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Abstract

In this paper, we discuss a hybridised method for FEM-BEM coupling. The coupling
from both sides use a Nitsche-type approach to couple to the trace variable. This leads
to a formulation that is robust and flexible with respect to approximation spaces and
can easily be combined as a building block with other hybridised methods. Energy
error norm estimates and the convergence of Jacobi iterations are proved and the
performance of the method is illustrated on some computational examples.

Keywords FEM-BEM coupling - Nitsche’s method - Hybridised methods

1 Introduction

The coupling of finite element (FEM) and boundary element (BEM) methods is the
most widely used approach for solving multi-physical problems on an unbounded
domain. It allows to take advantage of both methods. On the one hand, the BEM
reduces the dimension of the problem by using the boundary integral equation,
hence it is commonly used in exterior unbounded domains. On the other hand, the
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FEM is known for its robustness and universal applicability even for problem of
inhomogeneous or non-linear nature.

The first coupled procedure was introduced by Zienkiewicz, Kelly and Bettess
[38]. It was analysed by Brezzi, Johnson and Nédélec [5], [4] and [24] for problem in
unbounded domains. It is often referred to as the Johnson-Nédélec coupling. Exten-
sion for higher order equations was considered by Wendland [37]. The convergence
analysis requires compactness of the double layer potential that can be obtained on
smooth boundaries. Furthermore, even for a symmetric discretisation scheme, the
coupling method produces a system of equations with a non-symmetric coefficient
matrix.

In order to avoid these disadvantages, a symmetric coupling of FEM and BEM
was devised by Costabel [14] and Han [22]. The independence of the compactness
condition was obtained by using both equations of the Calderdn system, contrary to
the previously introduced methods that employ only one of the two equations of the
Calder6n system. Some years later, Sayas [32] showed that the weaker assumption
of a Lipschitz coupling interface is sufficient for the Johnson-Nédélec coupling. His
analysis has since been simplified by Steinbach [35].

More recent developments have focused on the coupling of BEM with mixed
FEM. In [6] and [27] the authors analysed symmetric coupling of BEM and mixed
FEM that uses Raviart-Thomas elements. Further work on coupling BEM with mixed
FEM with such elements as Brezzi-Douglas-Marini or Brezzi-Douglas-Marini-Fortin
was proposed by Carstensen and Funken [9].

Gatica, Heuer and Sayas [21] and [20] introduced the first coupling of BEM and
discontinuous Galerkin (DG) methods, in order to exploit the possibility to easily
use high order approximation in the latter. Another coupling of interior penalty DG
methods with BEM was presented by Of, Rodin, Steinbach and Taus [29]. A gen-
eral approach using the unified hybridisation technique was presented by Cockburn
and Sayas [13]. The class of FEM considered includes the mixed, the DG and the
hybridisable discontinuous Galerkin (HDG) methods. Further collaboration of these
authors with Gizman led to a new convergence result published in [12].

In this paper, we present the coupling of FEM and BEM using weak imposition
of coupling conditions. Nitsche’s method [28] is widely used in the context of FEM
for imposing boundary conditions. In addition, methods based on Nitsche’s approach
have been successfully utilised for BEM domain decomposition problems in [19]
and [10], and more recently for weakly imposing boundary conditions for BEM
in [2]. Merging these two approaches for FEM and BEM we weakly impose both
coupling conditions in a hybridised formulation on the boundary. The hybridisation
is made by introducing a trace variable and imposing the coupling in the form of a
Nitsche-type Dirichlet condition on the two systems. The use of Nitsche’s method
allows us to use the Dirichlet trace as the hybrid variable, ensuring continuity by a
consistent penalty term. The test function partner of the trace variable then acts to
ensure continuity of fluxes. The global system can be constructed using arbitrary
approximation orders for the two sub systems and the trace variable and the sub prob-
lem can be solved independently. The stability of the method poses no constraint on
the approximation spaces and mesh refinement does not require special treatment as
in the case of Johnson-Nédélec coupling. This means that the two systems can have
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independent meshes, that both must be integrated only against the trace variable.
We here consider the standard continuous FEM, but the formulation is by and large
agnostic to the choice of FEM used in the bulk and the method can be applied with
discontinuous FEM as well, such as DG, HDG [11], or HHO [16] using a hybridised
coupling on the interior domain boundary. In the case of using discontinuous FEM,
our formulation can be interpreted as a hybridised interior penalty formulation of the
class of methods discussed in [13]. Finally, we note that, thanks to the use of Nitsche-
type mortaring, the method proposed herein can be used in the framework for unfitted
hybridised methods introduced in [7]. In that case a surface mesh is required for the
definition of the BEM method, but the FEM approximation on the interior domain
can be computed on an unfitted bulk discretisation.

As many existing approaches of coupling FEM and BEM, we use Finite Element
Tearing and Interconnecting (FETI) and Boundary Element Tearing and Intercon-
necting (BETI) type of methods [25] to solve the reduced system for the hybrid
variable. FETI is formulated using a Schur complement formulation, while BETI
is usually formulated in terms of Steklov-Poincaré operators. Although Nitsche’s
method is an established framework for domain decomposition for finite elements
methods such as FETI, it was not recognised by BETI community. In this paper,
we demonstrate how the hybrid Nitsche approach can be integrated into the BETI
framework.

The rest of the paper is organised as follows. We introduce the model problem
in this section. In Section 2, we present on continuous level the symmetric coupling
of BEM and FEM formulation known from [14] and [22]. The discrete formula-
tion including weakly imposed coupling condition is introduced and analysed in
Section 3. Although the formulation obtained is not symmetric, we comment of how
symmetry can be obtained for the associated Steklov-Poincaré operator. We discuss
iterative domain decomposition in the model case of a simple relaxed Jacobi algo-
rithm in Section 4 and prove its convergence. In Section 5, we present some numerical
results, and we conclude with some remarks in Section 6.

1.1 Model problem

Let us consider the unbounded domain 2 = R3. We divide 2 into a bounded internal
part Q™ and an unbounded external part Q1 with common Lipschitz boundary T,
with n the outer unit normal vector of the domain 2~ on I". We let 9,u := g—:’ denote

the outward normal derivative, f € L%($2) be a function with support in Q~ and
introduce a function ¢ € L°°(£2), € > 0. Then, we can formulate our model problem
as follows
—Au"+eu = f in Q7
—Aut =0 in QT,

u~ = ut onT, (1)
ou” = dutT onT,
lut| — 0 while |x| — oo.

where u! = u|qgi ,i € {—, +}. The function ¢ is introduced to make the interior prob-
lem heterogeneous and hence unsuitable for treatment using the boundary element
method alone.
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Remark 1 Tt is straightforward to extend the discussion to the case with a smoothly
varying diffusion coefficient in 2~ which has a jump over I'.

Let us begin by introducing the variational formulation of the coupled system.

2 Variational formulation

Let (-, -)p denote the L?(T")-inner product that can be extended to a duality pairing
on H-3(T') x H2(T).

We start with the variational formulation of the internal problem. Applying
integration by parts for first equation of (1) for every v € H(} (27) we have

/ Vu -V dx+/ euv dx — (du, V) :/ fvdx. 2)
_ _ o

We define the Green’s function for the Laplace operator in R? as follows
G(x,y) =

1
4mlx—yl*

In this paper, we focus on the problem in R3. A similar analysis can be used for
problems in R?, in which case this definition should be replaced by G(x,y) =
w. Following the standard approach (see, e.g., [34, Chapter 6]), we introduce

single layer and double layer operators V : H_% (M — HY(QT) and K : H% T —
H'(Q) respectively as

Vo)(x) = [ Gx, Me(y) dy forg e H3(I),
(Kv)(x) = fp 2659y (y) dy  forv e HI(D),

ony

where x € QT \ I and ny is an outer unit normal vector (for Qi € {—,+)) in the
point y.
Following [34, Chapter 1], we define the Dirichlet and Neumann traces

. . 1 i .
Vll) : HI(QZ) — Hz2(I) y’Df(x) = llinayﬁxer F),
. . 1 i .
vy HU(A Q) = HTID) yyf() =limgisycer nx - VL),

where H'(A, Q) := {v e HY(Q') : Av e L2(Q)}, fori € {—, +]}, and ny is an
outer (for 27) normal vector to I" in the point x. The following results will be useful
in what follows.

Lemma 1 (Trace theorem) Let i € {—, 4}, then for Q' C R> the trace operator
vh HY(Q) — H2 () is bounded for all v e H' (Q)

i <C iy - 3
HVDUHH%(F) = T||U||HI(Q) 3)

Proof See [26, Theorem 3.37]. O]
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We use {-}r to denote an average of the interior and exterior traces of a func-
tion. Then, applying the trace mappings yields to the single-layer, double-layer, and
adjoint double-layer potentials and hypersingular boundary integral operator

ViHIT) — HI(D),V :={pVr,
K:H¥ () — HYD),K := {ypKir,
K':H 3(T) — H 3(T), K" := {yyVr,

W:HIT) — H 3(T), W := {(—ynK)r.

For the solution u of the problem (1), we have the following boundary integral

equations on I
- - + +
- () () -c (@) o
Yy Ynu Yy Ynu
where C* H? I") x H™? T — H? (') x H™? (I') denotes two Calderén
projectors defined as follows

Ci._(%ldﬂ:K FV )
: FW  lidF k')

From the relation (4) for external traces we can construct the following exterior
Dirichlet-to-Neumann operator

DINT := -W+ (31d — K)o V™' o (K — L1d). (5)

Obviously, it makes sense only if the inverse of the operator V exists.
Using Dirichlet-to-Neumann operator (5) we introduce a new variable A = y,;," u=
daut as

ai= (Vo (K = 31ad)) v, ©)

The classical symmetric coupling that satisfies the transmission conditions of (1)
is as follows 1
Findu € HY(27) and » € H™2(T') such that for all v € H'(Q7) and ¢ €

H~2(I)
Jo- Vu - Vvdx + [ euvdx + (Wu, v)p — <<%1d — K’)A, v)r = [o- fvdx,

(31d = K)u. &) + i, or =0,
(N

For simplicity, we omit Dirichlet trace for integration over boundary.
2.1 Well-posedness of the continuous problem
The following results are well known (see [14] or [22]), but for reader’s conve-

nience we present them in the case of problem (1). Let us propose a more compact
formulation of (7).
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Findu € H'(Q7) and » € H*%(F) such that for allv € H' (Q7) and ¢ €
1
H™2(T)

A((u,)»),(v,;“))=/gifvdx, (8
where

A((w,0), (v,0) = [o- Vw-Vvdx + [, cuvdx — % (A, v)p + % (w, Or
+ (Ww, v)l" +(K/)\-7 v)r - (Kw7 C)I‘ + (V)\'7 C)F .

For simplicity we introduce the space V := H Q)x H -3 (I') and the associated
norm

2 . 2 2
I, )y = lvligq-) + ||<P||H R ©)

2(I)

We begin by showing the boundedness of the bilinear form A.

Lemma 2 (Boundedness) There exists constant B > 0 such that for all w,v €
HY(Q ) and ), ¢ € H=3(I)

[A ((w,2), (v, )] = B l[(w, Vv (v, )y (10)

Proof We use the Cauchy-Schwarz inequality, the duality pairing relation and
continuity of boundary operators (see [34, Section 6.2—6.5]) to obtain

A ((w, 1), (v, 9)| < max{l, [lellLe@} lwll g1y IV g1 o)

1 1
1 L
+3 IIwIIH%(F) ||90|IH_%(F) + 5 IIH_%(F) IIUIIH%(F)

C Cy A
+ KIIwIIH%(F) lltpllH,%(F)+ vl IIH,%(F) ||¢||H,%(F)

Cg' ||A v Cw ||w v .
+Ck |l IIH,%(F) I IIH%(F)+ wl IIH%(F) Il IIH%(F)

We finished by applying the trace inequality (3) to terms including |- || H% " norm,

<C - ).
1013 gy 1001 = Cr (e + Tl o)

H%(F)
O

The next step in proving the existence and uniqueness of the solution is coercivity
of the bilinear form A.

Lemma 3 (Coercivity) There exists constant o > 0 such that for all v € H' (™)
and ¢ € H™? ()
A, 9), (v.9) > a v, )T (11)

Proof Consider the form A ((v, ¢) , (v, ¢)). Because of the relation between the dou-
ble layer potential and its adjoint, the associated terms cancel. Using coercivity of
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V (see [34, Theorem 6.22]), and coercivity of W on functions with zero average
(see [34, Theorem 6.24] we obtain

AW, ), 0, 9) = ce vl g +aviel’ | +awlv—1]>,

H™2(I) H2(I)
where v = |F|_1 fr v ds and ¢, = min(1, €). This shows (11) when & > 0. For the
case € = 0 we need a Poincaré inequality of the form

celvligi) = Vvl + 18I 12)

where g(v) is some functional that is non-zero for constant non-zero v [18, Lemma
B.63]. We claim that this holds with g(v) = (V¢ (v), ¢(v)) where ¢(v) is defined
by the second equation of (7). We immediately see that if this is true then there exists
o > 0 such that

A, 9), 0, 9) = @ vl o)

We need to show that for constant v # 0 there holds (Vo (v), ¢(v))r # 0. Let
v|r = ug be a non-zero constant. Then, we need to study

((31d = K)o, ¢) + Vo), HHr =0, & e HTHD).

We argue by contradiction. Assume that ¢ (v) = 0. Then, u is the trace of a solution
to the homogeneous Neumann problem in 27. However by the first line of the left
relation of (4) there holds for all such traces

1
(31 =K)uo. ¢) =tduo, o), Ve e HTHD). (13)
Hence the functional is defined by

(Vo). O)r = — (Iduo, ¢)r. ¥¢ e H 1(D).

However since the operator on the left-hand side, defined by, V is injective it follows
that ¢(v) # 0, which leads to a contradiction. Hence (V¢ (v), ¢(v))r # 0 for v
constant. This concludes the proof. O

The existence and uniqueness of the solution of problem (8) is achieved by using
the Lax-Milgram theorem.

3 The discrete problem

In the previous section, we focused on the classical symmetric formulation. Now,
using this formulation we propose the weak penalty formulation of a couple problem.
The discretisation is made by using finite element methods inside the domain and
boundary integral methods outside the domain. We prove the well-posedness of the
discrete problem and analyse the convergence of the proposed method.

We assume that 2 is a polyhedral domain. The boundary I' may be decomposed
in a set of n planar surfaces {I'; };?zl. It will be convenient to use following broken
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Sobolev spaces over the polyhedral boundary I'. For s > 1 define
B () = [v e H'(): vlr, € H'(T)), 1 gjgn].

When s > 1 the norm on H* (I'), is defined as the broken norm over the faces of the
polyhedral boundary T’

1

2

n
ol sy == | 22 1ol
j=1

When 0 < s < 1 the space H $(I") coincides with the usual space H*(I") and their
norms are the same (for more details see [31, Definition 4.1.48]).

Let 7;, be a triangulation of Q  made of tetrahedrons. For each of element K € Ty,
hg :=diam(K), and h := maxgc7; hg.LetG;,i = 1,2 denote two different surface
triangulation of the boundary I'. For notation convenience we here assume that the
trace mesh of 7 and the G; all have similar local mesh size.

The following result will be useful in what follows.

Lemma 4 (Trace inequality) There exists Cy,qx > 0, independent of hk, such that
forall K € Ty, and polynomial function v in K the following discrete trace inequality
holds

1
h12(||v”L2(3K) = Cmax||v||L2(K)' (14)

Proof See [15, Lemma 1.46]. ]

To discretise the problem (7) over the triangulation one can choose either contin-
uous or discontinuous finite elements. For simplicity of the analysis we choose the
following spaces

Vi ={v, € CO(Q7) : valx €P; (K) YK € T},
Wi = {w, € CO(D) : wylp € Py (E) VE € G},
Ay =1 e’ : mlpeP(E) VE € G},
My ={v, € L*(T): Uplg €Pp(E) VE € Go}.
Let us denote V), := th x Wf and v, = (v}, v;") € V. Using the above spaces

we propose the hybrid discrete formulation of the problem (7)
Find (up, M, up) € Vy X Alh X M} such that for all (vp,, ¢p, ) € Vy X Alh x M}

o (65 7). 077 50) + b (G 2 ) 0 ) = [ e, 19
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where

fQ, Vwy, : Vopdx + fg, gwpvpdx
— (Opwh, vy — Vn)r — (Wp — Why BuVp)1
+E (wp, — Wh, vy — Vn)r

i (i 2 @) o0, T) 2= (314 = K ) was gn) + (Vin @idr

- (Wuwp, vp)p — <<%Id - K/) A, vh>r

+ (Ap, va — Un)r — (W — Wh, @n)r
+1p (W, — Wy, V4 — Vp)r -

ap ((wp, Wp) , (v, Up)) :

The formulation of bilinear form ay, is well known for example from [17]. As usual
for symmetric Nitsche methods the stabilisation parameter T > 0 has to be chosen
sufficiently large for stability.

Remark 2 (Impedance boundary condition) The hybrid weakly imposed Dirichlet
and Neumann boundary conditions is related to an impedance boundary condition of
the type

- u
Uu=—-y—+tu,
on
with y = Lo 7. This can be seen considering terms associated with v, in above

T
definition of the bilinear forms.

Remark 3 (Relation to a standard Nitsche-type method without hybridisation) To
transform the hybridised method to a Nitsche-type method without hybridisation we
proceed as follows. The trace variable i), is eliminated by replacing it by a linear
combination of ”}T and u, (i.e. replace iy, with a)uh+ + (- wu, ,w» € [0,1]) and
similarly replace the test function v, replaced by the same linear combination of the
test functions vh+ and v, (i.e. replace V), with a)v;[ + (I — w)vy,) (see [8, Section
4.2]). The below analysis carries over verbatim to this case.

3.1 Symmetric formulation

Despite using the symmetric Nitsche method, our whole system is not symmetric.
This is a consequence of the lack of symmetry of the boundary element method with
weak imposition. We can use the Steklov-Poincaré operator to eliminate the flux
variable, so that the non-symmetric method above is transformed into a symmetric
reduced system as we show below.

The following equations are associated with bilinear form by, from (15) reads

—<<%1d — K) Wy, goh>r —(Van,on)r = — (wh — Wh, @)1 »

— (Wwp, vp)p + <(%1d - K') Ahs Uh>l_ — (An, vp = Vp)p = TB (Wh — Wh, VR — Vp)r -
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Similar to the continuous formulation we use the Dirichlet-to-Neumann operator (5)
to obtain

Ap = (V_1 o (K — %Id)) wip + V7w, — @) (16)

Injecting this relation into the second equation leads to the formulation of the new
symmetric bilinear form

B (s 1) s (o ) = (Wg, va)r — (314 = K') VUK = 31w, wi)
—((41d = K") V=" wn = ), )
+(VIK = Jdyws, vn =)
+ (V=1 (wp — Wp) . v — )y + B (W — Who VR — Vn)r -

For clarity we carry out the analysis of the discrete problem using non-symmetric
formulation.

3.2 Well-posedness of the discrete problem

Let us consider the following norms

I wns B, = llwn gy + F lwn = Ball 7oy -

lwns BN == 1l wn, B, + R 18pwnl ) a7

I wns 2y BN, = lwall® ;120> 45 lwn = Ball 7 »
H2((T) H 2(I')

1 wns 2y BN 2= 11 wns 2y W) s, + e AR 117 ey - (18)

Lemma 5 (Equivalence of the norms) For all (wy,, Ay, Wy) € Vi X Aﬁl X M;" there
exist positive constants C r, Cg such that

o @), = N ) = Cr o™ ). 19)
[ 2 50) 5, = o™ 2 ) < Cos |, )5, 20

Proof For (19) we use the trace inequality (14) and for (20) we use the inverse
inequality h% | AR ||L2(r) <C ”Ah”H’%(F) (see [31, Remark 4.4.4]). O]

After introducing the norms that we use we can start by showing the boundedness
of the bilinear forms ay, and by,.

Lemma 6 (Boundedness) There exists positive constant Br such that for all w, v €
H3t(Q7), for 8 > 0, and , ¥ € L2(T')

lap (w, W) , (v, V)| < Br ll(w, W £ v, VF. 21
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There exists positive constant B such that for all w, v € H? (), &, ¢ € L") and
w,v e LX)

bp ((w, A, W) , (v, @, V)| < BB Il(w, 2, W5 (v, . V)l5- (22)

Proof We use Cauchy-Schwarz inequality to obtain (21). In the case of (22), we use
Cauchy-Schwarz inequality and Lemma 2. O

To show the discrete well-posedness of (15) we need the ellipticity of the bilinear
forms aj, and by,. Our formulation contains two stabilisation parameters T and 3.
The first parameter associated with finite element bilinear form must be chosen to
allow us to use trace inequality (14). On the other hand, for tp for the bilinear form
by, positivity is the only constraint.

Lemma 7 (Coercivity) Assume that tg > 0 and positive constant Tr is large
enough. Then, there exists positive constant o such that for all (wy, Ay, W) €
Vi x AZ x M}
ap (wy, ., @n) . (wy @)+ ba (W) A, W) s (wa™, An, @) (23)
> o (Il (wa, D) 11% + I (wa, A, W) l1B) -

Proof Let us start with bilinear form a,. First we assume that ¢ > &,,;, > 0
an ((wy, @n)  (wy, s Tn)) = lwy 17 g, + 2wy I — 280wy, wy, — @),
_ ~ 112
F
+F |lwy — ||L2(I‘)'

Using Cauchy-Schwarz and trace inequality (14), followed by Young’s inequality, we
arrive at
an ((wy @) s (wy @0) =y gy + eminllwy 13 + 5 [0y = @] 7o)
-2 Hanu’; HLZ(F) ” wy, — Wh “LZ(F)

2 + eminllwy 15— + 5 [wy — @ HZLZ(F)

> |w;|H|(Q,)
_ Ly~
-2 ‘wh |H‘(Q*) (mech 2 ”wh — Wi HL2(F)>
1y, —p2 =2 o TE2Char | 5 |12
> jlwh |H1(Q*) +3mm||wh lle- + 7 max }wh — Wy ||L2(F) .

We finish by applying the equivalence of the norms (19) under the assumption that
TF > 2C,%mx.
In the case of the bilinear form b, by using the results from Lemma 3 we obtain,
with w, = [T~ [ w;F ds,
by (Wi, A, 1), (wi ™, An, 1)) = avy |Anll? +oay |lw —w 2
w (Wi A @a) 5 (™, An, Wh)) > ay | h”H*%(r) w ||w) h”H%(r)

+p | wy — W ”i%r)'
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Observe that when ¢ > 0 we may bound

+ - -
<|w, —w 1 + ||lw 2
il g o = i = ol g o+ Il

< llw;f —wy ”H%(r) + llwy = Wall2ery + llwy, — Ball g2y + lwy 2

< llwy = Ball, 3+ 1w = Ball gy + lwy = Bnll 2y + Cllwg @)

where we applied the trace inequality (3) in the last step. The right-hand side is
controlled by the lower bounds on a;, and b;, above. Once again, we finish by applying
the equivalence of the norms (20).
In case ¢ = 0 we need to show that a Poincaré inequality holds, similar to (12),
this time on the form

crllwy gy < 1wy lmas + 4 1wy = Bl oy + 5 lwi = @l o)

+||)»hIIH,%(F + [wy —wh||H2(r) (24)

To this end, since coercivity holds up to a constant, we may assume that w, |r =
wy = w;f = wy, and proceed verbatim as in the continuous case, since in that case
the continuous and discrete expressions corresponding to (13) are the same. O

The existence and uniqueness of the solution of problem (15) is achieved by
using the Lax-Milgram theorem. In addition, the proposed method is consistent for
sufficiently smooth exact solutions as the following result shows.

Lemma 8 (Consistency) Ler§ > 0, u— € H3t5(Q™), ut € H3(T) and dyu™ =
A € L3(T") be the solution of problem (1) and @ = u~ = ut on T. If (up,, Ay, Up) €
Vi x Aél x Mj" solves (15) then, for all (vy,, n, V) € Vi X Aﬁl x M;" the following
holds

a ((M_ —u, U — 1/7},) , (vh_, ’Jh))-l-bh ((u+ — u;, A—Ap, U — Fl;h) , (v;, on, ’Jh))

Proof Because of the transmission conditions from (1) we have u = u™ = 1™~ and
u =00,ut =08,u"onTl
ap ((u —uy U — Eh) , (vh_ Uh)) = (Oyu, Up)p — <u —u, 8,,v;>r
+3F (=, vy =Ty
by ((u —uf = A, =), (0 00, 0)) = — (A On)p — (u — 1, )
+‘CB( — U, vh — )

By adding above expressions and using the facts that A = 8,u and ¥ = u on ", we
obtain consistency. O
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3.3 Error analysis

In this section we present the error estimates for the method. These estimates are
proved using the following norm

e @) = ™ )2+ @ 20 - (25)

The first step is the following version of Cea’s lemma.

Proposition 1 (Cea’s Lemma) Let § > 0, u~ € H%M(Q’), ut e H%(F) and
d,ut = A € L*(I") be the solution of problem (1), i = u~ = u™ on T, and let
(up, A, p) € Yy X Aﬁl X M;l” solve (15). Then, there exists C > 0, independent of
h, such that

||(u_”h,)\—)»h,ﬁ—ﬁh)”hfc B inf ”(u_vha)‘_(/)h,g—’ﬁh)”h.
(Vn,0n,Tr) €V x AL x M

(26)

Proof Let us denote
Ap ((wh, G, Wn) , (i, @n, Up)) = a((wy , Wn), (v, V)
+b ((wy ¢n, Wn) s (v s on Tn)) -

By Lemma 7 there exists @ > 0, independent of /4, such that for all (vy, ¢n, V) €
Vi XAZ X M} there exists (wy,, ¢n, Wy) € Vi xAﬁl x M with || (wp, ¢n, Wp)ll, = 1,
and

An ((n, @y 0n) s (Wh, G, Wh)) = | (Vis ons )l - (27)
Now using Lemma 6, we get continuity of Aj, there exists 8 > 0
AR (v, @,0)), (w, ¢, w)| < BIl(v, 9, V) II(w, ¢, W)l - (28)

Let (vp, @n, Up) € Vi x Aél x M. Then, using the triangle inequality we see that
I —up, = dp, 6 —up)lly < 1@ — v, A — @n, 1 — 0p) |l
+ I (n — un, on — An, On — p)lly -
and it follows from (27), Lemma 8 and (28) that
I on = un, @n — dns On — i)y < 2 Ap ((on — w, op — X, 0 — W), (Wi, $p, Wp))
+ L Ap (@ = up k= Ao i = 0in) , (Wi, B W)

B\l on —uy o0 — 2,0 — D, -

IA

Thus, we get (26) with C := 1+ £. O
Lemma 9 (Energy norm estimates) For s > % r > land p > % let u= €

HS(Q7), ut € H'(T) and d,u™ = A € HP(T) be the solution of problem (1). On
I" there holds u= = u™ =W on T. Let (uj,, Ap, up) € Vi X AZ x M} solve (15). If
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the mesh is quasi uniform, then there exists C > 0, independent of h, such that
Il —up, k= Ap, = up)lly <
— _1 _1 1
c (h Ml ooy + B2 lull oy + B2 lull g oy + AV 2 ||M|m(r>) . (29)

where 0 = min{j + 1, s}, ¢ = min{k + 1,r}, £ = min{m + 1, r} and Y = min{/ +
1, p}.

Proof The result is a consequence of (26) and approximation. Applying triangle
inequality and trace inequality [3, Theorem 1.6.6] followed by Young’s inequality,
we obtain
e = v, it = T 15 = e = vnliGp1 gy + 5 Ml = vn = @ =T 7o

Hh (1t — Bavn 172

I = ol oy + 5 1T =Tl
+C1 (2 lu = vnl2 ey + T8 Lies It = ol g )
+Co (Lkcers N = vl ) + 72 Xy I = vl ) -

Using approximation results [18, Theorem 1.109] and [31, Theorem 4.3.19] for the
second term containing hybrid variables, we claim

IA

|
inf l(w—vp,u—vp)llr<C (ho_l wll ooy +hET2 ull )
(vn, D) EVE XM} )F F lluell 1 (€7) I ||H5(l")

For the boundary part, by applying triangle inequality, we obtain
R e I L Y O Lo Y U o ) P VA P
H2(T) H 2D

+ llu = vy — G = T3 g

IA

[ e P VA I o) ¥ 9
H2Z(T) H 2 ()
+op llu = nll 3y + 78 17 =Tl -
Using approximation results [31, Theorems 4.3.19, 4.3.20 and 4.3.22] , we claim

inf G — vy = A, &= Bl <
(Vn A T €V X Al x M

_1 1
Ca (1wl oy + S Nl ey + BV 3 oy ) -

We conclude the proof by applying Proposition 1. U
Remark 4 1f M} is conforming trace space for th and W,’f, we can approximate
terms containing hybrid variables i, Uj, with the H?-norm for interior domain and

with the H?-norm for exterior domain. However, it does not improve the convergence
rate.
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4 |terative solution

For the solution of the linear system we will iterate on the Schur complement for
the trace variable, solving independently in the two sub domains. To justify this split
approach we here show that a simple relaxed Jacobi iteration on the two systems will
converge. The condition number of the Schur complement can be analysed using the
arguments of [7, Section 4].

1. Given " solve for u”+! and A"*! by solving the linear system
Ah[(u”l‘#l’)\,n‘l’l’ﬁ”)’(v7€0’0)] = / fv dx.
o

2. Given u"*! and A"t!, solve for the new trace variable #"t!, for & > 0 and
o= (F+ 18),

Ah[(un+1, )\'n+1’ En-‘rl)’ (07 0’ ’1‘)")] + oty <iﬂ+l _ En ’l‘]‘>r — 0
To prove that the iterative algorithm converges we only need to show that if f = 0,
w1 5"+ and A+ all go to zero as n — oo.
We add and subtract #"*! in the first equation and add the second to obtain

A@ AL T, 0,0, D))+ o (0 -0, v)F -

(@ =, 000+ — T +v5))

Test this equation with 2”1, A*+1 #"*1 and use coercivity to obtain
N-1
1 ~N 2 1 1 ~n+l1 1 2
Jotlli 12y + D @l @™ 2 Y IE 4+ Jom it = @17, )
n=0

2

1 ~02 ~n+l ~n n+1 n+1 n+1y— n+1\+
< Lon 2, + 20( ) a2 g (@D @)
Here we used the well-known formula
N—1
~n+1 ~) 1 1, ~N 1
Z((u”+ — "), "t )r = @13y = SIS0 ) + 3 Z (ST (e

n=0

(30)
Considering the terms on the right-hand side and using trace inequality (14) we see
that

(@ =, 0, H7) < Aol = oy + Conanht) " o T

Using the duality pairing between H 3 and H™? followed by the global inverse
inequality [|7"*! — ~”||H%(F) < C,h_i [@" 1 — " || 12y (see [31, Theorem 4.4.3])
and Young’s inequality we have

_z(hfh)_la_l ”)\}’I-FI ”2

un—H ~l‘l’)\'n+l> < O"L’ Mn+1 " 2 +C
(¢ ) A < dom N2 + G -t

@ Springer



Numerical Algorithms

Finally

LX)
_i_afl(.ch”(uIH»l)Jr ~n+1“L2(]") +‘L'h||(un+1)_ n+l||L2(F))

+27, ((ﬁ’n—i-l _ ’l;n)’ ~n+1>r )

(@ = @™+ @) = Jom it =i

Using the once again the telescoping property (30) we see that for
o > (hth)71a71 max {Cmax, sz, hrh} + 2,

the right-hand sides can all be absorbed in the left-hand side to yield

=

-1
1 1 ~n+1 ~n+1 _ 2 1 ~02
(@@ LT 4 don T 1 ) < 36 = 2mlE

n=0

It follows that as N — oo u”+!, "1 and A**1 all go to zero, since the sum of the

left-hand side has to be bounded by the constant of the right-hand side.

5 Numerical experiments

Let¢ = [¢1,...,¢ j]T be the vector of canonical basis functions of the finite ele-
ment space Vh] U = [, ..., ka]T — the vector of canonical basis functions
of W;f, £ = [&,...,&]7 — the vector of canonical basis functions of AZ and

= [0y, ...,0,]1T be the vector of canonical basis functions of M;’f. We define the
following matrices and vector associated with the corresponding linear forms

ﬁ = an (¢, 0), (95, 0)) . Bag = an(($a. 0), (0, 6p)),
Cig = an((0,60), (¢p,0)) Do,,S = a1 ((0, 6), (0, 6p)),
Wap = ba((Ya, 0,0), (¥4, 0,0)) , Kag = ba((Ya, 0,0), (0, £, 0)
K'ap = bi((0. £, 0). (¥5.0,0)) ., Vap = ba((0. & 0), (0. £5. 0)),
Bl = bi((¥a, 0,0), (0,0,6p) . By = bi((0, . 0), (0,0, 6p)),
Clp =bn((0,0,64), (¥5,0,0)) , Chy = b1 ((0,0,6,), (0, &, 0)),

Dfﬁ = b, ((0,0,6y), (0,0,6p)) , fg =/Qf fpdx.

In the following we present the full definition of these quantities.
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Awp = [o- Voo : Vobp + £dadpdx — (0uta. Dp) — (- 0ndp)r + L (bar )y
1%,3 (41d = K)o w) -+ Vap = (Viar &5l
Wap = ((eald + W) Va. Vg)y. . Rap = —((31d+ K) v, 5) .
Bag = (0u. 0ndp)r — (0 8)r - Cap = (0nde: Op) — F (barr Op)y -
Baﬂ =~ (. Vp)r - CaDﬂ = —75 (Va. 0p);
By = (6u. ) + Cap = — (Ea: Op)y
Dop = (F +78) (0 Op)r - [ =/Q_ fopdx.

Using the above definition the discrete problem (15) can be written in the following
matrix form

A 0 0 BF)T¢ f
0 K V BP||y 0
0 W K BN ||¢& 0
ckcPcN b 0 0

To solve this system we use the Schur complement and the Steklov-Poincaré operator
to eliminate all variables except the hybrid one as follows

D
(D—CFA‘BF [CDCN][{;I‘(/} [ﬁN])az—CFAlf (31)

In our experiment tests we consider ¢ = 1 and Vj, XAZ xMp'with j =k =m = 1.
The value [ varies depending on the geometry of domains considered. We let the trace
meshes G; and G, coincide with the trace mesh of 7, on I'. As we know from our
experiments as well as the one performed in [2], there is a flexibility with the choice
of positive parameter tp, hence for simplicity we use tp = 1.

For our experiments we use two numerical softwares: FEniCS [1] and Bempp [33].
We use the solution of interior and exterior Dirichlet boundary value problems to
construct a Schur complement system (31). The solution € on I' of the elimi-
nated system (31) is obtained using the nested conjugate gradient method (CG) [23].
Although one can use direct solvers to solve the interior and exterior Dirichlet bound-
ary value problems, we here used preconditioned iterative solvers suitable for large
scale applications. The interior Dirichlet boundary value problem that is a symmet-
ric system associated with bilinear form a;, (15) is solved by using FEniCS and
CG without and with algebraic multigrid preconditioner. The discrete exterior prob-
lem associated with bilinear form by, (15) is not symmetric, however as we shown
in Section 3.1, we can apply the Steklov-Poincaré operator to the flux variable and
transform the equations into a symmetric system. For clarity of the code, we here
simply used the generalised minimal residual method (GMRES) [30] without or with
mass matrix preconditioner to solve in Bempp the external Dirichlet boundary value
problem. The tolerance of the iterative solvers is chosen to be not greater the 1073,
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(a) The error of the interior solution. (b) Iteration taken by CG to solve the precondi-

tioned system.

Fig.1 The dependence of the errors and iteration count on the value of T for h & 2~2 (dashed line with
circles), h ~ 273 (dash-dotted line with diamonds), and & ~ 2~# (solid line with squares) for the problem
on the unit sphere subdomain, with j =k =m =1=1

A Jupyter notebook demonstrating the functionality used in this paper will be made
available at www.bempp.com.

5.1 Choice of parameter t¢

Thanks to Lemma 7 we know that the stabilisation parameter tr in the discrete
problem (15) must be large enough to assure coercivity. We start with an experi-
ment showing how the value of the parameter tr influences the convergence and the
number of iterations. We consider 2~ as a unit sphere with boundary I". We define

u”(x,y,2) = 5 sin (7(x2 + y% + 22) + 5 cos (7 (x2 + y? +22)) + ZH,

1

+ _
ut(x,y,z) = o

It is easy to check that for the unit sphere domain 2~ the above elementary functions
are the solution of our problem (1).

Figure 1 shows the error values for different valuesof rand j =k =m =1 =1.
In this case, I" is smooth, and so Wh1 = A}l. In Fig. 1a, we plot in log-log scale the
error of the interior solution |lu™ —u;, || ;2(q-) forh = 272 (dashed line with circles),
h ~ 273 (dash-dotted line with diamonds), and i ~ 2~* (solid line with squares).

It can be seen from Fig. 1 that errors stop decreasing when tf is around 10. Fur-
thermore, for tr > 10 the iterations increase with growing tr, hence we fix tr = 10
for the next experiments.

5.2 Spherical subdomain

Let 2~ once again be the unit sphere, I" its boundary and consider the same exact
solution as above.
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4x10!

3x 10!

Error
Iterations

2x 10!

10-1 2x1070 3x1074x107' 6x107! 101 2x1071 3x1074x107' 6x107

Mesh size Mesh size
(a) Error of the interior (dashed line with (b) lteration taken by CG to solve the
circles) and exterior solutions (solid line non-preconditioned system (dashed line),
with squares). The dotted line shows order compared with the preconditioned system
2 convergence. (solid line)

107t 2x107' 3x1074x10°' 6x10°!
Mesh size

(c) Time to solve the non-preconditioned
system (dashed line), compared with the
preconditioned system (solid line) of the
whole discrete problem (15) including

solving interior and exterior systems.

Fig.2 The convergence (left), CG iteration counts (middle) and solving time (right) for the problem on
the unit sphere with tp = 10and j =k=m=[=1

Figure 2 shows the convergence, CG iteration counts and solving time when tr =
10 and k = [ = 1. In Fig. 2a, we plot in log-log scale the error of the interior solution
lu™ — u;, l2(@- (dashed line with circles) and the error of the exterior solutions
lut — ”;”LZ(F) +|IAT — )‘;”LZ(F) (solid line with squares).

In Fig. 2b, we plot in log-log scale the number of iterations taken by CG to solve
the non-preconditioned system associated with exterior problem (dashed line), com-
pared with the preconditioned system (solid line). In addition, Fig. 2¢ shows the time
required by solvers of interior and exterior systems. The interior system is solved
by CG with or without algebraic multigrid preconditioner and the exterior system is
solved by GMRES with or without mass preconditioner. As we can see in Fig. 2b, the
preconditioning reduces both the iteration count and the increase of iterations under
refinement. In terms of CPU time needed by the solver, the preconditioned methods
reduces the execution time by an order of magnitude compared to the method without
preconditioning.
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Iterations
o
2

Mesh size Mesh size
(a) Error between interior solution and ex- (b) lteration taken by CG to solve the
terior. The dashed line shows order 2 con- non-preconditioned system (dashed line),
vergence. compared with the preconditioned system
(solid line)

10°

Mesh size

(c) Time to solve the non-preconditioned
system (dashed line), compared with the
preconditioned system (solid line) of the

whole discrete problem (15) including

solving interior and exterior systems.

Fig. 3 The convergence (left), CG iteration counts (middle) and solving time (right) for the problem on
the cube withtp = 10and j =k=m=1+1=1

5.3 Cubical subdomain

Let Q~ = (0, 1) be a cube and we solve the problem (1) with f = 1. We choose
tr = 10and j = k =m =1+ 1 = 1, where Ag is the space of piecewise
constants per element in the trace space. Since the domain has corners we must
use an approximation of the flux variable that is discontinuous over corners on the
boundary. Therefore we consider the approximation space consisting of functions
that are piecewise constant per element, / = 0.

Figure 3a shows the convergence when tr = 10and j =k =m =1+1 = 1.
In this case, the exact solution is not known; thus, in Fig. 3a, we plot in log-log scale

lluy 10 —uf Il 2 .
h 0 LT (solid line).

the error between interior solution and exterior ]
r L2
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In Fig. 3, we plot as well in log-log scale the number of iterations and solving time
taken by CG to solve the non-preconditioned system (dashed line), compared with the
preconditioned system (solid line). Once again preconditioning brings improvement
in terms of iteration counts and time taken to solve the problem. The reduction of
the iteration count is less significant than in the previous case, however we can see
similar improvement in terms of time reduction.

6 Conclusions

We have analysed and demonstrated the effectiveness of Nitsche-type methods for
coupling finite element and boundary element formulations. Our approach gives flex-
ibility to choose a continuous or discontinuous finite element space in the FEM
solver, hence the interior problem can be solved essentially using any method that
allows for the hybridised Nitsche method for interdomain coupling. We are also free
to choose the trace variable minimising the coupling degrees of freedom. In this
paper, we focus on the technical aspects and analysis to allow for flexibility within
our framework. A work demonstrating the applicability for large problems using
parallel approach is in preparation.

The method can be extended to other models such as the Helmholtz equations. In
this case it is known [36] that the use of impedance interface conditions is advanta-
geous and such an approach can be mimicked in the present framework by letting the
stabilisation constant have non-zero imaginary part and depend on the wave num-
ber. Formulations of the presented FEM/BEM coupling method to the Helmholtz and
Maxwell problems are currently in preparation. For these cases however more effec-
tive operator preconditioning techniques for exterior problem are essential, especially
for high frequency problems. Despite that, we expect that their implementation will
be similar to the presented Laplace case.
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