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A fundamental question in rough path theory is whether the 
expected signature of a geometric rough path completely de-
termines the law of signature. One sufficient condition is that 
the expected signature has infinite radius of convergence, 
which is satisfied by various stochastic processes on a fixed 
time interval, including the Brownian motion. In contrast, for 
the Brownian motion stopped upon the first exit time from a 
bounded domain Ω, it is only known that the radius of con-
vergence for the expected signature on sufficiently regular Ω
is strictly positive everywhere, and that the radius of conver-
gence is finite at some point when Ω is the 2-dimensional unit 
disc ([2]).
In this paper, we prove that on any bounded C2,α-domain 
Ω ⊂ Rd with 2 ≤ d ≤ 8, the expected signature of the stopped 
Brownian motion has finite radius of convergence everywhere. 
A key ingredient of our proof is the introduction of a “domain-
averaging hyperbolic development” (see Definition 4.1), which 
allows us to symmetrize the PDE system for the hyperbolic 

* Corresponding author.
E-mail addresses: siran.li@sjtu.edu.cn (S. Li), h.ni@ucl.ac.uk (H. Ni).
https://doi.org/10.1016/j.jfa.2022.109447
0022-1236/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jfa.2022.109447
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2022.109447&domain=pdf
mailto:siran.li@sjtu.edu.cn
mailto:h.ni@ucl.ac.uk
https://doi.org/10.1016/j.jfa.2022.109447
http://creativecommons.org/licenses/by/4.0/


2 S. Li, H. Ni / Journal of Functional Analysis 282 (2022) 109447
development of expected signature by averaging over rotated 
domains.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The theory of rough paths is a generalisation of the classical control theory. It sets forth 
a framework that makes sense of solutions to differential equations driven by irregular 
signals; for example, the Brownian motion.

A fundamental concept in rough path theory is the signature of a path. Playing a 
similar role to that of the moment generating function of a random variable, the expected 
signature is of both theoretical and practical significance. For example, computation for 
the expected signature of the Brownian motion on [0, 1] leads to the notion of cubature 
on Wiener space, which is a high order numerical method for high dimensional SDEs 
(stochastic differential equations) and semi-elliptic PDEs (partial differential equations); 
see [15]. Recently, in [4] a metric for laws of stochastic processes has been proposed 
based on the normalised expected signature. It can be used for nonparametric two-
sample hypothesis tests for laws of stochastic processes, and potentially has much wider 
applications in machine learning.

One central question concerning the expected signature, known as the moment prob-
lem, asks if the expected signature uniquely determines the law of random signature. 
A sufficient condition for the affirmative answer has recently been identified for the mo-
ment problem by Chevyrev–Lyons ([3], Proposition 6.1): the radius of convergence of 
expected signature is infinite.

The infiniteness of radius of convergence for the expected signature has been verified 
for several popular stochastic processes on a fixed time horizon, e.g., fractional Brow-
nian motions with Hurst parameter in 

]1
4 , 1
]

(see [3,19]). It is nonetheless considerably 
challenging to check whether this is satisfied by processes up to a random time. Even 
for the simplest case of the Brownian motion up to the first exit time from a bounded 
domain Ω ⊂ Rd (in brief, “stopped Brownian motion” in the sequel), it has remained 
open ever since it was proposed in [14].

As a first step towards the aforementioned problem, it was established in [14] that, un-
der suitable regularity assumptions for the domain (see Proposition 3.1 and Remark 3.2), 
the expected signature of the stopped Brownian motion has a geometric upper bound 
for its decay rate. This is achieved by deriving a system of nested PDEs (i.e., partial 
differential equations graded by a parameter n ∈ N) satisfied by the expected signa-
ture and applying the standard boundary regularity theory for elliptic PDEs. Despite its 
insufficiency to resolve the moment problem, the geometric upper bound warrants the 
positivity of the radius of convergence.

http://creativecommons.org/licenses/by/4.0/
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Recently, Boedihardjo–Diehl–Mezzarobba–Ni [2] showed that the stopped Brownian 
motion on the 2-dimensional unit disc has finite radius of convergence. The proof in [2]
relies crucially on the technique of hyperbolic development, which plays an essential role 
in Hambly–Lyons’ proof of the unique determination of paths of bounded variation by 
the signature; see [10]. Indeed, by taking a morphism (which appears in [10]) from the 
tensor algebra space to gl(3; R) and exploiting the partial symmetries of the resulting 
matrix-valued PDE systems, a nested system of three ODEs has been obtained in [2]. 
These ODEs can be solved explicitly, from which one deduces the finiteness of radius of 
convergence. Nonetheless, [2] relies heavily on the rotational invariance of the domain, 
thus making it difficult to be extended to general domains. In addition, even for the case 
of the unit disc, it remains unknown if the stopped Brownian motion starting at a point 
apart from the centre has finite radius of convergence.

The main result of our paper gives a complete solution to the finiteness problem of 
the expected signature of stopped Brownian motions on bounded domains under mild 
regularity assumptions, for all dimensions up to 8:

Theorem 1.1. Let Ω be bounded C2,α-domain in Rd; 2 ≤ d ≤ 8. The expected signature 
Φ of a Brownian motion stopped upon the first exit time from Ω has finite radius of 
convergence at every point in Ω.

The strategy of our proof is outlined as follows. First, by averaging the hyperbolic 
development of expected signature over the rotated images of the domain, we construct a 
quantity Hλ,ε(z), the “domain-averaging development”, that has the following features:

• Hλ,ε(z) is rotationally invariant (with respect the domain rotations);
• Hλ,ε(z) satisfies the same PDE as that for Hλ,Ω; and
• Hλ,ε(z) inherits the finiteness of radius of convergence from the non-averaged hyper-

bolic development Hλ,Ω of the expected signature. Thus, the operation of domain 
averaging preserves the lower bound for radius of convergence of the hyperbolic de-
velopment.

Working locally near z ∈ Ω, we arrive at the same PDE for Hλ,ε(z) as for its non-averaged 
analogue on a small ball around z. Loosely speaking, “half” of the boundary conditions 
will be gone missing for the PDE for Hλ,ε(z); nevertheless, geometric properties of the 
hyperbolic development enable us to establish uniform lower bounds for the remaining 
component of Hλ,ε(z).

Organisation. The remaining parts of the paper are organised as follows. §2 sum-
marises background materials on the rough path theory, expected signature, and hyper-
bolic development. In §3 we discuss the regularity theory and probabilistic consequences 
of the PDE associated to the expected signature. The crucial technique in this work (a 
symmetrization argument) shall be introduced in §4. Our main result, Theorem 1.1, is 
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proved in §5 for d = 2 and in §6 for 3 ≤ d ≤ 8. Some technical computations are given 
in the appendix.

We denote E := Rd throughout this paper.

2. Preliminaries

2.1. Signature

We first introduce the tensor algebra space over E:

Definition 2.1. A formal E-tensor series is a sequence of tensors (an ∈ E⊗n)n∈N which 
we write as a = (a0, a1, . . .). There are two binary operations on E-tensor series, addition 
+ and product ⊗ — let a = (a0, a1, . . .) and b = (b0, b1, . . .) be E-tensor series; then 
a + b := (a0 + b0, a1 + b1, . . .) and a⊗ b := (c0, c1, . . .), where cn :=

∑n
k=0 ak ⊗ bn−k for 

each n.
In addition, we write 1 := (1, 0, . . .), 0 := (0, 0, . . .), and λa := (λa0, λa1, . . .) for 

λ ∈ R. Also, T ((E)) denotes the vectorspace of formal E-tensor series.

The space T ((E)) equipped with + and ⊗ is an associative unital algebra over R. 
An element a = (a0, a1, . . .) ∈ T ((E)) is invertible if and only if a0 �= 0. In this case, its 
inverse is

a−1 = 1
a0

∑
n≥0

(
1 − a

a0

)n

.

It is well defined because, at any given degree, only finitely many terms of the summation 
are non-zero. In particular, the subset {a ∈ T ((E)) : a0 = 1} forms a group.

Definition 2.2. Let n ≥ 1 be an integer. Let Bn := {a = (a0, a1, . . .) : a0 = . . . = an = 0}. 
The truncated tensor algebra T (n)(E) of order n over E is defined as the quotient algebra

T (n)(E) = T ((E)) /Bn.

The canonical epimorphism T ((E)) → T (n)(E) is denoted by Projn.

We collect below a few basic facts about geometric rough paths. See [5,8,17] for details.
For p ≥ 1 and J ⊂ R an open interval, one can enhance a path X : J → E of finite 

1-variation to a function defined on the simplex {(s, t) : s ≤ t, s, t ∈ J} with values in 

T (�p�)(E) via its iterated integrals; i.e., S�p�(X) =
(
1, X1

J , · · ·X
�p�
J

)
where

Xn
s,t =

∫
· · ·
∫

dXu1 ⊗ dXu2 ⊗ · · · ⊗ dXun
,

s≤u1≤···≤un≤t
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for n = 1, 2, · · · , 	p
. We call the enhancement of X in T (�p�)(E) a smooth rough path. 
The signature of X is the collection S(X) =

(
1, X1

J , · · · , Xn
J , · · ·

)
of all the iterated 

integrals of X.

Definition 2.3 (p-variation distance). Let p ≥ 1. For smooth rough paths X, Y : J →
T (�p�)(E), the p-variation metric between X and Y is given by

d(X,Y) = max
k=1,···�p�

(
sup
D

n−1∑
i=1

∣∣∣Xk
ui,ui+1

− Yk
ui,ui+1

∣∣∣ pk)
k
p

+ sup
t∈J

∣∣X1
t − Y 1

t

∣∣ ,
with the supremum taken over all finite divisions D = (u1, u2, · · · , un) of J .

Definition 2.4 (Geometric rough path). X : J → T (�p�)(E) is said to be a geometric p-
rough path if there exists a sequence of smooth rough path (Xn)n∈N such that X is the 
limit of Xn in the p-variation metric. The space of geometric p-rough paths is denoted 
as GΩp(J, E).

2.2. Stopped Brownian motion and its expected signature

Denote by (e1, . . . , ed) the canonical basis for E = Rd. Let (Bt)t≥0 be a standard 
Brownian motion on E under a probability space (Ω, F , P z) with its canonical filtration 
F = (Ft)t≥0, where P z(B0 = z) = 1 for z ∈ E.

Definition 2.5. Let Ω be a domain (i.e., a connected open set) in E. Then

τΩ = inf{t ≥ 0 : Bt ∈ E \ Ω}

is the first exit time of Brownian motion from Ω.

Definition 2.6. Let J be a compact time interval. Let B : J → E be an E-valued Brownian 
motion path. The signature of B, denoted by S(BJ), is the element (1, B1, ..., Bn, ...) of 
T ((E)) defined for each n ≥ 1 as follows:

Bn
J =

∫
· · ·
∫

u1<...<un
u1,...,un∈J

dBu1 ⊗ · · · ⊗ dBun
,

where the integral is taken in the Stratonovich sense. The truncated signature of B of 
order n is denoted by Sn(BJ ), i.e., Sn(BJ) = Projn(S(BJ)).
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One also writes

BJ =
∞∑

n=0

∑
i1,...in∈{1,...d}

⎛⎜⎜⎝∫ · · ·
∫

u1<...<un
u1,...,un∈J

dB(i1)
u1

⊗ . . .⊗ dB(in)
un

⎞⎟⎟⎠ ei1 ⊗ . . .⊗ ein

where ∫
· · ·
∫

u1<...<un
u1,...,un∈J

dB(i1)
u1

⊗ . . .⊗ dB(in)
un

=: ProjI(S(BJ))

is the co-ordinate signature of Brownian motion indexed by I := (i1, . . . , in). The 
(Stratonovich) signature is defined for a.e. Brownian path B and for all pairs of times 
(s, t) where s ≤ t.

Lemma 2.7 (See [7]). For T > 0, the Stratonovich signature of Brownian motion t �→
(S(B0,t))t∈[0,T ] is a geometric p-rough path almost surely for p > 2.

We are interested in the random signature S
(
B[0,τΩ]

)
of the Brownian path up to 

the first exit time τΩ. It is shown in [14] that πI
(
S
(
B[0,τΩ]

))
has finite expectation 

with respect to the Wiener measure for every index I. Thus, the tensor-valued function 
S
(
B[0,τΩ]

)
is integrable.

Definition 2.8. We denote by ΦΩ(z) the expected signature of Brownian motion starting 
at z and stopped upon the first exit time τΩ from a domain Ω. That is,

ΦΩ(z) = Ez
[
S
(
B[0,τΩ]

)]
.

One of the main results in [14] states that Φ satisfies a system of nested PDEs:

Theorem 2.9. Let Ω ⊂ Rd be a bounded domain. Then Φ satisfies

ΔΦ(z) = −
(

d∑
i=1

ei ⊗ ei

)
⊗ Φ(z) − 2

d∑
i=1

(
ei ⊗

∂Φ
∂zi

(z)
)

for each z ∈ Ω, (1)

with the boundary condition that for every z ∈ Ω,

lim
t↗τΩ

Φ(Bt) = 1 a.s. in P z, (2)

and the initial conditions

Proj0(ΦΩ(z)) = 1 for each z ∈ Ω, (3)

Proj1(ΦΩ(z)) = 0 for each z ∈ Ω. (4)
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2.3. Hyperbolic development

Let A be a normed algebra. Any linear operator M : E → A can be extended to 
T ((E)) by naturality. Indeed, one first defines M̂ on E⊗k for each k via

M̂ (ei1 ⊗ ei2 ⊗ · · · ⊗ eik) := M(ei1)M(ei2) · · ·M(eik),

and then extends to T ((E)) by linearity. The right-hand side of the above identity is 
understood as a product in the algebra A. By an abuse of notations, we always write 
M̂ ≡ M .

For any λ > 0, the action of Mλ on the signature of a path γ of bounded 1-variation 
is given by M(λγ). Similarly, for λ > 0, the action of Mλ on ΦΩ is given by

Mλ,Ω(z) := Mλ(ΦΩ(z)) for each z ∈ Ω. (5)

This can be recast into

Mλ,Ω(z) =
∞∑

n=0
λnM [Projn(ΦΩ(z))] (6)

at least for small enough |λ|. See Lyons–Ni [18], Theorem 3.6.
The hyperbolic development (cf. Boedihardjo–Diehl–Mezzarobba–Ni [2]; Hambly–

Lyons [10]) refers to following particular choice of M , denoted as H : T ((E)) →
gl(d + 1; R) —

H(c) = cId+1 for c ∈ R,

H(z) :=

⎡⎢⎢⎢⎢⎣
0 0 · · · 0 z1

0 0 · · · 0 z2

...
...

. . .
...

...
0 0 · · · 0 zd

z1 z2 · · · zd 0

⎤⎥⎥⎥⎥⎦ for z =
(
z1, . . . , zd

)
∈ E,

and H is extended to T ((E)) by naturality as above.
Lyons–Xu [16] characterises the space of the hyperbolic development of bounded 1-

variation Rd path and provides an explicit expression for the hyperbolic development 
in terms of the signature. Specifically, for γ : [0, 1] → Rd of bounded 1-variation and 
hλ(γ) := H (S (λγ)) (0, · · · , 0, 1)
, it is shown that hλ(γ) is confined within the d-
dimensional hyperboloid

Hd :=

⎧⎨⎩x ∈ Rd+1 :
d+1∑
j=1

(
xj
)2 − (xd+1)2 = −1, xd+1 > 0

⎫⎬⎭ .

Denote the set of “squared words” by
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E2n =
{
w = (i1, i1, i2, i2, · · · , in, in) : i1, i2, · · · , in ∈ {1, 2, · · · , d}

}
and, for k ∈ {1, 2, · · · , d}, put

E(k)
2n =

{
w = (i1, i1, i2, i2, · · · , in, in, k) : i1, i2, · · · , in ∈ {1, 2, · · · , d}

}
.

Lemma 2.10. Let γ : [0, T ] → Rd be a path of bounded 1-variation, and set

hλ(γ) ≡
(
h

(1)
λ (γ), · · · , h(d+1)

λ (γ)
)


:= H (S (λγ)) .

We may express

h
(k)
λ (λγ) =

∑
n≥0

∑
w∈E(k)

2n

λ2n+1Projw(S(γ)),

h
(d+1)
λ (λγ) =

∑
n≥0

∑
w∈E2n

λ2nProjw(S(γ)).

As in Chevyrev–Lyons [3], the radius of convergence of the expected signature of a 
rough path contains crucial information about the law of the path.

Definition 2.11. The radius of convergence of a tensor ϕ = (ϕn) ∈ T ((E)) is the radius 
of convergence of the series λ �→

∑∞
n=0 λ

n‖|ϕn‖|. Throughout this paper, ‖| • ‖| is taken 
to be the projective norm on T ((E)).

The following characterisation for the finiteness of radius of convergence of the ex-
pected signature can be found in [3].

Proposition 2.12. ϕ ∈ T ((E)) has infinite radius of convergence if and only if it lies in 
the closure of T ((E)) with respect to the coarsest topology for which the following holds: 
for any normed algebra A and any morphism H ∈ Hom(E; A), the natural extension 
Ĥ : T ((E)) → A of H (not relabelled in the sequel) is continuous in this topology.

2.4. Further notations

A domain Ω ⊂ Rd is a connected open set. The symbols z†, Re(z), and Im(z) denote 
respectively complex conjugate, real part, and imaginary part of z ∈ C, A
 is the 
transpose of matrix A, and id is the identity map (the domain being clear from the 
context). We write U � V if the closure of U is in V . Our notations in §5 below are 
largely identical to those in [2]; e.g., the usage of symbols α, ζ, M , etc. For essentially 
analogous but slightly different symbols we shall distinguish by an overhead bar; for 
instance, we write Āλ, B̄λ, and C̄λ ≡ Fλ,ε in contrast to Aλ, Bλ, and Cλ = Fλ,Ω in [2], 
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respectively. Finally, gl(D; R) = {D × D real matrices} is equipped with the Hilbert–
Schmidt norm as a normed algebra.

A bounded domain Ω � Rd is said to be of regularity X (= Ck, C2,α, etc.) if its 
boundary are locally graphs of functions of regularity X. More precisely, there exist 
open sets O1, . . . , ON ⊂ Rd such that for each j ∈ {1, 2, . . . , N}, it holds that

• ∂Ω ⊂
⋃N

j=1 Oj ;
• Oj ∩ ∂Ω �= ∅;
• there are an open set Vj ⊂ Rd−1 and a function ψj : Vj → R of regularity X such 

that Oj ∩ ∂Ω = {(y, ψj(y)) : y ∈ Vj} and Oj ∩ Ω = {(y, z) ∈ Vj ×R : z < ψj(y)}.

3. PDE for the expected signature

Here we investigate the PDE (1) for the expected signature. Our results in this section 
are valid for E = Rd for any d ∈ Z≥2. Also note that our regularity assumption on the 
domain is weaker than that in Lyons–Ni [14]. See Remark 3.2 below.

Proposition 3.1. Let Ω ⊂ E be a bounded C2,α-domain; α > 0. Then for each n =
2, 3, 4, . . ., the nth term of ΦΩ satisfies the PDE

Δ (Projn(ΦΩ(z))) = −2
d∑

i=1
ei ⊗

∂Projn−1(ΦΩ(z))
∂zi

−
(

d∑
i=1

ei ⊗ ei

)
⊗ Projn−2(ΦΩ(z))

(7)

with the initial conditions (3), (4) and the boundary condition

ΦΩ = 1 on ∂Ω. (8)

The above PDE has a unique classical solution in the sense that

Projn(ΦΩ) ∈ C∞ (Ω;E⊗n
)
∩ C2,α (Ω;E⊗n

)
for each n = 0, 1, 2, . . . .

In addition, the radius of convergence of Φ is strictly positive.

Proof. The proof is standard and shall only be sketched here. See [14], §3 for details.
The boundary condition (8) follows from Eq. (2) and a continuity argument.
Given the initial conditions (3) and (4), one may apply the standard Schauder theory 

([9,11]) inductively to show that Eq. (7) has a unique classical solution

Projn(ΦΩ) ∈ C∞ (Ω;E⊗n
)
∩ C2,α (Ω;E⊗n

)
.

As a remark, although the Schauder theory is not applicable for systems of elliptic PDEs 
in general, we can decouple the PDE (7) into scalar equations, thus there is no danger 
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of utilising the Schauder theory here. More precisely, let {e1, . . . , ed} be the canonical 
basis for E; we can find scalarfields fi1···in : Ω → R such that

Φn(z) =
∑

i1,...in∈{1,2,...,d}
fi1···in(z) ei1 ⊗ . . .⊗ ein .

Thus Eq. (7) is equivalent to finitely many scalar Poisson equations of fi1···in for each n.
In addition, Schauder estimates together with a simple induction yield the geometric 

bound:

‖Projn(ΦΩ)‖C0(Ω) ≤ Cn, (9)

with C depending only on Ω and d, which implies that the radius of convergence of Φ is 
strictly positive. See [14], Theorem 3.6 or the appendix in [2]. �
Remark 3.2. In [14], §3, a variant of Proposition 3.1 is established for strong solutions in 
Sobolev spaces Wm,2(Ω) for each m ∈ N. Then the geometric bound (9) can be deduced 
from the Sobolev–Morrey embedding, provided that m > 	n/2
 + 1. But this requires, 
as in [14], that the domain Ω is Cm. Proposition 3.1 indicates that such regularity 
assumption can be relaxed to C2,α.

In fact, thanks to the Kellogg theorem [12] one may further relax the regularity of Ω
to C2,Dini, i.e., Ω admits C2-local charts with parametrisation maps being merely Dini 
continuous. In this case we have the classical solution in C∞ (Ω;E⊗n) ∩ C2 (Ω;E⊗n

)
, 

while the geometric bound (9) remains valid.

Recall the multi-index notation:

|I| = i1 + . . . + id, DIu = ∂i1+...idu

∂zi11 ∂zi22 · · · ∂zidd
, I = (i1, . . . , id) ∈ Nd.

As an immediate consequence of Proposition 3.1 and Remark 3.2, we have

Corollary 3.3. Let Ω ⊂ E be a bounded domain of class C2,α (or even C2,Dini). Let 
M ∈ Hom

(
Ω; T ((E))

)
be an algebra homomorphism with the projective norm on T ((E)). 

Then there exists a constant L > 0 depending only on Ω and the operator norm of M such 
that, for all λ ∈ [0, L[, the series z �→

∑∞
n=0 λ

nM [Projn (ΦΩ(z))] defines a C2-function 
on Ω. In addition, for any multi-index I with |I| ≤ 2, it holds that

DI

( ∞∑
n=0

λnM [Projn (ΦΩ(z))]
)

=
∞∑

n=0
λnDI

{
M [Projn (ΦΩ(z))]

}
.

Theorem 2.9 shows that for a bounded domain, the expected signature of the stopped 
Brownian motion satisfies the characteristic PDE (3.4). Conversely, the classical solution 
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(C2 in the interior and C1 up to the boundary) for the characteristic PDE must coincide 
with the expected signature of the stopped Brownian motion.

Theorem 3.4. Let Ω be a bounded domain in E. Suppose that ξ : Ω → T ((E)) is a classical 
solution to the following PDE, in the regularity class C2(Ω; T ((E))

)
∩ C1(Ω; T ((E))

)
:⎧⎪⎪⎨⎪⎪⎩

ΔProjn(ξ) = −2
∑d

i=1 ei ⊗
∂Projn−1(ξ)

∂zi −
∑d

i=1 ei ⊗ ei ⊗ Projn−2(ξ) in Ω;
ξ = 1 on ∂Ω;
Proj0(ξ) ≡ 1 and Proj1(ξ) ≡ 0 in Ω.

Then ξ(z) is the expected signature of Brownian motion starting at z up to the first exit 
time τΩ; i.e., ξ = ΦΩ on Ω.

Let us outline the main ideas. Following the martingale approach in [18] for the 
diffusion process up to a deterministic time, if we can construct a martingale Nt based 
on ξ such that:

(a) limt→∞ Nt = S(B0,τΩ) where the limit are taken in both the almost surely and 
L1-sense (note that S(B0,τΩ) is proven to be L1-integrable); and that

(b) N0 = ξ(z),

then we have Ez
[

lim
t→∞

Nt

]
= Ez[N0] and hence Ez[S(B0,τΩ)] = ξ(z) by Doob’s martingale 

convergence theorem.
The next question is how to construct the martingale Nt. For this purpose, note that 

N̂t := Ez[S(B0,τΩ)|Ft∧τΩ ] is a martingale (by Tower’s property) and satisfies the above 
condition. Thus, in light of Chen’s identity, N̂t can be rewritten as S(B0,t∧τΩ) ⊗Φ(Bt∧τΩ). 
This motivates us to consider N̂t := S(B0,t∧τΩ) ⊗ ξ(Bt∧τΩ). Once we prove that N̂t is 
a martingale, we may conclude that the PDE solution ξ coincides with the expected 
signature ΦΩ.

Proof. Since ξ0 = Proj0(ΦΩ) ≡ 1 and ξ1 = Proj1(ΦΩ) ≡ 0, we only need to prove that 
for any n ≥ 2, one has ξn = Projn(ΦΩ). To this end, set Nt := S(B0,t) ⊗ ξ(Bt). First of 
all, let us show that Nt is a martingale, or equivalently, that Projn(Nt) is a martingale 
for every n ≥ 2.

Indeed, note that

dπn(Nt) = dProjn
(
S(B0,t) ⊗ ξ(Bt)

)
= d

{
n∑

i=0
Proji

(
S(B0,t)

)
⊗ ξn−i(Bt)

}
(10)

and, by the definition of the signature of Brownian motion, it holds that

dProjn(S(B0,t)) = Projn−1(S(B0,t)) ⊗ dBt
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= Projn−1(S(B0,t)) ⊗ ·dBt + 1
2Projn−2(S(B0,t)) ⊗

d∑
j=1

ej ⊗ ej dt,

where ·dBt is understood in the Itô sense and n ≥ 2.
On the other hand, we infer from the Itô formulae that

dξn(Bt) =
d∑

i=1
∂ziξn(Bt) · dBi

t + 1
2Δξn(Bt) dt.

Thus, the SDE of πn(Nt) in Eq. (10) can be rewritten as

d
(
Proji

(
S(B0,t)

)
⊗ ξn−i(Bt)

)
= dProji

(
S(B0,t)

)
⊗ ξn−i(Bt) + Proji

(
S(B0,t)

)
⊗ dξn−i(Bt)

+ d
〈
Proji

(
S(B0,t)

)
, ξn−i(Bt)

〉
= 1i≥2

1
2Proji−2

(
S(B0,t)

)
⊗

d∑
j=1

ej ⊗ ej dt⊗ ξn−i(Bt)

+ Proji
(
S(Bt)

)
⊗ 1

2Δξn−i(Bt) dt

+
d∑

j=1
1i≥1Proji−1

(
S(Bt)

)
⊗ ej ⊗ ∂zjξn−i(Bt) + Qn,i

t · dBt,

where i ≤ n and

Qn,i
t = Proji(S(B0,t))

⊗
d∑

j=1
∂zjξn−i(Bt) · dBt + 1i≥1Proji−1(S(B0,t)) ⊗ ·dBt ⊗ ξn−i(Bt).

Summing the above equation over i ∈ {0, . . . , n}, we get

dProjn(Nt) =
n−2∑
i=0

Proji
(
S(Bt)

)
⊗Rn−i−2(Bt) dt +

n∑
i=0

Qn,i
t · dBt,

where

Ri(z) = 1
2

d∑
j=1

ej ⊗ ej ⊗ ξi(z) +
d∑

j=1
ej ⊗ ∂zjξi+1(z) + 1

2Δξi+2(z).

By the fact that ξ is a solution to the given PDE, the drift term equals zero. Therefore, 
Nt is a local martingale. It then implies that Yt := Nt∧τΩ is a local martingale.



S. Li, H. Ni / Journal of Functional Analysis 282 (2022) 109447 13
It remains to show that Yt is a martingale. Indeed, for any n and i ∈ {0, 1, · · · , n}, 
and for all t ∈ R+, we have E 

[∣∣∣Qn,i
t∧τΩ

∣∣∣2] < ∞. This is because for every i ∈ {0, 1, 2, · · · }, 
it holds that

Ez
[
|Proji(S(B0,t∧τΩ))|2

]
< ∞,

Ez

⎡⎣∣∣∣ξi(Bt∧τΩ)
∣∣∣2 +

d∑
j=1

∣∣∣∂zjξi(Bt∧τΩ)
∣∣∣2
⎤⎦ < ∞.

Then Ez[|Yt|] < ∞ by Hölder’s inequality, and hence Yt is a martingale. Moreover, 
Ez[|Yt|] is uniformly bounded, thus Ez[Y0] = Ez[Yt] for all t > 0. In addition, Y∞ =
S(B0,τΩ) ∈ L1, so

Ez[Y0] = lim
t→∞

Ez[Yt] = Ez
[

lim
t→∞

Yt

]
.

We conclude by noting that Ez[Y0] = ξ(z) and Ez[limt→∞ Yt] = Ez[S(B)0,τΩ ]. �
4. Symmetrization of PDEs and hyperbolic development

To overcome the difficulty that general domains are not rotationally invariant, we 
integrate the development Mλ,Ω (see Eq. (5)) over all the rotated domains centred at 
x ∈ Ω. The resulting object is referred to as the “domain-averaging development” of 
expected signature in the sequel.

In this section, we first explore general properties of domain-averaging developments 
for any M ∈ Hom

(
T ((E)), gl(d + 1; R)

)
, and then specialise to the hyperbolic develop-

ment M = H.

4.1. Domain-averaging development of the expected signature

We start with defining several operations on domains. The translation of domain Ω
by h is Ω + h := {z + h : z ∈ Ω}. For R ∈ SO(d), write ΩR := R(Ω), the domain 
obtained by rotating Ω with respect to the centre x = 0 (see Fig. 1 for a 2-dimensional 
illustration).

Fix an arbitrary x ∈ Ω. As Ω is open, there is ε ∈]0, 1[ such that B(x, ε) ⊂ Ω. 
We first note that the expected signature is invariant under translations, namely that 
ΦΩ(x) := ΦΩ+h(x + h) whenever x ∈ Ω. Without loss of generality we may assume 
x = 0 ∈ Ω, since otherwise one simply takes Ω̃ = Ω − x.

Recall that

Mλ,Ω(z) := Mλ(ΦΩ(z)) =
∞∑

λnMProjn[ΦΩ(z)] (11)

n=0
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Fig. 1. Rotation of the 2-dimensional domain Ω (whose boundary is the solid blue curve) by degree α = π/4
with respect to the centre marked in orange. The boundary of the rotated domain Rα(Ω) is the dashed blue 
curve, where Rα ∈ SO(2) is the rotation matrix by α. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)

for sufficiently small λ ([18], Theorem 3.6). Any z ∈ B(0, ε) lies in 
⋂

S∈SO(d) ΩS , so 
Mλ,ΩR

(z) is well defined for each R ∈ SO(d).

Definition 4.1 (Domain-averaging development of expected signature). Let Ω � Rd be a 
domain containing B(0, ε). Set

Mλ,ε,Ω(z) =
∫

SO(d)

Mλ,ΩR
(z) dχ(R) ∈ gl(d + 1;R) for each z ∈ B(0, ε), (12)

where χ is the normalised Haar measure on SO(d), and integration of matrices in gl(d +
1; R) is understood in the entry-wise sense. For ease of notations, we write Mλ,ε :=
Mλ,ε,Ω.

Lemma 4.2 (Rotational “symmetry” of Mλ,Ω). For any z ∈ B(0, ε) ⊂ Ω and R ∈ SO(d),

(R⊕ id)Mλ,Ω(z)
(
R
 ⊕ id

)
= Mλ,ΩR

(Rz). (13)

Proof. This extends the proof of Corollary 4 for the unit disc in [2], where id is the 
identity map on R1 and R
 the transpose of R. Since the Brownian motion BRz starting 
at Rz has the same distribution as the rotated Brownian motion R(Bz) (with Bz starting 
from z), for any z ∈

⋂
R∈SO(d) R(Ω) it holds that

Ez
[
S (RB)τΩ

]
= ERz

[
S(B)τR(Ω)

]
.

Applying Mλ to both sides of the above equation, we have

Mλ
(
Ez
[
S (RB)τ

])
= Mλ

(
ER(z) [S(B)τR(Ω)

])
.

Ω
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By Lemma 3 in [2] (which clearly holds in arbitrary dimension), it equals

Mλ
(
S (RB)τΩ

)
= (R⊕ id)

{
Mλ
[
S (B)τΩR

]} (
R
 ⊕ id

)
.

As R is deterministic, it is furthermore equal to

(R⊕ id)
{
Mλ(Ez [S(B)τΩ ])

}(
R
 ⊕ id

)
= Mλ(ERz

[
S(B)τΩR

]
).

This concludes the proof. �
Lemma 4.3. Write r = |z| for z ∈ B(0, ε) ⊂ Ω. Then for any R ∈ SO(d),

(R⊕ id)Mλ,ε(r)
(
R
 ⊕ id

)
= Mλ,ε(z). (14)

Proof. Let z = R(r, 0, · · · , 0︸ ︷︷ ︸
d−1 zeros

)
 ∈ B(0, ε) ⊂
⋂

O∈SO(d) ΩO ⊂ Ω. We deduce from Eq. (13)

that

(R⊕ id)Mλ,ΩS
(r)
(
R
 ⊕ id

)
= Mλ,ΩR◦S

(
R(r, 0, · · · , 0)


)
= Mλ,ΩR◦S (z)

for any S ∈ SO(d). We can now conclude by integrating both sides of this equation 
against the Haar measure μ on SO(d). �

As in [2] let us consider Fλ,Ω := Mλ,Ω(z) · [0, · · · , 0︸ ︷︷ ︸
d zeros

, 1]
, and similarly

Fλ,ε(z) := Mλ,ε(z) · [0, · · · , 0︸ ︷︷ ︸
d zeros

, 1]
. (15)

The following can be deduced directly from Lemma 4.3.

Lemma 4.4 (Separation of variables). For any z ∈ B(0, ε) ⊂ Ω and R ∈ SO(d), it holds 
that

Fλ,ε(z) = (R⊕ id)Fλ,ε

⎛⎜⎝(r, 0, · · · , 0︸ ︷︷ ︸
d−1 zeros

)


⎞⎟⎠ . (16)

In addition, Fλ,ε and Fλ,Ω are related in the following manner:

Lemma 4.5. For B(0, ε) ⊂ Ω, let Cλ,ε(r) = [0, · · · , 0︸ ︷︷ ︸
d−1 zeros

, 1]Fλ,ε(r) and Cλ(z) = [0, · · · , 0︸ ︷︷ ︸
d−1 zeros

,

1]Fλ,Ω(z). Then Cλ(0) = Cλ,ε(0).
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Proof. By Lemma 4.3 we have, for each R ∈ SO(d), that

(R⊕ id)Mλ,Ω(0)
(
R
 ⊕ id

)
= Mλ,ΩR

(0).

The (d + 1, d + 1)th entry of both sides of the above equation is Cλ,Ω(0) = Cλ,ΩR
(0). So, 

integrating both sides over the angular variable gives us Cλ,Ω(0) = Cλ,ε(0). �
Lemma 4.6 (Preservation of finite radius of convergence). For B(0, ε) ⊂ Ω, if Mλ,ε(0)
has finite radius of convergence, then so does Mλ,Ω(0).

Proof. By Lemma 4.3 we have (R⊕ id)Mλ,Ω(0) 
(
R
 ⊕ id

)
= Mλ,ΩR

(0), which is equiv-
alent to

Mλ,Ω(0) =
(
R
 ⊕ id

)
Mλ,ΩR

(0) (R⊕ id) .

The assertion follows immediately from the definition of radius of convergence. �
4.2. Symmetrization of PDEs

By Corollary 3.3 (compare also with [18]), the map z �→ ΦΩ(z) is twice differentiable 
on Ω. This leads to

Theorem 4.7 (PDE for Fλ,ε). Assume B(0, ε) ⊂ Ω. There exists a λ∗ > 0 such that for 
any λ ∈ C with |λ| < λ∗, Fλ,Ω is twice continuously differentiable on B(0, ε). Moreover, 
it satisfies

ΔFλ,ε(z) = −2λ
d∑

i=1
Mei

∂Fλ,ε

∂zi
(z) − λ2

(
d∑

i=1
(Mei)2

)
Fλ,ε(z) for any z ∈ B(0, ε).

(17)

Proof. Consider

λ∗ = sup
{
|λ| :

∞∑
n=0

λn ||Projn(ΦΩ(z))|| < ∞ for all z ∈ B(0, ε)
}
. (18)

As remarked above, z �→ Fλ,ε(z) is C2 on B(0, ε). The definition of Fλ,ε and Eq. (12)
give us

Fλ,ε(z) =
∫

SO(d)

Fλ,ΩR
(z) dχ(R). (19)

We shall use the PDE for Fλ,ΩR
to derive that for Fλ,ε. Indeed, for any R ∈ SO(d)

we have
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ΔFλ,ΩR
(z) = −2λ

d∑
i=1

Mei
∂Fλ,ΩR

∂zi
(z) − λ2

(
d∑

i=1
(Mei)2

)
Fλ,ΩR

(z).

As Fλ,ΩR
is C2, we can differentiate under integral signs to get∫

SO(d)

ΔFλ,ΩR
(z) dχ(R)

= −2λ
d∑

i=1
Mei

∫
SO(d)

∂Fλ,ΩR

∂zi
(z) dχ(R) − λ2

(
d∑

i=1
(Mei)2

)
Fλ,ε(z). � (20)

4.3. Hyperbolic development

Recall that the hyperbolic development (Hambly–Lyons [10]; Boedihardjo–Diehl–Mez-
zarobba–Ni [2]) is the morphism H : T ((E)) → gl(d + 1; R) —

H(z) :=

⎡⎢⎢⎢⎢⎣
0 0 · · · 0 z1

0 0 · · · 0 z2

...
...

. . .
...

...
0 0 · · · 0 zd

z1 z2 · · · zd 0

⎤⎥⎥⎥⎥⎦ for z = (z1, . . . , zd) ∈ E,

H(v1 ⊗ · · · ⊗ vn) := H(v1) · . . . ·H(vn) for any n ∈ N and v1, . . . , vn ∈ E.

Let Hλ,ε denote the last column of domain-averaging development of expected stopped 
Brownian motion Fλ,ε corresponding to the hyperbolic development H.

Theorem 4.8 (ODE system of Hλ,ε). Write, in the case d = 2,

Hλ,ε(r) =:
[
Āλ(r), B̄λ(r), C̄λ(r)

]

.

When |λ| < λ	 in Eq. (18), the following ODE system holds:

r2Ā′′
λ + rĀ′

λ(r) − Āλ(r) + λ2r2Āλ(r) + 2λr2C̄ ′
λ(r) = 0, (21)

r2B̄′′
λ(r) + rB̄′

λ(r) + (λ2r2 − 1)B̄λ(r) = 0, (22)

C̄ ′
λ(r) + rC̄ ′′

λ(r) + 2λ2rC̄λ(r) + 2λrĀ′
λ(r) + 2λĀλ(r) = 0. (23)

To ensure that Hλ,ε is C2 at the origin x = 0, one needs to impose the conditions

Āλ(0) = 0, B̄λ(0) = 0, C̄ ′
λ(0) = 0. (24)

Proof. As in [2], a straightforward computation using Eq. (14) and Lemma 4.3 yields 
that
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Hλ,ε

(
reiθ
)

= (Rθ ⊕ id)Hλ,ε(r), (25)

where Rθ =
[
cos θ − sin θ
sin θ cos θ

]
∈ SO(2). The PDE for Hλ,ε is the same as that for 

Hλ,B(0,1). Adapting almost verbatim the arguments in [2], Lemma 6, we conclude that 
the ODE for Hλ,ε is the same as that for Hλ,B(0,1) given in Eqs. (21), (22), and (23). �

In contrast to the case that Ω is the unit disc, roughly speaking, the PDE for Hλ,ε

misses “half of the boundary conditions”, namely the conditions on ∂B(0, ε). To address 
this problem, we make use of geometric properties of the hyperbolic development.

Lemma 4.9. Let B(0, ε) ⊂ Ω and let λ∗ be as in Eq. (18). For every λ ∈ [0, λ∗[ and r ∈
[0, ε], set Hλ,ε(r) :=

[
h

(1)
λ (r), · · · , h(d+1)

λ (r)
]


. Then h(d+1)
λ (r) ≥ 1 for every r ∈ [0, ε].

Proof. As the hyperbolic development is a normed algebra morphism, for any λ ∈ [0, λ∗[
with λ∗ defined in Eq. (17),

||(λH)(ΦΩ(z))|| =

∥∥∥∥∥∥
∑
n≥0

λnH(Projn(ΦΩ(z))

∥∥∥∥∥∥
≤
∑
n≤0

λn‖H‖n‖Proj(ΦΩ(z))‖

≤
∑
n≤0

λn‖Proj(ΦΩ(z))‖ < ∞,

where the norm of H is 1. By the dominated convergence theorem, we can interchange 
the expectation and λH to obtain that

λH(ΦΩ(z)) = Ez [λH (S(B)0,τΩ)] .

By Lemma 2.7, the Stratonovich signature of the Brownian motion (S(B)0,t)t∈[0,T ] is a 
geometric rough path for any finite T > 0. That is, there exists a sequence of bounded 1-
variation paths 

(
Bm

[0,T ]

)∞
m=1

whose signatures converge almost surely to (S(B)0,t)t∈[0,T ]
in the p-variation distance for any p > 2. For instance, we can choose Bm

[0,T ] as the dyadic 
piecewise linear approximation of Brownian motion with mesh size 2−m up to time T .

It then holds that

lim
m→∞

λH
(
S
(
Bm

[0,T ]

))
a.s= λH

(
S
(
B[0,T ]

))
.

As Ez[τΩ] is almost surely finite, we can send T and m to +∞ to get

lim lim λH
(
S
(
Bm

[0,T∧τΩ]

))
a.s= λH

(
S
(
B[0,τΩ]

))
.

T→∞m→∞
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Note that for any T > 0 and m ∈ N, the boundness of 1-variation of Bm
[0,T ] in the 

almost sure sense ensures that λH
(
S
(
Bm

[0,T ]

))
is finite almost surly. Lyons–Xu [16]

showed that any bounded 1-variation path γ satisfies H (S(γ)) · [0, · · · , 0, 1]
 ∈ Hd, with

Hd :=
{(

x(1), · · · , x(d), x(d+1)
)
∈ Rd+1 :

d∑
i=1

(
x(i)
)2

−
(
x(d+1)

)2
= −1, x(d+1) > 0

}
.

That is, the last co-ordinate of the hyperbolic development of the signature of Bm
[0,T∧τΩ] ∈

N is no less than 1 almost surely for all m and T > 0. Thus, the expectation of the limit 
of 
(
λH(S(Bm)[0,T∧τΩ ])(d+1))

m,T
, as m, T ↗ ∞, is greater than or equal to 1.

Therefore, we can conclude the desired result:

h
(d+1)
λ (r) =

(
Ez
[
λH
(
S
(
B[0,τΩ]

))]
(0, · · · , 0, 1)


)(d+1)
≥ 1. �

Corollary 4.10. Let B(0, ε), λ∗, and Hλ,ε(r) be the same as in Lemma 4.9 above, where 

r ∈ [0, ε]. Then h(d+1)
λ (r) ≥

∣∣∣h(1)
λ (r)

∣∣∣ for every λ ∈ [0, λ∗[ and r ∈ [0, ε].

Proof. By [16] again, H (S(γ)) · [0, · · · , 0, 1]
 :=
(
H(1), · · · , H(d+1))
 ∈ Hd and 

H(d+1) > 0 for any bounded 1-variation path γ. In particular, 
(
H(d+1))2 = 1 +∑d

i=1
(
H(i))2. Thus H(d+1) ≥

∣∣H(1)
∣∣. Let Bm

0,T∧τ denote the dyadic approximation of 
Brownian motion as in the proof of Lemma 4.9, which has bounded 1-variation almost 
surely. Moreover, for λ ∈ [0, λ∗],

lim
T→∞

lim
m→∞

λH(S(Bm)0,T∧τ ))
a.s.= λH(S(B)0,τ )).

Since for any m ∈ N and T > 0, it holds almost surely that

λH(S(Bm)0,T∧τ ))(d+1) −
∣∣∣λH(S(Bm)0,T∧τ ))(1)

∣∣∣ ≥ 0,

we may infer by sending m, T ↗ ∞ that h(d+1)
λ (r) −

∣∣∣h(1)
λ (r)

∣∣∣ ≥ 0. �
5. Proof of Theorem 1.1: d = 2

The domain-averaging hyperbolic development Hλ,ε introduced in earlier sections 
overcomes the issue of lack of rotational invariance on general domains. Combining Hλ,ε

with the techniques developed in [2,3] and utilising properties of the Bessel functions Jν
and Yν (see [1,13]), we arrive at the following proof of Theorem 1.1 in the 2-dimensional 
case.

Proof of Theorem 1.1, d = 2. Assume for contradiction that the expected signature Φ ≡
ΦΩ had infinite radius of convergence. We divide our arguments into six steps below.
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Step 1. Recall the PDE (7) for Φ (reproduced below, see Theorem 3.4):⎧⎪⎪⎨⎪⎪⎩
Δ (ProjnΦ) = −2

∑2
i=1 ei ⊗

∂(Projn−1Φ)
∂zi −

∑2
i=1 ei ⊗ ei ⊗ Projn−2Φ in Ω;

Φ = 1 on ∂Ω;
Φ0 ≡ 1 and Φ1 ≡ 0 in Ω.

(26)
By standard elliptic PDE theory and induction, for each n = 0, 1, 2, . . . there exists a 

unique solution for Eq. (26) that is real-analytic in the interior. Indeed, one may begin 
with the same arguments as for Proposition 3.1 to reduce Eq. (26) to scalar elliptic PDEs, 
which renders applicable the standard elliptic regularity theory. For any subdomain 
Ω̃ � Ω and n = 2, 3, 4 . . ., a simple induction and the Lax–Milgram lemma ([9], §5.8) 
yield the existence of Φn ∈ W 1,2

(
Ω̃;E⊗n

)
, such that the boundary value is attained in 

the trace sense as usual, and that for any test function ψ ∈ C∞
c

(
Ω̃
)

we have

∫
Ω

∇ψ · ∇Φn dx =
∫
Ω

{
2

d∑
i=1

ei ⊗
∂Φn−1

∂zi
+

d∑
i=1

ei ⊗ ei ⊗ Φn−2

}
ψ dx.

Then, by the interior regularity Theorem 8.10 in [9] we can bootstrap the regularity to 

Φn ∈ C∞
(
Ω̃;E⊗n

)
=
⋂∞

k=0 W
k,2
(
Ω̃;E⊗n

)
. The real-analyticity of Φn follows since, by 

induction, ΔΦn equals a real-analytic function in the interior of Ω; cf. [6].
On the other hand, when Ω is a C2,α-domain, straightforward adaptations of the ar-

guments in Lyons–Ni [14], §§3.5.1–3.5.2 (by changing Sobolev spaces to suitable Hölder 
spaces) together with the C2,α-boundary regularity theory for elliptic PDE ([9], Theo-
rem 6.19) yield the geometric decay bound for the expected signature:

‖ProjnΦ‖C2(Ω) ≤ (C0)n.

Here C0 depends only on the geometry of Ω and the Hölder index α.

Step 2. Fix an arbitrary x ∈ Ω. There is ε ∈]0, 1[ such that B(x, ε) ⊂ Ω. As ΦΩ(z) =
ΦΩ−x(z − x) for any z ∈ Ω, we can take x = 0 without loss of generality.

Recall from Theorem 4.8 that Fλ,Ω(r) ≡
[
Āλ(r), B̄λ(r), C̄λ(r)

]
 satisfies

r2Ā′′
λ(r) + rĀ′

λ(r) − Āλ(r) + λ2r2Āλ(r) + 2λr2C̄ ′
λ(r) = 0, (27)

r2B̄′′
λ(r) + rB̄′

λ(r) + (λ2r2 − 1)B̄λ(r) = 0, (28)

C̄ ′
λ(r) + rC̄ ′′

λ(r) + 2λ2rC̄λ(r) + 2λrĀ′
λ(r) + 2λĀλ(r) = 0 (29)

for r ∈ [0, ε[, with the boundary conditions

Āλ(0) = 0, B̄λ(0) = 0, and C̄ ′
λ(0) = 0. (30)
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Step 3. From now on, let us focus on Eqs. (27) and (29) for Āλ and C̄λ; our blowup 
quantity will be C̄λ(0). Introduce the “missing boundary conditions”:

Āλ(ε) =: b and C̄λ(ε) =: c. (31)

Here b and c depend in general on λ and ε.
An adaptation of Boedihardjo–Diehl–Mezzarobba–Ni [2], §6 allows us to explicitly 

solve the system (27) – (31). Indeed, for r ∈ [0, ε[ we consider the ansatz

Āλ(r) = αC1(λζr) and C̄λ(r) = C0(λζr), (32)

where α, ζ ∈ C are complex parameters to be specified and Cν are cylinder functions 
(ν = 0, 1); i.e., linear combinations of Jν and Yν , the order-ν Bessel function of the first 
and the second kind, respectively. The identities

C′
0 = C1,

sC′
1(s) + C1(s) = sC0(s)

together with the defining equations for cylinder functions

s2C′′
ν(s) + sC′

ν(s) + (s2 − ν2)Cν(s) = 0 (33)

show that for particular choices of ζ and α, the ansatz (32) indeed solves Eqs. (21) and 
(23). Here ζ is any one of the four complex roots of p(z) = z4 +z2 +2, and α = ζ + ζ3/2.

Moreover, as Y0(s) ∼ O(log s) and Y1(s) ∼ O(s−1) for s ↘ 0 ([13], §10.7(i)), in order 
for Āλ and C̄λ to be bounded at the origin r = 0, the cylinder functions in the ansatz (32)
cannot contain Y0 and Y1. Then we are left with J0 and J1 only, and the corresponding 
ansatz automatically satisfies the boundary condition (24) at r = 0.

Note also that the C2-solution for the PDE system (27) – (30) is unique.
To summarise, we have further reduced the ansatz (32) to

{
Āλ(r) = um(r) + vm†(r),
C̄λ(r) = un(r) + vn†(r),

(34)

where u, v are complex coefficients and m, n : [0, ε[→ C are given by

{
m(r) := αJ1(λζr),
n(r) := J0(λζr).

(35)

Remark 5.1. It should be emphasised that one needs λ ∈ R in the above arguments, 
which guarantees that m†(r) = α†J1

(
λζ†r

)
and n† = J0

(
λζ†r

)
.



22 S. Li, H. Ni / Journal of Functional Analysis 282 (2022) 109447
Step 4. The coefficients u, v can be easily solved from the boundary condition (31). 

Indeed, Eqs. (34) and (31) imply that 
[
m(ε) m(ε)†
n(ε) n(ε)†

] [
u
v

]
=
[
b

c

]
, hence

[
u
v

]
=

[
n(ε)† −m(ε)†
−n(ε) m(ε)

] [
b

c

]
m(ε)n(ε)† − n(ε)m(ε)† .

Setting r = 0 in Eq. (34), we get

C̄λ(0) = n(0)u + n†(0)v

=
[
n†(ε) − n(ε)

]
· b +

[
m(ε) −m†(ε)

]
· c

m(ε)n(ε)† − n(ε)m(ε)†

= Im {−bJ0(λζε) + cαJ1(λζε)}
Im
{
α† [J1(λζε)]† J0(λζε)

} . (36)

Again, in the last line of Eq. (36) the boundary data c, b depend on both λ and ε.
As computed in [2], §6, the denominator Im

{
α† [J1(λζε)]† J0(λζε)

}
has a root λ	 ∈]2.5

ε , 3
ε

[
. On the other hand, for such λ	 we have

Im {cαJ1(λ	ζε)} ≤ −1.3c.

See the proof of Lemma 8 in [2]. But Lemma 4.9 in this paper yields c ≥ 1, for the third 
component of the hyperbolic development must be confined to the upper branch of the 
hyperbola. So the numerator in the right-most term in Eq. (36) is non-zero. This implies 
that the radius of convergence of Hλ,ε (the domain-averaged hyperbolic development of 
the expected signature) is no larger than λ	, provided that b = 0.

Step 5. It remains to consider the case b �= 0. Then the numerator equals

Im {cαJ1(λ	ζε) − bJ0(λ	ζε)} = b Im
{
c

b
αJ1(λ	ζε) − J0(λ	ζε)

}
when evaluated at λ	, since both c, b ∈ R. Again, by the geometry of hyperbolic devel-
opments (Lemma 4.9 and Corollary 4.10) we have |e| ≡ |c/b| ≥ 1.

To this end, we shall establish in Appendix, Lemma A.4 that

N (μ; e) := Im {eαJ1(μζ) − J0(μζ)} �= 0 for all μ ∈ [2.5, 3], |e| ≥ 1. (37)

Step 6. As a consequence, there exists at least one R0 ∈ SO(d) such that Cλ,ΩR0
(x), i.e., 

the final component of the hyperbolic development for the stopped Brownian motion on 
the rotated domain R0, blows up. Therefore, in view of Lemma 4.6 (in which M = H), 
for any x ∈ Ω � R2 the expected signature ΦΩ must have finite radius of convergence 
at x. �
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6. Proof of Theorem 1.1: 3 ≤ d ≤ 8

In this final section, fix any d = 2, 3, . . . and write D ≡ Dd for the d-dimensional unit 
ball.

6.1. The unit ball

Let Hλ,D(z) be the hyperbolic development of the expected signature of a d-
dimensional Brownian motion starting from z and stopped upon the first exit time 
from D scaled by λ. Note that the domain-averaging hyperbolic development of the ex-
pected signature coincides with that of the hyperbolic development; that is, Hλ,1,D(z) =
Hλ,D(z).

Lemma 6.1 (Sparseness of Hλ,D). For each λ > 0, the hyperbolic development Hλ,D (r) =(
H(1)

λ,D(r), · · · ,H(d+1)
λ,D (r)

)

evaluated at the point r = (r, 0, · · · , 0)
 ∈ Rd satisfies 

H(i)
λ,D(r) = 0 for i ∈ {2, 3, · · · , d} and H(d+1)

λ,D (r) ≥ 1 almost surely, as long as it is 
well-defined for such λ.

Proof. The second statement follows immediately from the construction of the hyperbolic 
development, as H(d+1)

λ,D (λB) ≥ 1 almost surely.
To prove the first statement, we let {γj,t}j∈N be a sequence of paths of bounded 

1-variations converging almost surely and in C0,1/2− to Bt. Consider the reflected paths

γ̂j,t :=
(
γ

(1)
j,t ,−γ

(2)
j,t , · · · ,−γ

(d)
j,t

)

.

Then {γ̂j,t} converges in the same topology to the reflected Brownian motion

B̂t :=
(
B

(1)
t ,−B

(2)
t , · · · ,−B

(d)
t

)

. (38)

If Bt starts at some point r = (r, 0, · · · , 0)
, we may further require that B̂0 = γj,0 =
γ̂j,0 = r for each j. Also

H (S (λγj,τ ))(k) =
∑
n≥0

∑
w∈E(k)

2n

λ2n+1Projw (S(γ̂j,τ )) .

Taking the expectation, we get

Er

⎡⎣∑
n≥0

∑
w∈E(k)

2n

Projw(S(λγj,τ ))

⎤⎦ = Er

⎡⎣∑
n≥0

∑
w∈E(k)

2n

Projw (S(λγ̂j,τ ))

⎤⎦ .
On the other hand, for every w ∈ E(k)

2n and k ∈ {2, · · · , d}, Lemma 2.10 implies that
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Projw(S(λγj,τ )) = −Projw (S(λγ̂j,τ ))

and that

Er

⎡⎣∑
n≥0

∑
w∈E(k)

2n

Projw(S(λγj,τ ))

⎤⎦ = −Er

⎡⎣∑
n≥0

∑
w∈E(k)

2n

Projw(S(λ(γ̂j,τ )))

⎤⎦ .
Therefore, for k ∈ {2, · · · , d},

H(k)
λ,D(r) = Er

⎡⎣∑
n≥0

∑
w∈E(k)

2n

Projw(S(λγj,τ ))

⎤⎦ = 0.

Now we can pass to the limit j → ∞ to conclude the same for Bτ . �
Theorem 4.7 remains valid in d-dimensional unit ball. It is straightforward to check 

that Hλ,D(z) satisfies the trivial boundary condition for z ∈ ∂D. Thus we get

Lemma 6.2. There exists λ∗ > 0 such that for any λ ∈ C with |λ| < λ∗, Hλ,D is C2 on 
D. Moreover, it satisfies

ΔHλ,D(z) = −2λ
d∑

i=1
Hei

∂Hλ,D

∂zi
(z) − λ2

(
d∑

i=1
(Hei)2

)
Hλ,D(z)

for each z ∈ D, and it is subject to the boundary condition Hλ,D = [0, . . . , 0, 1]
 on ∂D. 
This PDE boundary value problem has a unique solution.

The separation of variables and symmetrization arguments in §4 reduce the PDE 
in Lemma 6.2 to an ODE system in the radial variable r only. Moreover, in view of 
Lemma 6.1, this ODE system is trivial except for the first and last components of Hλ,D. 
Here and hereafter, r = |z| is the radial co-ordinate on D and χ is the normalised Haar 
measure on SO(d).

Proposition 6.3 (ODE system for Hλ,D). Write h(1)
λ := H(1)

λ,D and h(d+1)
λ := H(d+1)

λ,D where

Hλ,D(r) :=
∫

SO(d)

Hλ,D

⎛⎜⎜⎝R ·

⎡⎢⎣r, 0, . . . , 0︸ ︷︷ ︸
d−1 zeros

⎤⎥⎦

⎞⎟⎟⎠ dχ(R).

Then for d ∈ {2, 3, 4, . . .} it holds that
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(
h

(1)
λ

)′′
+ d− 1

r

(
h

(1)
λ

)′
− (d− 1)h(1)

λ

r2 = −2λ
(
h

(d+1)
λ

)′
− λ2h

(1)
λ , (39)(

h
(d+1)
λ

)′′
+ d− 1

r

(
h

(d+1)
λ

)′
= −2λ

{
d− 1
r

h
(1)
λ +

(
h

(1)
λ

)′}
− dλ2h

(d+1)
λ , (40)

h
(1)
λ (1) = 0, h

(d+1)
λ (1) = 1. (41)

Proof. By Lemma 4.4 we have Hλ,D(z) = (R⊕ id)Hλ,D(r) for z = R · (r, 0, . . . , 0)
. 
Also, Lemma 6.1 gives us Hλ,D(z) ∈

{
w ∈ Rd+1 : w(k) = 0 for k ∈ {2, · · · , d} and w(d+1)

≥ 1
}
. Thus

Hλ,D(z) =

⎡⎢⎢⎢⎢⎢⎣
R ·

⎡⎢⎢⎢⎣
h

(1)
λ (r)
0
...
0

⎤⎥⎥⎥⎦
h

(d+1)
λ (r)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

r h
(1)
λ (r)

z2

r h
(1)
λ (r)
...

zd

r h
(1)
λ (r)

h
(d+1)
λ (r)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

since the unit sphere Sd−1 is invariant under R.
Consider now the PDE system in Lemma 6.2:

ΔHλ,D = −2λ
d∑

i=1
Hei

∂Hλ,D

∂zi
− λ2

(
d∑

i=1
(Hei)2

)
Hλ,D. (42)

The coefficients can be easily computed: since H(ei) is the matrix whose only nonzero 
entries are the (i, d + 1)th and (d + 1, i)th ones (both equal to 1), we find that(

d∑
i=1

(Hei)2
)

= diag(1, · · · , 1, d). (43)

Moreover, the αth component of 
∑d

i=1 Hei
∂Hλ,D

∂zi equals ∂H(d+1)
λ,D /∂zα if α ∈ {1, 2, . . . , d}

and 
∑d

i=1 ∂H
(i)
λ,D/∂zi if α = d + 1. In the latter case we further have

d∑
i=1

∂H(i)
λ,D

∂zi
(z) =

d∑
i=1

{
1
r
h

(1)
λ (r) − zizi

r3 h
(1)
λ (r) + zi

r

(
h

(1)
λ (r)

)′
(r) ∂r

∂zi

}

= d− 1
r

h
(1)
λ (r) +

(
h

(1)
λ

)′
(r). (44)

On the other hand, z1/r = cos θ1 in the usual spherical co-ordinates ω = z/r =
(θ1, . . . , θd−1) on Sd−1. Note also that Δ on the left-hand side of Eq. (42) is the Euclidean 
Laplacian on Rd+1 = Rd ×R; when acting on the Rd-component, in the spherical polar 
co-ordinates
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Δ = ∂rr + d− 1
r

∂r + 1
r2 ΔSd−1 , (45)

where ΔSd−1 is the Laplace–Beltrami operator on the sphere Sd−1.
To proceed, let us project Eq. (42) onto the first and the last components. We shall 

prove the blowup of the resulting ODE system for h(1)
λ and h(d+1)

λ .
For the projection onto the (d + 1)th component, note that 

[
Projd+1Hλ,D

]
(z) =

h
(d+1)
λ (r) by Eq. (47), which is independent of ω ∈ Sd−1. So Identity (45) leads to

ΔProjd+1Hλ,D(z) =
(
h

(d+1)
λ

)′′
(r) + d− 1

r

(
h

(d+1)
λ

)′
(r).

The projection of the right-hand side of Eq. (42) can be found via Eqs. (43) and (44). 
Thus we obtain Eq. (40).

It remains to prove Eq. (39). To this end, note that Eqs. (42) – (45) yield that

Δ
(
z1

r
h

(1)
λ

)
= −2λ

∂h
(d+1)
λ

∂z1 − λ2 z
1

r
h1.

Writing in the spherical polar co-ordinates, we have z1/r = cos θ1, ∂h(d+1)
λ /∂z1 =

cos θ1

(
h

(d+1)
λ

)′
, as well as

Δ
(
z1

r
h

(1)
λ

)
= cos θ1

{(
h

(1)
λ

)′′
+ d− 1

r

(
h

(1)
λ

)′}
+

h
(1)
λ

r2 ΔSd−1 cos θ1.

In addition, the Laplace–Beltrami ΔSd−1 on Sd−1 can be expressed in terms of the 
Laplace–Beltrami ΔSd−2 on Sd−2 — for ω = (θ1, ω′) where ω′ = (θ2, · · · , θd−1) ∈ Sd−2, 
one has

ΔSd−1 = (sin θ1)2−d ∂

∂θ1

(
(sin θ1)d−2 ∂

∂θ1

)
+ 1

sin2 θ1
ΔSd−2 ,

from which it follows that

ΔSd−1 cos θ1 = −(d− 1) cos θ1.

We thus obtain Eq. (39).
The boundary conditions h(1)

λ (1) = 0, h(d+1)
λ (1) = 1 follow from ΦD(1) = 1, which 

holds since the stopping time is zero on the boundary ∂D. �
Remark 6.4. When d = 2, Proposition 6.3 agrees with Theorem 4.8 (Āλ = h

(1)
λ and 

C̄λ = h
(3)
λ ).

To proceed, let us first introduce a few further notations. Define the dimensional 
constants
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η± := d + 3 ±
√

d2 − 10d + 9

and

β± :=
√

2d− 6 ± 2
√
d2 − 10d + 9.

In each dimension d ≥ 2, the Wrönskian determinant W is a function of λ:

W ≡ W[λ] := det

⎡⎣ J d
2

(
λβ+

2

)
J d

2

(
λβ−

2

)
η+β+J d

2−1

(
λβ+

2

)
η−β−J d

2−1

(
λβ−

2

)
⎤⎦ . (46)

We can express the symmetrised development Hλ,D(r) on the d-dimensional unit disc as 
follows.

Theorem 6.5. Let D = Dd with d ∈ N \ {1, 9}. Let λ	 denote the radius of convergence 
of Hλ,D. Then for all [0, λ	[ we have

Hλ,D(z) =
[
z1

r
h

(1)
λ (r), z

2

r
h

(1)
λ (r), · · · , z

d

r
h

(1)
λ (r), h(d+1)

λ (r)
]


, (47)

where

h
(1)
λ (r) = r1− d

2
8d
W

{
J d

2

(
λβ−
2

)
J d

2

(
λβ+r

2

)
− J d

2

(
λβ+

2

)
J d

2

(
λβ−r

2

)}
, (48)

h
(d+1)
λ (r) = r1− d

2
1
W

{
− β+η+J d

2

(
λβ−
2

)
J d

2−1

(
λβ+r

2

)
+ β−η−J d

2

(
λβ+

2

)
J d

2−1

(
λβ−r

2

)}
. (49)

For d ∈ {2, 3, · · · , 8} one may further express

h
(1)
λ (r) = 8d r1− d

2

⎛⎜⎜⎝ Im
{[

J d
2

(
λβ+

2

)]†
J d

2

(
λβ+r

2

)}
Im
{
η−β−

[
J d

2−1

(
λβ+

2

)]†
J d

2

(
λβ+

2

)}
⎞⎟⎟⎠ , (50)

h
(d+1)
λ = r1− d

2

⎛⎜⎜⎝ Im
{
η−β−

[
J d

2−1

(
λβ+

2

)]†
J d

2

(
λβ+r

2

)}
Im
{
η−β−

[
J d

2−1

(
λβ+

2

)]†
J d

2

(
λβ+

2

)}
⎞⎟⎟⎠ . (51)

Proof. The ODE system (39), (40) for h(1)
λ and h(d+1)

λ can be solved, e.g., by Maple
®. 

Denote η± := d + 3 ±
√
d2 − 10d + 9 and β± :=

√
2d− 6 ± 2

√
d2 − 10d + 9. For each 
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fixed λ, h(1)
λ (r) and h(d+1)

λ (r) are linear combinations of Bessel functions of the first and 
second kinds:

h
(1)
λ (r) =

(
C1J d

2

(
λβ+r

2

)
+ C2J d

2

(
λβ−r

2

)
+ C3Y d

2

(
λβ+r

2

)
+C4Y d

2

(
λβ−r

2

))
r−

d
2 +1, (52)

h
(d+1)
λ (r) = − 1

8d

{
C1η+β+J d

2−1

(
λβ+r

2

)
+ C2η−β−J d

2−1

(
λβ−r

2

)

+C3η+β+Y d
2−1

(
λβ+r

2

)
+ C4η−β−Y d

2−1

(
λβ−r

2

)}
r−

d
2 +1. (53)

In view of the boundary conditions for h(1)
λ , h(d+1)

λ , that limr↘0 Jν(r) = 0, and that

Yν(r) ∼ − 1
π

Γ(ν)
(z

2

)−ν

as r ↘ 0

for ν = d/2 or d/2 − 1 ([13], §§10.7.3, 10.7.4), we get C3 = C4 = 0; i.e., the solutions 
(Bλ, Dλ) contain no branches of Yν . Therefore, we arrive at a simplified ODE system:

h
(1)
λ (r) =

(
C1J d

2

(
λβ+r

2

)
+ C2J d

2

(
λβ−r

2

))
r−

d
2 +1, (54)

h
(d+1)
λ (r) = − 1

8d

(
C1η+β+J d

2−1

(
λβ+r

2

)
+ C2η−β−J d

2−1

(
λβ−r

2

))
r−

d
2 +1 (55)

with boundary conditions

h
(1)
λ (1) = 0 and h

(d+1)
λ (1) = 1. (56)

Solving from the algebraic system (54), (55), and (56) the constants C1 and C2, we 
get

C1 = 8d
J d

2

(
λβ−

2

)
W and C2 = −8d

J d
2

(
λβ+

2

)
W ,

with the Wrönskian determinant

W ≡ W[λ] := det

⎡⎣ J d
2

(
λβ+

2

)
J d

2

(
λβ−

2

)
η+β+J d

2−1

(
λβ+

2

)
η−β−J d

2−1

(
λβ−

2

)⎤⎦ (57)

provided that it is non-vanishing. Thus we arrive at
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h
(1)
λ (r) = r1− d

2
8d
W

{
J d

2

(
λβ−
2

)
J d

2

(
λβ+r

2

)
− J d

2

(
λβ+

2

)
J d

2

(
λβ−r

2

)}
, (58)

h
(d+1)
λ (r) = r1− d

2

W

{
−β+η+J d

2

(
λβ−
2

)
J d

2−1

(
λβ+r

2

)
+β−η−J d

2

(
λβ+

2

)
J d

2−1

(
λβ−r

2

)}
. (59)

For 3 ≤ d ≤ 8 we set

Υ = Υ(d) :=
√
−(d− 1)(d− 9).

Then η± = d + 3 ± iΥ and β± =
√

2
√
d− 3 ± iΥ. A direct computation further leads to

[Re (β±)]2 =
√

(d− 3)2 + Υ2 + (d− 3) = 2
√
d + d− 3, (60)

[Im (β±)]2 =
√

(d− 3)2 + Υ2 − (d− 3) = 2
√
d− d + 3. (61)

In the above, Re (β+) and Im (β+) have the same sign, and Re (β−) and Im (β−) have 
opposite signs. In view of the explicit formulae (57), (58), and (59), we may choose 
without loss of generality that Re (β±) > 0. That is,

β± =
√

2
√
d + d− 3 ± i

√
2
√
d− d + 3

=
√(√

d + 3
)(√

d− 1
)
± i

√(√
d + 1

)(
3 −

√
d
)
. (62)

With the above choice one can further simplify the Wrönskian in Eq. (57). Indeed, 
as η± and β± are complex conjugates and, by [13], §10.11.9, Jν

(
z†
)

= [Jν(z)]†, it holds 
that

W = 2i Im
{
η−β−

[
J d

2−1

(
λβ+

2

)]†
J d

2

(
λβ+

2

)}
. (63)

Similarly,

J d
2

(
λβ−
2

)
J d

2

(
λβ+r

2

)
− J d

2

(
λβ+

2

)
J d

2

(
λβ−r

2

)

= 2i Im
{[

J d
2

(
λβ+

2

)]†
J d

2

(
λβ+r

2

)}
.

Eq. (58) now yields closed-form expressions for h(1)
λ and h(d+1)

λ , namely Eqs. (50) and 
(51). �
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Remark 6.6. [2], Lemma 7 for 2D unit disc is a special case of the above theorem. One 
can verify that the constants α, ζ in [2] are given by α = − 16β−η−

|β−η−|2 and ζ = β+
2 .

Remark 6.7. For d = 9, W is zero and Eqs. (39) and (40) admit a fundamental solution 
Hλ,D in stark contrast with the solutions for d �= 9 given in Eqs. (52) and (53). See 
Appendix A, Lemma A.3.

The finiteness of radius of convergence of the expected signature on D = Dd, 3 ≤ d ≤ 8
is deduced from the ODE system in Proposition 6.3.

Theorem 6.8. The radius of convergence of the expected signature of the stopped Brownian 
motion on D = Dd is finite for d ∈ {2, . . . , 8}.

Proof. By Theorem 6.5, for d ∈ {2, . . . , 8} we have

h
(d+1)
λ (r) = r1− d

2

⎛⎜⎜⎝ Im
{
η−β−

[
J d

2−1

(
λβ+

2

)]†
J d

2

(
λβ+r

2

)}
Im
{
η−β−

[
J d

2−1

(
λβ+

2

)]†
J d

2

(
λβ+

2

)}
⎞⎟⎟⎠ .

We shall prove that there exists a λ	 > 0 such that h(d+1)
λ (0) blows up as λ → λ	.

Let us now analyse the zeros of the denominator

Θ(λ) := Im
{
η−β−

[
J d

2−1

(
λβ+

2

)]†
J d

2

(
λβ+

2

)}
. (64)

Consider the Taylor expansion for Jν(z); ν ∈
{

d
2 − 1, d

2
}
. As in the appendix we write

Jν(z) = J̊n
ν (z) + Rn

ν (z),

where

J̊n
ν (z) :=

(z
2

)ν n−1∑
k=0

(−1)k

(
z2

4

)k
k!Γ(k + ν + 1) ,

and the remainder Rn
ν (z) consists of summation from k = n to ∞. Similarly, denote

Θ̊n(λ) := Im
{
η−β−

[
J̊n

d
2−1

(
λβ+

2

)]†
J̊n

d
2

(
λβ+

2

)}
.

The error 
∣∣∣Θ(λ) − Θ̊n(λ)

∣∣∣ can be estimated via Lemma A.1 and the triangle inequality:



S. Li, H. Ni / Journal of Functional Analysis 282 (2022) 109447 31
Table 1
The denominator Θ has a root in ]2.5, 3[.

Dimension Value for
[
Θ̊ + ErrnΘ

]
(2.5) Value for

[
Θ̊ − ErrnΘ

]
(3)

3 -2.072008 6.951356
4 -1.682841 8.366543
5 -1.315936 6.921044
6 -1.107269 4.734511
7 -0.693811 2.530460
8 -0.408603 1.115177

∣∣∣Θ(λ) − Θ̊n(λ)
∣∣∣

≤ |η−β−|
{∣∣∣∣Rn

d
2−1

(
λβ−
2

)∣∣∣∣ ∣∣∣∣J̊n
d
2

(
λβ+

2

)∣∣∣∣+ ∣∣∣∣Rn
d
2−1

(
λβ−
2

)∣∣∣∣ ∣∣∣∣Rn
d
2

(
λβ+

2

)∣∣∣∣
+
∣∣∣∣J̊n

d
2−1

(
λβ−
2

)∣∣∣∣ ∣∣∣∣Rn
d
2

(
λβ+

2

)∣∣∣∣
}

≤ |η−β−|
{[

2 d−1
2

√
π · n!

(
|λβ−|

4

)2n+ d
2−1
]
·

⎡⎣ 1
1 − |λβ−|2

16(2n+d−2)

⎤⎦ ∣∣∣∣J̊n
d
2

(
λβ+

2

)∣∣∣∣
+
[

2 d−1
2

√
π · n!

(
|λβ−|

4

)2n+ d
2−1
]
·

⎡⎣ 1
1 − |λβ−|2

16(2n+d−2)

⎤⎦ ·

⎡⎢⎣
(

|λβ+|
4

)2n+ d
2

[(
n + d

2
)
!
]2
⎤⎥⎦

·

⎡⎣ 1
1 − |λβ+|2

64(2n+d+2)2

⎤⎦+
∣∣∣∣J̊n

d
2−1

(
λβ−
2

)∣∣∣∣
⎡⎢⎣
(

|λβ+|
4

)2n+ d
2

[(
n + d

2
)
!
]2
⎤⎥⎦ ·

⎡⎣ 1
1 − |λβ+|2

64(2n+d+2)2

⎤⎦}

=: ErrnΘ(λ).

Both ErrnΘ(λ) and Θ̊n(λ) involve only finitely many terms; hence, with each given λ, 
they can be computed explicitly by hand.

We are now at the stage of concluding:

There exists λ	 ∈]2.5, 3[ such that Θ(λ	) = 0. (65)

Indeed, by the triangle inequality and continuity of Θ, it suffices to prove that

[
Θ̊ + ErrnΘ

]
(λ = 2.5) < 0 <

[
Θ̊ − ErrnΘ

]
(λ = 3). (66)

With the help of Maple
®, we take n = 7 and compute the two bounds in Eq. (66). The 

results are shown in Table 1, which verify Eq. (66) and hence Eq. (65).
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Next let us investigate h(d+1)(0), defined in the limiting sense:

h(d+1)(0) = lim
r→0

r1− d
2

Im
{
η−β−

[
J d

2−1

(
λβ+r

2

)]†
J d

2

(
λβ+

2

)}
Θ(λ) =: N (λ)

Θ(λ) .

As

lim
r→0

[
J d

2−1

(
λβ+r

2

)]†
r

d
2−1

= 1
Γ(d2 )

(
λβ−
4

) d
2−1

,

we have

N (λ) = 1
Γ(d2 )

Im
(
η−β−

(
λβ−
4

) d
2−1

J d
2

(
λβ+

2

))
.

To show that the numerator N (λ) is non-vanishing for λ ∈ [2.5, 3], we split N (λ) into 
the approximating polynomial N̊n(λ) and the remainder ErrnN , where

N̊n(λ) = Im
(
η−β−

(
λβ−
4

) d
2−1

J̊n
d
2

(
λβ+

2

))
.

Here again we use the polynomial J̊n
d
2

(
λβ+

2

)
to approximate Jn

d
2

(
λβ+

2

)
in the numerator, 

with n = 5. Note that N̊n(λ) is an explicit polynomial in λ of degree 2n + d, which is 
monotone decreasing on [2.5, 3]. One can bound the error uniformly on [2.5, 3]:

ErrnN := sup
λ∈[2.5,3]

∣∣∣N (λ) − N̊n(λ)
∣∣∣

≤
{∣∣∣∣∣η−β−

(
3β−
4

) d
2−1
∣∣∣∣∣
}

·
{

sup
λ∈[2.5,3]

∣∣∣∣J d
2

(
λβ+

2

)
− J̊n

d
2

(
λβ+

2

)∣∣∣∣
}

≤
{∣∣∣∣∣η−β−

(
3β−
4

) d
2−1
∣∣∣∣∣
}{∣∣∣∣E (3β+

2 , n,
d

2

)∣∣∣∣} ,

where E(z, n, ν) is given below as in Appendix, Lemma A.1:

E(z, n, ν) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(

|z|
2

)2n+ν

n!(n+ν)!

}
·
{

1
1− |z|2

4(n+1)2

}
if ν is an integer,{

2n√π
n!(2n+2ν+1)!!

(
|z|
2

)2n+ν
}
·
{

1
1− |z|2

4(n+1)2

}
if ν is a half-integer.

Table 2 summarises the values for N̊ (2.5) and ErrnN for d ∈ {3, · · · , 8} with accuracy 
up to 6 decimal points. This together with Lemma A.2 implies that
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Table 2
The numerator N (λ) is non-vanishing for λ ∈]2.5, 3[.

Dimension Value for N̊n(2.5) Error bound ErrnN
3 -48.656672 1.266852
4 -55.063129 1.265336
5 -51.368007 5.982517
6 -40.528560 3.647551
7 -26.851665 12.270795
8 -13.908808 5.810051

sup
λ∈[2.5,3]

N (λ) ≤ N̊n(2.5) + ErrnN < 0,

hence proves the thesis. �
6.2. General d-dimensional C2,α bounded domains

Let Ω � Rd be a C2,α-domain and x ∈ Ω be an arbitrary point. Denote by Hλ,Ω(z)
be the hyperbolic development of the expected signature of a d-dimensional Brownian 
motion starting from z and stopped at the first exit time from Ω (scaled by λ). We are 
concerned with the domain-averaging hyperbolic development. Without loss of generality 
we may assume x = 0, as ΦΩ(z) = ΦΩ−x(z − x).

Recall from Definition 4.1 the domain-averaging hyperbolic development (with inte-
gration understood entry-wise):

Hλ,ε,Ω(z) :=
∫

SO(d)

Hλ,ΩR
(z) dχ(R).

Here Hλ,ε,Ω(z) ∈ gl(d + 1; R) for each z ∈ B(0, ε), with ε > 0 chosen so small that 
B(0, ε) ⊂

⋂
S∈SO(d) ΩS . Compare with Proposition 6.3 where Ω = D.

By Theorem 4.7, Hλ,ε,Ω satisfies the same PDE as in Lemma 6.2 on B(0, ε):

Theorem 6.9 (PDE for Hλ,ε,Ω). Let ε > 0 and B(0, ε) ⊂
⋂

R∈SO(d) ΩR. There exists 
λ∗ > 0 such that for every λ ∈ [0, λ∗],

ΔHλ,ε,Ω(z) = −2λ
d∑

i=1
Hei

∂Hλ,ε,Ω

∂zi
(z)−λ2

(
d∑

i=1
(Hei)2

)
Hλ,ε,Ω(z) for each z ∈ B(0, ε).

The domain-averaging hyperbolic development Hλ,ε,Ω(z) on a general domain Ω does 
not have the sparseness property as in Lemma 6.1, in contrast to the case of the unit 
disc. To overcome this difficulty, we shall symmetrize Hλ,ε,Ω(z) with a reflected version 
of it. More precisely, consider

Ω∗ := {(x1,−x2, · · · ,−xd) : (x1, x2, · · · , xd) ∈ Ω}.
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Assume as before 0 ∈ Ω; thus, there is an ε > 0 such that Dε, the disc of radius ε, lies 
in Ω. Set

˜Hλ,ε,Ω(z) := Hλ,ε,Ω(z) + Hλ,ε,Ω∗(z)
2 for z ∈ Dε.

Lemma 6.10 (Sparseness of ˜Hλ,ε,Ω). ˜Hλ,ε,Ω evaluated at r = (r, 0, · · · , 0) for r ∈]0, ε[ has 
all components being zero, except possibly for the first and the last ones.

Proof. The proof is similar to that of Lemma 6.1 for the unit disc case. Let (Bt)t denote 
the standard d-dimensional Brownian path. Consider the reflected path

B̂t :=
(
B

(1)
t ,−B

(2)
t , · · · ,−B

(d)
t

)

, (67)

which is still a Brownian motion. If Bt starts at r = (r, 0, · · · , 0)
, we may further require 

that B̂0 = r. By the definition of ˜Hλ,ε,Ω, for k ∈ {2, · · · , d} we have

˜Hλ,ε,Ω
(k)

(r, 0, · · · , 0)

:= Hλ,ε,Ω
(k)(r) + Hλ,ε,Ω∗

(k)(r)

=
∫

Sd−1

⎧⎨⎩Er

⎡⎣∑
n≥0

∑
ω∈Ek

2n

Projω
(
S
(
BτΩα

))⎤⎦
+Er

⎡⎣∑
n≥0

∑
ω∈Ek

2n

Projω
(
S
(
B̂τΩ∗,α

))⎤⎦⎫⎬⎭ dμ(α)

= 0.

The last line holds as Projω
(
S
(
BτΩα

))
+ Projω

(
S
(
B̂τΩ∗,α

))
= 0 almost surely for 

ω ∈ Ek
2n. �

As before, write η± := d + 3 ±
√
d2 − 10d + 9, β± :=

√
2d− 6 ± 2

√
d2 − 10d + 9, and 

r = |z|. We have the following analogue of Theorem 6.5.

Theorem 6.11. Let Dε ⊂ Ω and d ∈ N \{1, 9}. Denote the boundary condition for ˜Hλ,ε,Ω

at r = ε as ˜Hλ,ε,Ω(ε) = [p, 0, · · · , 0, q]
. Then there exists λ	 > 0 such that for every 
λ ∈]0, λ	[,

˜Hλ,ε,Ω(z) =
[
z1

r
h

(1)
λ (r), z

2

r
h

(1)
λ (r), · · · , z

d

r
h

(1)
λ (r), h(d+1)

λ (r)
]


. (68)
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The functions h(1)
λ , h(d+1)

λ and the Wrönskian determinant Wε are given by

h
(1)
λ (r) =

(
r
ε

)1− d
2

Wε

·
{[

η−β−J d
2−1

(
λβ−ε

2

)
J d

2

(
λβ+r

2

)
− η+β+J d

2

(
λβ−r

2

)
J d

2−1

(
λβ+ε

2

)]
p

+
[
−J d

2

(
λβ−ε

2

)
J d

2

(
λβ+r

2

)
+ J d

2

(
λβ−r

2

)
J d

2

(
λβ+ε

2

)]
8dq
}

;

h
(d+1)
λ (r) =

(
r
ε

)1− d
2

Wε
·
{[

J d
2−1

(
λβ−ε

2

)
J d

2−1

(
λβ+r

2

)
− J d

2

(
λβ−r

2

)
J d

2−1

(
λβ+ε

2

)]

· pβ+β−η+η−
8d

+
[
η−β−J d

2

(
λβ−ε

2

)
J d

2−1

(
λβ+r

2

)
− η+β+J d

2

(
λβ+ε

2

)
J d

2−1

(
λβ−r

2

)]
q

}
;

Wε = det

⎡⎣ J d
2

(
λβ+ε

2

)
J d

2

(
λβ−ε

2

)
η+β+J d

2−1

(
λβ+ε

2

)
η−β−J d

2−1

(
λβ−ε

2

)⎤⎦ .
Remark 6.12. For 2 ≤ d ≤ 8 we can further simplify h(1)

λ and h(d+1)
λ :

h
(1)
λ (r) =

(r
ε

)1− d
2

·

⎧⎨⎩p · Im
[
η−β−J d

2−1

(
λβ−ε

2

)
J d

2

(
λβ+r

2

)]
+ 8dq · Im

[
J d

2

(
λβ−ε

2

)
J d

2

(
λβ+r

2

)]
Im
[
η−β−J d

2−1

(
λβ−ε

2

)
J d

2

(
λβ+ε

2

)]
⎫⎬⎭ ;

h
(d+1)
λ (r) =

(r
ε

)1− d
2

·
{

1
8dp · Im

[
η+β+η−β−J d

2
−1

(
λβ−ε

2

)
J d

2
−1

(
λβ+r

2

)]
+ q · Im

[
η−β−J d

2

(
λβ+ε

2

)
J d

2
−1

(
λβ−r

2

)]
Im
[
η−β−J d

2
−1

(
λβ−ε

2

)
J d

2

(
λβ+ε

2

)]
}
.

Proof. Since both Hλ,ε,Ω and Hλ,ε,Ω∗ satisfy the same PDE as in Theorem 6.9, ˜Hλ,ε,Ω
satisfies also the same PDE on B(0, ε) ⊂

⋂
S∈SO(d) ΩS :

Δ˜Hλ,ε,Ω(z) = −2λ
d∑

i=1
Hei

∂ ˜Hλ,ε,Ω(z)
∂zi

− λ2

(
d∑

i=1
(Hei)2

)
˜Hλ,ε,Ω(z) for each z ∈ B(0, ε).
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The sparseness Lemma 6.10 implies that components of Hλ,ε,Ω are all zero expect for 
the first and the last ones, just as in the case of unit disc. Let ˜Hλ,ε,Ω(r) =

(
h

(1)
λ (r), 0,

· · · 0, h(d+1)
λ (r)

)

. It then satisfies the PDE system (39), (40) in Proposition 6.3, which 

differs from the unit disc case only in terms of boundary data.
Adapting the computations in the proof for Theorem 6.5, we get

˜H(1)
λ,ε,Ω(r) = r1− d

2

(
C1J d

2

(
λβ+r

2

)
+ C2J d

2

(
λβ−r

2

))
,

˜H(d+1)
λ,ε,Ω (r) = − 1

8dr
1− d

2

{
C1η+β+J d

2−1

(
λβ+r

2

)
+ C2η−β−J d

2−1

(
λβ−r

2

)}
for C1 and C2 to be specified. One may determine these constants from the boundary 
condition at r = ε. Indeed, we infer from Eq. (70) that

ε1−
d
2

⎡⎣ J d
2
·
(

λβ+ε
2

)
J d

2

(
λβ−ε

2

)
− 1

8dη+β+J d
2−1

(
λβ+ε

2

)
− 1

8dη−β−J d
2−1

(
λβ−ε

2

)
⎤⎦ ·
[
C1
C2

]
=
[
p

q

]
. (69)

This algebraic system can be explicitly solved:

C1 = ε
d
2−1

Wε

{
η−β−J d

2−1

(
λβ−ε

2

)
p− 8dJ d

2

(
λβ−ε

2

)
q

}
,

C2 = ε
d
2−1

Wε

{
−η+β+J d

2−1

(
λβ+ε

2

)
p + 8dJ d

2

(
λβ+ε

2

)
q

}
,

where (comparing with Eq. (63))

Wε := det

⎡⎣ J d
2

(
λβ+ε

2

)
J d

2

(
λβ−ε

2

)
η+β+J d

2−1

(
λβ+ε

2

)
η−β−J d

2−1

(
λβ−ε

2

)⎤⎦
= 2i Im

{
η−β−

[
J d

2−1

(
λβ+ε

2

)]†
J d

2

(
λβ+ε

2

)}
.

This completes the proof. �
Finally, we arrive at the stage of proving Theorem 1.1 (reproduced below).

Theorem. Let Ω be a bounded C2,α-domain in Rd, for some d ∈ {2, . . . , 8} and α > 0. 
The expected signature Φ of a Brownian motion stopped upon the first exit time from Ω
has finite radius of convergence everywhere on Ω.

Proof. Our arguments will essentially be an adaptation of the proof of Theorem 6.8. We 
shall only indicate the necessary modifications.
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First of all, Step 1 in the proof of Theorem 1.1 (d = 2 case) in §5 remains valid for 
Ω � Rd. This is the only place that we need the C2,α-regularity of the domain. We 
conclude that

‖ProjnΦ‖C2(Ω) ≤ Cn

for C depending only on the geometry of Ω, the Hölder index α, and the dimension d.
Consider now ˜Hλ,ε,Ω =

(
h

(1)
λ , · · · , h(d+1)

λ

)

. We show that there exists λ	 > 0 for 

which limλ→λ�
h

(d+1)
λ (0) = ∞. Label as before the boundary conditions at r = ε by

h
(1)
λ (ε) = p and h

(d+1)
λ (ε) = q, (70)

where, as a precaution, p and q depend in general on λ and ε.
By Theorem 6.11 and the ensuing remark, we have the closed-form expression

h
(d+1)
λ (r) =

(r
ε

)1− d
2

·
{

1
8dp · Im

[
η+β+η−β−J d

2 −1

(
λβ−ε

2

)
J d

2 −1

(
λβ+r

2

)]
+ q · Im

[
η−β−J d

2

(
λβ+ε

2

)
J d

2 −1

(
λβ−r

2

)]
Im
[
η−β−J d

2 −1

(
λβ−ε

2

)
J d

2

(
λβ+ε

2

)]
}

for d ∈ {2, . . . , 8}. Set h(d+1)
λ (0) := limr↘0 h

(d+1)
λ (r); by properties of the Bessel function,

h
(d+1)
λ (0) = Nε(λ)

Θε(λ)

with the numerator

Nε(λ) = lim
r→0

(r
ε

)1− d
2

{
p

8d · Im
[
η+β+η−β−J d

2−1

(
λβ−ε

2

)
J d

2−1

(
λβ+r

2

)]

+ q · Im
[
η−β−J d

2

(
λβ+ε

2

)
J d

2−1

(
λβ−r

2

)]}

= q · 1
Γ(d2 )

· Im
[
η−β−J d

2

(
λβ+ε

2

)(
λβ−ε

4

) d
2−1
]

︸ ︷︷ ︸
N (1)

ε (λ)

+ p · 1
Γ(d2 )

· Im
[

1
8dη+β+η−β−J d

2−1

(
λβ−ε

2

)(
λβ+ε

4

) d
2−1
]

︸ ︷︷ ︸
N (2)

ε (λ)
(71)

and the denominator
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Θε(λ) = Im
[
η−β−J d

2−1

(
λβ−ε

2

)
J d

2

(
λβ+ε

2

)]
.

From Lemma 4.9 and Corollary 4.10 we infer that

[
h

(1)
λ (r), 0, · · · , 0, h(d+1)

λ (r)
]


∈
{
x ∈ Rd+1 : xd+1 ≥

∣∣x1∣∣ and xd+1 ≥ 1
}

for all r ∈]0, ε].

In particular, when p �= 0 we have q

|p| ≥ 1 and q ≥ 1 in the almost sure sense, thanks to 
Eq. (70).

The proof of Theorem 6.8 shows that there is a root λ	 for the denominator Θε, with 
λ	 ∈

]2.5
ε , 3

ε

[
. It thus suffices to check that the numerator Nε(λ) is non-vanishing.

Case 1: p = 0. Then we have

Nε(λ) = q · Im
[
η−β−J d

2

(
λβ+ε

2

)(
λβ−ε

4

) d
2−1
]
,

which is essentially the same as the numerator for the unit ball case (modulo scaling). By 

the proof of Theorem 6.8, for μ ∈]2.5, 3[ one has η−β−J d
2

(
μβ+

2

)(
μβ−

4

) d
2−1

�= 0. Using a 

change of variable and the geometrical constraint q ≥ 1, one may easily show that Nε(λ)
is bounded away from zero for all λ ∈

]2.5
ε , 3

ε

[
.

Case 2: p �= 0. Since the 2-dimensional case has been treated separately, we assume from 
now on d ∈ {3, 4, . . . , 8}. Once we establish the following claim:

∣∣∣N (1)
ε (λ)

∣∣∣− ∣∣∣N (2)
ε (λ)

∣∣∣ > 0 for all λ ∈
[
2.5
ε
,
3
ε

]
, (72)

we can immediately conclude the proof using the triangle inequality plus the geometrical 
constraint q ≥ |p| > 0. Indeed, it holds that

|Nε(λ)| =
∣∣∣qN (1)

ε (λ) + pN (2)
ε (λ)

∣∣∣
= p

∣∣∣∣qpN (1)
ε (λ) + N (2)

ε (λ)
∣∣∣∣

≥ p

(∣∣∣∣qpN (1)
ε (λ)

∣∣∣∣− ∣∣∣N (2)
ε (λ)

∣∣∣)
≥ p

(∣∣∣N (1)
ε (λ)

∣∣∣− ∣∣∣N (2)
ε (λ)

∣∣∣)
> 0.

The proof of claim (72) will be presented in the appendix. See Lemma A.5. �
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6.3. Concluding remarks

We have proved in this paper the finiteness of radius of convergence of the expected 
signature for stopped Brownian motions in dimensions 2 ≤ d ≤ 8. The restriction on the 
range of d mainly arises from the ODE system for the hyperbolic development Hλ,Ω de-
rived in Proposition 6.3 (see also Theorem 6.5). This ODE has explicit solution involving 
key parameters η± := d +3 ±

√
d2 − 10d + 9 and β± :=

√
2d− 6 ± 2

√
d2 − 10d + 9, which 

are real for d ≥ 9, whence the solutions demonstrate qualitatively different behaviours. 
We shall leave this point for future investigations.
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Appendix A

In this appendix, we first collect a (crude) upper bound for the Bessel functions:

Lemma A.1. Consider Bessel functions of the first kind, Jν(z), and their Taylor expan-
sion:

Jν(z) :=
(z

2

)ν ∞∑
k=0

(−1)k

(
z2

4

)k
k!Γ(k + ν + 1) for z ∈ C.

Write Jν(z) = J̊n
ν (z) + Rn

ν (z) :=
∑n−1

k=0 + 
∑∞

k=n. The remainder term Rn
ν (z) can be 

estimated by

|Rn
ν (z)| ≤ E(z, n, ν) for |z| < 2(n + 1),

where

E(z, n, ν) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(

|z|
2

)2n+ν

n!(n+ν)!

}
·
{

1
1− |z|2

4(n+1)2

}
if ν is an integer,{

2n

n!(2n+2ν+1)!!

(
|z|
2

)2n+ν
}
·
{

1
1− |z|2

}
if ν is a half-integer.
4(n+1)2
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Proof. From the Taylor expansion for Jν we get

|Rn
ν (z)| ≤

(
|z|
2

)ν ∞∑
k=n

(
|z|
2

)2k

k!Γ(k + ν + 1) =
(
|z|
2

)2n+ν ∞∑
k=0

(
|z|
2

)2k

(n + k)!Γ(n + k + ν + 1) .

Then, we deduce from the functional identity Γ(z + 1) = zΓ(z) that

|Rn
ν (z)| ≤

(
|z|
2

)2n+ν 1
n!Γ(n + ν + 1)

∞∑
k=0

(
|z|
2

)2k

(n + 1)2k

=
(
|z|
2

)2n+ν 1
n!Γ(n + ν + 1) · 1

1 − |z|2
4(n+1)2

for |z| < 2(n + 1).

The proof is complete in view of the special values for Γ(z) at integers and half-
integers. �

The following simple lemma is rather helpful when estimating errors in Taylor expan-
sions:

Lemma A.2. Let f : [a, b] → R be a non-increasing function. Let g : [a, b] → R be such 
that supr∈[a,b] |f(r) − g(r)| ≤ C for some constant C. Then supr∈[a,b] g(r) ≤ f(a) + C.

Proof. By the monotonicity of f , for any r ∈ [a, b],

g(r) = g(r) − f(r) + f(r) ≤ g(r) − f(r) + f(a) ≤ |g(r) − f(r)| + f(a).

Therefore, taking the supremum over [a, b], we get

sup
r∈[a,b]

g(r) ≤ sup
r∈[a,b]

|g(r) − f(r)| + f(a) ≤ C + f(a). �

In the computer-assisted proof below, the supplementary Maple
® codes can be found 

in the Github repository https://github .com /hello0630 /ESigStoppedBM .git.

Lemma A.3. Let D = Dd with d = 9. Let λ	 denote the radius of convergence of Hλ,D. 
Then for all [0, λ	[ we have

Hλ,D(z) =
[
z1

r
h

(1)
λ (r), z

2

r
h

(1)
λ (r), · · · , z

d

r
h

(1)
λ (r), h(d+1)

λ (r)
]


, (A.73)

where

https://github.com/hello0630/ESigStoppedBM.git
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h(1)(r) = 1
t8

{
− 3λ t

(
λ2 (λ2C4 + C2

)
t4 +

(
−35λ2C4 − 5C2

)
t2 + 105C4

)
cos
(
λ
√

3t
)

+ 6
√

3 sin
(
λ
√

3t
)(

λ2
(

5
2 λ2C4 + C2

)
t4 +

(
−70λ2C4

3 − 5
6 C2

)
t2 + 35C4

2

)}
,

h(d+1)(r) = 1
λ t7

{
−
(
t4λ6C4 + t2

(
C2 t2 − 13C4

)
λ4

+
(
5C2 t2 + 10C4

)
λ2 − 5C2

)√
3 sin

(
λ
√

3t
)

− 9 t cos
(
λ
√

3t
)
λ
(
t2λ4C4 − 10/3λ2C4 + 5/3C2

)}
,

with the constants

C2 = 3λ
W

((
λ5 − 35λ3 + 105λ

)
cos
(
λ
√

3
)
− 5

(
λ4 − 28λ2

3 + 7
)

sin
(
λ
√

3
)√

3
)
,

C4 = −3
W λ

((
λ3 − 5λ

)
cos
(
λ
√

3
)
− 2

(
λ2 − 5/6

)
sin
(
λ
√

3
)√

3
)

and the Wrönskian

W ≡ W[λ] =
(
−324λ6 + 4410λ4 − 8550λ2 + 1575

) (
cos
(
λ
√

3
))2

− 18λ
√

3 sin
(
λ
√

3
) (

λ6 − 50λ4 + 250λ2 − 175
)
cos
(
λ
√

3
)

+ 27λ8 + 54λ6 − 2385λ4 + 3825λ2 − 1575.

Proof. The proof is similar to that of Theorem 6.5. We use Maple
® to obtain the 

fundamental solution and use the boundary condition to determine the constants. One 
can refer the calculation details to CheckSolutionGeneralDomain_d=9.mw in the Github 
repository. �

Next, let us prove Eq. (37) in Step 5 of the proof for Theorem 1.1 —

N (μ; e) := Im {eαJ1(μζ) − J0(μζ)} �= 0 for all μ ∈ [2.5, 3], |e| ≥ 1.

Lemma A.4. Let ζ =
√

−2+2
√

7i
2 (which is a root for p(z) = z4 + z2 +2) and α = 1

2ζ
3 + ζ. 

Then

N (μ; e) := Im {eαJ1(μζ) − J0(μζ)} �= 0 for all μ ∈ [2.5, 3] and |e| ≥ 1.

Proof. It has been established along the proof of Lemma 8 in [2] that

Im
{
ᾱJ1

(
μζ̄
)}

< −1.3 for all μ ∈ [2.5, 3].



42 S. Li, H. Ni / Journal of Functional Analysis 282 (2022) 109447
We shall prove the following inequalities:

0 < Im
{
J0
(
μζ̄
)}

< −Im
{
ᾱJ1

(
μζ̄
)}

for all μ ∈ [2.5, 3]. (A.74)

Indeed, as |e| ≥ 1, we can conclude by estimating

|N (μ; e)| =
∣∣−e · Im

{
ᾱJ1

(
μζ̄
)}

+ Im
{
J0
(
μζ̄
)}∣∣

≥
∣∣∣∣ ∣∣e · Im{ᾱJ1

(
μζ̄
)}∣∣− ∣∣Im{J0

(
μζ̄
)}∣∣ ∣∣∣∣

=

∣∣∣∣∣∣∣(|e| − 1)︸ ︷︷ ︸
≥0

· Im
{
ᾱJ1

(
μζ̄
)}︸ ︷︷ ︸

<−1.3

+ Im
{
J0
(
μζ̄
)}

+ Im
{
ᾱJ1

(
μζ̄
)}︸ ︷︷ ︸

<0

∣∣∣∣∣∣∣
> 0.

To prove the second inequality in Eq. (A.74), we write

Im
{
ᾱJ1

(
μζ̄
)}

+ Im
{
J0
(
μζ̄
)}

= Im
{
ᾱJ̊n

1
(
μζ̄
)}

+ Im
{
J̊n

0
(
μζ̄
)}

︸ ︷︷ ︸
=:N̊n(μ)

+ Im
{
ᾱRn

1
(
μζ̄
)}

+ Im
{
Rn

0
(
μζ̄
)}︸ ︷︷ ︸

=:Rn(μ)

.

The notation on the right-hand side agrees with the decomposition of Jn
ν into J̊n

ν + Rn
ν

via Taylor expansions. N̊n is a polynomial in μ of degree 2n + 1. In the remaining parts 
of the proof we shall choose n = 6.

The bounds in Lemma A.1 yield that

sup
μ∈[0,3]

max
(∣∣Rn

0
(
μζ̄
)∣∣ , ∣∣Rn

1
(
μζ̄
)∣∣) ≤ 0.0006367,

which gives us

sup
μ∈[0,3]

|Rn(λ)| ≤ (|α| + 1) max
(∣∣Rn

0
(
μζ̄
)∣∣ , ∣∣Rn

1
(
μζ̄
)∣∣) ≤ 0.0011395.

To estimate N̊n, let us write it as a polynomial of degree n based at the point μ = 2.5:

N̊n(μ) =
2n+1∑
i=0

Ci(μ− 2.5)i.

The coefficients can be found, e.g., using Maple
®. The first four Ci are negative, with 

C0 < −0.119150, C1 < −0.169, C2 < −0.184, C3 < −0.049, but C4 > 0. Let T3(μ) =∑3
i=0 Ci(μ − 2.5)i. For μ ∈ [2.5, 3], one may bound
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∣∣∣N̊n(μ) − T3(μ)
∣∣∣ ≤ 12∑

i=4
|Ci| ·

(
1
2

)i

≤ 0.00036.

Note that T3 is a decreasing function. By Lemma A.2 we can further bound Tn(μ) by

sup
μ∈[2.5,3]

Tn(μ) ≤ Tn(2.5) + sup
μ∈[2.5,3]

∣∣Tn(μ) − T3(μ)
∣∣ .

By triangle inequality and the explicit value Tn(2.5) = −0.1181564882, we notice that

sup
μ∈[2.5,3]

{Tn(μ) + Rn(μ)} ≤ −0.1181564882 + 0.00038 + 0.0011395 < 0.

The proof is now complete. �
Finally, let us verify the claim (72) towards the end of the proof of Theorem 1.1.

Lemma A.5. For d ∈ {2, 3, · · · , 8}, as in Eq. (71) (with μ = ελ) we set

N (1)(μ) := 1
Γ(d2 )

Im
[
η−β−J d

2

(
μβ+

2

)(
μβ−

4

) d
2−1
]
,

N (2)(μ) := 1
Γ(d2 )

Im
[

1
8dη+β+η−β−J d

2−1

(
μβ−

2

)(
μβ+

4

) d
2−1
]
.

Then it holds that∣∣∣N (1)(μ)
∣∣∣− ∣∣∣N (2)(μ)

∣∣∣ > 0 for each μ ∈ [2.5, 3].

Proof. The case d = 2 has already been treated in Lemma A.4; we only consider d ∈
{3, 4, · · · , 8} from now on. The notations in the proof are consistent with Lemma A.1. 
Also, as shown in the proof of Theorem 6.8, N (1)(μ) < 0 for any μ ∈ [2.5, 3]. It is enough 
to prove that

(1) N (2)(μ) > 0;
(2) N (μ) := N (1)(μ) + N (2)(μ) < 0 for each μ ∈ [2.5, 3].

For the first claim (1), we use 1
Γ
(
d
2
) Im

[
1
8dη+β+η−β−J̊

n
d
2−1

(
μβ−

2

)(
μβ+

4

) d
2−1
]

to 

approximate N (2). The remainder is bounded by 1
Γ( d

2 )

∣∣∣∣ 1
8dη+β+η−β−

(
μβ+

4

) d
2−1
∣∣∣∣ ·

E
(

μβ−
2 , n, d

2 − 1
)
.

Similarly, we use Taylor approximation to approximate N (μ). The truncated polyno-
mial up to the nth term is
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Table 3
The numerator N (μ) is non-vanishing on ]2.5, 3[ for 
general domains.

Dimension Value for N̊n(2.5) Value for ErrnN
3 -3.487949 0.366411
4 -5.367159 0.317482
5 -6.082985 1.552336
6 -5.465016 0.811930
7 -3.964234 2.802239
8 -2.193441 1.131338

N̊n(μ) := 1
Γ(d2 )

Im
[
η−β−J̊

n
d
2

(
μβ+

2

)(
μβ−

4

) d
2−1
]

+ 1
Γ(d2 )

Im
[

1
8dη+β+η−β−J̊

n
d
2−1

(
μβ−

2

)(
μβ+

4

) d
2−1
]
.

The error can be estimated uniformly as follows:

sup
μ∈[2.5,3]

∣∣∣N̊n(μ) −N (μ)
∣∣∣

≤ ErrnN := sup
μ∈[2.5,3]

{
1

Γ
(
d
2
) ∣∣∣∣∣η−β−

(
μβ−

4

) d
2−1
∣∣∣∣∣E
(
μβ+

2 , n,
d

2

)

+ 1
Γ
(
d
2
) ∣∣∣∣∣ 1

8dη+β+η−β−

(
μβ+

4

) d
2−1
∣∣∣∣∣E
(
μβ−

2 , n,
d

2 − 1
)}

= 1
Γ
(
d
2
) ∣∣∣∣∣η−β−

(
3β−
4

) d
2−1
∣∣∣∣∣E
(

3β+

2 , n,
d

2

)

+ 1
Γ
(
d
2
) ∣∣∣∣∣ 1

8dη+β+η−β−

(
3β+

4

) d
2−1
∣∣∣∣∣E
(

3β−
2 , n,

d

2 − 1
)

as |z| �→ |E(z, n, ν)| is an increasing function, thanks to Lemma A.1.
Similar arguments as for Lemma A.4 show that N̊n(μ) is decreasing on [2.5, 3]. Table 3

summarises the values N̊n(2.5) and ErrnN for n = 6. By Lemma A.2, we can conclude 
that

sup
λ∈[2.5,3]

N (λ) ≤ N̊n(2.5) + ErrnN < 0.

Thus we have proved the second claim (2). �
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