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Abstract 

Background: Developmental difficulties in many cognitive domains are common in children 

with sickle cell anaemia (SCA). Children with stroke are most affected but delayed or 

atypical cognitive function has been reported in children with SCA and silent infarcts (SCI), 

vasculopathy, and normal brain MRI. However, very few studies of cognition have been 

conducted in Africa, a continent with 75% of the SCA burden. We therefore investigated 

cognitive profiles in Tanzanian children with SCA and examined the impact of age, SCI, 

vasculopathy, and haemoglobin concentration (Hb). 

Methods: Children aged 6-16 years with and without SCA were eligible for this cross-

sectional study. Cognitive assessment was performed using Raven’s Matrices, assessing 

fluid, non-verbal intelligence and subtests from the Wechsler Intelligence Scales for 

Children (WISC-IV), assessing processing speed (PS), perceptual reasoning (PR), and 

working memory (WM) as these tests are less culture-bound. Magnetic resonance imaging 

(MRI) and angiography (MRA) were also completed to assess the presence of SCI and 

vasculopathy. Hb was collected in both SCA children and their non-SCA siblings.  

Results: Seventy-three children with SCA and 71 healthy siblings (Meanages 11.9, SD=2.8 

and 11.1, SD=2.9 years respectively) were recruited. Compared with healthy siblings, 

children with SCA had lower PS (Meandiff 7.35 points; p=.002). Older children had higher 

performance scores on all tests in relation to their ages.  Lowest cognitive scores were 

observed on the PS subtest, where patients with SCI (SCI+) had lowest mean values as 

compared to children with no SCI (SCI-) and healthy siblings (i.e., SCI+ < SCI- < healthy 

siblings, p=0.028). On post-hoc analysis the difference was between SCI+ and healthy 

siblings SCI+ < non-SCA siblings (p = 0.015); there was no difference between SCI+ and 

SCI- patient groups.  PS was significantly lower in SCA patients with no vasculopathy as 

compared to healthy siblings. The mean difference from healthy siblings was -8.352 and -

0.752 points for VASC- and VASC+ respectively (p=0.004). There was a significant positive 

effect of Hb on PSI (p=0.001) in both patients and controls and a trend level significant 

positive effect of Hb on PR (p=0.050) and WM (p= 0.051). 
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Conclusion: In this Tanzanian study, cognitive performance was reduced in children with 

SCA with or without SCI on MRI or vasculopathy. Cognitive performance improved with 

increasing age. Lower Hb was associated with lower cognitive performance in both patients 

with SCA and their non-SCA siblings. SCI and vasculopathy do not appear to have an impact 

on cognitive function. 
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Introduction 

Neurological manifestations of sickle cell anaemia (SCA) include overt stroke, silent cerebral 

infarction (SCI), and cognitive difficulties.1 Stroke and SCI occur in 11%1 and 21-40%2–4 of 

children, respectively, and are associated with difficulties in various cognitive domains,5 

including executive function and processing speed.6–10 In a meta-analysis of studies from 

African countries, the overall prevalence of overt stroke was 4.2%, along with 10.1% who 

had increased stroke risk related to conditional and abnormal transcranial Doppler (TCD) 

velocities.11 However, on this continent less is known about the prevalence of SCI and the 

effect of SCI on cognition.  

 

In Tanzanian studies, prevalence of SCI is as high as 27% to 43% in children with normal 

and non-normal TCD respectively.12,13 Vasculopathy on MR angiography (MRA) may affect 

up to 64% of individuals with SCA.14 The overall prevalence of vasculopathy in children 

with no prior stroke in a recent Tanzanian study was 18%,13 with all grades associated with 

abnormal white matter integrity,15 but there are few data on the effect of vasculopathy 

identified on MRA on cognition, although associations with TCD have been observed.16   

 

Previous research has demonstrated that children with SCA have lower cognitive functioning 

compared to non-SCA children in multiple domains including general intelligence (IQ), 

executive function, and processing speed. Although there are few data comparing 

developmental trajectories between children with SCA and controls, cognitive difficulties 

apparently increase with age.8,17,18 There is evidence that children with SCA and overt stroke 

experience the most profound cognitive difficulties.17 However, children with SCA and SCI 

and those without evidence of infarction on MRI appear to also be at risk of difficulties.8,17,19–

21 In African countries, there is a dearth of research on structural brain abnormalities and 

cognition in children with SCA, even though 75% of the disease burden is there,22 due to 

fewer MRI scanners and other resources to conduct these types of studies. In a previous study 

in Tanzania,23 reduced IQ and executive function (Rey-Osterrieth Complex Figure Test) were 

observed in children with SCA compared to their siblings, but MRI data were not available. 
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Although research investigating cognitive dysfunction in children with SCA is relatively 

robust, the aetiology of developmental cognitive difficulties is not well understood. Possible 

explanations include large vessel disease, which has been associated with overt stroke24–26 

and SCI,3,27,28 but may independently play a role in cognitive functioning in children with 

SCA, for example related to focal reduction in cerebral perfusion.29 Other potential causes 

include the burden of chronic disease, less access to resources, or subtle pathological changes 

in the brain associated with disease severity. Studies have also shown that age and sex are 

significant predictors of cognitive function in this patient group.8,17,30 Further, some studies 

have shown that overt stroke, SCI, lower haemoglobin concentration (Hb), higher white cell 

and platelet counts (thrombocytosis) are also associated with lower performance on cognitive 

tests in children with SCA.7,31,32 Hypoxia, resulting from chronic anaemia, may also 

contribute to cognitive deficits.19  

 

Given that cognition remains poorly understood in African patients with SCA, we examined 

several domains in children with SCA and their non-SCA siblings. To provide the best 

comparison with previous work, we used non-verbal Wechsler subscales (i.e., processing 

speed, perceptual reasoning and working memory), alongside the Raven’s Progressive 

Matrices,33 a non-verbal measure of fluid intelligence which has been used in African 

children with SCA.34 No tests are completely culture-free, especially tests in which normative 

information has been derived from high resource Western populations, but the tests chosen 

require less culturally bound knowledge and are less reliant on language abilities. Using these 

tests, we aimed to:  

1. Compare cognitive performance and cognitive trajectories between SCA patients and 

controls.  

2. Explore whether presence of SCI, vasculopathy, and/or severe anaemia represent risk 

factors for cognitive difficulties.  

 

 

Materials and Methods 

Recruitment of Participants 
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We conducted a cross-sectional hospital-based study at Muhimbili National Hospital in Dar 

Es Salaam, an urban area in Tanzania with the large Muhimbili sickle cell program cohort of 

5300 patients with SCA35. All interactions with patients were conducted in Swahili, which is 

the primary language in the region. Between 1st June 2016 and 30th October 2019, patients 

were recruited whilst attending a specialised SCA clinic for a study of cerebral infarcts and 

vasculopathy13 by Swahili-speaking research assistants. Patients with SCA who met 

eligibility criteria were selected consecutively from the list of recruited patients. Participants 

with prior stroke and history of seizures or other chronic illness, e.g. renal or cardiac diseases, 

were excluded. Healthy siblings of selected patients were invited to complete cognitive 

assessment and MRI. Cognitive data were collected in both patients and healthy siblings from 

February to October 2019. Formal ethics approval was obtained from the Muhimbili 

University of Health and Allied Sciences Institutional Review Board (MUHAS-IRB 

Ref.2014-11-03/AEC/Vol.IX/32). Individual written consent was obtained from 

parents/guardians; assent was obtained from participants aged 7 years and above.  

 

Image Acquisition and Classification 

MR images were acquired at Muhimbili National Hospital on a 1.5T Philips scanner 

(Achieva; Philips, Best, the Netherlands) using a 16-channel phased-array head coil. The 

acquired images included: an axial turbo spin-echo (TSE) T2-weighted sequence (TR/TE of 

3,000/120 ms; slice thickness, 5 mm), a coronal TSE T2- weighted sequence (3,000/120 ms; 

slice thickness, 5 mm), and an axial FLAIR sequence (TR/TE, 6000/120; inversion time, 

2000 ms; slice thickness, 5 mm).  A time-of-flight MRA sequence with source and maximum 

intensity projection was acquired for evaluation of vasculopathy. Clinical images were 

evaluated by two neuroradiologists (MJS and DS) for diagnosis and verification of subject 

conditions.  A time-of-flight MRA with source and maximum intensity projection was also 

acquired.  Images were evaluated by two Neuroradiology experts (MJ and DS) for 

identification of SCI and grading of vasculopathy. In the case of any disagreements, the final 

diagnosis was reached by consensus. 

 

The SCI definition developed for the Silent Infarct Transfusion Trial (SITT) was used: a 

lesion measuring at least 3mm in greatest linear dimension, visible in at least 2 planes on T2-
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weighted and FLAIR images.36 Participants with  and with no SCI were grouped  as SCI+ 

and SCI- respectively. Vasculopathy on MRA was graded according to severity of signal loss 

0 (none [normal]); 1 (minor signal attenuation – mild vasculopathy); 2 (obvious signal 

attenuation, but presence of distal flow - moderate vasculopathy); 3 (signal loss and no distal 

flow- severe vasculopathy).13,14 We determined vasculopathy as the worst recorded in any 

vessel. Participants with and with no vasculopathy were grouped  as VASC+ and VASC- 

respectively.  

Cognitive assessment 

One of two trained psychologists (M.K and R.M) administered the cognitive testing in a quiet 

room in the child and adolescent psychiatric unit at the hospital on days that the clinic was 

not held so as to avoid disruptions and school absences. During the testing parents or 

guardians were allowed to stay in the room as observers. Tests were administered in the 

Swahili language and patients were allowed to go for breaks when required. For example, for 

the Letter Number Sequencing subtest, the Latin alphabet was used (A, B, C), with numbers 

in Swahili (e.g., Moja, mbili, tatu). Swahili number translations were also used for the Digit 

Span subtest.  The assessment lasted between 2 and 3 hours. Tests were administered and 

double scored by trained psychologists (R.J.M and D.K) who were blinded to disease status. 

In the event of disagreement, the opinion of a third assessor (M.K) was sought.  

Participants were examined using the Wechsler Intelligence Scale for Children ® - Fourth 

UK Edition (WISC-IV) for children ages 6 to 16 years. We assessed three non-verbal 

domains from the WISC-IV using tests that are less dependent on cultural context: 1) the 

Processing Speed Index (PSI) assessed using Coding and Symbol Search subtests; 2) the 

Perceptual Reasoning Index (PRI) assessed using the Block Design, Picture Concepts and 

Matrix Reasoning subtests; and 3) the Working Memory Index (WMI) assessed using the 

Digit Span, and Letter-Number Sequence subtests. Normative scores were based on the 

WISC-IV US standardisation sample (WISC-IVUS ) and were used in analyses. 

Fluid intelligence was assessed using the Raven’s Standard Progressive Matrices (RSPM),33 a  

widely used intelligence test for typically developing (TD) children as well as for children 

with neurodevelopmental conditions.  RSPM has previously been used in research with 
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children in Nigeria30 and  sub-Saharan Africa,37 including those with SCA.34 The trials are 

arranged in progressively increases of difficulty. Raw scores were used in analyses. 

Demographic and clinical questionnaires were used to interview the families of all 

participants. Haemoglobin was obtained at time of recruitment and isoelectric focusing was 

used to screen siblings for sickle cell disease. 

Data analyses 

The statistical package for social science (SPSS) version 25 (IBM Corp, Armonk, NY) was 

used for data analyses. Shapiro-Wilk tests were used to assess variables for significant 

deviations from a normal distribution. Continuous variables were compared using two-sided 

Student’s t-tests. Categorical variables were compared using a χ2 test or Fisher’s exact test.  

Analyses of variance (ANOVA) were also used to compare demographics and cognition 

between non-SCA siblings and two patient groups : i) patients without SCI (SCI-) and those 

with SCI (SCI+), ii) patients without vasculopathy (VASC-) and those with vasculopathy 

(VASC+). Across all analyses, P values of <0.05 was considered statistically significant.  

Analyses of covariance (ANCOVA) were conducted to examine children’s performances on 

cognitive tasks with chronological age as the predictor to compare TD control siblings and 

children with SCA. Data on cognitive tasks (dependent variable) and chronological age (CA; 

independent variable) were used to plot cross sectional developmental trajectories for both 

groups. 

Results 

Participants 

One hundred and forty-four participants aged 6-16 years of age agreed to participate in the 

present study and underwent cognitive testing. Of these participants, there were 73 patients 

with SCA (69 from previous MRI study, 2 siblings who were diagnosed at the time of 

screening and 2 SCA patients who did not have MRI data)  (Meanage 11.9, SD=2.8 years) and 

71 non-SCA siblings (Meanage 11.1, SD=2.9 years). Twenty-nine had been admitted with a 

painful crisis and six with fever, but none had had a documented chest crisis. None of the 

children with SCA were prescribed hydroxyurea. Sixty-nine patients with SCA and 39 non-
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SCA siblings controls had MRI/MRA. None of the non-SCA siblings had SCI or 

vasculopathy. There were no extreme outliers for cognitive function scores (Figure 1).  

There were no significant differences between patients with SCA with and without MRI data 

in regards to age, sex, baseline haemoglobin or cognition (i.e., PSI, PRI, and WMI).  A trend 

level significance was observed for Raven’s matrices (p=0.05). There was also no difference 

between non-SCA-siblings with and without MRI data with regards to age, sex, baseline 

haemoglobin or cognition (i.e., Raven’s matrices, PSI, PRI, and WMI.  There were no 

differences in any of the cognitive tests between those with normal haemoglobin (HbAA) and 

those with sickle cell trait (HbAS). 

MRI/MRA 

On MRI, 21/69 (30.4%) patients with SCA and 2/41 non-SCA siblings (4.8%) had SCI, and 

9/69 (13%) patients with SCA had vasculopathy. Among patients with vasculopathy, 4 

(5.8%) had grade 1 (mild vasculopathy) and 5 (7.2%) had grade 2 (moderate vasculopathy). 

None of the sibling controls had vasculopathy. There were no differences in age between 

non-SCA siblings and patients with SCA overall or when stratified by SCI and vasculopathy 

status, but patients with SCA had lower mean haemoglobin concentration (Table 1). 

 

Cognitive Profiles  

Compared with their TD siblings, patients with SCA had lower PSI (mean difference 7.35 

points; p=.002) and there was a trend for a lower WMI (mean difference 4.15 points; p=.089).  

There were no significant differences in performance between patients with SCA and siblings 

for the Raven’s or for PRI (Table 2).  

 

Age-related changes in cognitive profiles  

ANCOVA analyses demonstrated significant developmental change for all cognitive tasks 

and in both groups. Older children with and without SCA performed better on all cognitive 

tests than younger children with and without SCA. Of these cognitive tests, significant group 

differences were observed for Coding and Cancellation subtests, which are measures of 

processing speed (Figure 3).  
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Raven’s Progressive Matrices (RSPM) Raw scores were significantly related to chronological 

age (CA) in both groups, with performance scores improving with age (TD siblings: F(1, 69) 

= 35.079, p < .001, R2 = .34,; SCA: F(1, 71) = 10.265, p = .002, R2= .13). No significant 

group difference in developmental changes was found (F(1,141) = 1.973, p = .162, η² = .014) 

(Figure 2A). 

Block Design subtest. Block Design raw scores were significantly related to chronological 

age in both groups (TD sibs, F(1, 69) = 51.033, p < .001, R2= .43,; SCD:, F(1, 71) = 23.817, 

p < .001, R2= .14), with performance scores improving with age. Older children had higher 

Block Design raw scores than younger children in both groups and no significant group 

difference in developmental changes was found (F(1,141) = .229, p = .633, η² = .002) (Figure 

2B). 

Digit Span subtest. Digit Span raw scores were significantly related to CA in both groups 

(Control group sibs:, F(1, 69) = 33.400, p < .001 R2= .33,; SCD:, F(1, 71) = 14.196, p < .001, 

R2= .17), with performance scores improving with age. Older children had higher Digit Span 

raw scores than younger children and there was no significant group difference in 

developmental changes (F(1,141) = .223, p = .637, η² = .002) (Figure 2C).   

Picture Concept subtest. Picture Concept raw scores were significantly related to CA in both 

groups (Control group sibs: F(1, 69) = 33.254, p < .001, R2= .33,; SCD: F(1, 71) = 23.754, p 

< .001, R2= .25), with performance scores improving with age. Older children had higher 

Picture Concept raw scores than younger children. No significant group difference in 

developmental changes was found (F(1,141) = .112, p = .739, η² = .001) (Figure 3A). 

 

Coding subtest. Coding raw scores were significantly related to CA in both groups (Control 

group sibs: F(1, 69) = 13.521, p < .001 R2= .16,; SCD: F(1, 71) = 13.768, p < .001, R2= .16) 

with performance scores improving with age. Although children in the SCA group showed 

improvement in performance in relation to age, it was significantly at a slower rate showing a 

significant group difference with the TD sibling group (F(1,141) = 8.811, p = .004, η² = .059) 

(Figure 3 B). 
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Symbol Search subtest. Symbol Search raw scores were significantly related to CA in both 

groups (Control group sibs: F(1, 68) = 33.514, p < .001 R2= .33,; SCD: F(1, 71) = 11.706, p 

= .001, R2= .25,). Older children with and without SCD had higher Symbol Search raw scores 

than younger children with and without SCD. No significant group difference in 

developmental changes was found (F(1,140) = 3.126, p = .079, η² = .022) (Figure 3C). 

 

Cancellation subtest. Cancellation raw scores were significantly related to CA in both groups 

(Control group sibs: F(1, 69) = 36.583, p < .001 R2= .35,; SCD: F(1, 70) = 29.189, p < .001, 

R2= .29). A significant group difference in developmental changes was found (F(1,140) = 

6.816, p = .010, η² = .046); while younger children in both groups had similar scores, there 

was a slower rate of improvement in older children with SCA (Figure 3D).  

 

Comparison of cognitive function related to SCI and vasculopathy status 

ANOVA revealed that patients without SCI and with SCI had lower PSI when compared with 

non-SCA siblings (Figure 4). Generally there was a significant difference in PSI when the 

three groups where compared, that is non-SCA, patients with no SCI (SCI-) and patients with 

SCI (SCI+). The mean difference from healthy siblings was -4.303 points for SCI- and -9.377 

SCI+ patients’ groups (p = .028). On post hoc analysis the significant difference was between 

SCI+ <non-SCA siblings (P = 0.015). There was no difference between SCI- and SCI+ 

patients groups. Lower scores for Ravens (p =.710), PSI (p=.118) and WM (p=.111) were 

also observed in SCI- and SCI+ patient groups, with SCI+ having the lowest scores. 

However, none of these observed differences were statistically significant (Table 3). The 

same trend was observed when comparing patients with vasculopathy, patients without 

vasculopathy and non-SCA siblings. We found a significant difference for PSI, with the mean 

difference from non-SCA siblings at -8.35 and -0.75 points for patients with no vasculopathy 

(VASC-) and patients with vasculopathy (VASC+) respectively (p = 0.004). There was also a 

difference in Raven’s (p= .60), PR (p = .26) and WM (p = .26), but it did not reach statistical 

significance (Table 4). There was no difference between VASC- and VASC+ patient groups.  

Haemoglobin concentration and cognitive function 



 

12 

 

In patients and non-SCA siblings, after correcting for the effects of age, sex and SCI, there 

was no effect of  haemoglobin on Raven’s, PSI, PRI or WMI, but a significant positive effect 

of Hb on PSI was observed after removing sex and SCI from the model (Table 5, Figure 5A). 

An identical analysis was performed in a sub-set comprised of patients with SCA only 

(n=73); there was no significant effect of haemoglobin on Raven’s but a significant positive 

effect of haemoglobin on PSI was observed after removing sex and SCI from the model (p= 

0.001). Additionally, there was a significant positive effect of haemoglobin on PRI (p = 0.05) 

(Figure 5B) and a trend level positive effect on WMI (p = 0.05) (Table 5).
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Discussion 

The current study sought to examine cognitive profiles using cross sectional trajectories in 

Tanzanian children with SCA and their non-SCA siblings and explored potential risk factors for 

difficulties. Children with SCA showed lower performance when compared with non-SCA 

sibling controls on tests of PSI, PRI, and WMI. Performance on the Raven’s as well as the 

WISC-IV subtests including Block Design, Picture Concept, Coding, Symbol Search, and 

Cancellation were assessed cross-sectionally with raw scores to investigate the effect of age.  

Previous studies have consistently shown that deficits in cognitive function in children with SCA 

increase with age.8,30, 38 We found that, as expected scores for older children were better than 

younger children, but rates of improvement were slower in patients with SCA for the Coding and 

Cancellation subtests compared to non-SCA sibling controls. Our findings on the effect of age on 

cognition differ from the reports of previous studies where they observed a decline in cognitive 

functioning with increasing age.8,. We cannot ascertain here if this represents a slower rate of 

improvement on the task or a premature plateauing of the trajectory, but future longitudinal 

studies would allow this to be addressed. Both disease progression and systematically withheld 

social and environmental resources may affect cognitive development in patients with 

SCA.8,17,21,40    

Overall, as in prior studies,8,10,19,23 the findings indicate poorer cognitive performance in children 

with SCA compared to controls. The observed pattern, with patients particularly at risk for 

difficulties with processing speed, is also consistent with that of previous studies.41,38 However, 

most often these studies do not compare cognition to siblings and even more rarely are these 

analyses conducted in patients with SCA from African countries, a region with the largest SCA 

burden. Previous studies conducted in Tanzania23, Nigeria38 and Cameroon42 have reported no 

differences in working memory between patients with SCA and non-SCA siblings.  

Silent cerebral infarctions, one of the most common neurological complications in children with 

SCA, have been linked to cognitive impairment in various studies in the USA and 

Europe.10,19,20,43,44,45 In our study, there were no significant differences in cognition between 

patients with and without SCI or vasculopathy, but scores were lower in patients with these 

pathologies on some subtests. Our observations are contrary to studies which have reported that 
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children with evidence of SCI on MRI have lower IQ scores than children without evidence of 

SCI.8,17A meta-analysis by Kawadler et al17 on the effect of SCI on full-scale IQ (FSIQ) found 

that children with SCA and SCI scored significantly lower than children with SCA without SCI, 

although both groups scored significantly lower than the normative mean and sibling 

controls.17,40 The current study did not look at FSIQ, but a previous study in Tanzanian children 

with SCA showed similar findings when comparing IQ between patients with SCA and non-SCA 

sibling controls, although they did not have MRI data.23 Adult studies have reported no 

difference between patients with SCA and brain abnormalities, including lacunar/white matter 

hyperintensities/SCI and patients with normal brain on MRI across domains.46 Further 

longitudinal studies are justified 

There have been no studies on the effect on vasculopathy detected on MRA on cognition in 

patients with SCA, although it is well known that vasculopathy is associated with overt 

stroke24,25 and SCI.27,28,47 In our study, there were no significant differences in cognitive 

performance between patients with and without vasculopathy. Moreover, children with SCA 

with no vasculopathy had lower PS than children with vasculopathy and healthy siblings 

controls, indicating that vasculopathy may not represent a major risk factor for reduced cognitive 

performance in this patient group. However, this could in part also be due to the lower 

prevalence of vasculopathy in our study, where the overall prevalence was 14.5%, and only 4 

and 5 patients had mild (grade 1) and moderate (grade 2) vasculopathy respectively. Severe 

vasculopathy (vessel occlusion) which can be associated with severe restriction of blood flow 

leading to cerebral hypoperfusion and potentially causing cognitive impairment48 was not 

observed in the current study.  

In our study, patients with SCA had a significantly lower mean haemoglobin (7.5; SD 1.51) g/dL 

as compared to non-SCA sibling controls (12.09, SD, 1.05 g/dL). Interestingly, we observed a 

significant positive effect of haemoglobin on PSI in both SCA and non-SCA individuals. A 

significant positive effect of Hb on PSI and PRI was also observed in a subset comprised of SCA 

patients only. Lower haemoglobin or lower haematocrit has been associated with hypoxaemia 

which might lead to diffuse cerebral microstructural injury19,49and impaired cognition.41  
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Limitations 

Although nonverbal tests were used for cognitive assessment, some cultural factors may have 

contributed to the results observed. This is one of the larger studies to include controls as well as 

patients with SCA, but we may have been underpowered to detect effects of the MRI variables in 

the multivariable analyses, particularly for vasculopathy. As there are relatively few data on 

cognition in SCA from Africa, we included some children who had not had an MRI; there were 

no demographic or cognitive differences between those with and without MRI but more 

neuroimaging data would be needed to determine the relative importance of lesions detectable by 

MRI on cognition. The cognitive profiles were examined using cross sectional raw score data 

rather than scaled data as we were interested in the developmental trajectory. In addition, there 

are few normative data from countries outside Europe and the USA and scaling may not be 

appropriate outside the setting in which the data were acquired. Another limitation is that we did 

not include educational background or attainment in this study. This was a cross sectional study; 

longitudinal studies are needed to establish any causal association relationship between 

developmental trajectories and other factors while multicentre studies will needed for 

generalisation of findings to African countries. 

Strengths 

The current study design included comparison of children with SCA with their siblings acting as 

a control group.  This comparison may potentially reduce cofounding effects such as exposure to 

different schooling, parenting styles, diet and SES status of a family which it may be difficult to 

eliminate or control for.  

Conclusions 

The current study supports findings from previous studies showing that children with SCA have 

cognitive difficulties compared with controls. As with data collected in the USA and UK, the 

domain of processing speed appears to be particularly vulnerable in Tanzanian children with 

SCA despite different cultural contexts.  Although cross-sectional data indicates that cognitive 

performance improves with age through childhood and adolescence, the rate of improvement 
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appears to be slower in patients with SCA compared to non-SCA sibling controls, particularly in 

the processing speed domain. SCI and vasculopathy were not associated with cognitive deficits 

in this study. Haemoglobin was significantly positively associated with cognitive function. 

Further work is required to explore the causes of cognitive profiles in this patient group. Studies 

examining microstructural brain integrity and cognitive functioning alongside access to 

socioeconomic- and environmental- resources in African children would be informative.  
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Table 1. Demographic, MRI/ MRA characteristics of the study participants 

 All 

controls 

(n=71) 

All patients 

with Sickle 

Cell 

Anaemia 

(n=73) 

Control with 

MRI (n=39) 

SCI-  

(n=48) 

SCI+  

(n=21) 

Age in years 

Mean (SD)  

11.1 (2.9, ) 11.9  (2.9) 11.1 (2.9) 12.0 (2.8) 12.4 (2.7) 

Sex 42M, 

29F 

41M, 32F 22M, 17F 26M, 22F  12M, 9F 

Haemoglobin 

g/dL),mean (SD) 

12.1 

(1.0)a*** 

7.5 (1.3)b*** 12.0 (1.1)c*** 7.5 (1.4)d*** 7.6 (1.3)e*** 

      

 

  

Control with 

MRA (n=39) 

VASC- 

(n=60) 

VASC+ 

(n=9) 

Age in years  

Mean (SD) 
  

11.1 (2.9) 12.0 (2.7) 12.5 (3.0) 

Sex   22M, 17F 34M, 26F 4M, 5F 

Haemoglobin g/dL, 

mean (SD) 
  

12.0 (1.1)f*** 7.6 (1.3)g*** 7.1 (1.3)h*** 

SCI- (no silent cerebral infarction), SCI+: presence of SCI, VASC-: no vasculopathy, VASC+: 

presence of vasculopathy grade 1 or 2,  an=58, bn=73 

cn=38 controls; dn=48 SCI-, en=21 SCI+, fn=38 controls, gn= 60 VASC-, hn= 9 VASC+ 

***, p <0.001 
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Table 2. Cognitive functioning among patients with sickle cell anaemia (n=73) and healthy 

controls (n = 71)  

 
Mean 

difference 

95% confidence 

intervals 
t P 

Effect 

size 

Raven’s  0.482 -1.951 to 2.915 .392 .696 .067 

Processing Speed Index 7.352 2.673 to 12.031 3.106 .002 .517 

Perceptual Reasoning 

Index 

2.957 -0.650 to 6.563 
1.620 .142 

.271 

Working memory index 4.149 -0.640 to 8.938 1.713 .089 .285 

 

 

Table 3 Cognitive function differences in controls and SCI +/- 

Mean (SD)  Mean difference from controls ANOVA 

F 

P Post-hoc 

(Dunnett’s) 
SCI- (n=48) SCI+ (n=21) 

Raven’s  0.388 -1.211 0.344 .710  

PSI -4.303 -9.303 3.690 .028 SCI+<Control 

PRI -1.77 -5.677 2.175 .118  

WMI -1.819 -7.420 2.235 .111  

PSI Processing Speed Index, PRI Perceptual Reasoning Index, WMI Working memory index. 

The Patient group was compared to controls with MRI data (n=39) 
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Table 4. Cognitive function differences in controls and VASC+/- 

Mean (SD)  Mean difference from controls ANOVA 

F 

P Post-hoc 

(Dunnett’s) 
VASC- (n=60) VASC+ (n=9) 

Raven’s  0.273 -2.292 0.517 .597  

PSI -8.352 -0.752 5.696 .004 VASC- <Control 

PRI -2.712 -4.415 1.345 .264  

WMI -3.554 -3.344 1.071 .346  

PSI Processing Speed Index PRI Perceptual Reasoning Index WMI Working memory index  

The patient group was compared to controls with MRA data (n=39) 

.  
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Table 5: Regression Results for effect of Haemoglobin on cognitive function in patients and 

non_SCA_siblings 

  

Standardized Coefficients 

B-values 95% CI p 

Ravens (n=144) 

Age .490 -2.407 -.737 <.001 

Male sex .149 -7.228 2.093 .277 

Haemoglobin at time of MRI (g/L) .103 -.840 1.925 .438 

SCI -.103 -6.597 2.889 .440 

Processing speed (PSI) (n=144) 

Age -.340 -2.407 -.737 <.001 

Male sex -.098 -7.228 2.093 .277 

Haemoglobin at time of MRI (g/L) .103 -.840 1.925 .438 

SCI  -.103 -6.597 2.889 .440 

After exluding Male sex and SCI     

Age -.309 -2.368 -.761 <.001 

Haemoglobin at time of MRI (g/L) .274 .660 2.471 .001 

Perceptual reasoning (PRI) (n=144) 

Age .107 -1.547 -.069 .032 

Male sex .199 .292 8.540 .036 

Haemoglobin at time of MRI (g/L) .107 -.746 1.700 .441 

SCI  -.020 -4.498 3.894 .887 

Working memory (WM) (n=144) 

Age -.036 -1.157 .799 .717 

Male sex -.010 -5.754 5.162 .915 

Haemoglobin at time of MRI (g/L) .106 -1.017 2.220 .463 

SCI -.089 -7.273 3.834 .540 
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Figures 

 

Figure 1. Study Flow Diagram 

Study flow diagram showing total number of recruited SCA patients and Non-SCA siblings who 

underwent cognitive assessment and MRI/MRA investigation. 
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Figure 2. Developmental trajectories for performance on cognitive tasks in SCA and non-SCA 

groups. Significant positive effect of age was observed on  A; Raven’s, B; block design, C; Digit 

span. 
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Figure 3. Developmental trajectories for performance on cognitive tasks in SCA and non_SCA 

groups. Significant positive effect of age was observed on  A; picture concept, B; coding, C; 

symbol search, D; cancellation 
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Figure 4. Boxplot showing processing speed index (PSI) across controls and patients with 

(SCI+) and without (SCI-) silent cerebral infarction.   

 

 

Figure 5. Relationship between Haemoglobin, processing speed index (PSI) and Perceptual 

Reasoning Index (PRI).  A scatter diagram with the regression line and 95% confidence intervals 

showing a positive effect of Haemoglobin on PSI (A) and PRI (B) 

 

 

 


