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Abstract

Probability distribution is a fundamental area in Statistics. It provides an under-
standing of the behaviour of a dataset. Distribution estimation is a task to estimate
the distribution of a dataset. In machine learning, distribution estimation has been
viewed as an unsupervised task as it uses unpaired datasets. One of the focuses of
this thesis is to frame, explore and investigate distribution estimation as a super-
vised learning task (Chapter 3). The goal is to learn a function using an unpaired
dataset to predict the distribution of the dataset. Loss functions are used to evalu-
ate the accuracy of the prediction with respect to the true value. In the supervised
distribution estimation task, a loss function depends on the type of estimator be-
cause it compares each input data points with its predicted distribution. Hence, we
present an efficient method to derive the analytic expression of three probabilistic
loss functions to evaluate the loss of standard kernel and kernel mixture distribution
at an observation point (Chapter 5). The method uses the properties of kernel func-
tions and elementary integration. Loss functions are also used for parameter tun-
ing. We investigate the difference in the behaviour of in-sample and out-of-sample
empirical loss functions: (1) log-loss; (2) probabilistic squared loss (PSL); using
Gaussian kernel PDF estimator as the bandwidth goes to 0 and infinity (Chapter
6). To perform a consistent training, predicting and evaluation steps for distribution
estimation in R, we investigate and implement a unified interface for distribution
estimation and integrate it into the package mlr3proba (Chapter 7). Lastly, we
conduct a benchmarking experiment to compare multiple distribution learners on
multiple datasets and evaluate the learners using different log-loss, probabilistic
squared loss (PSL) and integrated Brier loss (IBL) (Chapter 8). The best learner
with the minimum out-of-sample empirical loss is selected and all the learners will

be ranked using the results from evaluation.



Impact Statement

Distribution estimation is one of the most fundamental area in statistics. The results
presented is this thesis are based on exploring distribution estimation in machine
learning. The results of the thesis are hopefully useful for both inside and outside

of the academic field. The impacts of this thesis are as follows.

1. (Unconditional) Distribution estimation is commonly categorized as an unsu-
pervised learning task. Work presented in Chapter 3 describes how distribution
estimation can be considered as a supervised learning task. In supervised dis-
tribution estimation, the objective is to train a function using a dataset to output
a distribution. Building on that, the loss functions for distribution estimation
evaluates the predicted distribution at a value. We show that by comparing the
expected generalization loss of the predicted distribution with the expected gen-
eralization loss of the true distribution we are able to recover back Kullback-
Leibler divergence and mean integrated squared error.

2. The work in Chapter 5 provides a efficient method to compute the probabilistic
loss functions for kernel-based distribution at an observation point. The method
is applicable for computing the loss for standard kernel distribution and kernel
mixture distribution. For kernel mixture, the loss functions can expressed in
terms of mixture component. From the method, a closed-form expression of the
probabilistic loss of 11 symmetric kernel functions are derived and algorithms to
use them evaluating the loss. The closed-form expressions are expected to give
a more accurate results of the losses and less computation time.

3. The work presented in Chapter 6 provides a clear consequence of using in-
sample and out-of-sample tuning methods for parameter selection of kernel-
based distribution estimator using the log-loss and PSL. The result provides an
understanding of how the in-sample tuning method may lead to a different op-
timal bandwidth from the out-of-sample tuning method for both simulated and

real-world datasets. The selected bandwidth from the in-sample tuning method
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lead to a higher empirical loss than the bandwidth from the out-of-sample tuning
method when used on a new test data.

4. The work presented in Chapter 7 is expected to be provide two contributions.
First, the derivations from Chapter 5 are included in distr6 allowing users to
obtain the L2-norm of PDF, L.2-norm of CDF and L2-norm of CCDF of a kernel
object distribution. Second, a unified machine learning interface for distribution
estimation in ml3proba enable users to train, predict and evaluate distribution
estimation. This provides a quick, easy to implement and consistent step for
distribution estimation especially for new users.

5. The work presented in Chapter 8 shows the performance of different distribution
learners on multiple real world datasets by using benchmarking experiment. The
distribution learners are ranked from best to worst when applied to real world

datasets.
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Chapter 1

Introduction

Distribution estimation is useful to understand the nature of a dataset. This is not
limited to just finding the mean, standard deviation or parameters. By understanding
the distribution, we are able to know the pattern of the dataset including modality,
symmetry, etc. Distribution estimation is the process of constructing a distribution
from a dataset. A distribution is an object and is usually defined by the distribution
defining functions: probability density function (or probability mass function) or
cumulative distribution function. By knowing the distribution of the dataset, we are

able to predict the probability an event happening.

Two of the important learning tasks in machine learning are: (1) supervised learn-
ing; (2) unsupervised learning. Supervised learning uses paired datasets (having
features and label variables) and loss functions. In the supervised setting, the task
is to learn a function that predicts the value of the target variable. Then, the loss
function compares and evaluates the difference between the predicted and the true

value of the target variable.

In machine learning, distribution estimation is commonly categorized as an unsu-
pervised learning ([1], [2], [3]). This is because the learning task uses unpaired
datasets and no loss functions for evaluation. In this thesis, we investigate distribu-
tion estimation as a supervised learning task where we learn a function that predicts
the distribution of a dataset. We also investigate the probabilistic loss functions for
distribution estimation. Different from the deterministic setting, the loss function
in distribution estimation evaluates the defining function of the predicted distribu-
tion on the test points. Therefore, the computation of the loss functions requires
the knowledge of the distribution. With the loss functions, we are able to use them

for further investigation in distribution estimation including tuning and comparing
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different learners.

1.1 Objectives

Distribution estimation in machine learning is commonly considered as an unsu-
pervised task due to the input data consists only of an unpaired dataset. To be
considered as a supervised task, the aim of the task is to predict the value of the
target variable of a paired dataset and there must exist a loss function to oversee the
learning process. In classical statistics, Kullback-Leibler divergence and mean inte-
grated squared error are used to measure the goodness of the estimated distribution
and in parameter selection. [4] have discussed supervised learning for conditional
distribution estimation. Motivated by [4], we explore and investigate unconditional
distribution estimation from the perspective of supervised learning. Therefore, our
first objective is to frame distribution estimation as a supervised learning task and
we further investigate: (1) the relationship of mean integrated squared error of the
estimated distribution with probabilistic squared loss and the integrated Brier loss;
(2) the relationship of expected KL-divergence of the estimated distribution with
the log-loss. Then, we discuss the link between probabilistic loss function for eval-
uating estimated distribution with MISE and expected KL-divergence from earlier
literature. We also discussed some of the existing supervised learning algorithms

used in distribution estimation.

The probabilistic loss functions for distribution estimation is a function of distri-
bution defining function and an observation point. This is different compared to
the supervised setting where a loss function measures the difference between a pre-
dicted value and a true value of the label variable. Hence, to evaluate the loss for
distribution estimation task, the distribution defining functions are required. For
kernel distribution, there are multiple kernel functions that can be used (e.g. Gaus-
sian kernel distribution, Epanechnikov kernel distribution). Therefore, we want to
investigate a method that can compute the probabilistic loss of a kernel-based dis-
tribution at an observation. Hence, the second objective of this thesis to provide an
efficient method to compute the analytical expression of probabilistic loss functions:
(1) log-loss; (2) probabilistic squared loss; (3) integrated Brier loss; to evaluate the
loss for standard kernel distribution at a point and extending it to kernel mixture

distribution.

In classical distribution estimation, Kullback-Leibler divergence and mean inte-

grated squared error can be used to estimate the parameter (i.e. for non-parametric
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kernel methods, the parameter is the bandwidth). There are two important meth-
ods to select the parameter in distribution estimation. First, by minimising the
asymptotic mean integrated squared error. Second, by minimising cross-validation
estimate of Kullback-Leibler divergence and mean integrated squared error. The
Kullback-Leibler divergence is the difference between the expected generalization
log-loss of the estimated PDF and the true PDF. The mean integrated squared er-
ror is the difference between the expected generalization PSL of the estimated PDF
and the true PDF. Therefore, log-loss and PSL can be used to estimate the Kullback-
Leibler divergence and mean integrated squared error, respectively. Focussing on
univariate kernel distribution, our third objective is to investigate the behaviour of
in-sample and out-of-sample tuning methods using log-loss and PSL in distribution

estimation.

Mathematical and statistical software allow a quick and easy way to implement
methods to solve problems. There are many open source software that allow users
to do statistical analysis. R is a useful statistical software that enable users to per-
form statistical analysis, modelling, solving equation and etc. In R, there are various
packages that relate to statistical distribution. For example there is the graphic::hist
function that enable user to estimate distribution via histogram. There is stats::kde
that estimates point PDF using kernel methods. Then, there are modelling distri-
bution packages that computes the PDF, CDF, quantile function (QF) and random
numbers of a distribution but do not perform estimation. Then, we need to evalu-
ate the estimated distribution using a loss function, for example using methods in
the scoringRule packages. To perform machine learning train, predict and evaluate
would need to use all of the functionality from different packages. However, these
functionalities are not consistent in the syntax or command and produce different
output. Due to these difference, our forth objective is to implement a unified ma-
chine learning interface for distribution estimation with the goal of providing users

to perform machine learning task for distribution learners consistently.

Because distribution estimation is a well researched area, many learners for distri-
bution estimation have been proposed over the years. This includes different esti-
mators and different algorithm of parameter selection. Therefore, our fifth objective
is to conduct a benchmarking experiment to compare and rank multiple distribution

estimators on multiple dataset using different loss functions.
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1.2 Contribution of thesis

The contribution of the thesis to achieve the objectives above is summarised below.

Framework for supervised distribution estimation

Chapter 3 frames distribution estimation as a supervised learning task. [4] discussed
the framework on probabilistic supervised learning. In Chapter 3, we explain that
for supervised distribution estimation, the task is to learn a function that predicts
the distribution of unpaired datasets. We introduce probabilistic loss functions for
distribution estimation that have already existed in literatures. These probabilistic
loss functions are used to evaluate the estimated distribution at a point. In addition,
we show that the divergence of the expected generalization loss function of esti-
mated distribution and true distribution is equal to the expected Kullback-Leibler
divergence and mean integrated squared error in classical distribution estimation.
Therefore, to estimate the expected Kullback-Leibler divergence and mean inte-
grated squared error only depends on the expected generalization loss of the esti-
mated distribution since the expected generalization loss of the true distribution is
unknown and can be taken as constant. Then, we discuss the use of probabilistic
loss function in distribution estimation existed in literatures and relationship with
the MISE and expected KL-divergence. Then, we briefly discuss the use of machine

learning methods to estimate distributions.

An Efficient method to compute probabilistic loss functions

In Chapter 5, we proposed an efficient method to compute analytical expression of
probabilistic loss functions (i.e. log-loss, probabilistic squared loss and integrated
Brier loss) to evaluate the losses given a distribution and an observation point. In
this thesis, we focus on kernel-based distribution. Using this method, closed-formed
expression of the probabilistic loss functions of a kernel-based distribution at an ob-
servation point is obtained and can be used for evaluation. This method provides a
general step to compute the analytical expression of any kernels and not focussing
on just one. The method we used for this computation is by using the property of
the kernel function and elementary integration. In this method, we show how to ob-
tain all the terms to compute loss function for kernel function. The log-loss requires
PDF and the probabilistic squared loss requires both PDF and L2-norm of PDF. The
integrated Brier loss requires the L2-norm of CDF and L2-norm of the complemen-
tary CDF. We define the integration of kernel functions to obtain the kernel CDF
and the partial L2-product of the kernel functions to compute the L2-norm of PDF.
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Then using the kernel CDF, we find the L2-norm of the kernel CDF and CCDF
by computing their partial L2-products. All of these functions can be extended to
kernel mixtures. Once all the terms needed for loss functions are computed, we
provide algorithms for computing the loss functions of homogeneous kernel mix-
ture distribution. To complete this objective, we derived the analytical expression
of the CDF, partial L2-products of kernel and partial L2-products of kernel CDF for

most of the symmetric kernel functions which can be found in Appendix B.1.

Behaviour of in-sample and out-of-sample empirical probabilistic loss

In Chapter 6, we show the difference between in-sample tuning and out-of-sample
tuning methods for parameter selection. There are two things we investigate: (1)
the difference in the behaviour of in-sample and out-of-sample empirical log-loss
in bandwidth tuning; (2) the behaviour of out-of-sample empirical PSL on different
ratio of total test points in the test set to the observed data points in both training

and test sets.

For the first investigation, we provide a formal proof using Gaussian kernel PDF to
investigate the difference between the in-sample and out-of-sample empirical log-
loss for bandwidth selection. We prove the limit of the out-of-sample empirical
log-loss and in-sample empirical log-loss as the bandwidth goes to 0 and to ooc.
The in-sample empirical log-loss tends to —oo as the bandwidth goes to 0 whereas
the out-of-sample empirical log-loss tends to oo as the bandwidth goes to 0. Both
in-sample and out-of-sample empirical log-loss will tend to oo as the bandwidth
goes to co. It is found that only one new (unobserved) data point in the test set is
needed for the out-of-sample empirical log-loss to be bounded (upper and lower)
hence signifies that empirical out-of-sample log-loss have a minimum point. This

minimum point reflects the optimal bandwidth.

For the second investigation, it is motivated by [5] and [6]. We provide a formal
proof by giving a clear distinction in the use of training and test sets. We proved
that for the out-of-sample empirical PSL of Gaussian kernel PDF to be bounded
and achieved a global minimum, the ratio of total test points in the test set to the
repeated (observed) data points in both training and test sets is 2v/2 : 1. When
exceed the ratio, the out-of-sample empirical PSL of Gaussian kernel PDF tends to

oo and 0 as h — 0 and h — oo, respectively.

To support the proofs, an experiment on 6 datasets is conducted to investigate the

in-sample and out-of-sample tuning of bandwidth of a Gaussian kernel PDF via
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grid search using log-loss and PSL. Similar to result of the proofs, in-sample tuning
results in choosing the smallest bandwidth when using log-loss and PSL. The out-
of-sample empirical log-loss select the bandwidth with the minimum out-of-sample
empirical loss for all datasets but this is not the case for all the datasets when using
out-of-sample empirical PSL. This is due to the datasets have repeated data points.
Further, we evaluated the tuned models using out-of-sample log-loss and found that
the in-sample tuning methods for each dataset results to a higher loss compared to

the out-of-sample tuning method.

Unified Machine Learning Interface for Distribution Estimation

In Chapter 7, we implement a unified machine learning interface for distribution
estimation. The purpose for this is to allow a quick and easy implementation of dis-
tribution estimation using machine learning concepts. We use the platform that has
already existed in R, which is mlr3 package that provide unified interface for regres-
sion and classification. The related package, mlr3proba provides a unified interface
for probabilistic setting using the same design interface as mlr3. We integrate the
unified machine learning interface for distribution estimation in mlr3proba. We in-
corporate kernel PDF estimator and histogram PDF estimator into the mlr3proba.
Other existing the distribution estimators in R can be found in mlr3extralearners.
In total, there are 8 learners collected in mlr3extralearners. Then, we implement
the loss functions as the score function to evaluate the distribution learners. The
distribution learners can be use to train, predict and evaluate using the mlr3 inter-
face and also use all the mlr3 extension functions such as tuning (in mlr3tuning),

benchmarking and others.

Benchmarking Experiment for Distribution Estimation

In Chapter 8, we conduct a benchmarking experiment to investigate and compare
the performance of different distribution learners with respect to the probabilis-
tic loss functions. The objective is to compare and rank the distribution learners
performed over all datasets. In this study, we use in total 54 datasets and 29 distri-
bution learners. For all distribution learners, we evaluate their performance using
log-loss. For all kernel based distribution learners, we further evaluate their per-
formance on probabilistic squared loss. Additionally, for all Gaussian kernel based
estimators, we evaluate their performance on integrated Brier loss. For evaluation,
we re-sample the dataset via 3-fold cross-validation method. The average out-of-
sample empirical generalization loss is computed. We analyse the results by: (1)

averaging the loss over all datasets; (2) rank the learners based on the loss function
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for each dataset and average the rank over all datasets; (3) compare the learners us-
ing Friedman rank test. From the experiment, different probabilistic loss functions

gave different results to the best ranked learner.

1.3 Thesis outline

The outline of the thesis is as follows. In Chapter 2, we provide a background
on distribution as a mathematical object and the nonparametric estimators used to
obtain distributions. In Chapter 3, we aim to frame distribution estimation as a su-
pervised learning task, in which we provide a review of machine learning concepts
in the first part of the chapter while the second half of the chapter will be on fram-
ing distribution estimation as supervised. Chapter 4 is a literature review focussing
on estimating the Kullback-Leibler divergence, mean integrated squared error and
bandwidth estimation for kernel distribution. Chapter 5 presents an efficient method
to compute the probabilistic loss function for kernel based distribution to evalu-
ate the loss given a kernel based distribution and an observation point. Chapter 6
is on the investigation of the behaviour of in-sample and out-of-sample empirical
loss for bandwidth selection. Chapter 7 is based on unified distribution estimation
in machine learning framework and Chapter 8 is on benchmarking experiments to
compare nonparametric distribution estimation methods on empirical generalization

losses. Finally, Chapter 9 is the conclusion and future work.



Chapter 2

Background: Distribution Estimation

2.1 Introduction

The main focus of this chapter is to provide a background review on the concept of
probability distribution including its definition, types and estimators. This chapter
is divided into two sections. In the first section, we define what we mean by ‘dis-
tribution’ and explain the types of distributions. In the second part, we discuss the

estimator of a probability distribution focussing on nonparametric methods.

2.2 Distribution

In this section, we define probability distribution as mathematical objects and spec-
ify their properties and related operations. Then, we explain the different types of
distributions for any random variable. Later, we define the functions that define
a distribution (e.g. probability distribution function, cumulative distribution func-
tion). Throughout this thesis, we refer probability distribution as ‘distribution’ for
short.

A distribution is a mathematical object on its own (a mathematical object is an
abstract object). It has definitions, properties, traits and related mathematical oper-
ations. Distributions should be separated from random variables. [7] has recently
explained distribution as a mathematical object and we will adopt that concept here.
In Figure 2.1 [7], a clear distinction is made between distributions and random vari-

ables.

1. Arandom variable X (in Figure 2.1) has a distribution.

ii. A distribution represents a random variable.
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Figure 2.1: Figure of a distribution as a mathematical object. In (a), the figure shows
a random variable that follows a Uniform distribution. In (b), the figure shows how
Uniform distribution representing a random variable. ([7]).

Therefore, as a mathematical object, the object distribution has the following.

i. A distribution is defined by functions, such as probability density function
(PDF), cumulative distribution function (CDF), quantile function (QF) and etc.

ii. A distribution has properties such as mean, mode skewness and parameters.

iii. A distribution has characteristics to show whether it is discrete or continuous.

iv. A distribution has related operations.

Now consider a random variable X t.v.i R" with a distribution d. Using [7]’s for-

mulation, we specify the following.

i.  Letdistr(R™) be a set of probability distribution for R".

ii. Let d be the object distribution which is an element of distr(R").

iii. Let the CDF for d denoted as d.F It is a function of (type) d.F : R" — [0, 1].
iv. Let the PDF of d denoted as d.f. It is a function of (type) d.f : R™ — R™*.

2.2.1 Types of Distribution

Below, we briefly describe the different types of distribution of a random variable.

1. Continuous: A random variable X has a continuous distribution when X t.v.1

R™ or in other words X has a continuous distribution if the probability density
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function (PDF) can be specified ([8]).

Discrete: A random variable X has a discrete distribution when X t.v.i N or
X has a discrete distribution if the probability mass function (PMF) can be
specified ([8]).

Univariate: A random variable X has a univariate distribution when X t.v.i
R™ when n = 1 (for discrete X t.v.ii N* and n = 1).

Multivariate: A random variable X has a multivariate distribution when X
t.v.i R™ and n > 1 (for non-continuous X t.v.i N” and n > 1).

Parametric: A random variable X is said to have a parametric distribution if
we assume X follows a ‘well-known’ parametric family of distribution [5]. For
example when X is sampled from a Binomial distribution with the parameter
N = 10 (sample size) and p = 0.6 (the probability). In this example, X has
a parametric distribution because Binomial is indeed a parametric distribution
and the values of parameters are known.

Nonparametric: A random variable X has a nonparametric distribution if it
does not belong to any of the parametric family [S]. A distribution with the
PDF plot in Figure 2.2 is an example where X has a nonparametric distribu-

tion.

Density
0.02 0.03 0.04 0.05
| | | |

0.01
1

0.00
1

150 160 170 180 190

Figure 2.2: Figure of PDF plot for random variable of X which has a nonparametric
distribution.
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At first glance of Figure 2.2, it is difficult to characterize whether it is a para-
metric distribution or not. Therefore, we can consider it as nonparametric as a
way to describe it as not belonging to any of parametric family of distribution.
Mixture: Consider a vector of random variables, X1, ..., Xy. Each X; where
t = 1,..., N is sampled from d; distribution with the proportion w; and
Zi]\il w; = 1. Consider an example where N = 2. Let X; be the random
variable that represents the height of female students with the distribution
N(160,5) and X is the random variable that represents the height of male
students with distribution N (175,5). A random variable Y which is a random
variable that represents the height of the students is the combination of X; and
X5 with the proportion 40% from the former and 60%, respectively. Then, we
say that a random variable Y has a mixture distribution that has 40% chance
following N (160, 5) and 60% chance of following N (175, 5).

2.2.2 Distribution Defining Functions

In this section, we properly introduce some functions that define a distribution. A

distribution can be defined using multiple functions: (1) Probability density function
(PDF); (2) Probability mass function (PMF); (3) Cumulative distribution function
(CDF); (4) Moment generating functions (MGF) and others. However, not every

distribution will have all of these functions. For continuous random variable, we
define the PDF and CDF as in Def 2.2.1.

Definition 2.2.1. Let X t.v.i R be a random variable. The probability density func-
tion (PDF) of X is

p:R— RT (2.2.1)

where [~ p(z) dz = 1.
The cumulative distribution function (CDF) is

P:R—0,1] (2.2.2)

where P is non-decreasing, lim P(x) = 0and lim P(x) = 1.

T—r—00 T—00

For discrete random variable, we define the PMF as in Def 2.2.2.
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Definition 2.2.2. Let X t.v.i N a discrete random variable. The probability mass
function (PMF) of X is

p:N=[0,1] (2.2.3)

where p(z) > 0and ) p(x) dx = 1.

It is important to note the following:

1.  PDF exists only for continuous random variable. The CDF can be obtained by
integrating the PDF. Therefore, when a distribution has PDF the CDF for the
distribution exists.

ii. PMF exists only for discrete random variables. The CDF can be obtained by
summation.

iii. A distribution can neither have a PDF or PMF but can have a CDF (e.g. Cantor
distribution).

iv.  For a categorical random variable, the CDF does not exist.

Mixture Distribution:
Consider univariate random variables X, ..., X. Recall again mixture distribu-
tion where each X; where 1 = 1, ..., N arises from different a distribution. Here,

we provide a more formal definition for mixture distribution in Def 2.2.3.

Definition 2.2.3. Let x1,...,xx € R be fixed observations. Let P; : R — [0, 1]
and p; : R — R™ be the CDF the PDF for each x; is sampled from, respectively. A
mixture CDF, G, and PDF, g, at x; with weights w; > 0 is

N
g:x— Z wip; (x — x;) (2.2.4)
=1
N
G:x— Y wbPi(x— 1) (2.2.5)
=1

where Zf\il w; = 1.. When w; = %forz‘ =1,..., N, then this is called Uniform

Mixtures.
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The mixtures in Definition 2.2.3 are finite. There are infinite mixtures but these will
not be covered in here. A mixture distribution is known to be homogeneous if all the
distributions p;’s (P;’s for CDF) are the same. When the distribution of p;’s (F;’s)
are different, then it is known as inhomogeneous mixtures. A mixture distribution
has a higher degree of freedom compared to a univariate uniform distribution, hence

resulting a more flexible distribution.

2.3 Estimators for Distribution

In this section we explore and review some estimators of PDF and CDF for nonpara-
metric continuous distribution. Suppose we have a dataset D = (X7,..., Xy) Sy
where X t.v.i R” and from an unknown distribution d with CDF d.F and PDF d. f.
n 1s the dimension of each X. For univariate random variable, n = 1. For sim-
plicity, we write f for d.f anf F' for d.F'. Given this random sample, we want to
estimate the distribution, d. For a distribution of continuous random variable, the

PDF and CDF can obtained by the relationship below.

Integrate

Differentiate

i. A function f is of type f : R — [R — RT].
ii. A function F'is of type F': R" — [R — [0, 1]].

Histogram Estimator

A very well-known and easy to implement distribution estimator is the histogram. It
is similar to a bar chart but the histogram is continuous. In the histogram algorithm,
the collection of X;, ¢ = 1,..., N, are first sorted in increasing order and then
divided into groups, called bins. There are three important parameters in histogram
estimator: (1) number of bins, B; (2) the width of the bins, w; (3) starting points of
the histogram. These three parameters affect one another and control the shape of

the distribution. B and w are related are related by Eqn (2.3.1, )

B=—. (2.3.1)

w
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where NV is total number of data points. Consider using histogram PDF estimator.
There are multiple ways to estimate PDF using histogram: (1) specifying the num-
ber of bins; (2) specifying the bin width; (3) start the histogram from 0; (4) start the
histogram by the minimum X;. We show the algorithm for estimating distribution

via histogram PDF estimator as in Algorithm 1.

Algorithm 1 Estimating PDF by histogram

1: Inputs:
Sample data: D = (X3, ..., Xn)
Bins: B; where j = 1,..., M A
2: Outputs: Estimated PDF at the point z, f(z).
3: Steps:
4: Re-arrange D so that it is from minimum to maximum, i.e. X(y), ..., X () where
X(1) 1s the minimum value in D while Xy is the maximum.
5: Find the range, R, i.e. R = X(n) — X1
6: Divide R by M to find the width, w;, of each bin such that, w = i
7: Count the number of X; in each B; and divide it by the w,

S

N
. 1
b= ;](Xi € Bj)
where I counts the number of X inside each bin B; for j = 1,..., M

8: Then, the estimated density centred at point z by finding which bin B; for
j=1,..., M that z belongs to and compute f(z) = Zj\il g;l(z € B)).

Naive Estimator
The naive PDF estimator is similar to histogram and based on counting the relative

frequency of the observations in a small region,
o1
f(z) =lim —N, (2.3.2)

where N, is the number of X; € [x — h,z + h]. Another representation of naive

estimator is

f<x>=Nihi§:w($;Xi)
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where
if lz| <1

1
2
0 otherwise.

and ¢ is a delta function.

Empirical CDF
The empirical CDF (ECDF) is a step function that jumps up by % at each point ¢
for the random sample X . Formally, ECDF at a point x is defined as

N
Fy(e) =P(X, S 1) = S 1(X < ) (233)

i=1
where 1 is an indicator function such that

1 if X<z
0 if Xi>x

1(X;<z)=

that counts the number of X; that are less than x. The algorithm for ECDF is shown
in Algorithm 2.

Algorithm 2 Estimating CDF via ECDF

1: Inputs:
Sample data: D = (X4, ..., Xn)
A point x )
2: Outputs: Estimated ECDF, Fy(x)
3: Steps:
4: Re-arrange D from minimum to maximum, i.e. X, ..., X(y). where X is

the minimum value in D while Xy is the maximum.
5: Count the number of X ;) that is less than x, n = sz\il 1(X; <x)

. n
6: Compute the average over N, +

ECDF is similar to the histogram but without putting the observations into a bin
(hence removing the parameters of the histogram i.e. bin width, number of bins)
and each X, is ordered in an increasing pattern (the value of X(;) < X41)). A
larger number of observation will lead ECDF to approach the true distribution for
which D is sampled from. An example of ECDF plot is in Figure 2.3 where we can

see the steps in between each point.
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Plots of ecdf

Figure 2.3: Plots of two different ECDF. The red line shows the plot of ecdf for
N = 5000 and the black dash shows the plot for N = 50.

Kernel-based Estimators
Even though histogram is able to estimate PDF for continuous random variables,
its bins are discrete and not smooth. One possible way to overcome this is to use

kernel functions.

Just like histograms, the kernel based estimator is also a nonparametric method to
estimate the PDF and CDF of a nonparametric distribution. The PDF and CDF
follow the properties of the underlying kernel function (denoted as K'). The kernel
function K is a measuring tool to count the number of X; of D that lies within the
bandwidth A from the centre x. When K is a naive kernel function this will lead

back to the naive estimator.

A kernel function not only acts as a weight function but also enforce continuity
to the PDF and CDF. In addition, a kernel function on its own is also a PDF as it

satisfies the following.

i.  The area under the curve is 1: [ K(u) du = 1.
ii. Always positive: K (u) > 0.
iii. Under a certain region A, the probability that any point u € Ais: [, K(u) du.
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i. is the most important must have property of a kernel function. This property
ensures that the kernel can be used for probability distribution. Optional properties

of kernel functions are as below:

i.  Symmetric: K(u) = K(—u)

ii. Central mode: K (u) reaches its maximum when u = 0.

The kernel PDF of a point x using the sample X, ..., Xy is

) 1 & -~ X
f(@szK(x ; ) (2.3.4)
=1

where h € R is the bandwidth and NV is the sample size. Here, h is the parameter

that controls the degree of smoothness of the PDF and will need to be estimated (see
Chapter 4 on methods to estimate the bandwidth). The kernel function K controls

the weight of each X; at the point x.

The kernel CDF is obtained by integrating its PDF, such that

N 1 N r— X;
F(x)=— 1 ( Z) (2.3.5)
where
I(x) = /w K(u) du (2.3.6)

The choice of the bandwidth A plays a major role in determining the accuracy of the
estimated PDF and CDF. However, the type of kernel function used does not play
a significant role in the estimation ([9]). Table 2.1 shows frequently used kernel

functions in kernel estimator.

Types of kernel Kernel function
Uniform K(u) = $1(Jul <1)

Gaussian K(u) =
Epanechnikov K (u) = 2(1 — u?)1
(u) =

Triangular K(u

Table 2.1: Table of examples of kernel functions.
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where 1 is an indicator function such that

I(jul <1) =
if u > 1.

K-Nearest Neighbor (KNN) Estimator

K-Nearest Neighbor (KNN) is another nonparametric method to estimate distribu-
tion. The algorithm to estimate the PDF at a point x using KNN is by ranking the
distance between each sample data X; and the point x.

Let R} (z) be the distance from z to the k-th nearest neighbour point X; where n is
the dimension of X, then the PDF at the point z is

k

f = — 2.3.7
fKNN(ZL“) NV, R} (:c) ( )
where V,, = F(%fl) and k is the parameter that controls the smoothness of the PDF.
2

For univariate PDF estimation, the KNN estimator is

Froon @) = s (2.3.8)

xTr) = .

NN INRy(z)

[5] suggested to use k& = n'/? while [10] suggested k = N'/", with n is the dimen-
sion of X; while N is the size of the dataset.

Penalized Likelihood Estimator
Maximum likelihood estimation is normally used for estimating parameters. How-
ever, it was proposed by [11] and [12] and further explained in [13] to estimate the
PDF using maximum likelihood estimation. This is done by estimating the entire
curve. Consider a curve function f. Initially, the log likelihood of fis

N

L(f) =) _log f(X). (2.3.9)

i=1

Maximising the above equation leads to a rough solution of the mean of a set of

Dirac functions at the N observations. To resolve this issue, subtracting the rough-
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ness of PDF f was proposed resulting maximising the likelihood function below,
Lo(f) =) log f(X;) — aR(f") (2.3.10)

where & > 0 and R(f") = Ik <f”(x))2 dx. « is a smoothing parameter that
controls the roughness of R(f") (i.e. small « causes R(f") to be less smooth). The
Eqgn (2.3.10) has the advantage to control the goodness of fit of f (from the first
term) and the smoothness (from the second term). Any function that maximises

Eqn (2.3.10) is a maximum penalized likelihood estimator.

[14] introduced a variant of the penalizing factor. Rather than using [ ( f "2 dx, [14]
suggested to use R(f) = S (%)3 log f(x)? dz. Using this approach, as a — o,
the PDF estimator tends to a Normal distribution with mean and variance of the
sample data. Furthermore, the log-likelihood function in Eqn (2.3.10) depends on
the logarithm of f , which tends to a positive estimated PDF. Then, [15] transformed
fin Eqn (2.3.10) using logistic PDF. Distribution spline estimators are further de-
veloped by [16] and [17].

Other Distribution Estimators

So far, we discussed five family of nonparametric distribution estimators (i.e. his-
togram, kernel, KNN, ECDF, and penalized). Note that there are different variant of
kernel methods including variable kernel ([S]). [18] proposed a log-spline approach
where logarithm of PDF is modelled by spline. [19] proposed to use a wavelet
approach in addition to explaining the criteria function for the wavelet PDF. [20]
suggested to view mixture distribution estimator to be considered as another fam-
ily of distribution estimator which consists of different base functions for each X;.
Another family of distribution is by using machine learning approach. [21] [22]
proposed to estimate the PDF using neural network. [23] proposed to use decision

tree to estimate PDF with similar methods by [24] and [25] but using hypercube.



Chapter 3

Distribution Estimation in Machine

Learning

3.1 Introduction

The objective of this chapter is to provide a review on machine learning and to
frame distribution estimation as a supervised learning task. Distribution estimation
is a learning task that is commonly categorized as unsupervised learning ([1], [2]).

In this section, we frame distribution estimation as probabilistic supervised learning.

This chapter consists of two parts. In the first part, we discuss the machine learning
concepts:(1) supervised learning for regression and classification; (2) unsupervised
learning; (3) meta-learning. This section is to give an introduction to the concept
of machine learning and a clear distinction between supervised and unsupervised
learning. The second part of this chapter is to frame distribution estimation as su-
pervised learning. We first describe the setting where it can be viewed as super-
vised learning. We present the goal of supervised distribution estimation is to learn
a function that predicts a distribution. Then, we show that the divergence between
generalization loss of an estimated distribution and generalization loss of the true
distribution is equal to the Kullback-Leibler and MISE in the distribution estimation

setting.

3.2 Machine learning: Basic Concepts
This section is a review of machine learning concepts based on [3], [1] and [2]. In
this section, we summarize and distinguish between supervised learning and unsu-

pervised learning and also review meta-learning.
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By looking at the types of learning task, machine learning can be categorized into
supervised learning, unsupervised learning and reinforcement learning. We will
focus the on the first two. In supervised learning, the goal is to learn a function
f that maps the input variables to the output variable. The dataset in supervised
learning consist of a paired dataset (i.e. for every input there is an output or a
label). In addition, supervised learning has a loss function that enables a feedback
mechanism which is use to evaluate if f maps the input correctly to output. In
unsupervised learning, the task is to learn a function that is used to describe the

relationships within the dataset. The datasets used consist of unpaired data.

This section is organized as follows. In Section 3.2.1, we describe supervised learn-
ing via regression, its aim, the properties of the estimators and how to evaluate the
performance of the learning algorithms. This is followed by a discussion of classifi-
cation task in Section 3.2.2. Then, we will discuss unsupervised learning in Section
3.2.3, including the aim and methods. Lastly, we review some meta-learning algo-

rithms in Section 3.2.4.

3.2.1 Supervised Learning: Regression Tasks
The focus of this section is to provide a review on regression tasks. We define the

setting, objective of the supervised learning and evaluation of the learning task.

3.2.1.1 Settings

For supervised regression tasks, we have the following setting. Consider a training
dataset D = {(X1,Y1),...,(Xn,Yy)} & (X,Y) where (X,Y) t.vi (R" x R).
Each X; comprises the features (explanatory or independent) variables and Y; is the
target (response, label, dependent) variable. The goal of a supervised regression
is to find a function f : R” — R that is able to predict Y given X. A learning
algorithm A is a process that uses the training dataset D to produce an estimator
f = A(D). f is an estimate of f. f is a good estimator if it can produce an accurate

prediction of Y.

3.2.1.2 Function Estimation in Regression
In supervised learning, we assume there exists a relationship between X and Y.

The relationship is modelled by an unknown function f,

Y =f(X)+e
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where ¢ is the error term that is independent of X and has mean 0. However, most
of the time only X is available and Y need to be predicted in which the prediction
is based on the function f. Let Y be the predicted Y. The true f for any X and Y is
unknown, hence there is a need to estimate it. Denoting f as the estimated function,

then the relationship between Y and f is

~

Y = f(X).

However, it difficult to obtain f thatisequal to f. A f is considered good if it is able
to compute Y that is close to the real Y. Therefore, a measure is used to evaluate
the accuracy Y, by measuring the its difference with Y. We will discuss further in
Section 3.2.1.3.

There are various estimators for f which we do not cover here because they are
not the focus in this thesis. See [1], [2] and [3] for examples of estimators the for

regression task.

3.2.1.3 Evaluating the Performance For Regression Tasks

In this section, we discuss evaluating the performance of the estimator f for a re-
gression task. For a regression task and the training dataset D, we can have multiple
f to predict Y where different f will output different Y. However, it is important to
choose f that can best describe the relationship between X and Y of training dataset
D to obtain the most accurate ¥ (i.e. the predicted value is close to the true value
of V). Evaluating the performance of f is by computing the discrepancy between

Y and Y using loss functions.

Loss Function

A loss function is a tool that oversees the performance of the estimator f . Itis used
to evaluate the performance of f by measuring the discrepancy between the true Y
and the predicted Y.

* In the regression setting, the loss function is a function of type £ : R x R — R.
* It is important to evaluate the performance of f on an unseen dataset (test set).
j.i.d o .
Let the test data be (X*,Y*) "' (X,Y). The generalization loss (test error, risk

function or prediction error), is

R(f) = Exy [£ (f(x),y") D]
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The expectation is taken over (X*, Y*) and the training dataset here is fixed. This
is known as the conditional generalization loss. The (conditional) generalization
loss is only specific for a fix training data, D .

« However, f is random and R(f) is random due to the randomness of f (from to
the randomness from D).

» The expected generalization loss (also known as expected risk, unconditional gen-

eralization loss, expected test loss or expected prediction error) is,
Ep[R(f) = Epxy |£(F(X) )| =E | (f(x).7)]

Taking expectation on R( f ) remove the randomness of from f. The expected
generalization loss is the expectation of everything that is random. This is useful
to evaluate the performance the learning algorithm .4 and considering the perfor-

mance of the learning algorithm.

3.2.1.4 Examples of Loss Functions for Regression Task

For regression task, two loss functions that are normally used are shown below.

i.  Squared loss,

La(y,9)) =y —9)* (3.2.1)

1i.  Absolute loss,

Lavs(y,9) =ly — 9l (3.2.2)

The expected generalization loss of both can be obtained by taking expectation
over the loss functions. The expected generalization squared loss is known as the
mean squared error (MSE). The squared loss has the advantage to measure the bias-
variance trade-off of a function f (see Section 3.2.1.5). The expected generalization
absolute loss is the mean absolute error (MAE). The squared loss is better in detect-
ing outliers compared to the absolute loss ([2]). In the presence of outliers in the
predicted values, the difference between ¢ and y will be large and the squared dif-
ference will be even larger. Therefore, the squared loss value is large in presence of
outliers. In contrast, the absolute loss is not as good as the squared loss in detecting
outliers [2] because the value of the absolute loss will not be as large as when using

the squared loss.
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3.2.1.5 Decomposition of the Generalization Loss
The expected generalization loss can be decomposed into bias and variance. To
show that, we define the bias, variance and the trade-off between the bias and vari-

ance below for any estimator.

Definition 3.2.1. Suppose 0 is a parameter we want to estimate and its estimator is
denoted as 0 is a random variable. Let the expectation of the estimator 0 be denoted

as E[f]. Then, the bias and the variance for 0 are

bias|f] = E[0] — 6 (3.2.3)
Varll] = E [(é - E[é])?} (3.2.4)

respectively.

Def 3.2.1 is a formal definition of bias and variance of a parameter. As in Def
3.2.1, bias is a measurement of discrepancy between the true unknown parameter
and the expected estimated parameter whereas variance measures the expectation of
squared difference between the estimated parameter and expected estimated param-
eter. An estimator is considered good when trade-off between the bias and variance
are balanced. This is to avoid an estimator having an extremely high bias and an
extremely low variance or vice versa. A good example to measure this trade-off is
by using the mean squared error (MSE). We define the MSE for a parameter ¢ in
Def 3.2.2.

Definition 3.2.2. Mean squared error (MSE) of an estimator 0 for the parameter 0

is the expectation of the squared distance between 0 and its true value

MSE[)] = E[(6 — 0)?.

MSE can be decomposed into the bias and variance. For clarity, we show the de-

composition in Proposition 3.2.1 below.
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Proposition 3.2.1. Let 0 be an estimator of 0, then the MSE of 0 is

A N N

MSE[)) = Var|0] + bias[0)?

Proof.
MSE[f] = E[(§ — 0)?]
—E [(A — E[f] + E[§] — 0)?
= E[(0 — E[0])*] + (E[0] — 0)°
= Var[f] + bias[d)?
where the bias and variance are defined in Def 3.2.1. ]

Using the definitions of bias and variance together with Proposition 3.2.1, we show
the decomposition of the generalization squared loss of the predictor f for the re-

gression setting.

Proposition 3.2.2. Let the training dataset be D = {(X1,Y1),...,(Xn,Yn)} Sy
(X,Y) where (X,Y) tvi (R",R). Let the test data be (X*,Y*) "“" (X,Y). Let
f be a function of type f : R* — R. Let A be a learning algorithm that produce
f = A(D). The expected generalization loss using the squared loss in Eqn (3.2.1)

can be decomposed to

E [(f(X*) - Y*)Q] — Var[f(X*)] + Bias®[f(X*)] (3.2.5)
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Proof.

(foe) - Brioe)’| 4 | (srice) - 71)° |+

E | (Bl - 7°) ]
—Var[f(X*)] + Bias?[f(X*)] + Noise (3.2.6)
]

[1] refers to bias term as the “error that is introduced by approximating a real-life
problem”. It arises due to the model, f , not being able to accurately fit the compli-
cated real-world data. Meanwhile, the variance term is the “amount by which the
estimator f would change if we estimate it using different training dataset”. There-
fore, a flexible estimator will have a higher variance with low bias compared to a
less flexible method which will be the opposite. The noise term is known as the

irreproducible error.

3.2.1.6 Properties of Loss Functions: Convexity

Consider a function g. The function g is convex such that when we take any two
points z; and x5 and evaluate them on g, the line that connects g(z1) and g(x») lies
above the graph function. A proper definition of a convex function is shown in Def
3.2.3 below:

Definition 3.2.3 ([26]). Let g be a function where g : RN — R. Then, g is convex

if the domain is a convex set and for all x1 and x5 in its domain, and \ € [0, 1] we
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have

g Az + (1 = AN)az) < Ag(w1) + (1 — AN)g(za). (3.2.7)

A continuous function is strictly convex if the equality of Eqn (3.2.7) holds with
the additional condition x; # x5 and 0 < A < 1. Convexity implies that any local
minima is the global minimum of the function. Under strict convexity, the minimum
point is unique.

Recall in the regression task, the goal is to construct a function f that best models
the data D. A loss function £ : R x R — RT is strictly convex if £(f(X),Y)
is strictly convex for all y € R. If the loss function is strictly convex, then the
generalization loss is also strictly convex (see [27]). The squared loss is an example

of strictly convex loss.

3.2.2 Supervised Learning: Classification
In this section, we review another task in supervised learning which is the classi-
fication task. We define the setting, the function estimator, its properties and loss

functions used to evaluate the performance of a classifier.

3.2.2.1 Setting

For classification task, we have the following setting. Consider the training dataset,
D = {(X1,Y1),....(Xn,Yn)} & (X,Y) where X t.vi R" and Y is a type of
discrete variable. For simplicity, we let Y t.v.i {0,1} (binary classification task).
The goal of the supervised learning is to construct a function of type f : R" —

{0,1}. Then, A is a learning algorithm that trains D to produce an estimator f=

A(D).

Classification task is not restricted to binary task. There are other types of classi-
fication methods including multi-class, multi-label and imbalanced classification.

However, we do not discuss them here.

3.2.2.2 Function Estimation

Classification task is a type of supervised learning because of the existence of the
target variable Y. The variable X and Y are related by the function f. The function
f maps X to the class label. For the setting in Section 3.2.2.1, for each value of
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X can either be mapped to 0 or 1 (binary case). Therefore, classification task is a

method to group data.

Functions for classification task are called classifiers. A classifier can be categorized

Into two:

i.  Classical classifier: This is the classical function that maps X to the class
label. From Section 3.2.2.1, a label classifier is f : R™ — {0, 1} where the
target variable is binary.

ii. Probabilistic classifier: This is a more ‘generalized’ classifier. Instead of
predicting the label of the target variable, it predicts the probability of the
target variable given the feature variable. This uses conditional distribution
function, f : R® — [{0,1} — [0, 1]] (for binary label). The return is a type
of distribution defining function. For example, using the setting in Section
3.2.2.1, a classifier f predicts the probability for any given X; that it belongs
toY =0and Y = 1.

3.2.2.3 Evaluating the Performance For Classification Task
This section is a discussion on how to evaluate the performance of a classifier. Sim-
ilar to the regression task, a loss function is required to oversee the performance of

the classifier. In this section, we discuss the loss functions for classification.

Loss Functions
Recall that classification is a mapping f : R* — {0,1} or f : R* — [{0,1} —
[0, 1]], i.e. mapping to the class label or to the probability of the class label, respec-

tively. For each type of mapping, the loss function is shown in Table 3.1.

Type of classifier Classifier Loss function

Classical classi- f: X — Y L:YxY—>R

fier

Probabilistic f: X =[Y—10,1]] L:]Y—=[0,1]xY—=>R
classifier

Table 3.1: Table of functions for classifier loss functions. Here we use the notation
where X e Y CR"andY € Y ={1,...,C}.

Consider the classical classifier in Table 3.1. The loss is incurred when the predicted

class is not equal to the true class. That is, for binary case, the loss is 1 if Y #Y.



3.2. Machine learning: Basic Concepts 46

For classical classifier, the loss measures the difference between the predicted label
and the true label. For binary probabilistic loss, the loss function measures the
difference between the true label and the probability of predicted label. An example
of probabilistic loss is the Brier loss in Def 3.2.5. The expected generalization

classification loss is computed by taking expectation of the loss function.

3.2.2.4 Examples of Loss Function for Classification
In this section, we provide some of the frequently used loss functions for the classi-
fication task. We group the loss function into: (1) loss function for label classifier;

(2) loss function for probabilistic classifier.

Loss functions for the Classification Setting: Label Classifier

Examples of loss functions for classifiers are below.

i.  0-1 loss (for binary classifiers)

Ln(y,9) =1y # 9) (3.2.8)

ii.  Hinge loss (for support machine vector)

Ehinge(@/u Q) = maX(O7 (1 - y)g) (329)

The 0-1 loss in Eqn 3.2.8, also known as the misclassification loss, is a standard loss
function for classification tasks. As it suggested, a loss of 1 is incurred when the
output of the learning function is not equal to the the true label. 0-1 loss is robust
to outliers. However, this loss function is seldom used because it is non-continuous
(not differentiable at 0) and non-convex (refer [28] for further discussion). The
hinge loss in Eqn 3.2.9 is another classification loss normally for support vector
machine (SVM) where it uses the max-margin property [2], [1]. For simplicity, we
consider the binary SVM, where the classes of a label variable is separated by a hy-
perplane. There exist margins on the left and right side of the hyperplane. The hinge
loss penalizes prediction based on two things, incorrect predictions and unconfident
predictions (i.e. the loss can occur based on these two cases). The unconfident pre-
dictions are the predicted values that lie inside the margins. Therefore, the hinge
loss is 0 only when the prediction is on the correct side whereas it is non-zero when

prediction is on the wrong side or within the margin ([1]).
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Loss functions for classification setting: Probabilistic classifier
So far, the examples of loss function shown are for predicting the class label.
Throughout this section, we consider the probabilistic classifier where the output

of f is a probability distribution of the class Y.

First is the logistic loss function in Def 3.2.4, also known as the cross-entropy loss.
The logistic loss function is used to evaluate learners of logistic regression. The
logistic function is similar to 0-1 loss but it compares the prediction distribution
and the label. It can be seen a ‘relaxation’ of the 0-1 loss. It solves the continuity

and convexity issue of the 0-1 loss.

Definition 3.2.4. Let f : R" — P where P C [{0,1} — [0, 1]] be a probabilistic

logistic classifier. Then, the loss function is

Liog(P,y) = — (ylog P(y) + (1 —y)log(1 — P(y))). (3.2.10)

Another probabilistic loss function is the Brier loss, introduced by [29] to measure
the accuracy of a weather forecast. This loss function is a squared distance between
the predicted probability and the true class of Y (i.e. it is similar to the squared loss
in the regression setting but with different inputs). The definition of Brier loss for

binary variable is in Def 3.2.5.

Definition 3.2.5. Let P be a set of CDF, such that P C [{0,1} — [0,1]]. Then,
binary Brier loss, L : [P x {0,1}] — R, is defined as

(1=Py)* if y=1

£bl(P7 y) = P(y)2 lf Y= 0

which can be written as

Lu(P,y) =y(1 = P(y))* + (1 —y)P(y)*. (3.2.11)
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The binary Brier loss in Def 3.2.5 is always between 0 and 1, where 0 means the
probability is accurate while 1 means prediction is 100% untrue. A more general

way of expressing the binary Brier loss by [30] is,

Ly(P,y) =(y — P(y))* (3.2.12)

For probabilistic classification with multi-class problems ([29]), X € R* and Y €
{1,...,C} where C' € N where is C' denotes the number of class. The classifier f
is a function f : R® — P where P C [{1,...,C} — [0, 1]]. The multi-class Brier

loss is

Lon(Py) =Y (y; — P;())” (3.2.13)

j=1
where y; = 1 when the 4" event is observed and y; = 0 otherwise.

An extension of Brier loss is the rank probability score ([31], [32],[33]), which is
the squared distance of the predicted cumulative probability distribution and the

cumulative observations.

3.2.2.5 Properties of Estimator Function in Classification
In this section, we review the bias and variance properties of a classifier. Then, we

discuss how the bias and variance of a classifier relates to the bias-variance trade-
off.

Recall the definition of bias in Def 3.2.1. Bias is the difference between expected
prediction and its true value. However, in the classification task, when expected
estimator is equal to the true estimator, the bias is 0 and vice versa. Therefore, the

bias for classifier can only be two values, O or 1,

A

0 if E[f(x)] = f(x)

1 otherwise

bias(f ()] =

The variance is a measure of expected difference between the prediction and the
expected prediction value. It usually measures how much the model differs using

a different dataset. The variance of a classifier is usually taken in the probability
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form, ([34])

Var[f(2)] = P(f(z) £ E[f(2)])

The bias-variance decomposition was developed based on the squared loss for the
regression task. The trade-off for classification is not as straight-forward as in re-
gression. The bias-variance decomposition for classification task using the 0-1 loss
functions is further discussed by [35], [36], [37], [38], [39], [34].

3.2.2.6 Properties of Probabilistic Loss Function for Classification: Proper
Properness ([40]) is a general property of evaluating probabilistic prediction (inl-
cuding probabilistic classification) and was first applied by [29]. As quoted in [41],
properness is “to develop ways of motivating a forecast to be honest in the predic-
tions he announces, and of assessing the performance of announced probabilities
in the light of the outcomes then eventuate”. Properness of a generalization proba-
bilistic loss function is defined in Def 3.2.6,

Definition 3.2.6. Let P be a set of PDF, such that P C [R — R*] and let the loss
functionbe L : P x R — R. Let Y tv.i R. Then the loss function is

1. proper if
EL(g,Y)] <E[L(p,Y)]

forallp,q e PandY ~ q.
2. strictly proper if q,p € P, the following are equivalent
(a) q=pand
(b) E[L(p,Y)] =E[L(q,Y)]

From Def 3.2.6, only the true distribution will minimize the generalization loss.

3.2.3 Unsupervised Learning
In this section, we review unsupervised learning by defining the setting and the aim

of the learning and some methods that perform the unsupervised task.
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Unsupervised learning consists of learning methods based on datasets that only
have the feature variables. The objective of unsupervised learning is to explore
the dataset by finding: (1) relationships between the data points; (2) relationships
between variables; (3) more information and better understanding of the dataset.
Thus, the objectives of unsupervised learning are different compared to supervised
learning (which is prediction) but related. Unsupervised learning can be seen as
a pre-processing stage of the dataset that is by understanding the properties of the

dataset will help to make a better prediction.

Earlier, we discussed the use of loss functions which aid in evaluating methods
by comparing the true and the predicted value of the target variable for supervised
learning (or comparing the true value of the target variable and the predicted distri-
bution of the target variable). In unsupervised learning, there is no loss function to
oversee the performance of the estimator. However, unsupervised learning involves

an optimizer that is used to estimate the parameters of the method.

3.23.1 Setting:
The setting for unsupervised is given here. Consider a training dataset D = (X7, ..., Xy)
where X t.vi R".

3.2.3.2 Objectives in Unsupervised Learning
This section is a summary review on some of the unsupervised learning objectives.
The three main goals of unsupervised learning task are: (1) inference; (2) feature

extraction; (3) density (distribution) estimation.

Inference

Inferencing is deducing population properties based on a dataset. This can include
hypothesis testing and estimation. In supervised learning, inference occurs in the
estimation of the parameters of a model. For unsupervised learning, inference is to
explore the pattern or the distribution of the dataset. Clustering is an example of an
unsupervised method that enables us to understand the structure of the dataset as it

studies the relationship between points or between variables in the dataset.

Feature extraction
Consider dataset D in the setting in Section 3.2.3.1. Feature extraction is the process
of reducing the dimension of D with n variables to another dataset D set with a

lower number 17 < n of variables, (i.e. the new dataset will have fewer columns
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than the original data set). In this method, all of the variables are used during the
transformation process. The main purpose is to reduce the dimension of the original
data set D.

This method uses a function f that maps the current feature space to a new feature
space, f : R" — R™ where the new data set is denoted as D = (Xl, - XN) and
X; € R™. The process of extracting the features or transforming them is sometimes
a crucial step before the features can be used in the supervised learning predic-
tion stage. Feature extraction can also be supervised depending on the methods
used. Examples of unsupervised learning methods are principal component anal-
ysis (PCA), factor analysis, clustering (for categorical data) and multidimensional

scaling.

Distribution Estimation

Another goal of unsupervised learning is distribution estimation which is a subset
of inference. Distribution estimation can also be viewed as supervised if it is con-
ditional but for a non-conditional setting, it is considered as unsupervised. For the
latter setting, where X t.v.i R, is a univariate problem where X is from an unknown
density function f. Then, in the unsupervised setting, the aim is to estimate the
density of a point z € R, i.e. f (). Methods of estimating density can be either

parametric or nonparametric.

3.2.4 Meta - Learning

This section is a review on meta-learning and what it constitutes. Each meta-

learning algorithm has its own purpose.

The concept of meta-learning is still vague and has no consistent meaning through-
out literature. [42] defines meta-learning as a learning based on experience to un-
derstand the flexibility of the learning based on the domain and task. [43]’s view
of meta-learning is “the understanding of the interaction between the mechanism
of learning and the concrete contexts in which the mechanism is applicable”. [44]
described meta-learning as a process that monitors the automatic learning process
itself and tries to adapt its behaviour to perform better. [45] took in considera-
tion from different literature including [42], [46], [43] and [44] and concluded that
meta-learning is a learning system that includes base system that has experiences
from learning on a single dataset or (and) different problems. In our perspective,

meta-learning is used to improve learning process. In this section, we will focus on
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some of the meta-learning algorithms and discuss how they are considered meta-
learning. Throughout this section, we will use the setting from the regression task

as in Section 3.2.1.1 (or setting in Section 3.2.2.1 for classification task).

3.2.4.1 Meta-learning: Algorithm Recommendation or Parameter Tuning
Model selection is the process of selecting the best model by estimating the perfor-
mance of multiple models ([2]). The performance of the models are evaluated by
the empirical generalization loss. The best model will have the minimum empirical
generalization loss. The process of tuning the parameter of a model is also a part
of model selection. This method satisfied [45]’s definition of meta-learning where
it learns from a single dataset for different problems. Different parameters input of
a learning base model is considered as a different algorithm and will have different
effects ([44]).

Meta-learning for tuning problem will learn from the input vector of parameters into
the learning function and selects the optimal parameter with the minimum empirical
loss. Tuning is performed during the training stage using the training set. However,
from Section 3.2.1.3, this method will increase the chance of over-fitting since the
training set is also being used for fitting. To avoid the problem of over-fitting,
splitting the training set further where one set is for training and another is used from
evaluation/tuning. This is known as out-of-sample tuning. The optimal parameter is
chosen by minimising the empirical out-of-sample loss w.r.t the parameter. A more

detailed discussion on tuning is in Chapter 6.

3.24.2 Meta-learning: Ensemble Learning

Meta-learning that learns from combination of algorithms is known as ensemble
learning. The goal of ensemble learning is to combine multiple weak learners to
produce a stronger one. In this section, we look into different ensemble learning

algorithms.

Bagging

Bagging [47] also known as bootstrap aggregation is an ensemble learning algo-
rithm which aims to reduce the variance of the learning method by repeated random
sampling with replacement. The repeating re-sampling process and taking the aver-
age will reduce the variance. In bagging, the training set, D, is re-sampled B times
by bootstrapping (i.e. a random sampling method with replacement). Let D’ be a

bootstrapped dataset for b = 1,..., B. A learning function, f , 1s trained on each
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bootstrapped training set, D, and each trained function f b is then apply on the test
set, D* to produce B predictions, f L f B The average of the predictions is then

computed.

flx) = éZfb(x)- (3.2.14)

B
b=
[46] and [44] constitute bagging as part of meta-learning because it uses knowl-
edge from different learning tasks. The different learning tasks arise from repeated
re-sampling with replacement which result to independent D°. The algorithm for

bagging is shown in Algorithm 3.

Algorithm 3 Algorithm for Bagging

1: Inputs:
Training data: D = ((X1, Y1), ..., (Xn, Yn))
Test data: D* = ((Xikayvl*% t (X]T/[?Y]CI))

Learning function, f
. Steps:

:forb=1,...,Bdo

Resample D to obtain D!, ..., D? sets
Train f on D' to obtain f*,..., fB
Use f b for predictions on D*

end for

S A A

: Output: Average prediction over B as in Eqn (3.2.14).

Boosting

Boosting is another ensemble learning algorithm to improve prediction by com-
bining weak learners sequentially to produce a stronger learner [2], [1], [48]. The
concept used in this method is that a weak learner is better than just making a ran-
dom guess [2]. By correcting and combining learners, the resulting new learner will
be much better in predicting. Since the new learner depends on the previous one, the
learners are not independent. There are many boosting algorithms that have been
developed such as AdaBoost [49], gradient boosting [50] and stochastic gradient
boosting [51].

Gradient boosting is related to gradient descent algorithm, such that for a function

h(6), gradient descent minimise /4 w.r.t f by moving to the opposite direction of the
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gradient. Hence, the new 6, is updated in each step by below:

On(0)
o 96,

Oip1 =0; —

The general algorithm of gradient boosting has been discussed by [52], [53] and
[51]. Gradient boosting by [50] can be broken down into three steps: (1) initial-
ization; (2) projection of gradient learner; (3) line search ([53]). The algorithm for

gradient boosting using the squard loss from Eqn (3.2.1) is shown in Algorithm 4.

Algorithm 4 Algorithm for gradient boosting for least square regression [50]

1: Inputs:
Training data: D = ((X1, Y1), ..., (Xn, Y)); Number of
boosting steps: B € N; base learner: h : R" — R; Step size,

acR
2: Output: f(X) = f,(X)

3: Steps:
4: Initialize:
Set fo=x 2, Yi=Y
5: forb=1,...,Bdo
6: Compute the residuals forall: =1,..., N

e =Y; — fun(X)

7: Fit a base learner, hy, using X as the input and ¢é, as the input to output
I (X)

8 Update f,(X) = f_1(X) + ahy(X)

9: end for

Algorithm 4 shows gradient boosting using squared loss in Eqn (3.2.1) and the step
size « is constant and has been set. In the initialization stage, the first learner is
set to be the mean of Y. The residuals are computed in step 6. In general, step
6 of Algorithm 4 which calculates the residuals is the negative derivative of a loss
function £(Y;, f,(X;)) w.r.t f, at each X, i.e.

Eip = =
d fu(Xi)

forb = 1,...,Bandi = 1,...,N. Then, using the feature variable X and the
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residuals, é to fit a base learner and lastly the model f is updated as in step 8.

Stacking

Stacking [54] is a combination of base learners that are trained together on the
same dataset. This method uses two levels of learner: (1) first level learners (base
learners); (2) second level learners (meta-learners). In the fitting stage, a vector
of first level learners f * are trained using the training data, where k = 1,..., K.
The output of all the base learners will be a vector (N x K). This output will
be considered as X and combined with the original Y to be a new data set, D =
(X;,Y;)wherei=1,..., N and X and Y t.v.i RX and R, respectively. D will then
be used to train the second level learners. Figure 3.1 shows the flow of stacking

algorithm for training.

Data, D = (X1,Y;), ‘ Use D for training

Add Y] into a new data set
Vectors of base learn-

Add the out- ers, f5, k = 1,...,K

put matrix to

the new data

New data set, D = (X, Y;) |set as X
where ¢ = 1,..., N and
X tviR¥ and Y tvi R

Output of each base learners

is a vector of N x K matrix

Second level learner

Figure 3.1: Figure for stacking algorithm.

3.3 Distribution Estimation as Supervised Learning
Task

The aim of this section is to frame distribution estimation as supervised learning
task. Distribution estimation has been categorized as an unsupervised learning task

because the dataset used does not have a label variable. Hence, distribution estima-
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tion is mostly used for pattern recognition and inference. Consider a dataset that is
sampled from an unknown distribution. In supervised distribution estimation, we

aim to predict (estimate) the unknown distribution of sample.

Firstly, we define the setting where the task is estimating a distribution of an unla-
belled dataset. Secondly, we define the bias and variance properties of the estimated
distribution together with the bias-variance trade-off. The probabilistic loss func-
tions evaluate the performance of the distribution at a point. Then, we derive the
relationship between the expected generalization probabilistic loss functions and:
(1) MISE; (2) KL-divergence; from the classical statistics.

3.3.1 Setting, Properties and Probabilistic Loss Functions of Dis-

tribution Estimation
In this section, we provide the setting for distribution estimation, the properties of a

distribution estimator, probabilistic loss functions.

33.1.1 Setting
Let the training dataset D = (Y3, ..., Yy) 'Y where Y t.v.i R and Y follows the

unknown distribution denoted by d. d is an element of distr(R) which is a set of
distribution for R™. d can be defined using PDF and (or) CDF.

 The PDF of the distribution d is denoted as d. f, a function of type d.f : R — R™.
* The CDF of the distribution d is denoted as d.F’, a function of type d.F' : R —
[0, 1].

For simplicity, we use the notation of f = d.f and F' = d.F for PDF and CDF,
respectively. Unless stated otherwise, we assume that f and F’ represent the same

distribution d.

The goal of the learning is to construct a function that maps R — distr(R) so that
¢(D) can predict a distribution d, i.e. g(D) = d. To recover the PDF or CDF of the

distribution by learning g(D), we use the notation

9(D) = f (3.3.1)
g(D) =F (3.32)

We write g(D).f and g(D).F to denote that f and F' obtained by learning from
g(D. g is an algorithm that learns using the training dataset D to output a predicted
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distribution d, g(D) = d where d € distr(R). Note that, since f and F' are obtained
from learning g on D, both are also random. Unless stated otherwise, f and F are
obtained by using the same algorithm g where f can be obtained by differentiating

F whileF' can be obtained by integrating f .

3.3.1.2 Properties of distribution estimators

For distribution estimation, the bias, variance and MSE follow similar structure as in
Def 3.2.1 and Proposition 3.2.1. Therefore, we avoid repetition of formulating them
here. However, bias, variance and MSE treat distribution estimation only measure
the accuracy of the estimated PDF (or CDF) at a single point. This measurement
is known as a local measure. Distribution estimation should be treated as a global
problem which can be done by taking integration of the bias, variance and MSE w.r.t
y to obtain integrated bias, integrated variance and mean integrated squared error
(MISE). Unlike MSE, MISE can evaluate two things: (1) average global error; (2)
accumulated point-wise error [55]. By integration, the conditional properties of the

estimated distribution is reduced to unconditional properties.

The MISE for f is defined as,

Mise(f) = E [ (7 - 1) dy (333)

A

Since the integrand is non-negative, Fubini’s theorem can be applied to MISE][f]

and switch the position of expectation and integral to obtain
~ ~ 2
Mise(f] = [ & (Ft) - )] a

MISE can be decomposed into integrated squared bias (ISB) and integrated variance

(IV) as shown in Proposition 3.3.1.

Proposition 3.3.1. Let f(y) be an estimated PDF at a point . Then, the MISE can

be expressed as
mise(f) = [ (Bl w)] - 1) dv+ [E[fw) ~E[fw)]] dy

Proof. The proof follows from Proposition 3.2.1. For clarity, we will show the steps
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as below.

PN

MISE[f] =

From Eqn (3.3.4) of Proposition 3.3.1, the first term is the integrated squared bias,

A,

ISB([f]. It is the integral of the squared difference between the expected estimated
PDF and the true PDF,

15l = [ (ELf)] - 1) dy
= / bias[f (y)]? dy. (3.3.5)

A

The second term of Eqn (3.3.4) of Proposition 3.3.1 is the integrated variance, IV[f].
It is the integral of the expected squared difference between estimated PDF and the

expected estimated PDF,

— / Var[f(y)] dy. (3.3.6)
Hence, MISE can be expressed as

MISE[f] = ISB[f] + IV[f]. (3.3.7)

The MISE is also applicable for measuring the bias variance trade-off for CDF
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estimator, F,
~ ~ 2
MISE[£] _/E [(F(y) . F(y)) } dy (3.3.8)
—ISB[F] + IV[F].

In classical statistics, MISE is used to compare the true and estimated distribution
([55]). Another function is the Kullback-Leibler (KL) divergence,

A~
I

Dis(f, 1) = / £(y)1og 1

)
dy. 3.3.9
f(y) ’ (3:39)

3.3.1.3 Probabilistic Loss Functions for Distribution Estimation

There are three main losses for distribution estimation: (1) log-loss; (2) probabilistic
squared loss (PSL); (3) integrated Brier loss (IBL). These probabilistic loss func-
tions have been introduced in literature. The log-loss was introduced by [56] ([41])
is defined in Def 3.3.1 below.

Definition 3.3.1. Let P be a set of PDF , such that P C [R — RY]. The log-loss
L :P xR — Risdefined as

Lu(p,y) = —logp(y). (3.3.10)

In distribution estimation, the negative log-loss above (log-likelihood) has been
used by [57] and [58] with leave-one-out cross validation to estimate the expected
generalizaion loss [5] (see Chapter 4 on the use for bandwidth selection of a kernel
PDF).

Probabilistic squared loss (PSL) (see [59], [60], [61]) defined in Def 3.3.2 is linked
to the multi-class Brier loss. To support continuity, PSL uses integration instead of
summation and PDF instead of CDF ([59]). [60] and [61] show that PSL is a strictly

proper loss.
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Definition 3.3.2. Let P be a set of PDF , such that P C [R — R*]. Then, proba-
bilistic squared loss (PSL) L : [P x R] — R, is defined as

Lpa(p,y) = —2p(y) + /p(y)2 dy. (3.3.11)

PSL is also known as Gneiting loss [60] and was used in distribution estimation by
[62]. The generalization PSL is obtained by taking the expectation w.r.t Y for fix p
as in Eqn (3.3.12).

E[Lps(p, V)] = E[=2p(Y)] + ||pll3- (3.3.12)

A loss function derived from the rank probability score [31], [32], [33] and is also
linked to Brier loss is the integrated Brier loss (IBL) or commonly known as the
continuous rank probability score (CRPS) is defined in Def 3.3.3. In distribution
estimation, the IBL was used by [63] in leave-one-out cross validion to estimate the
expected generalization loss and subsequently in bandwidth selection of kernel PDF
(see Chapter 4). This loss function is suitable for continuous and mixed random
variables because it takes account the CDF rather than the PDF. The log-loss and
PSL are only suitable for continuous random variables because both evaluates the
loss of the estimated PDF at a point y € R. Mixed random variables have both
continuous and discrete parts. The PDF of a mixed random variable will not always
be defined (the PDF is not defined for the discrete part). Becuase both continuous
and mixed random variables may be defined using the CDF, this makes IBL suitable

to evaluate the distribution of both continuous and mixed random variables.

Definition 3.3.3. Let P be a set of CDF, such that P C [R — [0,1]]. Then, inte-
grated Brier Loss (IBL) L : [P x R] — R, is defined as

LulPy) = [ (H(t =) - Plo)) a (3:3.13)
where H (z) is the Heavy - side function,

0 if z2<0
1 if z > 0.

H(z) =
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Equivalently, we can re-write IBS as

Lin(P,y) = /y

—0o0

P(t)?* dt + /00(1 — P(t))* dt. (3.3.14)

3.3.1.4 Properness of the Probabilistic Loss Functions for Distribution Esti-
mation

Probabilistic loss functions require to satisfy the properness property as in Def 3.2.6.

All three probabilistic loss functions (log-loss, PSL and IBL) are strictly proper

as stated in [60] and [61]. The properness of the log-loss and PSL are shown in

Proposition 3.3.2.

Proposition 3.3.2. Let P be a set of PDF such that P C R — R*. Let p,q € P.
Let Y be a random variable distributed by p.

i. The log-loss in Def 3.3.1 is strictly proper.
ii. The PSL in Def 3.3.2 is strictly proper.

Proof. 1. Recall the log-loss in Def 3.3.1. By the definition of properness from Def
3.2.6,

E[lLu(p,Y)] — E[Lu(q,Y)] = — / log(p(y))p(y) dy + / log(q(y))p(y) dy

_ o a(y)
—/p(y)l 8 ) dy

=Dk1(p,q) (3.3.15)

By Gibb’s inequality, the divergence is KL-divergence Dy (p, q) is always more
than or equal to 0 which leads to the properness. In addition to that, the log-loss is
strictly proper if ¢ = p.

ii. Recall the PSL in Def 3.3.2. Using Def 3.2.6,

E[Lpu(p, V)] — E[Lpu(a, V)] =gl — 2 / () dy + ||l
- / (0(y) — a(y))? dy (3.3.16)

The squared in the above divergence leads to non-negative, hence proper. When

q = p, leads to a strictly proper loss.
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]

Brier loss has been known to be a (strictly) proper loss. The IBL which is a deriva-
tion of the Brier loss is also (strictly) proper. Let P be a set of CDF such that
P CR —[0,1]. Let P,@Q € P. Let Y be a random variable distributed by P. Us-
ing Def 3.3.4, the divergence of the expected generalization IBL is Hy,, (P, Q) =
E [(P(t) — Q(t))? dt. Since the integral is squared, the difference is positive and
only 0 when P = Q.

3.3.1.5 Relationship between MISE & KL-divergence in Distribution Estima-
tion and Probabilistic Loss Functions
In this section, we explain the relationship of MISE and KL-divergence for distribu-
tion estimation with the probabilistic loss functions in Section 3.3.1.3. In classical
statistics, MISE in Eqn (3.3.3) and KL-divergence in Eqn (?? are used to compare
the predicted distributions with the true distribution and later used to select the best
predicted distribution ([55]). There exist a relationship between the probabilistic
loss functions in Section 3.3.1.3 and MISE and KL-divergence. The divergence of
the expected generalization loss of the predicted distribution and expected general-

ization loss of the true distribution is able to recover MISE and KL-divergence.

Definition 3.3.4. Let p and q be distribution functions. Let Y t.v.i R be a random
variable distributed by p. Let L be a probabilistic loss function. The divergence of

expected generalization loss of p and q using the loss function L is

In Def 3.3.4, the loss function £ evaluates the loss between p and random variable
Y (and ¢ with Y'). p and ¢ are fixed and the expectation is taken w.r.t the random
variable Y (this is a total expectation). H,(p, q) is the divergence between the

expected generalization loss function £ of p and q.

The divergence H, of the expected generalized loss function relates to the criteria

functions via the following:
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i.  When L is log-loss as in Eqn (3.3.10), the divergence H, is equal to KL-
divergence.

ii. When £ is the PSL as in Eqn (3.3.11), the divergence . is equal to MISE[f].

iii. When L is the IBL as in Eqn (3.3.13), the divergence H is equal to MISE[F].

With right substitution, H/(p, ¢) can be used to express the ISB and IV, shown in
Proposition 3.3.3.

Divergence of Generalization Probabilistic Squared Loss and MISE of PDF
Recall the PSL as in Def 3.3.2.

Proposition 3.3.3. Let P be a set of PDF such that P C [R — RT|. Let L be a
probabilistic loss function, L : P X R — R. Let f be a PDF function, f : R" —
R — R*] and f is the estimate. Let the divergence of loss function H. as in Def
3.3.4. Then,

i e, (B, ) = 15817
ii. B[He,,(f, E[f])] = IVIf].
ii. He,,(f, f) = MISE[f f

Proof. i. By substituting p and ¢ with E[ f] and f, respectively, and PSL in Eqn
(3.3.11) to £ in Def 3.3.4 the divergence is

Hﬁpsl (]E[f]7 f) :E[EPSZ(E[f]’ Y)] - E['Cpsl(fa Y)]
_ (]E[—QE[ A+ [Eu dy) — (“2E[F(Y)] + [I1B)
:_2/f dy+/E[f]2dy+/f(y)2d

~ [t - L) dy
—ISB|f].

ii. In Def 3.3.4, the expectation is taken w.r.t the random variable Y. f is also

random. By substituting p and ¢ in Def 3.3.4 with f and E[f], respectively and
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taking another expectation over H . (E[f], f),

E[He, . (f,ELf)] =E [Ev[Lou(f, V)] - EL,(E[f), V)]
—E | 2E[f] + [|fIl3] — E |~2E[f] dy + |IELf)I 3
— [ B - Bl dy

A

=IV|[f].

The expectation taken over H ( 1, E[ f ]) is to remove the randomness from f.

A, A

iii. From Eqn (3.3.3), the MISE[f] can be obtained by adding ISB|f] and IV([f.
Then,

EHe,,(f, /)] =He,, (EIf], f) + E[He,, (f E[f))]
:E[ﬁpsl(E[fA]? Y)] - ]E[Epsl(fv Y)] +E [EY[ﬁpsl(an Y)] - E[EPSI(E[J?]? Y)]
—E By [£ya(f,Y)]] = ElLpa(f, V)]

i |21+ [ B do] + 115

=E / (f(y) = f(y))* dy (3.3.18)
—MISE|f] (3.3.19)
0

There are a few things that we obtained from the result of Proposition 3.3.3.

A A

i.  Summing ISB[f] and IV|f], the term E[£,(E[f], Y)] will cancel out and will
obtained H (f, ).

ii. MISE]| f | depends only the expected generalization PSL of the estimated PDF
and expected generalization PSL of the true PDF.

A

iii. Re-arranging the result of MISE[f],
E [E[Lya(f,Y)]] = MISELf] + E[Lpu(f.Y)) (3:3.20)

shows that minimising the expected generalization PSL of f , 1s equal to min-
imising the MISE[f] and the expected generalization PSL of the true PDF.
However, due to the unknown expected generalization PSL of the true PDF, it

can take it as a constant value. Therefore, when comparing two estimated PDF
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(e.g. f1 and fz), we only need to compare the expected generalization PSL of
the estimated PDF.
iv. From Proposition 3.3.3, H.(E[f], f) is the bias term and E [Hg(f,E[f])]
H(p, q) is the variance component (we will show for IBL and log-loss below).
v.  From Proposition 3.3.3, E[H,(f, f)] is decomposed to . []Ey[ﬁ(f, Y)]] and

E|L(ELf],Y)]

Divergence of Generalization Integrated Brier Loss and MISE of CDF
Recall the IBL in Eqn (3.3.3). The expected generalization IBL for random variable
Y is

E[Lw(F,Y)] =E / (F(t) — H(t —y)? dt.

Using the relationship of MISE of PDF with H, in Proposition 3.3.3, £ and PDF
can be substituted with IBL in Eqn (3.3.13) and CDF, respectively, to show the

following.

E[Hﬁibl<ﬁv F)] :Hﬁibl (E[F], F) + E[Hﬁzbz(ﬁvE[FD]
:/(mm_Fugaﬁ+/Emﬂ—mm%u

—Bias|F] + Var[F]

A

—MISE/[£]. (3.3.21)

From the derivation above, H ., (E[F], F) = E [ﬁibl (E[F], Y)] —E[Lw(F,Y)]
aMEWMAﬁMﬂM:EFHQMﬂYﬂ—vaﬁﬁlm”.

Divergence of Generalization Log-loss and Kullback-Liebler Divergence

Recall the log-loss from Def (3.3.1). Its expected generalization loss is

ElLu(f,Y)] = —Ellog f(Y)]. (3.3.22)
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Using Proposition 3.3.3, Def 3.3.4 for log-loss can be expressed as

E [He, (1)) =M, (EIf), ) +E [#e, (F.EL))]

=Dici(Elf]. /) +E [DKLU E(f)]

=~ [ 5w og(ELF Wy + ( [ 1og<f<y>>dy)

—E [By [£u(f >J} E[La(f.Y)]
—E [DKL( f, f)} . (3.3.23)

From [64], D, (E[f], f) is known as the bias component and E [DKL(f, ]E[f])] is

known as the variance component.

3.4 Discussion

Distribution estimation has always been viewed as unsupervised task in machine
learning. This is because: (1) the dataset is unpaired; (2) loss functions are not
properly discussed in the context of distribution estimation. However, distribution
estimation has been linked to supervised learning in literatures such as using su-
pervised learning algorithms to improve and estimate distribution estimation. [4]
discussed supervised probabilistic prediction as a task focussing on conditional dis-
tribution. Viewing distribution estimation as a supervised learning task was moti-
vated by [4] where univariate distribution estimation was proposed to be a subset
of probabilistic supervised learning. In Section 3.3 of this thesis, we discussed the
goal is to estimate a distribution of an unpaired dataset and the probabilistic loss
functions that existed in literatures. We also derived the relationship between the

expected generalization loss with MISE and expected KL-divergence.

In this section, we discuss and relate the use of probabilistic loss functions and
distribution estimation. We discuss the use of loss function existed in distribution
estimation and the relationships in Section 3.3.1.5 have been discussed in litera-
ture but was not clear. Then, we discuss some of the existing literatures that used

supervised learning algorithm for distribution estimation.

3.4.1 Probabilistic loss function in distribution estimation
In this section, we discuss the use of probabilistic loss functions to evaluate esti-

mated distribution has already existed in the literature.
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In machine learning, loss functions are used to evaluate the goodness of the pre-
diction. For example in the regression setting, the squared loss and the absolute
loss measure the difference (error) between the predicted value with the true value
of the target (lable) variable. In probabilistic prediction, score functions are used
to evaluate probabilistic forecast ([60] and [41]). The score functions evaluates the
performance of the distribution at a value it materialized ([60] and [41]). By defini-
tion, both loss functions and score functions are used to assess the performance of
predictions. In Section 3.3.1.3 we use the term “probabilistic loss functions” which
is the negative of the score functions (as in [60]). There is no difference in score
functions and probabilistic loss functions, except the former are maximised whereas
the latter are minimized. Therefore, we will continue to use the term*“probabilistic

loss function™.

Recall that in machine learning, a “risk function” is the expectation of the loss
functions with respect to the joint distribution of X and Y. Whereas, the “expected
risk” or the “expected generalization loss” takes another expectation with respect to

the training set. To estimate the generalization loss, cross-validation is used ([2]).

We want to highlight that in distribution estimation, the term loss function have
been used but not in a consistent manner. The term loss function and risk functions

have been used interchangeably because there is no clear definitions.

i.  [62] stated that the log-loss and PSL are used to compute the loss from evalu-
ating the PDF at a point
ii. [62] referred risk functions to MISE but also called E |Ey [£,q(f, Y)]] and

E |:Ey [Lu(f, Y)]] as risk functions
iii.  [65] referred loss function to MISE and KL-divergence.

[65] viewed MISE and KL-divergence as loss functions because both compare the
true PDF with the estimated PDF. However, this view has a disadvantage because

the true PDF is usually unknown.

What is interesting is [62] stated that log-loss and PSL are used to evaluate the loss
of from using the estimated PDF at a future point. This view is closely connected to
the definition of loss functions and scoring rules. Therefore, the used of probabilis-
tic loss function in distribution estimation have been proposed earlier to evaluate
the estimated distribution. Since loss functions are used to oversee the learning,
distribution can be categorised as a supervised learning task as it has probabilistic

loss functions.
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3.4.2 Using probabilistic loss functions to evaluate estimated dis-

tribution

Although [62] stated that log-loss and PSL may be used to compute the loss of
the estimated PDF, many literatures in distribution estimation do not use the proba-
bilistic loss functions for evaluation. In distribution estimation, the estimated PDF
or CDF is compared with the true PDF or CDF, respectively, using MISE or KL-
divergence. This is useful when datasets are simulated and we know the true dis-
tribution. Most literatures in distribution estimating used this method ([65], [66],
[67], [68], [69], [70]).

However, when estimating the distribution of real world data, this method of evalu-
ation may not be suitable since the true distribution in unknown. The use of proper
probabilistic loss functions in Section 3.3.1.3 is more suitable. [60] explained that
a probabilistic loss function is used to evaluate “the probabilistic forecast, by as-
signing numeric score based on the predictive distribution on the event or value it
materialized”. Then how do we know the numerical value is good enough to tell
whether our predicted distribution is good? The property of properness in Def 3.2.6
is important in this case. For example, given two PDFs, f ,gand apointz € R. The
best PDF is the one with the minimum expected generalization loss (estimated using
empirical loss). This support the use of log-likelihood for benchmarking experiment
in distribution estimation. For example, [71] conducted a study of real-world data.
The log-likelihood (negative log-loss) is used to compare different methods of PDF
estimation. The PDF that has a higher log-likelihood is considered the best method
(out of the methods being compared). SOme other literatures that use log-likelihood

in experiments using real world data are [72] and [73].

Therefore, using the probabilistic loss functions for evaluation is appropriate for
distribution estimation and comparing models. In later part of this thesis (Chap-
ter 6 and Chapter 8 ), we use this evaluation method (using the probabilistic loss

functions) for experimental investigation on real-world and simulated datasets.

3.4.3 Relationship between probabilistic loss function and KL-
divergence and MISE

We have discussed the probabilistic loss functions that were proposed to evaluate
the estimated distribution. In this section, we discuss the relationship between the
expected generalization loss with MISE and expected KL-divergence. In Section

3.3.1.5, we showed the relationship between the divergence of expected generaliza-
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tion loss of the true distribution and the expected generalization loss of the estimated
distribution is equal to expected KL-divergence and MISE (depending on the loss
function used). This relationship is not new. In fact, this relationship was discussed

earlier by [62] and [65] but was not obvious because:

* the loss function was not properly defined
e directly framed the relationship using cross-validation, i.e. to estimate the ex-

pected generalization loss.

Even though [62] and [65] discussed how to estimate MISE of PDF (and CDF)
and KL-divergence, both have a different perspective but still arrived at in similar

estimates.

Rudemo’s method: We showed that MISE is the difference between expected
generalization PSL of the estimated PDF and the expected generalization PSL of
the true PDF. [62] proposed to estimate MISE by removing the term that contains

unknown (true) PDF, to obtain

/ E[f(y)*] - 2f(v)E[f (v)] dy (3.4.1)

The above is the expected generalization PSL of the estimated PDF. And the term
that is removed is actually expected generalization PSL of the true PDF. [62] also
stated that taking the total expectation over the PSL and log-loss will give E [Ey [£,,4( )]

and E |Ey [Ly(/, Y)]] , respectively.

Bowman’s method:

The relationship in Section 3.3.1.5 appears in [65] and later in [63] but was not
clear. This is because different loss functions were used. [65] referred the KL-
divergence and integrated squared error (ISE), ISE[p, q] = [(p(y) — q(y))* dy, as
loss functions, where p and ¢ are PDF. This is a similar concept to the regression
setting where the squared loss in Eqn (3.2.1) is the distance between the predicted
value and the true value. However, [65] did not directly used the ISE but instead

computed the difference between two ISEs, where

i.  one ISE is the squared difference between dirac delta and the true and unknown
PDF

ii.  another ISE is the squared difference between dirac delta and the estimated
PDF.
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The difference of the two ISE is reduced to
(<2 + [ Forar) - (-2 + [wra)  Ga2)

If we take the total expectation of the above equation (over everything that is ran-
dom), this is actually the MISE|[f] = E [Ey 1Loa(f, Y)]} —E[L,q(f,Y)]. However,
[65] removed the unknown terms (the second bracket) and directly applied cross-

validation to Eqn (3.4.2) which claimed to estimate MISE.

The derivation of Eqn (3.4.2) was also used for KL-divergence to compare the true

and estimated PDF. [65] compared two KL-divergence, where

i.  one is the KL-divergnce of dirac delta and the true and unknown PDF

ii.  another is the KL-divergnce of dirac delta and the estimated PDF.

The difference between the two KL-divergence is log % = log f(y) — log(f(y)).
[65] directly applied leave-one-out cross-validation. If we take expectation over the

randoms, we will have

E [E[-log f(V)]] ~ B[~ log f(¥)] =E [E£u(f, V)] ~ E[£a(f,Y)] = E [Drcs(f, )

[63] later used this method to estimate MISE[F'] using IBL as in Eqn (3.3.13) and
taking the difference of E [Eibl(ﬁ : Y)] and E [L;n(F,Y)].

In this section, we discuss that the relationship in Section 3.3.1.5 actually exist in
literature but we explain them in terms of expected generalization loss. However,
the relationship was not that obvious because probabilistic loss function was not

properly defined.

3.4.4 Distribution estimation and Supervised learning
In this section, we briefly discuss some literatures that attemps to link supervised
learning and distribution estimation. Then, we discuss the use of ensemble learning

for distribution estimation.

In machine learning, unconditional distribution estimation has been categorized as
an unsupervised task. Some literatures attempt to view this as supervised learning.
Supervised distribution estimation was proposed by [22] by estimating the PDF us-
ing neural network and framing the task as supervised by generating label data from

a uniform distribution. Recently, [74] proposed a supervised learning PDF estima-
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tion by comparing the estimated distribution againts another distribution and using
a modified log-loss as the loss function. Then, there are methods to estimate the
PDF or CDF of a distribution using machine learning methods such as using deci-
sion tree ([23]), random forest ([75]) and neural network ([22], [76]), normalising
flow as explained by ([77], [78]) and many more. These literatures focussed on
methods of estimation. However, we want to focus more on the machine learning
methods, specifically the ensemble learning - bagging, stacking and boosting. We
discuss these methods because they are used to improve the prediction in the su-
pervised learning by reducing the bias and variance whereas distribution estimation
is considered as unsupervised. We focus on reviewing the ensemble learning be-
cause in distribution estimation, the IBS and IV are related to MISE and expected

KL-divergence which is related to the probabilistic loss functions.

3.4.4.1 Ensemble learning Distribution Estimation

Ensemble learning methods are mainly used to improve training in supervised learn-
ing ([79]). The ensemble learning methods are useful to reduce the bias or variance.
The use of ensemble learning to estimate PDF has been discussed by [80], [81],
[48], [72], [52], [73], [79], [82], [71] and [83]. In this section, we discuss how
the ensemble learning methods applied to distribution and effect of implementing

ensemble learning to distribution estimation.

Bagging distribution estimation

[79] and [82] discussed the used of bagging to improve the estimated PDF of a
distribution. [79] proposed three different types of aggregrating histogram algo-
rithms: bagging of histogram, aggregrating histogram (using simple aggregration)
and stacked histogram (motivated by [71]). The general algorithm below shows
bagging for any PDF estimator by [82].
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Algorithm 5 Algorithm for bagged distribution estimation ([82])

1: Inputs:
Dataset, D = (Y3, ..., Yy); PDF function,

f : R — [R — R*]; Number of bootstrap, B
Outputs: f(y).

Steps:
Resample D to obtain D* forb=1,..., B
forb=1,...,Bdo
Train the PDF f using D" to obtaib f°
Estimate the PDF at y using f°, f*(y)
end for
Average the PDF at y over B, f(y) = £ S0 | f*(y)

A A A R

Algorithm 5 shows how to compute the bagged PDF estimation for any PDF esti-
mator. The algorithm is not much difference compared to when bagging is applied
to supervised setting (see [2]). To perform bagging, theh dataset is resampled B
times. The PDF estimator is trained using each of the resampled data. Later, the

trained PDF is used to estimate the PDF at new point.

Bagging is a learning algorithm that aims to reduce the variance. In regression
setting, [2] showed that the MSE of bagged prediction is less than MSE of point

prediction by reducing the variance.

[82] further investigated the effect of bagging on three different PDF estimators, i.e.
the histogram, KDE and frequency polygon. [82] proved the L2-consistency for all
three algorithms, i.e. [E [(fb(x) - f(x))ﬂ —+0ash =0, N = ooand Nh — oo

where f ®(y) is the bagged estimated PDF at y. [82] also proved the L.2-consistency
of the bagged PDF.

Stacking distribution estimation

[71] and [83] used stacking to improve estimation of PDF. The method used for
stacking PDF is by linearly combining multiple estimated PDF. The algorithm pro-
posed by [71] for stacking PDF estimation and later used by [83] is shown below.
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Algorithm 6 Algorithm for stacked distribution estimation ([71])
1: Inputs:
Dataset, D = (Y3, ..., Yy); PDF functions,
fr : R — [R — R¥] where k = 1,..., K; Number of folds: V'
Outputs: f(y).
Steps:
Split D into V' folds
forv=1,...,V do
fork=1,..., K do
Train f'k on D" and estimates the PDF on D"
Compute the linear combination of f,(Y;) = Zszl o fi(Y;) for all
i=1,...,N
9: Use EM-algorithm to find oy, foreach Y, 2 =1,..., N
10: end for
11: end for
12: Update the combined PDF, f(y) = Eszl e fr(y)

In the stacking algorihtm above, PDF estimators are trained on the training dataset.
These are the base learners. The PDF is estimated on each test fold. Since each
fold will be used as test set, this will produce N estimated PDF which is evaluated
using log-likelihood. For each Y;, 7 = 1,..., N there will be K PDFs and will be
linearly combined. The combination of estimated PDF is the second level learner

or meta-learner.

Stacking is proposed to reduce the bias ([54]). The stacking algorithm proposed by
[71] did not commented on how staking KDE can reduce the bias of the estimated
PDF. [83] (extend stacking KDE to multivariate distribution estimation) stated that
stacking provides a better trade-off between bias and variance but no further investi-
gation on how stacking reduces the bias and variance. This is something that needs
more investigation. For distribution estimation, we want to reduce the IBS and see
how this affects the trade-off between IBS and IV. [71] noted that when stacking

individual kernel PDF, this result to a type of a mixture distribution.

Boosting distribution estimation
Boosting is an ensemble learning methods for supervised learning. It sequentially
combines weak learners to produce a more powerful learner ([2]). In combining the

weak learners, the boosting algorithm requires a loss function. [48], [80] and [52]
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proposed boosting strategies to improve the estimation of the PDF.

Gradient Boosting for distribution: [48] proposed a general boosting method
for estimating the PDF of a distribution. This algorithm was then implemented
by [73] for boosting histogram transform and [72] boosting Gaussian mixture. Let
D ={yi,...,yn}- Let f1,..., f be some base PDF estimators and £ be some loss
function. The idea for boosting algorithm is to built a PDF of G(y) = f; Lo fo(y)
where G is the final PDF from boosting and each f,, is the weak PDF that is
added in each boosting step. In the initialisation state, a weak base PDF esti-
mator is set. What is important in boosting algorithm is how to add new weak
learner. This is were the loss function plays the important role. [48] used the log-
loss as the loss function. Generally, we want to add a base PDF estimator what
will minimise 3", £(G, ;). To do so in boosting step b, the gradient log-loss of
G(y) = Gp1(y) + afy(y) wrt Gy_1 (using Taylor’s expansion around Gj_1) to

obtain

Mz

Z log(G

—log(Gp-1(yi)) aZGb 113/

=1

Minimising S" | log(G/(y;)) is the same as maximising >~ | be(zf(; - Gb,ll(y) , for
1 =1,..., N isthe weight is that updated in each boosting step, b, i.e. w; = m

[48] noted that boosting algorithm is sequentially additive, hence, we cannot sim-
ply add new PDF at each boosting step (since by doing so we will have Gy(y) =
Gp-1(y) + apfp(y) which may no longer be a distribution). In each boosting step b,
the update PDF is Gy, (y) = (1 — a)Gp-1(y) + aufi(y), o € [0,1]. This boosting

strategy is similar to [52] (but using Normal distribution).

In this boosting algorithm, it is not much different compared to the supervised gra-
dient boosting. [48] proposed this general boosting method so that it can be applied
to not just one PDF estimation.

Boosting was proposed to reduce the bias the predictions. However, [48] did not
further investigate how the proposed boosting algorithm for distribution estimation
relates to bias. From the experimental study, [48] only mentioned that boosting is

more effective when combining weak learners.

Boosting KDE: [80] proposed another boosting method specifically for kernel
distribution and [81] extend it to multivariate PDF estimation. The algorithm for
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boosting KDE is shown below.

Algorithm 7 Algorithm for boosting distribution by [80].
1: Inputs:
Dataset, D : (Y7,. .., Yy); kernel function, K, : R — R™;

Number of boosting step: B; Normalising constant: «
2: Outputs: f(y)

3: Steps:
4: Initialize:

Set w} = < where w} is the weight for eachi = 1,..., N for

the 1st step
Set the bandwidth, A

forb=1,...,Bdo
Compute fi(y) = S, K (45)
Update the current weight for each 7, w§b+ ) = w( )+ log

f (b)( Yi)
f(b)( i)
9: Compute and normalized the boosted PDF, f(y) = oII2 f ) (1Y)

10: end for

Given a training dataset D = (Y1,..., Yn) 'y andY € R, the variable weight

kernel PDF at y € R is

fly) = %ZwiK <y;y> (3.4.3)

where w; is the weight corresponding for each Y; for: = 1,..., N. Variable weight
kernel PDF estimator signifies that each point has a different importance to the
estimated distribution. Since boosting the is a combination of weak learners, the
boosting algorithm is initialized by setting the initial weight is uniform over the
dataset. As in [84], the bandwidth chosen and kept constant throughout the boosting

steps.

The weight w; is revised in each boosting step using log ff (1(/)) where f (Y;) and

fi(Y;) are the PDF estimated at each Y; while the latter is using the LOOCV.
Therefore, the weight is updated by

Jw (%)
f( 1(Y2)

wZ(b-H) _ b)+1

forb =1,...,Bstepsand ¢ = 1,..., N. It is not clear why this log-likelihood
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ratio is used. However, by computation, [80] showed that at the second stage, the

w§2) x m This is the same weight that is obtained from [48].
1 i

The estimated PDF is multiplicatively combined by f(y) = T2 afu_1)(y) fs(y)
where « is the normalizing constant to ensures f (y) integrates to 1. The method of

combination is different from [48] that use linear combination ([79]).

This boosting algorithm for estimating kernel distribution proved that boosting re-
duced the bias at the second boosting step and reduction in bias is similar to [84].
However, to use kernel methods for boosting requires to ‘weaken’ the kernel PDF
estimator is by increasing the bandwidth (oversmoothing). This is because kernel
methods are flexible. Therefore, more consideration should be placed in choosing
the bandwidth to make sure that it is not close to the true bandwidth. There are
further investigations needed for this boosting algorithm: (1) study the effect of this
boosting for steps greater 2 as suggested by the author; (2) comparing the boosting
kernel methods with other bandwidth selection methods using real-world data. We
can also investigate how the boosting method affects the variance of the estimated
PDF. However, what is more interesting is whether the boosting algorithm reduces
the IBS and how it affects the MISE.

Summary

In the section above, we discussed the use of ensemble learning methods for dis-
tribution estimation. This is not the first review on distribution ensemble learning.
[79] did an overview and simulation experiments on the use of ensemble learning
on distribution estimation (using simulated datasets and MISE for evaluation). En-
semble learning are strategies applied to supervised learning that can reduce the
bias and variance. Using the ensemble learning are to improve the distribution esti-
mation. However, there are more to investigate how these may benefits distribution
estimation and how these relates to the integrated bias squared, integarted variance
and MISE.

3.5 Conclusion

In this chapter, we frame univariate distribution estimation as a probabilistic su-
pervised learning by explaining that the learning process is to find a function that
predicts a distribution. The probabilistic loss function is used to evaluate the PDF
or CDF of the estimated distribution. We derive the relationship of MISE and ex-

pected KL-divergence with the divergence of the expected generalization loss be-
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tween the true and estimated distribution. We show that the ISB and I'V can also be
decomposed into the discrepancy between the expected generalization loss between
the true and estimated distribution. PSL and IBL can be used to measure the bias-
variance trade-off (for PDF and CDF, respectively). We also discuss the relationship
of MISE and expected KL-divergence with the divergence of the expected gener-
alization loss between the true and estimated distribution have existed in previous
literature [65] and [63] but is not obvious. Further, we discussed the distribution

estimation with supervised learning in literatures.



Chapter 4

Nonparametric Kernel Distribution

Estimation

The objective of this chapter is to provide a review on the estimate of MISE and
KL-divergence for a kernel distribution estimator. There are two important usage
of MISE and KL-divergence in distribution estimation. The first is to compare and
evaluate the goodness of different distribution estimator. Second is estimating the
optimal parameter for distribution estimator by minimizing the estimated MISE or

KL-divergence.

MISE for both PDF and CDF and KL-divergence of PDF are dependent on the true
distribution which is unknown. Hence, several methods have been proposed to esti-
mate the MISE and KL-divergence. In this chapter, we review on the estimation of
MISE and KL-divergence via: (1) cross-validation method; (2) asymptotic method.
In this chapter, we review by explaining and comparing the different methods in
both categories for estimating of MISE and KL-divergence and further estimating
bandwidth. Some of the methods are later compared in a benchmarking experiment

in Chapter 8.

The outline of this chapter will be as follows. First, we provide the properties of the
kernel estimator in Section 4.1 which are useful for estimating asymptotic MISE.
Then, we review methods of estimating MISE for PDF and CDF in Section 4.2.

4.1 Properties of Kernel Distribution Estimator
In this section, we discuss the properties (i.e. bias, variance, MSE, IBS, IV and
MISE) of the kernel distribution estimator for PDF and CDF. This section is a liter-
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ature review from [5] and [55].

4.1.1 Properties for Kernel PDF

LetYy,..., Yy Y bea sample data and Y t.v.i R distributed from an unknown,

d, distribution with PDF f and its respective CDF F’ which we are trying to estimate.
Recall the kernel PDF from Eqn (2.3.4) with the kernel function K from Section
2.3. Before we proceed to define the properties of the kernel PDF, we assume that
the properties of the kernel function K in Section 2.3 hold. In addition, K" must

also satisfy the following:

i [uK(u)du=0
ii. [u?K(u) du= Ky > 0.

The properties of the kernel function K are important to show the bias, variance
and MSE of kernels PDF. We use the usual notation, where f is the true PDF while
f (with the hat) is the estimated PDF.

Let f be the estimated kernel PDF as in Eqn (2.3.4) and f follows the properties of
the kernel function K. Then, the properties of f as in [14] are

i.  Expectation of f is

BLi()] = F(5) + "0 () + O) @.LD)
ii. Biasof fis
Bias[ ()] = "2 /") + (") (4.12)

where f”(y) is the second derivative of f w.r.t y.

iii. Variance of f is

Var[f(y)] :f(y])V{Z(K) - R](Vf) +0 (ﬁ> . (4.1.3)

where R(K) = [ K(u)*>duand R(f) = [ f(y)* dy.
iv.  The integrated square bias (ISB) of f is

4,2
K3

ISB|/f] =—2R(/") + O(h®). (4.1.4)
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where R(f") = [ f"(y) dy.

A

v.  The integrated variance (IV[f]), is

IV[f] = —+ — —= (4.1.5)

where R(K) = [ K(y)? dy.
vi. the MISE for f is the summation of Eqn (4.1.4) and Eqn (4.1.5)

. h%o? y 1 "
MISE|[f] = 1 R(f") + mR(K) + O(h°). (4.1.6)

Detailed derivation of expectation and variance of f are in Appendix A.1 and Ap-
pendix A.2. The bias, variance and MSE of f are measurements at a single point y.
The bias is low if the expected f (y) is close to its unknown true PDF. The bias can
be reduced by increasing the variance and vice versa. Note that, i - vi depend on the

unknown true PDF.

As we discussed in Section 3.3.1.2, distribution estimation should be treated as a
global problem by taking integration w.r.t y for the bias, variance and MSE. The
integrated square bias and integrated variance are shown in Eqn (4.1.4) and Eqn
(4.1.5), respectively. The MISE of PDF is simply the integration on the squared of
Eqn 4.1.2. By definition MISE in Eqn 3.3.3.

4.1.2 Properties of kernel CDF
Here, we define the properties of kernel CDF as reported by [85]. The derivations

of the bias and variance of kernel CDF can be found in [86].

Let F' be an estimated kernel CDF as in Eqn (2.3.5) and follows the properties of

the kernel function K.
i.  The expectation of Fis

h2/€2F”(y)

5 + O(h?) (4.1.7)

E[F(y)] = F(y) +

ii. Biasof F'is

()] = Woral"(y) + O(h?). (4.1.8)

>

Bias|
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1ii.  Variance of 13,
Val ()] = PO - Fo) - 5700+ 0 (5) @19
N N N
where a = 2 [vI(v) K (v) dv and F(y) is twice differentiable (see full deriva-

tion in [86]).
iv. MISE[F] is by taking integration of the MSE[F'(y)] w.r.t y leading to

MISE[F] = /w + %F(y)(l — F(y)) — —f( Yh+ O (h4 + %) dy
/N x—2—/yK y) dy+
Z 72K (y )dy/(F”(y))2 dy (4.1.10)

(as in [86] and [70])

Similar to the estimated PDF, i - vi above depend on the true unknown kernel CDF.

4.2 Estimation of MISE and KL-divergence for Band-
width Selection

In this section, we review some methods to select bandwidth for kernel distribution.
Bandwidth is important in kernel distribution as it can be one way to define the ker-
nel distribution and it also controls the shape and smoothness of the PDF and CDF
of the kernel distribution. Multiple methods have been proposed to estimate the
bandwidth. In this section, we review some of the different methods that estimate

MISE and KL-divergence which are later being used to estimate the bandwidth.

4.2.1 Estimation of MISE and KL-divergence via Cross-validation
In this section is a review on the estimation of MISE and KL-divergence using cross-
validation. The loss functions (log-loss, PSL, IBL) has been used in distribution
estimation by [62], [65], [63], [57], [64] empirically. For this section, we define

datasets

D=(Yi,...,Yy) XY (4.2.1)
Doy =(Yi,o.o, i, Yo, Ya) XY (4.2.2)
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and Y t.v.i R where Y; is not included in D_;. Let f,i is the PDF estimator that

estimates at the point Y; on D_;.

The algorithm for estimating the MISE and KL-divergence via leave-one-out cross-
validation (LOOCYV) is shown below in Algorithm 8.

Algorithm 8 Algorithm for estimating MISE and KL-divergence via LOOCV
1: Inputs:
Dataset, D : (Y1,...,Yn);
A kernel PDF function, f : R — [R — R},
A loss function, £ : P x R — R.

2: Outputs: A numerical value for E,,,,[L(f,Y)].

3: Steps:

4: for:=1,..., N do

5. D= (Yi,....Yi1,Yip1, ..., Yn)

6: forj=1,..., N—1do

7 Fit the PDF at each Y; f(Y}) = iy 0 1K( )

8: end for

9: Compute the empirical generalization loss, E.,,[C(f,Y)] =
N i L(f- V)

10: end for

11: return E.,.,,,[L(f,Y)].

Likelikhood-cross validation: [57] and [58] proposed to use log-likelihood (or
negative log-loss) by substituting Eqn (3.3.10) into £ in the Algorithm 8. This
leads to a negative LOOCV empirical log-loss, i.e.

EemplCul /-, Y Zlog( 5 ZK (Y Y)) (4.2.3)

The PDF is estimated at each Y; using the remaining /N — 1 data points of D_;. This
yields NV PDF and evaluated by taking the average of /N log-likelihood.

To estimate the bandwidth using this methods is by maximimising E[L;( f_i, Y) | emp

as below.
hicy = max Eepy[Lu(f-i,Y))- 4.2.4)

By maximising Epp[Lu(f_i,Y)], the predicted density is close to its true value.
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The bandwidth selected by this method is related to Kullback-Leibler (KL-divergence)
in which E.,,,,[ Ly ( f_i, Y')] minimises the KL-divergence between f and f. By tak-
ing negative E.,,,,[L( f_i, Y')] will provide an unbiased estimator for KL-divergence.
[58] pointed out that if the point at which the density is estimated is equal to one of
the sample data, the limit of the likelihood goes to —oo as the bandwidth tends to 0.
Hence, LOOCYV guarantees a non-zero PDF (this will be further discussed in Chap-
ter 6 with a formal proof). This method has the advantage in which it is sensitive to
outliers and is powerful to estimate PDF for a smaller sample size. However, it still
is not suitable for long-tail data. [87] also claimed that this method is not suitable

for data with long heavy property as it can cause inconsistent estimates.
LOOCV MISE PDF: The use of PSL for estimating the MISE|[f] was proposed

by [62] and [65]. Algorithm 8 produced an empirical generalization PSL which is
similar to [65] as in Eqn (4.2.5).

B Lot (f5,Y Z [ Ftway = 2% ay. (425)

[62] proposed an estimator of MISE by using in-sample data as in Eqn (4.2.6),

EemplLpat(f,Y)] = / fy)*dy — ZK (Y Y) . (426)

Z#J

[88] showed that [ f ;(y)%dy = [ f(y)*dy + O (x%7)- Eqn (4.2.6) is a more
simpler to compute and does not involves any asymptotic effect ([68], [64]). The
bandwidth estimated via this approach is by minimising E.,,,[ L ( 1, Y)] of Eqn
(4.2.6), i.e.

~

hrscy = arg}rlnin E[Lpsi(f,Y)]emp 4.2.7)

However, this method caused a high variability ([89]) and may lead to a bandwidth

with a high variance ([? ]).

LOOCYV MISE of CDF: The LOOCY for estimating MISE of CDF was proposed
by [90] and [63] but from different point of view. Firstly, the LOOCYV for estimating
the MISE of F'is by substituting IBL from Eqn (3.3.13) into £ in Algorithm 8. This
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results to [63] empirical generalization IBL is
N
. 1 . 2
EemplLin (P, V)] = 2_; / (H(t =) - FLa®) at (4.2.8)

[63] showed that the expectation of the difference of E.,,,,,[ L (F i, Y)] and Eeppp[Lin (FY)]

leads to the MISE[F’|. The optimal bandwidth is obtained by minimising Eqn (4.2.8)

w.r.t h,
hroocvr = argmin B, [Cau(F_;, V). (4.2.9)
h

Another LOOCYV estimator to estimate weighted MISE was proposed by [90]. Since

the method is based on discrete error MISE, we will not explain it further.

4.2.2 Estimation of Asymptotic MISE

This section is to provide a review estimating the bandwidth by the asymptotic
MISE. The asymptotic MISE arise from the limiting property by expanding the
MISE using Taylor expansion and taking some limits for the MISE to approach
0. However, the asymptotic MISE (AMISE) also depends on the true distribution.
Therefore, different methods were proposed to estimate AMISE. In this section, we
describe the asymptotic MISE for PDF and CDF and compare different methods of
estimating bandwidth using them.

Asymptotic AMISE for PDF

A A

Recall the MISE]| f] of kernel PDF from Eqn (4.1.6). The asymptotic MISE, AMISE]|f]
when N — oo ([91]) is

r h4/€% 1" 1
AMISE[f] = == R(f") + 57 R(K). (4.2.10)

A,

However, AMISE]|f] still depends on the true unknown PDF via the term R(f”).

A

Therefore, it still needs to be estimated where the estimator of AMISE|f] is shown
in Eqn (4.2.11)

4 D £
_ PR L b 4.2.11)

v(n) 4 Nh
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Optimal bandwidth is then estimated by minimising Eqn (4.2.11), is
ri) \ "
h— (L) (4.2.12)
NEZR(f")

[5], [89], [69], [67], [64], [68] and [92] have addressed methods to estimate the
term R(f”). Below are some methods that estimate AMISE[f]. We categorized

them into 5 groups.

Parametric Assumption: In this method, R(f”) is replaced with its parametric
distribution. [5] replaced the unknown R(f”) with the R(f”) of a Normal distribu-

tion.

The estimated bandwidth obtained by minimising the estimator is
h=1.060N"°. (4.2.13)

However, this only works when the true distribution is Normal. [5] also proposed

to use Silverman’s rule of thumb (ROT),

hror = 0.9AN /5 (4.2.14)

IQR
) 1.34

range of the sample, respectively. The reduction from 1.06 to 0.9 ensures any bi-

where A = min (a ), o and IQR are the standard deviation and inter-quantile

modality is not missed.

Biased cross-validation: This method was proposed by [93] and was motivated
by [94] by replacing R(f") with,

R("y = Ry - B

(4.2.15)

where R(f) = i f" dz ([87]). Then, applying the LOOCYV, the estimator for
AMISE is reduced to

R(K)

Ypeov(h) = N7

2 N N
+2§N222KZ*KZ(E—§G). (4.2.16)

j#£i =1
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The bandwidth from this method is A pov 1s obtained by minimising Eqn (4.2.16),

1.e.,

BBCV = argmin l/JBcv(h) (4217)
h

It is found that this method removes the problem of multiple minima when com-
pared method proposed by [62] and [65].

Maximal smoothing: [95] and [89] proposed to use a method that results to an
over-smooth estimated PDF. [95] proposed boundaries for kernel estimators and
stated that estimated bandwidth near the bounds will lead to an optimal distribu-
tion. [89] proposed to replace R(f”) with a scale function, for example standard
deviation. This method was proposed because using cross-validation approach to
estimate MISE result to a high variability (i.e. the statistical information varies due
to the repeated sampling of cross-validation even when the data is from the same
distribution). This method removes unwanted features from using a smaller band-
width causing the estimated distribution is less flexible and overly smooth. The
drawback from using this method is the lost of information due to the maximum
smoothing ([89]) by using a scale function. When using the sample standard devia-

tion, s, the bandwidth from maximal smoothing principle is

. —-1/5
Pmaz = 3 % (35)7Y%s ( / K" (u) du) N—1/5 (4.2.18)

Multi-stage: This method is almost similar to biased cross-validation ([93]). How-
ever, the estimate of R(f") of Eqn (4.2.11) is R(f”") which depends on a different
bandwidth, a. Note that a and h are two different bandwidth, in which the former is
used to estimate R(f) while the latter is used for estimating the entire distribution.

A

The estimator of AMISE[f] is

4,.2D( {1t
W) o L pogy, (4.2.19)

¢data(h) - 4 Nh

To find R(f”), the bandwidth a needs to be estimated. Then, using a to estimate
R(f") which is latter used to estimate AMISE[f]. [68] and [67] proposed multi-
stage method to estimate R(f”) and later used to find /.
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[68] proposed to estimate a using

o (LN L

However, ag; has the term R(f"”) which needs to be estimated. The 1-step
method to estimate the bandwidth is as follows:

(a) Firstly, R(f"") can be estimated using a scaled Normal distribution where
we define the estimated R(f"') as RN (f"")

(b) Second, use RN (f"") to estimate ag; of Eqn (4.2.20)

(c) Then, using ag; to estimate f{(f(’l’) using the Eqn (4.2.21)

N
Rsy(f!) = m Yy LW (Yi — Yj) (4.2.21)

a
i=1 j—=1 SJ

where e L is the kernel function that is 4 time differentiable and not neces-
sarily the same as K.
(d) Finally, the estimated A is

/
. R(K)
hgj= ————— . 4.2.22
> (Nfi%RSJ(fé/)> ( :

[67] and [68] proposed another method to estimate a which is a function of h.
The method proposed by [67] follows the same step (i.a) to estimate R(f) and
R(f"") which is by substituting f with a scaled Normal distribution which is

used to compute apys(h),

18R(L(4)))1/ 13( R(f) )1“3 p10/13 w223

ot = (5070) (wm)

where L™ is the kernel function that is 4 time differentiable and L a symmet-
ric kernel that is not necessarily the same kernel as /K used to estimate PDF.
apas(h) is used to estimate R(f”) to obtain Eqn (4.2.24),

. 1 Y, — Y,
Rey(fin) = NN -1 Z L% ( J) : (4.2.24)
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In Eqn (4.2.24), the diagonal elements are not included when computing the

sum. The estimated bandwidth via this method is

1/5

. K

hpM:< 2{%( )” ) ) (4.2.25)
N“QRPM(fa(h))
In addition, [68] proposed another method motivated by [67] and [96] but uses
Eqn (4.2.26) to estimate a,

2L@(0)\ "
agr(h) = | =——=2)  R(f™)~YV"R*7 4.2.26
oss) = () 70" (220

where a5;(h) is a function of & and used to compute Rg;(f”) and later the
bandwidth as in Eqn (4.2.27),

1/5
R(K)

N3 R (£ ;)

hej = (4.2.27)

[68] proposed another method to estimate by using Rg(f o, () to minimise
Eqn (4.2.19). The estimated bandwidth is

h4K%RSJ(f// ~ ) 1
agj(h)
. + 577 RE) (4.2.28)

hgjo = argmin
h

[67] and [68] proposed a different equations Eqn (4.2.24) and Eqn (4.2.21)
to estimate R2(f”') where the latter suggested to include the diagonal elements
in the summation. This cause an additional bias but is cancelled out with
the negative bias from smoothing. hs1 is found be be suitable for Gaussian
mixture with different mean and variance and for smaller sample while h PM
by [67] performs better for Normal distribution and Gaussian mixture in the

simulation study.

Higher-order kernel: [69] proposed to use a higher order of kernel function by

including the next order term from the expansion of Eqn (4.1.6), i.e. R(f"). This

A,

method leads to an optimal asymptotic performance. Then, the estimate of AMISE] f]
is now,
1 PARER(f")  hSkokaR(f")

Yro(h) = WR(K )+ M — o0 . (4.2.29)
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Ry (f") is the estimate of R(f”) uses a higher order kernel. The estimated band-
width obtained is

» " 3/
o R;(AK) N R(KQ){h(f ) ( ﬁ(K ) ) , (4.2.30)
Nr3Ri(f") 2053 R (f") \ NezRa(f")N

The estimate of R (f”) and R;(f") uses the same method as in [68] above.

AMISE for CDF
The AMISE for kernel CDF is,

A 1 2h 1
AMISE[F] = — / Fly)(1=Fy) dy — = [ yK(u)I(y) dy + 0 ssR(f)
4.2.31)
where ko = [22K () dz, R(f') = [ f'(x)? dz, ([9]). The AMISE[F] also depends

on the unknown term R(f"). Data driven approach to estimate the AMISE of CDF
Methods to estimate this have discussed by [66], [97] and [70]. Let the estimator of
AMISE[F] be

- %/F(W(l ~F) dy - 22 [ yK(y)10) dy+ ;lh‘lm%f{(f’)
(4.2.32)

where R(f) is the estimator for R(f’). The bandwidth obtained by minimising Eqn
(4.2.32) is

. p(K) N\
j = (W) (4.2.33)

where p(K) = [ K (z)I(z) dx.

Plug-in: [70] proposed a straightforward method to estimate R(f’) by referencing

to a distribution. The estimated bandwidth is
R 1/3
hgp = N1/3 (4\/_/ 2uK (y dy) (4.2.34)

When f is substituted with a Normal distribution, the estimated bandwidth Bﬁ p=
1.59sN~1/2, where s is the standard deviation obtained by the data. However, this
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method is only good estimate if dataset is Normally distributed.

Multi-stage: Several data-driven methods to estimate the bandwidth were also
proposed using the AMISE[F].

i.  [66] claimed that the use of LOOCV to estimate MISE[F] is actually a leave-
none-out cross-validation and proposed to use data-driven method to estimate
U (h) using a weighted AMISE[F]. The weight function, W (), that is used is

bounded and supported on a compact set ([90]), leading to an estimator

Ty(h) = / F(y)(1 — F(y))W (y)f(y) dy—

%2/f(y)2 dy/K y) dy+

h 2
Y ewriowea([erwa) . @23
Unlike Eqn (4.2.31), there are two terms to be estimated in above, | f(y)?*W (y) dy
and [ (f'(y))* f(y)W (y) dy, we refer them to V; and V4, respectively. The es-
timators are denoted as Vl and Vg Therefore, the estimator for AMISE used

by [66] is
Wy(h) = / F()(1~ Fu))W () dF(y) — 5T, / K(y)I(y) dy+
%4% (VK (y) dy)* (4.2.36)

Using method by [98], a different kernel estimator are used to estimate both

terms,
N
v Z %Lb ( — Y) W (Y;) (4.2.37)
Z#J
N3 2> > L < ) Ly ( - k) W(Y;)  (4.2.38)

i=1 j=1 k=1

where L/ is the derivative a kernel L., which may be different than the kernel
K used to estimate F' with the bandwidth ¢. L, is a kernel function may also

be different from K with the bandwidth . By minimising the estimator Vs,
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[66] obtained a bandwidth estimator,

0.257,\ "
By = | —— . (4.2.39)
NV,

ii. [97] used AMISE[F] as in Eqn (4.2.31). This results to only estimating R(f’)
in Eqn (4.2.32). This approach is similar to [68] and [67] where to estimate
R(f") is by using an estimator that depends on another bandwidth a. Let
S’T(ar) be the estimator for }?( f') where r is the number of stage. The band-
width of S, (a,) is

1/5

(4.2.40)

. 2L (0)
= | ———
—N(k1)35+2
where §r+2 needs to be estimated. For clarity, we provide the steps below and
simplify by using r» = 1.
(a) Firstly, for » = 1, we need to estimate S, by using Normal distribution.

The estimated S defined by SY.

(b) Secondly, use Sév to compute

1/5

21,2)

o = —(02) : (4.2.41)
—N(RL)Z‘Sg

(¢) Third, estimate S5(as) using Eqn (4.2.42)

S (di2) Nzag Z ZL (X ad ) (4.2.42)

i=1 j=1

(d) Finally, the estimated bandwidth is found by using S5 (d) into Eqn (4.2.33)

to obtain

" 1/3
hpp = (L) (4.2.43)
CLQ)

Note that, L is a kernel function that is not necessary similar to K. For r > 1,
(b) and (c) will be repeated until 5'2(0[2) is obtained. The bandwidth a is
computed using Eqn (4.2.40), hpp is shown to perform better for datasets that

are separated bimodal.
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iii. In addition to a plug-in method, [70] also proposed a data-driven method mo-
tivated by [96] and using a k repeated integration by parts to estimate R(f’) of
W(h) which results to an estimate bandwidth in Eqn (4.2.44)

. L \1/3 1
hir = (ka> N3 (4.2.44)

A T(k+32) . . .
where Ry = 535 and o is estimated using the dataset.
By simulation experiment, [70] showed that this method performed well for £ > 4

when comparing k between 1 to 8 on 9 mixture distribution from [99].

4.3 Discussion

There are two main methods to estimate the bandwidth of kernel distribution esti-
mators, via cross-validation or plug-in methods. Using cross-validation to estimate
MISE and later to estimate bandwidth may result to sampling variation. hpgcy is
found to perform better for small sample but results in multiple minima that over-
came by h pov ([93]). In addition, we reviewed some of the different approaches
proposed by estimating AMISE of PDF and CDF. Each methods performs differ-
ently for different datasets. For example, hror are h p are suitable for Normal dis-
tribution. Bmm resulted to an over-smoothed distribution. Therefore, each method’s

performance depends on the dataset itself.



Chapter 5

Efficient Computation of Loss
Functions for Distribution

Estimation

5.1 Introduction

The objective of this chapter is to provide a method that efficiently computes and
evaluates the probabilistic loss functions: (1) log-loss in Eqn (3.3.10); (2) PSL in
Eqgn (3.3.11); (3) IBL in Eqn(3.3.13) of kernel mixture distribution at an observation
point. We describe ‘efficient’ in this context as we aim to have a method that is ap-
plicable for most symmetric kernel functions. In addition, the method is applicable
for standard kernel functions and can be extended to kernel mixtures distribution
and other known family of parametric distribution such as the Normal, Logistics

and Uniform distributions.

Loss functions are important in the supervised learning task as it is a tool to evaluate
the performance of the prediction. In the regression supervised learning, the loss
functions are comparing the ‘value’ of the prediction to the true ‘value’. On the
other hand, the probabilistic loss functions compare a distribution with the value or
events it materialized ([60]). Therefore, to compute the loss functions requires the
knowledge of the distribution defining functions (e.g. PDF or CDF).

In Section 3.3.1.5, we described how the divergence of expected generalization loss
of the true distribution and the expected generalization loss of the predicted dis-
tribution are equal to the criteria functions, MISE and KL-divergence. However,

due to the unknown true distribution, the expected generalization loss of the true
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distribution is also unknown. Therefore, the expected generalization losses (log-
loss, PSL, IBL) of the predicted distribution are estimates of the criteria functions.
The expected generalization loss functions are estimated by their respective em-
pirical losses . Therefore, the empirical log-loss, PSL and IBL are estimates of
KL-divergence and MISE. Due to this chain of relationships, the computation of
the loss functions is important and needs to be accurate for parameter selection and
evaluation processes. One way to do so is by computing the analytical expression
or a closed-form expression of the probabilistic loss functions which is in terms of
finite mathematical expression rather than a function. Considering the loss func-
tions are in terms of the predicted distribution, using an efficient method that able

to derive the closed-form of the loss functions can be a good solution.

The computation of the log-loss is straight-forward because it only depends on the
PDF. However, both PSL and IBL depend on the L2-norm of PDF and CDF, re-
spectively. This complicates the computation because each PDF and CDF are in
different form (e.g. the L2-norm of the PDF for Gaussian mixture is different from
L2-norm of the PDF of Logistic distribution).

The method proposed to compute the loss function uses the properties of the kernel
functions and elementary integration. The functions derived from kernel functions
will inherit the properties of the latter. The method we use to compute the loss func-
tions for all kernels is by providing a general computation so that it can be applied
to compute the loss functions for all or most of the symmetric kernel estimators.
Although we proposed this method for symmetric kernel distribution, the method
can be implemented by non-symmetric kernel to a certain point. The method can
also be generalized to be used for kernel mixture distributions, Normal, Logistic and
Uniform parametric distributions with the right substitution. The PDF and CDF of

a kernel distribution will inherit the properties of the kernel functions.

From this method, the analytic expression (closed-form expression) of the proba-
bilistic loss functions for nonparametric kernel-based distribution can be obtained.
Hence, using this method we compute the closed-form of the CDF, L2-norm of PDF,
L2-norm of CDF and L2-norm of CCDF for 11 symmetric kernels. The L2-norms
are found by computing the partial L2-products which can be found in Appendix
B.1. We also provide the algorithms for using the derivations for mixture kernel

distribution.

This chapter is organized as follow. Firstly, we explain the reasons behind the

derivation of analytical expression of the losses. Then, we will provide the steps
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leading to the analytical expression and the algorithms to compute the mixture ker-
nel based distributions. The exact computations of each kernel will be summarized
in Table 5.1 which is linked to Appendix B.1. We will discuss an alternative way of
computing the IBL at the end.

5.2 Importance of Analytic Expression of the Loss

Functions
Here, we consider the importance of the analytical expression of the probabilistic
loss functions: (1) log-loss; (2) PSL; (3) IBL; to evaluate the losses of a distribution
at an observation point. These three probabilistic loss functions are linked to the

criteria shown in Chapter 3 where

i.  the divergence of the expected generalization log-loss of predicted PDF and
the expected generalization log-loss of true PDF relates to KL-divergence

ii.  the divergence of the expected generalization PSL of the PDF of predicted
PDF and the expected generalization PSL of the PDF of true distribution is
equal to the MISE of PDF

iii.  the divergence of the expected generalization IBL of the CDF of predicted dis-
tribution and the expected generalization IBL of the CDF of true distribution
is equal to the MISE of CDF.

As discussed in Chapter 3, MISE and KL-divergence can be estimated by the ex-
pected generalization loss of the predicted distribution while assuming the expected
generalization loss of the true distribution to be constant. The expected general-
ization loss can be estimated empirically. To estimate the expected generalization
loss empirically, the true form of the loss functions is needed. Compared to the
deterministic supervised setting where loss functions compare the predicted value
and the true value, the probabilistic loss functions compares a distribution defining
function with a value. Therefore, the probabilistic loss function depends on the dis-
tribution defining function. Analytical expression of the probabilistic loss functions
is expected to provide a more accurate calculation of the empirical loss. Further-
more, analytical expression are less time consuming and better for large data. The
computation provides a generalized way to compute the loss functions not only for
standard kernel distribution but they can reproducible for kernel mixtures distribu-

tion.
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5.3 Kernels and Mixtures Distribution

In this section, we describe the relationship between kernel and mixture PDE. A
kernel function is also a PDF, see Section 2.3. A kernel PDF is a mixture of kernel
functions. Here, we explain the relationship between standard kernel and mixture
kernel as it is important later to extend the method of computing the probabilistic

loss function to the mixture kernel.

A kernel function is defined below in Def 5.3.1.

Definition 5.3.1. A kernel function, K, is a non-negative function K : R — [OUR™]
that integrates to 1.

The K is called symmetric when,

K(u) = K(—u)  forallu € R. (5.3.1)

In Section 2.3, we mentioned that a kernel function itself is a PDF because it fulfils
the requirement for a PDFE. Recall a mixture distribution in Def 2.2.3. A mixture

kernel distribution is defined as follows.

Definition 5.3.2. Let x1,...,zy € R be a vector of observations. The continuous
mixture distribution with kernel K; : R — R, observation x; and weight w; > 0 for
1=1,..., N where Zf\il w; = 1 is a distribution with PDF

N
g(y) = wik; (y — x;) (5.3.2)
=1
and CDF
N
Gly) =Y wil; (y — z;) (5.3.3)
=1

where I;(y) = [* _K;(u— ;) dufori=1,...,N.
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Def 5.3.2 is a general expression of mixture kernel PDF and CDF. w;, i =1,..., N
is the weight for each z; ([100]) and may vary. When w; = + foralli =1,..., N,
the mixture is called ‘uniform mixture’. When w;, ¢ = 1, ..., IV, is not constant, it
can be intepreted such that each observation x; have different amount of information
about distribution ([100], [101]). For example, in boosted kernel PDF by [80], the

weight is updated in each boosting step.

The proposition below shows how a model of a mixture distribution obtained from

a kernel distribution.

Proposition 5.3.1. Let X;, i = 1,..., N be some random variables with CDF of
F; and F} is the CDF of a kernel distribution, i.e. Fi(z) = [7 K;(u) du. Let I t.v.i
1,...,N. Suppose we have observations x1,...,xy. Then, the random variable
X1 + x1 has a mixture distribution with CDF of kernel, F;, observation x; and
weight 0; = P(I =i)fori=1,...,N.

Proof. LetY = X; + z;, by elementary calculation

PY <y|I =)

where P(X; < y—ux;|I = i) is CDF of ;. By law of total probability, the marginal

distribution is

Gly) =P(Y <y)

and this is the same as in Def 5.3.2 when ¢; = % foralle=1,..., N. O

The proposition above shows how to obtained the mixture CDF for vector of random

variables. [102] showed the mixture CDF for single random variable.
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5.4 Computation of Probabilistic Loss Functions

In this section, we provide a method that efficiently computes the probabilistic loss
functions: (1) log-loss; (2) PSL; (3) IBL; for standard kernel distribution and kernel
mixture distributions at an observation point. This method uses the properties of
the kernel function and the relationship between kernel function and kernel mixture.
From this method, the probabilistic loss functions are obtained for standard kernel

and mixture kernel distributions.

Based on these probabilistic loss functions there are 4 terms needed: (1) PDF; (2)
L2-norm for PDF; (3) L2-norm for CDF; (4) L2-norm for complementary CDF
(CCDF). To obtain (3) and (4), we need the CDF.

We divide the computation into two parts. In Section 5.4.1, we compute the func-
tions needed to compute the loss for vanilla (standard) kernel distribution. Later,

we generalized into the kernel mixture distributions in Section 5.4.2.

5.4.1 Computation of Loss Functions for Kernel Distribution
Recall the definition of kernel function in Def 5.3.1. In this section, we define the
functions CDF, partial L2-product of PDF (to compute the L2-norm of the PDF),
partial L2-product of CDF (to compute the L2-norm of CDF) and partial L2-product
of CCDF (to compute L2-norm of CCDF) derived from the kernel function K in Def
54.1.

Definition 5.4.1. Let K be a kernel function as in Definition 5.3.1. Then, we define

the following notations:

i. The CDF associated with K is
Fk(x) :/ K (u) du. (5.4.1)

ii. The partial L2-product of the PDF associated with K at two different points, 0
and c € R, until a limit a € R U oo is defined as

Ak (a,c) = /_a K(u)K(u — ¢) du. (5.4.2)

where a € R U oo.
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iii. The partial L2-product of the CDF, F, associated with K at two different
points, 0 and c € R, is defined as

vk (a,c) = /a Fr(t)Fk(t — c) dt. (5.4.3)

— 00

where a € R.
iv. The partial L2-product of the complementary CDF (CCDF) at two different
points, 0 and c € R, is defined as

Exla, c) = /oo(1 — Fe(0)(1 = Fe(t —¢)) dt. (5.4.4)

where a € R.

Fy, Ak, 7k and £k are all based on kernel K and inherits the properties of K. For
this method, we assume that the partial L2-product A for the kernel functions K
exist and are finite. The partial L2-product at two different points 0 and c also means
that product of two kernel-based functions in which one is shifted by ¢ € R. In other
words, it is the convolution of two functions after one is shifted by c. Furthermore,
Eqn (5.4.2) is a general form in which a can take any value in R including oo. The
CDF Fg(z) in Eqn (5.4.1) represents the area of the curve [* K (u) du which is
also known to be the probability of less than or equal x. When K is symmetric, the
CDF in Eqn (5.4.1) derived from the kernel function has the properties in Lemma
54.1.

Lemma 5.4.1. Let K be a symmetric kernel function in Def 5.3.1 and let the CDF
be defined as in Eqn (5.4.1). Then, the following hold.

ii. lim Fg(z)=0

Tr——00
iii. Fx(—x)=1— Fg(x), this follows from the symmetric property of K
iv. F(0)=1

Proof. 1. This follows from Def 5.3.1 and Def 5.4.1(i) which will integrate to 1.
ii. This follows from Def 5.4.1(1).
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iii. From Def 5.3.1, we have K integrates to 1, where

/:qudw+émeyw:1
tAwKWszl—/ifHWdu

/Oo K(u) du =1 — Fk(x). (5.4.5)

In addition to that, using the property that K is symmetric,

/K / K(u du—/ K(u) du = Fx(—z).  (5.4.6)

Hence, we can re-write Eqn 5.4.5 as
Fr(—x) =1 — Fg(z). (5.4.7)
iv. This follow from (iii), when z = 0.
/ K(u) du + / K(u

)+ Fk(0) =

(5.4.8)

O

Furthermore, by Lemma 5.4.1, we can express Eqn (5.4.4) in two different ways as

shown in Lemma 5.4.2.

Lemma 5.4.2. Let K be a symmetric kernel as in Def 5.3.1 with the CDF F as in
Egn (5.4.1) and a € RU oo and c € R. Then, we have

¢x(a,c) :/OO Fr(=t)Fg(—(t — ¢)) dt. (5.4.9)

{k(a,c) = vk (—a, —c). (5.4.10)
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Proof. 1. Recall Eqn (5.4.4) and the symmetric kernel K in Def 5.3.1. Then, from
(iii) of Lemma 5.4.1 we can obtain,

{k(a,c) = /Oo Fr(—t)Fg(—(t — ¢)) dt. (5.4.11)

ii. Recall Eqn (5.4.4) and K is the symmetric kernel in Def 5.3.1. Using the result

from (i) above and substituting u = —t,

¢x(a,c) :/OO Fr(—t)Fg(—(t—c)) dt

_ / () Fre(u+ o) du

a

= /_—a Fr(u)Fg(u+c) du

o0

=7k (—a, —c). (5.4.12)

]

Lemma 5.4.1 and Lemma 5.4.2 are applicable to the 11 symmetric kernel in Table
5.1.

For generality, we consider now that the kernel functions are both shifted by b and
¢, where b, ¢ € R. Then, we can extend Def 5.4.1 into Lemma 5.4.3 below.

Lemma 5.4.3. Let K be a symmetric kernel function as in Def 5.3.1, then the fol-

lowing integrals hold for the equalities below.

i [* K(u—0)K(u—c)du=Ag(a—0bc—b)

ii. [ Fx(t—b)Fk(t—c)dt=vx(a—bc—Db)

ii. faoo Fr(—=(t—=0)Fg(—(t—c¢))dt =E&x(a—b,—(c—1D))
iv. {x(a—0,—(c—b)) =yx(=(a=b),—(c=b))

Proof. 1. Let the partial L2-product of the kernel K at two different points b, ¢ € R,
be

/a K(u—b)K(u—c)du (5.4.13)
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where a € R U oco. Equivalently, we can re-write it as
a—b
/ K(u)K(u— (¢ —b)) du =Ag(a —b,c—b). (5.4.14)
When a = oo, we have a special case,
/ K(u—0)K(u —¢) du =Ag(c— D). (5.4.15)

ii. Let the partial L2-product of the CDF of the kernel, K, at two different starting
points b, c € R be

/ " Pt — ) Fi(t— o) dt (5.4.16)

where a € R. Equivalently, we can re-write it as
a—b
/ Fr(t)Fg(t —(c—10)) dt = yx(a — b,c — ). (5.4.17)

iii. Let the partial L2-product of 1 — Fx () for kernel K with two different central
points b, ¢ € R be defined as

/OO Fre(—(t — b)) Fre(—(t — ¢)) dt (5.4.18)

where a € R. Equivalently, we can re-write as
/ Fro(—t) Fre(—(t — (c — b)) dt = Exc(a — b,c —b). (5.4.19)
a—b

iv. The proof follows from extending (ii) of Lemma 5.4.2.

]

Once the terms of the CDF, partial L2-product of PDF, partial L2-product of CDF
and partial L2-product of CCDF for kernel functions are defined, they can be used
to compute the loss functions in terms of the kernel. The loss functions for kernels
are defined in Def 5.4.2.

Definition 5.4.2. Let K be a kernel function as in Def 5.3.1 with the CDF Fy, par-



5.4. Computation of Probabilistic Loss Functions 103

tial L2-product of PDF )\, partial L2-product of CDF i and partial L2-product
of CCDF &g. Let the log-loss, PSL and IBL be defined in Def 3.3.1, Def 3.3.2 and
Def 3.3.3, respectively. Let a,b, c € R. Then, shifted loss functions are

. Ly(K,u)=—log K(u)
ii. Lpg(K, \g,c)=—2K(u)+ Ag(a=o00,c—b)
iii. Li(vk, &k, a,¢) =vk(a,c) + Ex(a—b,c— D).

When K is symmetric, (iii) of Def 5.4.2 can be extended by Lemma 5.4.2 for IBL
and the expression of IBL in terms of CDF based kernel, Fx is shown below in
Lemma 5.4.4.

Lemma 5.4.4. Let K be a symmetric kernel function as in Def 5.3.1. Let a,b,c € R.

Then, under the symmetric properties of kernel,
Lip(Fr,a,b,¢) =vk(a —b,c —b) + vk (—(a —b), —(c — b)). (5.4.20)

Proof. Proof follows direct substituting the second term on the RHS of Eqn (iii.)
with the result (ii) of Lemma 5.4.2 to obtain Eqn (5.4.20). [l

5.4.2 Computation of Loss Functions for Mixture Distribution

The method in Section 5.4.1 can be generalized to a mixture distribution. In this
section, we extend the method in Section 5.4.1 to compute the probabilistic loss
function: (1) log-loss in Eqn (3.3.10); (2) PSL in Eqn (ii.); (3) IBL in Eqn (2.3.6)

for a kernel mixture distribution in Def 5.3.2).

In order to compute these probabilistic loss functions for a kernel mixture distri-
bution, we use Def 5.4.1 to compute the CDF, partial L2-product of PDF, partial
L2-product of CDF and partial L2-product of complement CDF (CCDF) of the ker-

nel mixture distribution as in Proposition 5.4.1.

Proposition 5.4.1. Let K be a kernel function in Def 5.3.1. Let w; > 0 be a weight
function where v = 1,..., N and Zfil w; = 1. Let x1,...,xNn € R be a vector of

observations and h € R™ is the bandwidth. Let p be a PDF of mixture such that

N
pla) =3 K <x ;ﬁ) (5.4.21)

=1
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and p satisfy the conditions in Definition 5.3.1. Then, we define following:

i. CDF for mixtures

N
=3 wF (“ ;m) (5.4.22)
=1

ii. The partial L2-product for the PDF for mixtures

N N
a—x; c+ — T 1
Ap(a,c,z) =Y wawidg ( —) (z; - )) 5 (5.4.23)

i=1 j=1

iii. The partial L2-product for the CDF for mixtures

N

N
(a,c, ) ZwaﬂK (a—a:g?c—l-(h—xl)).h (5.4.24)

=1 j=1

iv. The partial L2-product for the 1-CDF (CCDF) for mixtures

N

N
(a,c,2) Zwaij( xZ,H(h_%)).h (5.4.25)

=1 j=1

Proof. Let K be a kernel function with a PDF as in Eqn (5.4.21). We show the

relationship between the mixture PDF and the kernels as in Lemma 5.4.3.
1. The CDF for mixtures is defined as

N
a 1 ;
Fp(a,$)_2/ U)iEK (l‘ hx) dx.
i=1 77

By making a substitution of u = *5*, the RHS of F},(a) above is,

(5.4.26)

and from Lemma 5.4.3, fi;Tz K(u) du = Fi (%) Hence,

N
1) =Y wiFk ( ¢ ;f”) . (5.4.27)
=1
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ii. Let the partial L2-product of the mixture PDF for a € R be defined as

Mlases) = [ papte - o) da

—0o0

[ () ()

=1 j5=1

z

Then, by making a substitution of © = ¥, we obtain

>

N N a”

=33 wiwys / K(u-3)K (W) ‘hdu (5428
N .

:ZZ wiwy / K (u) K (u - E h”“"f) b du (5.4.29)

and by Lemma 5.4.3(i), f_:Tz K(u)K (u — M) du = g ( e zjf;pi)

Tj—T;

where now a = % andc = ¢ , hence

;=

A —x; c+ (x; —x;)
(a,c,x —Egg w])\K( 5 . ) (5.4.30)

iii. Let the partial L2-product of the CDF be

la, e, x) _/a F,(x)F,(x —¢) dx

[ () e ()
-5 [ () e ()

i=1 j=1 o0

By making a substitution ¢ = %, to the RHS, we obtain

N N a
- Zwiwj/h Fy (t— %) Fx (t— C;‘Ei) b dt (5.4.31)
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and from Lemma 5.4.3(ii), we have

a—x;

/_O: FK(t)FK(t_W) dt:’YK(a;lIl7c+(h_$z)).
(5.4.32)

Therefore, we have

R + Sy
(a,c,x) hZZwlwﬂK(a m’c (h I)) (5.4.33)

=1 j=1

iv. The partial L2-product of the 1 — CDF(CCDF) of mixtures is

&pla, e, x) :/ F(—x)F,(—(z —¢))) dx (5.4.34)
GOON al T — T T—x;—cC
- [ (- (57) ) e (- () )
i=1 j=1
(5.4.35)
N N . B ' B '
= ' Zwiwj/a FK( SL’;—LCZ)) FK (%) dr.
=1 j=1
(5.4.36)

By making a substitution ¢ = 7, on the RHS in the equation above

N N o

zzzwiwj/ Fie (—t+ 1) Py (‘thJFTW) hdt (5.437)
1;1 j;; hOo N

— Zwiwjfl Fie (—t+ %) Fy (—t+ - C) hdt (5438

and from Lemma 5.4.3(iii),

/io Fre (—t) Fy (— (t_mf%» dt = &5 (a_hxl,cﬂ h_m)'

(5.4.39)

Hence, we have

(a, ¢, ) Zszwij ( — T oct (x}jb_xi)> . (5.4.40)

=1 j=1
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]

Proposition 5.4.1 are the functions for homogeneous kernel mixtures distribution.
To compute in terms of uniform weight homogeneous mixtures, w; and w; will need
to be substituted with % fori,j = 1,..., N. When the kernel is symmetric, iv of

Proposition 5.4.1 can also be expressed in terms on &, as shown in Lemma 5.4.5.

Lemma 5.4.5. Let K be a kernel function in Def 5.3.1. Let w; > 0 be a weight
function where i1 = 1,..., N and Zf\il w; = 1. Let x1,...,xNn € R be a vector of
observations and h € R is the bandwidth. Let p be a PDF of kernel mixture as in
Eqn (5.4.21). Then,

N N
&pla, e, ) = Z Z wwjyE(—a, —c, x).

i=1 j=1

=Yp(—a, —c, ) (5.4.41)

Proof. The proof follows from Lemma 5.4.2 and substituting K with p in Eqn
(5.4.21). ]

5.4.2.1 Loss functions for Kernel Mixture Distributions
The probabilistic loss functions for kernel mixture distributions p(z) as in Eqn
(5.4.21) are as below.

i.  Log-loss:
Ly(p,z) = —logp(x). (5.4.42)
ii. PSL:
Lpsi(ps A\p, ¢, ) = —2p(x) + Np(c). (5.4.43)
iii.  IBL:
Lii(Vp, Epy a, ¢, ) = Yp(a, ¢, x) + &y(a, ¢, ). (5.4.44)

Proposition 5.4.2 shows the substitution of result from Proposition 5.4.1 into the

loss functions for kernel mixture distribution.

Proposition 5.4.2. Let K be a symmetric kernel function as in Def 5.3.1. Let w; > 0
be a weight function where 1 = 1,..., N and Zf\il w; = 1. Let x1,...,xn € R be
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some observations and h € R is the bandwidth. Let p be a PDF of mixture as in
Eqn (5.4.21) and the CDF as in Eqn (5.4.22). The (1) log-loss; (2) PSL; (3) IBL for

kernel mixtures are

N
Lu(p,z) = — log (Z %K (x — x)) (5.4.45)

, h
=1
) T — T 1 NN T T;
Gt ) =25 (T2 ) 13 S (57)
i=1 j=1

(5.4.46)

Y& T—T; T;—X

— Ty Tj— T

) 3 Dy (e (75 ) +
—(z — i) —(z; —x)

. 5.4.47
Proof. The proof is by directly substituting results from Proposition 5.4.1 to Eqn
(5.4.42), (5.4.43) and (5.4.44) with ¢ = 0. [

5.4.3 Analytical Expression and Algorithms
In this section, we provide a summary table that list all the partial L2-product kernel
based functions and linked to Appendix B.1. The algorithms to compute the loss

functions using the derivation listed in Table 5.1 are discussed in 5.4.3.2.

5.4.3.1 Summary Table of Analytical Expression

This section is to provide a summary table on the functions derived from kernel
functions. The derivation of the functions in Def 5.4.1 are shown in Table 5.1.
Note that we do not derive in terms of mixtures because we want to ensure that the
functions derived can be used in multiform of homogeneous mixtures and single

distributions. The actual derivations can found in Appendix B.1.
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Kernel Kernel, | Fx(x) | Ag(a Mi(a,¢) | vg(a,c) | vx(—a,—c
Name K(x) 00, C)

Uniform B.2.1 B.2.1 B.2.2 B.2.3 B.24 B.2.5
Epanechnikov| B.3.1 B.3.1 B.3.2 B.3.3 B.3.4 B.3.5
Quartic B.4.1 B.4.1 B.4.2 B.4.3 B.4.4 B.4.5
Triweight B.5.1 B.5.1 B.5.2 B.5.3 B.5.1 B.5.4
Triangle B.6.1 B.6.1 B.6.2 B.6.3 B.6.4 B.6.5
Tricube B.7.1 B.7.1 B.7.2 B.7.3 B.7.4 B.7.5
Logistic B.8.1 B.8.1 B.8.2 B.8.3 B.8.4 B.8.5
Gaussian B.9.1 B.9.1 B.9.2 B.9.3

Sigmoid B.10.1 B.10.1 B.10.2 B.10.3

Cosine B.11.1 B.11.1 B.11.2 B.11.3 B.11.4 B.11.5
Silverman B.12.1 B.12.1 B.12.2 B.12.3 B.12.4 B.12.5

Table 5.1: Table of summary of functions derived by kernel functions.

Note that, for Gaussian and Sigmoid kernels, the last two columns (partial L2-

product CDF and partial L2-product CCDF) are empty. This is because there are no

closed form for the both expressions.

5.4.3.2 Algorithms
This section focusses on presenting the algorithms to use any of the derived func-

tions from Table 5.1 and Appendix B.1 to compute the loss functions for kernel

mixture distribution and also the CDF for kernel mixture. The functions derived in

Table 5.1 and Appendix B.1 are in the standard kernel functions. The algorithms in

the following are for homogeneous kernel mixtures.

i.  Log-loss for kernel mixture in Algorithm 9

ii.  PSL for kernel mixture in Algorithm 10

iii.  IBL for kernel mixture in Algorithm 11

iv.  Mixture CDF in Algorithm 12

Algorithm 9 is the algorithm to compute log-loss for homogenous kernel mixture.
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Algorithm 9 Algorithm of Log-loss for kernel mixture PDF

1: Inputs: Data: z4,...,zy where x; € R; Weight functions: ws, ..., wy such
that Zfil w; = 1; Kernel distribution, d; Kernel function for distribution of
type d.K;, : R — R* with bandwidth 4 € R*. The kernel function is also a
mixture component; a value xr € R.

Output: Value the log-loss of the kernel mixture, £y (p, x).

Steps:

Define the distribution d

Compute the kernel PDF at z, p(z) = S, w;d. K, (z — x;) as in Eqn (5.4.21)
Compute the log-loss Ly (p, ) = —log p(z) as in Eqn (5.4.42).

A O S o

From Algorithm 9, p(x) is the PDF as in Eqn (5.4.21) of a distribution d. By substi-
tuting K to a Gaussian kernel, and substituting the observed data to a vector of mean
(i.e. pt1, ..., uy) with the same standard deviation £, this will result in a univariate
Gaussian mixture PDF with weight, w;. Whereas, instead of using a vector of mean,

by substituting a scalar, this will result to univariate Gaussian/Normal PDF.

The Algorithm 10 uses a bandwidth to compute the PSL for kernel mixture at the
point x € R while Algorithm 11 is used to compute the IBL for kernel mixture
distribution using the partial L2-product of CDF and partial L2-product for CCDF,

respectively.

Algorithm 10 Algorithm of PSL for kernel mixture

1: Inputs: Data: x4, ..., 2y where ; € R; Weight function: wy, ..., wy where

Efil w; = 1; Kernel distribution, d; Kernel function for distribution d, d. K}, :

R — R*; The partial L2-product for kernel distribution d, d.A\g, : R — R;

r e R.

Output: Value of the PSL for kernel mixture £, (p, ¢, x).

Steps:

Define the distribution d

Compute the kernel PDF at z, p(z) = S0 w;d. K (z — ;) as in Eqn (2.2.4)

Compute the partial L2-product of kernel mixture, \,(c) = % .

SV Zjvzl ww;d. Mg, (c = x; — x;) as in Eqn (5.4.23)

7: Compute the PSL for kernel mixture, £, (p, ¢, ©) = —2p(z) + A\,(c) as in Eqn
(5.4.43.)

AN O R o
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Algorithm 11 Algorithms of IBL for kernel mixture

1:

Inputs: Data: zq,...,xy where x; € R; Weight function: wy, ..., wy where
Zf\il w; = 1; Kernel distribution d with CDF F'; The partial L2-product of
CDF of kernel distribution d of type d.y : R — R; Upper limit a € R.

Outputs: A value of the IBL for kernel mixture at the point a € R,

Lin (71(,1, a, C)

: Steps:

Define a kernel distribution, d

: Compute the partial L2-product of CDF for kernel distribution d, v(a,c) =

he L Z;V:l wyw;d.y(a — x;, ¢ = x; — ;) as in Eqn (5.4.24)
Compute the partial L2-product of CCDF for kernel distribution d, v(a,c) =
h- 2511 Zjvzl ww;id.y(—(a—x;), —(c = x; — x;)) as shown in Lemma 5.4.5.

: Compute the IBL for kernel mixture distribution d, L (7, a,c) = v(a,c) +

7(_a7 _C)

Algorithm 12 provides the algorithm to compute of homoegeneous CDF and the

special case of univariate CDF via kernel method.

Algorithm 12 Algorithm for kernel mixture CDF

1:

Inputs: Data: zq,...,xy where z; € R; Weight functions: wy, ..., wy where
Zi]\il w; = 1; Kernel distribution, d; CDF of kernel function of type d.Fk, :
R — [0, 1] where h € R is the bandwidth; x € R.

Output: A value of a kernel mixture CDF at =, F'(x)

: Steps:

Compute F(z) = SN  wid.Fr, (z — ;)

5.5 Alternative computation of IBL

In this section, we discuss alternative methods to compute the IBL for evaluating

a distribution at a point. These alternative methods are useful when there is no
closed-form for the partial L2-product of CDF and the partial L2-product of CCDF

of a distribution. In this section, we discuss some methods from multiple literatures

to compute IBL to evaluate the kernel distribution at a point.

IBL can exist in many forms. The IBL is usually expressed in the quadrature rule
as discussed in [103], [104], [32], [105], [106] and others. The IBL in quadrature

form is defined below.
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Definition 5.5.1. Let Y be a random variable of distribution with the CDF F' with
finite first moment. Let Y' be a copy of the random variable Y. The IBL of F' at a
pointy € Ris

1
L (Fy) =ElY —y| - EEIY—Y’I. (5.5.1)

The drawback from using the above expression to compute IBL at a point is it does

not use the CDF but using the expectation of a random variable.

Another method to express IBL is shown Proposition 5.5.1. This derivation follows
from [107], [108] and [60], such that the second term on the RHS of Eqn (5.5.1) is

1 oo
SEIY Y| = / F(t)(1— F(t)) dt.
Proposition 5.5.1. Let Y be a random variable where Y t.v.i R. Let K be a kernel
function and F is its CDF. From Def 3.3.3 and [60], the IBL for Fi is

o0 o0

%M%wz/ mﬁ%%m—Mﬁ—/.mwﬂf&@wtﬁim

— 00 o

Proof. Suppose Fx is a CDF for a kernel K that represents the distribution of ran-
dom variable Y. Then, the IBL of Fx of Y, can be defined using Def 3.3.3,
Yy

Lin(Fr,y) = /

— 00

Fy(t)* dt + / (1 —2Fk(t) + Fx(t)?) dt. (5.5.3)
Yy
From [60], the IBL can be written as
1 !
Egne(Flﬁy) - ]E|Y - y| - §E|Y -Y |

where SE|Y —Y'| = [*° Fg(t)(1 — Fk(t)) dt, leading to,

o0

Lo (Fiecg) =EIY —y| = [ Fe1 - Fet) de. 554

—00
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Comparing Eqn (5.5.3) with Eqn (5.5.4) leads to

Liv(Fre,y) :/y Fi(t) dt + /00(1 — F(t)) dt — /°° Fr(t)(1 — Fg(t)) dt

—00 — 00

~ [ - - yla- [ AO0-Fa) @ 659

—00 —00

where [*° F(t)(1— Fi(t)) dt is the expectation of absolute difference of random
variable Y and Y'. [*_|Fg(t) — H(t — y)| dt is the expected value of the absolute

—0o0

error ([109]). O

Using Proposition 5.5.1, for IBL of Gaussian kernel or standard Gaussian distribu-
tion N (0, 1), the first and second term of Eqn (5.5.1) are

i

. 26~
LB -yl = [' Fi(t) dt+ [°1 = Fie(t) dt = yert (&) + \/%ﬁ

i. ElY -Y'|= \/LE
Therefore, the IBL for standard Gaussian distribution is

Yy 2

| _ Yy, 2 1
Lin(F,y) =yerf (\/§> + NN ARG (5.5.6)

as shown in [60], [109] and [103]. [109] derived the IBL for Gaussian mixture using

as shown below.

Example 5.5.1. Let Y,Y:,..., Yy tvi R be independent random variables dis-
tributed by a CDF F),, where p be a Gaussian mixture PDF. Let y,y1,...,yn be
the realization of Y,Y1, ..., Yy and h € R™ is the bandwidth. The IBL for Gaus-

sian mixture CDF is
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where

/ N h2 N N (yi— yg2
ElY — Y’]—ZZ —y; erf(\/_\/ih?)—l—zm Zze 2WNRZ

=1 j=1 =1 j=1

(5.5.9)

5.6 Discussion & Conclusion

The objective of this chapter is to provide an efficient computation of the prob-
abilistic loss functions (i.e. log-loss, PSL and IBL) for kernel based distribution
estimator. This computation is more useful for IBL and PSL because both rely on
the L2-norm of CDF and the L2-norm of PDF, respectively.The methods proposed
in Section 5.4 are exploitable for mixture distribution rather focussing on one type

of distribution. We summarize below.

i.  The computation of log-loss for distribution is straight forward. This makes
log-loss is the comfortable choice of evaluation for users without having to
compute anything further.

ii.  The PSL is the main choice of loss function for distribution estimation using
PDF as it measures the bias-variance trade-off. One of the downfall for kernel
mixture distribution is the partial L2-product of each kernel PDF is different.
Some of the kernels have bounded support which need to be considered for
computation.

iii. The use of IBL for distribution estimation has been increasing. For most ker-
nels, the proposed method in Section 5.4 can be seen as a general approach
when dealing with symmetric kernel. The method proposed in Section 5.4 is
not applicable for Gaussian and Sigmoid kernel. In this the case where the

method in Section 5.4 are not suitable, the quadrature approach can be used.

The partial L2-product s of PDF and the partial L2-product s of CDF have been
derived (Appendox B.1) and we integrate the functions into R package distr6.



Chapter 6

Investigation of In-sample and
Out-of-Sample Tuning for

Distribution Estimation

6.1 Introduction

The objective of this chapter is to investigate the behaviour of the out-of-sample
empirical probabilistic loss function for tunings. A loss function is useful for eval-
uation and for estimating the parameters of a method. For the latter, this is done by
minimising the empirical loss with respect to the parameter. For kernel distribution,
the bandwidth is an important parameter that determines the output distribution.

Therefore, the empirical loss is minimised to estimate bandwidth.

The empirical loss function is an estimate of the prediction loss. There are two ways
to compute the empirical loss and we call them: (1) in-sample empirical loss; (2)
out-of-sample empirical loss. For distribution estimation, in-sample empirical loss
evaluates the estimated PDF (or CDF) on the same dataset it was trained. This is
usually called training lost (error). On the other hand, the out-of-sample empirical
loss evaluates the estimated PDF (or CDF) on the test set (i.e. a different dataset it
was trained). One way to compute the out-of-sample loss is to use cross-validation.

The used of cross-validation for estimating parameters in distribution estimation
has been introduced by [57] and [58] using the log-likelihood PDF and maximised
it to obtain the optimal bandwidth. [58] explained that leave-one-cross validation
(LOOCYV) is useful to prevent the limit of the log-likelihood going to infinity as the
bandwidth goes to 0 (or negative infinity for log-loss). [62] and [65] later used cross-
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validation for estimating the MISE of PDF and minimizing the estimated MISE to
obtain an optimal bandwidth. PSL is used to estimate the MISE. Even though PSL
is advantageous for absolute continuous random variables, real world data are often
discretized. Hence, this affects the use of PSL for tuning. [6] stated there exist a
threshold that ensure empirical PSL does not lead to negative infinity as the band-
width goes to 0 ([5]). In this chapter, we investigate the difference in the behaviour
of in-sample and out-of-sample empirical log-loss and out-of-sample empirical PSL

for tuning.

Firstly, we investigate the difference in the behaviour between in-sample empirical
log-loss and out-of-sample empirical log-loss for tuning the bandwidth of Gaussian
kernel PDF estimator. To obtain a minimum point, the empirical log-loss is bounded
when the parameter goes to 0 and co. To show this, we present proofs that com-
pares the use of in-sample method and out-of-sample method during tuning. In this
investigation, we use Gaussian kernel PDF estimator and log-loss. The results from
the proof show that in-sample empirical log-loss is not bounded. The out-of-sample
empirical log-loss for Gaussian kernel PDF is bounded. The results also indicate
that for a global minimum point to occur in the out-of-sample method, at least one
new data point in the test set (which is not in the training set) is required. The global

minimum indicates an optimum bandwidth.

The second investigation is motivated by [6] and [5]. We investigate the behaviour
of the out-of-sample empirical PSL to tune the bandwidth for Gaussian kernel PDF.
[6] stated that there exists a threshold /3 to ensure that empirical PSL to works [5].
[5] stated that the threshold relates to a ratio of repeated data points to all data

points in a dataset to achieve a minimum point for empirical PSL as the bandwidth

1
2v2-1"
is to provide a formal proof from the statement by [5] using a Gaussian kernel PDF

is between 0 and infinity. For Gaussian kernel, the threshold g = Our aim
estimator when tuning the bandwidth using out-of-sample empirical PSL. We prove
that for out-of-sample empirical PSL of a Gaussian kernel PDF to be bounded and
achieved a global minimum, the total number of test data points to the number of

data points that exist in training and test sets should exceed 2v/2.

Finally, we conduct a simulation experiment to compare: (1) the behaviour of
in-sample empirical log-loss with out-of-sample empirical log-loss; (2) the be-
haviour of in-sample empirical with the out-of-sample empirical PSL; on 6 different
datasets. Results of the experiment shows that out-of-sample empirical log-loss is

bounded and a minimum point exists whereas the in-sample empirical log-loss is
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not bounded. The in-sample empirical PSL is not bounded from below. The out-
of-sample empirical PSL is not bounded from below for all datasets (i.e. for some
datasets, the out-of-sample empirical PSL tends to negative infinity and O has the
bandwidth tends to 0 and infinity, respectively). Some datasets show the out-of-
sample empirical PSL is bounded (i.e. the out-of-sample PSL tends to infinity and
0 as the bandwidth goes to 0 and infinity, respectively). This is because the ratio
of total test points to the repeated number of data points in training and test sets
is greater than 21/2. Whereas, datasets in which the out-of-sample empirical PSL
does not have a lower bound is because to the ratio of total test points to the repeated

number of data points in training and test sets is less than 2v/2.

The rest of the chapter is organized as follows. Section 6.2 is a background on
the evaluation and tuning where we explain the regression setting and distribution
estimation. Section 6.3 is on investigating the behaviour of in-sample and out-of-
sample empirical log-loss for univariate kernel PDF, where we explain the setting
and theoretical formulation with conclusion. Section 6.4 discuss and present the
results of the proof for out-of-sample empirical PSL for tuning the bandwidth for
Gaussian kernel PDF. Section 6.5 will be on a simulation experiment that compares

in-sample and out-of-sample empirical loss for log-loss and PSL.

6.2 Tuning and Evaluation

In Section 3.2.4.1, we briefly describe a tuning method which is a part of meta-
learning. In this section we review the evaluating and tuning using in-sample and
out-of-sample method based on [1] and [2]. The purpose is to understand the differ-
ence in the behaviour of the empirical loss functions using the two methods. In the
first half of this section, we describe the evaluation and tuning for regression setting
as a review before we explain for distribution estimation. We describe the setting,
important terms used, explain the difference between in-sample and out-of-sample
empirical loss and incorporate the evaluation methods into tuning. In the second

half, we describe the evaluation and tuning for distribution estimation.

6.2.1 In-sample vs Out-of-sample Evaluation Method
This section is to present the setting, datasets, learning function, loss function and
terms used in this section. Then, we describe the evaluation method and explain the

difference between in-sample and out-of-sample evaluation methods.

LetD = (X1, Y1), ..., (Xn,Yn)) ~ (X,Y) and D* = (X7, Y7), ..., (X5, Y5)) ~
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(X,Y) be the training and test sets, respectively, where (X,Y) t.v.i (R",R). Let
f : R™ — R be a function that maps X to Y, £ : R x R — R be a loss function.
We highlight some important terms used throughout this Section 6.2.

i.  In-sample empirical loss: Evaluates the trained model on the same dataset set
it was trained (also known as the training loss / error). The in-sample empirical
loss is Eerrp [£(f(X), V)] = & S8, LI/(X,), V).

ii.  Out-of-sample empirical loss: An estimate of the generalization loss which
evaluates the trained model on a test set, D*. The out-of-sample empirical
generalization 10ss is Eep,, [L(f(X*),Y*)] = & Zf\ij L(f(X5),Y]).

Before we explain the tuning methods further, we need to describe in details the
evaluation method. In Section 3.2.1.3, we described the importance of the loss
function to evaluate the performance of a model. The empirical loss is computed
to estimate the generalized loss to oversee the performance of f on the population
X and Y. In general, the empirical loss is computed by comparing f (X) with Y.
There are two ways to compute the empirical loss: (1) in-sample; (2) out-of-sample.
The difference between in-sample and out-of-sample empirical loss is the use of a

test set on the latter.

First, consider the in-sample empirical loss. The learning function f is fitted using
the train set D to output a model f (D). The model is later used to predict the target
variable of the same set D. Then, the model is evaluated by comparing the output
of the predicted f(X) against Y. The algorithm for computing in-sample empirical

loss is shown in Algorithm 13.

Algorithm 13 In-sample Empirical Loss for Regression Setting

1: Inputs:
Training set: D = ((X1, Y1), ..., (Xu, Yn)); Learning function,

f : R™ — R; Loss function, £ : R x R — R.
Output: In-sample empirical loss, E[L(Y,Y)]emp

Steps:

Train f onD

Compute Y; = f(X;)

Compute £(Y;,Y;) foralli=1,... N

Compute of the average prediction over N, E[L(Y,Y)]emp = +> NLLY,Y)

A A R

However, it is recommended to evaluate the performance of the model on an unseen
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dataset by computing the out-of-sample empirical loss. Consider the training set D
and test set D*. The training set D is fitted to the learning function f and output
a model. The model uses the features of the test set D* to predict the value of the
target variable. Then, the out-of-sample empirical loss is computed by comparing
the predicted value of the target variable with the actual target variable of the test

set, D*. The algorithm for out-of-sample empirical loss is shown in Algorithm 14.

Algorithm 14 Out-of-sample Empirical Loss for Regression Setting

1: Inputs:
Training set: D = ((X1, Y1), ..., (X, Yn)); Test set:
D* = (X}, Y], ..., (X%, Ysr)); Learning function,
f : R™ — R; Loss function, £ : R x R — R. )
Output: The value of out-of-sample empirical loss E[L(Y,Y)]emp
Steps:
Train f onD
Compute the loss C(f(X;‘), Y )forj=1,....M
Compute the average the loss of the prediction over M, E[L(Y.Y)|emp, =
3 i L0 YY)

AN O R o

6.2.2 In-sample and Out-of-sample Tuning

The purpose of hyperparameter tuning is to select the model (which includes the
parameter) that best describe the dataset using a learning function f . Generally,
tuning done by fitting the training set D on the function f for each parameter ay.
This will output a model f, (D). Each model f,, (D) is evaluated by computing
the empirical loss. The model with the minimum empirical loss is selected as the

optimal (best) model. Figure 6.1 shows an overview of the tuning stage.

Training data

y Empirical loss . .
Learning . Optimal Learning
] for each input ]
function parameter function
parameter

vector of

D

I

parameters

Figure 6.1: Figure of parameter tuning where training set is used for both fitting and
tuning.
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Tuning algorithm consist of training, predicting, evaluating and minimising the em-
pirical loss. During the evaluating step in tuning, we can either compute the in-
sample empirical loss or the out-of-sample empirical loss. However, the former
uses the same dataset for training and evaluating and can cause over-fitting where
the in-sample empirical loss will tend to decrease as the parameter increase or as
the model becomes more flexible. Hence, it will be difficult to select the optimal
parameter. In this case, the best parameter will always be the largest value because

it resulted the minimum in-sample empirical loss.

To avoid the issue of over-fitting, it is recommended to use a different dataset for
training and evaluating, that is by computing the out-of-sample empirical loss in the
tuning algorithm. This not only evaluates the model on the unseen dataset but also

put a constraint of the empirical loss.

The aim now is to implement Algorithm 14 inside the tuning stage. This is done by

further splitting the training set D into inner training set, T = (X1, Y1), ..., (X%, Y})) i
(X,Y) and inner test set or validation set, 7" = ((X7,Y}), ..., (X7, Yyy)) &
(X,Y) where (X,Y) t.vi (R, R). Using the same learning function f and the loss
function £ with the same vector of parameter a, 7 is fitted to f for each parameter
ay. Then, output model fa . (D) is used to predict the output value of the target vari-
able of 7. The out-of-sample empirical loss between fak (Y*) and Y* is computed
for each f;. The model fak that results to the minimum out-of-sample empirical
loss is selected as the best model reflecting to the optimal parameter. Algorithm 15

shows the step for out-of-sample tuning for regression setting.
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Algorithm 15 Out-of-sample Tuning for Regression Setting

1: Inputs:
Inner training data: 7 = ((X1, Y1), ..., (X, Y)); Inner test
data: 7" = ((X7,Y7), ..., (X3;, Y})); Parameter: ay, . .., ak;
Learning function, f : R” — R; Loss function,

L:RxR—R.
Output: The optimal parameter ay,

Steps:
fork=1,..., K do
FitY; = f(X;)
Compute the out-of-sample empirical loss, Een,[L(f(X),Y)] =
L LX), V)
7: end for
8: Select the parameter ay, with the minimum E,,,,[£(f(X),Y)]

AN O R o

6.2.2.1 Tuning & Evaluation
Here, we describe how to put the training stage that involves tuning, prediction and

evaluation of the tuned model together.

The tuning algorithm occurs in the training stage. Once the tuned model is obtained,
we proceed to the next step, i.e. evaluating the model on test set, D*. Consider we
use out-of-sample for tuning and evaluation and the output of tuning is a tuned
model, f. This model is used to predict the values of target variable of the test
set D*, f(X*). The out-of-sample empirical loss is then computed by averaging
the loss between f(X*) and Y*, i.e. = Z;Vil L(f(XJ*),YJ*) forall j =1,..., M.
We can also use the in-sample tuning and in-sample evaluation (although not rec-
ommended). If f is obtained by in-sample tuning, then using the in-sample em-
pirical loss to evaluate the tuned model, we compute - 21111 L(f(X;),Y;) for all

t=1,..., N. Figure 6.2 is a summary of out-of-sample tuning and evaluation.
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Training data

Inner test data

Inner train-
ing data

Learning
functions

Loss for each Optimal .
. Empirical loss
input parameter parameter

Test data

Figure 6.2: Figure of overview an of parameter tuning and evaluation via out-of-
sample. The training set is split into inner training and inner test sets. The learning
function is fitted on the inner training set and later use to predict the inner test set.

It is not often that we have training set and test set. To overcome this limitation, we
can conduct nested resampling method. In this method, we have a dataset in which
we have to use for training (using tuning method) and evaluation. Figure 6.3 shows
the process of nested resampling via out-of-sample empirical loss for tuning and
evaluation while Figure 6.4 shows a nested resampling method that uses in-sample

tuning algorithm.

In Figure 6.3, the outer training set is further split into inner training set and inner
test set in which the parameter tuning takes place. For each outer training set, the
optimal model is obtained. Therefore, from Figure 6.3 and Figure 6.4, there will
be three optimal model. The optimal model is then evaluated by using them to
predict the value of the target variable for its respective fold. Each fold will output

an out-of-sample empirical loss which is average over the three folds.
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First fold

—_——— A\

Y
Outer test set Outer training set

Tuning happens here =——»

Y Y

Inner training set Inner test set

The inner training set is fitted to the learning function, f, for
each parameter. The models is evaluated using the inner
test set. Model 1 (with the optimal parameter) is selected.

|

Model 1 is fitted on the outer training set again and used to

predict the value of target variable of the outer test set. The

out-of-sample empirical loss is computed (using the first
fold as the test set) .

Second fold

Third fold

Figure 6.3: Figure of tuning and evaluating stage for out-of-sample tuning method.
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First fold
\ J \\ J
Y Y
Outer test set Outer training set

Tuning happens here ~=———»

Y
Inner training set

The learning function is fitted on the inner training set for
each parameter. The model is evaluated using the same
innter training set outputting Model 2 which is the result of
the minimum in-sample empirical loss.

|

Model 2 is fitted on the outer training set set and is used to
predict the value of the target variable of the outer test set.
The out-of-sample empirical loss is computed (using the
first fold as the test set).

Second fold

Third fold

Figure 6.4: Figure to show the process for the tuning and evaluating stage for in-
sample tuning method.

6.2.3 Evaluation & Tuning for Distribution Estimation
Here we discuss the evaluation and tuning for unconditional distribution estimation.
In this section, we first explain the setting and important terms. Then, we describe

the algorithms for evaluation and parameter tuning for distribution estimator.
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6.2.3.1 In-sample vs Out-of-sample Evaluation for Distribution Estimation

In this section, we consider a setting for distribution estimation. Let D = (Y7, ..., Yy) i
Y be a training set and D* = (Y, ..., Y ) 'Y be a test set where Y t.v.i R. Let
f:R — [R — R*] be a PDF estimator, I : R — [R — [0, 1]] be the CDF estima-
torand £ : R x [R — R™] — R be the probabilistic loss function for PDF (for CDF
L:Rx[R — [0,1]] = R). The task is to estimate the distribution defining function

at a point. We should point out some important things on distribution estimation:

i.  PDF estimation is estimating the PDF at a point (similar to CDF).

ii.  The training set D is used as the sample and the test set D* is used as the points
where distribution is estimate at.

iii. The estimator PDF, f , and CDF, F , estimate (predict) the distribution at a
points of the test data D*.

iv. In-sample empirical loss: Evaluates the estimated PDF, f , and CDF, F on
training set D whilst using the same dataset D for fitting. The in-sample em-
pirical loss is & 3" | E,,,, [L(f, Y7)].

v.  Out-of-sample empirical loss: Evaluates the estimated PDF, f , and CDF, F
on a test set D*. The out-of-sample empirical loss is 5 Zj\il EemplL(f, Y.

The above points are important. However, (iv) and (v) might be confusing. We
show by example of what that means. Suppose f is a kernel PDF estimator as
in Eqn (2.3.4), then using the test set D* as the points we want to estimate the

distribution using D as the training set is

. 1 & Y-V
f(Yj*>=mZK< — )
=1

where j = 1,..., M, K is a kernel function and h is the bandwidth parameter.

Evaluating this using the probabilistic empirical loss function will output the out-

of-sample empirical loss. However, using the training set D to predict

. 1 & Y, Y,
Fo = ok (2

where j = 1,..., N will lead to in-sample empirical loss.

Evaluating the distribution estimator will follow the same method as in Algorithm
13 and 14, for in-sample and out-of-sample, respectively, but with the absence of

the target variable. We show the algorithms for evaluating the empirical loss for
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distribution estimators in Algorithm 16 and 16.

Algorithm 16 In-sample empirical loss PDF

1: Inputs:
Inner training data: D = (Y7, ..., Yy ); PDF function,
f : R — [R — RT]; Probabilistic loss function,
L:Rx[R—R]—R. A

2: Output: The in-sample empirical loss, E[L(f,Y)]emp

3: Steps:

4: Fit the f on D using the same D as the observations

5: Compute the in-sample empirical 10ss E[L(f,Y)]emp = = S, L(f, Y3).

Algorithm 17 Out-of-sample empirical loss PDF

1: Inputs:
Inner training data: D = (Y7, ..., Yy ); Inner test data:
D* = (Yy, ..., Y7,); PDF function, f : R — [R — R*];
Probabilistic loss function, £ : R x [R — R] = R

2: Output: The out-of-sample empirical loss E[L(f, Y)]emyp

3: Steps:

4: Fit the f on D* using D as the observations

5: Compute the out-of-sample empirical 10ss E[L(f, Y )]emp = = ML L( f, Y.

6.2.3.2 In-sample & Out-of-sample Tuning for Distribution Estimation

Once we have understand how to evaluate for distribution estimation, we can in-
corporate the evaluation algorithm into tuning to select the parameter. Similar to
the regression setting, when using in-sample tuning, increasing the model com-
plexity tends to make the distribution more flexible whereas decreasing the model
complexity makes the model less flexible. For example, increasing the value of
the bandwidth for a kernel distribution estimator decreases the complexity and will
smooth out the shape of the distribution and remove any important features of the
distribution. Therefore, using in-sample for tuning causes over-optimism of the in-
sample loss (see [2]). We show the algorithm for out-of-sample tuning in Algorithm
18 below.
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Algorithm 18 Out-of-sample tuning for PDF estimation

1: Inputs:

Inner training data: D = (Y7, ..., Y ); Inner test data:

D* = (Y7, ...,Y;;): PDF function, f : R — [R — R*];

Parameter, p = p1y- - PKS Loss function, £ : P x R - R )
Output: A model of f,,, with the minimum out-of-sample empirical loss,
Steps:
fork=1,..., K do

Estimate the PDF on D* using pj, on the sample D, fpk (D*|D)
end for

A A

Compute (evaluate) the out-of-sample empirical loss for each bandwidth py,, hy,

M ¢ *
:%Zizl ‘C(fpkv}jj ) ~
8: Select the model f,, with the minimum Ay, as the tuned model.

6.2.3.3 Tuning & Evaluation for Distribution Estimation

Tuning and evaluation for distribution estimation is similar as in Section 6.2.2.1,
i.e. tuning takes place in the training stage using the training data and evaluation
is done using the test data. The algorithm for tuning and evaluation for distribution

estimation is shown in Algorithm 19.
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Algorithm 19 Out-of-sample tuning and out-of-sample evaluation for PDF estima-
tion
1: Inputs:
Training data: D = (Y3, ..., Yy); Testdata: D* = Y, ..., Y},
PDF function, f : R — [R — R*]; Parameter, p = py, . . ., pk;

Loss function, £ : P x R — R; ~
2: Output: Average out-of-sample empirical loss, A

3: Steps:

4: SplitDinto T : (Y7,...,n)and T* : (Y5, ,,...,Y}y) (where the former is inner
training data and the latter is the validation data)

5: forp=1,..., K do

6:  Estimate the PDF of 7* using f on the 7 on each py, f,, (7|7

7: Compute the out-of-sample empirical loss for each bandwidth py, i.e. hy =
N—(n r *
v S L Y)
8: Select the model f,, with the bandwidth with the minimum out-of-sample

empirical loss, p* = argmin hy,
p
9: end for

10: Estimate the PDF of D using p* on the sample D*, f,.(D*|D)
11: Evaluate the out-of-sample empirical loss of h = % vazl L( fp* ,Y)

6.3 Investigation of In-sample & Out-of-sample Tun-

ing for Distribution Estimation via Log-loss
In this section, we compare the behaviour between in-sample and out-of-sample em-
pirical log-loss for tuning the bandwidth using Gaussian kernel PDF. Here, we aim
to tune the bandwidth of kernel PDF estimator using in-sample and out-of-sample
empirical loss. We provide theoretical proof to investigate the tuning algorithm
for distribution estimation. Firstly, we explain in details about the two cases we
are investigating. Then, we define the settings which include the datasets used for
in-sample and out-of-sample tuning. Then, we specify the estimator which is the
univariate Gaussian kernel PDF and define the empirical log-loss for the estimator.

To assist the proof, we present some preliminaries definitions and lemmas.

In the proof, we compare the two settings: (1) test set is a subset of the training set
during tuning; (2) test set is not a subset of training set during tuning. We show that
for (1), this result to the in-sample empirical loss which is unbounded when it is a

function of the bandwidth. The in-sample empirical loss decreases to infinity as the



6.3. Investigation of In-sample & Out-of-sample Tuning for Distribution Estimation via Log-loss129

value of bandwidth decreases to 0. However, we show under (2), the out-of-sample
empirical loss is bounded and we further show that there exist a global minimum
(which signifies the optimal bandwidth). Under this condition, it signifies that even
when the test set contain one new point not present in the training set, the proof still
holds. This concludes that the present of one new data point in the test set will allow

the out-of-sample empirical loss to achieve a minimum point.

6.3.1 Theoretical Proof: Tuning Kernel PDF via Log-loss
For this investigation, we proposed two cases to differentiate the in-sample tuning

and out-of-sample tuning.

1. Test set is a subset of training set: There are two subcases that fall under this:
(1) test set is equal to the training set; (2) test set is a subset of the training set (i.e. all
data points of the test set are in the training set but not all data points in the training
set are in the test set). This is use to evaluate the in-sample empirical log-loss. For
this case, we hypothesis that minimum does not exist. The in-sample empirical loss
will decrease as the bandwidth tends to 0 and increases as the bandwidth tends to
infinity.

2. Test set is not a subset of the training set: There are two cases that fall into
this: (1) test set is not equal to the training set (i.e. there is no over lapping data
points in both sets); (2) test set contain one data point not in the training set. This
is for the out-of-sample empirical log-loss. Under this case, we hypothesise there

exist a minimum point and that the out-of-sample empirical loss is bounded.

To investigate the impact of the two cases above on tuning the bandwidth, we inspect
the behaviour of the empirical loss as the bandwidth tends to 0 and as the bandwidth
tends to co. Therefore, we show the proof of the limiting behaviour of the in-sample
and out-of-sample empirical loss as h — 0 and as h — oo for both cases. The set up
of the proof is in Section 6.3.1.1, the preliminary definitions and lemmas in Section
C.1 and Section 6.3.1.3, respectively. The main proof is in Section 6.3.2.

6.3.1.1 Setting

Here, we present setting, estimators and the definitions and lemmas to support the

proof.
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Cases
Let D be a vector of the training data, D := (Y1, ..., Yy)? € R¥ and let D* be a
vector of the test data, D* := (Y}, ..., Y;;)T € RM . The cases are:

1. Let M, N € N. Suppose D* C D, then we have M < N. Without loss of
generality, for all i € (1,2,..., M) and j € (1,2,..., M), we have Y; — Y = 0
when j = i.

2. Let M, N € Nandlet D* ¢ D.

6.3.1.2 List of Definition

Definition 6.3.1. Empirical log-loss function using Gaussian kernel

Let D be a vector of the training data, D := (Y1,...,Yy)T € RY and let D* be a
vector of the test data, D* = (Y{,..,Y;)T € RM™. Then, let f : Rt — R bea
function of h be defined by

1 - 1 (t;)°
h)zﬂjg(—log [Nh\/%;exp{—é (7) }]) (6.3.1)

where t;; = Y; — Y and Y;, Y are the training data of size N and test set of size

M respectively. For simplicity, we let u;; be

2
Ujj = exp {—% (%) } (6.3.2)

in eqn (6.3.1) can be expressed as

M
j=1

) (6.3.4)

‘MZ HM:

= log(NhV/2m) — Z

)

/\

6.3.1.3 List of Lemmas
Lemma 6.3.1. Let f, D and D* be defined as in Def 6.3.1. f is continuous when
h > 0.
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Proof. From the definition of continuous function, a logarithmic function is always
continuous on its domain. An exponential function is always continuous in the
domain R. Then, by the property of a continuous function, a composition of contin-
uous functions is also continuous. Hence, a composition of logarithmic functions
with the domain greater than O is continuous which is also true for a composition
of exponential functions. Hence, by definition of a continuous function and the
properties of logarithmic and exponential functions, f is always continuous when
h > 0. [

Lemma 6.3.2. Let g : Rt — R be defined as g(h) = log(Nh+/(27)). Then, under
Def C.1.1, g is not bounded below such that

}lg% g(h) = .
Proof. Under Def C.1.1), g(h) is not bounded below when h — 0 if every L < 0
there is h; > 0 such that log(Nhv/27) < L whenever 0 < |h — 0| < h;. Then, we
need to find h; such that log(hv/27) < L.

exp(L)

log(Nhv2m) < L < Nhv2m <exp(L) & h < .

g(Nhv2m) vV p(L) N/or
Choosing h; = eXp(L . Since 0 < |h — 0| < hy, we have 0 < |h| < %‘\’(ﬁ) Hence,
0 < |NhV27| < exp{L} and by taking the log, we will get —oo < log(Nhv/27) <
L. [

Lemma 6.3.3. Let g : R™ — R be defined as g(h) = log(Nh+/(27)). Then, under
Def C.1.1, g(h) tends to oo such that

lim g(h) = oo.

h—o0
Proof. Under Def C.1.1), g(h) goes to oo as h — oo if for every U > 0 there is
d > 0 such that log(hv/2m) > U whenever h > ¢. Then, we need to find ¢ such that

log(hy/2m) > U.

exp(U)
NV2r

log(hv2m) > U < NhV21 > exp(U) & h >

Choosing hy = < \/@ we obtain h > ﬁ since h > ¢. Hence, we can show that

log(hv/27) > U. O
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Lemma 6.3.4. Let M, N € N. Then, for D* ¢ D, we have a matrix

T = (ti)ije,

5,5=1
such that t;; = Y; — Y in which a column of matrix T with a non-zero entry.

Proof. Let D* ¢ D, then we have

:>E|Yj*€'D*:Yj*¢D
=N eD' VY, eD:Y,-Y #0
=dj € {1,,M}VZ S {1,,N}tlj 7&0

]

Lemma 6.3.5. Let f : R — R be a continuous function. Let K C R be a compact
set. Then, f(K) = {f(z): x € K} is a compact set.

Proof. Refer to [110]. O

6.3.2 Main Proofs: Proofs of Boundaries

In this section, we provide the proof of boundaries of the empirical log-loss of
Gaussian kernel PDF for the two cases: (1) test set is a subset of the training set;
(2) test set is not a subset of the training set. For both cases, we show the limit
boundary of the empirical log-loss of Gaussian kernel PDF as the bandwidth tends

to 0 and infinity.

6.3.2.1 Proposition 1
Below is the proof of the proposition to show that the log-loss is unbounded from

below if the test set is a subset of training set.

Proposition 6.3.1. Ler f : RT — R be as defined in Def 6.3.1. Under Case 1
Section 6.3.1.1, f is not bounded from below which is implied by the fact that

lim f(h) = —oco

h—0

Proof. Suppose that f as defined in Def 6.3.1. Under Case 1, we can rewrite f as
in (6.3.4),

M N
F(h) =log(Nh\/27) — % > log (Z u3> (6.3.5)
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where u;; as defined in Eqn (6.3.2). From Case 1 (Section 6.3.1.1), u; = 1Vi,j €
{1,...M}and 0 < u;; < 1ifi# jwherei € {1,..., N}. Then,

N N N
ZU”:U”—I—ZUU:]_—}-ZUU >1 foranij {1,,M} (6.3.6)
im1 i oy

We take log on both sides of (6.3.6) to obtain

N
log » " uy; > log(1) =0 (6.3.7)

i=1

because log is an increasing function. By averaging over j and multiplying both

sides by —1, we deduce

1 M N
— a7 D log )y ui; 0. (6.3.8)
7j=1 =1

Finally, adding log(/Nh+v/27) to eqn (6.3.8),

() = log(N/2m)—- " log (Z u> < log(Nhv/2T) — 2-(0)
—log(NhV/2r). (6.3.9)

Under Lemma 6.3.2, we found that }lliH[l) log(Nhv/2m) = —oo. From eqn (6.3.9),
—

since f(h) < log(Nh+/(27)), we can conclude that }llin% f(h) = —oo Thus, under
—
Case 1, f(h) is unbounded from below when h — 0. O

6.3.2.2 Proposition 2
Below is the proof of the proposition to show that the log-loss is unbounded from

above if the test set is a subset of training set.

Proposition 6.3.2. Ler f : RT — R be as defined in Def 6.3.1. Under Case 1
Section 6.3.1.1, f tends to oo as h — oo i.e.

lim f(h) = oo.

h—o0

Proof. Suppose that f is defined as in Eqn (6.3.1). Under Case 1 in Section 6.3.1.1,
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we rewrite f as

M N
f(h) = log(Nhv2r) — % > log (Z u]> (6.3.10)
j=1 i=1

where u;; as defined in Eqn (6.3.2). From Case 1, u; = 1Vi,j € {1,..., M} and
0 <wy; <1ifi# jwherei € {1,...,N}. Then,

N
Y uy <N foranyj€{l,.., M} (6.3.11)
1=1
We take log on both sides to obtain
N
log ¥ u; <log(N)  foranyj€{1,.. M} (6.3.12)

=1

because log is an increasing function. By multiplying both sides by —1 and averag-

ing over j, we deduce

LM N LM
i D log uy > —7 D “log(N) = —log(N). (6.3.13)
j=1 =1 j=1
Finally, adding log(Nh+v/27) we obtain

f(h) = log(Nhv/2r) — % > log (Z uj> > log(NhvV2m) — log(N) = log(hv/27).
- : (6.3.14)

By Lemma (6.3.3), we found that hlim log(hv/2m) = oo. Since f(h) > log(hv27),
—00

we can conclude that f(h) tends to co as h — oo. O

6.3.2.3 Lemmal
In this section, we will provide proof of the lemma (Lemma 6.3.6) for the log-loss
of univariate Gaussian kernel estimator when the bandwidth goes to 0 under Case 2

in Section 6.3.1.1 (i.e. the test set is not a subset of the training set).

Lemma 6.3.6. Ler f : RT™ — R be as defined in Definition 6.3.1. Under Case 2 in
Section 6.3.1.1,
lim f(h) = occ. (6.3.15)

h—0
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Proof. For the case D* ¢ D, we refer by Lemma 6.3.4. Then, under Case 2 in

Section 6.3.1.1, let Q = (uw)fvjfl where u;; as defined in Eqn (6.3.2). Let p €

N U {0} be the number of columns of () that has entries ‘1’ and J C {1,2,..., M}
be the set that contain the p columns while .J = {1,2, ..., M} \ J.

N
‘v’jGJ: ZUUSN
i=1

N
=VyeJ: log (Z uij> < log(N)

=1

M N
= Zlog (Z uij> < plog(N). (6.3.16)
i=1

jeJ
For (M — p) columns that are without entries 1, i.e. for j € J , we have:

N
Z u;; < Nv;  where v; is the largest u;; in column j € J

=1

log (Z uij) < log(NV) + log(v;)

i=1

Zlog (Z uij> < (M —p)log(N) + Zlog (v)) (6.3.17)

j jeJ

JjeJ

Then, add eqn (6.3.16) and eqn (6.3.17) together to obtain

M N M
t;)? =
Z log (Z uij) < Mlog(N )—Z (2;32 where ¢; corresponds to the largest v; for column j € J
j=1 i=1 jed

(6.3.18)
Multiplying eqn (6.3.18) by —4; we obtain,

1

1 M N M (t,)?
—Mng > wy > - Mlog(N) = > e (6.3.19)
j=1 i=1 jeJ
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Finally, we add log(/Nh+/27) to obtain

f(h) =log(Nhv2r) — % Zlog (Z uij>

S

>
> log(hV2m) + N2

(6.3.20)

Reparameterize 7 = +. We can rewrite eqn (6.3.20) in terms of v
P 7=

FrrY) = log(r-1vam) + L 2erti)

2M
Then, we can show that
2\M 2
. B . B 72 e (ty)
1 B> 1 V2 S AR
lim f(y )_ngo<0g(7 V2m) + ——0

lim f(y) > lim (log(\/ﬁ) —log(7) + M) . (6.3.21)

Y00 y—00 2M

M
’72 Zjej(t.?)2

On the RHS of eqn (6.3.21), —log(y) — —oc while 57
To apply L’Hopital’s rule, we first take the exponential of eqn (6.3.21) to obtain

— 00 as 7 — o0.

exp {72 Z%j(tj)Q }
2M

A) x

(A) >

(6.3.22)

lim exp {f(y"")} > lim |exp
~y—»00 ~y—00

where A = /27. Applying L’Hopital’s rule from Theorem 2.4.1 [110], where the

numerator and denominator are both differentiated w.r.t v, we obtain

M 42 25 M 2
72]7\;(]) exp{v zﬁm }

lim exp {f(771)} = lim | exp(A) x : = 00.

(6.3.23)

. : 2
Since the numerator of the above goes to 0o as 7 — oo (since ;77 > 0), then
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lim exp f(7~!) = oo. By Definition C.1.2, this means we have

Y—r00
Voo >037, >0y >y = exp{f(7 1)} > ca. (6.3.24)

To show that lim f(y~!) = oo, by Definition C.1.2,

Y00
Ver>03y >0:y>y = f(y) > (6.3.25)
Let ¢c; > 0 be given. Then, we have
Vey > 03y, > OVy > 71 s exp(f(v71) > e (6.3.26)
Choosing ¢, = exp(cy), eqn (6.3.26) implies

Iy >0y >y sexp(f(yh) > exp{c}
S >0y >y f(y ) >a (6.3.27)

Hence, lim f(y~!) = oo which implies lim f(h) = co. O
y—o0 h—0

6.3.2.4 Lemma 2
In this section, we will provide a proof of the log-loss of a univariate Gaussian
kernel tends to oo when the bandwidth goes to oo under Case 2 in Section 6.3.1.1

1.e. test set is not a subset of the training set.

Lemma 6.3.7. Ler f : Rt — R be as defined in Def 6.3.1 and let h € R*. Under
Case 2 in Section 6.3.1.1, f tends to oo, as h — oo i.e.

lim f(h) = 0.

h—o0

Proof. Suppose that f is defined as in Def 6.3.1. Under Case 2 in Section 6.3.1.1,

we can rewrite f as

i=1

M N
f(h) = log(Nhv/2r) — % > log (Z u]> (6.3.28)
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Under Case 2,
Zu"j <N forany j € {1,..., M}

N
= log (Z%;) <log(N) forany j € {1,..., M}

i=1
M N M

= Zlog (Z uij> < Zlog(N) = M log(N).
j=1 i=1 j=1

Then, dividing the above equation by M and multiplying by —1,

i Zlog (Z uw> > —log(N). (6.3.29)

and lastly adding log(Nh+/27), we obtain

M

f(h) = log(Nh\/%)—% ' log (Z uij> > log(Nhv2m)—log(N) = log(hv/27)

(6.3.30)
By Lemma 6.3.3, we found that hm log(hv/2m) = oco. Since f(h) > log(Nhv/27)
by Eqn (6.3.30), we can conclude that under Case 2, f(h) tends to co as h —
00. [

Lemma 6.3.6 and 6.3.7 are for general case when we have overlapping data points
in D and D*. However, the lemmas also work for when M = 1 such that D* gz D
and D* # D. This shows that the lemmas only need at least one new point in D*

that is not present in the D.

6.3.2.5 Lemma3
In this section, we will provide a proof to show that in the case where D* ¢ D,

there exist a minimum of the out-of-sample empirical log-loss.

Lemma 6.3.8. Ler [ : R™ — R be the function defined in Def 6.3.1. Let D be a
vector of training data, D : (Y1, ...,Yn)T € RY and let D* be a vector of test data
D* = (Y,...Y)"T € RM. Let D* € D. Then,

1. llllg(ljf(h) = 00

2. lim f(h) =
—00
3. There exist L € R such thatYh > 0: f(h) > L
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Proof. 1. See Lemma 6.3.6

2. See Lemma 6.3.7

3. Let ¢; € R*. Suppose there is h; > 0, then f(hy) > 0. From Lemma 6.3.6,
there is hy > 0 for all b < hy such that f(h) > ¢;. Following Lemma 6.3.7,
there is h3 > 0 for all h > hg such that f(h) > ¢;. Let hy = min(hg, h3) and
hs = max(hs, hs). Also, we let f(hy) = ¢;. We know that f(h) > ¢y if h > hs
or h < hy. Then we have f(h) < ¢; when h € [hs, hs] where the compact
interval I = [hy, hs] will always be none empty because h;, will always be in
I. Then, we can show that VA ¢ I : f(h) > ¢y and 3h € I : f(h) < .
By Lemma 6.3.5, for any interval I = [h, s, f(I) = {f(h) : h € I} isa
compact set and we know that there exist a minimum in the compact set f(/).
We also know that f(h) > minf(Il) = Lif h € I. Hence, we can conclude that
f(h) > min(0, minf()) for any h > 0.

O

6.3.2.6 Theorem on Global Minimum of Out-of-sample Empirical Log-loss of
Gaussian Kernel pdf

In this final theorem below, we will provide the a proof in the case where D* C D,

there exist a minimum and that minimum point is the global minimum for out-of-

sample empirical log-loss.

Theorem 6.3.1. Let f, D and D* be defined in Definition 6.3.1. Then, the followings

are equivalent

1. D"¢D

2. f has a global minimum .

Proof. Here, we present the proof in two directions:

1. (1) = (2).
If D* ¢ D, then f has a global minimum

2. (2) — (1) by using contraposition, (1) — —(2)
If D* C D then f has no global minimum.

We construct the first proof. By Lemma 6.3.1, f is a continuous function. Suppose
there is h; > 0, then f(h;) > 0. From Lemma 6.3.6, there is hy > 0 for all
h < hy such that f(h) > c¢;. Following Lemma 6.3.7, there is hy > 0 for all
h > hg such that f(h) > ¢,. Let hy = min(hy, hs) and hs = max(hs, h3). Also,
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we let f(hy) = ¢;. We know that f(h) > ¢; if b > hg or h < hy. Then we
have f(h) < ¢; when h € [hy, hs] where the compact interval I = [hy, hs] will
always be none empty because h; will always be in I. Then, we can show that
Vh ¢ I: f(h) > cpand3h € I : f(h) < ¢;. By Lemma 6.3.5, for any interval
I = [ho, hs], f(I) = {f(h) : h € I} is a compact set. Hence, by extreme value
theorem, there exist a minimum when f is continuous on the compact set /. Since
Vh ¢ I : f(h) > c¢; we know that there is no h outside of I will give f(h) < ¢,

hence the minimum in the compact set [ is also the global minimum.

For the second proof, we prove this by contraposition, such that if D* C D, then

f has no global minimum. This is easily seen by Proposition 6.3.1 and Proposition

6.3.2, where under assumption 1, }llirr(l) f(h) = —o0 and hlim f(h) = oo, respec-
— —00
tively. Hence, there is no global minimum when D* C D. ]

6.4 Investigation of Out-of-sample Tuning for Distri-

bution Estimation via PSL
In this section, we investigate the behaviour of the out-of-sample empirical PSL for
tuning the bandwidth of a kernel PDF estimator. This investigation is motivated
by [6] and [5] where it stated there exist a threshold for out-of-sample empirical
PSL to be bounded as the bandwidth to the kernel PDF goes to 0 and infinity. This
situation is due to the discretization of the real world data. In this section, we
provide a formal proof of the out-of-sample empirical PSL for Gaussian PDF when

the bandwidth goes to 0 and co.

In the proof, we compared two settings: (1) The total number of test data points
to the number of data points that exist in both training and test sets is less than
2v/2; (2) The total number of test data points to the number of data points that
exist in both training and test sets is greater than 21/2. From (1), the out-of-sample
empirical PSL for Gaussian PDF goes to —oo and 0 as the bandwidth goes to 0
and oo, respectively. Whereas, (2) proves that the out-of-sample empirical PSL for
Gaussian PDF goes to oo and to 0 as the bandwidth goes to 0 and oo, respectively.
This concludes that the ratio total number of test data points to the number of data
points that exist in both training and test sets must be greater than 2v/2 to achieve
a minimum point. We also proved that under this condition a global minimum is

achieved.

Firstly, we explain in detail the conjecture from [5] and proposed a new setting to
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investigate the behaviour of out-of-sample empirical PSL for Gaussian kernel PDF.
Then, we define the setting for the proof. Then, we define the function to prove the

boundary of out-of-sample empirical PSL. Lastly, we present the formal proof.

6.4.1 Theoretical Proof: Out-of-sample Tuning for Gaussian Ker-
nel PDF via PSL

Silverman’s Conjecture

LetD = (Y1,...,Yn) 'Y where Y t.viR. Let x € N be a number of pairs ¢ < j
for which Y; = Y} where 4, j = 1, ..., N. Then there exist a threshold 3 ([6]), such
that

K®@(0)

b= 2(2K(0) — K@(0))’

where K is the kernel function and & is convolution of the kernel function with
itself. When x > BN (N is the total number of data points in D), the empirical
PSL will tend to —oo as the bandwidth of the Gaussian PDF tends to 0. [5] used
the same dataset D for evaluation and training and shows that the threshold for a
Gaussian kernel PDF is 8 = 0.55.

New Setting

To ensure that the tuning is via out-of-sample, it is important to separate the datasets.
Consider a training set D = (Y1,...,Yn) 'Y where Y t.v.i R. Consider a test
set D* = (Y{,...,Y:) 'Y where Y t.viR. Let M = m -+ n, where m is the
number of test points D* that does not exist in D and n < N be the number of test

points D* that overlaps with D. We hypothesise that for a Gaussian kernel PDF,

i.  when M < 2v/2n, we obtain the same result as [5] where the out-of-sample
empirical PSL is unbounded (i.e. out-of-sample empirical PSL tends to —oo
as h — 0).

ii. when M > 2v/2n the out-of-sample empirical PSL tends to oo and 0 as b — 0

and oo, respectively.

Suppose we have N, n, m as in the new setting. It is found that * < 2/2—1 = -1

This shows the relationship between the result of the new setting with [5]’s.

Therefore, we provide a proof for the limit of boundaries of the out-of-sample em-
pirical PSL for Gaussian kernel when h — 0 and h — oo for the two cases: (1)
M < 2v/2n: ()M > 2/2n. The purpose is to provide a formal proof for [5]’s
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statement focussing on Gaussian kernel PDF and to ensure clarity of using out-of-
sample method. The set up of the proof is shown in Section 6.4.1.1. The formal

proof is shown in Section 6.4.2.

6.4.1.1 Settings for PSL
Here, we describe the set up where we define the training set and the test set, the
Gaussian kernel PDF and the out-of-sample empirical PSL. Then, we will list down

definitions and lemmas that are important to support our main proof.

Dataset
Let M, N,n € N. Define the vectors

D=(Yy,...,Yy) eRY

and
D= (Y),.... Y Y, Y) e RY.

We call D as the vector of training set and D* as the vector of test set and D* ¢ D.
Define m = M — n (i.e. M = n + m). We refer n as number of test points in D*
thatexistin Dandn < N,ie. Y —Y;=0forallj=1,...,n,n+1,..., M and

1 =1,...,n. Then, m is be the number test data D* not D.

List of Definitions

Let the PSL is define in Eqn (3.3.11) and the PDF estimator is defined in Eqn (2.3.4).
We define the out-of-sample empirical PSL for univariate Gaussian kernel PDF in
Def 6.4.1.

Definition 6.4.1. The out-of-sample empirical PSL for univariate Gaussian ker-
nel PDF

Let D be a vector of training data, D = (Y1,...,Yy) € RN and D* let be a vector
of test data, D* = (Y, ..., Yy;) € RM. We define the function g : Rt — R, as

, 2 e (W) LS S et ol
_ A - “alh
g( ) —hNM\/%;;e +2N2hﬁ;;e 6.4.1)

where

i. Y;, Y[ are the training data of size N and test data of M, respectively
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il. tl]:Y;*—Y;fO}’z:l,,Nandjzl,,M
iii. ’l“ijzy;‘—Y;fOI‘Z.?j:l,...,N
iv. h € RT is the bandwidth.

Lemma 6.4.1. Let g be defined as in Def 6.4.1. g is continuous when h > Q.

Proof. From the definition of continuous function, an exponential function is al-
ways continuous in the domain R. An exponential function with the domain greater
than O is continuous which is also true for a summation of exponential functions.
Hence, by definition of a continuous function and the properties of exponential

functions, g is always continuous when A > 0. U

6.4.2 Main Proofs

In this section, we provide the main proofs for our investigation. We provide the
proofs of the limit boundaries of Eqn 6.4.1 as h — 0 and h — oo for each cases:
(1) M > 2v2n; (2) M < 2+/2n.

Lemma 6.4.2. Define the function g : Rt — R as in Egn (6.4.1). Then, for M and
n from Section 6.4.1.1,

1. when M > 2v/2n, g tends to oo as h — 0, i.e.

lim g(h) = oc. (6.4.2)

h—0

2. when M < 2/2n, g tends to —oo as h — 0, Le.

lim g(h) = —oc. (6.4.3)

h—0
Proof. Recall the Eqn (6.4.1). We re-write the function again,
,l 7] 1 1(rij)?
h) = () gL e 1(F) . (644
o) WM%;; ) 6.44)
For simplicity, we make the denominator equal

—20eN) 2, o e ) L arvas s e ()
2MN2\/27 '

(6.4.5)



6.4. Investigation of Out-of-sample Tuning for Distribution Estimation via PSL 144

To prove the two cases, we firstly show the limit of function g as h — 0 before
we consider the cases. This proof uses a sequence of elementary computation and

elementary limit.

1

,,(iij) ,;(mf . .
Letu;;=e 2\"/ andw;; =e 4\*/) fore=1,...,Nandj=1,..., M.

The first term of the numerator of Eqn (6.4.5) depends on the training vector and the
test vector. While, the second term of the numerator only depends on the training
vector. Consider the first term of the numerator of Eqn (6.4.5). Since we define

M = m + n, we can express the summation as

M N n N m N
SN ug =) u+ Y (6.4.6)
j=1 =1 j=1 i=1 j=n+1 i=1

For visualizing purpose, we define U to be a matrix where the elements are u;;.

upp =1 ... Un1 Ul(nt1) -+ Ulm
Un1 Unn = 1
U= u(n—i—l)l u(n+1)n
| UN1 UNn uN(n-i—l) ... UNM ]

The matrix U will be used to break down Eqn (6.4.6) to ease the proof strategy.

Based on matrix U, we can further split Eqn 6.4.6 into

M N n n n N m N

j=1 i=1 ij=1 ij=1 j=1 i=n+1 j=n+1 i=1

i=j i#]
The first term and the second term in Eqn 6.4.7 refers to the sum of diagonal ele-
ments and the sum of off-diagonal elements of of upper left block of matrix U. The
third and fourth term of Eqn 6.4.7 refer to sum of elements of the lower left and the
sum of elements of the right (lower and upper) block of matrix U, respectively. We

will compute the limit of each term of Eqn 6.4.7 as A — 0 individually.

Firstly, for the first term of Eqn 6.4.7. The diagonal entry of each term is 1, this
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leads to

lim » " u; =n (6.4.8)

h—0

i,7=1

i=j

because there are n diagonal entries. This follows from the elementary property of
exponential function which is ” = 1. For the second term of Eqn 6.4.7, the limit as
h — 0is

lim " u; = 0. (6.4.9)

h—0

,5=1
7]

This follows from Lemma C.2.3.

For the third and fourth terms of Eqn 6.4.7, the limits as A — 0 are

n N
lim > uy =0 (6.4.10)
j=1 i=n+1
m N
lim ; Zl ui; =0 (6.4.11)

respectively, which also follow from Lemma C.2.3. Then, the limit as h — 0 for
Eqn (6.4.7) 1s

M N n n n N m N
lim E 5 u;; = lim E u;; + lim g u;; + lim E 5 u;; + lim 5 g Uij
h—0 h—0 h—0 h—0 h—0

=1 i=1 ij=1 ij=1 j=1 i=n+1 j=n+1 i=1
i=j i
(6.4.12)
. (6.4.13)
Multiply by —4N,

M N
—4N lim Zl Zl u; = —4Nn. (6.4.14)

Jj=1 =

Therefore, as h — 0, the limit of the first term of the numerator in Eqn (6.4.5) tends
to —4Nn.

Now, we focus on the second term of the numerator of Eqn 6.4.5. For visualization
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purposes, we define 17 to be a matrix where the elements are w;; fori =1,..., N
andj=1,..., M.

U}H:]_ WIN
W= Wn1 WnN
L WnN1 wNNzl_

We express the summation of the second term of the numerator of Eqn 6.4.5 as

N M N N
SN wy =) wi+ > wy. (6.4.15)
=1 j=1 z,zjzzjl z;];ézjl

The first term of Eqn 6.4.15 refers to the summation of the diagonal entry of W
while the second term refers to the summation of the off-diagonal entry of matrix
W.

Consider the first term of Eqn (6.4.15). As h — 0, the limit of vajzl wjj; 18

i=j
N
li —Ng
g%i:ww N (6.4.16)
ij=1
=]
The diagonal entries consist of the terms Y; = Y, forall: = 1,...,N and j =

1,..., M. This results to Y; — Y; = 0. Therefore, by the elementary property of
exponential function, e’ = 1. Hence, each diagonal entry of matrix ¥ is 1 and the

sum of the diagonal entry in N.

For the second term Eqn 6.4.15, the limit of Z;Nj:l w;j as h — 0, is

7]
N
ygizwﬁzo. (6.4.17)
1,j=
i=j

This follows from Lemma C.2.3.

Therefore, the limit of the summation of the second term of the numerator of Eqn
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64.5ash — 0is

N N
lim ) wi=N. (6.4.18)
j=1 i=1
Multiply by M +/2, we obtain
N N
MV21im Y >y "w; =MV2N. (6.4.19)

h—0
j=1 i=1

Therefore, the limit the second term of the numerator of Eqn (6.4.5) is M V2N as
h — 0.

Then, adding Eqn (6.4.14) and Eqn (6.4.19) we obtain

1 —4Nn+ NM+2

’lllir(l) g(h) = }lllir(l) h NN (6.4.20)
1 —dn+ Mv?2

=lim—-.—— . 6.4.21
h—0h  2MN+/27 ( )

Now, we can show the limit of Eqn (6.4.5) for case (1) M > 2v/2n and (2) M <
2\/§n.

1. M > 2v/2n: Using the assumption M > 2v/2n, we show that

1 —dn+ M2
lim g() > lim 4+ MV2 (6.4.22)
h—0 h=0 h 2(2v/2)Nv/271
1 —dn+ M2
i — MV 42
hoo b SNny/m (64.23)
1 -4+ 22
= TSN E 6:4.24)
1 224+ M
— lim —.L (6.4.25)
h=0h 42N/
1 22+ M
— lim —.L (6.4.26)
h—0 h AN 27

Since M > 2v2n = 2 > 2\/2, the numerator of Eqn (6.4.26) will always

be positive and never equal to 0. Since Illim 1=
—

1y = 00, by the property of limit,
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1 o 2\/5-&-%
}lbli%c = oo. Taking C' = NV
1 —2v2+ 4

lim = 00. 6.4.27
h—>0h 4N\/27r - ( )

L vaf\/i then hm g(h) = oo. Therefore, we prove that }12(1) g(h) =

Since g(h) >
oo when M > 1v/2n.

2. M < 24/2n: Using the assumption M < 2/2n, we show that

1 —4n+ M2
] lim 42
hlg(ng(h) <0 2(2\/_)]\[\/% (6.4.28)
L =2vV2+ (6.4.29)

~im
h—0 B 4N\/27r

When M < 2v/2n = % < 24/2, the numerator of Eqn (6.4.29 will always

be negative and never 0. Since lim 1 = o0, by the property of limit, }llin(l] C.% =
h— —

o R
+.C. Taking C' = f]\vf\/} we can show that the limit of the RHS of Eqn
(6.4.29) is negative because is C' is always negative. Since g(h) < % _jj\f/%%,
]llii% = —ooash — 0under M < 2¢/2n.

]

Proposition 6.4.1. Define the function g : Rt — R as in Eqn (6.4.1). Then for M
and n from Section 6.4.1.1,

1. when M > 2v/2n, gtendsto0ash — oo, ie.

lim g(h) = 0. (6.4.30)

h—o00

2. when M < 24/2n, gtendsto0as h — oo, ie.

lim g(h) = 0. (6.4.31)

h—o0
Proof. Recall Eqn (6.4.1). For convenience, we re-write the equation again,

t;

M N 1 7J N N 1 -
g(h): NM\/%Z:Z:E " 2N2 z::z::ﬁ

]

()" (6.4.32)

l\.’)\»—‘
iy
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We proof this by using the limit of exponential. Using Lemma (C.2.2),

1 _1(ti
lim —e 2< h) =0
h—o0 h
and
1 _1/ri
hh_>1£10 Eeil(T) — 0
Therefore,

9 M N 1 N N
lim g(h) = ———— 04+ ——— 0. 6.4.33
haoog( ) NM /—2W;; 2N2\/7_TZZ ( )

j=1 i=1

Hence, hlim g(h) = 0. Therefore, we show that the limit of Eqn (6.4.1) for
—00

1. M > 22
lim g(h) =0 (6.4.34)
h—o00

2. M <22
lim g(h) = 0. (6.4.35)
h—o00

]

6.4.2.1 Proof for a Minima for PSL
In this section, we provide proof to show that when M > 2v/2n for M and n from
Section 6.4.1.1, there exist a minimum point for out-of-sample empirical PSL.

Lemma 6.4.3. Let g : RT™ — R be the function defined in Def 6.4.1. Let M and n
Jfrom Section 6.4.1.1. When

1. M > 2v/2n, }llir%g(h) = 0
—
2. M < 2v/2n, Jim g(h)=0
—00
3. There exist L € R such thatVh >0 : g(h) > L

Proof. 1. See 1 of Lemma 6.4.2

2. See 1 of Proposition 6.4.1

3. Let¢; € RT. Suppose there is h; > 0, then g(hy) > 0. From 1 of Lemma 6.4.2,
there is hy > 0 for all h < hy such that g(h) > ¢;. Following 1 of Proposition
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6.4.1, there is hg > 0 for all h > hg such that g(h) > ¢;. Let hy = min(hg, hs)
and hy = max(hs, hs). Also, we let g(hy) = ¢;. We know that g(h) > ¢; if
h > hsg or h < hy. Then we have g(h) < ¢ when h € [hy, hs] where the
compact interval I = [y, hs] will always be none empty because h; will always
be in /. Then, we can show that Vh ¢ [ : g(h) > ¢y and 3h € I : g(h) < ¢.
By Lemma 6.3.5, for any interval I = [hs, hs], g(I) = {g(h) : h € I} isa
compact set and we know that there exist a minimum in the compact set f([).
We also know that g(h) > min g(/) = L if h € I. Hence, we can conclude that
g(h) > min (0, min g(/)) for any h > 0.

]

6.4.2.2 Theorem on Global Minimum of Out-of-sample Empirical PSL of
Gaussian Kernel pdf

In this final theorem below, we provide a proof in the case where M > 2v/2n for

M and n from Section 6.4.1.1, there exist a minimum and that minimum point is

the global minimum for out-of-sample empirical PSL of Gaussian kernel.

Theorem 6.4.1. Let g be defined in Def 6.4.1. Let M and n from Section 6.4.1.1.

Then, the followings are equivalent.

1. M > 2v/2n

2. g has a global minimum .

Proof. Here, we present the proof in two directions:

L. (1) — (2).
If M > 2v/2n, then g has a global minimum

2. (2) — (1) by using contraposition, =(1) — —(2)
If M < 2v/2n then ¢ has no global minimum.

We construct the first proof. By Lemma 6.4.1, g is a continuous function. Suppose
there is h; > 0, then g(hy) > 0. From 1 of Lemma 6.4.2, there is hy > 0 for all
h < hy such that g(h) > ¢;. Following 1 of Proposition 6.4.1, there is hg > 0
for all h > hg such that g(h) > ¢;. Let hy = min(hy, h3) and hy = max(ha, h3).
Also, we let g(hy) = ¢;. We know that g(h) > ¢, if h > hg or h < hy. Then
we have g(h) < ¢; when h € [hy, hs] where the compact interval I = [hy, hs] will
always be none empty because h; will always be in /. Then, we can show that
Vh ¢ I :g(h) > c and 3h € I : g(h) < ¢;. By Lemma 6.3.5, for any interval
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I = [hy, hs], g(I) = {f(h) : h € I} is a compact set. Hence, by extreme value
theorem, there exist a minimum when f is continuous on the compact set /. Since
Vh ¢ I : g(h) > c; we know that there is no h outside of I will give g(h) < ¢y,

hence the minimum in the compact set [ is also the global minimum.

For the second proof, we prove this by contraposition, such that if M < 2v/2n,

then g has no global minimum. This is easily seen by 2 of Lemma 6.4.2 and 2 of

Proposition 6.4.1, where when M < 2v/2n, }llm% g(h) = —oo and hlim g(h) =0,
— —00

respectively. Hence, there is no global minimum when M < 2/2n [l

6.5 Experiment

In this section, we run a simulation experiment to compare the difference in the be-
haviour of in-sampling tuning and out-of-sample tuning using grid search for uni-
variate Gaussian kernel PDF as the estimator via log-loss and PSL. This experiment
will be conducted on 2 simulated datasets, the Old Faithful Geyser and 3 datasets
from UCI [111].

From this simulation experiment, the results using out-of-sample empirical log-loss
will achieve a minimum point resulting to an optimum bandwidth. However, when
using the out-of-sample empirical PSL for tuning, some the datasets will achieve a
minimum point while some datasets shows an increasing pattern. This is due to the
number of test data points that exist in both training fold and test folds to be less than
the proposed ratio for Gaussian kernel. Furthermore, the bandwidth selected via in-
sample empirical log-loss and out-of-sample empirical PSL with many repeated

data points results to a loss when evaluated.

6.5.1 Objective of Simulation Experiment

The objective of this experiment is compare the behaviour of in-sample and out-of-
sample empirical loss for tuning. The experiments uses univariate Gaussian kernel
PDF as the estimators. The loss functions used are log-loss and PSL. The tuning
algorithms is done via grid search. We will then evaluate the tuned model using
out-of-sample empirical log-loss to compare the results between in-sample tuned

method and out-of-sample tuned method.

6.5.2 Design of Experiment
We describe the design of the experiment including datasets used, the estimator,

resampling method for tuning and evaluation.
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Datasets: The datasets that we consider includes both simulated datasets and datasets
from uci ([111]).

1. Dataset 1: A simulated dataset of 200 data points from a Normal distribution
with mean 2 and standard deviation 1.

2. Dataset 2: A simulated dataset of 200 data points from a mixture of Normal
distribution with mean 1 and standard deviation 1 and Normal distribution with
mean 10 and standard deviation 1.

3. Boston Housing: The dataset concerns with the value of the houses in Boston.
It has 13 features and a label variables with 506 data points for each variable.
The variable that we will use for this tuning experiment is the “Median value of
owner-occupied homesin $1000”.

4. Old faithful Geyser: This is the most common used dataset for investigating
distribution estimation. The total number of data points is 272 and we use the
variable “Duration of eruptions” in this experiment.

5. Energy efficiency: The dataset is used to predict the heating and cooling loads
requirement of a building. It has 768 data points and the variable used for this
experiment is “cooling load”.

6. Auto mpg: This data concerns with the city-cycle fuel consumption that is mea-
sured in miles per gallon. The dataset consists of 398 data points. We focus the

variable “mpg” for this experiment.

Resampling and Evaluating: To avoid bias when evaluating the goodness of the
selected model, the training set should be different from the ones used for evalu-
ation. Therefore, each dataset is split using 3-fold cross-validation. Each of the
tuned model will be fitted on its training set and evaluated on the test set. In this ex-
periment, we use the log-loss to evaluate and the computation of the empirical loss
will follow Algorithm 17. Since we are using 3-fold cross-validation, we expect to
obtain 3 empirical log-loss. The average over the 3-fold is computed and we call

this as the ‘mean empirical loss’. This is the value that will be reported.

Estimator: For this experiment, we focus only on the univariate Gaussian kernel
PDF, f as in Eqn (2.3.4) where the Gaussian kernel is
1 u?

K(u) = me_T. (6.5.1)
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Then, the out-of-sample estimator at each point Y* is

N
1 (v oyy?
Y*) = e 212 6.5.2
f) = — %; (6.5.2)

Parameter for Tuning methods: The parameter that will be tuned is the band-
width. In this tuning method, we will use grid search. A vector of values for band-
width is pre-specified:

h =(1.5863158, 6.0000000, 0.6405263, 3.7931579,1.9015789, 4.7389474,4.1084211,
5.6847368,5.3694737,2.2168421,0.0100000, 3.1626316, 2.8473684, 2.5321053,
4.4236842,0.9557895, 3.4778947, 5.0542105, 0.3252632, 1.2710526)

The estimator in Eqn (6.5.2) is learned on this values. The bandwidth with the
smallest empirical loss will be selected as the tuned model. The range of bandwidth

for this method is

Resampling for Tuning: There are two two re-sampling methods for tuning we
will use for this experiment. Since tuning occurs in the fitting, we will mainly

discussed the splitting of the training dataset here.

1. In-sampling: For this method, the same training dataset is used for inner train-
ing and predicting. No further resampling is done. This will follow method
explained in Figure 6.4.

2. Out-of-sample: For this method, the training dataset is further split into inner
training dataset and inner test dataset using hold out method. The distribu-
tion (PDF) is estimated on the inner test dataset using the inner training set as
s observations. The inner prediction is evaluated and the empirical log-loss is
computed. For grid search method, this whole process is repeated for each band-
width A, for b = 1,..., B. The bandwidth with the minimum empirical loss is
selected as the tuned bandwidth which reflects as the tuned Gaussian kernel PDF

model. The algorithm will follow from Figure 6.3 and Algorithm 18.

6.5.3 Results
In this section, we discuss the result of the experiment to compare the behaviour
of the empirical loss for tuning the bandwidth. We use two methods to tune the

bandwidth, in-sample and out-of-sample tuning methods. The experiment is done
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on 6 datasets via grid-search using Gaussian kernel PDF. We first explain the result

of tuning via log-loss and later via PSL.

Results Using Log-loss: The plots of empirical log-loss against log bandwidth
for out-of-sample and in-sample are shown in Figure 6.5 and Figure 6.6, respec-
tively. These results are obtained during the tuning stage. In each graph, we plot
the empirical log-loss against log of bandwidth for each fold. The results are ex-
pected and agreed with the proof in Section 6.3.2. The out-of-sample log-loss for
all datasets show a minimum point for each fold. The in-sample empirical log-loss
for all dataset show increasing pattern as the log bandwidth increase (decreasing
flexibility).

Table 6.1 shows the optimal (tuned) bandwidth for each dataset and each fold. Ta-
ble 6.2 shows the minimum out-of-sample empirical log-loss reflecting to the opti-
mal bandwidth. It can be seen that the bandwidth obtained by out-of-sample tun-
ing method varies for each fold. However, this not the case for in-sample tuning
method. Using the in-sample tuning method, each fold output the same tuned band-
width for each dataset. This shows that in-sample tuning will select the bandwidth
that increases the flexibility, that is the smallest bandwidth. This shows that over-

fitting occur during the in-sample tuning method.

Once the tuned method is selected, they are evaluated on the outer folds. The results
of the evaluation using out-of-sample empirical generalization log-loss are shown
in Table 6.3 where the mean empirical losses are reported. The mean empirical loss

for out-of-sample tuning methods are smaller than then in-sample tuned methods.
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Figure 6.5: Plots for out-of-sample tuning using log-loss against log bandwidth for
each dataset. The y-axis is the out-of-sample empirical log-loss and the x-axis is the
log bandwidth. The black line refers to the first fold, red line refers to the second
fold and the blue line refers to the third fold. (Task 1: Dataset 1, Task 2: Dataset 2;
Task 3: Boston, Task 4: Old Faithful; Task 5: Energy; Task 6: Auto)
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Figure 6.6: Plots for in-sample tuning using log-loss against log bandwidth for each
dataset. The y-axis is the out-of-sample empirical log-loss and the x-axis is the log
bandwidth. The black line refers to the first fold, red line refers to the second fold
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Bandwidth
Dataset Out-of-sample In-sample

Fold 1 Fold 2 Fold 3 Fold 1 Fold Fold 3
Data 1 0.3253 0.3253 0.6405 0.1000 | 0.1000 | 0.1000
Data 2 0.6405 0.3253 0.9558 0.1000 | 0.1000 | 0.1000
Boston 1.2711 0.6405 0.3253 0.1000 | 0.1000 | 0.1000
Old faithful | 0.3253 0.3253 0.3253 0.1000 | 0.1000 | 0.1000
Energy 0.6405 0.3253 0.3253 0.1000 | 0.1000 | 0.1000
Auto 1.9016 1.5863 1.5863 0.1000 | 0.1000 | 0.1000

Table 6.1: Table of tuned bandwidth via log-loss obtained from training in each
fold. For out-of-sample, the result is from using outer training set whereas form

in-sample, the result is from using the same data for fitting and predicting.

Out-of-sample Empirical Log-loss

Dataset Out-of-sample In-sample

Fold 1 Fold 2 Fold 3 Fold 1 Fold Fold 3
Data 1 1.4515 1.5403 1.4982 0.6342 0.7013 0.5999
Data 2 2.5558 2.4148 2.5677 1.0195 0.9761 1.0103
Boston 3.4113 3.4326 3.4326 1.4030 1.3665 1.3056
Old faithful | 1.0910 1.0217 1.0928 0.5491 0.4359 0.5178
Energy 3.3102 3.3433 3.1798 2.1289 2.1743 2.1042
Auto 3.4593 3.4251 3.4755 0.4608 0.5237 0.5431

Table 6.2: Table of empirical log-loss for in-sample and out-of-sample methods
during tuning. The out-of-sample shows the result of the empirical log-loss obtained
by using different folds for fitting and predicting. The in-sample result shows the
empirical log-loss obtained by using the same fold for fitting and predicting.
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Mean Empirical Log-loss
Dataset
Out-of-sample In-sample

Data 1 1.446286 7.015544
Data 1 2475117 22.66495
Boston 3.493477 31.97605
Old faithful 1.113645 3.320471
Energy 3.300547 18.15904
Auto 3.424956 27.87395

Table 6.3: Table of mean empirical log-loss obtained by evaluating each tuned
model via log-loss.

Results Using PSL: The plots of empirical PSL against log bandwidth for out-of-
sample and in-sample are shown in Figure 6.7 and Figure 6.8, respectively. These
results are obtained during the tuning stage. In each graph, we plot the empirical
PSL against log of bandwidth for each fold. The out-of-sample empirical PSL for
all datasets except Boston and Auto show existence of a minimum point for each
fold. The in-sample empirical PSL for all dataset show increasing pattern as the log

bandwidth increase (decreasing flexibility).

For PSL, the results from tuning via in-sample and out-of-sample is shown in Table
6.4 and Table 6.5. Table 6.4 shows the bandwidth obtained in each fold when tuning
via in-sample and out-of-sample. For in-sample tuning, the result is consistent to
the result when using in-sample tuning via log-loss. For datasets Boston and Auto
both, the bandwidth selected from using out-of-sample tuning and in-sample tuning
are the same for all folds, which is 0.100.

Once the tuned bandwidth is selected, they are evaluated using the outer folds via
log-loss. The results of the evaluation using out-of-sample empirical log-loss are
shown in Table 6.6. For datasets Data 1, Data 2, Old faithful and Energy, the mean
empirical log-loss for in-sampled tuned method are larger than the out-of-sample
tuned methods. However, this is not the case for Boston and Auto. The mean
empirical log-loss for in-sampled tuned method and out-of-sample are the same.
This is because there are multiple repeated observations in both datasets. There is a

tendency that the outer does not exceed the test to training data ratio.
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Figure 6.7: Plots for out-of-sample tuning using PSL against log bandwidth for
each dataset. The y-axis is the out-of-sample empirical PSL and the x-axis is the
log bandwidth. The black line refers to the first fold, red line refers to the second
fold and the blue line refers to the third fold. (Task 1: Dataset , Task 2: Dataset 2;
Task 3: Boston, Task 4: Old Faithful; Task 5: Energy; Task 6: Auto)
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Bandwidth
Dataset Out-of-sample In-sample

Fold 1 Fold 2 Fold 3 Fold 1 Fold Fold 3
Data 1 0.6405 0.6405 0.6405 0.1000 | 0.1000 | 0.1000
Data 2 0.6405 0.6405 0.9558 0.1000 | 0.1000 | 0.1000
Boston 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000
Old faithful | 0.3253 0.3253 0.3253 0.1000 | 0.1000 | 0.1000
Energy 0.3253 0.3253 0.3253 0.1000 | 0.1000 | 0.1000
Auto 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000

Table 6.4: Table of results of tuned bandwidth obtained using PSL. The out-of-
sample result is from training in each fold using outer training set. The in-sample

result is from using the same fold for training and predicting.

Out-of-sample Empirical PSL
Dataset Out-of-sample In-sample
Fold 1 Fold 2 Fold 3 Fold 1 Fold Fold 3

Data 1 -0.2665 | -0.2587 | -0.2594 | -0.6576 | -0.6475 | -0.6713
Data 2 -0.1050 | -0.1043 | -0.0928 | -0.4833 | -0.4772 | -0.5129
Boston -0.1253 | -0.1619 | -0.2248 | -0.3883 | -0.3901 | -0.4253
Old faithful | -0.3919 | -0.4004 | -0.3713 | -0.7661 | -0.7820 | -0.8065
Energy -0.0461 | -0.0428 | -0.0450 | -0.1547 | -0.1556 | -0.1472
Auto -0.8446 | -0.8166 | -0.9500 | -1.1634 | -1.0011 | -1.1700

Table 6.5: Table empirical PSL for in-sample and out-of-sample tuning methods.
The out-of-sample column shows the result of the empirical PSL obtained using
different folds for fitting and predicting. The in-sample result shows the empirical
PSL obtained by using the same fold for fitting and predicting.
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Mean Empirical Log-loss
Dataset
Out-of-sample | In-sample

Data 1 1.5051 12.0565
Data 1 2.5350 26.1597
Boston 26.1597 37.6821
Old faithful 1.1061 3.5684
Energy 3.2751 15.892
Auto 29.3960 29.3960

Table 6.6: The mean empirical log-loss obtained by evaluating each tuned model
via PSL.

6.6 Discussion & Conclusion

In this chapter, we investigate the behaviour between the in-sample and out-of-
sample tuning for univariate distribution estimation using the Gaussian kernel via
log-loss and PSL. For log-loss, the proof and simulation result show that in-sample
tuning results to an unbounded function in which as the bandwidth goes to 0 and oo
the in-sample empirical loss tends to —oo and 0, respectively. However, we discov-
ered that for the out-of-sample empirical log-loss to achieve a minimum point, only
one new unobserved point in the test set is needed. In this case, as the bandwidth
goes to 0 and oo the out-of-sample empirical log-loss goes to oo. This is supported
by [58] that states if the point at which PDF is estimated is equal to the sample data,
it will reach infinity (for likelihood cross-validation).

When tuning with PSL, [5] stated that discretization of data (even if dataset is from
a continuous random variable, in real life we can only limit the decimal points)
will cause out-of-sample empirical PSL to go from oo to 0 as the bandwidth tends
to 0 and oo, respectively. This however can be overcomed when the test data and
training data reach a threshold. We proved that for out-of-sample empirical PSL to
be bounded when using Gaussian kernel PDF, the ratio of size of the test set to the
number of repeated data points in both test set and training set should be greater
than 2v/2 : 1. Our prove is not only to support statement by [5] but also clearly
differentiate the use of training set and test set for out-of-sample tuning. Under this

condition, a global minimum is achieved.



Chapter 7

A Unified Interface for Distribution

Estimation in R

7.1 Introduction

This chapter focusses on the investigation and implementation of a unified machine
learning (ML) interface for distribution estimation. There are three key elements
that we discuss in this chapter. Firstly, we review the existing machine learn-
ing (ML) toolbox and where distribution estimation sits in the toolbox. Secondly,
we explain the integration of distribution estimation into an existing toolbox in R
([112]) which is mlr3proba [113]. Lastly, we explain the relationship between dis-
tribution packages, distr6 [114] and mlr3proba. The objective is to implement a

unified ML interface for distribution estimation.

With the development of computer software, the computation of mathematics and
statistical learning are made easier. Developers implement mathematics and statis-
tics methods in the software which can later be used by other users and for different
purposes. Some software that have already implemented a unified machine learning
interface (training, predicting and evaluating) - scikit-learn [115] in Python [116],
weka [117] in Java [118] and mlr3 [119], mlr [120], tinymodel [121] and caret
[122] in R. R which was developed for statistical learning contains many packages
with functions to support different statistical methods including distribution estima-
tion. However, there are no specific packages or tools that support a unified machine
learning interface (training, predicting and evaluating) for distribution estimation in
R.

The purpose for a unified interface for distribution estimation is to provide users
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an easy and straight-forward implementation of distribution estimation using a ma-
chine learning framework without the hassle to compute from scratch. With this
platform, users are able to train/fit distribution learner, predict the distribution, (PDF
and (or) CDF) and also evaluate the distribution model using different loss func-

tions.

In this chapter, we discuss the unified interface for distribution estimation. This in-
terface uses the existing mlr3 ecosystem, specifically mlr3proba and mlr3extralearners
and also distr6. mlr3 provides interface for regression and classification whereas
mlr3proba currently supports one of probabilistic machine learning which is sur-
vival analysis. Since distribution estimation is a probabilistic learning, we incorpo-

rate interface for distribution estimation within mlr3proba.

The outline this chapter is as follows. Section 7.2 explores the existing machine
learning (ML) toolbox. Section 7.3 explains the motivation of the unified ML inter-
face for distribution and a review on distribution related packages in R. Section 7.4
is a more detail review on distré and we explain our contribution to the package.
Then, in Section 7.5 will focus on the design of the unified ML interface for distri-
bution estimation in which we explain the connection between mlr3, mlr3proba,

mlr3extralearners and distr6.

Terminology
Before we proceed, we first need to explain the terms used throughout this chapter

for clarity.

i.  Mathematical or statistical software: An application that is used to solved
problems relating to mathematics and statistics. Problems may include solving
numerical computation, modelling, producing graphs and etc.

ii. Software package or toolbox: A collection of functions (may also include
datasets) that is useful to target a specific problem. For example, the package
Matrix in R contains various functions that are specific to solve problems
regarding matrices.

iii. Functional programming: Solving problems in by defining functions. Data
is not stored as an object.

iv.  Object oriented (OO) programming: A programming method that focusses
on object and class. R has multiple OO programming languages (e.g. S3, S4,
R6 and RC).

v. Class & Object: [123] defined class as “a piece of code that provides defi-
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nition for an object” which includes the behaviour (properties) and methods.
It can also be viewed as the “blueprint” of designing (creating) an object. An
object belongs to class. We can also call an object as an instance of a class. An
object is constructed by instantiating a class. Consider a class call ‘Shape’ that
has property that is ‘number of sides’ and method ‘area’. An instance of the
class ‘shape’ is constructed by adding values to the properties. For example if
we put 4 as value for the number of sides, we can name the object created as
square. We can use the method ‘area’ to find the area of the object ‘squared’
using the property ‘number of side’.

vi. API: Application programming interface is the interactions that occur in the
system. For example, interface between one class to another, interface between

one class and its properties.

7.2 Background

This section is to provide a review on two things. In the first half of this section, we
review some of the existing unified machine learning interface, scikit-learnin
Python, caret and m1r3 in R. Then, we review how these toolboxes incorporate

distribution estimation into their toolbox.

7.2.1 Background on Existing Unified Interface for Machine Learn-
ing

This section is a review on the existing unified interface for machine learning. A

mathematical and statistical software is used to solve problems including computa-

tion, analysing, modelling and etc. A software may contain packages and toolboxes

that serves different purposes. However, the packages and toolboxes may serve the

same task but using different functions, commands or interface.

For example, in R, the package randomForest ([124]) was created to perform ran-
dom forest for regression (and classification). It contains functions for modelling
random forest and other functions to support modelling, plotting, predicting, tun-
ing, setting the tree size and etc. The package glmnet ([125]) is used to model ridge
regression. Both are used to perform regression (and classification). However, they
use different methods and the syntax to train (fit), predict and evaluate the regression

task are different.

Example 7.2.1. Example using glmnet
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library (glmnet)

library (MASS)

attach (Boston)

fit.glm
2), y = Boston/[,14])

> newdata = matrix(c (390, 5.4), ncol = 2)

vV V. VvV Vv

glmnet (x = as.matrix (Boston/[,12:13], ncol =

> predict (fit.glm, newx = newdata)

Example 7.2.2. Example using randomForest

library (randomForest)
library (MASS)
attach (Boston)

fit.rf = randomForest (medv ~ lstat + black, data =

vV V. Vv Vv

Boston)
> newdata = matrix(c(rnorm(506, mean = 300, sd = 5.3),
rnorm(506), mean = 5, sd = 3), ncol = 2)

> predict (fit.rf, newdata = newdata)

Exmp 7.2.1 and Exmp 7.2.2 show the fitting and predict using glmnet and randomForest
functions, respectively. The type of input for each commands are different. glmnet
requires x and y in matrix form but randomForest requires input as data.frame.
However, notice that training for both packages uses different functions. In con-
trast, the both packages adopt the same function to predict. This is a confusion that
lies within R itself because it implements generic functions. By using generic func-
tion, R allows functions to have the same name but different usage and arguments.
predict act as a dispatcher. When predict is called (with arguments), R will
search along the attributes of the object passed that matches predict function for that
object. In our example, predict will go through the attributes of £it . rf until it

finds the function that does predict for it.

The development of a unified ML interface toolbox is to provide a consistent in-
terface to conduct ML algorithm using different functions or learners. In this way,
different functions in a software from different packages are collected and follow
the same interface for training, predicting and evaluating. Moreover, a unified in-
terface for ML enables a quick and easy implementation, especially for new and

non-specialist users. [115] emphasis on the performance, documentation and API
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consistency for scikit-learn. [126] design caret by removing the different syntax
used in different R, packages while mlr3 was build to standardize the machine

learning interface in R.

Most unified ML interface have the same structure. Firstly, the data must be defined.
Then, the estimator is initialized. Estimator will conduct the fitting and predicting
by taking in arguments. Later, the evaluation method is defined that takes in the
prediction and evaluate against a dataset. These are the basic steps. Advance ma-
chine learning concept such as resampling, tuning, ensemble learning extends the

functionalities of the basic steps.

We consider three different ML toolboxes: (1) scikit-learn; (2)mlr3; (3) caret. The
design scikit-learn and mlr3 uses the object class relationship where everything is
considered as object. We explore the common training, predicting and evaluating

methods of a learner fpr the three toolboxes.

Defining Data: Firstly, the dataset used to perform a task needs to be input. How
the data is called for the three ML interface is different. For mlr3, the data must be
defined with its specific task. This means, user must tell what the data is used for,
either solving regression problem or classification problem. The data is stored with
its properties as an object. The data called is in the ‘data.frame’ format. Example is
shown below for the dataset ‘Auto’. The ‘id’ let user to name the task. ‘backend’ is

the storage for the dataset and ‘target” where users specify the label variable.

task = TaskRegr(id = "auto", backend = Auto, target ="
mpg" )

In scikit-learn the dataset used must be of type matrix where the columns are the

X and Y variables, i.e features and target variables, respectively.

iris datasets.load_auto ()

X, vy auto.datal:, :2], iris.target

caret follows similar concept as scikit-learn. There is no need to define the dataset
used in the learning before hand. The dataset used can be of any type, e.g. data.frame

or matrix.

Initialising the Estimators: The next step is to construct the object estimator or

learner. scikit-learn and mlr3 uses an OO approach design where the learners are
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members of a class. For both, once an estimator (learner) is initialized, the object
acts as a storing object that attached the parameters to it. The difference is how the
estimator is called. Some ML toolbox require user to import manually the learner
from other toolbox, this is the case for scikit-learn (see Listing 7.1). Whereas
some ML toolbox, the methods are imported automatically when importing the ML
toolbox itself. This is the case for mlr3 (see Listing 7.2). Once the estimator is
initialized, it calls a function to train the learner on the dataset input. The output
after training is also an object model with parameter and data. To train a method in
caret, the function t rain is called where user require to specify the dataset, label

variable and method (see Listing 7.3).

from sklearn.linear_model import linear_model
reg = linear_model.LinearRegression

reg.fit (X, vy)

Listing 7.1: Example for scikit-learn

learner = lrn("regr.lm")

L1l = learnerStrain (task)

Listing 7.2: Example for mlr3

fit = train(mpg ~ . , data = Data, method = "1m")

Listing 7.3: Example for caret

Prediction: Once the learner is trained, the user can make prediction using the
trained model and test (new) data. For scikit-learn and mlr3, the predict func-
tion calls the object model together with test dataset. This create another object of
type prediction (see Listing and for scikit-learn and mlr3, respectively). Similar,
caret have a predict method that calls the fitted model with the test data.

y_pred = reg.predict (X)

Listing 7.4: Example of Prediction for scikit-learn

pred = LlS$predict (task)
Listing 7.5: Example of Prediction for mlr3
pred = predict (fit, Data)

Listing 7.6: Example of Prediction for caret
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Evaluation: To evaluate the performance of the fitted model, this is done by using
the loss function. In caret and scikit-learn, the method to measure the performance
is by calling the prediction and the test data. However, mlr3 requires to initialize
the measure function first and which acts as a storage object. The object prediction

will call the measure object.

We show the difference syntax between scikit-learn, mlr3 and caret below per-

forming similar task on similar method.

mean_squared_error (y_true, y_pred)

Listing 7.7: Example of Evaluation for scikit-learn

msr = msr ("mse")

pred$aggregate (msr)

Listing 7.8: Example of Evaluation for mlr3

postResample (pred = pred, obs = DataSmpqg)

Listing 7.9: Example of Evaluation for caret

Example 7.2.3. Example for scikit-learn

iris = datasets.load _auto/()

X, y = auto.datal[:, :2], iris.target

from sklearn.linear_model import linear. model
reg = linear_model.LinearRegression

reg.fit (X, y)

y_pred = reg.predict (X)

from sklearn.metrics import mean_squared _error
y_true = []

mean_squared_error (y_true, y_pred)

Ex 7.2.3 shows how scikit-learn the train, predict and evaluation step using linear
regression using the iris dataset. The package that contain the linear regression func-
tion is called in the third line. Once the learner is defined (in the fourth line), the
fit function train the learner reg. To evaluate, mean_squared_error com-

pares the predicted value with the real values of the label variable.
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Example 7.2.4. Example for mlr3

library (mlr3)

task = TaskRegr (id = "auto", backend = Auto, target = "
mpg")

learner = Irn("regr.1m")

L]l = learnerStrain (task)

pred = LlSpredict (task)

msr = msr("mse")

predSaggregate (msr)

Ex 7.2.4 shows example of using mlr3 to perform prediction using linear regres-
sion on the ‘Auto’ dataset and the target variable is called ‘mpg’. Backend is
stored the data ‘Auto’. In mlr3, only the packages itself needs to be called. In
the second line, the task of the dataset is defined by calling TaskReg implying
the task is regression. When defining the task, user must tell what is the target
variable. The learner is defined before it is trained used for prediction (similar to
scikit-learn). The method use to evaluates is defined by defining msr which called

by the aggregrate method of the object pred.

Example 7.2.5. Example for caret

Data = auto.Data

fit = train(mpg ~ ., data = Data, method = "Im")
pred = predict (fit, Data)

obs = mpg

postResample (pred = pred, obs = obs)

Ex 7.2.5 shows how to train, predict and evaluation in caret in which the evalu-
ation by using the root mean squared error. In caret, the learner and the dataset
are not required to be initialized beforehand. Rather, the t rain function calls
them simultaneously. The evaluation of the trained model is by calling the func-
tion postResample that compares predicted and true values of the target variable

(similiar to scikit-learn).
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7.2.2 Distribution Estimation in Existing Unified Interface for

Machine Learning

This section is a review distribution estimation in ML toolbox. Out of the three
toolboxes that we describe in Section 7.2.1, only scikit-learn provides an interface
for distribution estimation. The distribution estimation is considered as an unsu-
pervised task. The learners included are the kernel based learners with 8 different
kernels of choice and the Gaussian mixture. To evaluate the distribution learner, the
log-loss is used. The output of prediction is the PDF evaluated at the test data. The
example of performing train, predict and evaluate for distribution learner is shown
in Listing 7.10.

from sklearn.neighbors import KernelDensity

import numpy

kde = KernelDensity (kernel=‘tophat’, bandwidth = 0.5)
kde.fit (X)

kde.score.samples (X)

Listing 7.10: Distribution Estimation in scikit-learn

weka in Java is an open source machine learning interface which also provides an
interface for distribution estimation. However, because it uses a different interface,

we will not further discuss it here.

7.3 Significance of Unified Interface for Distribution

Estimation in R
In this section, we explain the motivation of integrating distribution estimation into
the ML toolbox, mlr3proba. Toolboxes that include distribution estimation have
been discussed in Section 7.2.2. Distribution estimation is fundamental in statistics

which is useful for modelling, inferencing, prediction and etc.

In R, there exist many packages that are related to probability distribution. We cat-
egorized the distribution related packages into three: (1) modelling; (2) estimation;
(3) evaluation. Firstly, we categorized R packages that have the functionality to
output PDF, CDF, quantile function (QF) and random numbers related to a distri-
bution into modelling distribution package. An example is the stats [112] package
which is a core and a build-in package in R. It holds many type of distributions.
For each distribution, it has the functionality to compute the PDF, CDF, QF and
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random numbers. Users do not estimate the parameters of a distribution or estimate
a distribution using a sample. In contrast, users may have prior knowledge on the
parameter(s) of the distribution and the goal is to compute the PDF, CDF, QF or

generate random numbers. Example is shown below.

> dnorm(l, mean = 0.5, sd = 1)
[1] 0.3520653
> pnorm(l, mean = 0.5, sd = 1)

[1] 0.6914625
> gnorm (0.1, mean
[1] -0.7815516

I
(@)
J
0
[OR
I
o

> rnorm(l, mean = 0.5, sd = 1)
[1] -0.08308775

Estimating distribution packages have the functionality to estimate the parameters
and distribution (either PDF or CDF) at a point using the sample data. The graphic
package holds the function hist that estimates a point PDF via histogram estima-
tor using the input (sample) data. Evaluating distribution packages involves mea-
suring the performance of distribution. An example of package that able to evaluate

distribution is the scoringRule.

These three functionalities (estimating, modelling, evaluating) from different pack-
ages are not connected and follow different syntax (command). For example, user
may have have a dataset and want to find its distribution. The user canuse stats: : kde
(stands for package: : function) which is a function that performs distribution
estimation using kernel estimator. The output of this function is not just the PDF,
but also the bandwidth, the points where PDF are estimated and etc. The stats pack-
age does not have a functionality to measure the performance of the this method.
Therefore, we need to use scoringRule but this package uses different command

and input to perform the evaluation. This process makes it tedious for the user.

A summary of packages in R that perform the three functions are summarized in

Section 7.3.1 and Section 7.3.2 for estimating and modelling, respectively.

7.3.1 Comparisons on Distribution Estimation in Packages &

Functions in R
This section is a comparision on some of distribution estimation packages and its

functions in R. We separate the packages into two groups where kernel based es-
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timators are in Table 7.1 and non-KDE estimators are in Table 7.2. In each table,
we provide information of the R command use (univariate kernel distribution) for
each package, the method used to estimate distribution based on the R command,
the input of the functions and the type of estimate (output). Although the pack-
ages have functions to estimate distribution (the PDF or CDF), some packages have
other functions not related to estimating distribution. Some packages contain func-
tions that are able to estimate distribution for more than one dimension or estimate

distribution for more than one method.

Here, we provide a brief explanation of the packages and their functions that we in-
cluded in the mir3extraleaners. A detailed review and description of the packages
and their functions has been discussed by [127]. The function for each package
we describe in Table 7.1 are for univariate kernel distribution to ensure a consistent
comparison. Some of the methods used from the functions have been explained in
Chapter 4.

Package Properties

stat [112] density(x, bw, kernel)

Estimates univariate point PDF using the kernel estimator with the
option of 7 kernel. The sample data is specified by x while the band-
width is specified by bw. The default bandwidth is Silverman’s rule
of thumb as in Eqn (4.2.14). User can specify own bandwidth. The
PDF is estimated by dividing the sample data into 512 grid (default).

GenKern KernSec (x, xgridsize=100, xbandwidth,

[128] range.x)

Estimates univariate PDF at a point for Gaussian kernel. The
sample data is defined by x and the bandwidth is defined as
xbandwidth. The default bandwidth is by [68]. The function
support variable bandwidth. The PDF is estimated at the point
defined by xgridsize.

kerdiest kde (type_kernel, vec_data, y, bw)

[129] Estimates PDF at a point for univarite kernel estimator with optional
of 4 kernels (i.e. Epanechnikov, Gaussian, Quartic and Triweight).
The default bandwidth is by [97] as in Eqn (4.2.43). The PDF is
estimated at the data points defined by y or the function is divided in
100 grids.
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ks [130]

kde (x, h, eval.points)

Estimates the PDF at a point for 1 - 6 dimension of Gaussian kernel
estimator. The sample data is defined by x and the bandwidth is
defined by h. The default bandwidth is by [92] but provides option
for other bandwidth and user input bandwidth. The PDF is estimated
at the points defined by eval.points.

sm [131]

sm.density(x, h, eval.points

Estimates the PDF for 1-3 dimension for Gaussian kernel estima-
tor. The sample data is specified by x and the bandwidth is speci-
fied by h. The default bandwidth is uses ‘normal optimal smooth-
ing’ by [132]. The function provides functionality to plot the esti-
mated distribution. The PDF is estimated at the points specified by

eval.points.

TDA [133]

kde (X, Grid, h, kertype = "Gaussian", weight
= 1)

Estimates PDF at a point using kernel estimator with the option of
either Gaussian or Epanechnikov kernel. The sample data is defined
by X and the bandwidth which is defined by h has no default option.
The PDF is estimated by the data defined by Grid. The function
can also support variable weigth estimator.

plugdensity

plugin.density (x, nout, xout)

Estimate PDF at a point using Gaussian kernel estimator using plug-
in bandwidth by [134]. The sample data is specified by x. The func-
tion provide functionality to estimate PDF at the vector specified by

xout. The PDF can be estimated by number of grid,nout
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np [135]

bw = npudensbw (tdat, ckertype)

fitted (npudens (bws=bw, newdata))

The package provides different methods to estimate PDF depending
on the setting. The method above estimates the PDF for univariate
kernel estimator. The method uses two step approach. The band-
width is first defined with the input sample data t dat with the ker-
nel type defined by ckertype. The bandwidth is estimated using
the data set using the default method by [136]. The PDF is then esti-
mated by calling the defined bandwidth with the data set defined by
newdata. The package also provided functionality for conditional

distribution estimation.

Table 7.1: Table of packages in R that estimate distribution using kernel based es-
timators. The left column is the packages. The right column describe the functions
in the features that estimate (univariate) distribution with explaination on features
on the functions.

All the functions in Table 7.1 uses different default bandwith. ks, sm and TDA

packages support multivariate distribution estimation and np supports conditionl

distribution estimation.

There are other packages that provide support for non-kernel distribution estimators

in R. We summarize some of packages and its function in Table 7.2 below. We

summarize the input of the function and the method used for estimating distribution.

Package

Properties

graphics

hist (hist (x, breaks, probability)

Estimates the PDF using histogram estimator (refer to Section 2.3).
This function also estimates density in terms of frequency. The num-
ber of bins is defined by breaks with the default method by Sturge
rule. By default, the function will plot the histogram. It does not
evaluate the PDF at a grid.

TDA [133]

knnDE (X, Grid, k)

Estimates the PDF using the KNN method (refer to Eqn (2.3.7).
The sample data is defined by X and the PDFs are estimated at the
points specified by Grid. This function does not provide any default

method for the parameter k.
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gss [137] fit = ssdens( formula)

dssdens (fit, x)
pssdens (fit, q)
gssdens (fit, p)
Estimates distribution using the penalized likelihood method. This is
a two step approach. An object of ssdens is fitted by specifying the
data by formula. The PDF, CDF and QF can be estimated based
by the ‘dpq’” method of ssdens by calling the the fitted object with
vectors of points or probabilities.

pendensity | pendensity (x ~ 1)

[138] Estimates the PDF using the penalized method. The package provide
support for univariate distribution estimation and conditional distri-
bution estimation. The function returns an object of class pendensity.

logspline fit = logspline (x)

[139] dlogspline (g, fit)

plogspline(q, fit)
glogspline (p, fit)
rlogspline (n, fit)
Estimates distribution using maximum likelihood approach. The
method is similar to gss. It uses a two-step approach where the model
is fitted and return an object of logspline. The PDF, CDF, QF an ran-
dom numbers can be estimated by calling the ‘dpqr’ function on the
fitted model and vectors of d = quantiles, p = probabilities and n =

sample size.

Table 7.2: Table of packages in R that estimate distribution using other methods
than kernel. The left column is the packages. The right column describe the function
to estimate distribution with explantion on the features on the functions.

Th package TDA have two functions to estimate distribution. The first is in Table
7.1 which uses kernel method and the second is in Table 7.2 using KNN.

7.3.2 Comparison on Distribution Modelling Packages in R

In this section, we compare some of the packages in R that allow users to compute

the, PDF, CDEF, QF and random numbers of a distribution. We first summarize some

of the packages R that have the functions to perform the tasks of generating PDF,
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CDF, QF and random numbers of distribution in Table 7.3.

Package

Properties

stats [112]

dX, pX, gX, rX

This corresponds to PDF, CDF, QF and random number gener-
ation. X is the name of distribution. For example, for Normal
distribution , dnorm, pnorm, gnorm, rnorm. The stats pack-
age contain 17 distributions which includes 4 less common dis-

tribution (pbirthday, dsignrank, ptukey and dwilcox)

distr [140]

d(X) (), p(X) (), g(X) (), r(X) ()

This corresponds to PDF, CDF, QF and random number gen-
eration where X is the name of the distribution. For example,
for Normal distribution, d (N) (1), p (N) (1), g(N) (0.5),
r (N) (1) where these computes PDF and CDF at 1, quan-
tile function at 0.5 and generate 1 random number. distr is
the earliest object-oriented distribution package written in S4
language in R. In the class design of the package, the par-
ent class is called Distribution and have a slot for pa-
rameter, param, and methods that can simulate, evaluate the
PDF, CDF, QF and generate random numbers. The pack-
age Distribution is inherited by AbsconDistribution and
DiscreteDistribution which are inherited then by distri-

bution class. distr has all the distribution implemented in stats.

distributions3
[141]

X(),pdf (X), cdf(X),quantile (X), random (X)

The package is an object-oriented package written in S3language
in R. The object distribution is first defined and is then used to
obtain the PDF, CDF, QF and random numbers.

mistr [142]

X(),d(X),p(X),a(X),R(X)
This is another object-oriented package written in S3. The pack-

age focusses on univariate and composite distribution.

gendist [143]

dX (), pX (), aX (), rX()

The X is the name of the distribution. The package computes the
PDF, CDF, QF and random numbers for mixture models, compos-
ite models, folded models, skewed symmetric model and arc tan

models.
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distr6 [114] XSnew (), X$pdf (), XScdf (), XSquantile (),
XSrand ()

This is an object-oriented package in R6 format. Apart from
computing the normal PDF, CDF, quantile and random numbers
of distribution, each distribution able to compute important
methods of a distribution (e.g. mean, variance, skewness and
etc). Unlike other distribution package in R, this package contain

11 kernel methods in addition to 42 distribution.

Table 7.3: Table of packages in R that computes PDF, CDF, QF and generate ran-
dom numbers of a distribution. The left column is is the packages. The right column
is a description of features of the packages with function, interface and other infor-
mation on the packages.

The stats package is the basic package in R that frequently used by users. There
are 4 functions which allow users to compute PDF, CDF, interquantile function and
generate random numbers of a particular distribution. This is the usually the basic
functionality introduced to new users of R. The distr package that is an object-
oriented version of distribution package in R, written in S4 language. The output of
the functions called from this package is similar to stats. This is done by passing the
object of the class distribution to another functions. distré is also an object-oriented
distribution, can be seen as an upgrade version of distr, written in R6 language.
Unlike distr and stats packages, distr6 included 11 symmetric kernel methods in
addition to its 45 probability distribution. It contains functionality for composite
distribution and numerical imputations. Lastly, the package gendist support com-
puting the PDF, CDF, QF and random numbers for probability distributions that are

useful for actuarial.

7.4 distr6in R

To incorporate distribution estimation into a unified ML interface, we will use func-
tionalities from distr6. Therefore, in this section, we explain the purpose of distré
package in the unified ML distibution estimation. For that, we will discuss the de-
sign and interface in distr6, our contribution in this package and how distr6 relates

to the unified ML for distribution estimation.

distré implements object-oriented (OO) probability distribution interface that uses

the R6 language in R. This package implements 42 probability distributions and
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most importantly it implements 11 kernel functions. This is an important feature
of distr6 because nonparametric kernel distributions is the center of this thesis and
relates to the contribution of the package. In addition, distré computes the PDF,
CDF, QF and simulate random numbers. This functionality is similar to the stats,
distr and other packages discussed in Section 7.3.2. In addition to that, distré has
functionalities to design custom distribution, add decorator, use one distribution to

create another distribution and others.
Firstly, we recall that a distribution object has the following ([7]):

i.  Defining functions, e.g. PDF (Eqn (2.2.1)), CDF (Eqn (2.2.2)) and others.
ii.  Properties, e.g. mean, skewness, symmetry.
iii. Types or traits, e.g. continuous, discrete.

iv.  In addition, distribution can be used to sample random variable.
Viewing distribution as an object allows a clear class-object design for distr6 where,

1. Abstract distribution are the classes.
ii.  Concrete distribution are objects.
iii. PDF, CDF, QF and other distribution defining functions are the methods of

class.

7.4.1 Review on Design of distr6
In this section, we describe the design of distr6. We look into the class design and

the interface within the package.

Because distr6 uses OO progamming language, it considers everything that is de-
fined is considered as object which belongs to a class. There are multiple classes
in distr6 but they inherit from the top of the hierarchy which is the abstract class,
Distribution. Theclass Distribution acts as a container which has prop-
erties and methods but not actually implementing them. Distribution is in-
herited by four other abstract classes, Kernel, DistributionDecorators,
SDistribution and DistributionWrapper. These children classes are
more specialized and focussed. They only inherit properties and methods from
Distribution that are useful for them. Futhermore, the children classes may
have their own methods and properties that are not inherited. For example, the
class SDistribution focusses on parametric distributions. It inherits some of
the properties and methods from Distribution but also includes methods and

properties specifically for the class SDistribution. Then, each of the four
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classes will be inherited by classes that implement concrete distribution. For ex-
ample, Kernel is inherited by NormalKernel and includes concrete methods
(PDF, CDF and etc) for Normal kernel.

Having explained the class-object design in distr6, it is easier to explain the inter-
face within the package for Kernel class and between the class Kernel and other
classes within distr6. Below, we explain the interface of creating an object, inter-
face between object and its methods, interface between object and its properties,
interface between different classes and interface for creating non-defined distribu-

tion.

i.  Interface in creating the object: distré has 11 concrete kernel classs, e.g.
NormalKernel, with concrete methods. To create an object of the class
NormalKernel it needs to be initialized. This can be done by using the

command below.
NormalKernelSnew ()

ii. Interface between the object and methods: An object of a class has methods.
For example, pdf is a method that computes the PDF at a point. The object

calls the method pdf with point (an integer) as shown in the example below.

> norm = NormalKernelS$new ()
> normS$pdf (1)
[1] 0.3989423

Here, the function is a kernel function, K : R — R*. Other methods maybe
cdf and gf which computes the CDF and quantile function at a point.

iii. Interface between object and properties: An object also has properties or
(and) parameters. Interface between the object and its properties allows users
to get or change the properties. To get the parameter, the user can use the

command
SgetParameterValue ()
or to set the parameter
SsetParameterValue ()

A more clear example is shown below where an object of class Normal dis-
tribution is created. From the object, user can access to the property of the
object, in the example below we show the property is the median. Then, user

can obtain the value of the parameter mean and later change that value.
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> norm = Normal$new (mean = 1, sd = 1)
> norm$Smedian ()
[1] 0.3989423

> norm$SgetParameterValue ("mean")

(1] 1

> norm$setParameterValue ("mean" = 2)

> norm

Norm (mean = 2, var = 1, sd = 1, prec = 1)

Currently, the class Kernel does not have any parameter. Hence, we provide
an example that is not within the Kernel class.

iv. Interface between classes: This interface allows the interaction between dif-
ferent classes. For example the interaction between the class SDistribution
and the class DistributionDecorator. A decorator is useful to func-
tionality to an object. This interface allows object of any concrete class that in-
herits from SDistribution toimplement methodsinthe DistributionDecorator.
The concrete class has only a number of methods. This interface extends the
methods of a concrete class to compute methods not usually used, such as
n-th moment or p-norms. It is important to note that implementation of this
methods are computed numerically. The DecoratorDistribution does
not actually have methods such as n-th moment or p-norm for each concrete
distribution or kernel class.

v. Interface for non-defined distribution: An advantage of distr6 is the ability
for user to define own’s distribution not implemented in distr6. The construc-

tion uses the constructor from the class Distribution directly.

7.4.2 Contribution to distré

In this section, we highlight our contribution in distr6é which is more focussed on the
concrete kernels classes that inherits the abstract class Kernel. The contribution
is an extension of Chapter 5. Currently, the package distr6 only contain methods to
compute the PDF, CDF and QF of the kernel functions. From Chapter 5, a closed-
form expressions of the L2-norm of PDF and L2-norm of CDF of these kernels were
derived (see Appendix B.1) which is useful to compute the proper loss functions for
distribution estimation. Therefore, we incorporate public methods consisting of the
L2-norm of PDF and L2-norm of CDF for all concrete kernel classes except for the

class Normalkernel and Sigmoid. This addition allows user to compute the
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PSL (Eqn 3.3.11) and IBL (Eqn (3.3.13)) for distribution estimation.

There are a few reasons why we add the public methods consist of the L2-norm of
PDF and L2-norm of CDF to concrete kernel classes. Firstly, although the L2-norm
methods for distribution are currently available to be computed via decorators using
ExoticStatistics, these functions are not available all for distribution or kernels. Sec-
ondly, constructing a new Decorator object is not allowed unless it has at least
three methods. Finally, decorators compute methods by imputing functions (using
other functions and not directly computing itself) and computation of the L2-norm

is done numerically.

In implementing the analytical expression of the L2-norm of PDF and CDF, we

focus on the followings:

i.  The need to follow design of distré: In accordance to distr6é design principal,
it should separate the implementation of numerical and analytical results. In
which, analytical should be via the distribution itself and numerical is imputed
using decorators. Therefore, the analytical methods of L2-norm of PDF and
CDF are implement as part of public methods of XKernel class (i.e. X is the
name of kernel, e.g. NormalKernel).

ii.  Precision results: We want to ensure that the L2-norm of PDF and CDF com-
puted is precise. Which is the reason to implement the analytic expression.

iii. Easy to implement: By implementing the L.2-norm of PDF and CDF methods
for each kernel allows users to directly compute them without the need to go

through the steps of decorating the object kernel.

It is important to note that, not all kernel classes have methods to compute L2-norm
PDF and CDF. The class NormalKernel and Sigmoid do not have methods for
L2-norm of CDF because the analytical expression of both methods do not have a
closed-form. Furthermore, all concrete class kernels do not allow users to define
the parameters, which is for kernel the parameter is the bandwidth. Therefore, to
compute the PDF, CDF and other methods of distribution for kernels, some manip-
ulations need to be done outside. The interface between the object kernel and the
methods L2-norm of PDF and CDF are shown below.

i.  L2-norm of PDF as in Eqn (5.4.2)
XkernelS$pdfSquared2Norm(x, upper)

ii. L2-norm of CDF as in Eqn (5.4.3)
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XkernelS$ScdfSquared2Norm(x, upper)

X is the name of kernel, (e.g. NormalKernelS$pdfSquared2Norm). For
Xkernel$pdfSquared2Norm (), the inputs x (centre point) and upper (up-
per boundary) by defaultare x = 0 and upper = oo. Thisis similar for Xkernel$cdfSquared

7.4.3 Examples
In this section, we provide some example of usage to compute the L2-norm for PDF
and CDF.

Example for ‘vanilla’ kernel

Below is an example for evaluating the PDF, CDF, L2-norm of PDF and CDF for
vanilla kernel function as in Def 5.4.1. In this example, we compute the PDF of a
uniform kernel, the CDF as in Eqn (5.4.1) where a = 0.3, L2-norm of the uniform
PDF as in Eqn (5.4.2) where a = 1, ¢ = 0.1 and L2-norm of CDF as in Eqn (5.4.3)
where a = 0,c¢ = 0.1 and L2-norm of CCDF as in Eqn (5.4.12) with a = 0,¢c =
—0.1. Then, the losses are computed using log-loss, PSL and IBL as in Def 5.4.2.

> uniform = UniformKernelS$Snew ()

> # Compute the PDF

> uniform$pdf (0.1)

[1] 0.5

> #Compute the CDF

> uniformScdf (0. 3)

[1] 0.65

> # Compute the L2-norm of the PDF of a kernel

> uniform$pdfSquared2Norm(x = 0.1, upper = 1)

[1] 0.475

> # Compute the L2-norm of the CDF of the kernel
> uniform$cdfSquared2Norm(x= 0.1, upper = 0)

[1] 0.070875

> # Compute the L2-norm of the CCDF of the kernel
> uniform$cdfSquared2Norm(x= —-0.1, upper = 0)

[1] 0.09583333

> # Compute the log-loss of the PDF of a kernel
> —log(uniformSpdf (0.1) )

[1] 0.6931472
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> # Compute the PSL of the kernel

> —2+xuniform$pdf (0.1) + uniform$pdfSquared2Norm(x =
0.1)

[1] -0.525

> # Compute the IBL of the kernel

> uniform$cdfSquared2Norm(x= 0.1, upper = 0) +
uniform$cdfSquared2Norm(x= -0.1, upper = 0)

[1] 0.1667083

Examples for uniform mixture kernel

Below is an example for evaluating the PDF, CDF, L2-norm of PDF and CDF for
uniform homogeneous kernel mixtures methods as in Prop 5.4.1. The outputs are
objects. These objects are then used to compute the log-loss, PSL and IBL of uni-

form homogeneous kernel mixture as in Section 5.4.2.1.

i.  PDF and Log-loss: To compute the mixture PDF at a point a for uniform
kernel is shown below where h = 0.4, the point to estimate the PDF is x = 0.3
and the observations x; where ¢ = 1,2 from a uniform weight homogeneous

kernel is 0.5, 0.7. Then, the log-loss for the object PDF can be computed.

sample = c (0.5, 0.7)
h = 0.4
x1l = 0.3

>
>
>
> dx = sapply(sample, function(x) (x - x1) / h)
> uniform = UniformKernelS$new ()

> uniform.pdf = mean (uniform$pdf (dx) /h)

> —log(uniform.pdf)

[1] -0.2231436

ii. CDF: To compute the mixture CDF at a point a for uniform kernel is shown
below using Algorithm 12. We let h = 0.4, the point to estimate the CDF
is a = 0.3 and the observations z; where ¢+ = 1,2 from a uniform weight

homogeneous kernel is 0.5, 0.7.

> sample = c (0.5, 0.7)

> h = 0.4

>a = 0.3

> d = sapply(sample, function(x) (x — a) / h )
> uniform.cdf = mean (uniformScdf (d))
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> uniform.cdf
[1] 0.875

L2-norm PDF and PSL: To compute the L2-norm of mixture PDF and the
PSL for uniform kernel as shown in Algorithm 10. The PSL is evaluated at
x = 0.3. Let h = 0.4, ¢ = 0 and the observations x; where i = 1,2 from a

uniform weight homogeneous kernel is 0.5, 0.7.

> sample = c (0.5, 0.7)

> h = 0.4

> x1 = 0.3

> dx = sapply(sample, function(x) (x - x1) / h)

> uniform = UniformKernel3new ()

> uniform.pdf = uniform$pdf (dx)/h

> #L2-norm pdf for c = 0

> d = sapply(sample, function(x, y) (x — y)/h, y =
sample)

> uniform.pdf2norm = sum(uniform$pdfSquared2Norm (x

= d, upper = Inf)=*(1/2)"2 = 1/h)
> uniform.pdf2norm
[1] 1.09375
> #compute the PSL
> mean (-2 x uniform.pdf + uniform.pdf2norm)
[1] -1.40625

L2-norm CDF, L2-norm CCDF and IBL: To compute the L.2-norm of CDF
mixture, L2-norm of CCDF mixture and IBL for Uniform kernel as shown in
Algorithm 11. The IBL is evaluated at = 0.3 We let h = 0.4, ¢ = 0, and the
observations x; where ¢ = 1,2 from a uniform weight homogeneous kernel is
0.5,0.7.

sample = c (0.5, 0.7)
h =10.4
xl = 0.3

>
>
>
> #L2-norm cdf for c = 0, upper = x1

> da = sapply(sample, function (x) (x1 -x)/h)

> dx = sapply(sample, function (x, y) (x - vy) / h,
y = sample)

> #compute the L2-norm of cdf
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> uniform.cdf2norm = (1/2) 72 * h * sum(
uniform$cdfSquared2Norm(x = da, upper = dx))

> f#compute the L2-norm of ccdf

> uniform.ccdf2norm = (1/2)72 x h * sum/(
uniform$cdfSquared2Norm(x = - da, upper = —-dx))

> #compute the IBL for Uniform Mixture

> uniform.cdf2norm + uniform.ccdf2norm

[1] 0.08854167

7.4.4 Purpose of distr6 for Unified ML for Distribution Estima-
tion

In this section, we clarify the significance of distr6 for the unified ML interface
for distribution estimation. In distribution estimation, there are two outputs: (1)
PDF and (or) CDF; (2) distr object. The distr object is a customize object
created from the function decorator of distr6. This means, that any distribution
estimation learner will predict an object of distr6. For example is a histogram
distribution which estimate the PDF at a point is not defined in distr6. However, a
custom distribution of distré object can be created for estimated histogram shown
below. See Section 7.5.4 for further detail.

distr = distr6::DistributionS$Snew (
name = "Histogram Estimator",
short_name = "Histogram",
pdf = pdf, cdf = cdf,
type = setb6::RealsSnew(),
support = set6::Intervals$new (min(fit$breaks), max
(fitSbreaks)))

In the above code, we use the function Distribution from distr6. The name
and short name of the object are specified. For the estimated histogram, the point
PDF and CDF are computed. type is to inform users that the traits of PDF and
CDF.
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7.5 Design & Computation of Unified ML Interface

for Distribution Estimation
In this section, we explain the unified interface for distribution estimation. [113]
discussed the used of mlr3proba for survival analysis. In this section, we dis-
cuss the interface of mlr3proba for distribution estimation. This interface uses
multiple packages that already exist in R. It connects mlr3, mlr3proba, distr6,
mlir3extralearners and other distribution estimation packages from Table 7.1 and
Table 7.2 together to provide an easy implementation for users to conduct machine

learning steps. In this section, we try to explain the following:

i.  Why is the development uses mlr3?
ii.  What is the design of the interface?

iii. How can users implement this?

The outline of this section is as follows. We begin by briefly explaining the connect-
ing between mir3, mlr3proba, and mlr3extralearners for this interface. Then, we

describe how the class design, interface and explain what is being computed.

7.5.1 Interface for Distribution Estimation

In this section, we discuss the design of distribution estimation interface and con-
necting mlr3, mir3proba, mir3extralearners, distr6 and other packages in Sec-
tion 7.3.1 and Section 7.3.2. This interface focusses on the nonparametric univariate

distribution estimation.

Using mir3

Currently, there exist four ML interface in R, i.e. mlr3, tinymodels, mlr and caret.
mlr3 is an object-oriented approached and has the advantage to reuse the object.
It has a very solid foundation and only focusses on the core functionality. Other
functionalities such as tuning and benchmarking are accessablle via mlr3’s ‘child’
pacakage, mlr3tuning, mlrbenchmark and others. caret on the other hand (as its
name) is more focussing in regression and classification task. This itself restrict us
from implementing an ML interface for distribution estimation. mlr is also an OO
package for machine learning developed by the same team as mlr3. However, mlr

is overloaded with all tasks falls into the package itself.

mlr3 is a core package that provides a unified interface for regression and classi-

fication tasks. In addition, mlr3 has an ecosystem. We can define it as different
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packages that extend the mlr3 functionality. Some of the packages provide support
to extend the basic train, predict and evaluate in mlr3. For example, the package
mlr3tuning provides support for learners of mlr3 to perform hyperparameter tun-
ing and nested resampling. Then, there is the mlr3pipeline that enable the creation
of ensembler learner from the basic learners in mlr3. Within the ecosystem, there
are packages that provide different task for machine learning other than regression

and classification, for example mlr3cluster and mlr3proba.

mlr3proba supports the probabilistic supervised learning. Currently, it has the in-
terface for survival analysis. Since distribution is a probabilistic learning, we inte-

grate into mlr3proba a unified interface for distribution estimation.

7.5.2 Design of mlr3proba and Unified Interface for Distribu-

tion Estimation
In this section, we discuss the class design for distribution estimation. Although
our main focus are integrating the task, learners, prediction and measure classes
to support unified ML for distribution estimation, it is important to connect the

relationship between classes in mlr3.

Task: The class Task sits on the topmost of the hierarchy. It is an abstract class
that does not implement any methods but it act as mold. It defines what properties or
methods an object Task could (should) have. Task is inherited by other children
classes, TaskSupervised and TaskUnsupervised, which are also abstract.
Following that are grandchildren classses which are concrete classes with methods
and properties, TaskRegr, TaskClassif, TaskSurv, TaskClust and of
course TaskDens. The UML diagram of the classes for Task are shown in Figure
7.1.

The object of any concrete class Task holds the meta-information of the data such

as the type of task, the target variable (i.e. for supervised task) and others.



7.5. Design & Computation of Unified ML Interface for Distribution Estimation189

A

TaskUnsupervised

TaskSupervised

A

TaskRegr TaskClassif ‘ TaskSurv ’ TaskClus

Figure 7.1: Figure of inheritence of the class TaskDens.

Learner: Similar to the design structure of task, the abstract class Learner sits
on the top and is inherited by abstract classes LearnerRegr, LearnerClassif,
LearnerClust, LearnerSurvand LearnerDens. The children classes have
defined properties and methods. For LearnerDens, it is inherited by concrete
learner classes which have methods train and predict. For example, LearnerDensKDE,
LearnerDensHistogram and others. mlr3proba does not contain all distribu-
tion learners, only the two mentioned. Other distribution learners are collected in
one of the mlr3 ecosystem, which is mlr3extralearners. Table 7.4 shows the sepa-
ration of ecosystem for distribution learner. The other learners in mlr3extralearners
collects different distribution learners from different packages in R. These learners
are from Table 7.1 and 7.2.

Learner

LearnersDens(mlr3proba) LearnerDens(mlr3extralearners)

LearnerDenHistogram LearnerDensKDEks
LeanerDensKDE LearnerDenKDEkd
LearnerDenMixed

LearnerDenNonparametric
LearnerDenLocfit
LearnerDenLosgspline
LearnerDenPenalized
LearnerDenPlugin

LearnerDenSpline

Table 7.4: Table of learners in mlr3proba and mir3extralearners.
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The object LearnerDens have two functions. First is to store information and
bind parameters and second is to output an object model after training. This will

further discuss in Section 7.5.3.

Prediction: The design for class structure for prediction follows the similar struc-

ture to Task, in which the abstract class Prediction is inherited by abstract

classes PredictionRegr,PredictionClassif,PredictionClust,PredictionSurv
and PredictionDens. The output of PredictionDens is an object of type

prediction which stores the prediction after learning. The object PredictionDens

is a table that contains information which includes the id of the data used for pre-

diction, the PDF and the type of distribution.

Measure: The class structure for measure follows the same structure as the de-
sign for learner. The class Measure is an abstract inherited by abstract class
MeasureDens,MeasureRegr,MeasureClassif,MeasureClust and MeasureSurv.
These classes are inherited by concrete class with methods. The current version
of mlr3proba, the class MeasureDens inherited by MeasureDensLogloss
that have methods to compute the empirical log-loss (Eqn 3.3.10). The object

MeasureDensLogloss compute the empirical generalization log-loss.

7.5.3 Interface for unified ML interface for distribution estima-

tion in mir3proba
In this section, we explain the interface for unified ML interface for distribution
estimation. We look into different interface, i.e. interface for contruction of objects,
interface between classes, interface between a class and its methods or properties

and others.

i. Interface of constructing objects: The object for task, learner and measure
should be instantiated. First, consider constructing an object of class TaskDens.

This can be done by using the command,
task = TaskDens$new (id, backend)

The constructor takes in 2 important arguments, the ‘id’ and the ‘backend’ which
are the name user give for the task (a type string) and the data that is used to learn
distribution estimation, respectively. The object that is created act as a storage of

meta-information. Constructing the object of any concrete distribution learner is by,

lrn = lrn(id, param_set)
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The ‘id’ is a type of string that defines the concrete learner, for example,
lrn = lrn("dens.kde", bandwidth = 0.1, kernel = "Norm")

Above shows the how to construct the learner “dens.kde”. This object act as a stor-
age with the parameters bind to it. Similarly, the object of measure for distribution

estimation should be initialized by the command,
msr = msr ("dens.logloss")

The defined object of measure act as a storage and has yet to implement its method.
ii. Interface between class task and class learner: This interface connects the
object task and learner by calling the t rain function of the object learner together
with the task,

L1l = lrn$train(task)

The object learner is trained using the task and output an object model.

iii. Interface between class learner and prediction: This interface connects the
object model that has been learned (trained) with the prediction object. Once the
object model is learned, calling the predict method of the object learner and

Task to create an object of class PredictionDens,
LlSpredict (task)

In the above, the prediction is being done on the same task data.
iv. Interface between class prediction and class measure: Once the object pre-
diction of class PredictionDens, it calls the score function and the instantiated

object measure,
prediction$score (msr)

The score is computed using the prediction object.

7.5.4 Return Type

In this section, we will describe the return types of the prediction. In this section,

we explain how mlr3proba and distré are connected.

In distribution estimation, we aim to return an object that is reproducible. Rather
than returning the predicted PDF or CDF, we want to ensure that users are able to
obtain the distribution of the PDF. Therefore, for distribution estimation, we can
obtain multiple outputs. We recall in Chapter 2, that a distribution is an object de-
fined by functions PDF, CDF and etc. The functions estimate the PDF, CDF and
QF at point. In mlr3proba (also for distribution learners in mlr3extralearners),
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we standardized so that the output of the prediction method are: (1) pdf estimated
at the test data; (2) distr which is a distribution object implement via distr6. Some
learners will have cdf estimated at the test data. This standardization is impor-
tant because each distribution learners from different package have different output.

This standardization is also advantages to compare different learners.

In Section 7.4.4, we described briefly the purpose of distr6 in the unified ML inter-
face for distribution. Using the functionality of distré to create a custom distribu-
tion allow users to use the ‘predicted’ distribution for other purpose. For example,
when using kernel learner, other than obtaining the predicted PDF at the test data
of the kernel learner, the predicted distr object allows users to compute CDF,
variance and L2-norms of the CDF and PDF. An example of the interface between

mlr3proba and distré is shown below.

> data = data.frame ("A" = as.numeric (rnorm(30)))

> task = TaskDensSnew(id = "a", data$Sa)

> train_set = sample(task$nrow, 0.7 * task$Snrow)

> test_set = setdiff(seqg len(task$nrow), train_set)
> a = task$data(train_set)

> L1 = lrn("dens.kde", kernel = "Epan")

> learner = LlStrain(task, train_set)

> learnerS$model$bandwidth

[1] 0.5809963
> prediction = LlSpredict (task, test_set)
> prediction
<PredictionDens> for 9 observations:
row_id pdf distr
5 0.20444922 <Distribution[38]>
6 0.18540074 <Distribution[38]>
7 0.41451000 <Distribution[38]>

21 0.06851355 <Distribution[38]>
22 0.04405488 <Distribution([38]>
23 0.22770858 <Distribution[38]>
>kernel = get (as.character (subset (
distr6::1listKernels (),
ShortName == unlist (

prediction$SdistrS$Sparameters ("kernel")
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(1211,
ClassName) ) ) Snew ()

> kernel
Epan ()
> kernelS$pdfSquared2Norm(x = 0.1, upper = 0.5)
[1] 0.516117
> kernelS$Scdf (0)
[1] 0.5
> kernel$variance ()
[1] 0.2

7.5.5 Examples

In this section, we provide some examples for distribution estimation interface for
three different cases: (1) the vanilla train, test and evaluate; (2) optimization of
bandwidth using KDE estimators; (3) benchmarking experiment in comparing dif-

ferent learners with benchmarking experiment included using nested cross-validation.

i. Firstly, we provide the vanilla case for training, prediction and evaluation using
kernel estimator and variable ‘mpg’ of the dataset ‘mtcars’ from the UCI database
([111]). In this example, we split the data into training and test sets. We use the
default kernel (Epanechnikov) and default bandwidth.

> #initialize the task

> Taskl = TaskDensS$new (id = "mpg", backend = datasets::
mtcarsSmpqg)

> #split into training and test

> train_set = sample(Taskl$nrow, 0.8 * Taskl$nrow)

> test_set = setdiff(seq_len(TasklSnrow), train_set)

> #initialize learner

> L1 = lrn("dens.kde")

> #train/fit the learner on the train set

> learner = LlStrain(Taskl, train_set)

> learnerSmodel$bandwidth

[1] 2.663521

> #predict on the test set

> prediction = LlSpredict (Taskl, test_set)

> prediction
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<PredictionDens> for 7 observations:

row_id pdf distr
6 0.050941218 <Distribution[38]>
10 0.054495458 <Distribution[38]>

14 0.073300047 <Distribution[38]>

20 0.007691089 <Distribution[38]>
22 0.074871814 <Distribution[38]>
30 0.058147036 <Distribution[38]>

[3

32 0.064411327 <Distribution[38]>
> #initialize the measure

> m = msr ("dens.logloss")

> f#evaluate the prediction

> predictionS$score (m)

dens.logloss

3.078119

ii. Below, we show the example of tuning the parameters for distribution estimation
via mlr3tuning. In this example, we tune the bandwidth using the same Epanech-
nikov kernel estimator and ‘mtcars’ dataset. We use the same ‘task’, learner ‘L1’

and measure ‘m’ from previous example.

> library (mlr3tuning)

> # initialize the resampling method

> resample = rsmp("holdout")

> # define the search space for bandwidth

> ps = ParamSetS$Snew (

+ params = list (ParamDblS$new ("bandwidth", lower =
0.001, upper = 1)))

> trm = trm("evals", n_evals = 5)

> # define which tuning method to use

> tuner = tnr("grid_search")

> at = AutoTunerS$Snew (

+ learner = L1,

+ resampling = resample,

+ measure = m,

+ search_space = ps,

+ terminator = trm,

+ tuner = tuner)
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> f#execute

> atS$train (Taskl)

> atSlearner

<LearnerDensKDE:dens.kde>

* Model: list

* Parameters: kernel=Epan, bandwidth=0.778
* Packages: distré6

* Predict Type: pdf

* Feature types: integer, numeric

* Properties: missings

iii. Below, we provide example of performing benchmarking experiment on two
kernel learners and two datasets. We continue to use ‘Task1’, ‘L1’ and ‘m’ for the
task, learner and measure. In the example below, we initialized another task and

learner.

> library (MASS)
> attach (Boston)

> Task2 = TaskDens$new(id = "boston", backend =
BostonSmedv)

> L2 = lrn("dens.kde", kernel = "Norm", bandwidth =
0.001)

> #design of the experiment

> design = benchmark_grid(tasks = c(Taskl, Task2),

+ learners = c (L1, L2),

+ resamplings = resample)

> bmr = benchmark (design)

INFO [17:43:23.174] Benchmark with 4 resampling
iterations

INFO [17:43:23.182] Applying learner ’'dens.kde’ on
task ’'boston’ (iter 1/1)

INFO [17:43:23.449] Applying learner ’'dens.kde’ on
task 'mpg’ (iter 1/1)

INFO [17:43:23.470] Applying learner ’'dens.kde’ on
task ’"boston’ (iter 1/1)

INFO [17:43:23.717] Applying learner ’'dens.kde’ on
task 'mpg’ (iter 1/1)

INFO [17:43:23.739] Finished benchmark
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> # compute the empriical loss

> rr = benchmark (design) $Saggregate (msr ("dens.logloss"))
> rr
nr resample_result task_id learner_id

resampling_id iters dens.logloss

1: 1 <ResampleResult[21]> mpg dens.kde
holdout 1 3.202921

2: 2 <ResampleResult[21]> mpg dens.kde
holdout 1 24.316121

3: 3 <ResampleResult[21]> Dboston dens.kde
holdout 1 3.448817

4. 4 <ResampleResult[21]> Dboston dens.kde
holdout 1 11.541058

7.6 Conclusion

In this chapter, we provide a platform of unified ML interface for distribution esti-
mation. This unified interface enable the train, predict and evaluate steps for distri-
bution estimation. Since mlr3proba is within the mlr3 ecosystem, user can use the
extension of ML algorithms for distribution estimation such as tuning hyperparame-
ter tuning, benchmarking and etc. Overall, the integration of distribution estimation
into mlr3proba allows quick and easy implementation for users. However, the
functionality provided by this interface is still limited, for example the score func-
tion. With the integrated functionalities of L2-norm of PDF and CDF in distr6, we
can add the measures PSL and IBI into unified interface (for kernel learners). As
this is still in the working phase as we need to consider standardization and compu-
tation time. This will be a part of future work and is explained further in Chapter
9.




Chapter 8

Benchmarking Experiment

8.1 Introduction

The objective of this chapter is to compare and investigate the performance of mul-
tiple distribution learners on multiple datasets by performing a benchmarking ex-
periment. The performance of the distribution learners are measured using log-loss,
PSL and IBL. From this experiment, the compared learners are ranked according to

the loss functions.

The learners that are being compared consist of nonparametric distribution learn-
ers. The learners are grouped into two categories: (1) Kernel based distribution;
(2) Non-kernel based distribution. The reason is because on top of evaluating the
performance of all distribution estimator using the log-loss, we evaluate the kernel-

based distribution learners using PSL and IBL.

In total, the experiment will consist of 29 distribution learners and benchmark on
54 datasets. The datasets are obtained from the UCI ([111]) database. For evalua-
tion purpose, each dataset will be split by 3-fold cross-validation. In addition, for
learners that require tuning, each training fold will be further split by 3-fold cross-
validation (i.e. using nested resampling method). The mean out-of-sample empiri-
cal expected generalization loss (we use ‘mean empirical loss’ for short) over 3-fold
of each dataset and each learner is computed. Then, the average of mean empirical
loss over all datasets for each learner is reported. The reported results are then used

for further analysis using Friedman test.

This chapter is organized as follows. First, we describe the background and general
framework of benchmarking experiment. Second, we look into some literature on

experiments that compare distribution learners. Later, we explain the benchmarking
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framework to fit our benchmarking experiment for distribution estimation in which
we specify the datasets, learners, loss functions and resampling methods used in the

experiment. Lastly, we discuss the result of the experiment.

8.1.1 Background of Benchmarking Experiment
In this section, we review the theoretical background on benchmarking experiment
which is based on [144] to gain a better understanding on benchmarking experiment

objectives.

Benchmarking experiment is an empirical investigation that is used to compare the
performance of multiple learners of a specific learning task with respect to a cer-
tain measurement (loss function). The need to conduct benchmarking experiment
arise from different problem. Some examples of problems that use benchmarking

experiment addressed by [145].

1. Sensitivity analysis - investigating the affect of different structure of the data
generating process on an algorithm.
ii.  Algorithm comparison - comparing the performance of a set algorithms fk

where £ = 1, ..., K on a single or multiple data generating process.
Some of the goals for performing benchmarking experiment are:

i.  To compare the performance of learners of specific task with respect to a mea-
sure.
ii.  To compare the performance of new learner or algorithm with existing learners

iii. To compare the performance of learners of a specific task based on groups.

8.1.2 General Framework for Benchmarking Experiment

This section is an overview of a general set-up for benchmarking experiment. This
set up has been discussed by [144] and [145]. A benchmarking experiment is di-
vided into three stages ([145]): (1) design; (2) execution; (3) analysis. We will

explain the three stages below.

Design

1. First, consider B > 1 datasets,

D' ={(z},9)), ..., (2%, %)}
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where b =1,..., B.

ii.  Second, the task for the datasets is specified, (e.g. classification, regression or
distribution estimation).

iii. Third, the learners (or algorithms) to perform the task are defined. Learners
can be of the same estimator with different parameter input or even estimator
of different kind (e.g. to perform regression will have the choice of linear
regression, tree regression, etc.). We let the learners be f Fwherek=1,...,K
(i.e. K different learners).

iv.  Then, the resampling method is defined to ensure that fitting and testing is
done using different datasets. This is important so that function is fitted in the

training set and evaluated using the test test. Resampling method may be either

hold-out resampling or cross-validation. Let 7° = {(z5,4%), ..., (2%,9%)} be
the training set of dataset D° while 7** = {(23°,v;?),..., (z:2,y:’)} be the

test set, where m +n = N.

v.  Lastly, the methods to evaluate the performance of the learners for a specific
task. This is where loss function is specified, for example for regression task
the loss function is £ : R x R — R. The loss function is used to compute
out-of-sample empirical loss function, Ee,,,[£(f*, 7*")] which is to measure

the performance of the learner f * on the test dataset, 7.

Execution

Once the design of the experiment has been set up, it is ready to be executed. At this
stage, each learning algorithm f ¥ is fitted on each training dataset 7°. Each model
is conditioned on 7°. The fitted model includes parameter and dataset. Once the
learner is fitted, the performance of each learner on each dataset is evaluated on the
test dataset 7 *° using the loss function £ by computing the out-of-sample empirical

generalization loss.

Analysis

The benchmarking experiment will output the mean out-of-sample empirical gen-
eralization loss for each dataset and each learner. Multiple ways may be used to
analyse the result of the benchmarking experiment depending on task and objective
of the experiment. The learners can be compared by the averaging the mean out-
of-sample empirical generalization loss over all datasets (which we refer to mean
loss). The average rank of the learners can be found. First, the rank of the mean out-
of-sample empirical generalization loss of each learners are found for each dataset.

Then, the rank is average over all datasets for each learner. Another way to analyse
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is by running hypothesis tests on the mean out-of-sample empirical generalization

loss. Other analysis methods include relative efficiency and by using graphic.

8.1.3 Literature on Simulation & Benchmarking Experiment
Machine learning is a fast growing field of study that is constantly developing. New
methods to achieve a specific task is being proposed and benchmarking experiment
is a good tool to compare all learners for a specific task. Literatures on benchmark-
ing experiment for supervised task, includes comparing classification learners by
[146], [147], comparing regression task by [148] and even time series classification
task by [149].

Over the years, new methods for distribution estimation have been proposed, in-
cluding new estimators, algorithms, parameter selection and etc. Simulation studies

is used to compare new methods with the existing or baseline method. However,

comparison of distribution learners are done differently.

8.1.4 Exeriments on bandwidth selection Methods

Table 8.1 shows some of the literatures that compares the performance of distribu-

tion learners obtained by different bandwidth selection method.

Paper Data Learners

Findings

[67] 4 simulated hpoy,

datasets hrscv, hpu,

hos(195],
[67])

h py performed better for standard normal
and Gaussian mixture with different mean
while hy oy is good for skewed distribution.
hpey and hpgcoy has problems with mini-

mizer outside the range.

[68] 4  simulated prM, fzS],
datasets fzs J1 fLS 72

Overall h sy1 performed better for standard
Normal distribution datasets, Gaussian mix-
tures with different mean and Gaussian mix-
ture with different variance. h py performs

well for normally distributed dataset.

[69] 3 simulated iLHo, ilROTa
datasets with h PM

different sizes

h o has a better performance when the sim-
ulated data is from standard Normal distribu-
tion and mixture of Normals with different

variance.
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[91] 15 simulated £ ROT> h LSCV s h ror has high mean and low variance h LSCV
datasets as in h BCV > h SJ is centred correctly but too spread out h BCV
[99] has erratic distribution ;LS J performance is

between h,..; and hrscv

[97] 15 simulated ECDEF, fLROT, prB—two step has a better performance for
datasets as in hpp-one step separated bimodal distribution dataset.
[99] and izpB—two

step

[150] 1 real world BLSCV, ﬁs J izs s 1s recommended for its overall perfor-
dataset mance

[70] 9  simulated h HE With k = h mo and k-step (1 - 8) perform similar
mixture 1,...,8, h no  for Normal distributed, skewed, strongly
datasets from skewed, bimodal and asymmetric bimodal
[99] of differ- datasets. For kurtotic dataset, datasets with
ent size each outlier and separated bimodal dataset, isz
replicated with k£ > 4 have better performance.
10000 times

[151] 4  simulated h LSCV» h Bovs MISE decreases as number of data points in-

datasets from
[99] of differ-
ent size each
repeated 1000

times

iLSJ’ iLSJla
hcont ([152])

creases. Learners are ranked from best to

worst: hcont hsy & hsyi, hrsev, hev.

Table 8.1: Table summary of literatures that compares distribution estimation. The
third columns are the methods of estimating the bandwidth for kernel methods

which are further described in Chapter 2.

In Table 8.1, each literature evaluates the performance differently which includes
comparing the estimated MISE ([67], [97] and [151]), comparing the estimated
AMISE ([69]) and comparing the shape of the estimated distribution to the true
distribution of the simulated data ([91] and [150]).

[151] and [147] ran experiments on distribution learners that compare the learners

and evaluates the goodness of the learners by loss functions. [151] further rank the

learners from best to worst. However, [151] did not discuss how estimating and

evaluation is done specifically with the use resampling method. [147] compared
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kernel distribution learner with a discretized classifier. The experiment is to com-
pare existing distribution learners with a new proposed method. Unlike [151], [147]

used real world datasets.

Most of the simulation experiments are to compare the proposed methods with ex-
isting methods. Furthermore, each simulation experiment uses different methods of
evaluation (MISE, log-likelihood and AMISE). Hence it is difficult to make a com-
parisons using different literatures. For example, [67], [91], [151], [150] included
hrscv in the comparisons but uses different method of evaluation. In addition, the
experiments in Table 8.1 also did not specify the resampling method of how the

fitting and estimation of the distribution is done.

Comparing distribution estimation learners using ensemble learning methods was
further discussed by [71], [153], [48], [80], [79] and [82]. [71] showed that stacked
KDE is better when compared to other methods when evaluated using log-likelihood
(i.e. negative log-loss) on 4 real world datasets. [153] and [82] compared different
bagging PDF estimation learners. [153] found that for classification problem us-
ing kernel method, bagging PDF produced the highest log-likelihood (i.e. negative
log-loss). [82] compared 3 different PDF estimation method including histogram,
frequency polygons and kernel learners with their respective bagging learners. The
simulated experiments on 8 simulated datasets shows that each bagged learners pro-
duced smaller MISE than the non-bagged learners. [79] showed that as the size of
datasets increases, the bagged learners have better performance in terms of MISE.
Boosted PDF learners were studied by [48] and [80]. The latter showed that boosted

PDF learners are less effective for datasets from a skewed distribution.

8.2 Benchmarking Experiment for Distribution Esti-

mation
In this section, we describe the benchmarking experiment for distribution learners
implemented using mlr3proba, mlr3 and mlr3extralearners. We start by listing
the objectives of the experiment. Then, we outline the design of the experiment by
specifying the datasets used, resampling method, learners and evaluating strategy.
In this benchmarking experiment, we are not just comparing one type of distribution
learner. In addition, we also compare different learners from different family of
distribution (kernel, histogram, KNN, penalized and spline). The learners will be
grouped with its respective family. For example, KDE plug-in methods are collected

together in one group, histogram learners will be grouped together and etc.
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8.2.1 Objective of Benchmarking experiment
Here, we outline the objectives of this benchmarking experiment.

i.  To compare and rank distribution learners of different family of learners with
respect to log-loss.

ii. To compare and rank kernel based distribution learners (including tuned and
plug-in parameter) with respect to (1) log-loss; (2) Probabilistic squared loss
(PSL)

iii. To compare and rank Gaussian kernel distribution learners with respect to (1)
log-loss; (2) Probabilistic squared loss (PSL); (3) Integrated Brier loss (IBL)

iv.  To compare and rank the family of distribution learners w.r.t log-loss.

From the above objectives, (ii) is limited to kernel based distribution because there
is no functionality in R to support non-kernel distribution. (iii) is further limited to
Gaussian kernel because the computation of IBL for other kernels are time consum-

ing for large dataset.

8.2.2 Design of Benchmarking Experiment

In this section, we describe the design of the benchmarking experiment for distri-
bution estimation. First, we outline the datasets used for this experiment. Second,
we explain the resampling method. Third, we list the algorithms used for the ex-
periment, classifying them into different groups. Finally, we describe the evalua-
tion methods for all algorithms. From running this benchmarking experiment, the
out-of-sample empirical generalization losses for each dataset and each learner is
obtained. We report the average of out-of-sample empirical generalization losses
for each learner over all datasets. The results of this experiment and its analysis are

further discussed in Section 8.3.

8.2.2.1 Data for Benchmarking Distribution Estimation

This section is a list of datasets used in this benchmarking experiment on distribu-
tion estimation. The datasets used in this benchmarking experiment are from the
UCI ([111]) database. The UCI database contain datasets that have been grouped
into its respective task, i.e. regression, classification, clustering and others. There
is no specific datasets for distribution learners. However, since we are running ex-
periment on univariate distribution estimation, we have an advantage to select any
dataset in the database. We restrict our choice to continuous data because we are

experimenting learners for continuous setting. We also have the advantage to select



8.2. Benchmarking Experiment for Distribution Estimation 204

multiple variables or attributes within each dataset to make separate datasets. For
example, we extract two attributes from Air Quality dataset, temperature and rela-
tive humidity as two separate datasets in distribution estimation task. We used in

total 54 datasets. These are attributes from 29 separate datasets from UCI database.

In general, we do not perform any preprocessing on the datasets to maintain the
originality structure. However, we carry out data-cleaning, to remove NA and 0, to
ensure continuity. This is done by removing the rows of the dataset that contain NA
and 0. Therefore, the number of instances (or observations) in the cleaned dataset

is less than the original dataset.

We list the datasets below with a brief description on them. We note down the vari-
ables extracted as a new dataset, the changes we made on the data and the number
of instance (observations) of the dataset used after data cleaning. We use the format

(description of the dataset - the attributes or variables used - number of instance).

i.  Airfoil self noise: Dataset that consists of different size of ‘NACA 0012 air-
foils at various wind tunnel speeds and angles of attack - scaled sound pressure
level, (V6) - instances 1503.

ii. Arrhythmia: Dataset to differentiate the presence and absence of cardiac ar-
rhythimia then categorized into 16 groups- V248 and V249 - 452 instances.

iii. Audit data: Non-confidential dataset from 2015 to 2016 of firms. The dataset
is collected from the Auditor Office of India. The dataset is used to build a
predictor for classifying suspicious firm - 7otal and Audit_risk - 685 instance;
[154] and supported supported by Ministry of Electronics and Information
Technology (MEITY), Govt.of India.

iv.  Australian Credit Approval: Dataset on credit card application in Australia
- A2 and A3 - 690 instances.

v.  Climate model simulation crashes: Dataset for predicting climate model
simulation crashes. The dataset is used to find the parameter value combi-
nations that cause the failures using Latin hypercube samples of 18 climate
model input parameter values - vconst_corr and Prandtl - 540 instances; [155].

vi. Cloud: Dataset on cloud image - Visible minimum value (V3) and IR minimum
value (V10) - 1024 instances.

vii. Concrete slump test: Dataset on factors that influenced the concrete - Com-
prehensive strength - 103 instance; [156].

viii. Concrete Comprehensive Strength Data: Dataset on concrete strength for

civil engineering - 28- day comprehensive strength- instance 1030; [157].
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ix. Credit approval: Data about credit card application - V2 and V3 attributes -
671 instances.

x. Dow Jones Index: Dataset of 6 week data of Dow Jones Industrial Index -
percentage return dividend - 750 instances; [158].

xi. Energy efficiency: Dataset for assessing the heating and cooling load require-
ments. The data is used to build a function - cooling load (Y1) and heating
load (Y2) - 768 instances; [159].

xii. Forest fire: Dataset on meteorological and other data. The dataset is used to
predict the burned area of forest fires in Portugal - FFMC, DMC and MC - 517
instances; [160]

xiii. Heart failure clinical record: Dataset consists of patients’ medical record
who have heart failure with 13 features - serum creatinine -299 instances;
[161]

xiv. Glass Identification: Dataset of 6 types of glasses - Magnesiu, V4, Aluminum,
V5 and Silicon, V6 - 172 instaces.

xv. Istanbul Stock Exchange: Dataset of returns of Istanbul Stock Exchange with
7 international index - ISE and EM - 536 instances; [162].

xvi. HCV data: Dataset on laboratory values of blood donors and Hepatitic C
patients and demographic value - CHE - 615 instances.

xvii. Ionosphere: Dataset on radar from the ionosphere - V4 - 615 instances.

xviii. Leaf: A dataset of collection of shapes and texture features extracted from
digital images if leaf specimen from 40 different plants - Elongation, (V5),
Average Intensuty, (VI11) and Entropy, (V16) - 340 instances; [163].

xix. Meta-data: Dataset for classification method - Continuous error, (V22).

xX. Mice protein expression: Dataset consist of 77 proteins - Ubiquitin_N level
and pCAMKII_N level - 1080 and 1077, respectively; [164].

xxi. Parkinson’s dataset: Dataset from Oxford’s Parkinson’s Disease detection -
RPDE and PPE - 195 instances; [165].

xxii. QSAR aquatic toxicity: Dataset used to predict quantitative acute toxicity
- Molecular properties (MLOGP), 2D autocorrelation (GATS1p) and aquatic
toxicity (LC50), (total 3) - 546 instances ; [166].

xxiii. QSAR Bioconcentration classes: Dataset for QSAR modeling the manually-
curated Bioconcentration factor (BCF, fish) and mechanistic classes - MLOGP
and LogBF - 774 instances; [167] [168]. instances 908 [169]

xxiv. Real estate valuation data set: Dateset consists of historical real estate eval-
uation from Taiwan - X3, the distance to the nearest MRT station and Y1, house

price of unit area - 414 instances; [170].
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xxv. Seeds: Dataset on the measurements of geometrical properties of kernels for
three different varieties of wheat - width of kernel, (V4), asymmetry coefficient,
(V5) and length of kernel groove, (V6) - 210 instances; [171] with support from
Institute of Agrophysics of the Polish Academy of Sciences in Lublin.

xxvi. Synthetic control chart time series: Dataset on synthetic generated control
charts - Upward shift, (V5) - 600 instance; (Eamonn Keogh).

xxvii. Vertebral column: Dataset to classify orthopaedic patients - VI, V2, V5 and
V6 - 310 instances.

xxviii. Wine: Dataset of chemical analysis to discover wine origin - Malic acid,
(V2) and Nonfalvanoid acid, (V8) - 178 instances.

xxix. Wisconsin breast cancer (diagnostic): Dataset of diagnostic Wisconsin breast
cancer - V8, V9 and V31 - 556 instances,

xxx. Yacth hydrodynamics: Dataset to predict the performance of hydrodynamic
of sailing yachts using dimensions and velocity - Residuary resistance per unit

weight of displacement (V7) - 308 instances.

8.2.2.2 Resampling Method

For this benchmarking experiment, we use a 3-fold cross-validation resampling
method. For each dataset, we split into 3 parts (see Chapter 6 on K-fold cross-
validation). The first fold is used as the test dataset while the remaining two folds
are for fitting (training). This process is repeated until all folds are used as the test

datasets.

8.2.2.3 [Evaluation

In this experiment, the learners are evalauted using the expected generalization loss.
First, the out-of-sample empirical generalization loss is computed to evaluate the
learners on each fold using the 3-fold cross-validation resampling method using
Algorithm 17. Then, the out-of-sample empirical generalization loss is averaged
over the 3 folds to obtain the mean empirical loss. For all learners, we compute
the mean empirical log-loss. For all kernel based method, we compute the mean
empirical PSL and lastly for Gaussian kernel based learners, we compute the mean

empirical IBL.

8.2.2.4 Learners for Benchmarking Distribution Estimation
In this section, we provide a list of learners used in this benchmarking experi-
ment. The distribution estimation learners that will be compared are available in

R and collected in mlr3proba and mir3extralearners. Some of these algorithms
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require tuning and some use the default parameter. Distribution estimation task is
well-researched area and there are many methods being introduced. However, in
choosing the learners to compare, we select the learners that have already been im-
plemented in R and tuned learners. To achieve our first objective, we use not only
kernel based learners but also include different families of learners. The learners
are grouped into two big families: (1) kernel based; (2) non-kernel based. For (1),
we further split into tuned algorithms and plug-in algorithms. For (2), we split into

smaller groups based on the family of learners.

Kernel distribution learners

Here, we consider the kernel based distribution learners.

Out-of-sample Tuned Learners: The out-of-sample method is based on the dis-
cussion from Chapter 6. Here, we describe the specific tuning method for this
benchmarking experiment including the resampling, the vector of bandwidth used

and the loss function for optimizing.

Firstly, we used a grid search method for this experiment. We set the values of the
bandwidth to be from 0.1 to 10.

Secondly, in selecting a tuned model, this is done by minimising the empirical loss
w.r.t the bandwidth. We used three loss function: (1)log-loss; (2) PSL; (3) IBL.

Thirdly, we set up the resampling strategy for this tuning method. We use a 3-fold
cross-validation to resample the training set. For each pair of inner training and in-
ner test sets, we use Algorithm 18 to obtain the tuned learner (reflecting the optimal
parameter for the learner) and the minimum out-of-sample empirical generaliza-
tion loss. For each fold, the bandwidth with the smallest out-of-sample empirical

generalization loss is selected and used for prediction (refer to Figure 6.3).
In total, we will have 12 out-of-sample tuned learners which are listed below.

i.  dens.kde.gaus.ll: A kernel PDF learner that uses Gaussian kernel in which the
bandwidth is tuned by grid search using log-loss.

ii. dens.kde.gaus.psl: A kernel PDF learner that uses Gaussian kernel in which
the bandwidth is tuned by grid search using PSL.

iii. dens.kde.gaus.ibl: A kernel PDF learner that uses Gaussian kernel in which
the bandwidth is tuned by grid search using IBL.

iv. dens.kde.epan.l: A kernel PDF learner that uses Epanechnikov kernel in
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Vii.

viii.
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which the bandwidth is tuned by grid search using log-loss.
dens.kde.epan.psl: A kernel PDF learner that uses Epanechnikov kernel in
which the bandwidth is tuned by grid search using PSL.

dens.kde.unif.ll: A kernel PDF learner that uses Uniform kernel in which the
bandwidth is tuned by grid search using log-loss.

dens.kde.unif.psl: A kernel PDF learner that uses Uniform kernel in which
the bandwidth is tuned by grid search using PSL.

dens.kde.quart.ll: A kernel PDF learner that uses Quartic kernel in which the
bandwidth is tuned by grid search using log-loss.

dens.kde.quart.psl: A kernel PDF learner that uses Quartic kernel in which
the bandwidth is by tuned grid search using PSL.

Plug-in Kernel Based Algorithms:

i.

1l.

1il.

1v.

V1.

Vii.

viii.

1X.

kdeKD.gaus: A kernel PDF learner that uses Gaussian kernel from package
kerdiest ([172]) with the plug-in method of bandwidth, i with h = hpp where
hpp as in Eqn (4.2.43); [97].

kdeKD.epan: A kernel PDF learner that uses Epanechnikov kernel from pack-
age kerdiest ([172]) with the plug-in method of bandwidth, h with h = hppg
where hpp as in Eqn (4.2.43); [97].

kdeKD.quar: A kernel PDF learner that uses Quartic kernel from package
kerdiest ([172]) with the plug-in method of bandwidth, / with h = hpp where
hpp as in Eqn (4.2.43); [97].

kdeKS.gaus:A kernel PDF learner that uses Gaussian kernel from package ks
([173]) with the plug-in method by [68] in Eqn (4.2.22).

kdeSM.gaus: A kernel PDF learner that uses Gaussian kernel from package
sm ([174]) with the plug-in method as in Eqn (4.2.13); [132], [5].
kdeNP.gaus: A kernel PDF learner that uses Gaussian kernel from package
np ([175]) with the default cross-validation using maximum likelihood.
kdeNP.epan: A kernel PDF learner that uses Epanechnikov kernel from pack-
age np ([175]) with the with the default cross-validation using maximum like-
lihood estimation.

kdeNP.unif: A kernel PDF learner that uses Uniform kernel from package np
([175]) with with the default cross-validation using maximum likelihood.
kde.norm: A kernel PDF learner that uses Gaussian kernel using hror, Eqn
(4.2.14), [5]..

kde.epan: A kernel PDF learner that uses Epanechnikov kernel using hror,
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Eqn (4.2.14), [5].

kde.unif: A kernel PDF learner that uses Uniform kernel using hror, Eqn
(4.2.14), [5].

kde.quart: A kernel PDF learner that uses Quartic kernel using hrzor, Eqn
(4.2.14), [5].

Non-kernel Based Algorithms

Here, we consider non-kernel based distribution learner that we have introduced in

the previous chapter.

Histogram:

i.

il.

1il.

dens.hist.sturges: Estimate the PDF using hist in graphic package using
the default method Sturges’ rule, with the number of bins, B = log(N) + 1,
where N is the number of training data points.

dens.hist.scott: Estimate the PDF using hist in graphic package using

Scott’s method, the bin width w = 35%*, with /V is the number of training

data points.
dens.hist.bin: Estimate the PDF using the hist in graphic package but tun-
ing the number of bins (input is a number) via log-loss. The tuning follows

the same structure as out-of-sample tuned kernel learners.

KNN Density Methods:

i

i

dens.knn.sil: Estimate the PDF using KNN from package TDA ([176]) using
the function knnDE and Silverman’s rule of thumb as in [5] with the number
of k nearest neighbours, & = N 172 where N is the number of instances
(observations).

dens.knn.kung: Estimate the PDF using KNN from package TDA ([176])
using the function knnDE and parameter proposed by [10] with the number
of k nearest neighbours, £ = N 1/d \where N is the number of observations

and d is the dimension.

Penalized Method:

1.

ii.

dens.pen.gaus: Estimate PDF via penalized mixture approach ([177], [178]).
dens.logspline: Estimate the PDF using logspline approach proposed by [18].
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8.3 Results and Discussion

In this section, we discuss the result of the benchmarking experiment. In total, this
experiment consist of 28 x 54 results of log-loss, 24 x 54 results of PSL and 8 x 54
results of IBL to evaluate on. Recall from Section (8.2.2.1), some of the datasets are
attributes from the one dataset. Therefore, we need to consider the independence of
the result when analysing the result of this experiment. This is done by averaging
the result which is discussed later on hypothesis testing using Friedman test. We
first explain what is the output of the benchmarking experiment, what methods we

use to analyse the benchmarking experiment and how we use the methods.

Output of the Benchmarking Experiment

The benchmarking experiment produced tables of results that reports the following:

i.  Using log-loss as the evaluation method, it has 54 rows (number of datasets)
and 28 columns (number of learners) of averaged out-of-sample empirical log-
loss.

ii.  Using PSL as the evaluation method, it has 54 rows (number of datasets) and
21 columns (number of learners) of averaged out-of-sample empirical PSL.

iii.  Using IBL as the evaluation method, it has 54 rows (number of datasets) and

8 columns (number of learners) of averaged out-of-sample empirical IBL.

Methods for Analysing
Here, we list down the methods used for analysis, describing how to use the methods

for analysing our results and the purpose of the analysis.

i.  Average loss: For each dataset and each learner, we obtained results of 3 out-
of-sample empirical loss resulting from 3-fold cross-validation. The average
of the out-of-sample empirical loss is computed which depends on the learner
and dataset. We call this mean empirical loss. Then, for each learner, the
average of mean empirical loss over all the datasets is computed. We call this
as average loss. The best learner is chosen with the minimum average loss.

ii. Ranking the learners: For each dataset, we rank the learners. The learner
with the minimum mean empirical loss has the lowest average rank value
while the learner with the learner with the maximum mean empirical loss has
the highest average rank. Then, the average rank of each learner over all 54
datasets is computed and we call this as average rank. Using this ranking sys-

tem, the best learner has the lowest average rank while the worst performing
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learner has the a highest average rank.

Hypothesis test: We conduct a hypothesis test to compare whether there is

significant difference between the learners as proposed by [179]. We need to

consider independence for this test because some of the datasets are related

(i.e. some of the dataset are attributes from the same original datasets). We

use the following test:.

a.

Friedman test ([180]): Friedman test is used when independence is as-
sume for each cell in the data. In this benchmarking experiment, some
datasets are a related (because some of the datasets are attributes from a
similar dataset). For example, the variables of dataset Seeds are taken as
separate datasets. To overcome this non-independence, the mean empiri-
cal loss for the datasets (which are attributes to Seeds) ‘width of kernel’,
‘asymmetry coefficient’ and ‘length of kernel groove’ are averaged for each
distribution learner. This is done for all related datasets. This reduce our
datasets from 54 to 30 (the new table of result is now 28 x 30 for using log-
loss to evaluate and 24 x 30 and 8 for PSL and IBL, respectively). However,
Friedman test is considered an advantage in our experiment because no as-
sumption is made about the distribution of our results (i.e. Friedman test
is non-parametric). The hypotheses for Friedman test are:

Null hypothesis: There is no significant difference between the learners.
Alternative hypothesis: There is a significant difference between the learner.
For Friedman-test, if the null hypothesis is rejected, we proceed to the post-
hoc test that test for significant difference between pair learners.
Nemenyi test ([181]): This is a post-hoc test after the Friedman test results
in a significant difference. The Nemenyi test compares all the learners
with each other. A critical difference value is computed (see [179]). If the
difference of average rank between two learners is greater than CD then
we can conclude that the two learners are significantly different.

Critical difference (CD) diagram ([179]): To visualise the Nemenyi test,
[179] proposed to plot a CD diagram. In the plot, the learners are ranked
increasingly. The learner with the smallest average loss has the smallest
rank value whereas the learner with the largest average loss has the highest
rank value. Learners that are not significantly different from each other are
connected by a horizontal line (i.e. the length of the horizontal line is less
than the CD value).
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8.3.1 Discussion: Evaluation Using Log-loss
This section is a discussion of analysis of the result for using the log-loss as the

evaluation method. This is align to our first objective (see Section 8.2.1).

Firstly, by analysing the average log-loss from Table 8.2, kdeKD.Gaus is the best
learner out of the 28 learners being compared with average loss of 0.9893. Though
we do not consider any learner to be a baseline, it is interesting to note that that
kdeKD.gaus has a lower average log-loss compared to kde.gaus which uses the
Silverman’s rule of thumb and Gaussian kernel. Out-of-sample tuned learners did
not performed well when evaluated using the log-loss with kde_norm_psl.tuned has
highest average loss of 3.894. Overall, kernel methods using bandwidth as in Eqn

(4.2.43) have a lower average log-loss compared to all other methods.

In terms of average ranking, dens.knn.sil (i.e. KNN learner using Silverman’s rule)
is rank first with average rank of 3.59 but dens.knn.kung (i.e. KNN learner using
[10]’s rule) is rank last with average rank of 25.33. The average rank does not
align with the result of average log-loss. This shows that the performance of the
distribution learners depends on the dataset. dens.knn.sil performs worst than other
learners on the ionosphere dataset with mean empirical log-loss of 1.7932. How-
ever, that is the only dataset that show’s it’s worst performance. For other datasets,
dens.knn.sil’s average rank is 5. On the other hand, the rank of kdeKD.gaus which
is the best learner with respect to average log-loss, fluctuates. Out 54 datasets, it
ranks first for 29 datasets. However, it ranks 26 for 10 datasets. Leading its average
rank to 10.04.
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Learners Log-loss  Rank | Learners Log-loss  Rank
dens.knn.sil 1.793 (5) 3.59 | kdeNP.epan 1.997 (8) 10.50
dens.knn.kung  2.877 (26) 25.33 | kdeKS.gaus 1.709 4) 8.67

dens.hist.sturges 2.189 (18) 16.72 | kdeSM.gaus 2075 (1) 14.17
dens.hist.scott 2.154 (17) 16.80 | dens.kde.gaus.ll 2.227 (21) 15.25
dens.hist.bin 2.208 (19) 18.67 | dens.kde.unif.ll 2.214 (20) 17.56
kde.gaus 2.061 (10) 12.56 | dens.kde.epan.ll 2.111 (15) 14.26
kde.unif 2.078 (13) 14.20 | dens.kde.quart.ll  2.134 (16) 13.99
kde.epan 2.089 (14) 15.00 | dens.kde.gaus.psl 3.894 (28) 17.64
kde.quart 2.078 (12) 14.44 | dens.kde.unif.psl ~ 2.885 (27) 19.58
kdeKD.gaus 0.989 (1) 10.04 | dens.kde.epan.psl 2.602 (24) 17.02
kdeKD.epan 1.021 (2) 11.02 | dens.kde.quart.psl 2.657 (25) 16.40
kdeKD.quart 1.024 (3)  12.02 | dens.kde.gaus.ibl ~ 2.347 (22) 16.69
kdeNP.gaus 1.996 (7)  9.80 | dens.pen.gaus 2.496(23) 23.43
kdeNP.unif 2.033(9) 12.31 | dens.logspline 1.835(6) 8.35

Table 8.2: Table of average log-loss from benchmarking experiment. The column
of ‘log-loss’ is the average log-loss with the rank based on the average log-loss in
the bracket. ‘Rank’ column refers to the average rank as obtained by ranking the
learners above.

The average rank for the learners compared using average log-loss is shown in Fig-

ure 8.1 with the dens.knn.sil is ranked first while dens.knn.kung is ranked last.
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Average rank plot for Distribution Learners
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Figure 8.1: Plot of average rank of learners evaluated using log-loss. The x-axis
is the learners in an increasing order: dens.knn.sil, dens.logspline, kdeKS.gaus,
kdeNP.gaus, kdeKD.gaus, kdeNP.epan, kdeKD.epan, kdeKD.quart, kdeNP.unif,
kde.norm, dens.kde.quart.ll, kdeSM.gaus, kde.unif, dens.kde.epan.ll, kde.quart,
kde.epan, dens.kde.gaus.ll, dens.kde.quart.psl, dens.kde.gaus.ibl, dens.hist.sturges,
dens.hist.scott, dens.kde.epan.psl, dens.kde.unif.ll, dens.kde.gaus.psl, dens.hist.bin,
dens.kde.unif.psl, dens.pen.gaus, dens.knn.kung. The y-axis is the average rank of
each learners.

Friedman test results in rejecting the null hypothesis with p-value 1.63 x 10~*2
which is very low. Concluding there is a significant difference between the learners.
Post-hoc test for Friedman test using Nemenyi test suggested there are significant

difference between the learners. The critical difference (CD) using average log-loss
is 8.024.

From Figure 8.2, there are 8 groups of distribution learners. Each group is con-
nected by a horizontal line. Within each group, the learners are not significant
different of each other (the differences of the ranks between two learners are less
than the critical difference). Two learners where the difference of average rank ex-
ceed the CD value (8.024) are significantly different. For example, dens. KNN.sil is
significantly different than kdeNP.unif and dens.logspline is significantly different
than dens.kde.quart.psl.
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Figure 8.2: Critical difference (CD) diagram from the result of Nemenyi post-hoc test for using log-loss as the evaluation method. The
learners are ranked increasingly. The learners with the lowest average rank are better than those with a the higher average rank. The critical
difference (CD) is 8.024. The horizontal lines show groups of learners that are not significantly different.
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Comparisons Between Family of Distribution Learners

In this section, we analyse the results of the experiment to obtain the fourth objec-
tive, which is to compare and rank the family of distribution learners using log-loss.
We grouped the learners based on Section 8.2.2.4. In total, we have 5 groups of
family of learners: (1) tuned kernel methods; (2) plug-in kernel method; (3) KNN
distribution learners; (4) histogram learners; (5) penalized distribution learners. To

analyse this, we only compare the average loss and the average rank.

i. The average log-loss is computed by averaging the mean empirical log-loss over
the learners of the same family and all datasets. For example, the average log-
loss of penalized learner family in Table 8.3 is computed by averaging the mean
empirical log-loss over all 54 datasets and over two learners, dens.pen.gaus and
dens.logspline.

ii. For the average rank, we assign the rank of each learner based on the mean em-
pirical log-loss. Then, average them over 54 datasets and its family of learners. For
example, the average rank for penalized family in Table 8.3 is obtained by averag-
ing the rank based on mean empirical log-loss over 54 datasets and two learners,

dens.pen.gaus and dens.logspline.

Due to the above, running a hypothesis test is not suitable as it violates the indepen-

dence requirement of the Friedman test.

In terms of average log-loss, the plug-in kernel methods have a lower average log-
loss compared to all other methods with the average loss of 1.7625. This is not
surprising as based in Table 8.2, the kdeKD.gaus, kdeKD.epan and kdeKD.quart
have lower mean empirical log-loss compared to others. Whereas, the family of
tuned kernel methods are have the highest average loss, 2.5633. From Table 8.2,
the dens.kde.gaus.Il has a high average log-loss of 2.227. This might be the caused
for the high average log-loss of 2.5633 for tuned learners. Family of KNN, his-
togram and penalized methods have the average loss of 2.3352, 2.1839 and 2.1657,

respectively.

The average rank of the family in ascending order is plug-in kernel (2.11), Hist
(2.67), penalized (3.09), Tuned kernels (3.20) and KNN(3.93). In terms of average
rank, the family of plug-in kernel methods have a lower average log-loss of 2.11
compared to other methods. But the KNN methods are rank the highest with 3.93
with tuned kernels methods still in the upper half with 3.20.
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Learner Family Average loss Rank
Tuned kernel learners  2.563 (5) 3.20
Plug-in kernel learners 1.763 (1) 2.11
KNN 2.335(4) 3.93
Histogram 2.184 (3) 2.67
Penalized 2.166 (2) 3.09
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Table 8.3: Table of average log-loss and average rank for family of learners w.r.t log-
loss. The column ‘average’ log-loss is computed by averaging the mean empirical
log-loss over the learners of the same family and all datasets. The numbers in the
bracket show the rank based on the average loss. The column ‘Rank’ is computed by
averaging the rank based on mean empirical log-loss over all datasets and respective

family.

8.3.2 Discussion: Evaluation Using PSL

In this section, we will discuss the results for evaluating distribution learners using

PSL. Due to computing limitation, PSL is only used to evaluate kernel learners.

Therefore, we conduct the benchmarking experiment to compare the 21 kernel dis-

tribution learners.

The results are shown in Table 8.4.

Learners PSL Rank | Learners PSL Rank
kde.gaus -1.827(5) 9.53 | kdeSM.gaus -1.791 (7) 12.88
kde.unif -1.837(2) 9.44 | dens.kde.gaus.ll -0.760 (18) 13.24
kde.epan -1.833 (3) 9.80 | dens.kde.unifll -0.812 (15) 13.70
kde.quart -1.833 (4) 9.72 | dens.kde.epan.ll -1.058 (12) 12.31
kdeKD.gaus 0.841 (19) 7.59 | dens.kde.quartll  -1.029 (13) 11.48
kdeKD.epan 0.942 (20) 8.69 | dens.kde.gaus.psl -0.774 (16) 10.49
kdeKD.quart 0.965 (21) 9.64 | dens.kde.unif.psl  -0.854 (14) 11.69
kdeNP.gaus  -1.827 (6) 9.81 | dens.kde.epan.psl -1.099 (10) 10.17
kdeNP.unif  -1.682 (8) 14.06 | dens.kde.quart.psl -1.069 (11) 9.89
kdeNP.epan -1.645(9) 15.94 | dens.kde.gaus.ibl  -0.773 (17) 12.62
kdeKS.gaus -1.846 (1) 8.31

Table 8.4: Table of average PSL from benchmarking experiment. The column ‘PSL’
is the average PSL with the rank in the bracket. The column ‘Rank’ refers to the
average rank as obtained by ranking the learners above.
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In terms of average PSL, the best learners is chosen with the minimum average PSL.
Overall, kdeKS.gaus is the best learner with the average PSL of —1.8458 while
kdeKD.quart is the least performed learner with the average PSL of 0.965. All
of Silverman’s rule of thumb method (kde.gaus, kde.unif, kde.epan and kde.quart)
perform better than other learners. The tuned learners obtained by out-of-sample

tuning using log-loss, PSL and IBL only perform averagely.

The average ranking from evaluating using PSL is plotted in Figure 8.3. In terms of
average rank, kdeKD.gaus is ranked first with average rank of 7.59, and kdeKS.gaus
maintain its position as the top two learners with the average rank of 8.31. Silver-
man’s rule of thumb learners are ranked higher than kdeKD learners. kde.gaus.llI

does not performed in terms of rank as its average rank is 13.24.

Average rank plot for Kernel Learners

18-

Figure 8.3: Plot of average rank of learners evaluated using PSL. The x-axis is the
learners in an increasing order: kdeKD.gaus, kdeKS.gaus, kdeKD.epan, kde.unif,
kde.gaus, kdeKD.quart, kde.quart, kde.epan, kdeNP.gaus, dens.kde.quart.psl,
dens.kde.epan.psl,  dens.kde.gaus.psl,  dens.kde.quart.ll,  dens.kde.unif.psl,
dens.kde.epan.ll, dens.kde.gaus.ibl, kdeSM.gaus, dens.kde.gaus.1l, dens.kde.unif.1l,
kdeNP.unif, kdeNP.epan. The y-axis is the average rank obtained by ranking the
learners of each learners for each dataset and averaged the rank over all the datasets
for each learners.

Friedman test shows there is a strong significant difference between the learners
with p-value of 8.27 x 107! (x20(89.727)). Post-hoc test for Friedman test using
Nemenyi test suggest there are significant difference between learners when com-
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paring them pairwise. The critical differences (CD) is 5.816 and the CD diagram
for PSL is shown in Figure 8.4.

From Figure 8.4, kdeKD.gaus is significantly different from kdeNP.epan. kde.KD
learners are ranked better than other learners, taking the top 4 rank. Furthermore,
kdeKS.gaus does not show much difference than the result from average rank as
it ranks 2nd. From Figure 8.4, kdeKS.gaus is also better than kde.gaus in terms
of ranking. Learners using Silverman’s rule of thumb are ranked averagely while

tuned learners did not performed better than most plug-in learners.
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kdeNP.gaus

kdeKS.gaus —M8M@™M—— dens.kde.gaus.ps|
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kdeKD.quart dens.kde.quart.ll

kde.gaus dens.kde.epan.ll
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dens kde.epan.psl dens.kde.unif.ll
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Figure 8.4: Critical difference (CD) diagram from the result of Nemenyi post-hoc
test for using PSL as the evaluation method. The learners are ranked increasingly.
The learners with the lowest average rank are better than those with a higher average
rank. The critical difference (CD) is 5.816. The horizontal lines show groups of
learners that are not significantly different.

Comparison Between Tuned kernel Learners
This section is a discussion on comparing of the performance of the tuned learners
using PSL.

In terms of average PSL, dens.kde.epan.psl is the best performing learner with

the average loss of —1.0985 followed by dens.kde.quart.psl with average PSL of

—1.0692. dens.kde.gaus.1l has the highest average PSL —0.760 and dens.kde.gaus.ibl
has the second highest average PSL of —0.773.

By observing the average rank between the learners as in Table 8.5, dens.kde.quart.psl
rank first with average rank of 3.58 while dens.kde.epan.psl. has average rank of
4.111 and dens.kde.gaus.ll has average rank of 6.08. The tuned methods via PSL

rank higher than the tuned methods via log-loss and IBL. when comparing the aver-
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age rank via PSL.
Learner Rank | Learner Rank | Learner Rank
dens.kde.gaus.ll 6.08 | dens.kde.quart.ll  4.62 dens.kde.unif.psl  5.04
dens.kde.unif.ll 6.20 | dens.kde.gaus.ibl 5.56 dens.kde.epan.psl  4.11
dens.kde.epan.ll 5.30 | dens.kde.gaus.psl 4.42 dens.kde.quart.psl  3.68

Table 8.5: Table of average rank for tuned distribution kernel methods evaluated
using PSL. The column ‘Rank’ refers to the average rank obtained by ranking the
learners with respect to mean empirical PSL and average over all 54 datasets.

Friedman test indicates a strong significant difference with p-value of 0.000239
(x2 = 29.7). To investigate further which pairs of learners that resulted in the dif-
ference, we conduct Nemenyi test. The critical difference is 2.231 and the learners
that are significantly different are shown in Figure 8.5. The result from Nemenyi
test indicates that dens.kde.quart.psl and dens.kde.gaus.l are significantly different
and indicates that dens.kde.quart.psl is better than other tuned learners when eval-
uated using PSL. It is also interesting to note that dens.kde.quart.ll is rank higher
than dens.kde.gaus.ibl.
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Figure 8.5: Critical difference (CD) diagram from the result of Nemenyi post-hoc
test for using PSL as the evaluation method . The learners are ranked increasingly.
The learners with the lowest average rank is better than those with a higher rank.
The critical distance (CD) is 2.231. The horizontal lines show groups of learners
that are not significantly different.
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Comparisons between Plug-in Kernel Methods by PSL

For plug-in kernel learners evaluated using PSL, the best learner by analysing the
average PSL is the kdeKS.gaus learner with average loss —1.8458 while the least
performing learner is kdeKD.quart withe average PSL 0.9646. All distribution
learners using Silverman’s rule of thumb method have smaller average PSL com-
pare to kdeKD learners followed by kdeNP learners.

The average rank of the plug-in learners using PSL is tabulated in Table 8.6. The
average rank is also plotted in Figure 8.6. By analysing the average rank of PSL for
plug-in learners, kdeKD.gaus is rank the lowest with average rank of 4.31 whereas
kdeNP.epan is rank the highest with average rank 9.78. All of Silverman’s rule of
thumb are rank averagely with 5.89, 5.95, 6.01 and 6.23 for kde.unif, kde.gaus,

kde.epan, and kde.quart, respectively.

Learner Rank | Learner Rank | Learner Rank

kde.gaus 5.95 | kdeKD.gaus 4.31 kdeNP.unif  8.69
kde.unif 5.89 | kdeKD.epan 5.34 kdeNP.epan 9.78
kde.epan 6.01 | kdeKD.quart 6.29 kdeKS.gaus 5.25
kde.quart 6.23 | kdeNP.gaus  6.28 kdeSM.gaus 7.97

Table 8.6: Table of average rank for plug-in distribution kernel methods evaluated
using PSL. The column ‘Rank’ refers to the average rank obtained by ranking the
learners with respect to mean empirical PSL and average over all 54 datasets.
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Average rank plot for Kernel Learners
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Figure 8.6: Plot of average rank of plug-in learners evaluated using PSL. The x-axis
is the learners in an increasing order is: kdeKD.gaus, kdeKS.gaus, kdeKD.epan,
kde.unif, kde.gaus, kde.epan, kde.quart, kdeNP.gaus, kdeKD.quart, kdeSM.gaus,
kdeNP.unif, kdeNP.epan. The y-axis is the average rank obtained by ranking the
mean PSL of each learners for each dataset and averaged the rank over all the
datasets for each learners.

Using Friedman test indicates there is a significant difference between the learners
where the p-values reported is 2.787x 10710 (x?, = 68.112). The post-hoc test using
Nemenyi test also support that there is a difference where the difference between

pairs of learners as shown in the CD diagram in Figure 8.7.

From Figure 8.7, kdeKD.gaus learner is significantly different compared to kdeNP.epan.
kdeKD.gaus is also ranked better than other kernels whereas kdeKD.epan is ranked

third and kdeKD.quart is rank 6. All of Silverman’s rule of thumb method ranked
between 4 - 7.
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Figure 8.7: Critical difference (CD) diagram from the result of Nemenyi post-hoc
test for using PSL as the evaluation method. The learners are ranked increasingly.
The learners with the lowest rank is better than higher rank. The critical distance
(CD) is 3.094. The horizontal lines show two learners that are significantly different.

8.3.3 Discussion for IBL

In this section, we discuss the results for evaluating distribution learners specifi-
cally Gaussian kernel estimators using the IBL. This limitation is due to the high
computation time for other kernel learners. Therefore, this benchmarking experi-
ment is able to compare 9 Gaussian kernel learners. The result of the benchmarking

experiment evaluated using IBL is shown in Table 8.7.

From Table 8.7, dens.kde.gaus.ibl is the best learner out of the Gaussian kernel
learners with the minimum average IBL of 19.704 whereas dens.kde.gaus.1l is rank
the last with maximum average IBL of 22.442. Both plug-in methods, kdeKD.gaus
and kde.gaus have average IBL of 20.559 and 20.562, respectively. The average
rank of the learners evaluated using IBL is shown in Figure 8.8. From analysing the
average rank, kdeKS.gaus is the best performed learner whereas dens.kde.gaus.ll is
the least performed learner. The result from the average IBL and the average rank

of IBL are not consistent.
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Learners IBL Rank | Learners IBL Rank

kde.gaus 20.562 (5) 4.01 | kdeSM.gaus 21.373 (7) 4.34
kdeKD.gaus 20.559 (4) 4.27 | dens.kde.gaus.ll  22.442 (8) 5.83
kdeNP.gaus 21.083 (6) 3.77 | dens.kde.gaus.psl 19.737 (2) 5.66
kdeKS.gaus 20.442 (3) 3.65 | dens.kde.gaus.ibl 19.704 (1) 4.46

Table 8.7: Table of average IBL from benchmarking experiment. The column ‘IBL’
refers to the average IBL. The number inside the bracket is the rank based on aver-

age IBL. The column ‘Rank’ refers to the average rank as obtained by ranking the
learners above.
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Figure 8.8: Plot of average rank of Gaussian distribution learners us-
ing IBL.The the x-axis refers to the learners in increasing order is -
kdeKS.gaus, kdeNP.gaus, kde.gaus, kdeKD.gaus, kdeSM.gaus, dens.kde.gaus.ibl,
dens.kde.gaus.ll, dens.kde.gaus.psl. The y-axis is the average rank obtained by
ranking the mean IBL of each learners for each dataset and averaged the rank over
all datasets for each learners.

Friedman test indicates there is a significant difference between the learners with
p-value of 0.00296 (x% = 21.6). The critical difference (CD) from Nemenyi test is
1.950. The CD diagram is shown in Figure 8.9. The horizotal lines show groups of
learners in which the difference in their ranks do not exceed the CD, indicating they

are not significant different from each other.

From Figure 8.9, kdeNP.gaus is ranked better than other learners including tuned

learners. Furthermore, dens.kde.gaus.ibl is ranked higher than other tuned learners.
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CD

3 4 5 6
| | | |
kdeNP.gaus ——MM kdeKD.gaus
kdeKS.gaus kdeSM.gaus
dens.kde.gaus.ibl dens.kde.gaus.psl|

kde.gaus dens.kde.gaus.ll

Figure 8.9: Critical difference (CD) diagram from the result of Nemenyi post-hoc
test for using IBL as the evaluation method. The learners are ranked increasingly.
The learners with the lowest rank is better than those with a higher rank. The critical
distance (CD) i1s 1.950. The horizontal lines show groups of learners that are not
significantly different.

8.4 Discussion & Conclusion

In this benchmarking experiment, we compare multiple distribution learners on
multiple datasets and used different loss functions to evaluate. The learners are
collected in mlr3proba and mir3extralearners. However, there are limitation of
this experiment, since we focus on the learners implement in R and has the function-
ality to estimate PDF or CDF at independent points. Therefore, we cannot ensure
the that test data is used to estimate the distribution during evaluation. In evaluat-
ing, not all learners are being compared using PSL and IBL due to the limitation of

computation.

From this experiment, different loss functions provide different conclusion. We

summarize the result based on our objectives as below.

1. Overall, kdeKS.gaus has better performance when compared using log-loss,
PSL and IBL. Although it did not rank first, it still ranked 2 or 3 from the
Friedman-test.

ii.  Using log-loss to compare the distribution learners, kdeKD.gaus has the min-
imum average log-loss. However, in terms of average rank and critical dif-
ference plot in Figure 8.2, dens.knn.sil and dens.logspline are ranked 1 and 2,
respectively. kdeKS.gaus is rank third.

iii. Based on comparing the family of learners using log-loss, plug-in learners rank
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first in the average loss and has the minimum average log-loss. Meanwhile,
tuned kernel learners has the highest average log-loss of 2.653 and rank last
with average rank.

Using PSL to compare kernel learners, kdeKS.gaus has the minimum aver-
age PSL and ranked first in the critical difference plot in Figure 8.4 while
kdeKD.gaus is first in terms of average rank.

Using IBL to compare the learners, dens.kde.gaus.ll has the minimum average
IBL while kdeKS.gaus is first in terms of average rank. However, kdeNP.gaus

is ranked first in the critical difference plot in Figure 8.9.



Chapter 9

Conclusion and Future Work

9.1 Conclusion
In this thesis, we explored and investigated distribution estimation task in machine

learning.

Chapter 3 frames distribution estimation as supervised learning. The task is to learn
a function that estimate a distribution using an unpaired dataset. The loss func-
tions evaluates the estimated distribution at a point. The loss functions are indeed
proper. Furthermore, the divergence between the generalization loss of the esti-
mated distribution and the generalization loss of the true distribution leads to ex-

pected Kullback-Leibler divergence and mean integrated squared error.

Chapter 5 proposed an efficient method to compute the analytic expression of the
probabilistic loss functions (log-loss, PSL, IBL) to evaluate the loss given a kernel-
based distribution and an observation point. The proposed method is efficient be-
cause it not only able to compute and evaluate the loss of one kernel but is applica-
ble for most kernel distribution and can be extended to kernel mixture distributions.
From this method, closed-form expression of CDF, L2-norm PDF, L2-norm CDF
and L2-norm CCDF of 11 symmetric kernel functions are derived which can be
substituted into this method. Algorithms to compute the loss for mixtures are also

provided.

Chapter 6 investigates the behaviour between in-sample and out-of-sample tuning in
bandwidth selection using a Gaussian kernel PDF estimator and log-loss and PSL.
From this investigation, out-of-sample tuning using log-loss and Gaussian kernel
requires one new and unseen data points in the test data. Meanwhile, in-sample

tuning is unbounded. For out-of-sample tuning using PSL and Gaussian kernel, the
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test set requires a ration such that, the total number of test data points to the number

of observed data points in training and test sets is 21/2 : 1.

Chapter 7 provides a unified machine learning interface for distribution estimation
in R which is integrated under mlr3proba. This interface is provides an easy and
consistent implementation of distribution estimation. Using this platform, user can
train, predict and evaluates distribution estimation. In addition, because mlr3proba
lies within the mlr3 ecosystem, user can use the functionalities offered by the
ecosystem. This mean, user can also tune the parameter of a distribution learner

and also perform benchmarking exercise.

Chapter 8 1s a benchmarking experiment that compares multiple distribution on
multiple datasets. In this experiment different distribution learners that includes
tuned kernel learners, plug-in kernel learners, histogram learners, KNN and penal-
ized distribution learners are compared on the 54 datasets using three different loss
functions. The results indicate that plug-in kernel learners have a better performance

compared to others.

9.2 Future Work

9.2.1 Investigating Tuning for Multivariate Kernel Estimators

A possible future work is to extend the investigation of tuning parameters for mul-
tivariate distribution. Based on Chapter 6, it is important that for out-of-sample
tuning to work in selection of optimal bandwidth, there must be test data points
that are distinct from the training data points. It would be interesting to investigate
whether this condition applies to multivariate distribution estimation, particularly
when using PSL for tuning. There are different questions that can arise from this
investigation. Firstly, whether a higher number of dimension affects the ratio of
distinct test to training data points when using PSL. Secondly, whether dependence

or independence between covariates affect this condition.

9.2.2 Investigation of Ensemble Learning for Distribution Esti-

mation
One possible future work is to compare all meta-learning methods (tuning, bag-
ging, boosting and stacking) for distribution estimation. Ensemble learning for dis-
tribution estimation has been studied by [79], [82], [153], [48] [80] and [71]. [79]
showed that bagging indeed reduce variance and hence reduce the MISE. [71] used
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log-loss to evaluate different meta-learning methods on distribution estimation and
found that stacking distribution estimation showed a better result. [79], [82], [48]
and [80] compared different distribution algorithms (including meta-learning) using
empirical MISE and simulated dataset. However, when using real world data, it is
possible that repeated data points are observed in both training and test sets. One
possible future research is comparing how much bias and variance are reduced when
using different meta-learning methods mentioned. Another possible investigation is
how does different meta-learning algorithms affects multivariate distribution esti-

mation.

9.2.3 Extending mir3proba

The development of this interface for distribution estimation is still maturing. There
are things that can be improved, not by the design but in terms of functionality.
Firstly, mlr3proba, weka and scikit-learn use the same scoring methods (log-loss)
to evaluate distribution estimation. However, there are also PSL and IBL that can be
added, this is especially for kernel methods since distr6 has the methods to compute
the terms needed for PSL and IBL. To include PSL and IBL for kernel methods into
mlr3proba, we need to consider: (1) improve speed of computation; (2) alternative
for IBL for Normal and Sigmoid kernels in distré. For improving the computation
speed, it is more efficient to use Rccp as [7] used for dpgr methods. An alter-
native for IBL of Normal and Sigmoid kernel is by using quadrature rule instead
of integration of L2-norm of CDF. Secondly, extending the univariate distribution
interface to multivariate distribution interface is future work that can be looked into
as some of the distribution learners in R are compatible for multivariate distribution
estimation, such as the learners in ks, np and sm packages. Third, adding ensem-
ble learning methods (e.g. bagging, stacking and etc) for distribution estimation
which is not common in R. Several papers ([182], [71]) studied ensemble methods
for distribution estimation. The algorithms used are not straightforward and will

allow users to quickly implement the learners.
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Appendix A

Non-parametric Kernel Distribution

Estimation

The derivations are based on [55] for references purpose.
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A.1 Expectation of kernel density estimator

Let Xq,..., Xxn ' X and X tvi R. Let f be a kernel density estimator (KDE)

as in eqn (2.3.4) with bandwidth h. Let K (u) be a kernel function that satisfies the

following

/K(u) du =1
/uK(u) du =0

/uQK(u) du =ky > 0.

The kernel PDF estimator is

Bl (o) —ﬁiE[K( )] (ALD
= {K (x_hX)] (A.1.2)
z/%K (x};t) £() dt (A.1.3)

By change of variable, such that w = f”T_t — t = = — wh. Then, differentiate w

w..r.t t, will obtained dw = —h dt and

E[f(2)] / K()f(z — wh) dw (A.1.4)
(A.1.5)

and using Taylor expansion on f(z — wh),

f(x —wh) =f(z) + (—uh)f'(z) + ————=f" () + ... (A.1.6)

(uh)®

=[(@) — uhf (@) + 5

() + ... (A.1.7)
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Then, the expection of f(z) is

/K { (—uh) () + = (’;!h) ) p(2) + }du (A.1.8)
—=f(x) /K(u)du - hf’(:v)/ K(u)du + (Z?Qf"(x) /uQK(u)du + O(h%)
(A.1.9)
By the properties of kernel function in section 5.3,
ELf(2)] = £(x) + 22 (@) + O(1) (A1.10
Then, we can show that
R 2’f2 " 2
Bias[(2)] =/(2) + o2 " (x) + O(K) — f(x) (ALID
—@f”(m’) +O(hY) (A.1.12)
A.2 Variance of kernel density estimator
Var(f (z)] = B[f(2)*] — E[f(x)]’ (A.2.1)
Then,
" 2 1 N r — Xz 2
E[f(z)?] :NTh?ZE K( - > (A.2.2)
1 z— X\
= [K < . ) ] (A.2.3)
1 0 z—t\°
= /OO K ( ; ) F(t) dt (A2.4)

Then, applying the substitution w = “ET_t — t = 2 — wh and the derivatives 4 =

dw
—h — dt = —h dw.

Nh2/ K(w)*f(x —wh) — hdw (A.2.5)

K(w — A.2.
Nh/ f(z —wh)dw ( 6)
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Then, use Taylor’s expansion for x — wh = 0,

f(x —wh) = f(x) + (—wh) f'(x) +

() + ... (A2.7)

and substituting the expansion back into eqn (A.2.5) to obtain

—wh)?
f(@) Nh(/K (—wh) /() + . I;’)f"@:)+...]) dw
(A.2.8)
( /K Vdw — hf'( )/ K(w)? dw+
th;/ / w? K (w)? dw) (A.2.9)
by the properties of kernel function, K (u),
E[f(x)%] = Nih [f(x)/K(w)de + @f”(m) /wQK(w)de + O(hz)]
(A.2.10)
Then, using eqn (A.2.10) and the mean of f (x), the variance is
Var[f( [ /K f”(ac)/w2K(w)2dw+ (’)(h2)] —
(A.2.11)
h*k?
[f(@) + ——f"(=) + O(h?))? (A2.12)

) / K(w)*dw + O (%) (A.2.13)



Appendix B

Chapter 5: Efficient Computation of
Loss Functions for Distribution

Estimation

B.1 Derivation for PDF, CDF, partial L2-products of
PDF, CDF and CCDF

In this section of appendix are the derivations of the functions in Table 5.1.
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B.2 Uniform Kernel
Definition B.2.1. Let the Uniform kernel be defined as

1 <
O RN
0 otherwise

Derivation B.2.1. Let K be a Uniform kernel as in Definition B.2.1. Then, the CDF

for uniform kernel is

0 if  t<-—1
ve(t) =9 t+1) if —1<t<l1
1 if  t>1

Proof. Let K be auniform kernel from Definition B.2.1. The CDF is the integration
of the kernel function. There are three cases to consider: (1)t < —1; (2) -1 <t <
1,3 t>1.

i. Case 1 ¢ < —1: Under this case, the integration of K is outside the range of
Definition B.2.1 resulting [*_ K (u) du = 0.
ii. Case2t e [—1,1]:

C Ly 11d—1t—1t1) (B.2.1)
/_mﬁ(ue[—,]) u=|gu =50+ 2
iii. Case 3¢ > 1:
|
/ S1(ue -1 1) du=1 (B.2.2)
u

Derivation B.2.2. Let K be a uniform kernel as in Definition B.2.1. Then, the inte-
gration of two Uniform kernel at two different centres, 0 and ¢ € R, from |—o00, 00|

is

i2=le) i <2
0 if el >2.
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Proof. Suppose that we have the uniform kernel as in Definition B.2.1. Then, the

partial L2-product of the kernel as in Eqn (5.4.2) for uniform kernel is

Ak (c) :/a:<>o Ku)K(u—c)l(e [-1,1])L(u € [c = 1,¢+1]) du

—0o0

== /OO I(ue [-1,1)I(u € [c—1,c+ 1]) du. (B.2.3)

o0

There two cases to consider in this computation: (1) |¢| < 2; (2) |¢|] > 2. For
(2), there is no intersection between the two kernels resulting Ax(a = oo, ¢) = 0.
Hence, the computation only focusses on (1). Under (1), there are two sub-cases to

consider:

i. Case 1(a)c € [c—1,1]:

A (c)—/lldu—l(z—c) (B.2.4)
K —c_14 —4 L.

ii. Case 1(b) ¢ € [—1,c + 1]: This is another case where the intersection occurs

between the two kernels, but between [—1, ¢ + 1].

)\ c+1 d 1
— - = —(2+ B.2.5
w0 = [ jd=iero (B2.5)

]

Derivation B.2.3. Suppose we have the Uniform kernel as in Definition B.2.1. Then,
the integration of two Uniform kernel with to different starting points 0 and ¢ € R
from [—o0, a] where a € R is
i. cel0,2]
1(2—0¢) if a>1
Ax(a,c)=qia—c+1) if a€le—1,1]
0 if a<c—1

ii. Force [—2,0]

12+4¢) if a>c+l
Ag(a,0)=q3(a+1) if a€l-lc+1]
0 if a < —1.

Proof. Suppose that we have the uniform kernel as in Definition B.2.1. Then, the
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partial L2-product of the kernel as in Eqn (5.4.2) for uniform kernel is
Ak (a,c) :/ KuwKu—-cl(e [-1,1]))I(u € [c—1,c+1]) du
1 a

=7 /_OO L(u € [-1,1))1(u € [c — 1,c + 1]) du. (B.2.6)

There 3 cases that we need to consider: (1) ¢ € [0,2]; (2) ¢ € [-2,0]; 3) |c| > 2.
For (3) this is outside the intersection of the two Uniform kernels. Hence, resulting
Ak (a, c¢) = 0. Hence, the computation of A (a, ¢) for uniform kernel only focuses

on two case (1) and (2).

i. Caselc € [0,2]: The intersection occurs between [c—1, 1]. Under this condition,
we need to consider three subcases below:
a. Case 1(a) a > 1:

A(ac)—/l1du—1(1—(c—1>)—1<2_c)
RSP 47 4 T4
b. Case 1(b)c—1<a < 1:

Ak (a,c) —/a %du-—(a—c%—l) (B.2.7)

Ak (a,c) :/a ! du=0 (B.2.8)

ii. Case 2 ¢ € [—2,0]: The intersection occurs between [—1,c¢ + 1]. Under this
condition, we need to consider three subcases below:
a. Case2(a)a >c+ 1:

c+1
Ak (a,c) = / ) du = i (24 ¢) (B.2.9)
-1

b. Case2(b) -1 <a<c+1:

Ak (a,c) :/a éll du = i (a+1) (B.2.10)

-1
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c. Case2(c) a < —1:
‘1
Ak (a,c) :/ 1 du = (B.2.11)

]

Derivation B.2.4. Let K be a Uniform kernel defined as in Definition (B.2.1). The
L2 norm of uniform CDF two different central points 0 and c € R is

i. Forcel0,2]
(0 if a<-1
0 if a€l[-1,¢c—1]
vic(a,¢) = 03+2a3+3a2(2—;21-1-6@(1—0)"‘2_3‘3 if a€lc—1,1]
+60” +120=12ae=2 if acll,c+1]
\ 0376027§ic+24a*8 if a>c+1
ii. Force [—2,0]
'0 if a<c—1
0 if a€lc—1,-1]
vr(a, ) = 2a3+3a2(2—0);—46a(1—c)+2—30 if ael|-1,c+1]
,c3+6(a270;)1+12(a70)72 if ac [c +1, 1]
\ 70376c272220+24a78 lf a>1
iii. Forc>2
(
0 if a<-—1
0 if ael-11]
x(a,c) =40 if acfle—1]

c2’ic+1 + a(QZQC) +2 §f g€ [c—1,c+1]

a—c if a>c+1
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. Forc < -2

0 if a<c—1
0 if a€lc—1,c+1]
’}/K(G,C): 0 ]

L@ if a>1
Proof. Let K be a Uniform kernel as in Def B.2.1. The CDF is defined in B.2.1.
Then, the partial L2-product of CDF as in Eqn (5.4.3) is

vk (a,c) = /a i(u%— Du—c+1)1(ue [-1,1)I(u € [c—1,c+1]) du.

—00

(B.2.12)

There are several things to consider in computing 7 (a, ¢) for Uniform kernel. For
¢ > 0, the intersection of two uniform CDF’s will occur from ¢— 1 until oo, whereas
for ¢ < 0 the intersection occurs between [0, 00). Therefore, we need to consider
these cases: (1) c € [0,2]; (2) [-2,0]; B) ¢ > 2; (4) ¢ < —2.

i. Case 1: ¢ € [0, 2]: Under this case, we need to consider 4 subcases below:
a. Case 1(a): a < ¢ — 1: In this case, there is no overlapping between v(t) and

vk (t — ¢), hence

c—1
)= [ G+ D=t D=0 B.2.13)

-1

b. Case 1(b) a € [c — 1, 1]: The partial L2-product of uniform cdf for the over-
lapping between v(t) and v(t — ¢) is

@1

vk (a,c) :/ Z(t +1E—c+1)dt
c—1

_ ¢+ (~3a> — Ga 3)2c4+ 20 + 60" +6at2 ooy

Whena =c—1,

¢+ (=3a* —6a — 3) c+2a® + 6a* + 6a +2
24 B

0 (B.2.15)
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Whena =1,

A+ (—3a% — 6a — 3) c + 2a® + 6a* + 6a + 2
24

= i (¢ —12c+ 16)

c. Case I(c)a € [1,c+ 1]

1 a
el ©) :1/ (t+1)(t—c+1)dt+/ St Dd B216
c 1

4 )
4+ 6a® + 12a — 12ac — 2
_ ¢ +6a”+ 12a ac (B.2.17)
24
When a = 1,
P+6a+12a(l—c)—2 1
¢+ 6a® + 12a(1 — ¢) = — (& — 12c+ 16) (B.2.18)

24 24

Whena =c+ 1,

54602+ 12a(1—c)—2 1
ct “+24‘1( ) = 57 (=6 +12c+16)  (B2.19)

d. Case 1(d)a > c+ 1:

1

1 1 C+11
il ©) :1/ 1(t+1)(t—c+1)dt+/1 i(t—c—kl)dt—k/ 1 dt

+1
(B.2.20)
A —12c+16 (c—4)c
eI -2 = e+ 1) (B.2.21)
A —6c®—12c+24a — 8
_ B.2.22
50 ( )
Whena =c+ 1,
3 —6c¢2 —12¢+ 24a — 8 1 3 2
o =% (¢ = 6¢° + 12¢ + 16) (B.2.23)

ii. Case 2 ¢ € [—2,0]: Under this condition, we will need to consider 4 sub-cases
below:
a. Case2(a) a < —1:

c—1
vi(a,c) :/ i(t +1)(t—c+1)dt=0 (B.2.24)
-1
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. Case2(b)a € [-1,c+ 1]:

vk (a,c) = /a i(t +1)(t—c+1)dt (B.2.25)
-1
—2—14(2(13 +3a*(2 —¢) +6a(l —c) +2 — 3¢ (B.2.26)

Check: When a = —1,

1
ﬂ(2a3 +3a*(2—c¢) +6a(l —c)+2—3c) =0 (B.2.27)

Check: Whena =c+ 1,

1 1
ﬂ(Qa?’ +3a*(2—c)+6a(l —c)+2—-3= o (=c® + 12¢ + 16)
(B.2.28)

. Case2(c)a € [c+ 1,1

c+1 a
’yK(a,c):/ S+ —c+1) dt+/ %(1+t) dt  (B.2.29)

-1 c+1
_—c3 +12¢+16 1

o + Z(a2 +2a —c — 4c—3) (B.2.30)
—A —6c2—12¢ — 2+ 6a% + 12
_ ¢ b lae— 2 ba” + 12a (B.2.31)
24
Check: Whena =c+1
—c® —6¢* —12c — 2 + 6a® + 12a _ —c® +12c 4 16 (B.2.32)

24 24
Check: Whena =1

—B — 6% —12c — 2+ 6a2 + 12 1
c c ;4 + 6a” + a:ﬂ(_c3_602_120+16) (B.2.33)

. Case2(d):a>1

C+11 1 1 a
ny(a,c):/ Z(t—l—l)(t—c—i—l) dt+/ 5(1+t)dt+/ 1dt
- 1

1 c+1

(B.2.34)
-3 +12c+16  c(c+4)

— o =t (B.2.35)
B —6c2 —12¢ + 24a — 8

e 7o c+2da (B.2.36)

24
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Check: Whena =1

—c3 —6¢2 —12¢+ 24a — 8

1 3 2

= — (- —6c"—12c+ 16 B.2.37

24 o1 (7€' 0 —12e416) - (B237)
iii. Case 3 ¢ > 2: Under this condition, the intersection of the two CDF’s v/(t) and

v(t — ¢) can occur when:
a. Case3(a)a € [c—1,1]:

“t—c+1 —2c+1 a(2—2c) d?
= dt = — (B.2.38
o) = [ =5 R aURES)

b. Case 3(b) a > 1:

c+1 a
t— 1
vie(a, ) :/ fmets dt+/ ldt =a—c (B.2.39)
c—1 2 c+1
iv. Case 4 ¢ < —2: Under this condition, the intersection of the two cdf’s v(t) and
v(t — ¢) can occur when:
a. Case4(a)a € [—1,+1]:

t+1 1)?
(a, c) / P g = az ) (B.2.40)
b. Case 4(b) a > 1:
“ht_c+1 @
vk (a, c) :/ ——dt —I—/ ldt =a (B.2.41)
c—1 2 c+1

]

Derivation B.2.5. Let K be a Uniform kernel function with CDF v. The partial
L2-product of the CCDF (1 — v)? at two different central points 0 and ¢ € R as in
Egn (5.4.4) is

i. Forcel0,2]
r 03_662_‘_;?10_24(1_8 if a<-1
H6(e?—c) H12(c—a) 2 if a<[-1¢c—1]
Excla,c) = ¢ —2a3+3a2(2+C;ZGG(1+C)+3C+2 if a€lc—1,1]
0 if acl,c+1]
\O if a>c+1
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ii. Force [-2,0]

r 7037602222072@78 if a<c-—1
_c3+6a2—a2ac—12a—2 if a<[c—1,-1]
txcla,c) = —2a3+3a2(C+2)—2i51a(0+1)_63+3c+2 if a€lc—1,1]
0 if a€ll,c+1]
0 if a>c+1
iii. Forc>2
(4 if a<-1
i ael-1,1]
{elae) =0 if aelle—1]
0 if a€lc—1,c+1]
0 if a>c+1
iv. Forc <2
’c —a if a<c-—1
c+ic+1+(2402)+§ if a€lc—1,c+1]
éxla,¢) =40 ff aclet1—]]
0 if ae€l-11]
0 if a>1

\

Proof. Form Lemma 5.4.2, {x(a,c) is the reflection of yx(a,c) on the y-axis.

Hence, we can compute £k (a, ¢) by taking vx (—a, —c). O
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B.3 Epanechnikov Kernel
Definition B.3.1. Let the Epanechnikov Kernel be defined as

3(1—u?) i ul <1
0 otherwise

Derivation B.3.1. Let K be an Epanechnikov kernel as defined in Def B.3.1. Then,
the CDF of the Epanechnikov kernel is

0 if  t<-—1
vic(t) = ¢ 2342 g e [1,1]
1 if  t>1

Proof. Let K be a Epanechnikov kernel as in Def B.3.1. The cdf is the integration
of the kernel function. There are three cases to consider: (1)t < —1;(2)t € [—1,1];
B3)t>1.

i. Case 1 a < —1: Under this case, the integration of K is outside the range of
Definition B.3.1 resulting [*_ K (u) du = 0.
ii. Case2t e [—1,1]:

b3 —t3 4 3t +2
v (t) :/ it u?) du = % (B.3.1)
-1
iii. Case3t > 1:
13
v (t) _/1 1(1 —u?) du =1 (B.3.2)
O

Derivation B.3.2. Let K be an Epanechnikov kernel as in Def B.3.1. Then, the
partial L2-product of Epanechnikov kernels at two different central point 0 and

¢ € R when the integration boundary is (—00, ) is

|c|®—20|c|3+40[c]?—32 .
- : if el <2
>\K(0> — 30
0 if | >2
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Proof. Suppose that we have the Epanechnikov kernel as in Definition B.3.1. the
partial L2-product of the kernel as in Eqn (5.4.2) for Epanechnikov kernel is

A (©) :/(1 — (1= (=) l(ue [-1, 1)L € [e— 1, ¢+ 1]) du

There are three cases that we need to consider in this computation: (1) |C' < 2;
(2) |e| > 2. For (2), there is no intersection between the two kernels resulting in

Ak (a = 00, ¢) = 0. Hence, the computation only focuses on (1).

i. Case l(a)c € [c—1,1]:

1
Ak (€) :/ 1(1 —uH)(1 = (u—c)?) du (B.3.3)
3 2 571
= u(l = @) +ulet+ (-2 -S4 L (B.3.4)
3 2 5.,
5 _ 92 3 4 2 2
_ ¢ Oc ;I) Oc® —3 (B3.5)

ii. Case I(b)c € [—1,c+1]:

1

Ak () :/ 1(1 —u*)(1 — (u—c)?) du (B.3.6)

3 2 57 c+1
= u(l = @) +ulet+ (-2 - =S4 & (B.3.7)

3 2 5] 4

® —20c® — 40¢% + 32

= . B.3.8
30 ( )
0

Derivation B.3.3. Let K be an Epanechnikov kernel as in Def B.3.1. Then, the
the partial L2-product of Epanechnikov kernels at two different central point 0 and

¢ € R when the integration boundary is (—oo, a] where a € R is

i. Force€|0,2]

(
0 ifa<c—1
3(*C5+2003+1002(a373a72)715c(a271)2)+

Ak (a,c) = < , 160
3(6a®—20a>+30a+16 .
( 160+ +16) ifa € lc—1,1]

3(—c5+20c® —40c%+32) .

L 160 ifa=>1
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ii. Force [-2,0]

0 ifa<—1

é c2(a3—3a—2)—15¢(a?—1)2+6a°—20a3 a
Aela, ¢) = 3(10c2(a®~3a—2) 15(1601) +6a°®—20a%+30a+16) ifacl—1,c+1]

3(c®—20¢3—40c2+32) ,
160 faz>c+1

Proof. Suppose that we have Epanechnikov kernel as in Definition B.3.1. Then, the
L2 norm of the kernel as in Eqn (B.3.3) for Epanechnikov kernel is

Ak (a,c) :/a (1—u?)(1— (u—e)*)(ue [-1,1)1(u € [c—1,c+1]) du

- (B.3.9)
:/_a (1—u?)(1—(u—c))l(ue[-1,1]N[c—1,c+1]) du
(B.3.10)

There are three cases that needed to be considered: (1) ¢ € [0,2]; (2) ¢ € [—2,0]; (3)
|c| > 2. For (3), the range is outside the intersection of the two Epanechnikov ker-
nels resulting Ax (a, ¢) = 0. Hence, the computation of A (a, ¢) for Epanechnikov

kernel only focusses of cases (1) and (2).

i. Case 1 c € [0,2]: The intersection between the two lines happens between [c —
1, 1]. Under this condition, we need to consider the cases below:
a. Case 1(a) a < c—1:

c—1
Ak (a,c) :3/ (1—u*)(1— (u—c)*)du=0 (B.3.11)
b. Case 1(b): a € [c — 1, 1]

Aela, ©) :1% /a1(1 — (1= (u— ¢)?)du

3(—c® +20¢® + 10¢?(a® — 3a — 2) — 15¢(a® — 1)?)
_l’_
160
3(6a® — 20a® + 30a + 16)
160

(B.3.12)
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Check: Whena =c¢c—1

3(—c® +20c® + 10c? (a® — 3a — 2) — 15¢(a? — 1)® + 6a® — 20a® + 30a + 16)

160
=0 (B.3.13)

Check: Whena =1

3(—c® + 20 4+ 102 (a® — 3a — 2) — 15¢(a® — 1)? + 6a° — 20a® + 30a + 16)

160
3(—c® + 20¢® — 40c¢? + 32
3 - ) (B.3.14)
c. Case 2(c) a > 1:
9 1
Ak (a, c) T (1—u*)(1— (u—c)?)du
c—1
3

=10 (—=c” 4+ 20¢® — 40¢* + 32) (B.3.15)

ii. Case 2 ¢ € [—2,0]: The intersection occurs between [—1,c + 1]. Under this
condition, we need to consider the cases below:

a. Case 2(a) a < —1: In this case, a is outside the intersection region. Hence,

Ak (a,c) :% / (1—u*)(1— (u—c)*)du=0 (B.3.16)

—00

b. Case 2(b) a € [—1, ¢ + 1]: For this subcase, the limit of the integral is [—1, al,
hence

(@, 0) :1% /a(1 — (1 = (u— ))du

-1

3(10c¢*(a® — 3a — 2) — 15¢(a* — 2a® + 1) + 6a® — 20a® + 30a + 16)

160
(B.3.17)

Check: Whena = —1,

3(10c(a® — 3a — 2) — 15¢(a* — 2a* + 1) + 6a® — 20a® + 30a + 16)
160
=0 (B.3.18)
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Check: Whena =c+ 1

249

3(10c(a® — 3a — 2) — 15¢(a* — 2a® + 1) + 6a°® — 20a® + 30a + 16)

160

3(c® — 20 — 40c¢? + 32)

160

(B.3.19)

c. Case 2(c) a > ¢+ 1: In this subcase, the limit of the integration is [—1, ¢ + 1]

Mela, ¢) —— /C+ (1= u?)(1 - (u— )2)du

16/,
3(c® —20c® — 40¢* + 32)
160

(B.3.20)

O

Derivation B.3.4. Let K be an Epanechnikov kernel as defined in Def B.3.1. The
partial L2-product of two CDF of Epanechnikov kernels at two different centre

points 0 and c € R from —oo to a € Ris

i. Force|0,2]

’VK(CL, C) =

.

\

ii. Force [-2,0]

WK(av C) =

0 ifa < —1
0 if ae[-1,¢c—1]
a”  aSc | a3(4204280c—420c?) + a®(—168+84c?) +
112 32 2240 2240
a*(—140+420c—35¢3) + a?(840—630c—420c2+210c3) +
2240 2240
a(560—840c+280c?) 132—-280c+84¢c24+105¢3 —42¢% 47 :
2240 + 2240 ifa€fc—11]
c”—42c%+168c?+560ac(c+a?—3)+1120a+840a>(1—c?)—140a* 156 -
5910 ifa€(l,c+1]
7_ 5 4_ 2_ _ .
c7—42¢%+140¢ 67222040 1120¢4-2240a—576 ifa>c+1
( .
0 ifa<c—1
0 ifa€lc—1,-1]
a(280¢%—840c+560) | a?(210¢®—420c—630c+840)
2240 + 2240
4 3
105¢° +84c? —280c+132 | (—35¢3+420c-140)
2240 2240
a(84¢2-168)  a3(—420c2+280c+420) 6 7
a“c a b
2240 2240 w T e€[-lc+l]
—c"+42c?+140c¢* —672¢2+1120(a—c)+840a% —140a* — 156 .
2240 ’faE[C‘I'Ll]
—cT442¢%+140¢* —672¢2 —1120¢42240a—576 .
L 2240 ifa>1
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iii. Forc > 2
.
0 if a<-1
0 if ae|-1,1]
Ticlare) =40 i oaelc—1
3
_(—c+a—31)6(—c+a+1) lf a e [C— ]_,C+ 1]
(@ —c¢ if a>c+1
v. Forc <2
.
0 if a<-—-1
0 if ae€l[-1,1]
Yr(a,c) =40 if a€ll,c—1]

s .

a if a>c+1

\

Proof. Let K be an Epanechnikov kernel as in Definition B.3.1 with CDF as in
B.3.1. The partial L2-product of the CDF as in Eqn (??) is

vk (a,c) = —/ (> + 3t + 2)(—t* + 3ct> + 3t(1 — *) + ¢ — 3¢+ 2) dt
There are several cases needed to be considered in computing 7 (a, ¢) for Epanech-
nikov kernel. For ¢ > 0, the overlapping of the two CDF happens when [c — 1, 00).
For ¢ < 0, the overlapping of the two CDF occurs between [0, oc). Therefore, we
need to consider these cases: (1) ¢ € [0,2] (2) [-2,0] 3) ¢ >2(4) ¢ < —2.

i. Case 1 c € [0,2]: Under this case, we need to consider 4 sub-cases below.
a. Casel(a):a<c—1

i (a,c) =0 (B.3.21)
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b. Case 1(b): a € [c — 1,1]

a

vicla, 0) :1—16/ (=t 4+ 31+ 2)(—(t— ) + 3(t — ¢)) dt

c—1
c" —42¢5 4+ 105¢® + 84¢? — 280c + 132 a (280c¢® — 840c + 560)
2240 + 2240
@? (210¢" — 420¢" — 630c + 840) | a* (=35¢" + 420c — 140)
2240 2240
a” (84c* —168)  a® (—420* + 280 +420) a’c  aT
2240 2240 32 112
(B.3.22)

Check: When a = 1,

c’ 3 A 32 ¢ 26
S RN B3.23
2240 160 + 4 10 2 + 35 ( )

’YK(av C)

c. Case 1(c): a € [1,c+ 1]

vk (a, c) :/1 %(—ti” +3t+2)(—(t —¢)® +3(t —c) +2) dt+

/Q}L(—(t—c)3+3(t—c) +2) dt

c’ 3 A3 B 3c? ¢ 26

T200 160 4 10 235
(a—1)(2c(c(2c¢—3a—3)+2(a—1)(a+2)) —a®—a*+5a+ 13)

16
_07 — 42¢° + 560ac® — 840a°c? + 168¢2
N 2240
560a3c — 1680ac — 14(;;1;; 840a? + 1120a — 156 (B.3.24)

Check: Whena =1

85¢” — 504c8 + 798¢ — 420¢* + 560¢® — 1792¢ + 1664
e, ) = 92240

(B.3.25)
Check: Whena =c+1

¢’ — 4265 4+ 140¢* — 672¢2 + 1120¢ + 1664
2240

(B.3.26)
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d. Case 1(d):a>c+1

1

1

vk (a,c) :/ 1—6(—253 + 3t + 2)(—t* + 3ct* + 3t(1 — ¢) + ¢* — 3¢+ 2) dt+
c—1

a

c+11
/ —(—t3—|—3ct2—|—3t(1—c)+03—30+2)dt—|—/ 1dt
1

4 c+1
_ ¢~ 426 4 140¢ — 6726 4 1120c + 1604 | e (et )
= 9210 e
e’ 3c° c? 32 ¢ 9
3 & 3 e 9 B.3.27
240 160 16 10 2 % 33 (B.3.27)

Check: Whena =c+1

85¢” — 504c® + 798¢° + 560c? + 840c® — 1680c* + 448¢ + 1664

(B.3.28)

ii. Case 2 ¢ € [—2,0]: Under this condition, there are 4 cases that we need to

consider:
a. Case2(a):a < —1

vk (a,c) =0 (B.3.29)
b. Case 2(b): a € [—1,¢c+ 1]

@1
memy:/ Rﬁ%¢+%+ﬂﬂ—@—cf+3t+%dt
—1

_a/(280c° — 840c +560) | a” (210¢" — 420¢* — 630c + 840) |

2240 * 2240
105¢% + 84¢® — 280c + 132 a* (—35¢3 + 420c¢ — 140)

2240 * 2240
a’ (84¢® —168) = a® (—420c* + 280c +420) a°c o’

2240 + 2240 32 ' 112
(B.3.30)

Check: Whena =c+ 1

c’ 3¢ ¢ 32 ¢ 26
- et B.3.31
(e ==t 50 7 10 T2 T3 ( )
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c. Case2(c): a € [c+1,1]

c+1 1
vic(a, 0) :/ LB 3t 2)(—(t— ) + 3t +2) dit

., 16
@ 34342
/ —t4t+2
c+1 4
B c’ n 3P n 3¢ ¢ a*  3d® n a 39
2240 160 16 10 2 16 8 2 560°
(B.3.32)
Check: Whena =1
(0.0 c’ +305 c3 302+c+26+c4+c3
Gc)=——m—+-——-—"———""—+=-F+—=+—=+-—-—c
TR 2240 ' 160 4 10 2 '35 16 ' 4
T — 4265 — 140¢* 4 672¢% + 1120¢ — 1664
__¢ c c + c+ c . (B.3.33)
2240
d. Case 2(d)a > 1:
c+1 1
v (a,c) :/ 1—6(—753 + 3t +2)(—(t — ¢)® + 3t + 2) dt+
—1
@ 34342 a
/ ¢dt+/ 1 dt
c+1 4 1
:—07 +42¢° + 140c¢* — 672¢%2 — 1120¢ + 2240a — 576_ (B.3.34)

2240

iii. Case 3 ¢ > 2: Under this condition, the intersection of the two CDF v(t) and
v(t — c¢) can occur under the sub-cases below.
a. Case3(a): a € [c—1,c+1]

a _ 3 _
7K(ajc):/ (t—c)> +3(t c)+2dt
c—1 4
3
_ (—c+a—3)1(6—c+a+ 1) . (B.3.35)

b. Case 3(b):a > c+1

c+l g4 3 _ 9 a
vie(a, ) :/ (t=c) +43(t )+ dt+/ ldt =a—c. (B.3.36)
c—1 ctl

iv. Case 4 ¢ < —2: Under this condition, the overlapping of the two cdf v(t) and
v(t — ¢) can occur when: When ¢ < 2
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a. Case4(a): a € [—1,+1]

¢ 34+ 3t+2 —a* + 6a* +8a + 3
’yK(a,c):/ R e P e e N Y X 70
o 4 16
b. Case4(b):a > c+1
c+1 3 a
—t t+ 2
vk (a,c) :/ %dt%—/ l1dt = a. (B.3.38)
c—1 1
H

Derivation B.3.5. Let K be Epanechnikov kernel as in Def B.3.1 with CDF vk of be
as in B.3.1. The integration of two Epanechnikov complimentary CDF at different

central points 0 and c € R as in Lemma 5.4.2(ii) is

i. Force€|0,2]

(7 5 4 2
¢ —42c54+140¢* —672¢%+1120c—2240a—576 -
2240 ifa < -1
¢ —42c5+140c* —672¢24+1120(c—a) —140a* 4-840a% — 156 .
5310 ifa€|—1c—1]
a(280c°—840c—560)  a*(35¢—420c—140)
2240 + 2240
Exc(a, ) = { 105684642800 13 a?(—210c3—420¢2+630c+840 )
KAS 2240 + 2240
a®(420c24+280c—420)  a®(168-84c?) 6. .7 : 11
3240 2240 212 ifa €fc—1,1]
0 ifa>1
0 ifa>c+1

\

ii. Casel: ce[—2,0]

(7 5 4 2
—c74+42c54+140c* —672¢2 +1120c—2240a—576 . .
2240 ifa<c—1
—c7442¢%+168c2+560ac(c?+a?—3)—1120a+840a%(1—c?)—140a* —156 .
5310 ifa€lc—1,-1]
3
—"+42c5 ~105¢° +84¢*+280c+132 | a(280c*—840c—560 )
2240 2240
Ex(a,c) = at(35c3—420c—140)  a2(—-210c3—420c?+630c+840)
K™ 2240 + 2240
a®(420c2+280c—420)  a°(168—84c?) 6 7
a Cc a b
2240 + 2240 + 5 1 ifa€l-1,c+1]
0 ifa>c+1

0 ifa>1

\
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iii. Case 3: ¢c> 2

;

—a if a<-—1
—a*46a%—8a .

% if ac|-1,1]
Ex(a,c) =40 if acllc—1]

0 if a€lc—1,c+1]

0 if a>c+1

\

iv. Case4: c < —2

;

c—a if a<-1

_(—c+a—1)136(—c+a+3) if ac [_1’ 1}

{x(a,c) =40 if a€ll,c—1]
0 if ac€lc—1,c+1]
0 if a>c+1

\

Proof. From Lemma 5.4.2, {x(a,c) is the reflection of v (a,c) on the y - axis.

Hence, we can compute {k (a, ¢) by taking v (a, c). O
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B.4 Quartic Kernel
Definition B.4.1. Let the Quartic kernel be defined as

Ba—wuw?)? iflul <1
0 otherwise.

Derivation B.4.1. Let K be the Quartic kernel function as in Def B.4.1. The CDF

for Quartic kernel is

0 if  t<-—1
vi(t) = % if  tel-1,1]
1 if  t>1

Proof. Suppose K be a Quartic kernel as in Definition B.4.1. The cdf is the inte-

gration of the kernel function. There are three cases to be considered: (1) ¢t < —1;
)te[-1,1;3)t > 1.

1. Case 1 a < —1: Under this case, vi(t) = f__olo K(u) du = 0 because the
integration boundary is outside the limit where Quartic kernel is defined.
2. Case2a € [—1,1]:

I/K(t)

15 [ 3t° — 10t + 15t + 8
- 1 — u2)? - B.4.1
= / (1= du - (B4.1)

3. Case 3 a > 1: Under this condition,
vi(t) =1 (B.4.2)

]

Derivation B.4.2. Let K be a Quartic kernel function as in Def B.4.1. The partial
L2-product of two Quartic kernels at two different central points O and ¢ € R for

the integration boundary is (—oo,a = 00) is

5(—|c|?4+24c” —336|c|>+672c* —768¢2+512) .
if el <2

)\K<C) — 3584 '
0 if le| > 2
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ie.

5(—|c|?+24|c|”—336]c|°+672|c|*—768|c|?+512) .
if ] <2
3584 =
Ak (c) =
0 if | >2

Proof. Suppose K is a Quartic kernel as in Definition B.4.1. The partial L2-product
of the Quartic kernel as in Eqn (5.4.2) is

v (c) = (%) /(1 —u?)? (1= (u—0¢)?)’ 1w e [-1,1)1(u € [-1,1]) du

There are three cases to be considered: (1) |c| < 2; (2) |¢| > 2. For (2), there is
no intersection between the two kernels resulting 5 (a = oo, ¢) = 0. Hence, the

computation focusses only (1).

1. Case 1 |c| < 2: There are two cases that to be considered for this case.
a. Case 1(a) ¢ € [0, 2]:

15 2 1 9 2\ 2
k() = 16 (1—u”) (1= (u=c)")" du
c—1

b. Case 1(b) ¢ € [-2,0]: When —2 < ¢ < 0. The intersection happens between

[—1, ¢ + 1]. Then, we can show that
15\? [et? 2
i (e) = — / (1—v*)(1—(u— 0)2) du
16) /|
5(c? — 24¢" + 336¢° + 672¢* — 768¢* + 512)

= B.4.4
3584 ( )

]

Derivation B.4.3. Let K be a Quartic kernel function as in Definition B.4.1. The
partial L2-product of two Quartic kernels at two different central points 0 and ¢ € R

is for the integration boundary is (—oo, a) where a € R is
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1. Casel: c€|0,2]

(
0 ifa<0
5(—c9424c" —336c°+336¢* +420c% —384¢% —315¢+256)

+
3584
5(70a° —315a8¢) 5a7 (540c? —360) + 5a8(—420c34-1260c) +
3584 3584 3584

_ ) 5a®(126c*—1764c?) | 5a*(1260c3—1890c+756)
A(a,c) = 4 3584 + 3584 +
5a3(—420c*+2100c2 —840) + 5a2(—1260c3+1260) +

3584 3584

5a(630c* —1260c24-630) .

3584 ifa €lc—1,1]

5(—c94-24c” —336c°+672c* —768¢%+512) .

\ 3584 ifaell,2)

2. Case2: c € [-2,0]

(

0 ifa < -1
2509 225a%c | 5a7(540c2—360) | 5a’(1260c—420c*)
256 512 3584 3584
5a5(126c4—1764c2+756) n 5a4(1260c3—1890c)
Ae(a,e) =4, 3584 3584
5a (—420c4+2100c2—840) n 5a2(1260c—1260c3)
3584 3584
5a(630c4—1260c2+630) 5(336c4+420c3—384c2—315c+256) .
3584 + 3584 ifa€[-1,c+]1]
9 7 5 4 2
x 5(c°—24c +33603—é—86120 —768c¢2+512) ifa>c+1

Proof. Suppose K is a Quartic kernel as in Definition B.4.1. The partial L2-product
of the Quartic kernel as in Eqn (5.4.2) is

Aela, 0) = G—Z)z

There are three cases to be considered: (1) ¢ € [0,2]; (2) ¢ € [-2,0]; (3) |¢| > 2.
For (3), this is outside range of intersection of the two Quartic kernels resulting

/aa —u?)? (1= (u—¢)?)’ 1w e [-1,1)1(u € [-1,1]) du

o

(B.4.5)

Ak (a,c) = 0. Hence, the computation of Ak (a, ¢) for Quartic kernel only focusses
of case (1) and (2).

1. Case 1 ¢ € [0,2]: The intersection between the two kernels happens between
[¢c — 1, 1]. Under this condition, we need to consider the cases below:
a. Casel(@)a<c—1:

Ak (a,c) =0 (B.4.6)
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b. Case 1(b)a € [c —1,1]:

Mdm@:(§§2laﬂ—uﬂ%L—W—d%%w

-1
5(—c® + 24c¢” — 336¢° + 336¢* + 420 — 384¢® — 315¢ + 256)
+
3584
5m®a9—31&f@_+5aﬂ54k2—36m_+5a%—4mk3+12&k)
3584 3584 3584
5a®(126¢* — 1764c?)  5a*(1260c® — 1890c + 756)

3584 3584
5a3(—420¢* + 2100¢2 — 840)  5a2(—1260¢° + 1260)

3584 N 3584
5a(630c! — 1260¢2 + 630)

3584

(B.4.7)

c. Case I(c) a > 1:

15 2 1
c—1
:5(_09 + 2167 — 3360;5—257204 _ 76802 + 512) (B48)

2. Case 2 ¢ € [—2,0]:The intersection between the two kernels happens between
[—1, ¢ + 1]. Under this condition, we need to consider the cases below.
a. Case2(a)a < —1:

Ak (a,c) =0 (B.4.9)

b. Case 2(b)a € [-1,c+ 1]

AKmmyZ/a(%>a1—ﬁfa-4u—@%%m

-1

25a°  225a%c  5a” (540c* — 360)  5a’ (1260c — 420¢3)

56 512 3584 i 3584
5a° (126¢* — 1764¢* + 756) | 5a* (1260¢’ — 1890c)
3584 3584
5a* (—420c* + 2100¢” — 840) | 5a” (1260c — 1260¢")
3584 3584
5a (630c* — 1260¢* + 630) , 5(336c" + 420c® — 384¢” — 315¢ + 250)
3584 3584

(B.4.10)



B.4. Quartic Kernel 260

c. Case2(c)a > c+ 1:

Me(a, ¢) = (E>2/CH(1 ) (1 () du

-1

5(c? — 24¢” + 336¢° 4 672¢* — 768¢2 + 512
_ (c ¢+ Cé;M c c® +512) BA11)

]

Derivation B.4.4. Let K be a Quartic kernel function as in Def B.4.1, then the
partial L2-product of the CDF at two different central points 0 and ¢ € R for the

integral boundary (—o0, a) where a € R is
1. Forc € |0,2]

( 0 ifa<c—1
3cll— 110c9+2640c7+(— 1386a54-6930a* —20790a? —22176a—6930)c5
236544
(594Oa7727720a5+69300a3+55440a277920)04
236544
<710395a8+50820a6 f127050a4773920a3+69300a2+73920a+17325)c3
236544
(9240a9 —51480a7 +138600a°+55440a* —138600a3 — 110880a2+13200)02
(

+
236544 +

—4158a10+27720a8—87780a6—22176a5+138600a4+)c
236544
(73920a3—103950a2—110880a—29568)c_F
236544

75601 —6160a° +25080a” 4739248 —55440a° —36960a*+
236544

3 2 .
69300a 4—1108§gg54259136a-r11360 ifa € lc—1,1]
3011—110c9+264007—44352a054—(110880a2—15840)c4+—%_
236544
(——147840a34—147840a)c3
236544
(110880a4—221760a2+26400)c2+(—44352a5+447840a3—221760a)c
236544
6 4 2 .
73924a%—36960a +121306858404a +118272a—14240 ifa€l,c+1]

11_ 9 7_ 6 5_ 4 2 .
\ 3c 110c”+2640c" —7392¢ +443522§654i97600 +26400c” —250784+236544a lfCL Z c+ 1

'7K(a7 C) =
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2. Forc € [—2,0]

.

0

(1386a6 —6930a4+20790a2+22176a)c5
236544

261

ifa<—1

(75940a7+27720a5769300113755440(12)04
236544 -
(10395a8750820a6+127050a4+73920a3769300a2773920a)c3
236544 -
(—9240a9+51480a7—138600a5—55440a4+138600a3+110880a2)02
236544 o
(4158a10—27720a8+87780a6+22176a5—138600a4—73920a3)c2
236544
_ +103950a24110880a )¢
vk (a,c) = ( )
236544
(=756a'+6160a° —25080a” —7392a%+55440a°+36960a* —69300a>) +
236544
—110880a2 —59136a+6930c° —7920¢*4-17325¢3 +13200c2 —29568¢+11360) .
SRl ifa€[—1,c+1]
—3cM 4+110¢°—2640¢7 —7392¢6 4211204 —84480¢2 —118272¢ +
236544
739248 —36960a*+110880a%+118272a—14240 .
236544 ifaclet+1,1]
—3¢M14+110c°—2640¢7 —14784¢% —44352¢° —52800¢* —84480¢2 +
236544
—354816c4+236544a—236544 .
. 236544 ifa=1
3. Forc>2
0 ifa<c—1
. (a—c+1)4<a2—2a(c+2)+02+4c+5) .
Vi (a,c) = D ifa€lc—1,c+1]
a—c ifa>c+1
4. Forc < =2
0 ifa < -1
Vr(a,c) = & —5et 4 15 4 oy ifa €[—1,1]
’ 32 32 32 2 )
a ifa>1

Proof. Let K be a Quartic kernel as in Def B.4.1. The CDF is defined in B.4.1.
Then, the partial L2-product of CDF as in Eqn (5.4.3) is

v (a,c) = /_ (1—u*)*(1— (u—c))?*l(u e [-1,1)1(u € [e— 1,c+ 1]) du

1. Case 1 ¢ € [0, 2]: Under this condition, we need to consider 4 sub-cases below.
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a. Casel(a)a < c—1:

Vx(a,c) :/a V(v (t —c) dt =0 (B.4.12)

—0o0

b. Case I(b)a € [c—1,1] :

vk (a,c)
_/W Cwﬁ—mﬁ+1w+8><at—@5—mu—cﬁ+1av—@+8>dt
o1 16 16
3!t —110¢° + 26407 (—1386a° + 6930a* — 20790a* — 22176a — 6930)
B 236544 * 236544
(5940a74—27720@5%—69300a34755440a24—7920)04%_
236544
(—10395@8%—50820a6——127050&4——73920@34—69300a2%—73920&—%17325)c3+_
236544
(9240a9-51480a7+-138600a54-55440a4-138600a3-—110880a24-13200)c2%_
236544
(—4158a'% + 2772048 — 87780a8 — 22176a° + 138600a*)c
236544
(7392043 — 10395042 — 110880a — 29568)c
236544 *
756a!! — 6160a° + 25080a” + 7392a° — 55440a° — 36960a” + 693004’
236544 *

110880a? + 59136a + 11360
236544 '

(B.4.13)

Check:Whena = 1,

3t — 110 + 2640¢” — 44352¢® + 95040¢* — 84480c¢? — 118272¢ + 185344

236544
(B.4.14)
c. Case I(c)a € [1,c+ 1]
rYK(avc)
l/l 3t° —10t3 + 15t + 8\ [3(t —¢)® — 10(t — ¢)®> + 15(t — ¢) + 8
_ dt+
1 16 16
/“at@5m@cﬁ+1at@+8dt
i 16
_3&1—1Hk9+26ﬂk7—44%2@%4%04k4—8@@&?——UBZUc+l8&M4+
B 236544
—30ac+30c—(c— 1) +5(c— 1)+ (a—¢)® = 5(a — ¢)* + 1542 + 16a — 31
32 '

(B.4.15)
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Check: Whena =c+ 1

3611 — 11067 + 264067 — 739265 + 4435265 — 89760c* + 26400¢2
Vi(a,¢) = 236544 +

236544c — 14240
236544

(B.4.16)

d. Case1(d)a > c+ 1:

Vi (a,c) =

/1 <3t5 — 103 + 15t + 8) (3(75 —¢)® —10(t —¢)® +15(t —¢) + 8

. 16 16
c+1 _\5 1 23 1 _ a
/ 3(t —¢) 0(t—c¢)? +15(t —c) + 8 gt / 1 dt
1 16 c+1
3¢t — 110 4 2640c7 — 7392¢° + 44352¢° — 89760c* N
B 236544
2 _
26400¢? — 250784 + 236544a BA4IT)
236544

2. Case 2 ¢ € [—2,0]: Under this condition, we consider 4 sub-cases below.
a. Case2(a)a < —1:

v (a,c) = /a v(t)v(t—c)dt =0 (B.4.18)

— 00

b. Case2(b)a € [-1,c+ 1]

FVK(av C)
/a <3t5 — 103 + 15t + 8) (3(t —¢)5—10(t —e)> +15(t — ¢) + 8) "
1 16 16
(1386a8 — 6930a* + 207904 + 22176a) ¢®
B 236544 -
(—5940a” + 27720a° — 69300a® — 55440a?) ¢*
236544 -

(10395a® — 50820a8 + 127050a + 73920a® — 69300a? — 73920a) c?
236544 -

(—9240a° + 51480a” — 138600a® — 55440a* + 138600a® + 110880a?) ¢

236544 -

(4158a'? — 27720a® + 87780a8 + 22176a° — 138600a* — 73920a?) ¢? N
236544

(+103950a” + 110880a) ¢

236544 -
(—756a'! + 6160a” — 25080a” — 73924’ + 55440a° + 36960a* — 69300a°)
236544 *

) dt+

—110880a? — 59136a + 6930c> — 7920c* + 17325¢® 4 132002 — 29568¢ + 11360)

236544
(B.4.19)



B.4. Quartic Kernel 264

Check: Whena =c+ 1

IVK(av C)
_;—3c114—110c9—-2640074-44352c54—95040c4——84480c2%_
B 236544
118272¢ + 185344
B.4.20
236544 ( )
c. Case2(c)a € [c+ 1,1]:
fYK(% C)
/“4 3t° — 1083 + 15t + 8\ [ 3(t —¢)® — 10(t — ¢)®> + 15(t — c) + 8
_ dt+
_1 16 16
¢ 3t° — 1083 + 15¢
/ + +8ﬁ
c+1 16
~ =3 +110¢° — 2640¢” — 7392¢° 4 21120¢* — 84480¢* — 1182720+
B 236544
7392a°® — 36960a* + 110880a® + 118272a — 14240
a a* + a” + a (B.421)
236544
Check: Whena =1
vk (@, c)
(=3 411067 — 2640¢” — 14784¢5 — 44352¢° — 52800¢" — 84480c* — 354816¢)
B 236544
(B.4.22)
d. Case2(d)a > 1:
vk (a, c)
/H4<mﬁ—mﬁ+1w+8>(mt—@ﬂ—m@—cﬁ+1at—@+8>
_ dt+
1 16 16
1 5 _ 3 a
l/ 3t° — 10t +1&+8dt+/‘1ﬁ
c+1 16 1
_—%”+1m§—2M&7—Lﬂ%&—4%m&—5%%&78M%3+
B 236544
—354816¢ + 236544a — 236544 (B.423)
236544

3. Case 3: ¢ > 2: Under this condition, we consider the sub-cases below.
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a. Case3(@)a € [c—1,1]:

a _ )5 -1 _ )3 1 _
i (a,0) :/ 3(t—rc) 0(t—c)’+15(t—c)+38 &
c—1 16
(a—c+ 1)*(a® = 2a(c+ 2) + ¢® + 4c + 5)

= B.4.24
35 ( )

b. Case 3(b) a > 1:

etl t—¢)® —10(t — ¢)3 + 15(t — a
'VK(CL,C):/ (3( ¢)” —10( 1? + 15( CHS) dt+/ 1 dt
c c+1

=a —c (B.4.25)

4. Case 4: ¢ > 2: Under this condition, we consider the sub-cases below.
a. Case4(a)a € [—1,1]:

/“<3t5—10t3—|—15t+8> @t a® 5a* 15a¢> a 5

3% 3 T3 T3
(B.4.26)

1

b. Case 4(b) a > 1:

Lr3tb — 1083 + 15t + 8
’VK(C% C) =

dt 1dt = B.4.27
T ) +/1 a )

1

]

Derivation B.4.5. Let K be a Quartic kernel and let the CDF and partial L2-
product of the CDF as in B.4.1. The partial L2-product of 1 — v (t) for K at two
different central points, 0 and ¢ € R for the integral boundary of [a,c0) where
a€Ris

1. Force|0,2]:

Exla c) = /OO(1 ()1 = vt — ) dt
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3011411069+2640077739206+2112OC448448002+1182720_F
236544

739208 —36960a*+110880a%—354816a—250784
236544

301Lf11009+264OC777392c6+211200448448002+118272c_F
236544

739208 —36960a*+110880a2—118272a—14240
236544
(1386a6—6930a4+20790a2—22176a>c5
236544
(—5940a7+27720a5 —69300a3+55440a2)c4
236544
(10395a8—50820a6+427050a4—73920a3—69300a2+73920a)c3
(
(
(

236544
9240a9451480a7+138600a5455440a44138600a3+410880a2>c2

236544
4158a10727720a&+87780a6422176a54138600a4+73920a3>c
236544

10395002 —110880a )¢
236544
(756011 —6160a° 42508007 —7392a° —55440a°4-36960a*+69300a°)
+

(—110880a2+59136a+6930¢° —7920c* —17325¢3 +13200¢%+29568c+11360)
236544

0

2. Forc € [-2,0]

\

—3c11+110c9—2640c7—7392c6—44352c5—89760c4-+26400c2_F
236544

—250784—236544a

236544
2 4
_3¢11 11106926407 —44352ac5 _, (110880a°—15840)c

236544 236544
(147840a—7147840a3)c3 (110880a4——221760a24%26400)c2

236544 236544
(—44352a5+447840a3—221760a)c

236554
739245 —36960a*+110880a>—118272a—14240

236544
36114 110726407 (1386a°—6930a*+20790a2—~22176a+6930 ) c®

236544 236544
(—5940a7+27720a5—69300a3 +55440a2-7920 ) ¢!

236544
10395a8—50820a6+127050a4—73920a3—69300a2+73920a—17325)c3

236544

236544 +

(—92«m9+5hw0af—nmﬁmm5+5amna$+nw6mm3—1umsmﬁ+&3mm)§

4158a10—27720a8+87780a6—22176a5—138600a4+73920a3+403950a2)c

236544 +

(—110880a+29568)c

236544 +
—756a1L+6160a9—25080a7+7392a6+55440a5—36960a4—69300a3_%

236544
110880a2—59136a+11360

236544

0

266
ifa < —1
ifae[-1,c—1]
ifaelc—1,1]
ifa>1
ifa<c—1
ifa€lc—1,-1]

ifa€[—1,c+1]
ifa>c+1
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3. Forc>2
—a if a<-1
a®+5a*—32a— .
0 ifa > 1
4. Forc < =2
c—a if a<c—1

—a— c—a)((c—a)(c—a c—a)?
_ ) emam)((e=a)((e=a)( 64+1>(2< PEEO) e e fe—1,c 4 1]

0 if a>1

Proof. The derivation can be obtained by reflection of the partial L2-product of
CDF. For {(a,c > 0), it can be found by looking at y(a,c < 0) and change the
signs for a and c. For £(a,c < 0), it can be found by looking at y(a,c > 0) and

change the signs for a and c. [
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B.5 Triweight Kernel
Definition B.5.1. Let the Triweight kernel be defined as

3B(1—u?)? i ul <1
0 otherwise

Derivation B.5.1. Let K be the Triweight kernel as in Def B.5.1. The CDF of the

Triweight kernel is

0 if t<-—1
VK(t) — —5t7+21t5—3?;5t3+35t+16 if te [_17 ”
1 if t>1

Proof. Suppose K is a Triweight kernel as in Def B.5.1. The CDF is the integration
of the kernel function. There are three cases to considered: (1)t < —1 (2) t €
[—1,1] (3) t gel.

i. Case 1 ¢ < —1: Under this case, the integration of K is outside the range of
Definition B.5.1 resulting vk (t) = 0.
ii. Case2t e [—1,1]:

35 (! —5t7 + 21> — 353 + 35t + 16
t) =— 1—u?)?du= B.5.1
lt) =53 [ (=) du - B5.1)
iii. Case3t > 1:

35 [ 2\3

v(t)=— [ (1—-u*)’du=1 (B.5.2)
32/,

[l

Derivation B.5.2. Let K be a Triweight kernel as in Def B.5.1. The partial L2-
product of two Triweight kernels at two different central points 0 and ¢ € R is for
the integration boundary is (—00, 00) is
—175|c|*3+5460]c|' 1 —80080]c|®+960960|c|” —1921920|c|0+
1757184

_ ) 2562560/ —2795520|c[2+1433600 .
A (e) = - 1757184|C‘ if el <2

0 if e >2
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Proof. Suppose K is a Triweight kernel as in Def B.5.1. The partial L2-product of
the Triweight kernel as in Eqn (5.4.2) is

Ak (c) = (2-2) /_00(1 —u?)? (1= u®) 1(u € [-1,1))1(u € [~1,1]) du

o0

35\ [¢ o3 N
== (1—u*)’(1—u?)" du (B.5.3)
32) | .
There are three cases to be considered: (1) |¢| < 2; (2) |¢| > 2. For (2), there is

no intersection between the two kernels resulting 5 (a = oo, ¢) = 0. Hence, the

computation focusses only (1).

i. Case l(a)c € [c—1,1:
1 2 1
Ak (€) :/ (ﬁ) / (1—u?)?(1— u2)3 du
c—1 32 —1
B —175¢" + 5460c — 80080c” + 960960c” — 19219205+

1757184
2562560c* — 2795520¢ + 1433600

1757184

(B.5.4)

ii. Case I(b)c e [-1,c—1]:

A (c) :/Cl+1 (2—2)2/1(1 —u?)* (1 —u2)3 du

B 175¢!3 — 5460c't + 80080c” — 960960c” — 19219205+

1757184
2562560c* — 2795520¢% + 1433600

1757184

(B.5.S)

]

Derivation B.5.3. Let K be a Triweight kernel as in Def B.5.1. The partial L2-
product of two Triweight kernels at two different central points 0 and ¢ € Ris

(—00,a) where a € R, Ak (a,c) is
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i. Casel ce|0,2]:

;

0 ifa<c—1
1225013 1225412c | 35! (81900c2-32760)
13312 2048 1757184
35a10(180180c—120120c3) n 35a9(10010004—42042002+100100)
1757184 1757184
35(18(745045cs+5405400374504500) n 35a7(8580(:6741184004+875160027171600)
1757184 1757184
3545 (180180c —960960¢>+600600c) n 3545 (—36036¢5+648648¢1—9369362+180180)
1757184 1757184
35a4(—270270c5+840840c3—450450c)
_ 1757184
- 35a3(60060c6—480480c4+540540c2—120120) n 35&2(18018005—36036003+180180c)
1757184 1757184
35a(—60060c6+180180c4—180180c2+60060)
1757184
35(—5c13+156c11—2288c9+27456c7—27456c6—45045c5+36608c4)
1757184
35(60060¢® —39936¢2—30030c+20480 .
( 1757184 ) ifa€c—1,1]
—175¢13 4546011 —80080¢°4+960960¢” —19219208 +
1757184
2562 4_9 20c2414. .
\ 562560c 1;2&;?8%: +1433600 ifa>1
ii. Case2ce[—-2,0]:
4
0 ifa < —1
1995018 __ 122501% 35a11(81900c2 32760 )
13312 2048 1757184
35a10(180180c—120120c3) n 35a9(10010004—42042002+100100)
1757184 1757184
35a8(—45045c5+540540c3—450450c) n 35a7(8580c6—411840c4+875160c2—171600)
1757184 1757184
35a6(18018005796096OC3+6006OOC) n 35a5(736036c6+648648c4793693602+180180)
1757184 1757184
_ 35a* (—270270c%+840840c> —450450c) n 35a3 (600600 —480480c 45405402 —120120)
1757184 1757184
35a2 (180180c57360360c3+1801800)
1757184
35a(—60060c6+180180c4—180180c2+60060)
1757184
35(—27456c6—45045c5+36608c4+60060c3—39936c2—30030c+20480) .
1757184 ifa€[-1,c+1]
175¢13 —5460c 1 4+80080c® —960960c” —1921920c8 +
1757184
4 2 .
\ 2562560c izg?ﬁgc +1433600 ifa>c+1

Proof. Suppose K is a Triweight kernel as in Def B.5.1. The partial L2-product of
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the Triweight kernel as in Eqn (5.4.2) is

Ak (a,c) = (%) /_;(1 —u?)? (1 - (u— 0)2)3 L(ue [-1,1)1(u € [-1,1]) du

35\% [
= (§> / (1—(u—0c)*)*(1- u2)3 du (B.5.6)
There are three cases to be considered: (1) ¢ € [0, 2]; (2) ¢ € [-2,0]; (3) |c| > 2. For
(3), this is outside the intersection of the two Triweight kernels resulting i (a, ¢) =
0. Hence, the computation of Ak (a, ¢) for Triweight kernel only focusses on the two
case (1) and (2).

i. Case 1 ¢ € [0,2]: The intersection between the two kernels occurs in [¢c — 1, 1].
Under the condition, we need to consider the cases below:
a. Cases1(a)a < c¢c—1:

Ak (a,c) =0 (B.5.7)
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b. Case 1(b)a € [c —1,1]:

@ 35\°

Ak (a,c) :/ <> (1—u?)3(1 = (u—c)?)3du
c—1 32

12250'%  1225a'2c  35a'! (81900¢* — 32760)

13312 2048 + 1757184
35a'% (180180c — 120120¢?) 35a9(10010004--4204200%—100100)_F

1757184 - 1757184
35a8(——4504505ﬁ—54054003——45045OC)+_

1757184
35a7(8580c64—41184004%—875160024—171600)4_

1757184
35a6(18018005——96096003%—6006000)+_

1757184
35a5(——3603606%—64864804——93693602%—180180)4_

1757184
35a4(——270270654—84084003——4504500)%_

1757184
35a3(6006006——48048004%—54054002——120120)%_

1757184
35a2(18018005——36036063%—1801800)+_

1757184
35a(-—60060c64—180180c4--180180(;24—60060)+

1757184
35 (—5c!3 4+ 156¢M — 2288¢% + 27456¢7 — 27456¢5 — 45045¢° + 36608¢*) +

1757184
35 (60060¢* — 39936¢* — 30030¢ + 20480)

1757184

(B.5.8)

c. Case 1(c) a > 1:

Aela, ¢) = /il (%)2 (1= u2)*(1 = (u — o)) du

—175¢'3 + 5460 — 80080 + 960960¢” — 1921920c°+

1757184
2562560c* — 2795520¢% + 1433600

1757184

(B.5.9)

ii. Case 2 ¢ € [—2,0]:The intersection between the two kernels happens between
[—1, ¢ + 1]. Under this condition, we need to consider the cases below:
a. Case2(a)a < —1

Ax(a,¢) =0 (B.5.10)
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b. Case2(b)a € [-1,c+ 1]

Ak (a,c)
:/i(£>a1ﬁﬁa(u@%%m

1225a'%  1225a'2c | 35a'! (81900¢* — 32760)

T332 2088 1757184
35a'0 (180180c — 120120c?) 35a9(100100044—42042002%7100100)%_

1757184 - 1757184
35a8(4—4504565%—540540034—4504506)%_

1757184
35a7(858006-411840c44-875160c2-171600)+_

1757184
35a6(18018005——960960034—6006000)+_

1757184
35a5(—3603606%—64864804——93693602+—180180)ﬁ_

1757184
3&#(—2ﬂ&ﬂk5+84B4k3—4mmak)+

1757184
35a3(6006006——480480044—54054002——120120)%_

1757184
35a2(180180c5--360360c3+180180c)+

1757184
35a(——6006006%—18018004——180180c2+—60060)%_

1757184
35 (—27456¢5 — 45045¢° + 36608c* + 60060¢® — 39936¢% — 30030c + 20480)

1757184

(B.5.11)
c. Case2(c)a > 1:

_ 175¢" — 5460¢!" 4- 80080¢” — 960960¢” — 19219205+

1757184
2562560c! — 2795520¢% + 1433600

1757184

Ak (a, )

(B.5.12)

]

Proposition B.5.1. Let K be the Triweight kernel as in Def B.5.1. The integral of
two Triweight CDF with two different central points a and c from —oo to a € R is

vk (a, c) (B.5.13)
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1. Force€|0,2]

(

0

5¢15-210c1344368¢11 —80080¢? —6435(a+1)° (5a3—25a2+47a—35) c’

10543104
40040(a—2)(a+1)°(5a®—15a2+18a—4)

10543104
18018(a+1)° (30a% 150" +2850% — 22502+ 17a+35 ) c®
10543104

10920(75a11 —440a°41122a7 —1848a5—660a*+1155a3+792a2 —68) ct

10543104
30030(25(112 —162a194+-459a% —812a°—192a5+735a%+384a3 —210a2 —192a—35)c3

10543104
840(495a1373627a11+11726a9723166a773432a6+27027a5+10296a4715015a3710296a2+872)02
10543104
5148(25a147210a12+791a10 —1820a®—160a7+2695a%+672a® 72450a4f1120a3+1225a2+1120a+256)c
10543104

17160a5—166320a13 474037641 —2082080a° —205920a8 4396396047 +1153152a5 —5045040a° —2882880a*

— 10543104

420420043 +5765760a>+2635776a-+437920
10543104

5¢1%—210c134+4368¢11 —80080c° 4+1647360¢” —5125120¢5 +4612608c° +
(256)(41184)

1397760c* —4300800c2 —5271552c+8536064 +
(256)(41184)
(40a—40)c7 | (140—140a2)cS | (280a®—168a—112)c®
256 + 256 + 256
(7350a47420a2 770)c4+ (280a5 7560a3+280a)c3
256
(714(](16 +420a47420a2+140)02
(

256
40(17—168a5+280a3—280a+128)c—5a8+28a6—7Oa4+140a2+128a—221
256

5¢1%—210c134+4368¢ —80080c® 42059208 —512512¢8 +
10543104

1397760c* —4300800c% —15814656c—2007040+10543104a
k 10543104

ifa <c

+

ifa € |

ifa e

ifa>c
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2. Forc € [—2,0]

(

275

ifa < —1

l:f(le [—1,C+1]

ifa € c+1,1]

ifa>1

0
(a+1)%(6435(5a° —25a2+47a—35 ) 7 —40040(a—2) (50— 15a%+18a—4)
o 10543104
18018(30a,5—150a4+285a3—225a2+17a+35)c5
10543104 -
10920(75a6—375a5+685a4—425(13—228a2+340a—68)c4
10543104
30030(a—1)*(a+1)(25a*~100a3+138a%~52a—35 ) 3
10543104 -
840(a+1)? (495a°—3465a°+10233a* —16191a°+14120a%—6104a+872 ) c2
_ 10543104
5148(a+1)3(5a3—20a2+29a—16)2c—17160a10+85800a9—91080a8—231000(17
10543104
553224a6+42840a57984760a4+415160a3+844320a27446176a7437920)
10543104
—5¢154210c12 —4368¢11 4+80080c° —512512c¢541397760c* +
10543104
—4300800c2 —5271552c+8536064—2882880a +5765760a2+5271552a
10543104
—5c1%4210c!3 -4368¢!1 +80080c° 42059208 —512512¢54-1397760c* +
10543104
—4300800c2 —5271552c—2007040+10543104a
L 10543104
3. Forc>2
—(c—a—1)%((c—a)(5(c—a)(c—a+5)+47)+35) .
B 55 ifa€lc—1,c+1]
a—c ifa>c+1
4. Forc < —2

5a%—28a54+70a*—140a2—128a—35
- e ifa € [—1,1]

a ifa>1

Proof. Let K be a Triweight kernel as in Def B.5.1. The CDF is defined in B.5.1.
The partial L2-product of CDF as in Eqn (5.4.3). There are several things to con-

sider in computing g (a, ¢) for Triweight kernel. For ¢ > 0, the intersection of two

Triweight CDFs occurs between ¢ — 1 until oo, whereas for ¢ < 0 the intersection

occurs between (0, oo]. Therefore, we need to consider these cases: (1) ¢ € [0, 2];

2)[-2,0; ) c>2; (@) c < —2.

i. Case 1:c € [0, 2]: We need to consider the 4 cases below.
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a. Casel(@a<c—1

vk (a,c) =0 (B.5.14)

b. Case 1(b)a € [c —1,1]:

v (a,c)
“ 1 7 5 3
:/ﬁl EoH) (—5t7 4 21t> — 35t% + 35t 4 16) x
(=5(t —¢)" +21(t — ¢)® — 35(t — ¢)® + 35(t — ¢) + 16) dt (B.5.15)
_ 5c!® — 210c13 + 4368¢!! — 80080c” — 6435 (a + 1)° (50 — 2542 + 47a — 35) 7 N
10543104
40040 (a — 2) (a + 1)° (5a® — 15a% + 18a — 4) °
10543104 a
18018 (a + 1)® (30a® — 150a* + 28503 — 22542 + 17a + 35) ° N
10543104
10920 (75a1! — 440a° + 112247 — 1848a® — 660a* + 1155a® + 79242 — 68) c*
10543104 B
30030 (25a'2 — 162a10 + 459a% — 812a% — 192a° + 735a* + 384a® — 210a% — 192a — 35) 3
10543104
840 (495a'® — 3627a!! + 11726a® — 23166a” — 3432a° + 27027a® + 10296a* — 15015a — 1029642 + 872) c?
10543104 ;
5148 (25a!* — 210al? + 791a'® — 1820a® — 160a” + 269545 + 67245 — 2450a* — 1120a® + 122542 + 1120a + 256) c.
10543104
17160a'® — 166320a'® + 740376a'! — 2082080a° — 205920a® + 3963960a” + 115315245 — 5045040a° — 2882880a* N
10543104

4204200a3 + 5765760a? + 26357764 + 437920
10543104

(B.5.16)

Check: Whena =1

5¢15 — 210¢!3 + 4368¢H — 80080¢? + 1647360¢” — 51251205 + 4612608¢° N

10543104
1397760c* — 4300800c? — 5271552¢ + 8536064

10543104

(B.5.17)
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c. Case 1(c)a € [1,c+1]

1

1

v (a,c) :/ 5 (—5t7 + 21t° — 35¢> + 35t + 16) x
o

(=5(t — )" 4+ 21(t — ¢)® — 35(t — ¢)® + 35(t — ¢) + 16) dt+ (B.5.18)

/a ?12 (=5(t = )" +21(t — ¢)° = 35(t — )° +35(t — c) +16) dt (B.5.19)
1

5¢15 — 210¢'3 + 4368¢! — 80080c® + 1647360c¢” — 5125120¢° 4 4612608¢°
(256)(41184) i

1397760c¢* — 4300800¢? — 5271552¢ + 8536064

(256)(41184)
(40a — 40)c” (140 — 140a?)cS  (280a® — 168a — 112) ¢°

256 256 256
(—350a* — 420a — 70) ¢* + (280a® — 560a® + 280a) ¢
256 M

(—140a° 4 420a* — 420a? + 140) ¢ N

256
(4Oa7 — 168a® + 280a> — 280a + 128) ¢ —5a® + 28a’ — 70a* + 140a? + 128a — 221

256

(B.5.20)

d. Case I(d)a>c+1

1
1
Vi (a,c) :/ 5 (—5t" 4 21t° — 35¢* + 35t + 16) x

(=5(t —¢)" +21(t — ¢)® = 35(t — ¢)® + 35(t — ¢) + 16) dt+

/C+1 ! (=5(t — )"+ 21(t — ¢)® = 35(t — ¢)* + 35(t — c) + 16) di+
1

32
a
/ 1dt (B.5.21)
c+1

~ 5¢!5 — 210¢!3 + 4368c!! — 80080c” + 205920¢% — 5125125
= 10543104

1397760c* — 4300800¢% — 15814656¢ — 2007040 + 10543104a (B.5.22)

10543104 o

ii. Case 2: ¢ < 0 Under this case, the intersection between the two CDF occurs in
the region [—1, 00|
a. Case2(a) a < —1:

vk (a,c) =0 (B.5.23)
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b. Case2(b)a € [-1,c+ 1]

vk (a,c)
= /_1 3;2 (—=52" + 212° — 352% + 35z + 16) x
(=5(xz — )" +21(z — ¢)® = 35(z — ) + 35(x — ¢) + 16) dx (B.5.24)
~ (a+1)° (6435 (5a% — 2502 + 47a — 35) " — 40040 (a — 2) (5a® — 1502 + 18a — 4) ¢ N
10543104
18018 (30a® — 150a* + 285a® — 22542 + 17a + 35) ¢°
10543104 a
10920 (75a° — 375a° + 685a* — 425a° — 2284 + 340a — 68) ¢* N
10543104
30030 (a — 1)* (a + 1) (25a* — 100a® + 138a? — 52a — 35) ¢
10543104 B
840 (a + 1)* (4955 — 3465a° + 10233a* — 16191a® + 14120a> — 6104a + 872) ¢ N
10543104
5148 (a + 1)* (5a® — 20a2 + 29a — 16)” ¢ — 17160a'° + 85800a° — 91080a® — 2310004
10543104 *
55322445 + 42840a° — 984760a* + 415160a® + 844320a* — 446176a — 437920)
10543104 (B.3.23)

Check: Whena =c+ 1,

5c'® — 210c!3 + 4368c'! — 80080¢” + 1647360c” + 51251205 + 461260865+

10543104
1397760c* — 4300800¢? + 5271552¢ + 8536064

10543104

(B.5.26)

c. Case2(c)a € [c+1,1]:

c+1

1

vk (a, c) :/ 303 (—5t7 + 21¢° — 35> + 35t + 16) x
-1

(=5(t — )"+ 21(t — ¢)® — 35(t — ¢)* + 35(t — ¢) + 16) dt+

“ 1
/ — (=57 4 217 — 35¢° + 35t + 16) dt

11 32
 —5c" + 210" — 4368¢!! + 80080c” — 512512¢5 + 1397760¢"
N 10543104 +
—4300800¢% — 5271552¢ + 8536064 — 2882880a* + 5765760a? + 5271552a
10543104

(B.5.27)
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Check: When a = 1,

B —5c + 210" — 4368c! + 80080c? + 205920¢® — 51251206+

10543104
1397760c* — 4300800 — 5271552¢ + 8536064

10543104

(B.5.28)

d. Case 2(d)a > 1:

c+1 1
Vi (a, c) :/ — (—5t" + 21t° — 35¢* + 35t + 16) x

iii.

1v.

322
(=5(t — )" +21(t — ¢)® — 35(t — ¢)* + 35(t — ¢) + 16) dt+

1

1

/ = (=5t" + 21¢° — 35¢° + 35t + 16) dt+
c+1

[ v
1

B —5¢! 4 2103 — 4368¢' + 80080 + 205920¢® — 512512¢% + 139776OC4+

10543104
—4300800c* — 5271552¢ — 2007040 + 10543104a

10543104

Case 3: ¢ > 2: We need to consider the cases below.
Case 3(a)a € [c — 1,1]:

vk (a,c) = /a (=5(t — )"+ 21(t — ¢)® — 35(t — ¢)* + 35(t — ¢) + 16) dt

_—(c—a—1)5((c—a)(5(c—a)(c—a+5)+47)+35)
256

(B.5.29)

Case3(b)a >1

i (a,c) = /C+1 (=5(t— )" +21(t — ¢)® = 35(t — ¢)® + 35(t — ¢) + 16) dt+

-1

/ 1 dt
c+1

=a — ¢ (B.5.30)

Case 4: ¢ < —2: Under this condition, we consider the sub-cases below.
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a. Case4(a)a € [—1,1]

v (a,c) _/ (=5t7 +21t° — 35> + 35t + 16) dt

8 6 4 2 _ _
_ 5a 28a° + 70a 256140a 128a — 35 (B.531)

b. Case4(b)a >1

vk (a,c) :/(—5t7+21t5—35t3+35t+16) dt+/ 1dt
1

=a (B.5.32)

O



Derivation B.5.4. Let K be the Triweight kernel as in Def B.5.1. Let the CDF and the partial L2-product of the CDF as in B.5.1 and

B.5.1, respectively. The partial L2-product of 1 — vk at two different central points a and c for the integral boundary of |a, c0) where
ac€Ris

[ouIdY] WYSIOMLI], ¢'q

I8¢
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1. Forc € |0,2]

0 ifa>1
——50154—210013——43680114—8008009—F6435(——a4—1)5(——5a3——25a2——47a——35)c7
10543104
400400—a—2)(—a+4)5(—5a3—15a2—18a—4)c6%_
10543104
18018(—a+1)®(—30a°—150a*—285a° —225a%—17a+35 ) c°
10543104
10920(—75a1L+440a9—1122a7+1848a5—660a4—¢155a3+792a2—68)c4
10543104
30030(25a124162a10+459a84812a6+192a5+735a44384a37210a2+192a735)ﬁ
10543104
840(4495a13+3627a11411726a9+23166a743432a6427027a5+10296a4+15015a3410296a2+872)02
10543104
5148(25a14—210a12+791a10—1820a8+160a7+2695a6—672a5—2450a4+4120a3+4225a2—1120a+256)c
10543104

—17160a15+166320a13—740376a11+2082080a9—205920a8—3963960a7+11,53152a6+-5045040a5—2882880a4_F
10543104

3 2 .
4204200a +576E{ggig1042635776a+437920 zf = [c —1, 1]
—5c15’>-+210c13—4368c11-+80080c9—1647360c7—5125120c6—4612608.:5+
(256)(41184)
139776Oc44430080002+5271552c+8536064_%
(256)(41184)
(—40a—40)c” | (140-140a%)c6 | (—280a%+168a—112)c
256 + 256 256
(—350a*—420a2 70 ) ¢+ ( —280a°+560a° —280a ) 3
256
(f140a6+420a47420a2+140)c2
(

[OUIDY JYSIOMLIL, "¢

256
—40a7+168a5—280a3+280a+128)c—5a8+28a6—70a4+440a2—128a—221

256 ifae[-1,c—1]

—5015+210013—436801L+8008009+205920c8—51251206_F
10543104

£8¢C

1397760 —4300800¢2 415814656 —2007040+10543104a ifa < 1
10543104 —



2. Forc € [-2,0]

.
0 ifac+1
(—a+1)°(—(6435(—5a®—2502~47a—35) )’ —40040(—a—2)(—5a® 1502~ 18a—4)
10543104
18018 ( —30a°— 15001 —2850° —225a%—17a+35 ) 3
10543104
10920(75a%+375a°+685a4+425a% —228a2 —340a—68 ) *
10543104
30030(—a—1)(—a+1)(25a%+100a%+138a2+52a—35 )
10543104
840(7a+1)2(495a6+3465a5+10233a4+16191a3+1412Oa2+6104a+872)02
= 10543104
5148(7a+1)3<75a3720a2729a716) c—17160a'°—85800a° —91080a8+231000a”
10543104
553224(167428405157984760a47415160a3+844320a2+446176a7437920) .
10543104 ifa€[-1,c+1]

5¢15—210¢13 4436811 —80080c° —512512¢54+1397760c* +
10543104

—4300800c2 —5271552¢c+8536064—2882880a* +5765760a2+5271552a .
10543104 ifa€lc—1,-1]
5¢1%—-210c1344368¢11 —80080c° 42059208 —512512¢8 +1397760c* +
10543104

— 43008002 +5271552c—2007040—10543104a : _
\ 10543104 ifa<c—1

[OUIDY JYSIOMLIL, "¢

3. Forc> 2

- (C_a+1)5((c—a)(5(c2gg—5)(C—a)+47)_35) ifa € [C —1,c+ ]-]

c—a ifa<c—1

8T



4. Forc < =2

5a%—28a8+70a*—140a2—128a—35

256

—a

l:faE[—l,l]
ifa<1

[OUIDY JYSIOMLIL, "¢

¢8¢C
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B.6 Triangle Kernel

Definition B.6.1. Let a triangle kernel be defined as

1—|ul if—1<u<l1

0 otherwise

So, we have
l—u f0<u<l
Ku)=<1+u if —1<u<0

0 otherwise

Derivation B.6.1. Let K be a Triangle kernel as defined as in Def B.6.1. The CDF
of the kernel is

14+2a+a? .
LiZera r o g <)

14+2a—a? .
s az0

VK(Q) =

Proof. There are two cases that we need to consider, a € [0, 1] and a € [—1,0].

1. Case 1: a € [—1,0]

vic(a) =/a (1 Ju)L(u € [~1,1)) duz/a<1+u> du

o —1
LA
BER
2. Case2: a € [0,1]
0 a 1 a2
VK(a)—/(1+u)du+/(1—u)du-§+a—§ (B.6.1)
-1 0

]

Derivation B.6.2. Let K be a Triangle kernel in Def B.6.1. Then, the partial L2-

product of the Triangle kernel at two central points 0 and c € R, is

1. Forc> 0
0 if e >2

)\K(C) — —c3+602—120+8 lf ce [1’ 2]

3C3+g02+4 if  celo,1]
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2. Forc <0
0 if el <2

Mg (c) = W# if  cel[-2—1]

7303+6602+4 lf = [_1, 0]

Proof. Suppose we have the Triangular kernel as in Def B.6.1. Then, the L2-norm
of the kernel as in Eqn (5.4.3) for Triangular kernel is

Ak (c) = /(1 — Ju])(1 = u))l(u € [-1,1])L(u € [-1,1]) du. (B.6.2)

There are two cases to consider: (1) ¢ > 0; (2) ¢ < 0.

1. Case 1: ¢ > 0: There are three cases to be considered under this case.
a. Casel(a)c> 2:

Ak (c) =0 (B.6.3)

b. Case 1(b) c € [0,1]:

)\K(c):/_l(1+u)(1+(u—c)) du+/oc(1—u)(1+(u—c)) du+
/ (1= u) (1= (u—0c)) du

3 2
— 4
36 +4 (B.6.4)
6

c. Casel(c)ce[l,2]:

1

Ak (€) :/ (1 —=¢)+ cu—u?) du
c—1
_ 3 2 12
_ ¢’ + 6c c+8 (B.6.5)

6

2. Case 2: ¢ < 0: There are three cases to be considered.
a. Case2(a) c < —2:

)\K(C) =0
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b. Case 2(b): c € [—1,0]:

/\K(c):/C (I+w) (14 (u—2c)) du+/ (14+u)(1—(u—-c)) dut

-1

e+l
/0 (I—u)(1—=(u—2c)) du

=3+ 6%+ 4 (B.6.6)
= G 6.
c. Case 2(b): c € [-2, —1]
c+1 3 2
+6¢” +12¢ + 8
A (€) :/ (14w (1~ (=) du= SIS g g7)
-1
[

Derivation B.6.3. Let K be a Triangle kernel as in Def B.6.1. Then, the partial
L2-product of the Triangle kernel at two central points 0 and ¢ € R, from —oo to
a€Ris

1. Forcell,2]
0 ifa<c—1
)\K(a’ C) - 7c3+6027(73a2+6a+9)c72a3+6a+4 .
5 ifa€lc—1,1]
2. Forc e [0,1]
p
0 ifa<c—1
3+ (—-3a%—6a—3)c+2a%+6a%+6a+2 .
B ( )6 ifa € lc—1,0]
AK(a’ C) o (—2a3+3a’c—6ac+6a+c®—3c+2) .
5 ifa €0,
2a%—3ac—6a’+6act+6a+3c?—6c—3c+2) -
\(a a“c—6a ac6a ¢’ —6¢? —3c+2) lfCLE[C,H
3. Force [-1,0]
p
0 ifa <—1
—(3a?+6a+3)c+2a3+6a+6a+2 .
B (3a*+6a )c6a a*+6a lf(le[—l,C]
Arc(a, ) = —2a343a2+12a—2c3—6c24+3c—4 .
5 ifa € [c,0]
2a®—3a’c—6a?+6act+6a—2c3—6c>—3c+2
\a a“c—ba ac6a C C C lfae[(),c+1]
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4. Forc e [-2,—1]

0 ifa<c—1

(3a2+6a)c—2a3+6a+3c+4

)\K(G,C) =
6 ifac-1,c+1]

Proof. Suppose we have the Triangle kernel as in Def B.6.1. Then, the partial L2-
product of the kernel K as in Eqn (5.4.3) for Triangle kernel is

Ak (a,c) :/a (L= Jul)(1 = |(u—=c))l(u € [-1,1])L(u € [c = L,c + 1]) du
There are 4 cases to consider: (1) ¢ € [0,1]; 2) ¢ € [1,2]; 3) ¢ € [-1,0]; (4)
ce[-2,—1].

1. Casel: c € [1,2]
a. Case 1(a) a < c—1:

Ak (a,c) :/a (1 —|ul)(1 —|u—c|) du=0. (B.6.8)
c—1
b. Case lba € [c — 1,al:

)\K(a,c):/ (1—w)(1+ (u—rc))du
c—1

_3 2 _ (9.2 _ 9.3

_—C¢ +6c (—3a +6g+9)c 2a° 4 6a + 4 (B.6.9)

2. Case 2 ¢ € [0, 1]: The intersection of both kernels is still in the region [c — 1, 1].
However, the direction of the function changes in between that region.
a. Case2(a)a < c—1:

c—1
)\K(a,c)/ (I—|u)(X—=]u—rc|)du=0 (B.6.10)
c—1
b. Case 2(b)a € [c — 1,0]:

Ak (a,c) :/ (I+u)(1+ (u—c))du
c—1
3 _ 242 _ _ 3 2
_ ¢+ (=3a” —6a 3)g+2a + 6a° + 6a + 2 B.6.11)
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c. Case2(c)a € [0, c]:

0 a
Ak (a,c) :/ (I+uw) (14 (u—2c)) du+/ (I—u)(1+ (u—2c))du
c—1 0
—9203 2, _ 3 _
:( 2a° + 3a*c 6ac6—|— 6a + ¢ — 3c+ 2) (B.6.12)

d. Case2(d) a € [c, 1]:

Ak (a, ) :/_1(1 +u)(1+ (u—c)) du+ /06(1 —u)(1+ (u—c)) dut

/a(l —u)(1—=(u—2c))du

_ (2a® — 3a%c — Ga? + Gac Jg bat+ 3¢ —6c —3c+2) g e

3. Case 3: ¢ € [—1,0]: When ¢ € [—1, 0], the intersection region of the two kernels
is —[—1,c+1]
a. Case3(a)a < —1:

Ak (a,c) = /_11(1 +u)(1+ (u—c))du=0 (B.6.14)

b. Case 3(b)a € [—1,¢]:

(@, 0) :/a(1 )14 (= ))du

-1
_ —(3a® + 6a)c + 2a® + 6a* + 6a + 3¢ + 2
N 6

(B.6.15)

c. Case3(c)a € [c,0]:

Ak (a, ) :/C(l—i—u)(l—f— (u—rc)) du+/a(1—|—u)(1 —(u—c¢)) du

~1
_—2a3 + 3a’c + 6a + 6ac — 2¢3 — 6¢2 4+ 3¢ — 4
N 6

(B.6.16)
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d. Case3(d)a € [0,c+ 1]:

)\K(a,c):/c(1+u)(1+(u—c)) du+/ (I+u)(1—=(u—rc))de+

1

/Oa(l —u)(1—=(u—2c))du

:2a3 — 3a%c — 6a® + 6ac —IE—i 6a — 2¢® — 6¢* — 3¢ + 2 (B.6.17)

4. Case 4: ¢ € [—2,—1] Under this condition, the intersection region of the two
kernels is [—1, ¢ + 1]
(a) Case4d(a)a < —1:

e, ©) :/_1(1— ) (1= Ju— ¢]) du = 0 (B.6.18)

1

(b) Case4(b)a € [—1,c+ 1]

Ak (a,c) :/_al(l —(u—¢))(14u)du

_ (3a® + 6a)c — 223 +6a + 3c+ 4 (B.6.19)

]

Derivation B.6.4. Let K be a Triangle kernel as in Def B.6.1. The partial L2-
product of Triangle CDF with different centre points, 0 and ¢ € R for the integral
boundary —oo to a € R,

1. Forc < =2
§

0 ifa < —1

a3 CL2 a, b
# ifa € [-1,0]
—a3 a? a .
# ifa €10,1]

a ifa>1

7K<a7 C) -

\



B.6. Triangle Kernel

2. Force [-2,—1]

'VK(av C) =

p

3. Force [—1,0]

'7K(aac) = 9

(

292

ifa<—1

ifae [—1,C—|—1]
ifa€c+1,0]
ifa€l0,1]

ifa>1

ab

20

+

0
3 2
—1062—25C+4 + a (—10C +2OC+40>
120 120
a?(—30c2—30c+60)  a(—30c2—60c+30) 4. 45
120 + 120 8 20
—c®—10c*—40c® —80c% —80c+20a° 4-60a2 +60a—12
120
—c®—10c¢*—40¢3 —80¢% —80c—20a3+10a%+60a
120
—c®—10c*—40c3 —80c% —80c+120a—32
L 120
0
a(30c2—-60c+30)  a2(30c2-90c+60) 102 15,16
120 + 120 + 0 T
a®(10c2~60c+60)  44(30—15¢) | of
120 + 120 20
3 2
F106420630c | & 2 ° (—10c2+20c+40)
120 120 " 12 120
a(—30c2—60c+30)  a?(—30c2—30c+60) | 4. | .
120 + 120 5 ts—
1
20
4 3 2 3 2 2
1102 15046 c(e*+10c%+20¢2—30) N (10a%—30a2—30a)c N
120 120 120
4 3 2
(—15(1 +60(1 —30a —60(1)0 —|— 6a5_30a4+20a3+60a2+30a
120 120
305+1OC4740027600720(1((12731173)78
120

3c®+10¢t—40c2—60c+120a—28
120

ifa < —1

ifa e |—1,

ifa €c0]

ifa €[0,c+ 1]
ifa€lc+1,1]
ifa>1
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4. Forc € [0,1]
( .
0 ifa<c—1
4106 15046 a(30c2—60c+30)  a?(30c2—-90c+60)
120 120 120
a3(10027600+60) a*(30—15c¢) 5
_ a . _
120 20 T 20 ifa €c—1,0]
S 2 e a(30027606+30) a2 (30c2—90c+60)
120 712 7 8 120 120
a3(—10c2—20c+40) 4 5
a*c a 1 .
120 +% — 2wt ifa €0,c]
5 5 3 4 3 2 a —30c2—600+30)
a.c) = _c —c’4+40c”—30c c c (
FyK( ’ ) 60 T 120 + 13 ¢ T 120
a?(=30c2-30c+60) | a3(10c2+60c+20) . | 44(—15c—30)
120 120 +5+ 120 +
a® 1 .
20 + 20 zfa € [C, 1]
—3¢5+10¢'+20% +20c2 -8 | a(—60¢2~120c+60) a?(60c+60)
120 120 120
(13 .
o ifa € [Let1
—3c%+10c*—40c% —60c+120a—28 .
. 120 ifa>c+1
5. Force[1,2]
( .
0 ifa<c—1
05—1OC4+2003—1OC2—5C+4 + a(3062*606+30)
120 120
a?(30c2—90c4+60)  a®(—10c2-20c+40) 44 45 . 11
120 120 8 T 20 ifa €c—1,1]
_ 5 _10c4420¢3 —20¢2 +20c—60a2 (c—1)+60a(c—1)%2+20a3—-12 .
vic(a, €) = { 1020620074200 60a (e 60a(e- D 20012y (] ]
®=10c'460c* | (~60a—20)c? (60a°—120a-+20)c
120 120 120
—20a34-60a%+60a—12 .
o ifa € lc,c+ 1]
c®—10c*+40¢% —80c2 —40c+120a—32 .
L 120 ifa>c+1
6. Forc> 2
(
0 ifa<c—1
(—cta+1)3 . N
(a.c) = BT ifa€lc—1,c|
- c’+(3—3a)c*+(3a“—6a—3 )c—a’+3a“+3a+
’YK 9 3 (3 3 ) 2 (3 2 6 3) 3 3 2 3 1 .
G if [c,c+1]
a—c ifa>c+1

\

Proof. Let K be a Triangle kernel as in Def B.6.1. The CDF is defined in B.6.1.
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Then, the partial L2-product of Triangle CDF as in Eqn (5.4.3) is

’yK(a,c):/a L2+ 1420+ = g ire oo Lt 1)) di

2 2

—0o0

1. Case 1: ¢ < —2:
a. Case 1(a) a < —1:

vk (a,c) =0 (B.6.20)

b. Case 1(b) a € [-1,0]:

@42 42t 41
’m(a,c)z/ s

. 2
3+ 3a2+3a+1
_ @A saT Foat (B.6.21)
6
Check: Whena =0
1
c. Case 1(c)a € [0,1]:
V42 1ot + 1 @249t +1
WK(a,c)—/ de/ e (B.6.23)
. 2 0 2
—a’+3a2+3a+1

6

d. Case 1(d) a > 1:

0 42 1 2 a

t 2t + 1 —t 2t + 1

7K(M):/ LdH/ LdH/ \di— a
-1 2 0 2 1

(B.6.25)

2. Case 2: ¢ € [—2, —1]: The intersection of the two CDF in this region is [—1, c0].
We consider the sub-cases below.
a. Case2(a) a < —1:

vk (a,¢) =0 (B.6.26)
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b. Case 2(b)a € [—1,c+1]:

C—(t—c)+2(t — 112+ 2t +1
7K<a7c>_/ (t—c)+2(t—c)+1t°+2t+ gt

N 2 2
1
_ —10¢* —25¢+4  a®(—10¢* + 20c + 40)
N 120 120
a* (—30c¢* — 30c + 60) L8 (—30c* — 60c + 30) N
120 120
a*c  a®
=2 B.6.27
8 20 ( )
Check: Whena =c+1
—c® —10c* — 20¢% + 40¢% + 160 128
yiela,¢) =—C—20¢ —20¢ T8+ e (B.6.28)
120
c. Case2(c)a € [c+1,0]:
Al _(t—e)242(t — 12 4+2t+1
WK(a,c):/ (t—c)+2t—c)+1t°+2t+ gt
_1 2 2
“ 242t 1
/ L dt
c+1 2
_ —c® —10¢" — 40¢® — 80¢* — 80c 4 20a* 4 60a* 4 60a — 12
N 120
(B.6.29)
check: Whena =0
—c® —10c* — 40¢® — 80¢? — 80c — 12
vie(a,¢) = ————- ¢ 00 7O (B.6.30)
120
d. Case 2(d) a € [0, 1]:
Al _(t—e)2 420t — 12 +2t+1
’)/K(CL,C):/ ( C) + ( C)+ + + dt
1 2 2
O 242t +1 @249t 41
/ 2+l / —tA2A+1
c+1 2 0 2
_ —c® —10c* — 40¢® — 80¢* — 80c — 20a* 4 10a* 4 60a
N 120
(B.6.31)
check: Whena =1
—d 10t — 4063 — 2 _
c Oc Oc 80c 80c + 88 (B.6.32)

el ) = 120
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e. Case2(e) a > 1:

dt

c+1 2 2
—(t—c)+2t—c)+1t*+2t+1
’YK(G,C):/ ( ) 2< ) 9
-1

0 2 1 2 a
t 2t + 1 —t 2t +1
/ Laﬂ/ Ldt—i—/ Ldt
c+1 2 0 2 1

:—05 — 10¢* — 4063 —1820002 — 80c + 120a — 32 (B.6.33)

3. Case 3: ¢ € [—1,0]: The intersection of the two CDF in this region is [—1, co].
There are multiple sub-cases to be considered.
a. Case3(a)a € [—1,0]:

vk (a,c) =0 (B.6.34)

b. Case 3(b)a € [—1,¢]:

v (a,c) :% /a(l +2 1)1 4+2(t —c) + (t —c)?) dt

-1

_a(30¢® —60c+30)  a®(30¢® —90c+60) ~ 10c¢® — 15¢ + 6+

120 + 120 + 120
a® (10c* — 60c + 60)  a* (30 — 15¢)  d®
— B.6.
120 + 120 + 20 (B.6.35)

Check: Whena = ¢

_c5 +10c% 4+ 15¢+ 6

B.6.
vk (a,c) 190 (B.6.36)
c. Case3(c)a € [c,0]:
1 C
v (a,c) =7 / (142t +t)(1+2(t — ) + (t — ¢)?) dt+
—1
1 a
Z/ (1+2t+t)(1+2(t —c) — (t —c)?) dt
2¢° +10c* + 20¢® + ¢?(—10a® — 30a* — 30a + 10)
= +
120
c(15a* + 20a® — 30a® — 60a — 15)+
120
—6a® + 40a® + 60a” + 30 6
@ e o et (B.6.37)

120
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Check: Whena =0

_205 + 10¢* + 20¢® 4+ 10¢? — 15¢ + 6

vk (a;c) 50 (B.6.38)
d. Case 3(d)a € [0,c+ 1]:
1 (&
v (a,c) :Z/ (142t +t3)(1+2(t —¢) + (t — ¢)?) dt+
-1
1 0
Z/ (142t +t)(1+2(t —c) — (t — ¢)?) dt+
1 a
Z/o (1426 — 2) (1420t —¢) — (t — ) dt
4+ 10c¢* +15¢+6 N c(c* +10¢% + 20¢% — 30)+
B 120 120
(10a® — 30a* — 30a) ¢* + (—15a* + 60a® — 30a? — 60a) c
_|_
120
5 4 2 3 2
6a° — 30a”™ + 20a” + 60a” + 30a (B.6.39)
120
Check: Whena = 0
2¢° 4+ 10c* + 20¢® + 10c? — 15¢ + 6
vicla, ¢) = c® + 10c™ + 20c” + 10c c+ (B.6.40)
120
Check: Whena =c+1
> +10c* — 20¢® — 40c? 92
i, 0) :30 + 10c Oc 0c® + 60c + (B.6A1)
120
e. Case3(e)a € [c+1,1]:
1 C
vicla, 0) :Z/ (14 26+ 2)(1+ 2t — ¢) + (t — 0)?) dt+
1
1 0
Z/ (14 2+ 2)(1 +2(t — ¢) — (t — ¢)?) dt+
1 Cc+1
R S e R P
0
1 a
—/ (1+2t —t%) dt
2 c+1
_ —20a® + 60a” + 60a + 3¢” 4 10¢* — 40¢* — 60c — 8
B 120
5 1 10¢* — 40¢ — 60c — 20a (a® — 3a — 3) — 8
3¢’ + 10c 0c® — 60c — 20a (a* — 3a — 3) (B.6.42)

120
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Check: Whena =c+1

3+ 10c* — 20¢® — 40¢2 + 60c¢ + 92

B.6.4
vk (a,c) 750 (B.6.43)
Check: Whena =1
5 1 4_4 2 2
vicla, ¢) = 3¢’ 4+ 10c 0c® — 60c+9 (B.6.44)
120
f. Case3(f)a > 1
1 C
vk (a, c) :Z/ (1+2t+t)(1+2(t —c) + (t — ¢)?) dt+
-1
1 0
Z/ (1+2t +t)(1+2(t —c) — (t — ¢)?) dt+
1 CC+1
L[asreeaee-o -0 o)
1 01 a
—/ (1+2t—t2)dt+/ 1 dt
2 c+1 1

5 4 2 _
:36 + 10c¢ 406120 60c + 120a — 28 (B.6.45)

Check: Whena =1

3% +10¢* — 40¢? — 60c + 92
- 120

vk (a, c) (B.6.46)

4. Case 4: ¢ € [0,1]: The intersection of the two CDF is in the region [c —
1, 00|.There are multiple considerations that we need to take,
a. Case4d(a)a <c—1:

Yk (a,c) = / ) v (v (t —c) dt =0 (B.6.47)

—0o0

b. Case4(b)a € [c — 1,0]:

@ S(t—c)?+2(t — 1\ /2 +2t+1
wlae) = [ (EEEEIEIEL) (EE2E) o
c—1 2 2

= +10c¢ —15¢+ 6 a(30¢* — 60c + 30)

120 * 120
a? (30¢? — 90c + 60) N a® (10c? — 60c + 60) N
120 120
4 -1 5
@ (30— 150) @ (B.6.48)

120 20
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Check: Whena =c¢c—1

((c—=1)—c+1)36(c—1)?+3(c—1)(c+4) +c*+ 3c+6)

p— p— 0
vic(asc) 120
(B.6.49)
Check: When a = 0,
—c®4+10c? — 15¢+ 6
= B.6.50
7K(a7 C) 120 ( )
c. Case4(c)a € [0,c]:
0 2 2
t— 2(t — 1 t=+2t+1
7K(M):/ (( ) + 2( c)+>< + +)dt+
c—1 2 2
/“ (t—c)+2(t—c)+ 1\ [—t*+2t+1 "
0 2 2
_ —®410¢* —15¢+6 N —c* (10a® — 30a* — 30a)
N 120 120
(=15a* + 20a® 4+ 90a* + 60a) ¢ N —6a® + 40a® 4 60a* + 30a
120 120
(B.6.51)
Check: When a = 0,
( )_—c5+1002—15c+6 (B.6.52)
vk (a,c) = 120 .6.
Check: When a = ¢
—2¢% 4+ 10c* — 20¢% + 10?2 + 1 6
vicla,c) = ¢’ + 10c Oc® + 10¢” + 15¢ + (B.6.53)

120
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d. Case4(d)a € [c,1]:
0 N2 _ 2
VK(a,c):/ ((t c) +2(t c)—i—l) (t +2t+1) i
c—1

/OC((t—C)2+z(t—C)+1) (—t2 +22f+1) dt+

/c“ (—(wt—c)2 +22(t—c)+1> (—F +22t+1> "

_ =3¢ + 10" + 20¢? N *(10a® — 30a* — 30a + 10) N

120 120
c(=15a* 4+ 60a® — 30a? — 60a — 15) N
120
5 4 2 3 2
6a 30a* 4 20a”® 4+ 60a” + 30a + 6 (B.6.54)
120
Check: When a = ¢,
—2¢® + 10c* — 20¢3 4+ 102 + 15 6
yila,¢) =—2¢F e Z e+ 0+ et (B.6.55)
120
Check: Whena =1
—3c® + 10c¢* 4 20¢3 — 40¢% — 60 92
la,c) =S¢ F 10+ S + (B.6.56)

e. Cased(e)a € [1,c+ 1]

VK(G’C):/COI<(t—c>2+2(t_0)+1) (t2+2t+1) i

/OC ((t—0)2+2(t—6)+1> (—tQ +22t+1) Tt
(

/Cl —(t —c)? +22(t—c)+1) (—t2+2t+1) dt+

2
/“—(t—c)2—|—2(t—c)+1dt

2
_ —3¢® +10¢" + 20¢% 4 20¢* — 8 L (—60c? — 120c¢ + 60)+
B 120 120
a? (60c +60) a®
_— B.6.57
120 6 (B.6.57)

Check: Whena =1

B —3c® + 10c¢* 4 20¢® — 40c® — 60c + 92

vk (a,c) 190 (B.6.58)
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Check: Whena =c+1

—3¢® + 10¢* — 40¢2 + 60c + 92
Vicla,c) = 120

(B.6.59)

f. Case4(f)a > c+ 1:

VK(G’C):/C(: ((t—c)2+2(t—c)—l—1) (t2+2t+1) i

2 2

/OC((t—c)erz(t—c)Jrl) (—t2+22t+1) dt+

Y/ —(t—c)?+2(t—c)+1\ [(—t2+2t+1
/CC+§(tc)2+22(tc)+1)( “2 )dH
/1 dt+/c 1 dt

2 +1
—3¢® + 10c* — 40¢2 — 60 120a — 28
_—o¢ + e — d0e —ble+ La (B.6.60)
120
Check: Whena =c+1
—3c® + 10¢* — 40¢2 + 60c + 92
Yk (a,c) = (B.6.61)

120

5. Case 5: ¢ € [1,2]: The intersection of the two CDF is this region is [0, co].
There are multiple sub-cases to be considered.
a. Case 5(a) a < —1:

Yk (a,c) =0 (B.6.62)

b. Case 5(b)a € [c — 1,0]:

v (a,c) :% /i(l +2t —t)(14+2(t —c) + (t — c)?) dt

_®—10c" +20¢® — 10¢? — 5c+ 4 L8 (30¢? — 60c + 30)
B 120 120
a? (30c¢* — 90c + 60) N a® (=10 — 20c +40) a*c a®

4
120 120 8 20
(B.6.63)

Check: Whena =1

5106t 4+ 206 + 40¢2 — 160c + 128
vic(a, ) = ¢ 2 ;LZ = et (B.6.64)
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c. Case5(c)a € [1,¢]:

v (a,c) :i /a(l +2t —tH(14+2(t — ¢) + (t — ¢)?) dt+

-1

l/a(1+2(t—c)+(t—c)2)dt

2J
¢ —10c" +20¢® — 20¢% 4 20¢ — 60a” (¢ — 1) N
B 120
60a (c — 1)* 4 20a® — 12
B.6.65
120 ( )

check: Whena = ¢

_c5 — 10¢* 4+ 4063 — 80¢? + 80c¢ — 12
N 120

i (a, c) (B.6.66)

d. Case 5(d) a € [c,c+1]:

vk (a,c) :i /j(l +2t — ) (1 +2(t —¢) + (t — ¢)?) dt+

1 a
5/1(1+2(1t—c)+(t—c)2) dt
_ ®—10c" +60¢? N (—60a — 20) ¢
N 120 120
(60a® — 120a + 20) ¢ — 20a® + 60a® + 60a — 12
120

(B.6.67)

Check: Whena =c+1

5 — 10t + 40¢% — 80 + 80c + 88
vila,e) = EZ 2 0120 ¢ et (B.6.68)

e. Case 5(e)a > c+ 1:

v(a,c) :}1 /i(l + 2t — 1) (14 2(t — ¢) + (t — ¢)?) dt+

1 a
—/ (1+2(t—c)+(t—c)2)dt—|—/ 1dt
2 —1 c+1

® —10c¢* + 403 — 80¢? — 40¢ + 120a — 32

_ B.6.
30 (B.6.69)

6. Case 6: ¢ > 2:



B.6. Triangle Kernel 303

a. Case6(a)a € [c —1,c]:

a _ 2 _ _ 3
7K(mc):/ (t —c) +Z(t c)+1dt:( c+g+1) (B.6.70)
c—1

Check: When a = ¢
(B.6.71)

b. Case 6(b) a € [c,c+ 1]

'YK((Z,C):/jl <t—c)2+2(t—0)+1dt+/“—(t—c)2+22(t—c)+1 ”

A+ (3—3a)® + (3a® —6a—3)c—a® +3a* 4+ 3a+ 1
N 6

(B.6.72)

c. Case 6(c)a > c+ 1:

C(t—c)+2(t - 1
’YK(CL,C):/ ( C) +2( C)+ dt—i—
c—1

/C“ —(t—c)2+2(t—c)+1dt+/a >

=—c+a+ g (B.6.73)

]

Derivation B.6.5. Let K be a triangle kernel as in Def B.6.1 with the CDF v.
The partial L2-product of the CCDF, (1 — vk ) at two different central points 0 and
ceRasinEgn(5.4.4)is

1. Forc > 2 )

—a ifa < —1

a?+3a%—3a+1 .
Ex(a,c) = 3—362 . ifa €[0,1]
W ifa € [—1,0]

0 ifa>1

\



2. Force[l,

9% (CL, C) =

3. Force [—

SK(G’ C)

\
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304

2]
(
c®—10c*+40c¢® —80c? +80c—120a—32 . .
120 ifa< -1
c®—10c*+40¢3 —80¢2+80c+20a3+10a2—60a .
150 ifa €[—1,0]
5_ 4 3__ 2 _ 3 2_ _ .
c®—10c*+40c°—80c +i§g(c) 20a°+4-60a*—60a—12 lfCL c [07 c— 1]
102 425c44 _ 0°(~10¢2—20c+40) 4
120 120
a2 (—30c%+30c+60 a(—30c?4-60c+30 4 5 .
( >—( )+“—c—“— ifa €lc—1,1]
120 120 8 20 )
0 ifa>1
\
1,0]
—3c54+10c* —40¢24+60c—120a—28 : N
120 ifa < —1
—305+10c4—4OC2+600+20a(a2+3a—3)—8 .
50 ifa€[-1,¢c—1]
4 3 2 3 2 2
— 54102 —15c46  (¢'=10c3+20¢=30)  (10a®—30a®+30a)c
120 120 120
(—15a4—60a3—30a2+60a)c 5 4 3 2
_ 6a°—30a”—20a°4-60a“—30a . .
120 120 ifa € lc—1,0]
3 2
P10 203 430c S, 2 a°(=10c2-20c+40)
120 120 T 12 120
—a(—30c+60c+30)  a?(—30c2+30c+60) 4. . | g5
120 + 120 — % “stat
1 .
35 ifa € [0,
a(30c2+60c+30) | a2(30c2490c+60) 102415046
- 120 120 120 -
a®(10c2460c+60)  4(30+15¢) 5
_a ;
120 120 20 ifa € [c,1]
0 ifa>1
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4. Forc € [—1,0]

(2.5 4 2
3¢°+10c¢*—40c” —60c+120a—28 . -
120 ifa<c—1
3¢5 +10ct —20¢3+20c2—8 + —a(—=60c2+120c+60) | 42(—60c460) i
120 120 120
a3 .
G ifa€lc—1,-1]
2
S P-a03430c |, A, &, 2 a(=30c*+60c+30)
60 T 120 Tttt 120
a2 (—30c2+30c+60) _ a® (10¢2—60c+20) _ey a4(156730)+
120 120 8 120
— —a® 1 .
Ecla,0) = 22+ ifa€l-1,d
& n &2 e a(30c2+60c+30)  a?(30c2+90c+60)
120 7 12 7 8 120 120
—a3(—10c24+20c+40) 4. | g5 1 .
190 +T+ﬁ+ﬁ lfCLE[C,O]
S4102 415046 0(30c24+60c+30)  a?(30c24+90c+60)
120 - 120 + 120
fa3(1002+600+60) a*(30415c¢) 5
_a ;
120 + 120 20 ifa€l0,c+1]
0 ifa>c+1

5. Force [-2,—1]

(

—c®—10c*—40¢3 —80ct 40c—120a—32 : _
120 ifa<c—1
—cP-10ct 608 (60a—20)c | (60a?+120a-+20)c L
120 120 120
20a3+60a2—60a—12 .
o ifaclc—1,c
_ ) —®—10c¢*—20c3 —20c2 —20c—60a2(—c—1)—60a(—c—1)2—20a3—12 .
k(a,c) = o (oo 1)=80a(—e-l) ifa € [c,—1]
2
510642063102 +5c4d a(80c2+60c+30)
120 120
a?(30c2490c+60)  a®(—10c24+20c4+40) 4, | 45 .
120 - 120 —3 txw ifa€[-1,c+1]
\O ifa>c+1
6. Forc> 2:
4
c—a ifa<c—1
7c3+(3+3a)c27(3a2+6a73)c+a3+3a273a+1 )
lf[C -1, C]
€K(a’7 C) = ( 1)3 ‘
c—a+ .
50— ifa € [c,c+1]
0 ifa<c+1
\

Proof. Form Deriv B.6.4, [*(1 — vk(t))(1 — vx(t — ¢)) dt is the reflection of
[°._F(t)F(t — c) dt on the y-axis.
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1. For ¢ > 0, make a substitution of ¢ = —cand a = —a to ¢ < 0 of Deriv
B.6.4.

2. For ¢ < 0, make a substitution of ¢ = —c and ¢ = —a to ¢ > 0 of Deriv
B.6.4.
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B.7 Tricube kernel
Definition B.7.1. Let the Tricube kernel be defined as

01— |ufp)® i ul <1
0 otherwise

The Tricube kernel can be re-written as

8—(1) (1 +u?)

K(u) = ,
B

Derivation B.7.1. Let K (u) be a Tricube kernel as defined in Definition B.7.1. The
CDF of the kernel is

(

0 if a<0
00 81+140a+1051%42+60a7+14a10 if a<

IJK(CL) = /_OO K(u) du = 81+140a—10511164;60‘17_14‘110 lf a>0
kl if a>1

Proof. Let the Tricube kernel be defined as in

K(w) = (1~ [uf 1w € [-1,1])
There are two cases that we need to consider, a € [0,1] and a € [—1, 0].

1. Case1: a € [—1,0]

81 + 140a + 105a* + 60a” + 14a'°

vi(a) =/ D1+ ) du =

.81 162
(B.7.1)
2. Case2:ac[0,1]
0 a

70 70
vi(a) :/ —(14+u*)? du + / —(1—u*)?du (B.7.2)

.81 , 81

1+ 140a — 105a* T — 14a'"

:8 + 140a 05a™ + 60a a (B.7.3)

162
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]

Derivation B.7.2. Let K (u) be a Tricube kernel as defined in Def B.7.1. The partial
L2-product of the Tricube kernel with two different starting points, 0 and c € R,

Ak (c), is

( (@)2 3¢9 316 1113 3110 + 81c%  729c8 + 7477
21 923780 40040 20020 140 70 220 140
7298 9ct 19683c? 6561 :
182 T 5 ~ 13000 T 6916 ifce[0,1]
(@)2 3¢9 3c16 1113 310 81?7298 747
81 923780 40040 20020 140 70 220 140
729¢8 | 9c*  19683c¢2 | 6561 . B
82 T 5 — 13000 T 6916 ifc e [-1,0]

— 70\2 (19 3¢l 57c18 31c10 81 729¢8  969c7
(81) ( 923780 + 40040 20020 + 140 70 + 220 140 +

9963c8  729c° 66ct  9712c3 5832¢2  16c | 2592 .
910 55 + 5 91 + 935 5 + 1729 ifce [172]

70\ 2 cl? 3cl6 57¢13 31c10 81c? 7298 969¢”
(81) (923780 + 40040 + 20020 + 140 + 70 220 + 140 +

99638 7295 66c*
= +5—5C+ < 4

910 5
972¢3 | 5832¢2 16c | 2592 : 9
(o1 T o5 TS +1729> ifce[-2,-1]
or
.
(E)2 Ble[*®  3e['S 111[¢|'3 31|10 + 81[c|®  729|c/® + 747|c|”
21 923780 40040 20020 140 70 220 140
7290c|® | 9|c[* 19683|c|?2 | 6561 ;
) 12 5 13090 ' 6916 if el € 10,1]
(E)2 et 3le* 57|¢|'3 31/ 81|¢|® + 729[c[® 969\c\7+
81 923780 ' 40040 20020 140 70 220 140
9963|c|6  729|c|® 66lc/?  972|c[3 5832|c|> 16| 2592 .
[ 910 5t 75 or - T o3 5 T 1720 zf]c| € [1’2]

Proof. Suppose we have a Tricube kernl as in Def B.7.1. Then, the partial L2-
product of the kernel as in Eqn (5.4.3) for Tricube kernel is

Aelc) = (g) /(1 C PP = [P € =1, 1) 1(u € [=1,1]) du

(B.7.4)
There are two cases to consider: (1) ¢ > 0; (2) ¢ < 0.

1. Case 1: ¢ € [0, 1]: There are three cases to be considered under this case.
(a) Casel(a)c> 2:

Ak (c) =0 (B.7.5)
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(b) Case 1(b) c € [0,1]

0 2 0 c
Ak (c) = (;1) (/ 14431+ (u—¢)?)? du+ / (1—u*)3(1+ (u—¢)*)® dut
c—1 0
1
/ (1—u®)3(1 = (u—1c)®)3 du> (B.7.6)
35
= (42¢" = 969¢' + 71706¢' — 2863718¢10 + 14965236 —
606002058 (42¢ o ¢ o ¢
42854994¢® + 69006366¢” — 51802740c° + 23279256¢" — 19446804c? + 12269070)
(B.7.7)
(c) Case 1(c) c € [1,2]
L7702
Ak () :/ OV (1= P+ (u— ) du
c—1 81
_[T0\? [ 14c! — 96910 + 36822c1% — 2863718¢° + 14965236¢°—
- 81 12932920
42854994¢® + 89514282¢7 — 141594156¢5 + 171419976¢° — 170714544¢*+
12932920
138140640¢% — 806682242 + 41385344¢ — 19388160
12932920

2. Case 2: ¢ < 0: There are three cases to be considered.
(a) Case2(a)c< —2:

)\K(C) =0

(b) Case2(b)c e [-1,0]:

Axc(c) = (7())2 (/ (14 0P (14 (u—)*)® du+ /CO(1 Ut = (u— o)) dust

s1) \Ja
c+1
/ (1_ﬁfo‘*“_@%%m) (B.7.8)
0
35 o 6 » y .
= So60005g (42" —969¢!° — T1706¢' — 2863718¢"7 — 14965236¢" -
42854994¢® — 69006366¢” — 51802740c% + 23279256¢" — 19446804c? + 12269070)
(B.7.9)
(c) Case2(c)ce [—2,—1]:
c+1 70 2
)\K(C) :/ <81> (1 - (u - 0)3)3(1 + u3)3 du (B.7.10)
-1
27
:% (14c™ —196¢"" + 1568¢'% — 8439¢” 4 33474¢% — 98448¢7+

(B.7.11)

213558¢% — 334740¢° + 561120¢" — 453722¢* + 558880c” — 206822¢ + 151470)
(B.7.12)
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]

Derivation B.7.3. Let K (u) be a Tricube kernel as defined in Definition B.7.1. The
partial L2-product of two Tricube kernels at two different central points 0 and c

where the limit of the integral runs from —oo to a € R is

Proof. Suppose we have a Tricube kernl as in Def B.7.1. Then, the partial L2-
product of the kernel as in Eqn (5.4.3) for Tricube kernel is

Aklc) = (;—2) / (1= (1 — P Liu € [~1, 1)1 (u € [1,1]) du

(B.7.13)

There 4 cases we need to consider: (1) ¢ € [0,1]; (2) ¢ € [1,2]; (3) ¢ € [—1,0]; (4)
ce[-2,-1]

1. Case 1(a): ¢ € [0, 1]: The intersection of two kernel functions is in the region
[c — 1, 1]. However, the direction of the function changes in between the region.
(a) Case 1(a)a <c—1:

Ak(a,c) =0 (B.7.14)
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(b) Case 1(b) a € [c — 1,0]:

¢ 70 70
/\K(a,c):/ G (= o) (B7.15)

245¢19 35¢13  35¢% 24568 3605¢7
303046029 34749 | 81 198 | 2187
175¢5  2695¢  105¢2  2450c 175
T T o187 187 6561 494

a0 <49009 N 416505 71050¢ N 9800)
6561 2187 2187 6561

o7 < 700¢° N 20300c5  63700¢ N 3500>
2187 729 2187 2187

4 <_122509 N 37975¢°  28175¢° N 2450>
2187 2187 2187 2187

6561 T 2187 2187 6561

( 4900¢  4900c®  4900¢? 4900)

. (980c8 _ 19600¢° 7840c2> ) (245008 _ 49006 2450¢2>
243 729 729 729 729 729

. (1225c8 _9800¢° 1347502> " (490008 _ 19600¢° 13720002>
486 243 729 8019 729 8019

2187 + 2187 2187 2187 + 2187 6561

3 19600¢” n 24500¢*  4900¢ 6 _9800c7 n 71050¢* _ 12250¢
“ 2187 2187 2187 729 2187 2187

13 ((137200c%  39200¢3 24500 14 ((5950¢?  4900c°
a a

12( 4900¢”  57575¢4 12250c) 9( 19600¢”  93100¢* 490000)
a — _

28431 2187 +28431

729 729
15 (13720¢*  4900c 6 (1225 8575¢3
@ 2187 2187 4374 2187
17 .2 18 19
19600a* ‘¢ _ 2450a*®¢c n 4900a (B.7.16)
12393 6561 124659

Check: Whena = 0

175 2450c  105¢2  2695¢*  175¢5  3605¢7

=191 6561 187 | 2187 17 " o1st
245¢8 3509 35013 245¢19

B.7.17
198 + 81 + 34749 + 303046029 ( )
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(c) Case 1(c): a € [0, (]

70\> [°
Ak (a,c) = (81) / (1+u*)3(1 + (u—¢)*)® dut
c—1
70\* [@
(81> / (1—u*)?(1+ (u—c)*)* du (B.7.18)
0
245¢19 35¢13 35¢%  3605¢7  175¢°  105¢2  2450c 175

~303046020 | 34740 T 81 T 2187 117 187 1656 @ 494

4 (1225¢° | 30625c°  20825¢° 10 (490¢° 40670¢  12250¢°
2187 2187 2187 6561 ' 2187 2187

. 700¢°  700¢5 203003 700
+

o187~ o7 T o1t 2187
<4900c9 4900¢°  4900c3 4900) ) (2450c8 49005 245002>

6561 T 2187 2187 6561 729 729 T 729

o5 (122508 N 2450¢° B 490002) B 24508+
486 81 729 198
11 (_490088 _ 196000¢® n 980062> 5 (_ 980c8 _ 7840¢° n 196062>
8019 8019 8019 243 729 729

729 2187 | 2187 9187 | 2187 2187
5 [ 19600¢7 N 24500c*  4900c\ o ( 19600¢7  4900c* N 9800¢
2187 2187 2187 ) ¢ 2187 243 6561

6 (9800c7 2450+ 2450c> " (490007 45325¢4 2450c>

3 <13720006 _ 313600¢° 4900 ) 1 (4900c5 . 245002> 2695¢%
28431 28431 = 28431 729 729 2187
e < 137204 9800> 857501 19600a'7¢* | 2450a'%c 49004
2187 2187 2187 12393 6561 124659

(B.7.19)

Check: Whena = ¢

175 2450c  105¢? 245¢*  175¢5  5110¢7  245¢%  35¢°

=104 T 6561 187 2187 117 T 2187 108 sl
1085¢10  980¢!3 3516 490c19

6561 + 312741 625482 + 303046029
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(d) Case 1(d): a € [¢, 1]

:<£>2/601(1+u3)3(1—|—(u—c) $ du + (;g) /0(1—u3)3(1+(u—c)3)3 dut

(QY /Ca(l —u®)3(1 = (u—¢)®)3 du (B.7.20)

__245¢  35e!  1295¢7  1085c  35c”  245¢°  3815¢7  175c°
T 101015343 625482 ' 312741 6561 81 198 = 2187 117
245¢*  105¢>  2450¢ 175
- —~ — B.7.21
5187 187 G561 404 ( )
4900¢ | 4900c°  4900c’ 4900 [ 2450c*  4900c>  2450¢°
6561 ' 2187 ' 2187 = 6561 729 729 729

3 (19600cT  24500ct 4900\ | o ( 1225¢" 379755 28175¢ 2450
2187 2187 | 2187

2187 2187 2187 2187
5 980c8 19600c N 7840c2 6 9800c™  T1050¢*  12250c
243 729 729 2187 2187
7 700c° 20300c N 637003 N 3500 s [ 1225¢%  9800c°  13475c2
9187 T 729 2187 2187 486 243 729
e 19600c7 93100c N 49000c | 1o _490¢°  41650c®  71050¢° 9800
2187 2187 6561 6561 2187 2187 6561
(B.7.22)
4900c3 196000 N 1372002 12 (4900¢7  57575¢*  12250c
8019 729 8019 2187 2187 2187
18 1372008 39200c 24500 w { 4900¢°  5950¢2
+ a — —
28431 2187 28431 729 729
13720c* 49000
9187 | 2187
8575¢3 1225 19600a'7¢?  2450a'8¢  4900a!?
16
_ _ - B.7.23
< 2187 4374) 12393 6561 124659 ( )
Check: Whena=1
175 210c? N 980c*  350c8 N 2905¢7  245¢8 N 70¢°  1085¢10 B.7.24)
247 187 729 117 729 99 81 6561 o
1295¢13 35,16 24519
- B.7.2
312741 625482 T 101015343 ( >)

2. Case2ce [1,2]
(a) Case2(a)a < c—1:

Ak (a,c) =0 (B.7.26)
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(b) Case2(b)a € [c —1,a]:
70 ? ¢ 3\3 3\3
Ak (a,c) = a1 (1I=uw)’1+ (u—10)) du (B.7.27)
c—1
7 2451 35¢'0  665¢%  1085¢'0 3509+
303046029 = 625482 312741 6561 81
245¢8 B 2135¢"  1435¢8 7 490¢°  12005¢* B 1400¢3
198 729 351 99 2187 351
3920c>  3430c 11200 -/ 4900c  4900c° 4900¢® 4900
1683 2187 20007 6561 2187 2187 6561
o ((2450c®  4900c¢® 24503 5 [ 19600c”  24500c¢*  4900c¢
a — +a’ | — — +
729 729 729 2187 2187 2187
[ 1225¢° 30625c ~20825¢° o[ 980  7840¢°  1960c3
+a” | — - +
2187 2187 2187 243 729 729
Lo (9800 2450¢*  2450¢ T 700¢”  700c®  20300¢* 700 N
729 2187 2187 2187 27 2187 2187
5 (12250 2450c 4900c* o ( 19600cT  4900c!  9800c
486 729 “ 2187 243 6561
490¢° 4067OC6 122503 4900c¢®  196000¢® 98002
al0 Lol (= _ +
6561 2187 2187 8019 8019 8019
9 4900¢”  45325¢*  2450c L at? 137200¢%  313600¢3 4900 n
_ a3 ([ — _
2187 2187 2187 28431 28431 28431
4 (4900¢°  2450¢2 5 [ 13720¢*  980c\ = 8575a0cP
+a” |- - + -
729 729 2187 2187 2187
17 .2 18 19
19600a" ‘¢ 2450a"°c _ 4900a (B.7.28)
12393 6561 124659
Check:When a = 1
22400 15680c  7840c*  2800c®  21560c!
20007 6561 1683 351 2187
980c®  2876c%  11305¢7 2458 _ 70¢”  1085¢10 _
99 351 2187 99 81 6561
13 16 19
665¢ 3b¢ _ 245¢ (B.7.29)
312741 625482 303046629

3. Case3: c € [—1,0]: When ¢ € [—1, 0], the intersection region of the two kernels

is [-1,c+ 1]
(a) Case 3(a): a < —1:

Ak (a,c) =0

(B.7.30)
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(b) Case 3(b): a € [—1, ]

AKw¢g=(;D /ﬂu+u%%1+w—mfﬁdu (B.7.31)

—1
35¢°  245¢8 49007 175¢5  2695¢  105¢2  2450c 175
81 108 2187 117 2187 187 6561 494
4900¢°  4900c5  4900¢3 4900
< 6561 ' 2187 2187 6561>

2

9187 T 2187 2187

2450¢®  4900¢ N 2450c2 5 (19600c”  24500¢*  4900c
729 729 729

4

12250 37975c B 2817503_+ 2450
2187 2187 2187 2187

980c® 196000 78402 9800¢” 71050¢% 12250c¢
a® +a8 (- +

213 T 29 729 T o187 2187
J7 (700 203000 63700 3500
9187 729 2187 2187
o (1225 %mc+1mm§ o (196007 93100c!  49000c
186 213 729 2187 2187 6561
o490 416500 T1050¢ 9800\
6561 | 2187 2187 6561
(1900 19600 137200
8019 729 8019
L[ 49007 BTBTRA 12250¢) 4 (1372005 392008 24500
- + - a - =+
2187 | 2187 2187 98431 9187 | 28431
L (59502 490065\ . /13720¢*  4900c 1225 8575¢3
- — a'®
729 729 @\ 2187 T 2187 1374 2187
17 .2 18 19
196000!7c?  2450a"% 49000 ®7.32)
12393 6561 ' 124659

Check:When a = ¢,

175 2450 105¢%  2695¢*  175¢8  3605¢T  245¢%  35¢°  35¢!3

=104 T 6561 137 | 2187 117 2187 198 81 34749
245¢19

303046029

(B.7.33)
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(c) Case 3(c)a € [c, 0]
70 2 ¢ 3\3 3\3
)\K(a,c):(sl) /1(1+u B+ (u— ) dut
70 ? ¢ 3\3 3\3
(81) /c (I+u)’(1—(u—c)) du (B.7.34)
_ 490¢1° 35016 98013 1085¢10  35¢%  245¢8
T 303046029 625482 312741 6561 81 198
51107 175¢° | 245¢'  105¢*  2450c | 175
© 2187 117 ' 2187 187 6561 @ 494
4900¢°  4900c5  4900¢3 4900
( 6561 2187 2187 6561) +
2 2450c®  4900c>  2450¢? 5 (19600¢7  24500c*  4900c
( 729 729 729 > ( 2187 2187 2187)
<1225c 30625¢° 20825c3> S (_ 980c® N 7840¢° 196002>
2187 2187 2187 243 729 729
r (9800(: 2450c% 2450c> ; (70009 ~700c®  20300¢* 700 ) N
729 2187 ' 2187 2187 27 2187 2187
e 12250 2450c5 4900¢2 o (19600¢”  4900¢*  9800¢
( 81 729 ) ( 2187 243 6561)
a1°( 90c”  40670c8 12250c3> ot <_4900c8 196000c° 980002>
6561 2187 2187 8019 8019 8019
2 (490007 _ 45325¢! 24500) o (137200c6 3136003 4900 )
2187 2187 2187 28431 28431 | 28431
. (4900c5 2450c2> s <98()c 13720c4>+
729 729 2187 2187
8575a'%¢*  19600a'7¢® | 2450a'c  4900a" (B.7.35)
2187 12393 6561 124659
Check: Whena = 0
175 2450c  105¢2 | 245¢* 175¢°  5110¢7  245¢°  35¢°  1085c°
494 6561 187 2187 117 2187 198 81 6561
980c'3  35¢'6  490c! (B.7.36)
312741 625482 303046029
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(d) Case3(d)a € [0,c+ 1]:

7O>2 /clu PP+ (u— ) du

_|_

>2 /co(l +u*)3(1 = (u—¢)?)? dut

317

81
70 2 ¢ 3\3 3\3
(81> /0 (1= (1 = (u — ¢)*)® du (B.7.37)
_ 49019 35¢16 98013 1085¢10  35¢°
303046029 625482 312741 6561 81
245¢8  5110¢7 1755 245¢%  105¢2 2450¢ 175
T 108 2187 117 2187 187 6561 @ 494
4900¢°  4900c5  4900¢3 4900
a( 6561 2187 2187 6561)
L < 245008 ~4900¢” 2450c2> i (19600c7 24500¢* 4900«:)
729 729 2187 2187 2187
1225¢°  37975¢5  28175¢3 2450
< 2187 2187 2187 2187)
<9800 19600c 7840c2> s ( 9800c”  71050¢* 122500)
243 729 729 2187 2187
7 (700¢ 9 20300c 63700¢3 3500
( 2187 2187 2187)
8< 1225c ~9800c” 13475c2> L (1960067 93100¢* 49000c>
243 729 2187 2187 6561
10 490¢°  41650c5  71050¢® 9800
( 6561 2187 2187 6561)
49008 196000 137200¢2 o [ 4900¢7  57575¢t 12250c
( 8019 729 8019 ) ta <_ 2187 2187 2187 )
13 (1372000 39200¢3 24500) ot (_ 4900¢° 5950c2>
28431 2187 ' 28431 729 729
5 (13720c 49000> ot (_ 8575¢% 1225)
2187 2187 2187 4374
19600a'" ¢ _2450a'8c  4900a* (B.7.38)
12393 6561 124659
Check: Whena =c+1
175 210c® | 980c*  350c°  2005¢7  245¢%  70c°  1085c'% B.7.39)
247 187 729 117 729 99 81 6561
1295¢'3 3516 245¢1° (B.7.40)
312741 625482 101015343
4. Cased: c € [—2,—1]
(a) Case4(a)a < —1
Ak(a,c) =0 (B.7.41)
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(b) Case 4(b): c € [-2,—1]

—1
C35¢° 2456 4900c”  1435¢5 490c°
=51 T8 Tasr T e T oo
3185¢*  1400¢%  3920¢>  5390c 11200
729 351 ' 1683 | 6561 ' 20007
N <4900c9 N 4900¢° N 4900¢3 N 4900)
6561 2187 2187 = 6561
2( 2450¢®  4900¢ 2450c2> 3 (19600c7 24500c* 49000)
+a + +
2187 2187 2187

Ak (a,c) = (;(1)) /a (1+u*)3(1 = (u—c)*)? du (B.7.42)

729 729 729
(12250 ~ 30625¢° 20825c3> s (_ 980c"  7840¢° 196002>
2187 2187 2187 243 729 729
r (98000 2450¢" 2450c> . (70009 7005 20300¢* 700 )
729 2187 ' 2187 2187 27 2187 2187
P ( 1225c L 24500 490002> 0 (1960007 ~4900¢! 98000)
81 729 2187 243 6561

10

490¢”  40670c0  12250¢° i (_4900¢%  196000¢>  9800¢?
6561 2187 2187 8019 8019 8019

(4900c 45325¢ 2450c) 13 (_ 137200 313600¢3 4900 )

2187 2187 2187 28431 + 28431 +28431

1 ((4900¢7 245oc2>

729 729
15 (980 13720c% 8575a16¢3  19600al7c2 N 2450a18¢  4900a'°
2187 2187 2187 12393 6561 124659
(B.7.43)
Check:Whena =c+1
22400 N 15680c N 7840c2 N 2800¢3 N 21560c* N 980c° N 2870c8
720007 6561 1683 351 2187 99 351
11305¢7 24568 70  1085¢'®  665¢13 35016 24519
+ + + + + + (B.7.44)
2187 99 81 6561 312741 ' 625482 ' 303046029
]

Derivation B.7.4. Let K be a Tricube kernel as in Def B.7.1 and let its CDF as
in Deriv B.7.1. The partial L2-product of the Tricube kernel at two different centre
points 0 and ¢ € R for the integral boundary (—o0, a] for a € R are show below.

Proof. Suppose K is a Tricube kernel. The partial L2-product of the Tricube CDF
is

vk (a, c) :/ (14¢'° 4 60t” + 105¢* + 140t + 81) 1(t € [-1,1]) x

oo

(14(t7c)10+6O(tfc)7+105(tfc)4+14O(tfc)+81) 1(t € [c—1,c+ 1)) dt
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1. Casel: ¢ < —2:
a. Casel(a)a < —1:

mk(a,c) =0 (B.7.45)

b. Case I(b)a € [-1,0]:

a 7
— —+ — (B.7.46
1 162 891 108 54 81 * 2 * 44 ( )

@ (14¢19 + 60t7 + 105t* + 140t + 81) 7at!  5a®  7a® 3542
'y2K(a,c):/ dt =

c. Case 1(c) a € [0, 1]:

0 (14£1° 4 607 + 105¢* + 140t + 81) @ (—14t10 4 60t™ — 105¢* + 140t + 81)

Y3k (a,c) = dt + dt

162 162
-1 0

T <7a11 " 5a8 7a® i 35q2 N a) (B.7.47)
T4 891 ' 108 54 81 2 o
d. Case 1(d)a > 1:
0 (14¢10 4 607 4 105¢* + 140t + 81)
Y4k (a,c) :/ dt+
1 162
1 (=140 4+ 60t7 — 105¢* + 140t + 81 a
/ ( + + +81) dt + / 1dt
0 162 1
=a (B.7.48)

2. Case 2: ¢ € [—2,—1]: The intersection of two CDF in this region is [—1, c0].
The cases are below.
a. Case2(a)a < —1:

sk (a,c) =0 (B.7.49)
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b. Case 2(b)a € [-1,c+ 1]

@ (14¢'9 4 60t7 + 105t* + 140t 4 81)
Yok (@, c) :/ L 162 x

(—14 (t—c)'0 +60(t—c)” — 105 (t — ¢)* + 140 (t — ¢) + 81)

162
(4938024a*! 4 29099070a® + 81477396a° 4 20175355242 + 3142699564 + 169832754) 'O
a 277134 x 1622 a
(—45265220a12 — 258658400a° — 678978300a® — 1345023680a® — 1571349780a? + 691911220) c°
277134 x 1622 B
(188024760a'? + 104756652040 + 2618916300a” + 4539454920a* + 47140493400 + 1933968960) c®
277134 x 1622
(—465585120a'* — 2518392240a'! — 5986094400a® — 9334981656a° — 9428098680a* + 864658080a?) c

277134 x 1622

dt

(1346871240a + 4508617464) 7
277134 x 1622 B
(760455696a'5 + 3938074140a'? + 8729721000a° + 12085813740a8 + 13199338152a — 4035071040a3) ¢
277134 x 1622

(47140493404 + 7344605268) 5
277134 x 1622 B
(—855512658a6 — 4136544720a'3 — 8171018856410 — 9288423144a” — 131993381525 + 9078909840a*) N
277134 x 1622

(9428098680a° + 9150090642) c®
277134 x 1622
(670990320a'” + 2909907000a'* + 4639978980a'! + 3171798630a® + 9428098680a” — 11494132650a°) c*
277134 x 1622
(11785123350a* + 1513151640a? + 2357024670a + 9792226080) c*
277134 x 1622
(—362121760a'® — 1319157840a'5 — 129975846042 + 633713080a° — 4714049340a® + 8050742700a5) 3 N
277134 x 1622
(9428098680a° — 4035071040a3 — 471404934042 + 7746819080) c3
277134 x 1622
(128648520a'? + 349188840a'6 — 13430340a'? — 803134332210 + 1571349780a° — 2569032180a7) c?
277134 x 1622
(4714049340a° + 45394549200 + 47140493400 + 4460125032) c2
277134 x 1622
(—27159132a%0 — 41081040a'7 + 91454220a'* + 1460244240 — 314269956a'° + 20161498548) ¢
277134 x 1622
(1346871240a" — 1815781968a° — 2357024670a” + 14987406724 + 23345768164 + 2877253353) c
277134 x 1622 ;
2586584021 — 1219389645 — 44803330a° — 336717810a% — 9991604484 — 2334576816a? — 1818276174a
277134 x 1622 -

200552638

_— B.7.50
277134 x 1622 ¢ )

Check: Whena =c+ 1,

—14¢2 — 1330c!8 — 73644¢!5 — 699553412 + 28887440410 4 17059907152
277134 x 1622 +
55601607608 4 12532704912¢7 + 209358108968 + 26954692380c® + 275560412404
277134 x 1622 +
21719176336¢ + 13078646856¢2 + 8769254832¢ + 5743694528
277134 x 1622

Yex(a=c+1,¢c) =

(B.7.51)
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c. Case2(c)a € [c+1,0]:

@ (14¢'° + 60t7 + 105¢* + 140t + 81)
7K (a;¢) =v6K (@ =c+ 1,0)4‘/ dt

er1 162
28 (a'l — (c+ 1)) +165 (a® — (c+ 1)8) + 462 (a® — (¢ + 1)°) + 1540a?
=vex(a=c+1,¢c)+ ( ( ") ( ( ’) ( ( ’) +
3564
1782a — 1540¢2 — 4862¢ — 3322
(B.7.52)
3564
Check: Whena = 0
0 (14t'0 4+ 60t7 + 105t* + 140t + 81
77K(a:078+1):'76K(a:C+1yc)+/ ( )dt
cr1 162
28¢11 4 308¢10 + 1540¢° + 4785¢® + 10560¢” + 17556¢5 + 22638¢°
=yerx(a=c+1,c)— -
22 x 162
23100¢* + 18480¢3 + 11924¢2 + 8008¢ + 3581
c + ¢+ ¢ + 8008 + (B.7.53)
22 x 162
d. Case 2(d) a € [0,1]:
a (=141 + 60¢7 — 105¢* + 140t + 81
ek (a,¢) =yrK(a =0,c+ 1)+/ ( ) dt
0 162
7all 548 7a® 3542 «a
— =0,c+1)+ (- 4+ = - - B.7.54
(e =0,e41) ( 891 ' 108 54 ' 81 2) B.759)
Check: Whena =1
1 (—14t10 4+ 60t7 — 105t* + 140t + 81
Y8k (a=1,c) :77K(a:070+1)+/ ( ) dt
0 162
37
wr(a=1,¢c) =yrg(a=0,c4+1)+ u (B.7.55)
e. Case2(e)a > 1:
a
Yor (a,c) =y (a =1,¢) +/ 1dt
—1
=vsx(a=1,¢)+ (a+1) (B.7.56)

3. Case 3: ¢ € [—1,0]: The intersection of the two CDF in this region is [—1, co].
The cases are below.
a. Case3(a)a € [—1,0]:

Yor(a,c=)=0 (B.7.57)
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b. Case 3(b)a € [—1,¢]:
(@.0) /a (14¢10 4 60t” + 105t* + 140t 4 81)
,c) = X
Y1k (@ o 162
(14 (t—c)'0 +60(t —c)” + 105 (t — ¢)* + 140 (t — ¢) + 81)
dt (B.7.58)
162
_ 7a®t | 49a%%c¢  245a'%c? | 980a'%c?  T0alTc(49¢® —3)  7a'6c? (49¢3 — 20)
T 19683 13122 13851 19683 37179 2916
al® (—2744c5 + 4760c% + 44) N 5al4c (56¢8 — 350c3 — 11)  35al3c? (14c5 — 308¢% — 1)
26244 4374 18954
35a'2¢® (7c® — 609¢3 +201)  Tallc (14c® — 7140c5 + 13155¢3 +90)  7allc (30c7 — 234c* — 5¢ — 9) N
39366 144342 1458
35a® (80c — 2700c® + 380c® — 486¢2 +55)  5a® (14c10 — 2880c” + 3290c* — 2268¢3 + 385¢ — 162)
78732 17496
5a7c (105c¢7 — 574¢* + 378¢3 — 175¢ + 54) N 7aSc? (175¢7 — 4375¢* + 3402¢3 — 2975¢ + 1215)
1458 13122
7a®c (14c® — 21808 + 2268¢5 — 2695¢3 + 1620¢? — 420)
8748
35a*c (70c” — 108c® 4 140c* — 135¢® 4 70c — 27) N 350 (3 4 1)% (280¢% — 729¢2 + 280)
2916 39366
35a2 (14c19 — 81c® + 60c” — 243c® + 105¢* — 243¢3 + 140c — 162)
13122
1
21° (14¢™ + 60c” + 105¢* + 140c — 81) +
7c21 35¢18 | 38c!% | 1085¢!'2 | 1505c° 6 | 9800c3
Tss567 + 7aos T 143 T g3 — + g +980c” + o= —6561c (B.7.59)
26244 o
Check: a = ¢
¢ (140 +60t" 4 105¢* + 140t + 81)
mkle=co) = [ x
-1 162
(14 (t—c)'0 +60(t—c)” + 105 (t — c)* + 140 (t — ¢) + 81)
dt (B.7.60)

162
232792560c1® — 1978736760c!7 + 1055326272016 — 38577052800¢1°
B 277134 x 1622 +
103825481760c'4 — 209823694080¢!3 + 322534091880c2 — 375785389980c!!
277134 x 1622 +
3277850925440 — 207120251910¢° 4 89428796820c — 22202968320¢7 + 1435554128
277134 x 1622 *
19460562665 — 876006495¢* + 181060880¢3 — 373752225¢2 — 928761002¢ — 365913457
277134 x 1622

(B.7.61)
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c. Case 3(c)a € [c, 0]

14t10 4 60t7 + 105¢* + 140t + 81) N
162
(14 (t— )"0+ 60 (t — )7 +105 (t — c)* + 140 (t — ¢) + 81>
162
(4938024a'! 4 29099070a® + 814773964’ + 20175355242 + 314269956a) c'© N
277134 x 1622
(—45265220a12 — 2586584000 — 678978300a8 — 13450236804 — 1571349780a?) c° N
277134 x 1622
(188024760a'3 + 104756652040 + 2618916300a” + 4539454920a* + 4714049340a3) c® N
277134 x 1622
(—465585120al* — 2560718160a't — 6235515000a® — 1003335933605 — 9428098680a* — 864658080a2a) c”
277134 x 1622

M2k (a,¢) =1k (e =cc) +/ (

dt (B.7.62)

=’Yl1K(a =¢ C)

(1346871240a) c”
277134 x 1622
(760455696415 + 42096654602 + 10281671400a° + 16159683540a’ + 13199338152a5 + 4035071040a3a) c” N
277134 x 1622

(4714049340a2) c”
277134 x 1622
(—855512658a6 — 4888643760a'3 — 1236128493640 — 19764088344a” — 13199338152a° — 9078909840a?) c°
277134 x 1622 B

(9428098680a3) c®
277134 x 1622
(670990320a'" + 4073869800a'* + 10988866980a'! + 18448810380a® + 9428098680a” + 12716293590a°) c* N
277134 x 1622
(11785123350a* + 1513151640a? + 2357024670a) c* N
277134 x 1622
(—362121760a'® — 2405523120a'5 — 7119572460a'2 — 12945852920a°) c*
277134 x 1622
(4714049340a® — 12124612500a° — 9428098680a° — 4035071040a3 — 4714049340a?) 3 N
277134 x 1622
(128648520a9 + 960269310a6 + 32098512604 '3 + 652983130840 + 1571349780a° + 7806864780a") c? N
277134 x 1622
(471404934045 + 4539454920a* + 4714049340a3) c? N
277134 x 1622
(—27159132a20 — 232792560a!7 — 906228180a'* — 2149451304a'l — 31426995640 — 3257017335a%) c2
277134 x 1622

(1346871240a7) c?

277134 x 1622
(302630328045 — 2357024670a* — 1498740672a% — 2334576816a) c

277134 x 1622
2586584a21 + 25865840a'® + 12083042445 + 35824188442 + 571399924t 4 723781630a° + 336717810a%
277134 x 1622 +
1008767760a 4 942809868a° + 9991604480 4 233457681642 + 1818276174a
277134 x 1622 B
14c?1 + 34884c¢15 + 57139992¢M — 43186715¢° 4 942809868¢° — 499580224¢3 4 1818276174¢
277134 x 1622

(B.7.63)
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Check: When a = 0

14¢19 + 60t7 + 105t* + 140¢ + 81)
X
162
(14 (t—c)'0 +60(t—c)” + 105 (t — ¢)* + 140 (t — c) + 81)

162
14¢?1 + 34884¢15 + 57139992¢! ! — 43186715¢° + 942809868¢° N
277134 x 1622

0
M2k (e =0,¢) =y11Kx(a =c,c) + / (
C

dt

=vk(a=cc)—

499580224¢3 + 1818276174c
277134 x 1622

(B.7.64)
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d. Case 3(d)a € [0,c+ 1]

—14t10 4 60t7 — 105¢* + 140t + 81) 8
162
(—14 (t— )0 160 (t — )" —105(t —¢)* + 140 (t — ¢) + 81)
162
(4938024a'! + 29099070a® + 81477396a° + 201753552a% + 314269956a) c'© N
277134 x 1622
(—45265220a!! — 25865840048 — 678978300a° — 1345023680a% — 1571349780a) c° N
277134 x 1622
(188024760a'? 4 1047566520a° + 2618916300a8 + 453945492043 + 4714049340a?) & N
277134 x 1622
(—465585120a'3 — 251839224040 — 5986094400a” — 9334981656a* — 9428098680a3) c” N
277134 x 1622

M3k (a, c) =v12K(a = 0,c¢) +/ (
0

dt

:’YlQK(a =0, C) -

(864658080a + 1346871240) 7
277134 x 1622
(760455696a' + 3938074140a'! + 8729721000a® + 12085813740a° + 13199338152a%) b
277134 x 1622

(403507104002 — 4714049340a) b N
277134 x 1622

(—855512658a5 — 4136544720a'2 — 81710188564 — 9288423144a® — 1319933815245) c® N

277134 x 1622
(90789098404 + 9428098680a?) c® N

277134 x 1622

(670990320a% + 2909907000a'3 + 4639978980a'® + 3171798630a” + 9428098680a°) c*

277134 x 1622
(11494132650a* — 117851233504 + 1513151640a + 2357024670) c* N

277134 x 1622

(—362121760a'” — 1319157840a'4 — 1299758460a'! + 633713080a8 — 4714049340a7) c3 N

277134 x 1622
(80507427004 + 9428098680a* — 4035071040a2 — 4714049340a) c3 N

277134 x 1622
(128648520a'® 4 349188840a'® — 13430340a'? — 803134332a° + 1571349780a8 — 2569032180a5) c2
277134 x 1622
(471404934045 + 453945492043 + 4714049340a2) c? N
277134 x 1622
(—27159132a'° — 41081040a'6 + 91454220a'% + 14602442440 "0 — 314269956a° + 201614985a") c
277134 x 1622
(134687124045 — 1815781968a* — 2357024670a + 1498740672a + 2334576816) c.
277134 x 1622

(2586584420 — 12193896a'* — 44803330a® — 336717810a” — 99916044842 — 2334576816a — 1818276174)

277134 x 1622
(B.7.65)

Check: Whena = ¢ + 1:

14¢21 +1330¢18 + 73644¢15 + 6995534¢12 — 458707158¢10 — 23979019357
277134 x 1622 B
—7494129720¢8 — 170413223767 — 28280416164¢5 — 36104783022¢° — 37348267320
277134 x 1622 +
—29465995416¢% — 17538771888¢2 — 11646508185¢ — 5543141890
277134 x 1622

msx(a=c+1,¢c) =v12x(a =0,c) —

(B.7.66)
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e. Case3(e)a € [c+1,1]:

@ (—14¢0 + 607 — 105t* + 140t + 81)

Yak (@, ¢) =v13x(a=c+1,¢) + /
0 162
28¢11 4 308¢10 4 1540¢? + 4455¢8 4 7920¢” + 83168 + 4158¢°
+
22 x 162
396¢2 — 2772¢ — 28a'! + 16508 — 462a° + 1144a2 + 1782a — 2601
22 x 162

dt

=mnsk(@a=c+1,¢)+

(B.7.67)

Check: Whena =1

N (28ctt + 308¢10 + 15402 + 4455¢8 + 7920c7 + 83165 + 4158¢® + 396¢% — 2772c¢)

:1, = = 17
T4k (a ¢) =vsrx(a=c+1,c) 22 x 162

(B.7.68)
f. Case3(f)a > 1:

a
M5k (a, c) =7k (a = 1,¢) +/ 1dt
1

=vuukx(a=1,¢)+ (a — 1) (B.7.69)

4. Case 4: c € [0, 1]: The intersection of the two CDF is in the region ¢ — 1, 00).
a. Case4(a)a < c—1:

Y6k (a,c) =0 (B.7.70)



B.7. Tricube kernel 327

b. Case 4(b)a € [c — 1,0

@ (14¢19 + 60t7 + 105¢* + 140t + 81)
Y17k (@5 C) :/ . x
c—1 62

(14 (t— )"0 + 60 (t — )7 + 105 (t — c)* + 140 (t — ¢) +81>

dt (B.7.71)
162
_ 14¢%1 — 1293292019 + 232793225¢!8 — 1978736760c! 7 + 10486750560¢1¢ — 3857699853615
T 277134 B
103825481760c'* — 209969189430c'? + 322534532775c'? — 375728249988¢!!
277134 a
(—4938024a'! — 29099070a® — 814773964 — 271591320a2 — 3142699564 + 327526434144) 10
277134 ;
(45265220a'2 + 2586584000 + 678978300a® + 1810608800a> + 1571349780a> — 207316093270) c°
277134 a
(—188024760a'3 — 104756652040 — 2618916300a” — 6110804700at — 471404934043 + 89597155725) 3
277134 B
(465585120a'* + 2539555200a'! + 6110804700a® + 1303638336045 + 9428098680a* — 22202968320) c”
277134 B
(—760455696a5 — 4073869800a'? — 95056962000 — 19011392400a® — 13199338152a® + 143555412) c°
277134 -
(85551265846 + 4512594240a'3 4 10266151896a'® 4 1955457504007 + 1319933815248 + 2888866134)
277134 -
(—670990320a'7 — 3491888400a'4 — 7814422980a'! — 1447678732508 — 9428098680a" — 611080470a°) c*
277134 B
(203693490042 — 2357024670a — 876006495) c*
277134 a
(362121760a'® + 1862340480a'® + 4209665460a'2 + 8018410400a° 4 4714049340a® + 2036934900a) c3
277134 *
(543182640043 + 471404934002 — 724243520) c3
277134 -
(—128648520a'® — 65472907546 — 1598210460a'3 — 349188840020 — 1571349780a° — 2618916300a") c2
277134 B
(6110804700a* — 4714049340a3 — 373752225) 2
277134 -
(27159132020 + 1293292048 + 136936800a'” + 66512160a'5 + 407386980a'* + 145495350a'2)
277134
(1178071440a*! 4 31426995641 + 258658400a” + 1987050780a® + 4073869800a° + 2357024670a*) ¢
277134
(271591320042 + 3142699560a + 889515172) ¢
277134 *
2586584a%! — 12932920a'® — 54318264a'® — 236025790a'% — 57139992a'! — 598147550a° — 168358905a°
277134 B
1357956600a® — 942809868a° — 1810608800a3 — 3142699560a% — 1818276174a — 365913457
277134
(B.7.72)

Check: Whena = 0

14c?t 4 34884c!'® 4 57139992¢ — 99994986¢10 + 166511345¢° — 3626191808
277134(1622) B

2987504528 4 471404934¢® — 340319070c* — 452652200 — 283097430c>

277134(1622) B

mri(a=0,¢) =—

909138087¢ — 364296842
277134(1622)

(B.7.73)
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c. Case4(c)a € [0, cl:

Mgk (a,¢) =v17K (@ = 0,c)+

@ (=141 + 60t7 — 10564 + 140¢ + 81) (14(¢—)™* +60 (¢ — )7 105 (¢ — c)* + 140 (¢ — ¢) + 81)
}g 162 162 at
(B.7.74)
3 (2 3 2
VNKMOJY+<%Q(C(%% ;ﬁ; 280) (¢ = 1)°
a (14¢1° — 60c” 4 105¢* — 140c 4+ 81)  35a° (80c® + 2700c5 + 380c® — 486¢% — 55)
324 ; 78732 B
Tatlc (14¢% + 7140c® + 13155¢% — 90)
144342
35a? (3 (14c7 — 815 — 60c? + 243¢3 4 105¢ — 243) — 140c + 162)
13122 N
7a5c(c2(14c7+2180c4--2268c3--2695c+1620)4—420)+
8748
5a8(2c3(7074-144004+1645c--1134)--385c+162)_Jr 7a'%c (30c” + 234c* —5c—9)
17496 1458
a'® (686c°® + 1190¢3 — 11) Jr_5a14c(56c6+350c3,11) __5a7c(7c(c2(15c4+82cl54)125)+54)+
6561 4374 1458
3&#@71n@¥+c+n(m&71%@47m+204%m%QUq@(%c@?+%)7w®449®+1m®+
2916 13122
35al2¢® (7c® (c® +87) +201)  35a'3c? (14c® (3 +22) —1)  7al®c? (49¢3 +20)  70a'7c (49¢3 + 3)
39366 a 18954 2916 - 37179
980a'8c3 B 2450192 4 49a%%¢c B 7a?! ) B.775)
19683 13851 13122 19683

Check:When a = ¢

¢ (—14¢10 4 60t” — 105¢* + 140t + 81)
msk(a=c¢c) =117K(a=0,c) + / 162 X
0

@4@-@”+ﬁoa—@7w5w—@*+moa—d+sg

162
1%ﬂ—1%&%%”—6%&8+&%mmmw+5um&5—mm%%mm—gmw%&{%

dt

= =0,¢) —
vK3(a=0.c) 277134 x 1622

258658400¢10 4 205541050¢° — 168358905¢% — 271591320¢8 + 905304400¢3 — 18182761 74c
277134 x 1622

(B.7.76)
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d. Case4(d)a € [c, 1]:

Tok (a,¢) =v18K (@ = ¢, c)+

/a (—14t10 + 60t7 — 105t4 + 140t + 81) <—14 (t — C)lo + 60 (t — 6)7 — 105 (t — C)4 + 140 (t — C) + 81)
c

dt
162 162
(B.7.77)
_ 7a®' 49a%%c¢ 24509 70a'® (14c® + 1)
719683 13122 | 13851 19683
70a'7c (49¢® +17)  7a'%c? (49¢% +55)  a'® (686c° +2170c® +109)  5a'tc (56¢° + 490c +109) N
37179 2916 6561 4374
35a'3¢? (14c® + 364c® +239)  35a'? (7c 4 651c® +1101c” + 59) N
18954 39366
7a'! (14c'0 + 72607 + 31155¢* + 6490c — 162)  7al®c (30¢” + 354c* + 205¢ — 9) N
144342 1458
35a° (80c” + 3180c + 4580c® — 486¢% + 265)  5a® (14c'0 + 3000¢” + 10640c* — 2268c% + 1855¢ — 162) N
78732 17496
5a7c (105¢7 +994¢* — 378¢3 + 385¢c — 54)  7ab (175¢% + 5425¢% — 3402¢5 + 4025¢% — 1215¢2 + 350) N
1458 13122
7a5 (14ct0 + 2300¢” — 22688 4 2905¢4 — 1620c® + 700c — 162)
8748 ;
35atc (70¢” — 108¢5 + 140c* — 135¢3 4 70c — 27) N 35a% (3 +1)? (280¢3 — 729¢2 + 280) B
2916 39366
35a2 (14c'0 — 81c” + 60c” — 243¢5 + 105¢* — 243¢3 + 140c — 162)
13122 B
37140, (14c® 4 60c” + 105¢* + 140c — 81) +
26244
Check: When a = 1:
14c?! + 34884c!® — 57139992¢! ! + 528544926¢'0 — 2976188215¢°
Yok (a=1,¢) =msx(a=c,c) — 277134 % 1622 -
9065479500c5 — 16162454880c” + 17269328076c5 — 8956693746¢° — 340319070c*
277134 x 1622 -
—452652200c% + 2859602130c? + 4545690435¢ — 5323231862 8779
277134 x 1622 o
e. Cased(e)a € [1,c+ 1]
a (714 (t—c)'0 +60(t—c)” — 105 (t — ¢)* + 140 (t — c) + 81)
Y20K (a,¢) =v19K (0 = 1,¢) +/1 & dt (B.7.80)
(308a — 308) !0 + (1540 — 1540a2) ¢ + (4620a® — 4620) ® + (—9240a* + 1320a + 7920) ¢’
=mox(a=1.e) = 3564 -
(12936a° — 4620a2 — 8316) c® 4+ (—12936a5 + 9240a® + 3696) c® + (9240a” — 11550a* + 220a + 2090) c*
3564 -
(—4620a® + 9240a® — 440a% — 4180) 3 + (1540a° — 4620a° + 440a + 2640) c?
3564 B
(—308a10 + 1320a” — 220a* + 3080a — 3872) ¢ + 28a'! — 165a® + 44a’ — 1540a% — 1782a + 3415
3564

(B.7.81)
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Check: Whena =c+1

7clt " 7¢0 3560 " 4
891 81 81 4 9 3 6

Yook (a =c+1,¢) =y19x(a =1,¢) —

f. Cased(f)a > c+ 1:

a

Y21k (a,¢) =y20K (@ = c+1,¢) +/
c+1

=yor(a=c+1l,c)+a—c—1

330

(B.7.82)

(B.7.83)

5. Case 5: ¢ € [1,2]]: The intersection of the two CDF is the region [0, cc]. The

cases are below.
a. Case 5(@a)a < c—1:

V22K (a’7 C) =

(B.7.84)
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b. Case 5(b)a € [c — 1,0}

t

@ 81 4 140t — 105t* + 607 — 14t10 81 + 140(t — ¢) + 105(¢t — ¢)* + 60(t — )7 + 14(t — ¢)*0
723k (4:€) :/_1 162 162 ¢
(4938024a'! 4 29099070a® + 814773964’ + 271591320a% + 314269956a) c'© N
277134 x 1622
(—45265220a'2 — 258658400a° — 678978300a’® — 1810608800a® — 1571349780a?) c® N
277134 x 1622
(188024760a'3 + 10475665204 ' 4 2618916300a” + 6110804700a* + 4714049340a3) 8 N
277134 x 1622
(—465585120a' — 2560718160a'! — 6235515000a® — 13385572200a° — 9428098680a*) c”
277134 x 1622

(1163962800a2 — 1346871240a) ¢’ N
277134 x 1622
(760455696a'5 + 4209665460a'2 + 10281671400a° + 21048327300a® + 1319933815245 + 5431826400a3) c° N

277134 x 1622
(4714049340a2) c©
277134 x 1622
(—855512658a16 — 4888643760a'3 — 1236128493600 — 24792407640a” — 13199338152a°) c®
277134 x 1622
(12221609400a* — 9428098680a°) c5 N
277134 x 1622
(670990320a'7 + 4073869800a'* + 10988866980a'! + 22115293200a® + 942809868047 ) c* N
277134 x 1622
(16906559670a° + 11785123350a + 2036934900a> + 2357024670a) c* N
277134 x 1622
(—362121760a'® — 2405523120015 — 7119572460a'2 — 14808193400a° — 4714049340a8) 3
277134 x 1622
(15616500900a8 — 9428098680a° — 5431826400a3 — 4714049340a?2) 3 N
277134 x 1622
(128648520a'? + 960269310a'® + 3209851260a'3 + 7158371220a'° + 1571349780a°) c? N
277134 x 1622
(9602693100a + 4714049340a% + 6110804700a* + 4714049340a3) c2 N
277134 x 1622
(—27159132a20 — 232792560a'7 — 906228180a'* — 2289126840a'! — 314269956410 — 3855626775a%) ¢
277134 x 1622
(1346871240a” — 4073869800a° — 2357024670a* — 2715913200a% — 3142699560a) ¢
277134 x 1622
2586584a2! 4 25865840a'® + 120830424a'® + 381521140a'? 4 57139992a'! + 856805950a°
277134 x 1622 *
3367178104 + 1357956600a° 4 942809868a° 4 18106088004 + 314269956042 + 1818276174a
277134 x 1622 ;
14c¢?1 + 34884¢1% + 57139992¢1 ! — 9999498610 + 166511345¢% — 362619180c8 + 298750452c°
277134 x 1622 N
471404934¢> — 340319070c* — 452652200c® — 283097430c? + 909138087¢ — 364296842
277134 x 1622

(B.7.85)
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Check: Whena = 0

14c21 4 2716688415 — 194434695¢12 + 5713999211 — 9999498610 + 792141350¢°
277134 x 1622 B
—362619180c8 — 10592061488 4 471404934 4 409643325¢* + 1584282700c3
277134 x 1622 B
—3063177810c2 4 1801950462¢ — 364296842
277134 x 1622

723K (a=0,¢) = —

(B.7.86)

c. Case 5(c)a € [0,1]:

@ 81 + 140(¢) + 105(¢)* 4 60(¢)7 + 14(¢)'°
Y24k (a,¢) =723k (a = 0,¢) +/ () ® ®) 7
1 162
81 + 140(t — ¢) — 105(t — c)* +60(t — )7 — 14(t — ¢)1©
162
(4938024a!! 4 29099070a® + 81477396a° + 27159132002 + 314269956a) c'©
=723k (a=1,¢) — — 2 B
277134 x 162
(—45265220a12 — 258658400a° — 678978300a% — 1810608800a® — 1571349780a2) c°
277134 x 1622
(188024760a'3 + 104756652040 + 2618916300a” + 6110804700a* + 4714049340a?) 8
277134 x 1622
(—465585120a'* — 2518392240a'! — 5986094400a® — 126871945204 — 9428098680a* + 1163962800a?) ¢’ N

277134 x 1622

dt

(1346871240a) c”
277134 x 1622
(760455696a'5 + 3938074140a'2 + 8729721000a° + 16974457500a5 + 13199338152a°) b
277134 x 1622
(5431826400a® — 4714049340a2) c°
277134 x 1622 a
(—855512658a'6 — 4136544720a'3 — 817101885640 — 14316742440a” — 13199338152a%) N
277134 x 1622

(12221609400a* + 9428098680a°) c5
277134 x 1622
(670990320a'” + 2909907000a'* + 4639978980a'! + 6838281450a® + 9428098680a) c*
277134 x 1622

(15684398730a° — 11785123350a* + 203693490042 4 2357024670a) c*

277134 x 1622
(—362121760a'® — 1319157840a'5 — 1299758460a'? — 1228627400a’ — 4714049340a%) ¢3 N

277134 x 1622

(11542631100a8 + 9428098680a° — 5431826400a — 4714049340a?) c3

277134 x 1622
(128648520a'® + 349188840a'6 — 13430340a'3 — 174594420410 + 1571349780a°) 2

277134 x 1622

(4364860500a" — 4714049340a8 + 6110804700a* + 4714049340a3) c2

277134 x 1622
(—27159132a%° — 41081040a'” 4 91454220a'* + 31744440a' ! — 3142699564 'C + 800224425a%) ¢

277134 x 1622
(1346871240a7 — 2444321880a° — 2357024670a* + 2715913200a2 + 3142699560a) ¢
277134 x 1622
2586584021 — 1219389645 — 177827650a° — 336717810a% — 1810608800a° — 3142699560a2 — 1818276174a
277134 x 1622

(B.7.87)
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Check: Whena =1

701375766¢10 — 4364860500¢° + 14679361620c® — 28574530920¢7 + 334561707485

277134 x 1622 -
—19029448746¢ + 1411693920c* + 1901139240¢3 + 3607106580¢? 4 2945050407¢ — 7295737306
277134 x 1622

25K (@ =1,¢) =y23K(a=1,c) —

(B.7.88)
Case 5(d) a € [1,¢]:
@ 81+ 140(t — ¢) — 105(t — ¢)* + 60(t — ¢)” — 14(t — ¢)'0
Y25k (a,¢) =25k (@ =1,¢) +
1 162
( )+ 28c!1 — 308acl® + 1540a%c? + (165 — 4620a?) ¢ + (9240a* — 1320a) 7 N
= a=ccC
12K 22 x 162
(4620a% — 12936a°) 0 + (12936a5 — 9240a3) 5 + (—9240a7 4 11550a* — 2310a) c*
+
22 x 162
(4620a® — 9240a® + 4620a?) ¢ + (—1540a° + 4620a® — 4620a3) c?
22 x 162
(308410 — 1320a” + 2310a* — 3080a) ¢ — 28all + 165a® — 462a° + 154002 + 1782a  28c'! + 165¢8
22 22 x 162
(B.7.89)
Check: whena = ¢
c (28¢10 +165¢7 + 462¢ + 1540c — 1782
Yesx (a = ¢,¢) =y25K (@ =1,¢) — ( 5 ) (B.7.90)
Case 5(e) a € [c,c+ 1]
@ 81 + 140(t — ) + 105(t — ¢)* + 60(t — ¢)7 + 14(t — ¢)'©
Y26k (@) ¢) =y25K (@ = ¢, ¢) +
c 162
28c!! — 308act® + 1540a2c® + (—4620a% — 165) ® + (9240a* + 1320a) 7
=7y25K (@ = c,c) — -
22 x 162
(—12936a® — 4620a?) ® + (12936a® + 9240a3 + 462) c°
22 x 162
(—9240a" — 11550a* — 2310a) ¢* + (4620a® 4 9240a° + 4620a?) ¢3
22 x 162
(—1540a° — 4620a® — 4620a3 — 1540) c? + (308a'® + 1320a” + 2310a* + 3080a + 1782) ¢
22 x 162
—28al!l — 165a% — 462a° — 15404 — 1782a
(B.7.91)
22 x 162
Check: Whena =c+1
3977
Y2sr (@ =c+1,¢) =ya5K (e = ¢, ¢) + (B.7.92)

22 x 162
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f. Case 5S(f)a >c+1

a
Yotk (a,¢) =v26K (@ = c+1,¢) +/ 1dt
c+1

=yer(a=c+1l,¢)+(a—c—1) (B.7.93)
6. Case 6: ¢ > 2:
a. Case6(a)a < c—1:
Y28k (a,¢) =0 (B.7.94)
b. Case 6(b)a € [c — 1,1]:
a 81+ 140(t — 105(t — ¢)* 4+ 60(t — ¢)7 + 14(t — ¢)'°
’Y29K(a,c):/ +140(¢ — ¢) +105( ?62+ (t—o)f +14(t —c)
c—1
_L 2 E _ 11 g _ 8 _ 5 2 @)
=16 (70a + 11(a )+ 5 (a—c)®+21(a—c) 140ac + 81a + 70c” — 81c + 2
(B.7.95)

c. Case 6(c)a € [c,c+ 1]:

¢ 81+ 140(t — ¢) + 105(t — c)* +60(t — )7 + 14(t — ¢)1°
Y30k (a,¢) = +
c—1 162
/a 81 4 140(t — ¢) — 105(t — ¢)* + 60(t — ¢)” — 14(t — )1
c 162
T + L (7002 - i14(a —o)tt 4 E(a —¢)® — 21(a — ¢)® — 140ac + 81a + 70¢? — 81c
44 162 11 2
(B.7.96)
d. Case 6(d)a > c+ 1:
€ 81+ 140(t — ¢) + 105(t — ¢)* + 60(t — ¢)” + 14(t — ¢)'0
Y31k (a,¢) =
c—1 162
/C+1 81 + 140(t — ¢) — 105(t — ¢)* + 60(t — ¢)” — 14(¢t — ¢)1°
+a—c—1
c 162
=a—c (B.7.97)
]

Derivation B.7.5. Let K be a Tricube kernel as in Def B.7.1 with the CDF v/ The
L2-nor of the CCDE, (1 — vi) at two central points 0 and ¢ € R as in Eqn (5.4.25)

is taking the negatives of a and c in Deriv B.7.4.
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B.8 Logistic kernel
Definition B.8.1. Let the Logistic kernel be defined as

B 1
24 el 4 e

K (u) (B.8.1)

Derivation B.8.1. Let K be a Logistic kernel as in Definition B.8.1. The cdf for the

Logistic kernel is

vi(t) = (B.8.2)

Proof. Let K be a Logistic kernel as in Definition B.8.1. The cdf is the integration

of the kernel function,

t
1
viclt) = / Tt

1 (! sech®(%)
=— ——==dt B.8.3
5 /_ 5 (B.8.3)
Applying substitution by parts,
d 1
v:§—>£:§—>du:2v (B.8.4)
Then,
1 [ 1 t
vilt) =3 / sechi(u)do = 3 [ranh(v)] 2, = .y (B.8.5)

]

Derivation B.8.2. Let K be a Logistic kernel as in Definition B.8.1. The partial
L2-product of Logistic kernels at two different central points 0 and ¢ € R when the
integration boundary is (—o00, 00) is

(c—2)e* + (c+2)e°

Me(0) = e (B.8.6)

Proof. Suppose we have a Logistic kernel K as in Definition B.8.1. The partial
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L2-product of the Logistic kernel as in Eqn (B.3.3) is

a —= 1
)\ 5 —=
U—C U-T+C e 2u—c c e m e c uc
(B.g.;)
e +e2C*U4 c U 8.

Since e€ is a constant, we take it out simplifying the integration to

1
—e® d
‘ / (e¥ + e2e7v + 2e°)(e* + e7¥ + 2) "

and substitute the following, w = ¢“, and Z—”“J =e% = wand du = % dw and we

have e?* = e%.e* = w?. The inside of the integral is

1 1
- / _ = dw (B.8.9)
(w+%+2ec)(w+ +2)w

w
_ / o T (B.8.10)

Applying partial fraction to above, and letting o = e°

w _ A B D E

(w+e)P)w+1)2 w+a (w+04)2+1—|—w+(1+w)2
w=A(w+ a)(1+w)*+ B(1+w)* + D(w + a)*(1 + w)+

E(w + a)?

B —(a+1)
A=)
P ap

B (1+ «)
P
o —1

(= 1)
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Then, we can obtain

| e

e vere T e
| &

:<1—_e(ce;2<+e§1>— 7] e e | e
ey | Wy

1 1
CaE / R ™

By integrating each terms above w.r.t. w and plug-in back w = " we obtain the

result of integration is

(—e—1)e‘In(e* +e°) +e“(e“+1)In(e" + 1) N e N
e3¢ — 3e% + 3e¢ — 1 (€% —2e¢ + 1) (e* +e°)

eC

(€2 —2e¢+1)(e*+ 1)

(B.8.11)

Now, we can find the limit of the integration from —oo to oo

(e€ + 1)ec | e+ 1\~ N e%c o
n
e3¢ — 3e2c + 3ec — 1 et +e¢ )| (e2¢ —2ec+ 1) (e* +€°) | _

oo

eC oo
{(ezc —2e¢+ 1) (e + 1)] (B.8.12)

o0

For the first in the bracket, the limit of v — oo for In &L — (. For the second

ev+-e¢
term, as u — 0o, ﬁ — 0 and the third term will also go to 0 because as © — oo
the term eu1+1 — 0. Therefore, the integration
/°° . 1 ce(e“ + 1) 2e°
e du = —
o (ev4e2emu 4 2ec) (et + e 4 2) e —3e¥* 43¢ —1 e —2ec+1

(B.8.13)
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C

since lne ¢ = —¢

(c—2)e* + (c+2)e°
e3¢ — 3e? + 3e¢ — 1

Ak (c) = (B.8.14)

]

Derivation B.8.3. Let K be a Logistic kernel as in Definition B.8.1. The partial
L2-product of Logistic kernels at two different central points 0 and ¢ € R when the
integration boundary is (—oo, a| where a € R is

(e*+e)(In(e®+1) —In(e*+1) +c)

Arc(a,¢) = e3¢ — 3e2¢ 4 3e¢ — 1 B

(e2c _|_ ec) efa ‘l’ 260
(e3c _ 620 — e+ ]_) e~ + (636 _ 2626 + ec) e—2a + ch — QecC +1
(B.8.15)

Proof. Suppose we have a Logistic kernel K as in Definition B.8.1. The partial
L2-product of the Logistic kernel as in Eqn (B.3.3) is

@ 1 1
A _ d B.8.16
we(a,) /_OO 2+ (e e )2+ (v ctre o) ( )
/ : !
= U
4 + Qeu—c + 2efu+c + 2c€ + eQufc 4+ e¢ 4+ 2o~ u +e ¢+ ef2u+c

(B.8.17)

Using Eqn B.8.11, and add the boundary from —oco to a € R

Ak(a,c) = [(e ‘te)n(e+1) (e 4e)In(e" 1)

e3¢ — 3e?¢ 4 3e¢ — 1 e3¢ — 3e%¢ 4 3e¢ — 1
(€% + e°) e " + 2¢¢ ¢
(e3¢ —e2¢ —ef 4+ 1) e 4 (e3¢ — 2e2¢ + e°) e 2 + 2¢ — 2e¢ + 1} -
(B.8.18)

(e*+e)(In(e™®+1) —In(e*+1) +¢)
B e3¢ — 3e2¢ 4 3e¢ — 1
(eQC + ec) e—a + 2eC
((eSC — g2 — ec 4 1) e~ + (e3c — 2e2¢ 4 ec) e~2a 4 e2¢ — Qec + 1) ’
(B.8.19)
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Note that:
1 (e2c + ec) e U + 2e¢
1m =
U — 00 (e3c _ eZc — e+ 1) e U 4 (eSC _ 2620 + ec) 672u + e?c — 2ec + 1
(B.8.20)
O

Derivation B.8.4. Let K be a Logistic kernel as in Definition B.8.1. The partial
L2-product of the Logistic cdfs at different central points 0 and ¢ € R from (—o0, a

where a € R is

In(e* +1)—a—gg if ¢=0
V(@ €) = 9 (<4 ) ) —tn(ee+1)

ec—1

otherwise

Proof. Let K be a Logistic kernel as in Def B.8.1 with CDF as in B.8.1. The partial
L2-product of the CDF as in Eqn (5.4.3) is

a et et—c
Ticlac) = /

o L +etl 4 et

a e2t
B /_oo (et + 1)(et + ec) dt (B.8.21)

substitute w = e’ + 1 and 4 = e = w and dt = —15 dw with e* = (w — 1)? to

the above to get

/ (w—1)? 1
dw
ww—l—l—ec)w—l

/ (w—1)
dw
ww—l—i—ec)

Apply partial fraction,
(w—-1) A B
(w—1+e) w (w—1+ee
where
-1
A —
ec —1
B="
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So we can integrate the partial fraction instead,
“ —1)? 1
= / (w ) dw
o W(w—=14+e)w—1

e / 1
Cec—1 w—l—i—ec

1
ec—l[e In(w —1+¢°) — In(w)

fYK(av C) =

then, plug-in back w = e + 1

1 a
i (a,c) = - [e“In(e’ + €°) — In(e’ + 1)]
eC — —0o0
1 C a (& a 1 C C
=1 (e“In(e” +¢°) —In(e® +1)) — =1 (e“In(e%))
c] a—c 1) —1 a 1
_e n(e“+1)—1In(e*+1) (B.8.22)
e —1
when ¢ = 0,
ae’ e? a
=ln(l+e“ —
e, e) =In (1 +e )+e“+1 e“+1+e“—i—1
=ln(l+e“ — B.8.23
n ( +e ) +a e 1 ( )
[

Derivation B.8.5. Let K be a Logistic kernel as in Definition B.8.1 with CDF vk
as in B.8.1. The partial L2-product of Logistic CCDF at two different central points
0 and ¢ € R as in Eqn (5.4.4) for the integral boundary (—oo, a] where a € R is

In(e"+1) —a— if c¢=0
{x(a,c) = ( n(ec—e +1) Cln—zl a+1)

1 o otherwise

Proof. From Lemma 5.4.2, {x(a,c) is the reflection of vk (a,c) on the y-axis.

Hence, £k (a, ¢) can be computed by v (—a, —c) O
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B.9 Gaussian Kernel
Definition B.9.1. Let the Gaussian kernel be defined as

—_
]

K(u) = me—% (B.9.1)

Derivation B.9.1. Let K be a Gaussian kernel as defined in Definition B.9.1. The
cdf of the Gaussian kernel is

vk (t) = %erf (%) + % (B.9.2)

Proof. Let K (u) be the Gaussian kernel, to find the CDF we integrate

Lol e 1 t 1

where Erf (ﬁ) is an error function defined as

t
erf(t) = %/0 e du
[]

Derivation B.9.2. Let K be a Gaussian kernel as in Definition B.9.1. The partial
L2-product of Gaussian kernel at two different central points 0 and ¢ € R for the
integration boundary (—o0, 00) is

1

)\K(C) :mei

.u‘nw

(B.94)

Proof. Suppose that we have the Gaussian kernel as in Definition B.9.1. The partial

L2-product of Gaussian kernel as in Eqn (5.4.3) for Gaussian kernel is

1l _we? W2
Ak (c) = —e 2 e 2 du (B.9.5)
oo 2T
Then,
1 2
Ak (a=00,¢) = e T (B.9.6)

2y
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Derivation B.9.3. Let K be a Gaussian kernel as in Definition B.9.1. The partial
L2-product of two Gaussian kernels with different central points 0 and ¢ € R for

the integration boundary (—o0, a| is

2

e~

<erf (a _ g) v 1) (B.9.7)

A -
K (aa C) p
Proof. Suppose that we have a Gaussian kernel as in Definition B.9.1. The partial

L2-product of the kernel as in Eqn (5.4.3) for Gaussian kernel is

Ak (a,c) _/a ie’ (e &% du (B.9.8)
wlme) =] o 9.
Then,
2
Aic(a, ¢) =S (erf (a = 5) +1) (B.9.9)
K ) _4ﬁ 2 T

]

Derivation B.9.4. Let K be a Gaussian Kernel as in Definition B.9.1. The integral
of the CDF of Gaussian kernel with central point ¢ € R and the integration limit

(—00,a] where a € R is

(c—a) (erf ( iy ) — 1) —e—o)?
5 Ve + em (B.9.10)

Ck (CL, C) =

Proof. Suppose that K is Gaussian kernel with the cdf vx. Then, the integral of the
CDF is

2 2 V2o
(B.9.11)

- [ b () e ) )

]

Derivation B.9.5. Let K be a Gaussian Kernel as in Definition B.9.1. The integral
of the complimentary CDF of Gaussian kernel with central point ¢ € R and the
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integration limit [a, 00) where a € R is

(C - a) (erf (\c/—_a ) ‘I‘ 1) 7(cfa)2
(2) e 2
nk(a,c) = 5 + Nor (B.9.12)

Proof. Suppose that K is Gaussian kernel with the cdf vx. Then, the integral of the
CDF is

— — —erf = +

2 2 2 V2m
(B.9.13)

o[ () () )

—00

]
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B.10 Sigmoid kernel
Definition B.10.1. Let the Sigmoid kernel be defined as

Ku=2_—1_ (B.10.1)

et e

Derivation B.10.1. Let K be a Sigmoid kernel as in Def B.10.1. The CDF of a

Sigmoid kernel is

vi(t) = %arctan(et) (B.10.2)

Proof. Let K be a Sigmoid kernel as in Definition B.10.1. The CDF is the integra-

tion of the kernel function.

t
vi(t) = / 2;du. (B.10.3)

o TeY e

Multiply the above with & to get

(t) Q/t g (B.10.4)
v =— — du. .10.
K T ) et +1
Make a substitution, v = e obtain
2 1 2
vi(t) == | v dv = - arctan(v) + C (B.10.5)

substitute back v = e" and put in the limit,

vi(t) = [% arctan(e“)} = %arctan(et) (B.10.6)

—00

]

Derivation B.10.2. Let K be a Sigmoid kernel as in Definition B.10.1. The partial
L2-product of two Sigmoid kernel at two different starting points 0 and ¢ € R when

the boundary is (—00, 00) is

4ce”

)\K(CLZOO,CL) =

Proof. Let K be a Sigmoid kernel as in Def B.10.1. The partial L2-product of the
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Sigmoid kernel is

4= 2 1 2 1
Ag(c) = z z d
K(C) \/_OO T eu + efu T e’u,fc + e*(U*C) u
4 oo 1
__+ d B.10.8
71'2 *ie /—oo e2u—c +e¢ 4 e ¢+ e—2utc u ( )
(B.10.9)
Multiply by E—
4e¢ [ 1
A = d B.10.10
K(C) 7T2 /oo (eu + eZtuc) (eu + eu) u ( )
Multiply by gz—z,
4e¢ [0 e2u
= d B.10.11
2 /_OO (et 4 e%¢)(e?* 4 1) “ ( )

Apply substitution, w = —2u, Z—Z’ = 2, du = Ztduw

—2e¢ > e~ W
= d B.10.12
2 /_Oo (e7w 4+ e) (e + 1) v ( )

e2w

Multiply by

e2w

—2e¢ 0 e%
— d B.10.13
= A+ en(@m+1) " (31019

Make a substitution, v = 1 + e*t% and j—g = e®™ and dw = i dv

—2e¢ [ 1
= d B.10.14
2 /_Oov(v—l—i—eQC) ! ( )

Apply partial differential equation to the terms inside the integral, to obtain

2e° 2c—2u 2c 2c—2u\] >
(e — 1) [In(e* ™ + %) —In(1 +e* )] " (B.10.15)

. . . N . . 62672u+620 . e2c72u+82c
Using Approximation of L’Hopital rule, uh_g)lo In (—1 T ) — 2¢, and UEIPOO In <—1 o ) —

0 hence we obtain

4ce”

m. (B.10.16)

Ag(a=o00,¢) =
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]

Derivation B.10.3. Let K be a Sigmoid kernel as in Definition B.10.1. The partial
L2-product of two Sigmoid kernel at two different central points 0 and ¢ € R when

the integration limit is (—oo, a| where a € R is

2¢¢ (In (% + e**) — 2c — In (e** + 1))

Ac(a,0) = — e e 1) (B.10.17)

When c = 0,
Ma, ¢ = 0) :/a KWK (u—c) du (B.10.18)
:@ (B.10.19)

Proof. Suppose that we have Sigmoid kernel as in Definition B.10.1. The partial
L2-product of Sigmoid kernel is

9= 2 1 2 1
Ak (a =00, ¢) :/ du. (B.10.20)

et 4 et et—¢ 4 e~ (u0)

—0o0

Using the Eqn (B.10.15) and change the limit of the integration from (—o0, 00) to

(—00, a] to obtain,

—2e°
Ak (a,c) )]

_ 2e(In(e* +e*) —2c—In(e** + 1))
__ e ) (B.10.21)

[ln(l + 620—215) o ln(620—2t + 626)}(1

— 00

]
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B.11 Cosine kernel
Definition B.11.1. Let a Cosine kernel be defined as

K(u) = Z cos (gu> T(u € [~1,1)) (B.11.1)

Derivation B.11.1. Let K be a cosine kernel as in Definition B.11.1. The CDF of

the Cosine kernel is

0 if t<-1
ve(t) =<4 (sin (%) +1) if te[-1,1]
1 if  t>1

Proof. Let K be a cosine kernel as in Definition B.11.1. The CDF is the integration

of the kernel function. There are three cases to considered: (1)t < —1; 2) t €
—1,1]3)t > 1.

1. Case 1t < 1: Under this case, the integration is — f__olo K(u) du = 0 because
the integration is outside the boundary/limit where the Cosine kernel is defined.

2. Case 2t € [—1, 1]: Under this condition, the boundary of the integration will be
te-1,1],

b T 1 mt
t) = — —u) du=—|sin| — 1 B.11.2
v (t) /_14cos<2u) u 2(sm<2)+) ( )

Case 3¢ > 1: Under this condition, the integration is v (t) = 1. O

Derivation B.11.2. Let K be a Cosine kernel as in Def B.11.1. The partial L2-
product of the kernel at two different central points 0 and c € R for the integration

boundary is (—00, 00) is

M) = —% (sin (T527) —sin (%) + (mc — 27)cos (%)) if ¢>0
337 (Sm (Z£27) — sin (5F) + (me+2m) cos (%)) if ¢ <0

Proof. Suppose we have a Cosine kernel as in Def B.11.1. The partial L2-product
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of the cosine kernel as in Eqn (5.4.2) is

™

Ak (c) :1—;/003 (gu> cos (g(u - c)) T(ue[-1,1]N[c—1,c+1]) du.
(B.11.3)

Firstly, we apply trigonometric rules on Ay, to show

cos <gu > cos <g(u - c)) = % (COS (W) + cos (%)) (B.11.4)

Then, integrate with limit « and 3

W—Q ’ 1 COs —27ru — e ~+ cos (W—c) du —W—2 —sin (WU — %C) ~+ cos (W—c) U
16 J, 2 2 2 32 7r 2
(B.11.5)

Using the above equation, we change the limit to « = —oo and 3 = oco. There are
two cases to considered: (1)c > 0; (2) ¢ < 0.

1. Case 1 ¢ > 0: For this case, the limit of the integration is [c — 1, 1]. So, the limit
in Eqn (B.11.5) ischangedtoaa =c—1and 8 =1,

1

2 [ _ mc
Ak (€) zg—Z [—sm (W:LT 2 ) + cos <%c> u]

B 2 . TCc — 21 . (7rc> +( 5 ) (7rc>
= 3. sin 5 sin 5 e ) Ccos 5

(B.11.6)

2. Case 2 ¢ < 0: For this case, the limit of the integration is [—1, ¢ + 1]. o, the limit
in Eqn (B.11.5) ischangedtoa = —land 8 =c+ 1

w2 | sin (7Tu — “—C) e o
(o) =35 | +eos () w
~1
2 2
:37;7 (sin <7ch; W) ~sin (g) + (e + 27) cos (%)) (B.11.7)

]

Derivation B.11.3. Let K be a Cosine kernel as in Def B.11.1. The partial L2-
product the kernel at two different central points 0 and ¢ € R for the integration

boundary [—oc, a) where a € R is
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1. Forc> 0
)
0 ifa<c—1
55 (—sin (#572) +sin (57)) —
Ak(a,¢) = & ((mc — ma — ) cos (%)) ifa€lc—1,1]
5 (—sin (757) +sin (%)) —
\%((71’6—271’)008(%)) ifa>1
2. Forc <0
(0 if a<-1
3 (—sin (757) —sin (7)) +
Ax(a,c) = ¢ & ((ma + ) cos (%)) if ac|-1,c+1]
5 (sin (757%) —sin (57)) +
\3%((77'0—{—277')(308(%6)) if a>c+1

Proof. Suppose that we have a Cosine kernel as in Definition B.11.1. Then, the

partial L2-product of two Cosine kernels as in Eqn (5.4.2) is

Ak (a,c) :;T—Z /_(:O cos (gu > cos (g(u — c)) L(ue[-1,1]N[c—1,c+1]) du

There are three cases to consider: (1) ¢ € [0,2]; (2) ¢ € [-2,0]; (3) |c| > 0. For (3),
this is outside the intersection of the two Cosine kernels. Resulting Ax(a,c) = 0.

Hence, the computation only focusses on (1) and (2).

1. Case 1: ¢ > 0 Under this case, a € [c — 1, 1].
a. Case 1(a) a < —1:

Ak (a,c) =0 (B.11.8)

b. Case 1(b)a € [c — 1,1]:

_§ T 2

Ak (a,c) _r lsm(ﬂu—_%c) + cos (E) u] “

c—1

o . TCc— 27ma i <7TC) ( ) (7rc>
=33 sin 5 sin 5 TC — TG — ) COS 5

(B.11.9)
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c. Case 1(c) a > 1:

1
2 |sin (mu — Z£
Ak (a,c) :% [% + cos (%) u]

c—1
2

(o () o () 5)

(B.11.10)

2. Case 2: ¢ < 0 Under this case, a can be anywhere between [—1, ¢ + 1].
a. Case2(a)a <c—1:

Aic(a,¢) =0 (B.11.11)

b. Case2(b)a € [—1,c+1]:

3_2 T 2

w2 i [T 2ra L <7Tc> o ) cos <7Tc>
=— — [gin| —— in(— —Ta — T —
321 2 2 2

(B.11.12)

2 [ _ mc “
Ak (a,c) - [m + cos (W—C) u]
-1

c. Case2(c)a > c+ 1:

72 | sin (mu — %) c o
Ak (a,c) =33 22 4 cos <7> u
-1
72 me+ 21 . (TC
=35 (sm ( ) — sin <?> + (mec + 27) cos (—))
(B.11.13)
O

Derivation B.11.4. Let K be a Cosine kernel as in Def B.11.1 and the CDF is in
B.11.1. The partial L2-product of the Cosine CDF with two different central points
0 and ¢ € R for the limit (—oo, a] where a € R is
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1. Force|0,2]:

(

0 ifa<c—1
—4cos(7rc;”“)+sin(”67227”1)—&-3 sin(%)—(ﬂc—ﬂ'a—w) cos(%)—i—
8m
'YK(CL, C) _ —2me— 4(:05(87r )+27‘ra+27r ifa c [C B 1’ 1]
6sin( %°)—8 T ) +(2 ) 2me+4 )
sm( 5 ) cos( 5 ) 87r7r e cos( ) met+dma lfa c [17 ot 1]
651n<“—6)+(27r mc) COS( ) —6mc—4n+8ma ;
. : 8 ifa>c+1

2. Force [-2,0]:
(0 ifa< -1

—4 COS( e )—i—sm( m}%a )—3 sin( %)-i—(ﬂ'a-ﬂr) cos( %)
8

vk (a,c) = 2m+2ﬂ;m(?) ifac|[-1,c+1]

—6sin me+2m) cos( 5 ) —8 cos 2me+4ma .
(%) +(me+ @(;;) (%) —2met ifa €c+1,1]
\ —GSin(%c) +(mwe+2m) cos(%) —2we—4m+8ma ifa 2 1
3. Forc > 2:
0 if a<c—1
o 2COS(M) 1 .
Tk (a,c) = ————2——c+a+y if ac€lc—1c+]1]
a—c if a>c+1
4. Forc < —=2:
0 if a<-1
_2cos( GL) a
yr(a,e) =8 T L e g e 21,1
a if a>1

Proof. Suppose K is a Cosine kernel as in Def B.11.1 with the CDF as in B.11.1.
The partial L2-product of Cosine CDF as in Eqn (5.4.3)

v(a,c) = /_ % (sin (g) + 1> % (sin (ﬂ;m) + 1) dt  (B.11.14)

There are several cases to be considered in computing v, (a, ¢) for Cosine kernel:




B.11. Cosine kernel 352

Mecel0,2;@cel-2,0;3) c>2@)c< —2.

1. Caselc e [0,2]:
a. Casel(a)a < c—1:

Yr(a,c) =0 (B.11.15)
b. Case 1(b)a € [c — 1,1]:
oo = [ (5 ) +1) 5 (0 (557) 1)

—4 cos (wcgﬂ’a) +Sin(7rc 271'(1) +4COS<7TC27T

8
sin (Z527) — (mc — ma — ) cos (%)
8
( 27rc—4cos(8 ))+27ra+27r (B.11.16)
T

Check: Fora=c—1

VK (a, ) :/:1% (sin (%t) + 1) % (sin (Mt; c)> + 1) =0

(B.11.17)

Check: Whena =1

Y1/, (nt 1/, [(m(t—2c)
vk (a,c) —/c 1 5 <sm (5) + 1) 5 (sm ( 5 ) + 1)
4cos (M) + sin (“52”) — 5sin (%)
8w +
(27 — me) cos () — 2me + 4m

8

(B.11.18)

c. Case I(c)a € [1,c+ 1]

= [ Yo (2) 1)L (o (29) 1)
/la% (sin (W(tz_ c)) + 1) dt

_sin(”c 2”) —1-12008(7rC ”) 8 cos (@) — 5sin (%C)
N 8 +
(2m — 7c) cos (&) — 2mc + 4ma

81

(B.11.19)
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Check: Whena =c+1

2
8m
(21 — 7c) cos () + 2me + 4m
8m

e, ) :12 cos (%) + sin (—”72“) — 5sin (%‘3) N

(B.11.20)

d. Case I(d)a > c+ 1:

Yk (a,c) :/;; <sin <7;t) + 1) % (sin <7T(t2_ C)> + 1) dt+
/jﬂé <sin (W(t; C)) + 1) cltJr/cj:1 1 dt

_12 cos (”CT_”) + sin (ng”) — 5sin (LC) N

2

8T
(27 — mc) cos (&) — 6mc — 4w + 8ma (B.11.21)
8T
2. Forc e [-2,0]:
a. Case2(a)a < —1:
vk (a,c) = (B.11.22)

b. Case 2(b)a € [-1,c+ 1]

Pl (7 1) L (70
ny(a,c)—/_12(sm(2>+1>2(sm( 5 )—i—l) dt
—4 cos (”C;’m) + sin (”‘TQW) — 3sin (%‘3) +
8T
(ma + ) cos () — 4cos () + 2ma + 27

8

(B.11.23)
Check: Whena =c+1

—sin (T27) — 4 cos (T47) — 3sin (%) + (mc + 2) cos (%)

2me + 4w

B.11.24
o ( )
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c. Case2(c)a € [c+ 1,1

[ 3 ) (52 )

 —sin (Z552T) + 4 cos (T4T) — 3sin (%)
B 8T
(me + 2m) cos (%) — 8cos (%) — 2mc + 47a B.11.25
8 (B.11.25)
Check: Whena =1
—sin (Fet27) 44 metm) _ 3gin (<
oy I oo (57) i 5)
(mc + 2m) cos () — 2me + 4m (B.11.26)

8T
d. Case 2(d) a € [1,00]:

1 t 1 t—
vk (a, c) :/1 5 (sin (%) + 1) 5 (sin (%) + 1) dt+
 —sin (T452T) + 4 cos (T4T) — 3sin (%)
B 8T
(me 4+ 27) cos (%) — 2mc — 4w + 87a
8T

(B.11.27)

3. Case 3 ¢ > 2: Under this condition, the intersection of the two cdf’s vx with
central points 0 and ¢ € R happens:
a. Case3(a)a € [c—1,c+1]:

a 2 cos (T
t— 1
’}/K(G/,C)_/ (Slﬂ(%)‘i‘l) dt—_g_c_ka_i__
c—1

T 2
(B.11.28)

b. Case 3(b) a > ¢+ 1:
c+1 t — a
ny(a,c):/ <sin(u)+1) dt—l—/ ldt=a—c
c—1 2 c+1
(B.11.29)

4. Case 4 ¢ < —2: Under this condition, the intersection of the two cdf’s v with
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central points 0 and ¢ € R happens:
a. Case4(a)a € [—1,1]:

2 cos(

’YK(a,C):/j <sm (%t) +1) g — _—;+a+1

b. Case 4(b) a > 1:

1 it a
vk (a, c) —/ (sin (5> + 1) dt + / ldt=a
-1 1

355

(B.11.30)

(B.11.31)

]

Derivation B.11.5. Let K be Cosine kernel as in Def B.11.1 with CDF as in B.11.4.
The integration of (1 — vi) at two different central points 0 and ¢ € R as in Eqn

(5.4.11) is

1. For c € 0,2]:

(6sin( %)~ (me— 27r8 cos( % ) —2me—8ma ifa < -1
6 sin( Z¢ ) —(mc—2m) cos(gﬂ) 8 cos( % ) 42me—dma ifae[~1,c—1]
Ex(a,c) = § el (E R Jroen($)
(ra—m) cos(%)+§:os(%)+2m—2“ ifa €lc—1,1]
0 ifa>1
2. Force [-2,0]:
( _6Sin(%)—(—7rc—27r;7cros(%c)+67rc—47r—87ra ifa<c—1
—6sin( %2 ) —8 cos( T34 8(7T me—2m) cos( % ) +2me—dma ifacle—1,-1]
(o) = § BB ()
(=metma—r) cos( %2) 82:c+4cos(%)+27ra—2w ifac|-1,c+1]
0 ifa>c+1
3. Forc > 2:
—a if a<-1
tela,e) = § e e ey

0 if a>1
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4. Forc < —2:
c—a if a<c—1
m(a—c)
Vi (a,c) = —M+c—a+% if ac€lc—1,c+1]
0 if a>c+1

Proof. From Lemma 5.4.2, {x(a,c) is the reflection of yx(a,c) on the y-axis.

Hence, we can compute {k (a, ¢) by taking vx (—a, —c).
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B.12 Silverman’s kernel
Definition B.12.1. Let the Silverman’s kernel be defined as

1 —lul
K(u) = Se % sin ('—\/% n %) (B.12.1)
such that
1.5 o
—eﬂsm<i+ﬂ> for u >0
Kw=3%, !
%eﬁ sin <% + %) for u <0

Derivation B.12.1. Let K be a Silverman’s kernel as in Def B.12.1. The CDF of

Silverman’s kernel is

%(37 Cos (
vi(t) =
C

Proof. Let K be a Silverman’s kernel in Def B.12.1. The CDF is the integration of
the kernel function K. There are two cases to consider: (1)t < 0; (2)t > 0.

1. Case 1t <0:

N 1
vk (t) :/ §eﬁ sin (—% + %) dt = §e\/§ Cos (%) (B.12.2)

2. Case2t >0

P u o m "1 - u T
VK(t) = 56\/§ sSin _ﬁ + Z dt + §ex/§ sin E + Z dt
—00 0

1 = t
=1— —evzcos| — B.12.3
2 (\/5 ( )

]

Derivation B.12.2. Let K be a Silverman’s kernel as in Defi B.12.1.The L2-norm
of two Silverman kernels at two different central points 0 and ¢ € R is for the

integration boundary is (—00, 00) is

c

)\K<C) ) ec\/§ (3sin<\;2§%)+3cos<\;§>> " cecﬁ 5811’1(%) for c Z 0
eﬁ(—3sin(62£>+3cos<\;§)) n ceV? s;n(%) for c<0

2

Proof. Suppose K is a Silverman kernel as in Def B.12.1. The partial L2-product
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of the Silverman kernel as in Eqn (5.4.2) is There are 2 cases that need to be con-
sidered.

1. Casel ¢ > 0:

N

+

g (B.12.5)

]

Derivation B.12.3. Let K be a Silverman’s kernel as in Def B.12.1. The partial
L2-product of two Silverman’s kernel at two different central points 0 and ¢ € R

Jrom —ocotoa € Ris

1. Caselc>0:

(A (s €722 ) 4 cos( E=£2 cos( %=
R R
@ V2 sin(Gg)eeos(g))

. 16v/2
e V2 (sin(<=2e —+v/2a—1)sin( %
Aela, ) = _2( <ﬁ)z<ﬁﬁ V() e

exp V2 ((3—}—\/50) sin(%)—&-ﬁicos(% )
c—2a 8v2 N

e sin( €=22 ) —cos( <22 ) —2 cos( -%=

F el ) e
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2. Casel c<0:

( 2a—c

f () e e2en() i a<o0
eﬂ((—2+\/§cf\/§a) sin(ffff)wcos(&)sin(céa)) if = [c O]
Me(@0) = o 16v2 ’
e V2 (sin(ci/%‘l)—cos<c?/%a)_2cos(%>>+
) 16v/2
\e\/ﬁ(%%( 2);5’;@)““(&)) if a€cl0,00)

Proof. Suppose K is a Silverman kernel as in Definition B.12.1. The partial L2-

product of the Silverman kernel as in Eqn (5.4.2) is There are two cases to be con-
sidered: (1) ¢ > 0; (2) ¢ < 0.

1. Case 1 ¢ > 0: Under this condition, we need to consider the sub-cases below.
a. Case 1(a) a < 0:

Apply integration by part
/a euv?2 (cos (i) + sin <ﬂ)) du
oo V2 V2
euﬁ( (c)+. (c—2u>) ’ +/a ot 2COS<C—2u) du
=|—=|cos| —= sin (| ———
vz \"“"\v2 vz )l Tl V2
Apply again integration by parts to the rhs of the above, to obtain
euv? <0—2u) ‘ w2 (c—2u> ‘
=|—=cos | ——— — | —=sin | ———
2v2 V2 )| 2v2 V2 )|

so the integration of K (u)K (u — c) is

B.12.
16v/2 (B.12.6
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Check: a = 0,

M. :e_% (sm (\qg\/—t?)cos <7>> B.127)

b. Case 1(b) a € [0, c]:

1
Ak (a,c) —/ éeﬂ sin <% - %)
/al —7% . (7T u)l *(\TEC) . <7T+U—C) du
—ev2sin|———| ze sin | —
0 2 4 2/ 2 4 /2

e V3 (sin (\%) + 3 cos (\%)) -

16v/2
e V3 (sin (C 2“) ( V2a — 1) sin (—))
v2 7 V2 (B.12.8)
Check: When a =0
Ml :e_% (sm <\€6>\/—|:3COS <7§>> (B.12.9)
Check: When a = ¢,
Mel.) :e*% <<2%c + 5) sllz\g_f) + 3 cos (—2>> B.12.10)

c. Case 1(c) a € [c,00):

sf

ea (sin (C_Q‘L) — cos (ﬂ> — 2cos (L))
=2 16\5@ 2 (B.12.11)
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Check: When a = oo

3 sin (\%) + 3 cos (\%) . csin (\%)

8v2 8

Ak(a,c) =e V2 (B.12.12)

2. Case 2 ¢ < 0: Under this condition, we need to consider the sub-cases below.
a. Case2(a)a < c:

Check: When a = ¢

Ak (a, c) :e% <_ o <T26>\/g Seos <_2)> (B.12.13)

b. Case 2(b) a € [c, 0]:

+
v (2 sin (?%“) — (22 (c—a) - 3> sin (\%) — 3 cos (\%))
3
(B.12.14)

Check: Whena = 0

e :e% <—5sm (—2) v 3225\5575) +2v/2¢sin (75)) B
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c. Case2(c)a € [0,00):

V7 (3cos () — (3- \Fc)SIn(T))

G (B.12.16)

Check: When a = oo
Anla<) :eﬁ <—3 sin (7> + 3(;08\/§< ) +v/2csin <%)> B12.17)
[

Derivation B.12.4. Let K be a Silverman kernel as in Def B.12.1. The partial L2-
product of two CDF of Silverman kernels at two different centre points 0 and ¢ € R

from —ocotoa € Ris

1. Forc> 0

16\/5 (2\[&-&-5) cos(T)) fora c [O’ c]

7K<a7 C) =

—c

1
eV2 (10 sin( 02)—(104-2\/50) cos(i>) —16v2(c—a)

2

| 673 fora € [¢,00)




B.12. Silverman’s kernel 363

2. Forc <0

2a—c
. c—2a c—2a c
e V2 ( sm( 7 )-:;i);( 72 )+2cos<—2)) fora c [_ ’C)

s (V2o -9) con () 2sn(52)) |
16v/2

@
S
L/~

e V2 fora € [c,0]

i (a,c) = 8 V2 (sin (<5 ) 4o (52
2

16v2a— e\f<1(]sm<ﬁ (2\/50710)COS<L)>78

2

L 1675 fora € 0,00)

Proof. Let K be a Silverman kernel with CDF as in B.12.1. There are several cases

needed to be considered in computing vk (a, ¢) for Silverman kernel. For ¢ > 0 and
c <0.

1. Case 1: ¢ > 0: Under this condition, we consider the three sub-cases below.
a. Case 1(a) a € (—o0,0]:

2
+ cos (0_2“) + 2 cos (L)>
v2 2J) (B.12.18)

(B.12.19)
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b. Case 1(b) a € [0, c]:

Yk (a, c) :/0 %ej? Cos (\;_) % %C <t\;_c> dt
/a (1 — %ef coS <i> (1 7 cos (t — C)) dt
0 V2 2 V2
SeL\/ga (— sin ( \/9) +c %))
- 162 "
eV <2 sin (C\fza> + 5sin ( > 2\/§a + 5) cOS (\%))
16v2
(B.12.20)
Check: When a = c,
vk (a,c) = : <38m (7> (i;:;fc) - (75» o (B.12.21)

c. Case 1(c) a € [c,0):

@o= [ 1o () s eos ()
vk (a,c) = —ev2cos | — | —e
oo 2 2) 2 V2
/C <1— 16\_/%COS< t ) (1et_ﬁccos (t—c)) dt+
0 2 V2 2 V2
e 1 -9 t—c 1 = t
1——-e v2 cos 1——-ev2cos| — dt

)
16v/2
ecféa (sm (C\_/%“> + cos <C;2§“> + 2 cos <i2>>
16v/2 -
8evz <(sm <\/i§) — Cos \%)) .\
16v/2
<1O sin 75) — (10 + 2v/2¢) cos (\%)) — 16v2(c — a)
16v/2
(B.12.22)

2. Case 2: ¢ < 0:Under this condition, we consider the three sub-cases below.
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a. Case2(a)a < c:

“1 t o\ 1 t=c t—
vk (a,c) :/ §eﬁ cos <E) Qeﬂ cos (ﬁ) dt (B.12.23)

= (B.12.24)

- -
16v/2
Se% (sm <i + cos <i>>
v2 v2 (B.12.25)
16v/2
Check: When a = ¢,
eva (sin <i> + 3 cos <i>>
V2 2
a,c) = B.12.26
Check: When a = 0,
evs ((2\/50 —5) cos (i> — 3sin <L>>
V2 2 (B.12.27)

'7K(aac) = 16\/5
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c. Case 2(c) a > 0:

16\/_a—e

VRS

366

10 sin (% 2\/_0 — 10) Cos <T>> -8

16v/2

(B.12.28)

]

Derivation B.12.5. Let K be a Silverman’s kernel with CDF as in Def B.12.1 and
partial L2-product of the CDF as in B.12.4. The partial L2-product of the CCDF at
two different points centre points 0 and ¢ € R is

1. Forc >0

;

fK(CL, C) =

c—a

8e

S

sin +cos a
Tl
e V2 (sin(ci/%‘Z)fcos(C?/%“) 2005(—2>>+
16v/2

e (s g5 +en ()
16v/2

2 (10sin 2v/24+10 —8—16+/2
e V2 (10sin( %) ~( lzf)c"s(f)) 2a for

eV2 (—QSin(C\/ZfL)JrE)sm(f) (2\[(0 a)+5)cos( C2>>
16v2

a € (—o0,0]

a € [0,

ale,o0)



2. Forc <0

fK(av C) =

;

\
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o (on(i)on() |
_c—2a 16v2
e V2 (sin(%>fcos<ci/g‘l>f2 cos(%)) i
N 16v/2
8e V2 ((sin(%)—cos(%)) n
16v2
L)+(2\/§c—10) cos(i))—lﬁﬁ(a—c)

2 2
16v2 or

8e V2 (sin(%)Jrcos(%)) B
. 16v/2

eV2 (2sin( =2 sin( % )— a—5) cos| %=

ﬁ(z ( )+5 1(6\/\%) (2v2a-5) (ﬂ)) for

lg)(enla) g,

_c
evV2 (—10sin

L~

0

]

Sﬁ

[

S

c—2a

S

e

S

367

a € (—oo,d

a € [c, 0]

a € [0, o00]

Proof. From Lemma 5.4.2, £ (a,c) is the reflection of yx(a,c) on the y - axis.

Hence, we can compute x (a, ¢) by taking vk (a, c).

]
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B.13 Computation Mean Absolute Deviation for Gaus-

sian

Here, we compute the mean absolute (MAE) deviation for Gaussian

1. Standard Gaussian (mean 0 and standard deviation a)
2. Gaussian distribution with mean y and standard deviation o

3. Gaussian kernel distribution (applicable for Gaussian mixture)

Derivation B.13.1. Let Y be a random variable from a standard Gaussian distri-
bution, i.e. Y ~ N(0,1). Then, the MAE forY is

2
E|Y|= \/;

0 fo's)

1 2 1 2 2

EfY] :_/ Vool dy*/ v s dy =
—00 0

Proof.

Derivation B.13.2. Let Y be a random variable from a Gaussian distribution with
mean . and standard deviation o, i.e. Y ~ N (u, o). Then, the MAE forY is

I 20 _—u?
ElY| =perf | — | + e 202
V] = p (Uﬁ)

Proof.

0 o)
1 (y—w)* 1 (y—w)?
ElY|= —/ \/%yef 50 dy +/ \/ﬁye* 302 dy
—00 0

% \/50’ o
=perf | —= | + e 202
: (0\/5 ) VT

]

Derivation B.13.3. Suppose a random sample Y be a random variable with mean

Wiy - ., N and standard deviation o4, ...,oN with weight function wy, ..., wy.
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The MAE is
2.
N N uiﬂr erf ( P«i\j/ﬁ) 20 '872‘;%
ElY| = WW; 7 + =
Y] ; ; ) - 5=
Proof.
Cy—(mi—ny)?

ElY| = i i\f: w;iw; /

i=1 j=1 -0

il

\/ﬁ,/a +0

Y- (pi—

mdy

2V/oite; dy+

Let f1i; = pi; + pj, 05, = 07 + 05 and 03 = /07 + 07
N N Y- (uz]) 0 1 y—(#lj)2
EYV =3 wa, / e Vg [ e WV ay
i=1 j=1 -0 /2 /o 0 \2m, /gij
Using integral by substitution,
,z:M Y = 2045 + [
Oij
d 1
—Z = — dy = Jij dZ
dy 0y
N N 1 Hig
ElY| = w;W N 205 + U dz+—/ (204 + i _2 dz
Y| ;; j N (2045 + pij)e” b j + Hij)e
-1 j= -
2
N N T — i erf ( \/‘ilofl) oije e
= Z W;W; +
i=1 j=1 V2
o'l-jefgv% T i erf (\/’iz > + Thiij
V2T 2m
i i
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Appendix C

Chapter 6: Investigation of Tuning

for Distribution Estimation

To support the main proof of our investigation, we list down preliminaries lemmas
that will be useful.

C.1 List of Definitions

Definition C.1.1. Ler f : D — R be a function defined on an open interval D such
that D CR. Leta € D. We say that

li_r>n f(z) =00

if for every integer c; > 0 there is some number x1 > 0 such that

f(@)>a

whenever 0 < |x — a| < x.

Definition C.1.2. Let f : R — R be a function defined on R = {R U —o0, co}. We
say that

ILm f(x) =00
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if for every integer co > 0 there is some number x4 > 0 such that

f(x) > co

whenever x > Io.

Definition C.1.3. Letr f : D — R be a function defined on an open interval D such
that D C R. Let a € D. We say that

lim f(z) = —o0

T—a

if for every negative integer cs < 0 there is some number xs > 0 such that

flz) <es

whenever 0 < |x — a| < z3.

C.2 List of Lemmas

Lemma C.2.1. Consider the function g; : RT™ — R,

X

a —a
gi(z) == exp{—}. (C.2.1)
where a € R*. Then, lim g; = 0.
rT—r00

Proof. For Eqn (C.2.1), by using the properties of limit,

lim < exp { —a} — lim < lim exp {__;L} (C2.2)
x

T—00 T x2 T—00 I T—00

=0x0=0. (C.2.3)

Hence, lim ¢g; = 0.
Tr—r00
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Lemma C.2.2. Consider the function g, : RT™ — R,

g2(x) = —% exp {—%} . (C2.4)

where a € RY. Then, liH(l) g2(r) = —0c0.
z—

Proof. Re-write the above as

a

go(z) = L (C.2.5)

I —
exp{ 25 }

By L’Hopital rule, differentiate the numerator and denominator w.r.t z,

x a
~Z exp {—ﬁ} . (C.2.6)
Then,
. x a
};1_1%—5 exp{—;} = — 00. (C2.71
H

Lemma C.2.3. Let g, : RT — R be a function of x, be a function of x, such that

g3(w) = exp {—%} . (C.2.8)

where a € RY. Then, lin(l) g3(z) = 0.
z—

Proof. Re-write the above as

1
g3(7) = ——F—. (C.2.9)
exp { & }
Asx — 0, 5 — oo, 1.e 91013% -3 = 00. By the elementary property of exponential
function e® = oo. Hence, lim —— = 0 which is equal to lim e 2 = 0. ]

@
z—0 ex2 z—0
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