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Abstract

Gaussian graphical models can capture complex dependency structures among
variables. For such models, Bayesian inference is attractive as it provides principled
ways to incorporate prior information and to quantify uncertainty through the posterior
distribution. However, posterior computation under the conjugate G-Wishart prior
distribution on the precision matrix is expensive for general non-decomposable graphs.
We therefore propose a new Markov chain Monte Carlo (MCMC) method named
the G-Wishart weighted proposal algorithm (WWA). WWA’s distinctive features
include delayed acceptance MCMC, Gibbs updates for the precision matrix and an
informed proposal distribution on the graph space that enables embarrassingly parallel
computations. Compared to existing approaches, WWA reduces the frequency of
the relatively expensive sampling from the G-Wishart distribution. This results
in faster MCMC convergence, improved MCMC mixing and reduced computing
time. Numerical studies on simulated and real data show that WWA provides a more
efficient tool for posterior inference than competing state-of-the-art MCMC algorithms.
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1 Introduction

Gaussian graphical models (GGMs, Dempster, 1972; Lauritzen, 1996) are a powerful tool

to investigate conditional independence structure among variables which are represented by

the nodes of a graph. Graph estimation is often very challenging given the dimensionality

of the graph space. In the frequentist literature, different strategies have been proposed to

bypass this problem. For example, Friedman et al. (2007) propose the graphical lasso, which

involves the estimation of the precision matrix of a Multivariate Gaussian vector through

penalised likelihood methods. Then, from the estimation of the covariance, the graph is

constructed by drawing an edge between variables whose partial correlation is estimated

as different from zero. Alternatively, nodewise regression (Zhou et al., 2011) approximates

the joint distribution of the variables by considering individual regressions of each variable

on the others. This leads to a computationally efficient set-up which is also amenable to

parallelisation, at the cost of not being founded upon a probabilistically consistent model.

On the other hand, in the Bayesian framework, graph estimation requires the specification

of a prior on the space of graphs and, conditionally on the graph, a prior on the precision

matrix. Bayesian inference allows for principled uncertainty quantification, handling

complexity through the specification of (conditionally independent) submodules and superior

performance compared to frequentist methods. The posterior distribution on the graph

space provided by the Bayesian framework provides principled and interpretable measures

of uncertainty such as posterior edge inclusion probabilities. This contrasts with many

frequentist methods such as the graphical lasso which conceptually focus on the precision

matrix. Then, graph estimation happens through thresholding or penalisation of this matrix,

which do not provide interpretable measures of uncertainty on the graph space. Additionally,

the modular nature of MCMC enables its use in extended models that incorporate GGMs

such as sparse seemingly unrelated regressions (e.g., Wang, 2010; Bhadra and Mallick, 2013)

while propagating the uncertainty of the GGM to other parts of the model. Finally, the

empirical comparisons in Mohammadi and Wit (2015) show that Bayesian inference with

the G-Wishart prior considered in this work often outperforms frequentist methods such as

the graphical lasso in terms of graph structure recovery and precision matrix estimation.
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The previous points provide the rationale for this work, as the goal is to better enable

and speed up Bayesian inference in GGMs. Posterior inference is usually performed through

Markov chain Monte Carlo (MCMC, e.g., Wang and Li, 2012; Hinne et al., 2014) and

more recently sequential Monte Carlo (SMC, Tan et al., 2017; van den Boom et al., 2021).

However, these methods are often associated with high computational cost. A possible

solution is to constrain the analysis to decomposable graphs (e.g., Giudici and Green, 1999;

Letac and Massam, 2007; Scott and Carvalho, 2008; Wang, 2010; Bornn and Caron, 2011;

Bhadra and Mallick, 2013) or to related subsets of the graph space (Khare et al., 2018)

as the associated distributions are tractable. The assumption of decomposability is hard

to justify from an applied perspective and increasingly restrictive as the number of nodes

increases. In the large data limit where the posterior concentrates, decomposability results

in spurious edges which constitute a minimal triangulation of the true graph (Fitch et al.,

2014; Niu et al., 2021). In practice, this implies that up to half of the edges in the estimated

graph can be spurious, even if the posterior is highly concentrated.

To avoid the assumption of decomposable graphs, Roverato (2002) introduces the G-

Wishart prior distribution for the precision matrix conditional on a graph, which is an

extension of the Hyper Inverse Wishart distribution (Dawid and Lauritzen, 1993) employed

in the case of decomposable graphs. This allows for more flexibility at the cost of more

expensive computations. Given the difficulties in exploring the posterior space, stochastic

search methods in a Bayesian model have been developed (Jones et al., 2005; Scott and

Carvalho, 2008; Lenkoski and Dobra, 2011), which aim to identify graphs with high posterior

probability. Nevertheless, MCMC algorithms have received most attention in the literature

(e.g., Wang and Li, 2012; Cheng and Lenkoski, 2012; Lenkoski, 2013; Mohammadi and Wit,

2015) as they allow for full posterior inference.

Inference with the G-Wishart distribution is challenging. For instance, Wang (2015),

Gan et al. (2018), Li et al. (2019) and Sagar et al. (2021) obtain major improvements in

computational efficiency by replacing the G-Wishart distribution with shrinkage priors on

the precision matrix that enable fast Gibbs sampling updates or EM algorithms. Moreover,

building on MCMC methods, SMC (Tan et al., 2017) and unbiased Monte Carlo approx-
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imation (van den Boom et al., 2021) have also been considered as these techniques are

embarrassingly parallel.

Still working with a G-Wishart prior, we propose an MCMC algorithm by carefully

addressing the major computational bottlenecks in the current literature. Our work builds

on advances in MCMC algorithms, in particular, work on delayed Metropolis-Hastings

acceptance (Christen and Fox, 2005) and informed proposals (Zanella, 2019) which we

extend to the graph literature. First, we propose a delayed acceptance MCMC step to

reduce the number of times we need to sample from the G-Wishart distribution. Such

sampling involves iterating an O(pd3) algorithm to convergence where p is the number

of nodes and d the degree of the graph (Lenkoski, 2013). Moreover, we introduce Gibbs

updates for the precision matrix enabled by a node reordering which further reduce the

need to sample from the G-Wishart distribution. Finally, we develop an informed proposal

distribution for graphs which enables the use of parallel computing environments still in an

MCMC framework. As the main distinctive features of the proposed method relate to its

proposal distribution on the graph space, we refer to it as the G-Wishart weighted proposal

algorithm (WWA). We show that WWA improves computation significantly and allows for

exploration of larger graph spaces.

The paper is structured as follows. Section 1.1 introduces Bayesian GGMs based on

the G-Wishart prior, while Section 1.2 reviews related literature on posterior inference.

Section 2 describes the proposed WWA and contextualises it. Section 3 presents simulation

studies to investigate the performance of WWA and compares it with the state of the art.

In Section 4, we consider a real data application. We conclude the paper in Section 5.

1.1 Model Description

Object of inference is a graphG = (V,E) defined by a set of edges E ⊂ {(i, j) | 1 ≤ i < j ≤ p}

that represent links among the nodes in V = {1, . . . , p}. In the GGM framework, we have

an n × p data matrix Y with independent rows Yi, i = 1, . . . , n, corresponding to a p-

dimensional random vector with its elements represented by nodes on the graph. Each Yi is

distributed according to a Multivariate Gaussian distribution N (0p×1, K
−1) with precision

5



matrix K. We assume that the precision matrix K depends on the graph G: we have that

Kij = 0 if nodes i and j are not connected, while if there is an edge between two nodes in

the graph then the corresponding element of the precision matrix is different from zero with

probability one. Thus, K ∈M+(G) where M+(G) is the cone of positive-definite matrices

K with Kij = 0 for (i, j) /∈ E. The graph G determines the conditional independence

structure of the p variables in Yi, i = 1, . . . , n, since Kij = 0 implies that the i-th and j-th

columns of Y are independent conditionally on the others by properties of the Multivariate

Gaussian distribution.

A popular choice as prior for the precision matrix K conditional on the graph G is

the G-Wishart distribution WG(δ,D) as it induces conjugacy and allows one to work with

non-decomposable graphs (Roverato, 2002). It is parameterised by degrees of freedom δ > 2

and a positive-definite rate matrix D. Its density is

p(K | G) =
1

IG(δ,D)
|K|δ/2−1 exp

{
−1

2
tr(K>D)

}
, K ∈M+(G),

where IG(δ,D) is a normalising constant. Due to conjugacy, K | G, Y ∼ WG(δ?, D?) where

δ? = δ + n, D? = D + Y >Y . The model is completed by specifying a prior p(G) on the

graph space. We highlight that the following development does not assume any particular

form for p(G).

1.2 Posterior Distribution

The goal is to compute the posterior distribution (e.g., Atay-Kayis and Massam, 2005)

p(G | Y ) ∝ p(G)

∫
M+(G)

p(K | G) p(Y | K) dK =
p(G) IG(δ?, D?)

(2π)np/2IG(δ,D)
.

The normalising constant IG(δ,D) does not have a simple analytical form for general

non-decomposable G, making evaluation of a Metropolis-Hastings acceptance probability

infeasible. To overcome this problem, Monte Carlo (Atay-Kayis and Massam, 2005) and

Laplace (Moghaddam et al., 2009; Lenkoski and Dobra, 2011) approximations of IG(δ,D)

have been developed. Alternatively, Uhler et al. (2018) provide a recursive expression for

IG(δ,D), but it results in a computationally efficient procedure only for specific types of

graphs.
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Another line of work avoids direct evaluation of IG(δ,D) through application of the

exchange algorithm (Murray et al., 2006) within a broader MCMC. Wang and Li (2012)

and Cheng and Lenkoski (2012) employ this strategy in which sampling from the G-Wishart

is performed through the edgewise or the maximum clique block Gibbs sampler described

in Wang and Li (2012). More recently, Hinne et al. (2014); Mohammadi and Wit (2015);

van den Boom et al. (2021) propose methodology based on the exchange algorithm where

sampling from WG(δ,D) is performed through the exact G-Wishart sampler by Lenkoski

(2013), making the algorithm more accurate in terms of exploration of posterior space.

2 WWA: G-Wishart Weighted Proposal Algorithm

In this section, we introduce WWA which advances existing literature by (i) speeding

MCMC convergence, (ii) improving the mixing of the chain and (iii) reducing computing

time.

Algorithm 1 describes the double conditional Bayes factor (DCBF) sampler from Hinne

et al. (2014). We use DCBF as a prototype for Bayesian algorithms suggested in the

literature that allow for posterior inference on non-decomposable graphs in the context of

GGMs with the G-Wishart prior. In the next three sections, we describe how our strategy

allows us to overcome the main bottlenecks of such approaches.

First, we briefly explain the derivation of the acceptance probability of the DCBF sampler.

We defer a more extensive and general explanation to Section S2 of the Appendix where

we derive the WWA acceptance probabilities. Let Ke = (Φe)>Φe, where Φe is an upper

triangular matrix and Ke is obtained from K by reordering the nodes such that the edge

involved in the proposed graph change corresponds to nodes in the last two rows (columns)

of Ke. Let Φe
ij, i, j ∈ {1, . . . , p}, denote the elements of the Cholesky decomposition, and

define Φe
−f := Φe \ {Φe

p−1,p,Φ
e
pp}. Then, consider as target the distribution p(G,Φe

−f | Y )

as implied by the full posterior p(G,K | Y ) ∝ p(G) p(K | G) p(Y | K). To compute the

acceptance probability in Step 4 of Algorithm 1, we need the the expression (see Cheng and
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Algorithm 1 (Hinne et al., 2014) A single DCBF MCMC Step.

Input: Graph G.

Output: MCMC update for G that preserves the posterior p(G | Y ).

For each edge e ∈ {(i, j) | 1 ≤ i < j ≤ p}, do the following:

1. Let G̃ = (V, Ẽ) where Ẽ = E ∪ {e} if e /∈ E and Ẽ = E \ {e} otherwise.

2. Reorder the nodes in G and G̃ so that e connects nodes p− 1 and p. Rearrange D,

D? accordingly. Denote all resulting quantities after reordering by a superscript e.

3. Draw Ke | G, Y ∼ WGe(δ?, D?,e) and K̃0,e | G̃ ∼ WG̃e(δ,De). Compute their

respective upper triangular Cholesky decompositions Φe and Φ̃0,e.

4. Set G = G̃ w.p. 1 ∧Rexchange where Rexchange is given by Equation (4).

Lenkoski, 2012, for a derivation)

p(Y,Φe
−f | G̃)

p(Y,Φe
−f | G)

= N(Φe
−f , D

?,e)|Ẽ|−|E|
IG(δ,D)

IG̃(δ,D)
(1)

where N(Φe
−f , D

?,e) is an analytically available quantity:

N(Φe
−f , D

?,e) := Φe
p−1,p−1

√
2π

D?,e
pp

exp

D?,e
pp

2

(
Φe
p−1,p−1D

?,e
p−1,p

D?,e
pp

−
∑p−2

i=1 Φe
i,p−1Φ

e
ip

Φe
p−1,p−1

)2
 (2)

The ratio in (1) is not of direct use due to the intractable normalising constants IG(δ,D),

IG̃(δ,D). The exchange algorithm (Murray et al., 2006) avoids the computation of the

normalising constant via the introduction of a Metropolis step defined on an augmented

target distribution, which still admits as marginal the desired posterior p(G | Y ). Specifically,

as shown in Step 3 of Algorithm 1, the exchange algorithm requires simulating K̃0,e from

the G-Wishart prior based on the proposed graph G̃. Let Φ̃0,e
−f be defined analogously to

Φe
−f and denote its distribution by p(Φ̃0,e

−f | G̃). Consider the distribution defined on the

augmented space

p(G,Φe
−f , G̃, Φ̃

0,e
−f | Y ) ∝ p(G,Φe

−f | Y ) p(Φ̃0,e
−f | G̃). (3)
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DCBF proposes the deterministic exchange G↔ G̃ on the above target. Standard applica-

tion of detailed balance identifies the acceptance probability as 1 ∧Rexchange with

Rexchange =
p(G̃,Φe

−f , G, Φ̃
0,e
−f | Y )

p(G,Φe
−f , G̃, Φ̃

0,e
−f | Y )

=
p(Y,Φe

−f | G̃) p(G̃) p(Φ̃0,e
−f | G)

p(Y,Φe
−f | G) p(G) p(Φ̃0,e

−f | G̃)

=
p(G̃)

p(G)

{
N(Φe

−f , D
?,e)

N(Φ̃0,e
−f , D

e)

}|Ẽ|−|E| (4)

where the last equality follows from (1).

2.1 Full Conditionals for K

In Algorithm 1, sampling from the G-Wishart distributions in Step 3 is computationally

expensive. Moreover, sampling fromWGe(δ?, D?,e) can be considerably slower than sampling

from WG̃e(δ,De) under the default hyperparameter choice D = Ip. To avoid repeated sam-

pling of the full matrix K, WWA updates only the elements in the Cholesky decomposition

of K that are affected by the change in the graph. WWA makes use of the following

conditional distributions. First, for Φe
p−1,p,

Φe
p−1,p | G, Φe

−f , Y ∼ N
(−Φe

p−1,p−1D
?,e
p−1,p

D?,e
p,p

,
1

D?,e
pp

)
, e ∈ E, (5a)

Φe
p−1,p | G, Φe

−f , Y = − 1

Φe
p−1,p−1

p−2∑
l=1

Φe
l,p−1Φ

e
lp, e /∈ E, (5b)

where Equation (5a) follows from Equation (5) of van den Boom et al. (2021) and Equa-

tion (5b) is Equation (10) of Roverato (2002). For Φe
pp, we derive in Section S1 of the

Appendix

D?,e
pp (Φe

pp)
2 | G, Φe

p−1,p, Φe
−f , Y ∼ χ2(δ?). (6)

Note that the idea of updating only Φe
p−1,p and Φe

pp has already been mentioned in Cheng

and Lenkoski (2012) but as part of an approximate rather than an exact MCMC algorithm.
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2.2 Approximations

We consider the approximation for the ratio of intractable normalising constants derived by

Mohammadi et al. (2021) under the default prior choice D = Ip. That is,

IG(δ,D)

IG̃(δ,D)
≈

 Γ
(
δ+d

G̃

2

)
2
√
π Γ
(
δ+d

G̃
+1

2

)

|Ẽ|−|E|

=: ̂IG/IG̃ (7)

where dG̃ is the number of paths of length two linking the endpoints of edge e.

Notice that one can avoid working with the extended target in (3), and apply the

exchange step G ↔ G̃ directly on the target p(G,Φe
−f | Y ) with acceptance probability

1 ∧R where

R =
p(G̃,Φe

−f | Y )

p(G,Φe
−f | Y )

≡
pu(G̃,Φ

e
−f | Y )

pu(G,Φe
−f | Y )

× IG(δ,D)

IG̃(δ,D)
(8)

for the analytically available unnormalised densities pu(·, · | ·) defined in the obvious way

via (1). From (7), (8), one can obtain the approximation

R̂ ≡ R̂(G, G̃,K) :=
pu(G̃,Φ

e
−f | Y )

pu(G,Φe
−f | Y )

× ̂IG/IG̃ (9)

We make use of this approximation both within the development of our informed proposal

and for the introduction of a delayed acceptance step within WWA. Combining (1), (8)

leads to an explicit expression for R̂:

R̂ =
p(G̃)

p(G)

N(Φe
−f , D

?,e)
Γ
(
δ+d

G̃

2

)
2
√
π Γ
(
δ+d

G̃
+1

2

)

|Ẽ|−|E|

2.3 Informed Proposal

WWA improves MCMC convergence and mixing per G-Wishart sample through the use

of a proposal distribution that is informed by the target. We will first describe a simple

modification of the proposal that is blind to the target before proceeding to the description

of the informed approach.

First, notice that at every MCMC iteration, Algorithm 1 scans through all the edges.

At each such substep, it proposes graph G̃ with the edge removed if it is present in the
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current graph G or vice versa. This is similar in rationale to specifying a uniform proposal

distribution q(G̃ | G) on which edge to flip. That is, q(G̃ | G) = 1/mmax for G̃ ∈ nbd(G)

where mmax = p(p− 1)/2 denotes the maximum number of edges and the neighbourhood

nbd(G) is the set of mmax graphs that differ from G by exactly one edge. A downside of

the uniform proposal is that the probability of removing an edge equals |E|/mmax which is

usually small, especially when a shrinkage prior on graphs is used. A possible solution is

offered by Dobra et al. (2011) who first propose to remove or add an edge with probability

0.5 and then pick an edge uniformly at random from the appropriate subset. Obviously, for

|E| ∈ {0, mmax}, we propose to add and remove an edge accordingly. This results in the

proposal

q(G̃ | G) =


1

mmax
, |E| = 0, mmax,

1
2|E| , |Ẽ| < |E| 6= mmax,

1
2(mmax−|E|) , |Ẽ| > |E| 6= 0,

(10)

for G̃ ∈ nbd(G).

Second, and most importantly, WWA makes use of a proposal for the graph that learns

from the target. Locally balanced proposals (Zanella, 2019) provide inspiration to further

improve q(G̃ | G) defined above. Such proposals are informed by an embarrassingly parallel

scan through the neighbourhood of the current discrete state in a Markov chain. Specifically,

denote the current and proposed states by x and x̃, respectively, the target distribution

by π(x) and some baseline proposal by q(x̃ | x). Then, an informed proposal Q(x̃ | x) is

defined by

Q(x̃ | x) ∝ g

{
π(x̃)

π(x)

}
q(x̃ | x), (11)

for some balancing function g(t). Here, the transition kernel Q(x̃ | x) is locally balanced if

and only if g(t) = t g(1/t) (Zanella, 2019).

The role of the balancing function is to redirect the proposal towards candidates of high

posterior probability. The aggressiveness of the redirection is determined by the shape of

g(t). In practice, best MCMC mixing results from a balance between information from the

neighbourhood scan, which concentrates the proposal, and the diffuseness of the proposal.
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We employ the balancing function g(t) = t/(1 + t) as suggested by Zanella (2019), although

WWA is well defined for any g(t). In our experiments, we also consider g(t) =
√
t as its

unboundedness might help convergence. We find that this alternative choice results in both

worse convergence and mixing (results not shown). This reduced performance probably

stems from g(t) =
√
t resulting in a too concentrated proposal. Zanella (2019) derives

g(t) = t/(1 + t) as the optimal choice in an example, but also notes that many similarly

behaving balancing functions lead to virtually identical MCMC performance.

The use of an informed proposal in a Metropolis-Hastings acceptance probability requires

the normalising constant of Q(x̃ | x) in (11). Computing the constant involves computing

π(x̃)/π(x) for all x̃ in the support of q(x̃ | x). This task is embarrassingly parallel.

WWA develops an informed proposal in the context of GGMs with q(G̃ | G) in Equa-

tion (10) as baseline proposal. We note that the ratio π(x̃)/π(x) in (11) only serves to

improve the proposal. Instead, we use the analytically available approximation of the ratio

of targets R̂ in (9). Notice that this ratio involves the current precision matrix K. That is,

we have

Q(G̃ | G,K) := C(G,K) · g

{
pu(G̃,Φ

e
−f | Y )

pu(G,Φe
−f | Y )

× ̂IG/IG̃
}
q(G̃ | G)

= C(G,K) · g
{
R̂(G, G̃,K)

}
q(G̃ | G),

(12)

for a normalising constant C(G,K). Thus, the informed proposal for G̃ has the form

Q(G̃ | G,K), differently from Zanella (2019) where the informed proposal only depends on

the discrete state. Moreover, in the GGM context, an update on the graph leads to an

update on the precision matrix (with a distribution defined on a continuous space). Such

considerations are carefully addressed in Section S2 of the Appendix to ensure correctness

of the deduced MCMC.

2.4 Delayed Acceptance

We make use of the approximation R̂ in (9) for the introduction of a delayed acceptance

(DA) step (Christen and Fox, 2005) within WWA. We develop the DA approach by applying

the idea of targeting p(G,Φe
−f | Y ) with a proposed exchange G↔ G̃ based on the kernel
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Q(G̃ | G,K) in (12), and a simultaneous exchange between K ↔ K̃ where K̃ involves the

constituent elements Φ̃e
−f = Φe

−f , Φ̃e
pp = Φe

pp (i.e., the same as the corresponding elements

of K) and sampling Φ̃e
p−1,p according to (5).

Following the DA idea, the approximation R̂ in (9) will be used in place of the ratio of

targets. That is, we ‘promote’ a proposed G̃ with acceptance probability 1 ∧ R̂DA where

R̂DA :=
pu(G̃,Φ

e
−f | Y )

pu(G,Φe
−f | Y )

× ̂IG/IG̃ × Q(G | G̃, K̃)

Q(G̃ | G,K)

= R̂× Q(G | G̃, K̃)

Q(G̃ | G,K)

(13)

This promotion step provides a speed-up over the exchange algorithm of acceptance proba-

bility 1∧Rexchange by not having to sample fromWG̃(δ,D) at the cost of targeting the wrong

distribution. Use of the complete machinery of the DA MCMC in the WWA algorithm

corrects for this inconsistency (see Algorithm 2).

DA has been originally developed to employ approximate posteriors within an exact

MCMC, while we directly approximate the acceptance ratio. Specifically, our use of DA

involves first a Metropolis-Hastings step with approximate acceptance ratio. Then, the

outcome is treated as proposal in a second (delayed) accept-reject step that uses the exact

ratio in (4). This has the advantage that one only needs to perform the exchange algorithm

when an acceptance in the approximate Metropolis-Hastings is achieved. This implies

that ‘poor’ proposed graphs get rejected quickly and more computational effort is spent on

regions of the space with high posterior probability.

2.5 The Complete WWA Algorithm

Algorithm 2 details the WWA algorithm. A proposed G̃ is associated with a K̃ as the graph

imposes a sparsity pattern on the precision matrix. To ensure detailed balance, K̃ appears in

the computation of the reverse probability Q(G | G̃, K̃). As such, the MCMC update needs

to be joint on K and G where the dimensionality p+ |E| of the continuous state space of K

varies with G, since every time we remove or add an edge, the number of free parameters in

K changes. In Section S2 of the Appendix, the resulting acceptance probability is derived
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Algorithm 2 A Single WWA MCMC Step.

Input: Graph G.

Output: MCMC update for G such that the invariant distribution is the posterior p(G | Y ).

1. Draw K | G, Y ∼ WG(δ?, D?).

2. Repeat the following single-edge update a number of times nE:

(a) Sample G̃ from the informed proposal Q(G̃ | G,K) given by (12) with g(t) =

t/(1 + t).

(b) Denote the edge in which G and G̃ differ by e. Reorder the nodes in G and G̃ so

that e connects nodes p− 1 and p. Rearrange K, D and D? accordingly. Denote

the resulting quantities by a superscript e.

(c) Denote the upper triangular Cholesky decomposition of Ke by Φe. Update Φe
pp

according to (6).

(d) Generate a K̃e corresponding with G̃e from K by setting Φ̃e
−f = Φe

−f , Φ̃e
pp = Φe

pp,

and sampling Φ̃e
p−1,p according to (5).

(e) Compute Q(G | G̃, K̃).

(f) ‘Promote’ G̃ to be considered for delayed acceptance w.p. 1∧ R̂DA, where R̂DA is

given by (13). If G̃ is promoted:

i. Sample K̃0,e | G̃ ∼ WG̃e(δ,De).

ii. Set G = G̃ and K = K̃ w.p. 1 ∧RDA where

RDA = Rexchange
(1 ∧ R̂−1DA)Q(G | G̃, K̃)

(1 ∧ R̂DA)Q(G̃ | G,K)

where Rexchange is given by (4).
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via reversible jump MCMC (Green, 1995) to account for the transdimensionality.

In Section S2 of the Appendix, we derive the acceptance probabilities involved in Step 2f.

The detailed balance condition on an extended space implies an acceptance probability

resulting in the correct invariant distribution on the variable of interest G. The construction

of the extended space uses ideas from the exchange algorithm (Murray et al., 2006). We

also apply delayed acceptance which does not affect the invariant distribution (Christen

and Fox, 2005, Theorem 1) if R̂DA > 0, which implies ̂IG/IG̃ > 0 by (13). Ultimately, the

update is a Metropolis-Hastings step with an invariant distribution that has as marginal for

G the target distribution p(G | Y ). Section S6 of the Appendix confirms empirically that

WWA recovers p(G | Y ). Any approximation that satisfies ̂IG/IG̃ > 0 leads to an MCMC

that converges to p(G | Y ). For instance, Section S3 of the Appendix considers ̂IG/IG̃ = 1

instead of Equation (7).

The relative computational cost of sampling fromWG(δ?, D?) in Step 1 becomes negligible

if the number of single edge updates nE is sufficiently large, e.g. nE = p. Then, the

embarrassingly parallel computation of the informed proposal in Steps 2a and 2e, and the

sampling from WG̃(δ,D) in Step 2(f)i carry the vast majority of computational cost (in

most applications more than 90%).

To efficiently sample from the G-Wishart distribution in WWA, we combine graph

decomposition with the G-Wishart sampler of Lenkoski (2013). The main idea is as

follows: first, we split the graph into connected components as sampling of the rows and

columns of the precision matrix can be done independently for each connected component.

Note that each independent component can be sampled from a G-Wishart of appropriate

dimension, as the entire precision matrix can be rewritten as a block matrix. G-Wishart

sampling for a connected component proceeds using a perfectly ordered clique minimal

separator decomposition (see, for example, Berry et al., 2010, for an introduction to graph

decomposition) as detailed in Wang and Carvalho (2010). Note that Carvalho et al.

(2007) first mention the idea of sampling from the G-Wishart exploiting a decomposition

of the graph. We opt for the MCSM-Atom-Tree algorithm of Berry et al. (2014) to

compute a perfectly ordered clique minimal separator decomposition at negligible cost. The
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decomposition splits the graphs in complete (i.e. cliques) and incomplete prime graphs. In

the first case, we can use a standard Wishart sampler, while the latter requires sampling

from a G-Wishart. WWA uses the G-Wishart sampler of Lenkoski (2013) for the incomplete

prime graphs. The rejection sampler of Wang and Carvalho (2010) is an alternative for

small incomplete prime graphs where it can be faster, but any speed-up would be negligible

as the main computational cost derives from sampling large incomplete prime graphs. We

empirically show in Section S4 of the Appendix that graph decomposition can substantially

speed up sampling from the G-Wishart distribution for sparse graphs, and that most graphs

are not sparse and do not have an effective decomposition for p ≥ 20 nodes, in which case

the method from Lenkoski (2013) without graph decomposition performs similarly.

The G-Wishart sampler of Lenkoski (2013) is an iterative algorithm initialised at a

Wishart random variate. We compare this approach with initialising at a Ḡ-Wishart random

variate for some decomposable graph Ḡ that contains all edges of G, i.e. E ⊂ Ē. Such

initialisation also results in a G-Wishart sampler. However, we found that initialising with a

minimal triangulation Ḡ of G results in similar or increased computational cost, depending

on the G, compared to the method from Lenkoski (2013) (results not shown).

WWA requires a reordering of the nodes in Step 2b as explained in Section 2.1. In

Step 2c, we update Φe
pp, which is not necessary for a valid MCMC as its distribution does

not depend on the edge e being in the graph or not. Nonetheless, WWA includes it as its

computational cost is negligible and it improves mixing, especially for a large number of

single edge updates nE. The CL algorithm in Cheng and Lenkoski (2012) also includes the

step.

2.6 Related Work

In this section, we contextualise WWA in reference to previous work on MCMC for graphs.

Wang and Li (2012) and Cheng and Lenkoski (2012) also consider doing a single edge update

many times for each full update of K as in Step 2 of Algorithm 2. Additionally, they describe

a two stage procedure that resembles delayed acceptance. In Section S5 of the Appendix,

we describe the CL algorithm of Cheng and Lenkoski (2012). Its first accept-reject step
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(for individual edges) uses Barker’s algorithm (Barker, 1965) with acceptance ratio Rexchange

given in (4) where the term N(Φ̃0,e
−f , D

e) is set to one. To correct for this approximation,

they, then, introduce a second Metropolis-Hastings accept-reject step. This combination

of steps is, in fact, a delayed acceptance, but both Wang and Li (2012) and Cheng and

Lenkoski (2012) do not explicitly justify it as such. Effectively, they approximate the ratio

of normalising constants by one while WWA uses (7).

WWA’s computation of the informed proposal Q(G̃ | G,K) is embarrassingly parallel.

In this respect, so is the calculation of birth and death rates in Mohammadi and Wit

(2015). Moreover, The R package BDgraph (Mohammadi and Wit, 2019) approximates

these rates using (7) by default, which is the same approximation used for Q(G̃ | G,K) in

Step 2a of Algorithm 2. Unlike WWA, BDgraph does not correct for the fact that it uses an

approximation.

The embarrassingly parallel search through the neighbourhood nbd(G), which constitutes

Q(G̃ | G,K), is reminiscent of the parallel computation enabled by shotgun stochastic

search (SSS, Hans et al., 2007). Jones et al. (2005) apply SSS for stochastic search on the

graph space using an approximate likelihood for GGMs. WWA similarly enables parallel

computing in an MCMC framework while still using the exact likelihood.

3 Simulation Studies

We compare WWA (Algorithm 2) with DCBF (Algorithm 1) as DCBF can be considered

the state of the art for MCMC in GGMs with a G-Wishart distribution as shown by Hinne

et al. (2014). Additional comparisons in Section S6 of the Appendix consider also the CL

algorithm of Cheng and Lenkoski (2012) and BDgraph (Mohammadi and Wit, 2019) which,

unlike DCBF, do not have the exact posterior p(G | Y ) as invariant distribution. The

comparisons show that the CL algorithm can provide accurate estimates of the posterior

edge inclusion probabilities despite being an approximate MCMC. The computational

efficiency of WWA’s exact MCMC is comparable to the approximate MCMC of the CL

algorithm in a simulation with p = 100 nodes. BDgraph’s approximations have a larger

effect on inclusion probability estimates. For completeness, we mention here that we have
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not included a comparison with the WL algorithm from Wang and Li (2012) as Cheng and

Lenkoski (2012) show that their CL algorithm substantially outperforms the WL algorithm

in terms of computational speed and accuracy of posterior approximation.

We choose nE = p for the number of single edge updates in Algorithm 2. To bring the

computational cost of Algorithm 1 more in line with WWA and for a fairer comparison, we

slightly modify DCBF: instead of executing the steps in Algorithm 1 for all mmax possible

edges, we execute them for p edges drawn uniformly at random with replacement.

To measure MCMC efficiency, we use as metric the cost of an independent sample, which

is the computing time required for a unit increase in the effective sample size (Fang et al.,

2020):

cost of an independent sample =
number of MCMC steps

effective sample size
× cost per step

= integrated autocorrelation time× cost per step

This captures MCMC mixing and adjusts for computational cost. MCMC convergence can

additionally be a computational bottleneck, especially if an effective initialisation is not

available. Therefore, we also discuss convergence issues in Section 4. The integrated autocor-

relation time is computed for the number of edges |E| using the R package LaplacesDemon

(Statisticat, LLC., 2020). The cost of the embarrassingly parallel computation of the

informed proposal in Steps 2a and 2e of Algorithm 2 is assessed based on 128 CPU cores.

To make computing times comparable, all methods are implemented in C++ and use the

same routines as much as possible, for instance, to sample from the G-Wishart distribution.

3.1 Cycle Graphs

A major improvement in computational cost of WWA over DCBF derives from reducing the

number of times we need to sample from the G-Wishart distribution. The gains associated

with WWA will thus be larger if G-Wishart sampling is slower. This situation arises, for

example, when G contains large incomplete prime graphs. To highlight this point, we

consider cycle graphs, which are themselves incomplete prime graphs. We follow Section 6.2

of Wang and Li (2012) to simulate data from cycle graphs. In the G-Wishart prior, we

18



set δ = 3 and D = Ip. The edges are a priori independent with edge inclusion probability

ρ = 2/(p− 1). That is, p(G) = ρ|E|(1− ρ)mmax−|E|. We simulate n = 3
2
p random vectors Yi

from N (0p×1, K
−1) with a precision matrix K given by Kii = 1 for i = 1, . . . , p, Kij = 0.5

for |i− j| = 1, K1p = Kp1 = 0.4 and all other elements being equal to zero. We simulate

data for p = 10, 20, 40. The performance of the two algorithms is assessed over 32 replicates

of the simulations.

We run the MCMC for 11,000 iterations, discarding the first 1,000 as burn-in. We

initialise the graph at the true cycle for all algorithms. We compare the performance of

WWA with (i) DCBF; (ii) WWA without the delayed acceptance and the informed proposal;

(iii) WWA with delayed acceptance but without the informed proposal; and (iv) WWA with

the informed proposal but without delayed acceptance. When we do not use the informed

proposal, we set q(G̃ | G) equal to (10). When we do not perform delayed acceptance in

WWA, we use the acceptance probability in Step 4 of Algorithm 1 directly. These extra

comparisons provide insight into the role of the different innovations of WWA.

Figure 1 shows that WWA provides more efficient posterior computation than DCBF on

these simulated data. This difference increases with the number of nodes with WWA being

39 times more efficient than DCBF for p = 40 nodes. The MCMC without the informed

proposal outperforms WWA for p = 40. This is probably a result of the informed proposal

and the delayed acceptance both relying on the same approximation in (7): the informed

proposal, compared to the base proposal q(G̃ | G), increases the acceptance ratio of the first

approximate accept-reject step in DA MCMC, but this increased acceptance does not trans-

late to a proportional increase in the overall acceptance ratio. These effects are compounded

by the approximation in (7) becoming less accurate for larger graphs (Letac and Massam,

2007). The result is that Step 2(f)i of Algorithm 2, which involves the relatively expensive

sampling from WG̃(δ,D), is evaluated more often without a corresponding improvement in

MCMC mixing, i.e. the gain in mixing from the informed proposal does not compensate for

this extra sampling.
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Figure 1: Cost of posterior computations versus the number of nodes for the data simulated

from a cycle graph. The lines represent means over the 32 repetitions for DCBF and

WWA as well as different specifications of WWA. The shaded areas are 95% bootstrapped

confidence intervals.

3.2 Uniformly Sampled Graphs

In this section, we compare the performance of the different algorithms on data simulated

from the Bayesian model described in Section 1.1 with n = 2p and a uniform prior on

graphs: p(G) = 2−mmax . In particular, for each replicate, we generate a graph G from this

uniform distribution p(G), sample a precision matrix K from WG(δ,D) =WG(3, Ip) and

data from N (0p×1, K
−1). We show results for 32 replicates and for p = 10, 20, 40. MCMC

is initialised at the true graph G. The remaining set-up of this simulation study follows

Section 3.1.

Also in this simulation scenario, WWA provides more efficient posterior computation

than DCBF as shown in Figure 2. Again, this difference increases with the number of nodes

with WWA being 3.3 times more efficient than DCBF for p = 40 nodes. As in Section 3.1,

the MCMC without the informed proposal outperforms WWA for p = 40.
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Figure 2: Cost of posterior computations versus the number of nodes for the data simulated

from a uniformly sampled graph. The lines represent means over the 32 repetitions for

DCBF and WWA as well as different specifications of WWA. The shaded areas are 95%

bootstrapped confidence intervals.

4 Application to Gene Expression Data

We consider the real data application from Section 4.2 of Mohammadi and Wit (2015)

where a more extensive data description is available. The data consist of gene expressions

in B-lymphocyte cells (Stranger et al., 2007) from n = 60 individuals. They are quantile-

normalised to marginally follow a standard Gaussian distribution, a process also known as

rank normalisation. We consider two data sets Y , namely those consisting of the p = 50 and

p = 100 most variable gene expressions. The prior on (G,K) is the same as in Section 3.2,

which coincides with an uninformative prior.

For p = 50, WWA and DCBF are initialised at a graphical lasso estimate of the graph G

(Friedman et al., 2007) and are run for 16,000 iterations of which the last 10,000 are used

to estimate the cost of an independent sample. For the data set with p = 100, the number

of possible graphs is 2mmax = 1.3 · 101,490, and the precision matrix is not identifiable in

the likelihood since n < p. Although this is theoretically not a problem in the Bayesian
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Figure 3: Trace plots for the number of edges in the gene expression application with

p = 100 nodes.

framework because of prior regularisation, likelihood unidentifiability is known to cause

problems for MCMC convergence. Also, the approximation in (7) favours sparse graphs as

it is consistently biased in this direction (Mohammadi et al., 2021, page 13), a tendency

which is rather strong when the posterior is not concentrated as in the case of p = 100. As

a result, using the informed proposal or delayed acceptance based on (7) results in bad

MCMC convergence and mixing. Therefore, we use Algorithm 2 without the informed

proposal nor delayed acceptance because the bias in the approximation would dominate the

information deriving from the posterior which is flat in this example.

In terms of speed, the first 6,000 burn-in iterations take 11 minutes for WWA versus

36 minutes for DCBF with p = 50, and 4.1 hours for the proposed algorithm versus 9.0

hours for DCBF with p = 100. We compute the improved R̂ of Vehtari et al. (2021) as a

diagnostic of convergence on the last 10,000 iterations. R̂ converges to one as the number

of iterations tends to infinity and R̂ > 1.01 indicates lack of convergence. For p = 50, when

the precision matrix is likelihood identifiable as well, convergence is reached quickly by both

algorithms with R̂ = 1.003 for WWA and R̂ = 1.006 for DCBF. For p = 100, the trace
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plots in Figure 3 show an increasing trend for the number of edges for DCBF, indicating

slower convergence confirmed by R̂ = 1.068. This contrasts with the proposed algorithm

where R̂ = 1.001 and which seems to converge within 2,000 iterations. The introduced

methodology yields faster MCMC convergence, both in terms of number of iterations and

especially in terms of computing time.

WWA is also superior to DCBF in terms of MCMC mixing. For p = 100, we run DCBF

for 10,000 iterations initialised at the last iteration of the proposed algorithm to avoid

DCBF’s convergence issues while assessing MCMC mixing. The cost of an independent

sample is 6.2 seconds for WWA versus 24 seconds for DCBF with p = 50, and 7.4 minutes

for the proposed algorithm versus 14 minutes for DCBF with p = 100.

5 Discussion

In this work, we propose WWA, a novel algorithm for GGMs which significantly improves

on existing MCMC based on the G-Wishart prior. The main contributions involve delayed

acceptance, Gibbs updates for the precision matrix, and the use of parallel computing to

inform the proposal. As a result, WWA outperforms the state-of-the-art alternative in

terms of MCMC mixing, convergence and computing time.

Here, we discuss possible improvements and extensions to WWA. As the number of nodes

increases, normalising the informed proposal takes longer, with the added computational

cost potentially outweighing the improvement in MCMC mixing. A potential extension to

tune this computation versus mixing trade-off is blocking (Zanella, 2019). It constrains the

support of the informed proposal to a subset or ‘block’ of the neighbourhood of a graph,

reducing the computational cost of normalising the informed proposal.

Another improvement to the informed proposal would be a faster or more accurate

approximation than (9). The computational bottleneck of the current approximation is cal-

culating the Cholesky decomposition Φe. For sparse graphs, the Cholesky decomposition can

be sped up via fill-in reducing node reorderings, which increase sparsity in Φe, and Cholesky

routines optimised for sparse matrices (Rue, 2001; Rue and Held, 2005, Section 2.4.3) as

shown by Cheng and Lenkoski (2012).
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The MCMC performance is limited by the fact that at most one edge is changed for

each accept-reject step. A truly scalable algorithm requires larger moves in the graph space

as the number of possible edges in a graph is quadratic in the number of nodes. Such larger

moves require sufficiently good proposals for both the graph and the precision matrix K.

Tan et al. (2017) take a first step in this direction by changing multiple edges at the same

time with an approximate likelihood on the graph resulting from approximating IG(δ,D).

In this work, we focus on GGMs because of their popularity in applications and the

computational challenges associated with their estimation. Due to the modular nature of

MCMC, WWA can also provide a feasible strategy in extended models such as multiple

graphs (e.g., Peterson et al., 2015; Tan et al., 2017), Gaussian copulas to accommodate

non-Gaussian data (e.g., Dobra and Lenkoski, 2011; Mohammadi and Wit, 2019) or sparse

seemingly unrelated regressions (e.g., Wang, 2010; Bhadra and Mallick, 2013).

SUPPLEMENTARY MATERIAL

Appendix: Derivations of Equation (6) and WWA’s acceptance probabilities, description

of the algorithm from Cheng and Lenkoski (2012), and additional empirical results.

(.pdf file)

Code: The scripts that produced the empirical results are available at https://github.

com/willemvandenboom/wwa. (GitHub repository)
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E. T. Dermitzakis (2007). Population genomics of human gene expression. Nature

Genetics 39 (10), 1217–1224.

Tan, L. S. L., A. Jasra, M. De Iorio, and T. M. D. Ebbels (2017). Bayesian inference for

multiple Gaussian graphical models with application to metabolic association networks.

The Annals of Applied Statistics 11 (4), 2222–2251.

Uhler, C., A. Lenkoski, and D. Richards (2018, February). Exact formulas for the normalizing

constants of Wishart distributions for graphical models. The Annals of Statistics 46 (1),

90–118.

van den Boom, W., A. Jasra, M. De Iorio, A. Beskos, and J. G. Eriksson (2021). Un-

biased approximation of posteriors via coupled particle Markov chain Monte Carlo.

arXiv:2103.05176v1.

Vehtari, A., A. Gelman, D. Simpson, B. Carpenter, and P.-C. Bürkner (2021). Rank-

normalization, folding, and localization: An improved R̂ for assessing convergence of

MCMC (with discussion). Bayesian Analysis 16 (2), 667–718.

Wang, H. (2010). Sparse seemingly unrelated regression modelling: Applications in finance

and econometrics. Computational Statistics & Data Analysis 54 (11), 2866–2877.

28



Wang, H. (2015). Scaling it up: Stochastic search structure learning in graphical models.

Bayesian Analysis 10 (2), 351–377.

Wang, H. and C. M. Carvalho (2010). Simulation of hyper-inverse Wishart distributions for

non-decomposable graphs. Electronic Journal of Statistics 4, 1470–1475.

Wang, H. and S. Z. Li (2012). Efficient Gaussian graphical model determination under

G-Wishart prior distributions. Electronic Journal of Statistics 6, 168–198.

Zanella, G. (2019). Informed proposals for local MCMC in discrete spaces. Journal of the

American Statistical Association 115 (530), 852–865.
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