only defined the dual graph of a semistable curve - whilst Cdisc,k̄ is not semistable it is when
given its reduced structure (see Proposition 5.12) and we formally mean the dual graph of this curve.
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5.6 Explicit equations for the components of the special fibre of theminimal
regular model

By Theorem 5.18 the components of the special fibre of Cmin are indexed by valid
discs D not of type V (though one disc can yield two components not one). Here we
record explicit equations for these components.

Definition 5.19 For a valid disc D not of type V we define �D to be the image in Cmin
(under the contraction morphism) of the closed subscheme φ−1(ED) of Cdisc. Note
that �D consists of either one or two components of Cmin,k̄ , and that these account for
all components.

Proposition 5.20 Let D be a valid disc not of type V . Then the associated component(s)
�D of Cmin,k̄ is given, according to the type of D, as follows10:

(I)

Y 2 = cs
∏

odd o<s

(X − reds(o))
∏

twin t<s
δt=1/2

(X − reds(t))
2.

(II) The glueing of the affine curves

Y 2 = cs
∏

odd o<s

(X − reds(o))
∏

twin t<s
δt=1/2

(X − reds(t))
2 (†)

and

Z2 = csT
2
∏

odd o<s

(1− reds(o)T )
∏

twin t<s
δt=1/2

(1− reds(t)T )
2

over the subsets Y �= 0 and T �= 0 via Z = YT n+1, where 2n is the degree
of the right hand side of (†).

(III) The glueing of the affine curves

Y 2 = cD ⊆ A
2
X ,Y

and

Z2 = cDT
2

over the subsets X �= 0 and T �= 0 via X = 1/T , Z = YT .
(IV)

Y 2 = cD(X − redD(t))
2.

10 other than in cases II and III, the curves are understood to have the additional chart at infinity corre-
sponding to our conventions for (possibly singular) hyperelliptic curves set out in Appendix A.
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(VI.1)

Y 2 = cD(X − redD(s)),

where s = D ∩R.
(VI.2)

Y 2 = cD ⊆ A
2
X ,Y .

Proof We will extract the result from the explicit equations for Cdisc given in Propo-
sition 5.5. Fix a valid disc D and temporarily denote by �′

D the curve with equations
as in the statement, so that we must prove �′

D
∼= �D . By Proposition 5.5, the scheme

UD φ
−1(PD) of Definition 5.4 is an open subscheme of Cdisc. Its special fibre is an

open subset of φ−1(ED) and is disjoint from all components contracted when forming
Cmin. Thus its special fibre is naturally an open subscheme of �D and equations for
it are readily extracted from Lemma 5.9. In particular, we may define a rational map
ψ : �′

D → �D by

(x0, y0) �→ (x0, y0hD(x0)) (5.21)

where the right hand side is understood with respect to the variables xD, yD for the
chart UD φ

−1(PD) and we set

hD(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∏
s′<s
δs′>1/2

(x − reds(s′))#
|s|
2 $ if D has type I, II

(x − redD(D ∩R))#
|D∩R|

2 $ if D has type III, VI

1 if D has type IV.

(5.22)

Since PD is precisely the set of points

{(reds(s′), 0
) | s′ < s and δs′ > 1/2}

if D has type I or II, and consists of the single point (redD(D ∩R), 0) if D has type
III or VI, we see that ψ is invertible on the open subset U = �D ∩ (UD φ

−1(PD)
)
of

�D . Suppose first that D is not of type II or III. Then by Lemma 5.15 (and its proof)
all singular points of �D lie inU . Similarly, �′

D is visibly smooth away from ψ−1(U )
also. Thus ψ is a rational map between complete (possibly reducible) curves �D and
�′
D which is an isomorphism away from finitely many smooth points. Thus ψ is in

fact an isomorphism everywhere.
The case where D has type II or III is proved identically with the caveat that one

must explicitly check that the map is an isomorphism over an open subset of the point
at infinity on �D (since unlike the other cases the curves are not smooth here). This
may be done by using the chartWDmax of Proposition 5.5 combined with Lemma 5.9
(ii). ��
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5.7 Reducing points

Since Cmin/O is proper there is a natural reduction map C(K nr)→ Cmin,k̄(k̄) whose
image consists precisely of the non-singular points (by regularity of Cmin and the fact
that K nr is Henselian). We describe this map in the following proposition.

Proposition 5.23 Let C : y2 = f (x) be a hyperelliptic curve satisfying the semista-
bility criterion and let P = (x0, y0) ∈ C(K nr).

(i) Suppose x0 ∈ Dmax and let D be a valid disc not of type V. Then P reduces
to �D if and only if x0 ∈ D but x0 /∈ D′ for any valid subdisc D′ ⊆ D. In
this case, in the variables X ,Y of Proposition 5.20, the reduction of P is,
according to the type of D, the following point on �D:

(I,II)

⎛

⎜⎜⎜⎝redD(x0) , π
−νD( f )/2y0

∏

s′<s
δs′> 1

2

(
reds(x0)− reds(s

′)
)−# |s′|

2 $

⎞

⎟⎟⎟⎠ ,

(III,VI)

(
redD(x0) , π−νD( f )/2y0 (redD(x0)− redD(r))

−# |D∩R|
2 $)

for any choice of r ∈ D ∩R,
(IV)

(
redD(x0) , π−νD( f )/2y0

)
.

(ii) Suppose x0 /∈ Dmax. Then red(P) is a point at infinity on �Dmax . There is a
unique such point unless |R ∩ Dmax| = 2g + 2, in which case D has type I
and P reduces to

⎛

⎝0 ,
π− v(c f )

2 y0
(x0 − zR)g+1 (mod m)

⎞

⎠

in the variables for the chart at infinity of (the equation given in Proposi-
tion 5.20 for) �Dmax .

Proof As in [26, Definition 10.1.3] red(P) is the unique point of intersection of {P}
(the closure of P in Cmin) with Cmin,k̄ . In particular the reductionmapmay be computed
locally. Now for a valid disc D �= Dmax with ωD( f ) = 0, the non-singular points of
�D are all visible on the chart UD φ

−1(PD) of Proposition 5.5. Changing variables

123



T. Dokchitser et al.

from x, y to xD, yD (c.f. Proposition 5.5) we see that P corresponds to the point

(
x0 − zD
πdD

, π−νD( f )/2y0
)

on the generic fibre of UD . One checks readily that the closure of this point in UD

contains a point of the special fibre if and only if (x0 − zD)/πdD is integral, i.e. if and
only if x0 ∈ D. When this is the case the point is given by

(
redD(x0), π−νD( f )/2y0

)
.

Moreover, this lies in UD φ
−1
D,1(PD) if and only if x0 is not in any valid subdisc of

D. To complete the proof it remains to change variables from xD, yD to the variables
for �D of Proposition 5.20, which simply serves to multiply the second coordinate by
hD(redD(x0))−1 with hD as in (5.22).

The case D = Dmax may be treated similarly, additionally considering the chart
WDmax to prove (ii). ��

5.8 The stable model of C/Knr

We finish the section by giving an explicit description of the stable model of a
hyperelliptic curve satisfying the semistability criterion. As in the statement of Propo-
sition 5.12, for a principal cluster s we denote by �̃s the hyperelliptic curve

�̃s : y2 = cs
∏

odd s′<s
(x − reds(s

′)).

Theorem 5.24 Let C/K be a hyperelliptic curve satisfying the semistability criterion.
Then the stable model Cst/O of C/K nr is obtained from Cdisc by contracting each
component�D forwhich D is not of the form D(s) for a principal cluster s.11 Its special
fibre consists of one componentwith normalisation �̃s for each non-übereven principal
cluster s, and two components with normalisation P

1
k̄
for each übereven principal

cluster. Letting � denote the metric cluster picture associated to C, the dual graph of
the special fibre of Cst is obtained from G� by adjusting the length function to give
each edge length 1.

Proof By Theorem 5.16, upon contracting components �D for which ωD( f ) = 1 we
obtain the minimal regular model of C/K nr. The stable model is then obtained from
this by contracting all components which have self-intersection−2 and are isomorphic
toP

1
k̄
([26, Proposition 9.4.8, Theorem 10.3.34]). Since such components are precisely

the ones which give vertices of genus 0 and degree 2 in the dual graph, i.e. precisely
the ones which, in the notation of Theorem 5.18, are removed from the vertex set
when passing from ϒC to ϒ̂C , this proves the claim about the dual graph of Cst. It

11 That such curves may be contracted will be shown during the course of the proof.
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remains to show that the components which remain are precisely those corresponding
to principal clusters. For this one may either argue via Proposition 5.12 and a case by
case analysis or use [18, Lemmas 5.5, 5.20] to note that the vertices of G� correspond
precisely to the principal clusters of �. ��

6 Galois action on themodels of C

In this section we still work with a hyperelliptic curve C/K : y2 = f (x) and write
R ⊆ K̄ for the set of roots of f (x). However we now no longer assume that C/K
satisfies the semistability criterion, and instead fix a finite Galois extension F/K such
that the semistability criterion is satisfied byC/F . For examplewemay take F/K to be
the Galois closure of the extension given by adjoining a square root of a uniformiser to
K (R)/K , though the case where F = K and C/K satisfies the semistability criterion
is still an important special case of the results of this section. We denote by πF a
uniformiser for F and write e for the ramification index of F/K .

Since C/F satisfies the semistability criterion we may apply the constructions of
Sects. 4 and 5 with K replaced by F throughout, so that in particular we have an
explicit construction of the minimal regular model and stable model of C over Fnr,
afforded by Theorem 5.16 and 5.24 respectively. The aim of this section is to describe
explicitly the action of GK on these models (we recall how this action works in
Sect. 6.1 below). To talk about these models we use the notation of Sections 4 and 5
replacing K by F throughout. Thus for example we work with the collection of valid
discs (Definition 4.4) defined with respect to F rather than K and fix a choice of centre
zD ∈ Fnr for each valid disc D. We caution however that we continue to normalise
the valuation v on K̄ with respect to K , which is the reason for the appearance of the
ramification index e in the formulae below.

6.1 Galois action on components

Let Cmin/OFnr be the minimal regular model of C over Fnr. We will work with the
explicit description of Cmin/OFnr afforded by Theorem 5.16 and Proposition 5.20.
Thus the components of its special fibre (or more precisely the ι-orbits of components
where ι denotes the hyperelliptic involution) are indexed by valid discs D not of type
V (Definition 5.11), with D corresponding to the component(s) �D of Definition 5.19.

As explained in Sect. 2.4 ((2.16) in particular), the special fibre of Cmin/OFnr

carries a natural action of the full Galois group GK (arising from uniqueness of the
model) which is uniquely determined by ‘lift-act-reduce’ on non-singular points. The
following quantities will facilitate in describing this action.

Definition 6.1 We define, for σ ∈ GK ,

χ(σ) = σ(πF )

πF
(mod m).
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Given also a valid disc D not of type V define

βD(σ ) = σ(zD)− zσD

π
edD
F

(mod m),

and

λD =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

νs
2 − ds

∑
s′<s
δs′> 1

2

# |s′|
2 $ D has type I, II

νD( f )
2 − dD# |D∩R|

2 $ D has type III, VI

νD( f )
2 D has type IV,

where, for types I and II, s denotes the cluster D ∩R and we recall that by definition
we have D = D(s) in these instances.

We now describe the Galois action on the �D .

Theorem 6.2 Let C/K : y2 = f (x) be a hyperelliptic curve satisfying the semista-
bility criterion over a finite Galois extension F/K and let D be a valid disc (the
collection of such defined with respect to F) not of type V. Then any σ ∈ GK maps
�D to �σD and for a point P = (x0, y0) ∈ �D, we have

σ(P) =
(
χ(σ)edD σ̄ (x0)+ βD(σ ), χ(σ )eλD σ̄ (y0)

)
∈ �σD

where σ̄ denotes the map induced by σ on the residue field k̄ and the points are written
with respect to the variables X ,Y for �D (resp �σD) of Proposition 5.20.

Proof As explained in Sect. 2.4 it suffices to prove the result under the assumption
that P is non-singular. We follow the recipe of Sect. 2.4 to act on P . Let P̃ ∈ C(Fnr)

be a lift of P . Now let hD be as in (5.22) and h̃D any lift of hD to a polynomial with
coefficients in OFnr . By Proposition 5.23, in the coordinates x, y for C , P̃ has the
form

(
π
edD
F x̃0 + zD , π

eνD/2
F ỹ0h̃D(x̃0)

)

for some x̃0, ỹ0 ∈ OFnr with x̃0 ≡ x0 (mod m) and ỹ0 ≡ y0 (mod m) and such that
the x-coordinate is not in any valid subdisc of D. Under σ this maps to the point

Q̃ =
(
σ(πF )

edDσ(x̃0)+ σ(zD) , σ (πF )eνD( f )/2σ(ỹ0)σ (h̃D(x̃0))
)
∈ C(Fnr).

Note that the x-coordinate of Q̃ is inσD but not in anyvalid subdisc ofσD, since the set
of valid discs is stable underσ . Thus this newpoint reduces to�σD byProposition 5.23.
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In particular σ maps �D to �σD . Moreover, applying Proposition 5.23 one last time
and noting that σ preserves depths and ν, we find that Q̃ reduces to

(
χ(σ)edD σ̄ (x0)+ βD(σ ), χ(σ )

eνD( f )/2σ̄ (y0)σ̄ (hD(x0))

hσD
(
χ(σ)edD σ̄ (x0)+ βD(σ )

)
)

∈ �σD.

In light of the definition of λD it remains to show that

σ̄ (hD(x0)) = χ(σ)−edDdeg(hD)hσD
(
χ(σ)edD σ̄ (x0)+ βD(σ )

)
.

Writing hσ̄D(x) for the polynomial obtained by applying σ̄ to the coefficients of hD

we wish to prove the polynomial identity

hσ̄D(x) = χ(σ)−edDdeg(hD)hσD
(
χ(σ)edD x + βD(σ )

)
.

Noting that for any z ∈ K̄ we have

σ̄ redD(z) = σ̄
(
z − zD

π
edD
F

)

= χ(σ)−edD (redσD(σ̄ z)− βD(σ )) (6.3)

and that hσ̄D is the monic polynomial whose (multi)set of roots is given by applying σ̄
to the (multi)set of roots of hD , the result follows. ��

6.2 Galois action on the normalisation of components

In what follows, for any cluster s for which D(s) is a valid disc (in particular, for all
principal clusters) we write �s in place of �D(s). Note that by Theorem 5.24 the �s
for s principal account for precisely those components which remain when passing
from the minimal regular model of C/Fnr to the stable model, and by an abuse of
notation we denote the associated component(s) of the stable model by �s also. Here
we describe the Galois action on the normalisation of these components.

Definition 6.4 For a cluster s for which D(s) is valid (so in particular for all principal
clusters) define

λ̃s = νs

2
− ds
∑

s′<s
# |s

′|
2

$.

Define also

�̃s : y2 = cs
∏

odd s′<s
(x − reds(s

′)).
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By Proposition 5.12 this is the normalisation of �s viewed either on the minimal
regular model of C/Fnr, or, for s principal, the stable model of C/Fnr.

Corollary 6.5 (of Theorem 6.2) Let C/K : y2 = f (x) be a hyperelliptic curve satis-
fying the semistability criterion over a finite Galois extension F/K. Let σ ∈ GK , s
a principal cluster, and �s the associated component(s) of the special fibre of either
the minimal regular model, or the stable model, of C/Fnr. Then σ maps �s to �σs.
Moreover, if σ stabilises s then the action of σ on the normalisation �̃s is, for a point
P = (x0, y0) in the variables x, y of Definition 6.4, given by

σ(P) =
(
χ(σ)eds σ̄ (x0)+ βs(σ ), χ(σ )eλ̃s σ̄ (y0)

)
.

Proof Combine Theorem 6.2 with Lemma A.6 (2). ��

6.3 Galois action on the dual graph

As in Sect. 2.1.1 the action of GK on the special fibre of the minimal regular model of
C/Fnr induces an action on its dual graphϒC via the action on components, ordinary
double points, and tangents. Herewe describe this action, beginningwith the following
lemma.

Definition 6.6 (cf. Definition 1.13) Let E denote the set of even clusters which do not
have an übereven parent, excluding R unless R is übereven. For each cluster s ∈ E ,
fix a square root θs of

c f

∏

r /∈s
(zs − r).

Having made this choice define, for each σ ∈ GK and s ∈ E ,

εs(σ ) = σ(θs)

θσs
(mod m).

Lemma 6.7 For each s ∈ E , the above choice θs of square root of c f
∏

r /∈s(zs − r)
determines:

(i) if s is a twin with δs = 1/2, a choice of tangent at the node (redP(s)(s), 0) on
�P(s),

(ii) if s has size 2g, is not übereven, and δs = 1/2 (i.e. D(s) has type II.1) a choice
of tangent at the node at infinity on �s,

(iii) a choice of one of the two points at infinity on �̃s otherwise.

Proof We begin with (iii) which is the simplest case. The points at infinity on �̃s are
(0,±√

cs). Now we compute

cs = θ2s

π
e(νs−|s|ds)
F

(mod m). (6.8)
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By Lemmas 4.2 and 4.9 e(νs − |s|ds) is even, so that our choice of θs determines a
square root of cs and hence a choice of a point at infinity, namely the point

(
0,

θs

π
e(νs−|s|ds)/2
F

(mod m)

)
.

In case (ii) (see (A.3) and Proposition 5.20), the two tangents at the node are similarly
given by the points (0,±√

cs) and we proceed as in case (iii).
Finally, in case (i), (see (A.3) and Proposition 5.20 again) the two tangents are the

points

⎛

⎝redP(s)(s),±
√
cP(s)

∏

odd o<P(s)

(
redP(s)(s)− redP(s)(o)

)
⎞

⎠ ∈ �̃P(s).

This time, we compute

cP(s)
∏

odd o<P(s)

(
redP(s)(s)− redP(s)(o)

)

= θ2s

π
e(νP(s)−2dP(s))
F

⎛

⎜⎜⎜⎝
∏

s′<P(s)
s′ �=s

(
zs − zs′

π
edP(s)
F

)−# |s′|
2 $
⎞

⎟⎟⎟⎠

2

(mod m).

Again e(νP(s) − 2dP(s)) is even (Lemmas 4.2 and 4.9), so our choice of θs deter-
mines a choice of one of the tangents, namely

⎛

⎜⎜⎜⎝redP(s)(s),
θs

π
e(νP(s)−2dP(s))/2
F

∏

s′<P(s)
s′ �=s

(
zs − zs′

π
edP(s)
F

)−# |s′|
2 $

(mod m)

⎞

⎟⎟⎟⎠ .

��
Wenow return to describing the action ofGK onϒC . Let� denote themetric cluster

picture associated to f (x) over F (Example D.2), with associated hyperelliptic graph
G� . By Theorem 5.18 we have ϒ̂C ∼= G� where ϒ̂C is the graph obtained from ϒC

by removing from the vertex set all vertices of genus 0 and degree 2. As explained in
Definition D.15, to each pair ρ = (ρ0, ερ) where ρ0 is a permutation of the set � of
proper clusters preserving sizes, inclusions and relative depths, and ε is a collection of
signs ερ(s) ∈ {±1} for each cluster s ∈ E , there is an associated automorphism G(ρ)
of G� .

Theorem 6.9 Let C/K : y2 = f (x) be a hyperelliptic curve satisfying the semistabil-
ity criterion over a finite Galois extension F/K. Denote by ϒC the dual graph of the
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special fibre of the minimal regular model of C/Fnr and � the metric cluster picture
associated to f (x) over F. Fix a choice of θs for each s ∈ E as in (6.6).

There is an isomorphism of metric graphs ϒ̂C ∼= G� under which the action of any
σ ∈ GK corresponds to the automorphism

(ρ(σ ), (εs(σ ))s∈E )

of G� , where ρ(σ) is the permutation of the proper clusters of � induced by the
natural action of σ on the set of roots of f (x).

Proof Fix an isomorphism ϒ̂C ∼= G� as in Theorem 5.18, so that the isomorphism
identifies the respective hyperelliptic involutions (denoted ι) and induces the canonical
identification of the quotients ϒ̂C/ι and G�/ι detailed there. Note that our choice of
θs for each s ∈ E determines via Lemma 6.7 a choice n+s of (below v� denotes the
vertex of ϒC corresponding to a component �):

• an endpoint of the loop at v�P(s) associated to the node (redP(s)(s), 0) on �P(s) if
s is a twin with δs = 1/2,

• an endpoint of the loop at infinity on v�s when |s| = 2g and δs = 1/2,
• one of the two vertices corresponding to �s if s = R (indeed, note that the points
at infinity of �s lie on different components),

• an edge endpoint at v�s for one of the two edges between vs and vP(s) otherwise
(here if �s consists of two components then by this we mean a choice of an
edge-endpoint for one of the two edges meeting one of two associated vertices).

Composing our chosen isomorphism ϒ̂C ∼= G� with an automorphism of G� of
the form (id, η) for an appropriate choice of η we may assume that the choices
n+s ∈ ϒ̂C (s ∈ E) get identified with the corresponding ‘plus’ choice arising from
the decomposition of Gy into G+

y and G−
y (see Definition D.9 for the definition of

these objects).
Nowfixσ ∈ Gal(K̄/K ) and view it as an automorphismofG� via the identification

above. Since σ fixes �R (or �s if R has size 2g + 2 and a child s of size 2g + 1)
and perserves genera, by (D.17) there is an automorphism τ = (τ0, ετ ) of � such
that σ acts as G(τ ); we will show that τ must be as in the statement of the theorem.
We now determine τ0 and ετ , using the explicit description of automorphisms of this
form afforded by (D.16), to which we also refer for the definition of vertices v±• and
(half-)edges e±• appearing below.

By Theorem 6.2, σ maps �s to �σs so that on G� , σ maps {v±s } to {v±σs} for each
principal cluster s. Similarly, by Theorem 6.2 and 6.3 we see that for a twin t, σ maps
a node (redP(t)(t), 0) on �P(t) to the node (redσ P(t)(σ t), 0) on �σ P(t), so that σ maps
{e±t } onto {e±σ t} for each twin t. It follows that τ0 = ρ(σ) as desired.12

For the signs, fix a cluster s ∈ E with δs �= 1/2 (i.e. case (iii) of Lemma 6.7). Then
n+s is the specified point at infinity on �s. By Lemma A.6 (1) and Corollary 6.5 we

12 Note that a permutation of the proper clusters preserving size and inclusion is determined by its action
on principal clusters and twins.
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have

σ(n+s ) =
{
n+σs

χ(σ)eλs

χ(σ)eds(n+1) · σ(
√
cs)√
cs

= 1

n−σs else,

where 2n + 2 is the degree of the defining polynomial of �s. Using (6.8) and the
definition of λs, we compute

χ(σ)eλs

χ(σ)eds(n+1)
· σ(

√
cs)√
cs

= σ(θs)

θσs
(mod m) = εs(σ ).

Comparing this with the action of G(τ ) on G� detailed in (D.16) we see that ετ (s) =
εs(σ ) as desired.

Finally, for the nodes we compute using Theorem 6.2, Lemma 6.7 and
Lemma A.6 (2) that ετ (s) = εs(σ ) similarly. ��

7 The semistability criterion is equivalent to semistability

Wenowcomplete the proof that the semistability criterion (Definition 1.8) is equivalent
to semistability.

Theorem 7.1 Let C : y2 = f (x) be a hyperelliptic curve over K . Then C/K is
semistable if and only if it satisfies the semistability criterion.

Proof When C/K satisfies the semistability criterion Theorem 5.16 gives an explicit
semistablemodel ofC overOK nr . Since semistabilitymay be checked after unramified
extension it follows that C is semistable over K .

Nowsuppose thatC/K is semistable.Wewill show that K (R)/K is tamely ramified
and that each principal cluster s is fixed by inertia, has ds ∈ Z and νs ∈ 2Z. This is
equivalent to the semistability criterion by Proposition C.4.

As C/K is semistable so is its Jacobian Jac(C)/K [13, Theorem 2.4] whence the
inertia group of K acts unipotently on the 2-adic Tate module of Jac(C) [23, 3.5/3.8].
It follows that K (J [2])/K is tamely ramified. As K (Jac(C)[2]) = K (R) (see e.g.
[11, Lemma 2.1]) K (R)/K is tame.

Now consider the stable model Cst/OK nr (which exists since C/K is assumed
semistable). Fix a tame extension F/K , ramification degree e say, over which C
satisfies the semistability criterion (e.g. a quadratic ramified extension of K (R)/K )
and set IF/K = Gal(Fnr/K nr). By [26, Lemma 10.3.30] the formation of the stable
model commutes with base change, in other words the stable model of C over Fnr is

C′ = Cst ×OKnr OFnr .

In particular, the unique extension of the action of IF/K on C/Fnr to C′ is via the
second factor and becomes trivial upon passing to the special fibre.
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On the other hand, since C satisfies the semistability criterion over F we have an
explicit description of the stable model over OFnr complete with action of IF/K on
its special fibre afforded by Theorem 5.24 and Corollary 6.5. In order that this action
be trivial we see from Corollary 6.5 that each principal cluster must be fixed by IF/K
(and hence the full inertia group of K ) else IF/K would permute components of C ′̄

k
.

Moreover, since the character χ of Definition 6.1 has exact order e when restricted to
IF/K , for each principal cluster s we deduce from Corollary 6.5 that both ds and λ̃s
must be integers. Equivalently ds ∈ Z and νs ∈ 2Z as desired. ��

8 Special fibre of theminimal regular model

Here we collect and present the relevant notation and results from Sects. 4, 5 and 6
for the convenience of the reader. In particular we present the special fibre of the
minimal regular model of C/Fnr in a self-contained manner, that does not refer to the
constructions in [18].

Let C/K : y2 = f (x) be a hyperelliptic curve and F/K a finite Galois extension
over which C becomes semistable. By Theorem 7.1 C/F satisfies the semistability
criterion, so that all the constructions of Sects. 4, 5 and 6 are valid over F .

For the rest of this section we fix the following data.

Notation 8.1 Fix as above a finite Galois extension F/K over which C is semistable
and let πF denote a fixed choice of uniformiser of F . For each proper cluster s, fix a
centre zs ∈ Fnr (possible by Lemma 4.2). Additionally, for every even cluster s �= R
that does not have an übereven parent, and forR if it is übereven, fix a square root θs
of c f

∏
r /∈s(zs − r).

We write e for the ramification degree of F/K and v for the valuation on K̄ nor-
malised with respect to K , so that, in particular, v(πF ) = 1/e.

8.1 Components and characters

Definition 8.2 For σ ∈ GK set

χ(σ) = σ(πF )

πF
mod m.

For principal clusters s define

λ̃s = νs

2
− ds
∑

s′<s
# |s

′|
2

$ and

αs(σ ) = χ(σ)eds, βs(σ ) = σ(zs)− zσs

π
eds
F

mod m, γs(σ ) = χ(σ)eλ̃s .
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If s is either even or a cotwin, define εs : GK → {±1} by

εs(σ ) ≡ σ(θs∗)

θ(σs)∗
mod m.

For all other clusters s, set εs(σ ) = 0.

Remark 8.3 On the inertia group IK < GK the map χ , and therefore the αs and γs as
well, are independent of the choices of F , πF and zs, and are characters IK → k̄×
which are trivial on wild inertia. When restricted to the stabiliser Is, the character γs
has order the prime-to-p part of the denominator of |IK /Is| λ̃s.
Remark 8.4 Note that εs does not depend on the choice of centre zs∗ : if z′s∗ is another
centre and r /∈ s∗ then v(zs∗ − r) < v(zs∗ − z′s∗) so the leading term in the p-adic
expansion of z′s∗ − r is the same as that of zs∗ − r .

When s is even or a cotwin, εs restricts to a character on the stabiliser of s that is
also independent of the choice of the sign of θs∗ . This character is unramified if and
only if |IK /Is∗ |(v(c f )+∑r /∈s∗ dr∧s∗) is even. If s is not a cotwin, this is equivalent to
ord2 |IK /Is|(v(c f )+∑r /∈s dr∧s) ≥ 1. (To see this, first pass to the fixed field of Is,
and then to an odd degree ramified extension that kills the wild inertia action. We then
need to check that whenever s < P(s) with P(s) übereven and s is fixed by inertia,∑

r /∈s dr∧s −
∑

r /∈P(s) dr∧P(s) is even. The latter is dP(s)(|P(s)|− |s|), which is even
by [6, Thm 1.3(iii)].)

Definition 8.5 For principal clusters s define cs ∈ k̄× by

cs = ĉ f

∏

r /∈s
̂(zs − r) mod m.

For proper clusters s set

reds(t) = t−zs
π
eds
F

mod m

for those t ∈ K̄ for which the above formula makes sense. For s′ < s, by reds(s′) we
mean reds(r) for any r ∈ s′.

If s is a principal cluster and eδs �= 1/2 we define the hyperelliptic curve �s/k̄ by

�s : Y 2 = cs
∏

odd o<s

(X − reds(o))
∏

twin t<s
eδt=1/2

(X − reds(t))
2.

If s is principal and eδs = 1/2 we define the curve �s/k̄ to be the glueing of the affine
curves

Y 2 = cs
∏

odd o<s

(X − reds(o))
∏

twin t<s
eδt=1/2

(X − reds(t))
2 (†)
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and

Z2 = csT
2
∏

odd o<s

(1− reds(o)T )
∏

twin t<s
eδt=1/2

(1− reds(t)T )
2

over the subsets Y �= 0 and T �= 0 via Z = YT n+1 where n is half the degree of the
right hand side of (†) (note that this is not the usual chart at infinity).

As in Sect. 5, each�s corresponds to one or possibly two components of the special
fibre of the minimal regular model of C over OFnr . The following theorem describes
how these components fit together: roughly �s and �s′ are linked by chains of curves
isomorphic to P

1
k̄
whenever s′ <s and there is a loop of such curves from �s to itself

for each twin or cotwin t<s or s< t. It also describes the corresponding Galois action
and the reduction map.

Theorem 8.6 Let F/K be an extension over which C is semistable.
(1) Let ϒC be the dual graph of the special fibre of the minimal regular model of
C over OFnr . Then ϒC has a vertex vs corresponding to �s for every non-übereven
principal cluster and two vertices v+s , v−s for each übereven principal cluster s. These
are linked by chains of edges as follows (where we write vs = v+s = v−s whenever s
is not übereven).

Conditions Name From To Length

s′ < s both principal, s′ odd Ls′ vs′ vs
1
2 δs′

s′ < s both principal, s′ even L+
s′ v+

s′ v+s δs′
L−
s′ v−

s′ v−s δs′
s principal, t < s twin Lt v−s v+s 2δt

s principal, s < t cotwin Lt v−s v+s 2δs

Moreover, if R is not principal

R = s1
∐

s2, with s1, s2 principal odd Ls1,s2 vs1 vs2
1
2 (δs1 + δs2 )

R = s1
∐

s2, with s1, s2 principal even L+
s1,s2 v+s1 v+s2 δs1 + δs2

L−
s1,s2 v−s1 v−s2 δs1 + δs2

R = s
∐

t, with s principal even, t twin Lt v−s v+s 2(δs + δt)

(2) If σ ∈ GK then it acts on ϒC by

(i) σ (v±s ) = v±εs(σ )σ (s) ;

(ii) σ (L±
s ) = L±εs(σ )

σ (s) ;
(iii) for t twin or cotwin σ(Lt) = εt(σ )Lσ(t), where −L denotes L with reversed

orientation;
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and the induced permutation on the remaining edges and vertices.
(3) If σ ∈ GK and s is a principal cluster then13 σ maps �s to �σs and

σ |�s(x, y) =
(
χ(σ)eds σ̄ (x)+ βs(σ ), χ(σ )eλs σ̄ (y)

)
∈ �σs,

where λs = νs
2 − ds

∑# |s′|
2 $, the sum taken over s′ < s with eδs′ >

1
2 .

(4) The point (x, y) ∈ C(Fnr ) reduces to �s if and only if:

(i) v(x − zs) ≥ ds and reds(x) �= reds(s′) for any proper cluster s′ < s, or
(ii) |s| ≥ 2g + 1 and v(x − zs) < ds.

Explicitly, for one of these points14,

(x, y) �→

⎛

⎜⎜⎜⎝reds(x), π
− eνs

2
F y ·

∏

s′<s
eδs′> 1

2

(
reds(x)− reds(s

′)
)−# |s′|

2 $

⎞

⎟⎟⎟⎠ .

Proof (1) The dual graph of the special fibre is given by Theorem 5.18 and
Remark D.11 gives the explicit description.

(2) follows by combining Theorem 6.9 with (D.16).
(3) This is Proposition 6.2.
(4) This is Proposition 5.23.

��
Corollary 8.7 Let C/K be a semistable hyperelliptic curve. Then the number of com-
ponents in the special fibre of its minimal regular model over OK nr is

mC =
∑

s odd,
|s|�=1, 2g+1

δs

2
+
∑

s �=R,
even

2δs + 1− rk H1(ϒC ,Z).

Proof This follows from the usual Euler characteristic formula for H1 of a graph, and
counting the total number of edges in part (1) of the theorem. ��

We now describe the normalisation of each �s as well as the induced Galois action.

Theorem 8.8 For a principal cluster s the normalisation of �s is given by

�̃s : Y 2 = cs
∏

odd o<s

(X − reds(o)).

13 recall that σ acts as in (2.17) on Cmin,k̄ .
14 in (ii) if |s| = 2g + 2 then the point reduces to one of the two points at infinity on �s, see Proposi-
tion 5.23.(i) to determine which one.
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(i) If σ ∈ GK the associated map �̃s to �̃σs is given by

σ |�̃s(x, y) = (αs(σ )σ (x)+ βs(σ ), γs(σ )σ (y)) .

(ii) If σ ∈ Is, the geometric automorphism of �̃s(k̄) given by σ

swaps two points at infinity if εs(σ ) = −1,
fixes two points at infinity if εs(σ ) = 1,
fixes the unique point at infinity if εs(σ ) = 0.

(iii) If the point P = (x, y) ∈ C(Fnr ) reduces to P̄ ∈ �s then P̄ corresponds to the
point

(
reds(x), π

− eνs
2

F y ·
∏

s′<s

(
reds(x)− reds(s

′)
)−# |s′|

2 $
)

∈ �̃s.

Proof (i) Combine Theorem 8.6 (3) and Lemma A.6 (2).
(ii) The case where there is a unique point at infinity is clear so suppose otherwise.

Theorem 6.9 gives the case s = s∗.
For the case s∗ �= s, note that by considering the action of σ on the components
of the special fibre of the minimal regular model of C (c.f. Theorem 8.6 (2)),
one sees that the points at infinity on �̃s are swapped by σ if and only if the
points at infinity on �̃s∗ are, if and only if εs = −1.

(iii) The description of the normalisation of �s is standard and the normalization
map between �̃s and �s is given by

(x, y) �→

⎛

⎜⎜⎜⎝x, y ·
∏

twin t<s
eδt= 1

2

(x − reds(t))

⎞

⎟⎟⎟⎠

(c.f. A.2). The claimed formula now follows from Theorem 8.6 (4).
��

Remark 8.9 We note that the formula for the action of σ ∈ GK becomes particularly
simple in the following two settings:

(i) if s is a principal cluster and σ ∈ Is then σ acts on �̃s as the geometric auto-
morphism

(x, y) �→ (αs(σ )x + βs(σ ), γs(σ )y) .

(ii) Suppose s is a principal cluster, F = K (so that C/K is semistable) and that
σ ∈ Gs. Then χ(σ) = id. If (as is possible by Lemma B.1) we additionally pick
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our centre zs for s to lie in Ks, the subfield of K sep fixed by Gs, then we also
have βs(σ ) = 0. Thus σ acts on �̃s(k̄) via

σ(x, y) = (σ̄ (x), σ̄ (y))

where σ̄ denotes the automorphism of k̄ induced by σ . (This is a manifestation
of the fact that, when C/K is semistable, all our constructions are Gal(K nr/K )-
equivariant.)

9 Homology of the dual graph of the special fibre

The homology of the dual graph of the special fibre forms a part of the Galois repre-
sentation of C and determines several arithmetic invariants (see (2.18), Theorem 2.20
and Lemma 2.22). In this section we give a description of the homology in terms
of clusters. In the notation of Theorem 8.6, the basic observation is that every even
non-übereven cluster s starts off two chains L+

s and L−
s that eventually join back up

(normally at vP(s∗)) to form a loop in ϒC .

Definition 9.1 Let C/F be a semistable hyperelliptic curve and ϒC the dual graph of
the special fibre of its minimal regular model over OFnr as in Theorem 8.6.

Let s �= R be an even non-übereven cluster. If s∗ �= R, we define the 1-chain �s
in C1(ϒC ,Z) to be the shortest path from vP(s∗) to itself that passes through vs and
goes through the minus part of the graph before the plus part of the graph. If s∗ = R,
we define �s to be the shortest path from v−R to v+R that passes through vs. Here

• if s = t is a twin or P(s∗) = t is a cotwin, we write vt for the point in the middle
of Lt;

• if s∗ = R = s1
∐

s2 with si both principal even, we write v+R and v−R for the
points in the middle of L+

s1,s2
and L−

s1,s2
;

• if s∗ = R = t
∐

s with t a twin and s principal even, we write v+R and v−R for the
points on Lt of distance δs from v+s and v−s , respectively.

Remark 9.2 �s is a loop (cycle) in ϒC unless s∗ = R. In the latter case, it is a “half
loop” in the sense that if �s, �s′ are two half loops then �s − �s′ is a loop.

Using the explicit description of the dual graph it is not hard to check that the loops
described above form a basis for the homology ofϒC and to track the action of Galois
on them. This gives the following result on H1(ϒC ,Z).

Theorem 9.3 Let C/K be a hyperelliptic curve and let F/K be a Galois extension
over which C is semistable. LetϒC be the dual graph of the special fibre of the minimal
regular model of C overOFnr . Let A be the set of even non-übereven clusters excluding
R, and let B be the subset of clusters s ∈ A such that s∗ = R. Then

(1) rkZ(H1(ϒC ,Z)) =
{
#A ifR is not übereven,
#A − 1 otherwise.
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(2)

H1(ϒC ,Z) =
{∑

s∈A
as�s

∣∣∣ as ∈ Z,
∑

s∈B
as = 0

}
,

(3) the length pairing is given by

〈�s1 , �s2〉 =
⎧
⎨

⎩

0 if s∗1 �= s∗2,
2(d(s1∧s2) − dP(s∗1)) if s∗1 = s∗2 �= R,
2(d(s1∧s2) − dR) if s∗1 = s∗2 = R.

(4) for σ ∈ GK ,

σ(�s) = εs(σ )�σ(s).

Proof This follows fromTheorem6.9,which describes theϒC with the inducedGalois
action, and TheoremD.18 and Remark D.19, which describe the associated homology
group. ��

Corollary 9.4 Let C/K be a semistable hyperelliptic curve. Let A be the set of even,
non-übereven clusters excluding R. Then the conductor exponent of Jac C is

nC = #A −
{

1 R übereven,
0 otherwise.

Proof Since J = JacC is semistable,

nC = dim(V� J )− dim(V�(J )
I ) = rkZ(H1(ϒC ,Z))

by (2.18). The result follows from Theorem 9.3 (1). ��

Notation 9.5 Let G be a group acting on a set X via the signed15 permutation (X , ε).
For a ring Rwewrite R[X , ε] for the corresponding signed permutation representation,
and R[X , ε]0 for its sum zero part.

Corollary 9.6 Let F/K be an extension over which C is semistable. Let A be the set
of even non-übereven clusters excluding R, and let B be the subset of clusters s ∈ A
such that s∗ = R.

(1)

H1(ϒC ,Z) ∼= Z[A B, ε] ⊕ Z[B, ε]0,
15 i.e. G acts on {+x,−x |x ∈ X} by g(±x) = ±εx (g)g(x) with x �→ g(x) a G-action and εx (g) ∈ {±}
satisfying εx (gh) = εhx (g)εx (h).
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(2)

H1
ét(C,Ql)t ∼= Ql [E, ε] � εR ∼=

⊕

s

IndGK
Stab sεs � εR,

where E is the set of even non-übereven clusters and the sum is taken over repre-
sentatives of GK -orbits on E.

Proof (1) Follows directly from parts (2) and (4) of Theorem 9.3.
(2) Tensoring (1) with Ql and using (2.18) we get

H1
ét(C,Ql)t ∼= Ql [A B, ε] ⊕ Ql [B, ε]0

∼= Ql [A B, ε] ⊕
{
0 B=∅
Ql [B,ε]�εR B �=∅

∼= Ql [A, ε] �
{
0 B=∅,
εR B �=∅

∼= Ql [E, ε] � εR,

where E is the set of even non-übereven clusters and the last isomorphism uses the
fact that B is empty if and only ifR is not übereven.

Observe that when G acts transitively on X and (X , ε) is a signed permutation then
Ql [X , ε] ∼= IndGStabt εt for any point t ∈ X ; here σ(t) = εt (σ )t for σ ∈ Stabt . Hence

H1
ét(C,Ql)t ∼=

⊕

s

IndGK
Stab sεs � εR,

where the sums are taken over representatives of GK -orbits on E . ��

10 Galois representation

Having obtained an explicit description of the special fibre of the minimal regular
model of C over the field where it becomes semistable, together with the action of
GK , we are now in a position to extract the action of GK on H1

ét(C) = H1
ét(CK̄ ,Ql).

Fix a prime l �= char k. As in Sect. 8, we take

• C/K a hyperelliptic curve;
• F/K a finite Galois extension over which C becomes semistable;
• �s components of the special fibre Cmin,k̄ of the minimal regular model of C over
OFnr (see Definition 8.5);

• GK ü Cmin,k̄ Galois action of (2.17); it induces the action of the stabiliser Gs on

�s, on its normalisation �̃s and on the étale cohomology group H1
ét(�̃s).

Theorem 10.1 Let C/K be a hyperelliptic curve. Let H1
ét(C) = H1

ét(C)ab⊕H1
ét(C)t⊗

Sp2 be the decomposition into ‘toric’ and ‘abelian’ parts. Then

H1
ét(C)t =⊕s Ind

GK
Gs
εs � εR,

H1
ét(C)ab =⊕s Ind

GK
Gs

H1
ét(�̃s).
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The first sum is taken over representatives of GK -orbits of even non-übereven clusters.
The second sum is taken over representatives of GK -orbits of principal non-übereven
clusters. For every such cluster s, there is an isomorphism of Is-modules

H1
ét(�̃s)

∼= γ̃s ⊗ (Ql [s̃] � 1) � εs,

where γ̃s : Is → Q̄
×
l is any character whose order is the prime-to-p part of the

denominator of |IK /Is| λ̃s.
Proof ByTheorem2.18wehave the decomposition and the claim regarding the abelian
part. The statement about the toric part is Corollary 9.6(2). The last claim is [16, Thm.
1.2] combinedwith Theorem8.8(i) andRemark 8.3; note that [16, Thm. 1.2] is phrased
for C- rather then Ql -representations, but that does not affect the result. ��
Remark 10.2 When C/K is semistable the full action of Gs (rather than just that of
Is) on H1

ét(�̃s) may be explicitly determined, as we now explain. For a proper cluster
s, write Ks for the subfield of K sep fixed by Gs and denote by ks its residue field.
Suppose (as is possible by Lemma B.1) that for each proper cluster s we have fixed
our choice of centre zs to lie in Ks. Then for any principal cluster s the coefficients
of

�̃s : y2 = cs
∏

odd o<s

(x − reds(o))

lie in ks. Moreover, by Remark 8.9 (ii) the action of Gs on �̃s(k̄) (arising from (2.14))
is simply given by (x, y) �→ (σ̄ (x), σ̄ (y)) where σ̄ denotes the automorphism of k̄
induced by σ (whence Gs acts through Gal(K nr

s /Ks)). In particular, upon identifying
Gal(K nr

s /Ks) with Gal(k̄/ks), the induced action on H1
ét(�̃s) is precisely the usual

action of Gal(k̄/ks) on H1
ét(�̃s) coming from viewing �̃s as a curve defined over ks

given by the above formula. One may then recover the Frobenius eigenvalues for this
action on H1

ét(�̃s) from point counts on �̃s over extensions of ks in the usual way.

Theorem 10.3 Let C/K be a hyperelliptic curve. Write JacC for its Jacobian. Then

(1) C is semistable⇔ JacC semistable⇔ C/K satisfies the semistability criterion.
(2) C has good reduction⇔ K (R)/K is unramified, there are no proper clusters of

size < 2g + 1 and νs ∈ 2Z for the unique principal cluster.
(3) C has potentially good reduction⇔ there are no proper clusters of size< 2g+1.
(4) C is tame ⇔ JacC is tame ⇔ K (R)/K is tame.
(5) JacC has good reduction⇔ K (R)/K is unramified, all clusters s �= R are odd,

and principal clusters have νs ∈ 2Z.
(6) JacC has potentially good reduction ⇔ all clusters s �= R are odd.
(7) The potential toric rank of JacC equals the number of even non-übereven clusters

excluding R, less 1 ifR is übereven.
(8) JacC has potentially totally toric reduction⇔ every cluster has at most two odd

children.
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Proof (1) As g ≥ 2, C is semistable if and only if its Jacobian is [13, Thm. 1.2]. The
equivalence with the semistability criterion is proved in Theorem 7.1.

(2),(3) Using that good reduction is in particular semistable, these follow from (1)
and Theorem 8.6 which gives the description of the special fibre for semistable curves
in terms of principal clusters.

(4) Follows directly from (1).
(5),(6) Recall that JacC has good reduction if and only if inertia IK acts trivially

on the l-adic Tate module Vl JacC (for some l �= p), by the Néron-Ogg-Shafarevich
criterion [35, Sect. 2].NowapplyTheorem10.1 that gives the inertia action onVl JacC .

(7),(8) Apply Theorem 10.1. For (8), note that the condition ‘at most two odd
children’ is equivalent to all components �s from principal clusters having genus 0. ��

11 Conductor

In this section we derive a formula for the conductor of a hyperelliptic curve C/K in
terms of clusters (Theorem 11.3).

Lemma 11.1 Let k be a field of characteristic �= 2, and C/k a hyperelliptic curve
given by

Y 2 = c
∏

r∈R
(X − r), R ⊂ k̄.

Let G ⊂ Autk C be an affine group of automorphisms acting as

g(X) = α(g)X + β(g), g(Y ) = γ (g) Y (g ∈ G).

Let γ̃ : G → Q̄
×
l be a character with ker γ̃ = ker γ . We have:

• If ord2(order(γ )) > ord2(order(α)) then γ̃⊗(Ql [R]�1) has trivial G-invariants.
• If ord2(order(γ )) ≤ ord2(order(α)) then

γ̃ ⊗ (Ql [R] � 1) ∼= Ql [R] �
{
1 if γ has odd order,
γ̃ if γ has even order,

as G-modules.
• If |R| ≤ 2, then γ̃ ⊗ (Ql [R] � 1)⊕ 1 is the permutation representation of G on
the (one or two) points at infinity of C.

Proof If ord2(order(γ )) > ord2(order(α)), thenQl [R]�1 contains no 1-dimensional
characters of order equal to the order of γ . Therefore γ̃ ⊗ (Ql [R] � 1) has no G-
invariants.

Suppose ord2(order(γ )) ≤ ord2(order(α)). Then we are in the setup of [16, Thm
4.1], and by [16, Lemma 4.4 (2)] we have

γ̃ ⊗ (Ql [R] � 1) ∼= Ql [R] �
{
1 if Ql [R] contains an irregular orbit of G,
γ̃ if Ql [R] ∼= Ql [G]⊕r for some r .
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In the first (irregular orbit) case, γ 2 = α by [16] Prop. 2.2 (5b), and it follows that
γ has odd order. In the second (regular) case, γ 2 = 1 by [16] Prop. 2.2 (5a). Hence,
either γ = 1 and the claim is trivial, or γ has even order.

The last claim follows from [16, Thm 4.1], since C has genus 0 and trivial H1
ét in

this case. ��
Now we go back to the setting of a hyperelliptic curve C/K . Recall from Defi-

nition 8.2 that we defined λ̃s and characters αs, βs and γs for all principal clusters
s. In what follows we extend these definitions to all proper clusters s by the same
formulae.16

Lemma 11.2 Let s be a proper non-übereven cluster, and γ̃s : Is → Q̄
×
l a character

with ker γ̃s = ker γs.

• If ord2 denom(|I/Is|λ̃s) > ord2 denom(|I/Is|ds) then γ̃s⊗(Ql [s̃]�1) has trivial
Is-invariants.

• If ord2 denom(|I/Is|λ̃s) ≤ ord2 denom(|I/Is|ds) then

γ̃s ⊗ (Ql [s̃] � 1) ∼= Ql [s̃] �
{
1 if ord2(|I/Is|λ̃s) ≥ 0,
γ̃s if ord2(|I/Is|λ̃s) < 0,

as Is-modules.
• If |s̃| = 2 and s is not a cotwin, then γ̃s ⊗ (Ql [s̃] � 1) = εs.
• IfR is a cotwin of size2g+2, then γ̃R⊗(Ql [R0]�1) = ε0R, where ε0R(σ ) =

σ(
√
c f )√
c f

for σ ∈ IK .

Proof Let F be a finite Galois extension over which C becomes semistable, and such
thatR ⊂ F . In what follows we consider all representations as those of Is. First let s
be a principal cluster. By Theorem 8.8, we have the curve

�̃s : y2 = cs
∏

odd s′<s
(x − reds(s

′))

over k̄ together with Is-action

g(X) = αs(g)X + βs(g), g(Y ) = γs(g) Y (g ∈ Is).

Observe that order(γs) is the prime-to-p part of the denominator of |I/Is|λ̃s, and
order(αs) is the prime-to-p part of the denominator of |I/Is|ds. The claim follows
from Lemma 11.1 and Theorem 8.8(ii).

When s is not principal we argue similarly. SinceR ⊂ F the disc D(s) (theminimal
disc cutting out s, see Notation 4.1) is valid in the sense of Definition 4.4. In particular
this disc contributes a component �D(s) to the special fibre of the minimal regular

16 The formulae of Definition 8.2 only make sense when eds and eλ̃s are integers. However this is always
the case when F is suitably large and (cf Remark 8.3) these characters, when defined, are independent of
the choice of F .
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model of C over OFnr (see Proposition 5.20; if eνs is not even, enlarge F to make
it so). The normalisation of this component is given by the same equation as for s
principal as is the action of Is (see Proposition 6.2). Now we conclude as before; that
εs corresponds to the action on the points at infinity follows from the explicit action of
Is on the dual graphϒC in Thereom 8.6(2) in the non-cotwin case, and by the formula
for �D(R) in the cotwin case. ��
Theorem 11.3 (Conductor) Let C/K be a hyperelliptic curve. Decompose the con-
ductor exponent of JacC into the tame part and a wild part, nC = nC,tame + nC,wild.
Then

nC,wild =
∑

r∈R//GK

vK (�K (r)/K )− [K (r) : K ] + fK (r)/K ,

and nC,tame = 2g − dim H1
ét(C)

IK with

dim H1
ét(C)

IK = #
{
s � R odd

∣∣ ξP(s)(λ̃P(s)) ≤ ξP(s)(dP(s))
}
/IK

− #
{
s proper non-übereven

∣∣ ξs(λ̃s) = 0
}
/IK

−
{

1 if |R| is even and v(c f ) is even,
0 otherwise;

here ξs(a) = ord2(b) where b is the denominator of |IK /Is|a, with ξs(0) = 0.

Proof (Tame part) Let ε0R(σ ) = σ(
√
c f )√
c f

for σ ∈ IK if R is even, and the zero

representation if R is odd. Note that ε0R is the same as εR, except when R is a
cotwin.

By Theorem 1.20 we have to compute the dimension of inertia invariants on

H1
ét(C)ab ⊕ H1

ét(C)t ⊗ Sp2

=
⊕

s∈P
IndIKIs (γ̃s ⊗ (Ql [s̃] � 1)� εs)⊕ (Sp2 ⊗(

⊕

s∈E
IndIKIs εs � εR)),

where P and E are sets of IK -orbit representatives on principal non-übereven clusters
and on even non-übereven clusters, respectively.

By Lemma 11.2 we can expand the first sum to

H1
ét(C)ab =

⊕

s∈T
IndIKIs (γ̃s ⊗ (Ql [s̃] � 1)� εs)⊕ εR � ε0R,

where T is a set of representatives of IK -orbits on all proper non-übereven clusters
excluding cotwins of odd size. Since εs is the zero representation for odd clusters
(except cotwins), we can similarly expand the second sum to

H1
ét(C)t = Sp2 ⊗(

⊕

s∈T
IndIKIs εs � εR),
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Taking IF invariants on H1
ét(C)ab ⊕ H1

ét(C)t ⊗ Sp2 replaces Sp2 by 1, so we are
left with IF/K -invariants on

⊕

s∈T
IndIKIs (γ̃s ⊗ (Ql [s̃] � 1)) � ε0R.

Note that if s is a cotwin of odd size then Ql [s̃] is the trivial representation so this
expression is the same as

⊕

s∈S
IndIKIs (γ̃s ⊗ (Ql [s̃] � 1)) � ε0R,

where S is a set of representatives of IK -orbits on proper non-übereven clusters. By
Frobenius reciprocity, we find

dim H1
ét(C)

IK =
∑

s∈S
〈1, γ̃s ⊗ (Ql [s̃] � 1)〉Is − 〈1, ε0R〉IK .

Let S0 ⊂ S be the set of those clusters for which

ξs(λ̃s) ≤ ξs(ds).

By Lemma 11.2, γs ⊗ (Ql [s̃] � 1) has no Is-invariants if s ∈ S S0. Otherwise, by the
same lemma,

γs ⊗ (Ql [s̃] � 1) ∼= Ql [s̃] � 1 or Ql [s̃] � γs,

depending on whether ξs(λ̃s) is = 0 or > 0, respectively. Therefore,

dim H1
ét(C)

IK =
∑

s∈S0
〈1,Ql [s̃]〉Is − #{s ∈ S0 | ξs(λ̃s) = 0} − 〈1, ε0R〉.

Note that

〈1, ε0R〉 =
{

1 if |R| is even and v(c f ) is even,
0 otherwise,

is the last term in the statement. Write Us for the set of those odd clusters r such that
P(r) lies in the IK -orbit of s. Then

∑

s∈S0
〈1,Ql [s̃]〉Is =

∑

s∈S0
〈1,Ql [Us]〉IK

and

⋃

s∈S0
Us = {r � R odd

∣∣ ξP(s)(λ̃P(s)) ≤ ξP(s)(dP(s))
}
.
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Counting IK -orbits gives the claim.
(Wild part) By the standard description of the 2-torsion of Jacobians of hyperelliptic

curves (see e.g. Cornelissen [11, Lemma 2.1]),

(JacC)[2] ∼= F2[R] �
{
1 2g+1 odd,
1⊕1 2g+2 even,

as GK -modules. Let W be the wild inertia subgroup of GK . Hence

V2 JacC ∼= Q2[R] �
{
1 2g+1 odd,
1⊕1 2g+2 even,

as W -modules, since W acts on them through a finite group of odd order. (Represen-
tation theory modulo p agrees with complex representation theory for finite groups of
order prime to p.)

The left-hand side has the same wild part of the conductor as H1
ét(C). For r ∈ R

write Xr for its GK orbit. The conductor of the right-hand side is

nQl [R] =
∑

r∈R//GK

nQl [Xr ] =
∑

r∈R//GK

vK (�K (r)/K ),

and its tame part is

nQl [R],tame =
∑

r∈R//GK

[K (r) : K ]−dimQl [Xr ]IK .

Because dimQl [Xr ]IK is the number of IK -orbits on Xr , which is the residue degree
of K (r)/K , we have

nQl [R],wild =
∑

r∈R//GK

vK (�K (r)/K )−[K (r) : K ]+ fK (r)/K .

��

12 Deficiency

In this section we explain how to see whether a semistable hyperelliptic curve is
deficient in terms of its cluster picture. We first recall some standard results regarding
deficiency of curves (see e.g. [30] Sect. 8).

Definition 12.1 Let X/K be a geometrically integral, smooth and proper curve of
genus g. Then X is deficient over K if and only if it has no rational divisor of degree
g − 1; equivalently, the index I2 does not divide g − 1, where

I2 = gcd
{[K (P) :K ] | P ∈ X(K̄ )

}
.
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Lemma 12.2 Let X/K be a geometrically integral, smooth and proper curve of genus
g. Let Y1, ...Yr denote the components of the special fibre of the minimal regular model
of X over OK , and d1, ..., dr their multiplicities. Let

ei = [k̄ ∩ k(Yi ) : k] = length of Gk-orbit of Yi

and

I3 = gcd{di ei | i = 1, ..., r}.

Then I2 = I3.

Proof This is Remark 1 after Lemma 16 in [30]. ��
Lemma 12.3 Let C/K be a hyperelliptic curve of genus g. The following are equiva-
lent:

(1) C is deficient over K ,
(2) C has even genus and has no rational point over any odd degree extension of K ,
(3) C has even genus and every component of the special fibre of its minimal regular

model has either even multiplicity or a Gk-orbit of even length.

Proof Since C is hyperelliptic, it has either one or two points at infinity. In particular,
it has a rational divisor of degree 2 so I2 = 1 or I2 = 2. Hence if g is odd then C is
not deficient.

1 ⇔ 2 is clear from Definition 12.1.
1 ⇔ 3 is clear from Lemma 12.2. ��

Theorem 12.4 Let C/K be a semistable hyperelliptic curve. Then C is deficient if and
only if it has even genus and either

(1) R = s1
∐

s2 with s1, s2 odd Gk-conjugate clusters, and δs1 is odd, or
(2) R is übereven with εR(Frob) = −1 and for all non-übereven s such that s∗ = R,

either ds /∈ Z or the Frob-orbit of s has even size, or
(3) R is a cotwin with a principal übereven child r with εr(Frob) = −1, and for all s

such that s∗ = r, either ds /∈ Z or the Frob-orbit of s has even size.

Proof Since C/K is semistable, all the components of the special fibre of its minimal
regular model have multiplicity 1. Thus, by Lemma 12.3, C is deficient if and only if
every component has a Gk-orbit of even length.

The result follows from the explicit description of the dual graph of the special
fibre of the minimal regular model of C together with the action of Frobenius given
in Theorem 8.6. From the description of the Frobenius action on the vertices vs, v±s
and the various chains of edges, we see that all components will have even-length
orbits under Frobenius if and only if: i) every principal non-übereven cluster has an
even-length orbit under Frobenius, ii) every principal übereven cluster s either has
an even-length orbit or εs(Frob) = −1, iii) every twin and cotwin t either has an
even-length orbit or εt(Frob) = −1 and dt /∈ Z, iv) ifR = s1

∐
s2 is a disjoint union

123



Arithmetic of hyperelliptic curves...

of two even clusters then ε(R) = −1, v) if R = s1
∐

s2 is a disjoint union of two
proper odd clusters then 1

2 (δs1+δs2) is odd and s1 and s2 are swapped by Frobenius.
Since R itself cannot have a non-trivial orbit under Frobenius, it follows that it

must either be a union of two odd clusters, übereven or a cotwin (and, in the cotwin
case, its principal child must similarly be übereven). It follows by inspection that one
of (1), (2) and (3) must hold for the curve to be deficient.

For the converse, observe that if a cluster s has an ancestor with an even-length
Frobenius orbit, then so does s itself. In particular (1) automatically forces (i)–(v) to
hold. Similarly, if (2) (respectively (3)) holds, then every proper cluster swith s∗ �= R
(respectively s∗ �= r) will necessarily have a non-übereven ancestor a with a∗ = R
(respectively a = r), and, since a is not a twin or cotwin, da ∈ Z by the semistability
criterion. Thus a must have a Frobenius-orbit of even length, and hence so does s. It
follows that if either (2) or (3) holds, then so do (i)–(iv), and the curve is deficient. ��

13 Integral weierstrass models

As we shall see in Sect. 13–17, cluster pictures are very well suited for studying
Weierstrass equations of hyperelliptic curves, including discriminants and minimal
Weierstrass equations. We begin by a criterion for checking whether a Weierstrass
equation is integral, that is whether f (x) ∈ OK [x]. Since the cluster picture of a
polynomial does not change under a substitution x �→ x − t , it is clearly not possible
to determine whether f (x) ∈ OK [x] from the cluster picture. However, up to such
shifts in the x-coordinate, this turns out to be possible.

Recall first the definition of an (abstract) cluster picture:

Definition 13.1 LetR be a finite set,� a collection of non-empty subsets ofR (called
clusters), and ds ∈ Q to every s ∈ � of size > 1 (called the depth of s). Then � (or
(�,R, d)) is a cluster picture if

(1) Every singleton is a cluster, and R is a cluster.
(2) Two clusters are either disjoint or contained in one another.
(3) dt > ds if t � s.

Two cluster pictures (�,R, d) and (�′,R′, d ′) are isomorphic if there is a bijection
φ : R → R′ that induces a bijection from � to �′ and ds = d ′

φ(s). We say a group G

acts on (�,R, d) if it acts by isomorphisms17.

We refer the reader to Table 6 in Appendix E for our standard notation for clusters,
including the notions of child/parent and s ∧ s′.

Definition 13.2 Let (�,R, d) be a cluster picture with an action ofGK , and let n ∈ Z.
We say that the pair (�, n) is integral if either

• n ≥ 0 and dR ≥ 0, or

17 This is subtly different from the action of a group by automorphisms on metric cluster pictures, which
we use specifically for semistable curves; see Definition D.4.
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• there is a GK -stable proper cluster s with ds ≤ 0 and

n + (|s|−|t|)ds +
∑

r /∈s dr∧s ≥ 0

for some t which is either empty or a GK -stable child t < s with either |t| = 1 or
dt ≥ 0.

Theorem 13.3 Let C : y2 = f (x) be a hyperelliptic curve over K , and let (�,R, d)
be the associated cluster picture.

(1) If f (x) ∈ OK [x] then (�, v(c f )) is integral.
(2) Conversely, if (�, v(c f )) is integral and GK acts tamely on R then f (x − z) ∈

OK [x] for some z ∈ K.

Lemma 13.4 Let f (x) ∈ K [x]. Then f (x) ∈ OK [x] if and only if

∑

r∈R
min{0, v(r)} ≥ −v(c f ).

Proof f (x) ∈ OK [x] if and only if every point in the Newton polygon of f (x)
c f

lies
above −v(c f ). Equivalently the sum of the positive slopes is less than or equal to
v(c f ), i.e.

∑
r∈Rmin{0, v(r)} ≥ −v(c f ). ��

Proof of Theorem 13.3 (1) As f (x) ∈ OK [x], clearly v(c f ) ≥ 0, so we may suppose
dR < 0. If 0 is not a centre for R, then every r ∈ R has v(r) < dR, so that by
Lemma 13.4

|R|dR >
∑

r∈R
min{0, v(r)} ≥ −v(c f ).

Thus, taking s = R and t = ∅, shows that (�, v(c f )) is integral.
Henceforth suppose that dR < 0 and that 0 is a centre forR. Let s be the smallest

proper cluster with centre zs = 0 and depth ds ≤ 0 and let t = {r ∈ s | v(r) > ds}.
Note that, by minimality of s, t is either empty or a child of s (with dt ≥ 0 if |t| > 1).
In particular v(r) < ds ≤ 0 for every r /∈ s, and v(r) = ds ≤ 0 for every r ∈ s t.
Thus

(|s| − |t|)ds +
∑

r /∈s
dr∧s =

∑

r∈s t

ds +
∑

r∈t
0+
∑

r /∈s
dr∧s =

=
∑

r∈s t

v(r)+
∑

r∈t
0+
∑

r /∈s
v(r) ≥

∑

r∈R
min{0, v(r)} ≥ −v(c f ),

where the last step comes from Lemma 13.4. Finally, note that s and t are GK -stable,
and that either |t| ≤ 1 or t < s with dt ≥ 0. The result follows.

(2) If dR ≥ 0, by Lemma B.1 we can pick a centre z = zR ∈ K for R. Then
the roots of f (x − z) are all integral. Since by integrality v(c f ) ≥ 0, we must have
f (x − z) ∈ OK [x], as required.
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If dR < 0, consider s and t as in the definition of integrality of (�, v(c f )). If t �= ∅,
by Lemma B.1 we can pick a centre z = zt = zs ∈ K for t and s. If t is empty, pick
z = zs ∈ K to be a centre for s, using the same lemma. Shifting x to x − z, we may
thus assume that zs = 0 is a centre for s, and that zt = 0 if t �= ∅. By assumption,
ds ≤ 0, so we have v(r) < ds ≤ 0 for all r /∈ s; moreover, ds ≤ v(r) for all r ∈ s,
and 0 ≤ v(r) for r ∈ t. Hence

−v(c f ) ≤ (|s| − |t|)ds +
∑

r /∈s
dr∧s = |s t|ds +

∑

r /∈s
v(r)

=
∑

r∈s t

ds +
∑

r∈t
0+
∑

r /∈s
v(r) ≤

∑

r∈R
min{0, v(r)}.

The result follows from Lemma 13.4. ��

We record a further result that will be useful for understanding the minimal Weier-
strass equation of a hyperelliptic curve. In view of Theorem 13.3 it gives a simple
criterion for checking whether pn f (x − z) has integral coefficients for some z ∈ K ,
provided all the roots of f (x) lie in K .

Lemma 13.5 Let � be a cluster picture with trivial GK -action, such that ds ∈ Z for
every cluster s and dR ≤ 0. Let n be the minimal integer which makes (�, n) integral.

(i) Then n=mint(−∑r /∈t dr∧t), where t ranges over all clusters with dP(t)≤0 that
are either singletons or have dt > 0.

(ii) If there is a cluster of size ≥ |R|
2 and depth ≥ 0 then n = −∑r /∈t dr∧t, where t

is the maximal such cluster (either of two, if there are two such).
(ii’) If there is a cluster of size ≥ |R|

2 and depth > 0 then n = −∑r /∈t dr∧t, where t
is the maximal such cluster (either of two, if there are two such).

Proof If dR = 0 then n = 0 and the results follow directly from the definition, so we
may suppose that dR < 0. Note that for t < s,

(|s| − |t|)ds +
∑

r /∈s
dr∧s =

∑

r∈s t

ds +
∑

r /∈s
dr∧s =

∑

r /∈t
dr∧s =

∑

r /∈t
dr∧t.

(i) Suppose that s and t are the clusters from Definition 13.2 corresponding to n.
Recall that GK acts trivially, so all clusters are GK -stable. If t = ∅ then s
cannot have a child s′ with ds′ ≤ 0, since

∑
r∈R dr∧s <

∑
r∈R dr∧s′ , and

so n is not the minimal possible. Thus if t = ∅, then every child t′ < s is
either a singleton or has dt′ > 0, and has (|s|−|t|)ds ≤ (|s|−|t′|)ds and hence
n + (|s|−|t′|)ds +∑r /∈s dr∧s ≥ 0. In other words, we may assume that t �= ∅.
The required formula now follows.

(ii) If dt = 0 then for any child t′ < t we have
∑

r /∈t dr∧t =∑r /∈t′ dr∧t′ . If dt > 0
then by maximality dP(t) ≤ 0. In either case, n ≤ −∑r /∈t dr∧t by (i).
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If s � t is a cluster with dP(s) ≤ 0 then necessarily |(s ∧ t) t| ≤ R
2 ≤ |t| and

∑

r /∈s
dr∧s =

∑

r /∈s∧t
dr∧(s∧t) +

∑

r∈(s∧t) s
dr∧s ≤

∑

r /∈s∧t
dr∧(s∧t) + |t|ds∧t

≤
∑

r /∈s∧t
dr∧(s∧t) + |(s ∧ t) t|ds∧t ≤

∑

r /∈s∧t
dr∧(s∧t) +

∑

r∈(s∧t) t
dr∧t =

∑

r /∈t
dr∧t.

Hence t gives the optimal bound in the expression in (i).
(ii’) Same as (ii) without the dt = 0 case.

��

14 Isomorphisms of curves and cluster pictures

Different models of the same hyperelliptic curve may have different cluster pictures.
In this section we show that there is a good equivalence relation on cluster pictures that
is respected by isomorphisms between hyperelliptic curves: isomorphic curves have
“equivalent” cluster pictures (Theorem 14.4) and, conversely, every cluster picture in
the equivalence class is realised by some curve over K̄ (Corollary 14.7). We will look
at K -isomorphism classes of (semistable) curves in the next section.

Definition 14.1 Two cluster pictures (�,R, d) and (�′,R′, d ′) are equivalent if
(�′,R′, d ′) is isomorphic to a cluster picture obtained from (�,R, d) in a finite
number of the following steps:

• increasing the depth of all clusters by m ∈ Q:
R′ = R, �′ = � and d ′

s = ds + m for all s ∈ �,
• adding a root r , when |R| is odd:
R′ = R ∪ {r}, �′ = � ∪ {{r},R′} {R}, d ′

s = ds for all proper s ∈ �′ {R′} and
d ′
R′ = dR,

• removing a root r ∈ R, when |R| is even, {r} < R and R {r} /∈ �:
R′ = R {r}, �′ = � ∪ {R′} {R, {r}}, d ′

s = ds for all proper s ∈ �′ {R′} and
d ′
R′ = dR,

• redistributing the depth between s and sc = R s to d ′
s = ds + m, when |R| is

even, s < R and −δs ≤ m ≤ δsc :
R′ = R, �′ = � ∪ {s, sc}, d ′

R = dR,

d ′
t = dt + m for proper clusters t ⊆ s

d ′
t = dt − m for proper clusters t ⊆ sc

Here we set δsc = 0 if sc /∈ �, and dt = +∞ if |t| = 1; if in the resulting cluster
picture δ′s = 0, we remove s from �′, and similarly for sc.
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Example 14.2 For any given n ∈ Q the following cluster pictures form an equivalence
class:

n − n − n−t t − n − n∣∣ ∣∣

n n

Here the subscripts on clusters specify their relative depths, t can take all values in the
range 0 < t < n, and all clusters of size 5 and 6 can have arbitrary depths. Horizontal
lines correspond to cluster pictures that are related by redistributing the depth of a
child s < R (possibly a singleton) and R s, and vertical lines to those related by
adding or removing a root.

Remark 14.3 This agrees with the notion of equivalence in [18] for “metric cluster
pictures” ([18] Definitions 3.43, 3.45). Metric cluster pictures do not carry a depth
function on clusters, but only a relative depth, which is accounted for by the first of
the steps in Definition 14.1. The other steps then correspond to the moves (iii), (iv)
and (i/ii) in the definitions in [18].

Theorem 14.4 If C1 : y2 = f1(x) and C2 : y2 = f2(x) are isomorphic hyperelliptic
curves over K , then their cluster pictures are equivalent.

Proof Note that if F/K is a finite extension then the cluster pictures of C1 and C2
are equivalent over K if and only if they are equivalent over F . So we may assume
that Ci/K are semistable. Then by Theorem 5.18, the two metric hyperelliptic graphs
G�C1

and G�C2
are isomorphic (see D.9 for the notation), and by [18] Thm 5.1, the

cluster pictures �C1 and �C2 are equivalent. ��
Lemma 14.5 (i) For x, y ∈ K̄ ,

v
( 1
x
− 1

y

)
= −v(x)− v(y)+ v(x − y).

(ii) Let f (x) ∈ K [x] be a separable polynomial with cluster picture� f = (R, �, d).
Suppose s < R and that all r ∈ s have v(r) = a and all r ∈ R s have v(r) = b.
Let R′ = { 1r : r ∈ R}. Then ψ : r �→ 1

r induces a 1-to-1 correspondence between
�∪{s,R s} and�′ ∪{s′,R s′}, where s′ = { 1r : r ∈ s}. Moreover, d ′

ψ(t) = dt−2a
for clusters t ⊂ s, d ′

ψ(t) = dt − 2b for clusters t ⊂ R s, and d ′
R′ = dR − a − b.

Proof (i) Clear, since 1
x − 1

y = y−x
xy .

(ii) Follows directly from (i).
��

Proposition 14.6 Let f (x) ∈ K [x] be a separable polynomial with roots R ⊂ K̄ ,
such that GK acts tamely on R, and let � be the associated cluster picture. Suppose
�′ is a cluster picture obtained from � by one of the following constructions:
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(1) Increasing the depth of all clusters by some n ∈ Z;
(2) Adding a root to �, provided |R| is odd, dR ∈ Z and |k| > #{s < R :

s is GK -stable};
(3) Redistributing the depth from s to R s to eliminate s and then changing the

depth of R to 0, provided |R| is even, s < R is GK -stable with ds ∈ Z and
|k| > #{t < s : t is GK -stable};

(4) Redistributing the depth between s and R s by decreasing the depth of s by 1,
provided |R| is even, s < R is GK -stable with dR, ds ∈ Z and |k| > #{t < s :
t is GK -stable}.

(5) Removing a root from R, provided |R| is even, dR ∈ Z and f (x) has a root
r ∈ K that does not lie in any proper cluster other thanR.

Then there is a Möbius transformation φ(z) = az+b
cz+d with a, b, c, d ∈ K, such

that �′ is the cluster picture of R′ = {φ(r) : r ∈ R} {∞} if |R| is even and of
R′ = {φ(r) : r ∈ R ∪ {∞}} {∞} if |R| is odd.

Moreover, if y2 = f (x) is a hyperelliptic curve, then there is a K -isomorphic curve
given by a Weierstrass model whose cluster picture is �′.

Proof Depending on the case 1–5, the Möbius transformation φ can be obtained as
follows:

1. Take φ(z) = πnz.
2. Since GK acts tamely, Lemma B.1 shows thatR has a centre zR ∈ K ; shifting by

this and applying (1) we may assume that zR = 0 and dR = 0. Shifting further by
some y ∈ OK , we may assume that all r ∈ R are units inOK̄ . Now φ(z) = 1

z has

R′ = { 1r : r ∈ R} ∪ {0}, which, by Lemma 14.5 (i), has the required properties.
3. As in the proof of (2), we may assume that ds = 0, zs = 0 and that all roots r ∈ s

are units. All other roots r ∈ R s then have valuation v(r) = dR. By Lemma 14.5,
φ(z) = 1

z gives the required cluster picture.
4. As in the proof of (2), we may assume that dR = 0, zs = 0 and that all roots

r ∈ s have valuation 1. Note that all r ∈ R s have valuation 0. By Lemma 14.5,
φ(z) = πK

z gives the required cluster picture.
5. Shifting by r and applying (1), we may assume that zR = r = 0 and dR = 0.

Since r does not lie in any proper subcluster ofR, all the other roots of f (x)must
be units. By Lemma 14.5, φ(z) = 1

z gives the required cluster picture.

Finally observe that if y2 = f (x) is a hyperelliptic curve, then a change of variables
of the form x = ax ′+b

cx ′+d , y = y′
(cx ′+d)g+1 for a Möbius transformation ψ(z) = az+b

cz+d

with a, b, c, d ∈ K , gives a model for C/K of the form y′2 = g(x ′). The set of roots
of g(x) is precisely R′ = {ψ−1(r) : r ∈ R} {∞} if |R| is even and R′ = {ψ−1(r) :
r ∈ R ∪ {∞}} {∞} if |R| is odd. Setting φ = ψ−1 for φ as in the first part gives the
desired model. ��
Corollary 14.7 Let C : y2 = f (x) be a hyperelliptic curve over K and � its cluster
picture. If �′ is equivalent to �, then there is a K̄ -isomorphic hyperelliptic curve
C ′/K̄ : y2 = g(x) whose cluster picture is �′.
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Proof Replacing K by a sufficiently large extension we may assume that Galois acts
trivially on the roots of f (x) and that the depths of all clusters in � and �′ are
integers. Now Proposition 14.6 lets us realise all the equivalence steps from � to �′
in Definition 14.1 through isomorphisms of curves. ��

15 Canonical cluster picture of a semistable curve

As any given hyperelliptic curve can admit many different models, it is often desirable
to be able to put it in some canonical form. It turns out that every equivalence class
of cluster pictures has a canonical representative (Lemma 15.1). Unfortunately, this
canonical cluster picture does not always correspond to a Weierstrass model for C
defined over K . However, for semistable curves this is nearly the case (Theorem 15.2).
Moreover, if the genus of a semistable hyperelliptic curve is even, then this cluster
picture does come from aWeierstrass model over K (Corollary 15.3). As we shall see
in Sect. 18, this canonical cluster picture is particularly well suited for classifying all
reduction types of semistable hyperelliptic curves in any given genus.

Lemma 15.1 Let (�,R, d) be a cluster picture with |R| = 2g+ 1 or 2g+ 2. There is
a unique equivalent (“balanced”) cluster picture (�b,Rb, db) such that (i) dbRb = 0,

(ii) �b has no clusters of size > g + 1, (iii) either �b has no clusters of size g+1 or
it has two such clusters, in which case they have equal depth.

Proof This follows from [18] Theorem 5.1. ��
Theorem 15.2 Let C/K be a semistable hyperelliptic curve and suppose that |k| >
number of GK -stable children of every cluster of size≥ g+ 1 in the cluster picture of
C. Then there is a K -isomorphic curve C ′/OK : y2 = f (x) with deg( f ) = 2g + 2
such that

• the top cluster of C ′ has depth 0;
• the cluster picture of C ′ has no cluster of size > g + 1;
• either there is at most one cluster of size g + 1 and v(c f ) = 0, or FrobK swaps
two clusters of size g + 1 and v(c f ) = 0 or 1.

Proof Let (�,R, d) be the cluster picture of C/K . Recall that as C/K is semistable,
it satisfies the semistability criterion (Theorem 7.1, Definition 1.8). In particular, the
inertia group cannot permute proper clusters in �.

If Frobenius swaps two clusters of size g + 1, then by the semistability criterion
dR ∈ Z (e.g. since s < R is principal and so has integral depth, and δs ∈ Z by
Proposition C.7 (2)). Applying a transformation of the form x ′ = πk

K x , y
′ = πn

K x
gives a model over K with the required cluster picture.

Suppose henceforth that Frobenius does not swap clusters of size g + 1, and con-
sequently that all clusters of size ≥ g + 1 are GK -stable. We now change the model
for C by repeatedly applying Proposition 14.6: (2) creates a cluster picture with an
even number of roots, then (1) or (3) makes the depth of the top cluster 0, and finally a
repeated use of (4) removes all clusters of size> g+ 1 and leaves at most one cluster
of size g + 1 (principal clusters have integral relative depth by Proposition C.7 using
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that the depth of the top cluster is now 0 for the case when it is a cotwin). The resulting
model necessarily has v(c f ) ∈ 2Z (semistability criterion for the top cluster, as it now
has depth 0), and hence a change of variables of the form y = πk y gives a model over
K with the required cluster picture.

Finally, Theorem 13.3 shows that shifting the x-coordinate by a suitable element
of K gives a model over OK . ��
Corollary 15.3 Let C/K be as in Theorem 15.2. If C has even genus then there is a
K -isomorphic curve C ′/OK : y2 = f (x) such that

• the top cluster of C ′ has size 2g + 2 and depth 0;
• the cluster picture of C ′ has no cluster of size > g + 1;
• either v(c f ) = 0 and there is no cluster of size g + 1, or v(c f ) ∈ {0, 1} and there
are two clusters of size g + 1 with equal depths.

Any other K -isomorphic curve C ′′/OK satisfying (1), (2) and (3) has the same cluster
picture and valuation of leading term as C ′.

Proof The existence ofC ′ follows from the theorem and, in the case when the theorem
yields a cluster picture with a cluster of size g+ 1, Proposition 14.6(4). The fact that,
in this special case, the two resulting clusters s, s′of size g + 1 can be made to have
equal depth follows from the semistability criterion, which shows that δs, δs′ ∈ Z and
(g + 1)δs ≡ (g + 1)δs′ mod 2 (Theorem 7.1, Definition 1.8).

Uniqueness of the cluster picture follows from the fact that isomorphic curves have
equivalent cluster pictures (Theorem 14.4) and uniqueness of balanced cluster pictures
(Lemma 15.1). ��
Remark 15.4 Theorem 17.1 and Proposition 17.5 show that the models obtained in the
theorem and the corollary are minimal Weierstrass equations.

16 Discriminant

Recall the definition of the discriminant of a hyperelliptic curve:

Definition 16.1 (See [28], Sect. 2)LetC : y2 = f (x) be a hyperelliptic curve of genus
g over K . The discriminant �C of C is

�C = 16gc4g+2
f disc

( 1

c f
f (x)
)
.

Our main result on the discriminant is that one can easily read off its valuation from
the cluster picture of C and, when C/K is semistable, one can moreover read off the
valuation of the discriminant of its minimal Weierstrass model:

Theorem 16.2 Let C : y2 = f (x) be a hyperelliptic curve of genus g over K , and let
(�,R, d) be the associated cluster picture. Then

v(�C ) = v(c f )(4g + 2)+
∑

s proper

ds
(
|s|2 − �

s′<s
|s′|2
)
.
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If C/K is semistable and |k| > 2g+1, then the valuation of the discriminant�min
C of

a minimal Weierstrass model of C is determined by the formula

v(�C )− v(�min
C )

4g + 2
= v(c f )− E + dR(|R| − g − 1)+

∑

g+1<|s|<|R|
δs(|s| − g − 1),

where E = 0 unless � has two clusters of size g + 1 that are permuted by Frobenius
and v(c f ) is odd, in which case E = 1.

The first part of the theorem follows directly from Lemmas 16.4 and 16.5 below.
The second part will be proved at the end of Sect. 17, after we find a description for
minimal Weierstrass equations in terms of cluster pictures.

Definition 16.3 Let (�,R, d) be a cluster picture and let n ∈ Z. The discriminant
��,n of the pair (�, n) is the fractional ideal of K with valuation

v(��,n) = n(4g + 2)+ 2
∑

r �=r ′∈R
dr∧r ′ .

Lemma 16.4 Let C : y2 = f (x) be a hyperelliptic curve over K , let � be the associ-
ated cluster picture and n = v(c f ). Then

v(�C ) = v(��,n).

Proof Clear. ��
Lemma 16.5 Let (�,R, d) be a cluster picture. Then

2
∑

r �=r ′∈R
dr∧r ′ =

∑

s,|s|>1
ds(|s|2 − �

s′<s
|s′|2) =

∑

s

|s|2
⎧
⎨

⎩

−dP(s) if |s| = 1,
ds if s = R,
δs otherwise.

Proof We have

2
∑

r �=r ′∈R
dr∧r ′ =

∑

r∈R

∑

s%r ,|s|>1
ds(|s| − |child of s containing r |)

=
∑

s,|s|>1
ds(|s|2 − �

s′<s
|s′|2) =

∑

s,|s|>1
ds|s|2 −

∑

s′ �=R
dP(s′)|s′|2.

��
In the remainder of this section we establish some results on how the discriminant

changes under the different steps yielding equivalent cluster pictures (see Defini-
tion 14.1). As equivalence of cluster pictures is closely tied to isomorphisms of
hyperelliptic curves (see Theorem 14.4 and Proposition 14.6), this will be the key
to understanding minimal Weierstrass equations and their discriminants. Recall also

123



T. Dokchitser et al.

that we have a notion of integrality for cluster pictures (see Definition 13.2), which
gives a way of determining whether a cluster picture corresponds to an integral Weier-
strass equations.

Lemma 16.6 Let (�,R, d) and (�′,R′, d ′) be cluster pictures.

(i) If �′ is obtained from � by increasing the depth of all clusters to d ′
s = ds + t ,

then

v(��′,n) = v(��,n)+ t |R|(|R| − 1).

(ii) If � has odd size and �′ is obtained by adding a root to �, then

v(��′,n) = v(��,n)+ 2dR|R|.

(iii) If � has even size then for k ∈ Z,

v(��,n+k) = v(��,n)+ 2k(|R| − 1).

If � has odd size, then

v(��,n+k) = v(��,n)+ 2k|R|.

(iv) If� has even size and�′ is obtained by redistributing the depth between s < R
and R s to d ′

s = ds − t and d ′
R s = dR s + t , then

v(��′,n) = v(��,n)+ t(|R| − 2|s|)(|R| − 1).

Proof Write |R| as |R| = 2g + 1 or 2g + 2 for some g ∈ Z.
(i)

v(��′,n) = n(4g + 2)+
∑

r �=r ′∈R
d ′r∧r ′ = n(4g + 2)+

∑

r �=r ′∈R
dr∧r ′ + |R|(|R| − 1)t .

(ii)

v(��′,n) = n(4g + 2)+
∑

r �=r ′∈R′
d ′
r∧r ′ = n(4g + 2)+

∑

r �=r ′∈R
dr∧r ′ + 2|R|dR.

(iii)

v(��,n+k ) = (n + k)(4g + 2)+
∑

r �=r ′∈R
dr∧r ′ = n(4g + 2)+

∑

r �=r ′∈R
dr∧r ′ + k(4g + 2).
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(iv)

v(��′,n) = n(4g + 2)+
∑

r �=r ′∈R
d ′r∧r ′ =

= n(4g + 2)+
∑

r �=r ′∈s
d ′r∧r ′ +

∑

r �=r ′∈R s

d ′r∧r ′ + 2
∑

r∈s,r ′∈R s

d ′r∧r ′ =

= v(��,n)− t |s|(|s| − 1)+ t |R s|(R s| − 1) = v(��,n)+ t(|R| − 1)(|R| − 2|s|).

��
The following proposition identifies a number of scenarios whenwe canmanipulate

integral cluster pictures to decrease the valuation of their discriminant.

Proposition 16.7 Let (�,R, d) and (�′,R′, d ′) be cluster pictures all of whose clus-
ter depths are integers, and let GK act trivially on both � and �′. Let n, n′ ∈ Z be
the minimal integers such that (�, n) and (�′, n′) are integral.
(i) If dR ≥ 1 and �′ is obtained from � by decreasing the depth of all clusters by

1, then

n′ = n = 0 and v(��′,n′) = v(��,n)− |R|(|R| − 1).

(ii) If � has odd size, dR ≤ 0 and �′ is obtained by adding a root to �, then

n′ = n − dR and v(��′,n′) = v(��,n).

(iii) If � has even size, dR ≤ 0, � has a cluster t with |t| ≥ |R|
2 , dt > 0 and

dP(t) ≤ 0, and �′ is obtained by redistributing the depth of the child s < R
containing t and R s to d ′

s = ds − 1 and d ′
R s = dR s + 1, then

n′ = n + |s| − |t| and v(��′,n′) = v(��,n)− (2|t| − |R|)(|R| − 1).

(iv) If � has even size, dR < 0, � has no cluster t with |t| ≥ |R|
2 and dt ≥ 0, and

�′ is obtained by increasing the depth of all clusters by 1, then

n′ < n − |R|
2

and v(��′,n′) < v(��,n).

(v) If � has even size, dR < 0, � has a cluster t with |t| ≥ |R|
2 and dt = 0, and �′

is obtained by increasing the depth of all clusters by 1, then

n′ = n − |R| + |t| and v(��′,n′) = v(��,n)+ (2|t| − |R|)(|R| − 1).

Proof (i) The claim for n, n′ is clear. The rest follows from Lemma 16.6(i).
(ii) The claim for n′ follows from Lemma 13.5(i). Lemma 16.6(ii,iii) then gives

v(��′,n′) = v(��,n)+ 2dR|R| − 2dR(|R′| − 1) = v(��,n).
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(iii) Since the cluster depths are assumed to be integers, we must have d ′
t ≥ 0, so by

Lemma 13.5(ii, ii’),

n′ = −
∑

r /∈t
d ′
r∧t = −

∑

r /∈s
d ′
r∧t −

∑

r∈s t

d ′
r∧t = −

∑

r /∈s
dr∧t −

∑

r∈s t

dr∧t

+|s t| = n + |s t|.

Thus by Lemma 16.6(iii,iv),

v(��′,n′) = v(��,n)+ (|R| − 2|s|)(|R| − 1)+ 2(|s| − |t|)(|R| − 1)

= v(��,n)+ (|R| − 2|t|)(|R| − 1).

(iv) ByLemma 13.5(i) we canwrite n = −∑r /∈t dr∧t for some twhich has dP(t) ≤ 0

and is either a singleton or has dt > 0. Since necessarily |t| < |R|
2 , we must have

−∑r /∈t d ′
r∧t < −∑r /∈t dr∧t − |R|

2 . Moreover, if d ′
P(t) > 0 then necessarily

dP(t) = 0 and we also have

−
∑

r /∈P(t)
d ′
r∧P(t) < −

∑

r /∈P(t)
dr∧P(t) − |R|

2
= −
∑

r /∈t
dr∧t − |R|

2
.

By Lemma 13.5(i) it follows that

n′ < n − |R|
2
.

Thus by Lemma 16.6(i,iii)

v(��′,n′) = v(��,n)+ |R|(|R| − 1)+ 2(n′ − n)(|R| − 1) < v(��,n).

(v) By Lemma 13.5 (ii’,ii),

n′ = −
∑

r /∈t
d ′
r∧t = −|R t| −

∑

r /∈t
dr∧t = n − |R| + |t|,

and by Lemma 16.6(i,iii)

v(��′,n′) = v(��,n)+ |R|(|R| − 1)+ 2(n′ − n)(|R| − 1) = v(��,n)
+(2|t| − |R|)(|R| − 1).

��
We end this section with a result that effectively gives sufficient criteria for a cluster

picture to correspond to a minimal Weierstrass equation.
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Corollary 16.8 Suppose (�,R, d) is a cluster picture with a trivial action of GK , with
|R| = 2g+2, with dR = 0, with ds ∈ Z for every proper cluster s, and with no cluster
s �= R of size |s|> g+1. Then for every integral (�′, n′) with �′ equivalent to �,
with ds ∈ Z for every cluster s, and with trivial GK -action,

v(��,0) ≤ v(��′,n′),

with equality if and only if �′ has no cluster of size > g + 1 with depth > 0, but has
some cluster t of size ≥ g + 1 with d ′

t ≥ 0, and n′ = −∑r /∈t d ′
r∧t.

Proof By [18] Thm 5.1, there is a unique (“balanced”) cluster picture (�b,Rb, db)
equivalent to � with Rb even, dbRb = 0, no clusters other than Rb of size > g + 1,
and either zero or two clusters of size g+1, in which case they have equal depth. Note
that, by uniqueness, either � = �b, or �b is obtained from � by redistributing the
depths of a child s < R of size g + 1 and R s so that they get equal depth. Thus by
Lemma 16.6(iv)

v(��b,0) = v(��,0).

Now consider �′. From the definition of the discriminant and Lemma 13.5(ii), we
may assume that n′ is the minimal integer that makes (�′, n′) integral.

By Proposition 16.7(i,ii), it suffices to prove the result when �′ has even size and
d ′
R ≤ 0.
By Proposition 16.7(iv), we may further assume that either d ′

R′ = 0, or d ′
R′ < 0

and �′ has a cluster of size ≥ g+1 with depth ≥ 0.
By Proposition 16.7(iii), we may further further assume that �′ has no cluster s

with |s| > g+1 and d ′
s > 0.

Suppose d ′
R′ < 0. If �′ has a cluster s of size g+1 and depth d ′

s > 0, then
repeatedly applying Proposition 16.7(iii), reduces the problem to the case when �′
has a cluster s of size g+1 and depth d ′

s = 0. Now if s is a cluster of size ≥ g+1 and
depth d ′

s = 0, then repeatedly applying Proposition 16.7(v) followed by (iii) (which
eventually eliminates the cluster by pushing d ′

R up to 0) reduces the problem to the
case when d ′

R′ = 0.
Finally, suppose d ′

R′ = 0, so, in particular, n′ = 0. If�′ has no cluster of size g+1,
then �′ = �b. If �′ does have such a cluster, then Lemma 16.6(iv) and uniqueness
of �b show that v(��′,0) = v(��b,0). The result follows. ��

17 Minimal Weierstrass equations

Theorem 17.1 LetC : y2 = f (x) be a hyperelliptic curve over K with f (x) ∈ OK [x],
and let� be the associated cluster picture. If dR = 0, v(c f ) = 0 and� has no cluster
s �= R of size |s| > g + 1, then C is a minimal Weierstrass equation.

Proof Suppose another integral Weierstrass model C ′ : y2 = g(x) for C has clus-
ter picture �′. Over a suitable field extension F/K , the depths of all clusters of �
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and �′ are integers, and Gal(F̄/F) acts trivially on both cluster pictures. By The-
orems 13.3 and 14.4, (�′, vF (cg)) is integral and �′ is equivalent to � over F .
By Proposition 16.8, vF (��,0) ≤ vF (��′,vF (cg)), and so the same inequality holds
over K . By Lemma 16.4, v(�C ) ≤ v(�C ′), as required. ��

For semistable hyperelliptic curves, we can give a full characterisation of minimal
Weierstrass models in terms of cluster pictures:

Theorem 17.2 Let C : y2 = f (x) be a semistable hyperelliptic curve over K , and let
(�,R, d) be the associated cluster picture. Suppose that every cluster of � of size
> g + 1 has at most |k|−1 GK -stable children.

Then there is some z ∈ K such that y2 = f (x − z) is a minimal Weierstrass model
if and only if one of the following conditions holds

(1) � has two clusters of size g + 1 that are swapped by Frobenius, dR = 0 and
v(c f ) ∈ {0, 1},

(2) � has no cluster of size >g+1 with depth > 0, but has some GK -stable cluster t
of size |t| ≥ g + 1 with dt ≥ 0 and v(c f ) = −∑r /∈t dr∧t.

In particular, if f (x) ∈ OK [x] then y2 = f (x) is a minimal Weierstrass equation if
and only if � satisfies either (1) or (2).

The rest of this section is devoted to the proof of this theorem. Our approach is
to translate everything in terms of cluster pictures (semistability, integral Weierstrass
equations, discriminants) and work mainly on that level. The two cases for the cluster
picture in the above theorem are quite distinct and it will be convenient to use the
following terminology:

Definition 17.3 The cluster picture of a semistable hyperelliptic curve y2 = f (x) of
genus g is exceptional if it has two clusters of size g+1 that are swapped by Frobenius.

Proposition 17.4 Let C : y2 = f (x) be a semistable hyperelliptic curve over K , let
� be the associated cluster picture and n = v(c f ). Suppose C ′ is another Weierstrass
model for C with corresponding (�′, n′). Then � is exceptional if and only if �′ is.
If so, then, n′ ≡ n mod 2 and �′ is obtained from � by increasing the depths of all
clusters by some d ∈ Z; moreover

v(��,n) = v(��′,n′)− 2(n′ − n)(|R| − 1)− d|R|(|R| − 1).

Proof Since C ′ is another Weierstrass model for C , their special fibres have the same
dual graphs with the same automorphisms induced by Frobenius. By Theorem 8.6
this graph ϒC modulo the hyperelliptic involution has a unique fixed point under the
Frobenius action. In the terminology of [18], it follows that they have the same open
hyperelliptic graph ([18] Proposition 5.7 with G̃ = ϒC ) and hence the same metric
cluster picture with the same automorphisms induced by Frobenius ([18] Thm 4.2).
In particular, �′ is obtained from � by increasing the depth of all clusters by some
d ∈ Z, and with the same action of Frobenius on clusters.

Thus � is exceptional if and only if �′ is. It follows from the semistability crite-
rion (Theorem 7.1, Definition 1.8) that n′ ≡ n mod 2. Finally the valuation of the
discriminant follows from Lemma 16.6(i,iii). ��
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Proposition 17.5 Let C : y2 = f (x) ∈ OK [x] be a semistable hyperelliptic curve,
and let n = v(c f ). Suppose the associated cluster picture � is exceptional. Then the
Weierstrass equation is minimal if and only if dR = 0 and n ∈ {0, 1}.
Proof First suppose � is exceptional with dR = 0 and n ∈ {0, 1}. Let C ′ be another
integral Weierstrass model with corresponding (�′, n′). By Proposition 17.4 �′ is
exceptional, n′ ≡ n mod 2, and

v(��,n) = v(��′,n′)− 2(n′ − n)(|R| − 1)− d ′
R′ |R|(|R| − 1).

By Theorem 13.3 (�′, n′) is integral, so either n′ ≥ 0 and d ′
R′ ≥ 0, or d ′

R′ < 0 and
n′ + |R|d ′

R′ ≥ 0. In the first case, since n′ ≡ n mod 2, we clearly have v(��,n) ≤
v(��′,n′)with equality if and only if n′ = n and d ′

R′ = 0. In the second case, d ′
R′ ∈ Z

by the semistability criterion for C ′ (since s < R′ is principal and so has integral
depth, and δs ∈ Z by Proposition C.7 (2)), so n′ ≥−|R|d ′

R > 2 and we again obtain

v(��,n) ≤ v(��′,n′)− 2(n′ − n)(|R| − 1)+ n′(|R| − 1) < v(��′,n′).

Since the discriminants of the cluster pictures are those of the curves (Lemma 16.4),
it follows that C is a minimal Weierstrass equation.

For the converse, suppose C : y2 = f (x) is a minimal Weierstrass model and � is
exceptional. A substitution of the form y1 = pa y and x1 = pbx for suitable a, b ∈ Z,
gives a new model C ′ whose cluster picture �′ is also exceptional, d ′

R′ = 0 and the
corresponding valuation n′ is either 0 or 1. Theorem 13.3 gives a new integral model
C ′′ with the same cluster picture, d ′′

R′′ = 0 and n′′ ∈ {0, 1}. By the first part of the
proof, C ′′ is a minimal Weierstrass model (so v(��′′,n′′) = v(��,n)), n = n′′ and
dR = 0. ��

We now turn to cluster pictures that are not exceptional.

Lemma 17.6 Let C : y2 = f (x) be a semistable hyperelliptic curve over K with
cluster picture �. Suppose that � is not exceptional and that every cluster of � of
size > g + 1 has at most |k|−1 GK -stable children. Then C admits an integral
Weierstrass model y2 = h(x) with v(ch) = 0 and whose cluster picture (�′,R′, d ′)
has |R′| = 2g+2, d ′

R′ =0 and has no cluster s �= R′ of size > g+1.

Proof This follows from Theorem 15.2, and the fact that by Proposition 17.4, �′
cannot be exceptional. ��
Proposition 17.7 Let C : y2 = f (x) ∈ OK [x] be a semistable hyperelliptic curve.
Suppose the associated cluster picture� is not exceptional and that every cluster of�
of size> g+ 1 has at most |k|−1 GK -stable children. Then the Weierstrass equation
is minimal if and only if� has no cluster of size> g+1 with depth> 0, but has some
cluster t of size ≥ g + 1 with dt ≥ 0 and −∑r /∈t dr∧t = v(c f ).

Proof By Lemma 17.6, there exists another integral model Cmin : y2 = g(x) with
v(cg) = 0 and whose associated cluster picture�min has its top cluster of depth 0, and
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has no other clusters of size> g+ 1. By Theorem 17.1 Cmin is a minimal Weierstrass
equation, so

v(�C ) ≥ v(�Cmin).

It remains to show that the claimed condition for having equality is correct. Passing
to a suitable field extension if necessary, we may assume that all the clusters in �
have integer depth and that the Galois group acts trivially on � and on �min. By
Theorem 14.4, � is equivalent to �min, so by Corollary 16.8 v(�C ) = v(�Cmin) if
and only if � has no cluster of size> g+ 1 with depth > 0, but has some cluster t of
size ≥ g + 1 with dt ≥ 0, and v(c f ) = −∑r /∈t dr∧t. ��
Proof of Theorem 17.2 Note first that, by definition of being exceptional, conditions
(1) and (2) are mutually exclusive. Note also that y2 = f (x) and y2 = f (x − z) have
the same cluster picture and the same valuation of the leading term of the defining
polynomial.

Suppose � is exceptional. If y2 = f (x − z) is a minimal Weierstrass equation,
then Proposition 17.5 shows that dR = 0 and v(c f ) ∈ {0, 1}. Conversely, if dR = 0
and v(c f ) ∈ {0, 1} then (�, v(c f )) is integral. By the semistability criterion GK acts
tamely onR, so by Theorem 13.3(2) there exists z ∈ K such that f (x − z) ∈ OK [x].
By Proposition 17.5, y2 = f (x − z) is then a minimal Weierstrass equation.

Suppose� is not exceptional and y2 = f (x−z) is a minimalWeierstrass equation.
Then Proposition 17.7 shows that � has no cluster of size > g + 1 with depth > 0,
but has some cluster t of size ≥ g + 1 with dt ≥ 0, and v(c f ) = −∑r /∈t dr∧t. Since
� is not exceptional, t is necessarily GK -stable, so condition (2) holds.

Finally, suppose � is not exceptional and satisfies (2). If t = R then dt = 0 and
n = 0, so (�, n) is integral. If t �= R, then

∑

r /∈t
dr∧t = |P(t) t|dP(t) +

∑

r /∈P(t)
dr∧P(t),

so (�, n) is again integral (with s = P(t) in Definition 13.2). By the semistability
criterion GK acts tamely on R, so by Theorem 13.3(2) there exists z ∈ K such that
f (x − z) ∈ OK [x], and by Proposition 17.7, y2 = f (x − z) is a minimal Weierstrass
equation. ��
Proof of Theorem 16.2 The first part of the theorem follows from Lemmas 16.4
and 16.5. From now on, suppose C/K is semistable.

First suppose that � is exceptional. A substitution of the form x ′ = πa
K , y

′ = πb
K

gives a curve whose cluster picture is obtained from � by increasing the depth of all
clusters so thatR gets depth 0, and whose valuation of the leading term of the defining
polynomial is either 0 or 1. By Theorem 17.2(i) this is the cluster picture of a minimal
Weierstrass equation of C . The result follows from Lemma 16.6(i,iii).

Now suppose that� is not exceptional. Let (�b,Rb, db) be the equivalent balanced
cluster picture (in the sense of Lemma 15.1). Let C ′ be the Weierstrass model given
by Theorem 15.2. By Theorem 17.2, this is a minimal Weierstrass model. Its cluster
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picture is either alreadybalanced, or is obtained from the balanced one by redistributing
the depth of a child of R of size g+1. Thus, by Lemmas 16.4 and 16.6(iv),

v(�min
C ) = v(�C ′) = v(��,0) = v(��b,0).

The balanced cluster picture (�b, 0) is also obtained from (�, v(c f )) itself by (i)
adding a root if necessary to makeR have size 2g + 2, (ii) increasing the depth of all
clusters so that R has depth 0, (iii) changing the valuation of the leading term to 0,
and (iv) repeatedly redistributing the depth of a child ofR of size≥ g+1 to eliminate
all clusters of size > g+1 and make the ones of size g + 1 have equal depths. Thus
by Lemma 16.6,

v(�min
C ) = v(�

�b,0) = v(�C )+
{
0 if |R| even
2(2g+1)dR if |R| odd

}

−(2g + 2)(2g + 1)dR − 2v(c)(2g + 1)− 2(2g + 1)
∑

g+1<|s|<|R|
δs(|s| − g − 1),

which simplifies to give the required expression. ��

18 Reduction types and a classification in genus 2

In this section, we propose a notion of the reduction type of a semistable hyperelliptic
curve. For elliptic curves these types would correspond to good, split multiplicative
of type In or non-split multiplicative of type In . Our main input is the cluster picture
of the curve which determines the combinatorics of its special fibre as well as several
other invariants. Since our residue field is not algebraically closed, we need to keep
track of the action of Frobenius on proper clusters and the sign εs(Frob) for even
clusters. For elliptic curves with multiplicative reduction this sign will distinguish
between split and non-split cases.

Definition 18.1 By the reduction type of a semistable curve of genus ≥ 2 over a non-
archimedean local field we mean (the isomorphism class of) the dual graph of the
special fibre of its minimal regular model with Frobenius action and with a genus
associated to every vertex.

For hyperelliptic curves there is a notation for such types given in [18, Sect. 8].

Lemma 18.2 The reduction type determines the conductor exponent, whether the curve
is deficient and the Tamagawa number and root number of its Jacobian.

Proof By (2.18), Theorem 2.20, Definition 12.1, Lemma 12.2 and Lemma 2.22, the
dual graph and its homology determine these invariants. ��
Example 18.3 Table 2 lists all reduction types of semistable genus 2 curves together
with their labels. Here the numbers inside the vertices indicate their genus (no number
meaning genus 0). We draw an edge of length n to indicate a chain of n edges between
n − 1 genus 0 vertices. The black arrows represent the action of Frobenius on the
graph.
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Table 2 Reduction types of semistable genus 2 curves

Theorem 18.4 The cluster picture of a semistable hyperelliptic curve over K together
with the action of Frobenius on clusters and εs(Frob) for even clusters determine the
reduction type of the curve.

Proof This is clear from the definition of reduction type and Theorem 8.6. ��
It follows that one can classify all reduction types of semistable curves of a given

genus via their cluster pictures with this extra data. Note that different cluster pictures
can give the same reduction type.

Notation 18.5 Given the cluster picture of a semistable hyperelliptic curve, we write
the relative depth on all proper clusters (except forRwhich is decoratedwith its depth)
at the bottom right corner of the cluster. For every even cluster s such that s = s∗ we
write a sign + or − on its top right corner to indicate εs(Frob). For every cluster, we
link its children that are in the same Frobenius orbit by lines.

Note that the definition of εs (seeDefinition 1.13) depends on a choice of sign for θs.
A different choice of sign will change the sign parameter on s and on Frob(s) if these
are different clusters.

Example 18.6 Suppose p ≡ 7 mod 8. The curve

y2 = (x + 1)(x − 1)(x − (i + p))(x − (i − p))(x − (−i + p))(x − (−i − p))

has the following cluster picture 1 1 0
, where i is a square root of -1 in Qp.

The two twins are t1 = {i + p, i − p} and t2 = {−i + p,−i − p} and hence are
swapped by Frobenius. Take θt1 = θt2 = 2

√
2. Since p ≡ 7 mod 8, εt1(Frob) =

εt2(Frob) = +1. We draw this data as +
1

+
1 0

. Note that if we had chosen

θt2 = −2
√
2 we would have obtained εt1(Frob) = εt2(Frob) = −1 and the cluster

picture −
1

−
1 0

. This is the reason why we consider these two the same type.
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Finally note that if p ≡ 3 mod 8 then Frob(
√
2) = −√

2 and the corresponding

cluster pictures would be −
1

+
1 0

and +
1

−
1 0
.

[18, Sect. 9] explains how to list all the reduction types of semistable hyperelliptic
curves of arbitrary genus g. Given a hyperelliptic curve, in order to find its reduction
type in that list, we first construct its cluster picture together with the additional data
as in Notation 18.5 and either we use Theorem 8.6 or use Table 4.20 of [18] to identify
(the core of its open) hyperelliptic graph with automorphism induced by Frobenius.
Theorem 5.18 guarantees that the latter produces the correct reduction type.

Finally, note that Theorem 15.2 shows that every semistable hyperelliptic curve
has a K -rational model with a distinguished cluster picture. For instance in genus 2,
curveswith cluster pictures that have no clusters of size 4 or 5 cover all K -isomorphism
classes (seeTheorem18.7.(2)). In general, hyperelliptic curves of genus gwith a cluster
picture that has no cluster s of size g + 1 < |s| < 2g + 2 cover all K -isomorphism
classes.

In the rest of this section we give a complete classification for semistable genus 2
curves.

Theorem 18.7 LetCbe a hyperelliptic curve over K of genus 2with cluster picture�C .

(1) C/K is semistable if and only if (a) �C is one of the pictures in Table 3 with
n,m, k, r , t ∈ Z , (b) the thick black cluster s has depth ds ∈ Z and νs ∈ 2Z,
and (c) wild inertia does not permute any root. In this case its reduction type is
the one given in Table 3.

(2) If C is semistable and |k| > 5 then there is an isomorphic curve C ′/K such that
�C ′ is the top cluster picture in the second column of the same reduction type as
�C , with the same parameters n,m, k, r , ε, δ and with t = r .

(3) TheNamikawa-Ueno type of a semistable genus 2 curve is as indicated in Table 3.

Proof The table contains all possible cluster pictures for genus 2 curves, with all
possible choices of a permutation of proper clusters and choice of signs on even
clusters of the form s∗.
(1) The semistability claim follows from Theorem 7.1 and Proposition C.7 with the

thick black cluster as choice for s. The reduction type follows from Theorem 8.6.
(2) By Corollary 15.3 there is a model for the curve whose cluster picture is balanced

in the sense of Lemma 15.1. By Theorem 14.4 their cluster pictures are equivalent
and in particular their relative depths are related as in the table. Moreover, the
special fibres have isomorphic dual graphs with the same action of Frobenius,
which pins down the Frobenius action on clusters and the sign parameters as given
in the table.

(3) The Namikawa-Ueno type is determined by the dual graph of the special fibre of
the minimal regular model.

��
The arithmetic invariants of genus 2 semistable hyperelliptic curves depend on the

reduction type as follows.
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Table 3 Cluster pictures for semistable genus 2 curves

Theorem 18.8 Let K be a local field of odd residue characteristic and C/K a
semistable hyperelliptic curve of genus 2. Then the reduction type of C/K is one
of the ones listed in Table 1 (Sect. 1).

Any genus 2 curve y2 = f (x) with one of the cluster pictures from the table
is semistable of the corresponding reduction type. If f (x) ∈ OK [x] then this is a
minimal Weierstrass model. Moreover if |k| > 5, then every semistable C/K admits
a model y2 = f (x), with f (x) ∈ OK [x] and one of the listed cluster pictures.

The invariants of the curve and its Jacobian are as given in the table (the value
of v(�min) is conditional on |k| > 5). In the table m is the number of components
in the special fibre of the minimal regular model of C, n is the conductor exponent,
w is the local root number, c is the Tamagawa number of Jac(C). Def is - or +
depending on whether the curve is deficient or not; (−)r means deficient if and only r
is odd. The column H1(ϒC ,Z) lists the isomorphism class of the lattice together with
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automorphism (induced by Frobenius) and pairing (induced by the length pairing on
ϒC), in the notation of Theorem 1.2.2 in [4].

Proof The completeness of the list of reduction types, and that curves with such
cluster pictures are semistable and have these types follow from Theorem 18.7. The
claim regarding minimality of the model follows from Theorem 17.2. If |k| > 5,
Theorem 18.7 shows that C admits a model with the cluster picture corresponding to
this type. In this case, the value for the valuation of the minimal discriminant follows
from Theorem 16.2.

The number of components m is clear from the dual graph ϒC . The conductor
exponent n, the root number w and deficiency Def follow from Theorems 9.4, 2.20
and 12.4. The Tamagawa number is explicitly determined by the lattice type by The-
orem 1.2.2 in [4], using the fact that H1(ϒC ,Z) is isomorphic to the character lattice
of the torus in the Raynaud parametrisation (Lemma 2.21).

Finally, it remains to prove the claim for the lattice type of H1(ϒC ,Z). The dimen-
sion of the lattice and the eigenvalues of Frobenius come from the cluster picture (with
the extra data) as given by Corollary 9.6.

Suppose that R is not übereven. Then the pairing with respect to the basis given
in Theorem 9.3 is diagonal with values given by twice the relative depth of the corre-
sponding twins; the dual lattice and the lattice type follow except for the types I+n ˜n and
I+n ×̃r In . For these two cases, let t1, t2 be the two twins and �t1 , �t2 the correspond-
ing loops which generate H1(ϒC ,Z). The Frobenius invariant/anti-invariant loops are
generated by �t1 + �t2 and �t1 − �t2 respectively. It follows that H1(ϒC ,Z) is not
spanned by these and hence the type is [1.2B : ∗, ∗]. However, over an unramified
quadratic extension, it becomes a [1.1 : n, n] and hence by Theorem 1.2.2 in [4] with
f = 2, the type is a [1.2B : n, n].
Suppose R is übereven. For the case U+

n˜n,k , let �
+ = �t1 + �t2 − 2�t3 , �

− =
�t1−�t2 beZ-generators for the space of invariant and anti-invariant loops respectively.
Note that 1

2 (�
+ + �−) ∈ H1(ϒC ,Z) so that the lattice type is [1.2B : ∗, ∗]. Now,

〈a�+, �+〉 = a(2n+4k) and 〈a�+, �t1 −�t3〉 = a(n+2k) so that a�+ ∈ H1(ϒC ,Z)
∨

if and only if a ∈ 1
n+2kZ. Similarly, 〈a�−, �+〉 = 0 and 〈a�−, �t1 − �t3〉 = an so

that a�− ∈ H1(ϒC ,Z)
∨ if and only if a ∈ 1

nZ. It follows that the lattice type is
[1.2B : n + 2k, n]. The case U−

n˜n,k follows by swapping the roles of �+ and �−.
For the case U+

n,m,k , let t1, t2, t3 be the three twins and �t1 , �t2 , �t3 be the corre-
sponding half loops. Choose the loops h1 = �t1 − �t3 and h2 = �t2 − �t3 as a basis
for H1(ϒC ,Z). Then for a, b ∈ Q, � = ah1 + bh2 ∈ H1(ϒC ,Z)

∨ if and only if
〈�, h1〉 = a(n + k)+ bk ∈ Z and 〈�, h2〉 = b(m + k)+ ak ∈ Z i.e.

(
n + k k
k m + k

)(
a
b

)
∈ Z

2.

By properties of Smith normal forms, there exists a Z-basis g1, g2 of H1(ϒC ,Z) such
that ug1 + vg2 ∈ H1(ϒC ,Z)

∨ if and only if

(
gcd(n + k,m + k, k) 0

0 det(M)
gcd(n+k,m+k,k)

)(
u
v

)
=
(
d 0
0 t

d

)(
u
v

)
∈ Z

2,
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where M =
(
n + k k
k m + k

)
. It follows that the lattice type is [1.1 : d, t/d].

In the casesU−
n,m,k ,U

+
n˜n ˜n andU

−
n˜n ˜n , the eigenvalues of Frobenius are (−1,−1),

(ζ3, ζ
−1
3 ) and (ζ6, ζ

−1
6 ), respectively. The lattices become [1.1 : d, t/d] after an

unramified extension of degree 2, 3 and 6, respectively. It follows from Theorem 1.2.2
in [4] using the f = 2, 3 columns that the original lattice types are [2.2 : d, t/d],
[3 : n] and [6 : n], respectively. ��

19 Local constancy of arithmetic invariants

Observe that all our main results on a hyperelliptic curve C : y2 = f (x) are obtained
from fairly coarse data coming from the roots of f (x). It follows that small p-adic
perturbations of the roots of f (x) do not change the arithmetic invariants of C . Here
is a precise formulation:

Theorem 19.1 SupposeC1/K : y2 = f1(x), C2/K : y2 = f2(x)are twohyperelliptic
curves, such that

(a) The leading coefficients c f1 of f1 and c f2 of f2 satisfy
c f1
c f2

∈ K×2.

(b) There is a Galois-equivariant bijection φ : {roots of f1}→{roots of f2} such that
φ(ri )−φ(r j )

ri−r j
≡ 1 mod m for all roots ri �= r j of f1.

Then

(1) C1 and C2 acquire semistable reduction over the same extensions of K .
(2) If C1,C2 are semistable over a finite Galois extension F of K , then the special

fibres of their minimal regular models over OFnr are isomorphic as curves with
the semilinear action of GK given by (2.16).

(3) H1
ét(C1) ∼= H1

ét(C2) as GK -modules, for every l �= p.
(4) If C1,C2 are semistable and |k| > 2g + 1, then the valuation of their minimal

discriminants are equal.

Remark 19.2 By (3) C1 and C2 share the same conductor exponent and root number.
By (2) if C1 and C2 are semistable then they have the same reduction type (in the
sense of Definition 18.1). It follows that C1 is deficient if and only if C2 is, and that
their Jacobians have the same Tamagawa number.

Proof of Theorem First note that by (a) and after a change of variable, we may assume
that c f1 = c f2 . Moreover by (b), φ induces an isomorphism of cluster pictures, pre-
serving depths and the Galois action on the roots.

(1) Follows from the semistability criterion (Theorem 7.1).
(2) There is a one-to-one correspondence between valid discs (cf. Sect. 4) for C1

and C2 over F , defined as follows. By the semistability criterion, every proper cluster
s for C1 contains either an IF -invariant root r or a twin consisting of IF -conjugate
roots r1, r2. Let zs = r in the first case, and zs = (r1+ r2)/2 in the second case. Then
every valid disc for C1 has a centre zs ∈ Fnr of this type. It corresponds to a valid
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disc of C2 that has centre φ(r), respectively, (φ(r1)+ φ(r2))/2, and the same radius.
This gives the one-to-one correspondence D ↔ φ(D).

Next, we claim that the reduction maps agree, that is redD(r) = redφ(D)(φ(r)) for
every root r and valid disc D of C1. As the radii are the same, this is equivalent to

r − zD
φ(r)− zφ(D)

≡ 1 mod m.

This is clear from (b) if zD is a root. Suppose zD = (r1 + r2)/2. If r ∈ {r1, r2}, this
is again clear. Otherwise,

r − zD
φ(r)− zφ(D)

≡ r − r1
φ(r)− zφ(r1)

≡ 1 mod m,

because r − zD = (r − r1)+ r1−r2
2 , and the second term has higher valuation than the

first (and similarly for φ(r)− zφ(D)). It follows from Definition 1.13 and 8.2 that all
α, β, γ , ε are the same for the corresponding discs (using the same argument as above
for β in the case of non-root centres), and by Proposition 5.20 and Theorem 6.2, the
special fibres are the same, with the same Galois action.

(3) By (2.18), the Tate module Vl Jac(C), and hence H1
ét(C), is determined as a

Galois module by the special fibre of the minimal regular model over F together with
the GK -action (2.17). These are the same for C = C1 and C = C2 by (2).

(4) Since the cluster pictures are the same, so are the minimal discriminants by
Lemma 16.4 and Theorem 16.2. ��

Corollary 19.3 Suppose C1 : y2 = c1 f1(x) and C2 : y2 = c2 f2(x) are two hyper-
elliptic curves with c1, c2 ∈ K× and f1(x), f2(x) ∈ OK [x] monic polynomials. If
c1
c2

∈ K×2 and f1(x) ≡ f2(x) mod πd+1 where d is the largest depth among the
depths of all proper clusters of C1, then

• H1
ét(C1) ∼= H1

ét(C2) as GK -modules for every l �= p, C1 and C2 have the same
conductor exponent and the same root number.

• If C1 is semistable then so is C2. In this case, the special fibres of their minimal
regular models over OKnr are isomorphic as curves with an action of Frobenius,
their Jacobians have the same Tamagawa number, C2 is deficient if and only if C1
is and, if |k| > deg f1(x), the valuations of their minimal discriminants are equal.

Proof By hypothesis, the condition (a) of Theorem 19.1 holds. Also, as f1(x) and
f2(x) are monic and congruent mod π , they have the same degree.
Let F be the splitting field of f1(x) and α1, ..., αn ∈ F its roots. Note that αi

mod πd+1 is a root of f2(x) mod πd+1 for all i . By definition of depth, these are
all distinct so that by Hensel’s Lemma, the roots β1, ...βn of f2(x) can be ordered so
that αi ≡ βi mod πd+1. Now if σ(αi ) = α j then σ(βi ) ≡ β j mod πd+1 and hence
σ(βi ) = β j . Finally by choice of d, we have βi − β j ≡ αi − α j �≡ 0 mod πd+1, so

that
βi−β j
αi−α j

≡ 1 mod m. The result follows from Theorem 19.1 and Remark 19.2. ��
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Appendix A. Hyperelliptic curves

Let K be a field with char(K ) �= 2. By a (possibly singular) hyperelliptic curve

C : Y 2 = f (X),

where f (X) ∈ K [X ] is of degree 2g or 2g + 1, has leading coefficient c f and has at
worst double roots, we mean the projective curve given by glueing the pair of affine
patches

UX : Y 2 = f (X) and UT : V 2 = T 2g+2 f (
1

T
)

along X = 1
T and Y = V

T g+1 . By the points at infinity on C we mean the points of
C UX , i.e. the points with T = 0 on UT . If deg( f ) = 2g + 1 there is a unique such,

P∞ = (0, 0),

whilst if deg( f ) = 2g + 2 then

P∞±√
c f = (0,±√

c f )
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are the two points on UT with T = 0. Note that the points at infinity are always
nonsingular. The singular points of C , all of which are nodes, are precisely those of
the form (r , 0) on UX where r is a double root of f (X).

Write f (X) = c f g(X)h(X)2 with g(X), h(X) monic and square free. Then the
normalization of C is the hyperelliptic curve

C̃ : Y 2 = c f g(X) (A.1)

and the canonical morphism C̃ → C is given (on the chart UX ) by

(x, y) �→ (x, yh(x)). (A.2)

The points on C̃ above a node (r , 0) are

N
±√c f g(r)
r = (r ,±

√
c f g(r)). (A.3)

Given a morphism φ : C1 → C2 of hyperelliptic curves, we denote by φ̃ the unique
morphism C̃1 → C̃2 making the diagram

C̃1 C̃2

C1 C2

(A.4)

commute.

Remark A.5 Weallow the casewhere every root of f (X) is a double root, in which case
C is not geometrically connected. The discussion above and lemma below, however,
remain valid as stated.

Lemma A.6 Suppose K has characteristic p > 2 and let σ be a positive integer power
of theFrobeniusmapon K̄ sending x to x p. LetC1 : Y 2 = f1(X)andC2 : Y 2 = f2(X)
be two (possibly singular) hyperelliptic curves. Denote the affine charts for C1 (resp.
C2) by UX ,1 and UT ,1 (resp. UX ,2 and UT ,2). Suppose φ : C1 → C2 is a morphism
given as a map UX ,1 → UX ,2 on K̄ -points by

(x, y) �→ (ασ(x)+ β, γ σ(y)), α, γ ∈ K̄× and β ∈ K̄ .

(1) As a (rational) map UT ,1 → UT ,2, φ is given on K̄ -points by the formula

(t, v) �→
(

σ(t)

α + σ(t)β ,
γ σ (v)

(α + σ(t)β)g+1

)
.

In particular, if deg( f1) is odd then P∞ �→ P∞ whilst if deg( f1) is even then

P
√c f1∞ �→ P

ε
√c f2∞ where ε = γ σ(

√c f1 )

αg+1√c f2
∈ {±1}.
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(2) For i = 1, 2, write fi (X) = hi (X)2gi (X) with hi , gi monic and squarefree. Then
the morphism φ̃ : C̃1 → C̃2 is given explicitly on K̄ -points by the formula

(x, y) �→
(
ασ(x)+ β, γ α−deg(h1)σ (y)

)
.

In particular we have

φ̃

(
N

±√c f1 g1(r)
r

)
= N

±κr
√

c f2 g2(r
′)

r ′

where r ′ = ασ(r)+ β and κr = γα−deg(h1) σ (
√

c f1 g1(r))√
c f2 g2(r

′) ∈ {±1}.

Proof (1) Let (t, v) ∈ UT ,1 with t �= 0. This corresponds to the point (1/t, v/t g+1) ∈
UX ,1 which under φ is mapped to the point

(
α + βσ(t)
σ (t)

,
γ σ (v)

σ (t)g+1

)
∈ Ux,2.

Changing variables we see that this corresponds to the point

(
σ(t)

α + σ(t)β ,
γ σ (v)

(α + σ(t)β)g+1

)
∈ UT ,2.

Since this formula describes a rational map which is defined at t = 0 it gives the
desired expression for the morphism on UT ,1, as well as the claim about the points at
infinity.

(2) We first claim that

f2(X) = γ 2 f σ1
(
X − β
α

)
, (A.7)

where f σ1 (X) is the result of applying σ to the coefficients of f1(X). In particular

c f2 = (γ /αg+1)2σ(c f1).

Indeed, since φ is a morphism, for all (x, y) ∈ C1(K̄ ) we must have

γ 2σ(y2) = f2(ασ(x)+ β),

or equivalently

γ 2 f σ1 (σ (x)) = f2(ασ(x)+ β).
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Since both the x-coordinate map Ux,1(K̄ ) → K̄ and σ : K̄ → K̄ are surjective we
deduce that

γ 2 f σ1 (x) = f2(αx + β)

holds for all x ∈ K̄ and is thus a polynomial identity, from which (A.7) follows.
To see that the claimed formula for φ̃ gives a morphism C̃1 → C̃2 making the

diagram (A.4) commute, we use that from (A.7) one has

h2(X) = αdeg(h1)hσ1
(
X − β
α

)
.

��

Appendix B. Centres of clusters

Lemma B.1 Let f (x) ∈ K [x] be a squarefree polynomial with set of rootsR. Let s be
a proper cluster, Gs = StabGK (s) and Ks = (Ksep)Gs . If there is a root z0 ∈ s such
that Ks(z0)/Ks is tame, then there is a centre for s which lies in Ks. In particular,
if K (R)/K is tamely ramified, then for every proper cluster s there is a centre which
lies in Ks.

Proof By assumption z0 lies in a tame extension of Ks and hence in Knr
s (

m
√
πs) for

some p � m and uniformiser πs of Ks (we fix here a choice of m
√
πs). Write the p-adic

expansion of z0 as

z0 = at m
√
πs

t + at+1
m
√
πs

t+1 + . . .

for a suitable t ∈ Z and at ∈ Knr
s roots of unity of order prime to p.

For σ ∈ Gs we have σ(z0) ≡ z0 mod πds
K . In other words the terms in the p-adic

expansions of z0 and σ z0 agree up to m
√
πs

eKs/Kmds . Define

z =
∑

t<eKs/Kmds

at m
√
πs

t
.

Clearly z is a centre for s and it suffices to check that it is Gs-invariant. Suppose not,
and that au m

√
πs

u is the lowest valuation term the expressionwhich is notGs-invariant.
If m � u then there is some element σ of tame inertia of Ks which fixes au ∈ Knr

s
and maps m

√
πs

u to ζ m
√
πs

u with a root of unity ζ �= 1; this contradicts the fact that
σ z0 ≡ z0 mod m

√
πs

eKs/Kmds . If m|u then m
√
πs

u ∈ Ks, so we must have au /∈ Ks;
but in this case the Frobenius element φ similarly scales au m

√
πs

u by a non-trivial root
of unity of order prime to p, which contradicts φz0 ≡ z0 mod m

√
πs

eKs/Kmds . ��
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Appendix C. Equivalent semistability conditions

Throughout this appendix C/K : y2 = f (x) is a hyperelliptic curve with

f (x) = c f

∏

r∈R
(x − r).

We give two equivalent formulations to the semistability criterion (Propositions C.4
and C.7). In view of Theorem 7.1 these provide equivalent conditions for C/K to be
semistable.

Definition C.1 (= Definition 1.8)We say that C/K satisfies the semistability criterion
if the following conditions hold:

(1) The extension K (R)/K has ramification degree at most 2.
(2) Every proper cluster is IK -invariant.
(3) Every principal cluster s has ds ∈ Z and νs ∈ 2Z.

Lemma C.2 Suppose K (R)/K is tamely ramified and σr �= r for some σ ∈ IK and
r ∈ R. Then v(r − σr) /∈ Z, and |OrbitIK (r)| v(r − σr) ∈ Z.

Proof Write

r = a1π
b1 + a2π

b2 . . .

with rational b1 < b2 < · · · and ai ∈ Knr roots of unity of order prime to p.
The expansion of σr differs from that of r only at those bi that are not in Z,
hence v(r − σr) /∈ Z. Also, the size of the orbit |OrbitIK (r)| is the lowest common
multiple of the denominators of the bi (when written in lowest terms), and so
|OrbitIK (r)| v(r − σr) ∈ Z. ��
Lemma C.3 Suppose K (R)/K is tamely ramified and ds ∈ Z for every principal
cluster s ⊂ R and for R itself when R = s1

∐
s2 is a union of two clusters. Then

(1) eK (R)/K ≤ 2,
(2) all proper clusters are inertia invariant,
(3) a root r is fixed by inertia unless r ∈ t for a twin t or R = c ∪ {r , r ′} is a cotwin

with c its principal child.

Proof Let r and σr be two inertia conjugate roots. By Lemma C.2, v(r − σr) /∈ Z,
so the depth of s = {r} ∧ {σr} is not an integer. Note that s cannot be a cotwin of odd
size, since its singleton root (by construction r or σr ) cannot be Galois conjugate to
a root in its principal child. Thus s is either a twin or s = R is a cotwin of the form
c ∪ {r , σr} where c is its principal child. It follows that inertia can only swap roots
inside twins or the two singletons inside a cotwin. The lemma follows. ��
Proposition C.4 LetC/K beahyperelliptic curve. ThenC/K satisfies the semistability
criterion if and only if

(1) The extension K (R)/K is tamely ramified.
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(2) Every principal cluster s is IK -invariant, has ds ∈ Z and νs ∈ 2Z.

Proof Clearly if C/K satisfies the semistability criterion then (1) and (2) hold. For
the converse, by Lemma C.3 it suffices to show that dR ∈ Z if R is a union of two
clusters. Suppose R = s1

∐
s2 is a union of two clusters. At least one of the si is

principal, so, by hypothesis, they cannot be permuted by IK . By Lemma B.1, s1 and
s2 have centres zs1 , zs2 ∈ K (taking zs = r if s = {r} is a singleton), and hence
dR = v(zs1 − zs2) ∈ Z. ��
Lemma C.5 For any cluster s, νs = νP(s) + |s|δs.
Proof By definition of ν,

νs = v(c f )+ |s|ds +
∑

r /∈s
v(zs − r) = v(c f )+ |s|ds +

∑

r /∈P(s)
v(zs − r)

+
∑

r∈P(s) s
v(zs − r)

= v(c f )+ |P(s)|dP(s) +
∑

r /∈P(s)
v(zP(s) − r)+ |s|ds − |P(s)|dP(s)

+(|P(s)| − |s|)dP(s) = νP(s) + |s|δs.

��
Lemma C.6 The following are equivalent:

(1) There exists a principal cluster s with ds ∈ Z and νs ∈ 2Z and for all other
principal clusters s′, s′′ �= R,

(a) δs′ ∈ Z if s′ is even and P(s′) is principal,
(b) δs′ ∈ 2Z if s′ is odd and P(s′) is principal,
(c) δs′ − δs′′ ∈ 2Z ifR = s′

∐
s
′′
and s′, s′′ odd.

(d) δs′ − δs′′ ∈ Z ifR = s′
∐

s
′′
and s′, s′′ even.

(2) All principal clusters s have ds ∈ Z and νs ∈ 2Z.

Proof For all proper clusters s we have ds = dP(s) + δs by definition of δs, and
νs = νP(s) + |s|δs, by Lemma C.5. The result follows from a simple case-by-case
check, and the fact that going to parent and child clusters allows one to move from any
principal cluster to any other one, moving only through principal clusters and possibly
through R when it is a union of two odd or two even clusters. ��
Proposition C.7 Let C/K be a hyperelliptic curve and let s be a principal cluster.
Then C/K satisfies the semistability criterion if and only if

(1) there exists a principal cluster s with ds ∈ Z and νs ∈ 2Z,
(2) for all proper clusters s′, s′′ �= R,

(a) δs′ ∈ Z if |s′| > 2 is even and P(s′) is not a cotwin,
(b) δs′ ∈ 2Z if |s′| is odd and P(s′) is principal,
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(c) δs′ ∈ 1
2Z if |s′| = 2,

(d) δs′ ∈ 1
2Z if |s′| = 2g and P(s′) is a cotwin,

(e) δs′ , δs′′ ∈ Z and δs′ + δs′′ ∈ 2Z if R = s′
∐

s′′ and s′, s′′ odd,
(f) δs′ , δs′′ ∈ Z ifR = s′

∐
s′′ and s′, s′′ even principal,

(3) wild inertia acts trivially on the roots.

Proof SupposeC/K satisfies (1)–(3). By (1) and (2) the curve satisfies the hypotheses
of Lemma C.6(1), and hence all principal clusters s′ have ds′ ∈ Z and νs′ ∈ 2Z. By
(2e), (2f), if R is a union of two clusters then dR ∈ Z, so by Lemma C.3 all proper
clusters are inertia invariant and the ramification degree of K (R)/K is at most 2.

Conversely, suppose that C/K satisfies the semistability criterion. Then (1) and
(3) trivially hold. If R = s1

∐
s2 is a union of two clusters, then at least one of

the si is principal, so they cannot be permuted by IK . By Lemma B.1, s1 and s2
have centres zs1 , zs2 ∈ K (taking zs = r if s = {r} is a singleton), and hence
dR = v(zs1 − zs2) ∈ Z. Thus (2a), (2b), (2e) and (2f) hold because ds ∈ Z and
νs ∈ 2Z for every principal cluster s. Finally, (2c) and (2d) follow from Lemma C.2.

��

Appendix D. Metric cluster pictures, hyperelliptic graphs and BY trees

Here we summarise various definitions and constructions from [18]. Specifically, we
recall the combinatorial notion ofmetric cluster picture and the process for associating
a metric BY tree and metric hyperelliptic graph to each such. The relevance to this
paper is that, for the metric cluster picture associated to a semistable hyperelliptic
curve over a local field K of odd residue characteristic (Example D.3), the resulting
hyperelliptic graph is precisely the dual graph of (the special fibre of) its minimal
regular model over K nr (Theorem 5.18).

We caution that our notation differs slightly from that of [18]. Where there are dif-
ferences we indicate this immediately after the relevant defintion and note in particular
that, for a metric cluster picture �, we write T� (resp. G�) for the graph denoted in

op. cit. as T̃ (�) (resp. ˜G(T (�))).
We adopt the same definitions and conventions for metric graphs as in Sect. 2.1.1.

In particular we allow graphs to have loops andmultiple edges and automorphisms of a
metric graphG are homotopy classes of homeomorphismsG → G preserving vertices
and lengths (which may permute multiple edges and reverse direction of loops).

D.1 Cluster pictures

Definition D.1 (Cluster picture) Let X be a finite set and� a collection of non-empty
subsets of X ; elements of � are clusters. Then � (or (X , �)) is a cluster picture if

(1) every singleton is a cluster, and X is a cluster,
(2) any two clusters are either disjoint or one is contained in the other.
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Acluster picture (X , �) ismetric if it is equippedwith a distance δ(s, r) = δ(r, s) ∈
R>0 for every pair of proper clusters s < r. This extends to a distance function between
all pairs of proper clusters in the natural way; see [18, Definition 3.45].

We talk about properties of clusters using the notation and terminology set out in
Table 6 in Appendix E (see also [18, Sect. 3]), and do not recall these terms here in
the interest of space. In particular (X , �) has genus g if |X | ∈ {2g + 1, 2g + 2}. In
this appendix we restrict to cluster pictures of genus at least 2.

Example D.2 Let C/K : y2 = f (x) be a hyperelliptic curve and denote by R ⊆ K̄
the set of roots of f (x). Then the non-empty subsets of R cut out by discs form a
metric cluster picture, where for proper clusters s < s′ we set δ(s, s′) = ds − ds′
where ds = minr ,r ′∈s{v(r − r ′)} is the depth of the cluster s.

Example D.3 As a concrete example of the above, take K = Qp for p odd and consider
the monic polynomial f (x) with set of roots R = {1, 1+ p2, 1− p2, p, 0, p3,−p3},
so that the resulting hyperelliptic curve C : y2 = f (x) is the one considered in (1.2).
There are four proper clusters:

R, s1 = {1, 1+ p2, 1− p2}, s2 = {p, 0, p3,−p3}, s3 = {0, p3,−p3},

of depths 0, 2, 1 and 3 respectively. We represent this pictorially by drawing roots
r ∈ R as , and drawing ovals around roots to represent a cluster:

2

s1

2

s3

1

s2

0

R

the roots ordered as they appear in the definition ofR. The subscript of the top cluster
R is its depth and for all other clusters it is their “relative depth”: the difference
between their depth and that of their parent cluster.

Definition D.4 (Automorphisms of cluster pictures) An automorphism of � is a pair
σ = (σ0, εσ ) where σ0 is a permutation of the proper clusters preserving sizes, inclu-
sions and, in the metric case, distances, and εσ is a collection of signs εσ (s) ∈ {±1}
for even clusters s ∈ � such that εσ (s′) = εσ (s) whenever s is übereven and s′ < s.

We compose automorphisms by the cocycle rule

(α, εα) ◦ (β, εβ) =
(
α ◦ β, s �→ εβ(s)εα(β(s))

)
.

Remark D.5 LetE denote the set of even clusterswhich do not have an übereven parent,
excluding R unless R is itself übereven. Then to give a collection of signs εσ (s) as
in Definition D.4 is equivalent to specifying εσ (s) for s ∈ E , with no additional
compatibility.
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D.2 The BY tree associated to a cluster picture

Let � be a metric cluster picture. We associate to � a finite tree T� , equipped with
a genus marking g : V (T�) → Z≥0 on vertices and a 2-colouring blue/yellow on
vertices and edges as follows.

Definition D.6 (T�) Let (X , �) be a metric cluster picture. We define T� , the BY tree
associated to �, as follows. First take the graph with:

• a vertex vs for every proper cluster s, excluding s = X when |X | = 2g + 2 and
has a child of size 2g + 1, coloured yellow if s is übereven and blue otherwise,

• an edge linking vs to vP(s) for every proper cluster s �= X , yellow of length 2δs
if s is even, and blue of length δs if s is odd.

ToobtainT� from this graphwe remove, if |X | = 2g+2 and X is a disjoint unionof two
proper children, the (degree 2) vertex vX from the vertex set18 (keeping the underlying
topological space the same). We define the genus of a vertex vs as g(vs) = g(s).

Writing T = T� , as a topological space T = Tb
∐

Ty with Tb the blue part, and
Ty the yellow part. Note that all leaves are blue and that Tb ⊂ T is closed.

Remark D.7 T� is a (metric) BY tree in the sense of [18, Definition 3.18]; in the
notation of op. cit. (see Construction 4.13, Proposition 5.7) it is precisely the graph
T̃ (�).

Example D.8 Consider the cluster picture associated to the polynomial ofExampleD.3.
The associated metric BY tree is

11
22 2
vs3vs1 vs2vR

where the yellow edge is squiggly for the benefit of viewing in black and white, the
number above an edge is its length, and the number on a vertex its genus.

D.3 The hyperelliptic graph associated to ametric cluster picture

Let � = (X , �) be a cluster picture. We associate to � a metric graph G� , equipped
with a genus marking g : V (G�)→ Z≥0 and an involution19 ι as follows.

Definition D.9 (G�) Let� be a metric cluster picture and T = T� the associated met-
ric BY tree. Define G� , the hyperelliptic graph associated to�, to be the topological
space (complete with metric) given by glueing two disjoint copies T+ and T− of T
along their common blue parts. Thus G = G� comes with a natural map π : G → T
making it into a double cover of T ramified along Tb, as well as an involution ι swap-
ping T+ and T−. We make GT into a (metric) graph by, for each vs ∈ V (T ) not a

18 we will freely still refer to vX in this case, understanding that it is simply a point on T� rather than a
vertex.
19 graph isomorphism of order ≤ 2.
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genus 0 leaf (equiv. s principal, see [18, Lemma 5.20]), declaring each element x of
π−1(vs) to be a vertex of genus g(s). We denote this vertex of G by vs if x is the
unique element of π−1(vs), and otherwise denote it v+s (resp. v−s ) if x ∈ T+ (resp.
x ∈ T−). Finally, we adjust the metric by halving the lengths of all edges.

We write Gb for those points in G fixed by ι and Gy for G Gb. Further, write G+
y

for the points in Gy which come from T+ and G−
y for the points coming from T−.

Remark D.10 The graphG� is a hyperelliptic graph in the sense of [18,Definition 3.2],
so that in particular all vertices of genus 0 necessarily havedegree at least 3. Specifically

it is the hyperelliptic graph ˜G(T (�)) (see op. cit. Construction 4.8, Lemma 5.5).

Remark D.11 The graph G� may be described somewhat more concretely as follows.
For every non-übereven principal cluster there is a vertex vs, and for each übereven

principal cluster s there are two vertices v+s and v−s . These are linked by edges as
follows (where we write vs = v+s = v−s whenever s is not übereven):

Name From To Length Conditions

Ls′ vs′ vs
1
2 δs′ s′ < s both principal, s′ odd

L+
s′ v+

s′ v+s δs′ s′ < s, both principal, s′ even
L−
s′ v−

s′ v−s δs′ s′ < s, both principal, s′ even
Lt v−s v+s 2δt s principal, t < s twin
Lt v−s v+s 2δs s principal, s < t cotwin

and ifR is not principal additionally:

Ls1,s2 vs1 vs2
1
2 (δs1 + δs2 ) R = s1

∐
s2, with s1, s2 principal odd

L+
s1,s2 v+s1 v+s2 δs1 + δs2 R = s1

∐
s2, with s1, s2 principal even

L−
s1,s2 v−s1 v−s2 δs1 + δs2 R = s1

∐
s2, with s1, s2 principal even

Lt v−s v+s 2(δs + δt) R = s
∐

t, with s principal even, t twin

Example D.12 The hyperelliptic graph associated to the cluster picture of Example D.3
is

11
11 1

1

vs3vs1 vs2vR

where the number above an edge indicates its length, and the number on a vertex its
genus. In particular, by Theorem 5.18, for p an odd prime this is the dual graph of the
hyperelliptic curve

C/Qp : y2 = x(x − 1)(x − (1+ p2))(x − (1− p2))(x − p3)(x + p3).
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D.4 Automorphisms of T6 and G6

Let � = (X , �) be a metric cluster picture. We now explain how to produce an
automorphism of T� (resp. G�) from an automorphism of �.

D.4.1 Automorphisms of T6

By an automorphism of T = T� we mean a pair (σ0, εσ ) where

• σ0 is a graph automorphism of T that preserves genera, colours and distances,
• εσ (Z) ∈ {±1} is a collection of signs for every connected component Z of the
yellow part Ty ⊂ T .

As for cluster pictures we compose automorphisms by the cocycle rule

(α, εα) ◦ (β, εβ) =
(
α ◦ β, • �→ εβ(•)εα(β(•))

)
.

(This is precisely the notion of automorphism for BY trees used in [18, Definition
3.27].)

Definition D.13 (T (σ )) Let σ = (σ0, εσ ) be an automorphism of �. Define the
automorphism T (σ ) = (T (σ )0, εT (σ )) of T as follows. For a vertex vs of T , set
T (σ )0(vs) = vσ0(s). To define εT (σ ) for a yellow component Z of Ty , pick (as is
always possible) an even cluster s such that the edge between vs and vP(s) (half-edge
if P(s) = X and vX is removed from the vertex set in the construction of T ) lies in
Z . Set εT (σ )(Z) = εσ (s). The compatibility of signs on even clusters ensures this is
well defined.

Remark D.14 The automorphism T (σ ) of T� is precisely the result of restricting the
automorphism T (σ ) of the open BY tree T (�), as defined in [18, Construction 4.13],
to its core T̃ (�). In particular (see [18, Proposition 4.14]), the association σ �→ T (σ )
is a homomorphism, and every automorphism of T� fixing vX (or vs is X has size
2g + 2 and a child s of size 2g + 1) arises this way.

D.4.2 Automorphisms of G6

By an automorphism of G� we mean a graph automorphism preserving the genus
marking.

Definition D.15 (G(σ )) Let σ = (σ0, εσ ) be an automorphism of �, and T (σ ) =
(T (σ )0, εT (σ )) the associated automorphism of T = T� . Denote by π : G → T the
quotient map and for a connected component Z of Gy , denote by Z̄ the component
π(Z) of Ty . We define G(σ ) to be the unique automorphism of G such that:

• G(σ ) commutes with ι and induces the graph automorphism T (σ )0 (temporarily
denoted ρ) on the quotient T ,
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• for a connected component Z of G+
y , we have

G(σ )(Z) =
{
π−1(ρ(Z̄)) ∩ G+

y εT (σ )(Z̄) = 1,

π−1(ρ(Z̄)) ∩ G−
y εT (σ )(Z) = −1.

Remark D.16 Explicitly, for a non übereven principal cluster s we have G(σ )(vs) =
vσs. Similarly, for an übereven principal cluster s we have

G(σ )(v+s ) =
{
v+σs εσ (s) = 1

v−σs εσ (s) = −1.

For the edges, for a proper cluster s of size < 2g + 1, write es ∈ Gb (resp. e+s ∈ G+
y

and e−s ∈ G−
y ) for the edge(s) between π

−1(vs) and π−1(vP(s)) (if s = t is a twin,

then by e±t we mean the two half-edges which get glued at π−1(vt) to form a loop).
Then for s odd we have G(σ )(es) = eσs, whilst for s even we have

G(σ )(e+s ) =
{
e+σs εσ (s) = 1

e−σs εσ (s) = −1.

Remark D.17 The automorphism G(σ ) of G� is precisely the result of restricting the
automorphism G(σ ) of the hyperelliptic graph G(T (�)), as defined in [18, Con-

struction 4.8], to its core ˜G(T (�)). In particular (see [18, Proposition 4.11] and
Remark D.14), the association σ �→ G(σ ) is a homomorphism, and every auto-
morphism of G� fixing π−1(vX ) as a set (or π−1(vs) if X has size 2g+ 2 and a child
s of size 2g + 1) arises this way.

D.5 The homology of G6

In [18, Sect. 6] an explicit description of the first singular homology group H1(G�,Z),
alongwith its length pairing ([18, Sect. 2.2.2]) and automorphism action is given. Here
we recall the result.

Theorem D.18 Let � be a metric cluster picture, A the set of even non-übereven
clusters excluding X, and B the subset of clusters s ∈ A such that s∗ = X. Then there
is a canonical isomorphism

H1(G�,Z) ∼=
{
∑

s∈A
λs�s ∈ Z

A |
∑

s∈B
λs = 0

}
.

The length pairing is given by

〈�s1 , �s2〉 =

⎧
⎪⎨

⎪⎩

0 s∗1 �= s∗2,
2(δ(s1 ∧ s2, P(s∗1))) s∗1 = s∗2 �= X ,

2(δ(s1 ∧ s2, X)) s∗1 = s∗2 = X .
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For an automorphism σ = (σ0, εσ ) of�, the action of G(σ ) on H1(G�,Z) is given
by

σ(�s) = εs(σ )�σs.

Proof This is [18, Theorem 6.1] (see op. cit. Definitions 3.16, 3.31 and 3.48 for the
definitions of the lattices  • appearing in the statement). We remark that, writing
T = T� , the proof passes through a canonical identification (op. cit. Proposition 6.6)
of H1(G�,Z) with the relative homology group H1(T , Tb,Z), equivariant for the
natural actions of automorphisms and preserving the respective length pairings. ��
Remark D.19 Unwinding the isomorphism in [18, Theorem 6.1] yields the following
explicit description of the basis elements �s: for s �= R an even non-übereven cluster
�s ∈ C1(G�,Z) is the shortest path going from v

−
ŝ
to vs through G

−
� before going on

to v+
ŝ
through G+

� , where here we set ŝ = P(s∗) if s∗ �= R, and ŝ = R otherwise. (In
exceptional cases, for a cluster s appearing above, vs (resp. v

+
ŝ
, v−

ŝ
) may not be in the

vertex set of G� , and we must interpret it as the obvious point on an edge instead.)
Note that �s is a loop in G� unless s∗ = R, in which case it is a “half loop” in the
sense that if �s, �s′ are two such then �s − �s′ is a loop.

Appendix E. Summary of notation

For the reader’s convenience, the following tables gather the general notation and
terminology that are used throughout the paper. We reserve gothic letters s, t, s1 etc.
for clusters (except for “modm”). Tables 4 and 5 list the general notation associated to
fields and hyperelliptic curves. Tables 6 and 7 summarise the notation and terminology
associated to a cluster s, and the main functions and invariants associated to clusters.
Table 8 presents the main notation associated to a disc D, as used in Sects. 3–7.
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Table 4 General notation associated to fields

K Local field of odd residue characteristic

OK Ring of integers of K

k Residue field of K

k̄ Algebraic closure of k

π Uniformiser of K

v Normalised valuation with respect to K

K nr Maximal unramified extension of K

K sep Separable closure of K

K̄ Algebraic closure of K

GK Gal(K sep/K )

IK Inertia subgroup of GK

Frob A choice of Frobenius element in GK

Sp2 Representation GK → GL2(Ql ), given by σ �→ (10 τ(σ )1
)
for σ ∈ IK , where

τ : IK → Zl is the l-adic tame character, and Frob �→ (10 0
|k|−1
)
; see [37, 4.1.4]

ĉ = c
πv(c)

F A finite Galois extension of K where C is semistable

πF Uniformiser of F ,

χ χ(σ) = σ(πF )
πF

mod m, for σ ∈ GK , see Definition 8.2

e Ramification degree of a finite Galois extension F/K

mod m Reduction to the residue field

Table 5 General notation associated to a hyperelliptic curve

C Hyperelliptic curve given by y2 = f (x)

c f Leading term of f (x)

R Set of roots of f (x) in K sep

g Genus of C

�C Discriminant of C

�min
C Discriminant of a minimal Weierstrass equation of C

Cmin Minimal regular model of C

Cdisc Regular model of C of Theorem 5.2

Cst Stable model of C

Cmin,k̄ Special fibre of Cmin

ϒC Dual graph of Cmin,k̄

H1
ét(C) H1

ét(CK̄ ,Ql )

Jac C Jacobian of C

Vl A Tl A ⊗ Ql , where Tl A denotes the l-adic Tate module of A

ι Hyperelliptic involution
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Table 6 Terminology and notation for clusters

Terminology and notation
for a cluster s ⊂ R

Definition Example

child of s, s′ < s Maximal subcluster of s
s′ s

parent of s, P(s) Cluster P(s) in which s is maximal
s P(s)

proper cluster Cluster of size > 1
s

even cluster Cluster of even size
s

odd cluster Cluster of odd size (e.g. singleton)
s

übereven cluster Even cluster with only even children
s

twin Cluster of size 2
s

cotwin Cluster with a child of size 2g whose
complement is not a twin s

or
s

principal cluster Proper, not a twin or a cotwin and if
|s| = 2g + 2 then s has ≥ 3
children

s∗ Smallest cluster s∗ ⊇ s that does not
have an übereven parent or proper
child of s if s cotwin

s
s∗

s ∧ s′ Smallest cluster containing s and s′
s′ s

s′ ∧ s

Table 7 Functions and invariants associated to clusters

δs Relative depth of s, δs=ds−dP(s) (1.6)

s̃ Set of odd children of s (1.19)

g(s) Genus of s: |s̃|=2g(s)+1 or 2g(s)+2, or g(s)=0 if s is übereven (5.3)

Gs Stabiliser of s in GK (1.18)

Is Inertia subgroup of Gs (1.18)

zs (choice of) centre of s; zs ∈ K sep with minr∈s v(zs − r) = ds (1.10)

reds Reduction map relative to s: reds(x) = x−zs
πds

mod m (8.5)

cs ĉ f
∏

r /∈s ̂(zs − r) mod m (8.5)

�s Component of Ck associated to s (8.5)

�̃s normalisation of �s; y2 = cs
∏

o∈s̃(x − reds(zo)) (8.8)

νs = v(c f )+
∑

r∈R dr∧s (1.7)

λ̃s = νs
2 − ds

∑
s′<s# |s′|

2 $ (1.19)

αs αs(σ ) = χ(σ)ds for σ ∈ GK (8.2)

βs βs(σ ) = σ(zs)−zσs
πds

mod m for σ ∈ GK (8.2)

γs γs(σ ) = χ(σ)λ̃s for σ ∈ GK (8.2)

εs εs(σ ) = σ(θs∗ )
θ(σs)∗ mod m ∈ {±1} if s even or cotwin,

εs(σ ) = 0 otherwise; here θs =
√
c f
∏

r /∈s(zs − r) and σ ∈ GK (8.2)
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Table 8 General notation associated to discs

zD A choice of centre for D Ydisc (4.13)

P(D) Parent disc of D (3.1.1) ED (3.8)

λD (6.1) ϒ̂C (5.18)

νD (3.1.2) PD,QD (3.7)

κD (3.11) UD,WD (5.4)

redD (3.7) cD (5.8)

Dmax (4.4) Type I to VI (5.11)

fD, gD (3.15) ωD( f ) (4.13)

UD,WD (3.6) �D (5.19)

D(s) (4.1) hD (5.22)

Valid disc (4.4) βD, λD (6.1)
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