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Abstract 

Background:  Plasma biomarkers for Alzheimer’s disease (AD) have broad potential as screening tools in primary care 
and disease-modifying trials. Detecting elevated amyloid-β (Aβ) pathology to support trial recruitment or initiat-
ing Aβ-targeting treatments would be of critical value. In this study, we aimed to examine the robustness of plasma 
biomarkers to detect elevated Aβ pathology at different stages of the AD continuum. Beyond determining the best 
biomarker—or biomarker combination—for detecting this outcome, we also simulated increases in inter-assay coef-
ficient of variability (CV) to account for external factors not considered by intra-assay variability. With this, we aimed to 
determine whether plasma biomarkers would maintain their accuracy if applied in a setting which anticipates higher 
variability (i.e., clinical routine).

Methods:  We included 118 participants (cognitively unimpaired [CU, n = 50], cognitively impaired [CI, n = 68]) from 
the ADNI study with a full plasma biomarker profile (Aβ42/40, GFAP, p-tau181, NfL) and matched amyloid imaging. Ini-
tially, we investigated how simulated CV variations impacted single-biomarker discriminative performance of amyloid 
status. Then, we evaluated the predictive performance of models containing different biomarker combinations, based 
both on original and simulated measurements. Plasma Aβ42/40 was represented by both immunoprecipitation mass 
spectrometry (IP-MS) and single molecule array (Simoa) methods in separate analyses. Model selection was based on 
a decision tree which incorporated Akaike information criterion value, likelihood ratio tests between the best-fitting 
models and, finally, and Schwartz’s Bayesian information criterion.

Results:  Increasing variation greatly impacted the performance of plasma Aβ42/40 in discriminating Aβ status. 
In contrast, the performance of plasma GFAP and p-tau181 remained stable with variations >20%. When bio-
marker models were compared, the models “AG” (Aβ42/40 + GFAP; AUC = 86.5), “A” (Aβ42/40; AUC = 82.3), and “AGP” 
(Aβ42/40 + GFAP + p-tau181; AUC = 93.5) were superior in determining Aβ burden in all participants, within-CU, and 
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Introduction
Therapies targeting amyloid beta (Aβ), a defining feature 
in the pathophysiology of Alzheimer’s disease (AD) [1], 
have recently been developed and proven to reduce Aβ 
plaque load in the brain [2–5]. However, the cognitive 
benefit to symptomatic patients is either very mild or, 
in most cases, inconclusive. The reasons for these find-
ings are unclear, but it is hypothesized that anti-Aβ trials 
target a population too advanced in the disease course or 
that the trial duration does not have the length to observe 
a conclusive cognitive benefit. Nonetheless, therapeutic 
trials that target any phase of the AD continuum require 
confirmatory evidence of Aβ burden—which is of prin-
cipal importance in trials that will target preclinical AD. 
Cerebrospinal fluid (CSF) Aβ42/40 and Aβ positron 
emission tomography (PET) imaging are highly repre-
sentative of Aβ burden, and the latter is likely a funda-
mental obligation to prove target engagement throughout 
an intervention trial. Still, neither CSF nor PET biomark-
ers have the capacity to serve as a population screening 
tool for eligibility to anti-Aβ trials.

A blood biomarker would act as a widely accessible and 
simplified triage of large and diverse populations to indi-
cate appropriate individuals for therapeutic trial recruit-
ment—irrespective of disease stage. Furthermore, in a 
clinical setting, an indication that mild cognitive symp-
toms are accompanied by Aβ pathology is of importance 
for the specialist delivering a diagnosis and symptomatic 
treatment and, soon, determining which disease-modify-
ing treatment would be more suitable. The development 
of plasma biomarkers has been driven by targeting can-
didates proven to be successful in CSF. Novel mass spec-
trometry and ultra-sensitive immunoassay methods have 
recently allowed for the measurement of the Aβ42/Aβ40 
ratio and concentrations of phosphorylated tau (p-tau), 
glial fibrillary acidic protein (GFAP), and neurofilament 
light (NfL) in blood.

In this context, plasma Aβ42/40 has been shown to be 
associated with CSF and PET measures of Aβ and to be 
capable of identifying Aβ-positive individuals with high 

accuracy [6, 7]. However, this is suggested to be assay-
dependent given the emerging data highlighting the 
superior accuracy of immunoprecipitation mass spec-
trometry (IP-MS) compared with ultrasensitive immu-
noassays for the detection of cerebral Aβ [8]. In contrast, 
immunoassays for the detection of p-tau181 (as well as 
other epitopes; p-tau217 [9] and p-tau231 [10]) in plasma 
have been shown to be most valuable in identifying AD 
in heterogeneous dementia population [11–14] and in 
predicting cognitive decline [11, 15, 16], besides also 
being highly correlated with cerebral Aβ burden. GFAP, a 
biomarker of astrocyte reactivity, increases in preclinical 
AD and is a promising plasma biomarker for this stage 
of the disease [17–19]. While CSF GFAP is seemingly 
associated with Aβ pathology only in symptomatic indi-
viduals, plasma GFAP continues to rise during disease 
evolution in parallel with clinical syndrome severity and 
Aβ accumulation [17, 19]. These recent findings suggest 
that plasma GFAP is more closely related to abnormal 
Aβ accumulation due to AD, whereas CSF GFAP may 
also incorporate changes independent of Aβ pathology. 
Increases in plasma NfL are a widely reported finding in 
AD [20, 21] and are also observed in pre-symptomatic 
familial AD [22]. Contrasting to Aβ and p-tau, NfL is not 
specific to AD pathology and is increased in many other 
neurodegenerative disorders [23] and acute neurologi-
cal conditions [24]. Hence, plasma biomarkers for AD 
are either directly (Aβ42/40) or indirectly (e.g., tau phos-
phorylation, astrocyte reactivity and neurodegeneration) 
associated with presence of Aβ pathology and could be 
used to indicate elevated Aβ burden for therapeutic trials. 
They could be used as standalone tests or in a combina-
tional biomarker panel, but different configurations and 
accuracies will likely depend on disease stage; Aβ42/40 
and GFAP are likely to be more associated with preclini-
cal Aβ, whereas p-tau181 and NfL may be later markers 
with increases more apparent in the transition between 
preclinical and prodromal AD.

In this brief report, we studied the available plasma 
biomarker results from the Alzheimer Disease 

within-CI groups, respectively. In the robustness analyses, when repeating model selection based on simulated meas-
urements, models including IP-MS Aβ42/40 were also most often selected. Simoa Aβ42/40 did not contribute to any 
selected model when used as an immunoanalytical alternative to IP-MS Aβ42/40.

Conclusions:  Plasma Aβ42/40, as quantified by IP-MS, shows high performance in determining Aβ positivity at all 
stages of the AD continuum, with GFAP and p-tau181 further contributing at CI stage. However, between-assay varia-
tions greatly impacted the performance of Aβ42/40 but not that of GFAP and p-tau181. Therefore, when dealing with 
between-assay CVs that exceed 5%, plasma GFAP and p-tau181 should be considered for a more robust determina-
tion of Aβ burden in CU and CI participants, respectively.

Keywords:  Amyloid, Plasma biomarker, Mass spectrometry, Immunoassay, Alzheimer’s disease, ADNI, p-tau181, GFAP, 
NfL
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Neuroimaging Initiative (ADNI), Aβ42/40, p-tau181, 
GFAP, and NfL, to suggest which biomarker(s) models 
would be best suited as a population prescreen for Aβ 
burden in a clinically heterogeneous population (i.e., all 
participants independent of disease stage), composed 
by cognitively unimpaired (CU) participants and cog-
nitively impaired (CI) patients. Further, we sought to 
determine the robustness of single or multi-biomarker 
models to identify Aβ burden by assessing whether simu-
lated changes in biomarker concentration (0–20%) values 
would significantly impact on the predictive power or 
model selection.

Methods
Study participants
We used data from the multicenter ADNI study, designed 
to develop and validate neuroimaging and biochemi-
cal biomarkers for the early detection, monitoring, and 
treatment of AD, and its inclusion criteria have been fur-
ther described elsewhere [25]. All enrolled participants 
or authorized representatives provided informed con-
sent, approved by ADNI center’s respective Institutional 
Review Boards. For this study, we included participants 
based on the availability of Aβ PET and full plasma bio-
marker profiles [Aβ42/40 (Washington University—
IP-MS), p-tau181 (University of Gothenburg), GFAP 
(Simoa Neuro 4-plex E), and NfL (Simoa Neuro 4-plex 
E)]. Duplicate measurements of plasma biomarkers were 
excluded (n = 9), leading to a final sample of n = 118 par-
ticipants. Following ADNI’s diagnostic criteria, subjects 
clinically classified as “control” were here named cog-
nitively unimpaired (CU), whereas patients with mild 
cognitive impairment (MCI) and dementia were here 
grouped into cognitively impaired (CI). Participants were 
classified for Aβ-positivity based on having an abnormal 
Aβ PET scan, measured by [18F]-florbetapir PET, defined 
by a global cortical composite with standardized uptake 
value ratios (SUVr) with average value greater than 
1.11—a threshold that has been extensively validated to 
identify clinical and biologically relevant brain amyloido-
sis [26, 27].

Plasma biomarker analysis
For all plasma Aβ42/40, GFAP, and NfL analyses, selected 
ADNI samples were collected within 3 months of an Aβ 
PET scan; n = 130 (50% Aβ+), cognitively normal n = 54 
(37% Aβ+), mild cognitive impairment n = 54 (46% 
Aβ+), and AD n = 22 (91% Aβ+). ADNI blood samples 
are collected in 10 mL K2-EDTA tubes and centrifuged 
within 1 h of collection at room temperature and centri-
fuged at 1300g for 10 min to obtain the plasma fraction. 
All plasma samples were frozen on dry ice within 90 min 
of collection at ADNI sites, shipped to the Biomarker 

Core laboratory, aliquoted into 0.5 mL polypropylene 
tubes, and stored at − 80 °C (for detailed information see 
www.​adni-​info.​org and adni.loni.usc.edu).

Plasma p-tau181 was measured on Simoa HD-X instru-
ments (Quanterix, Billerica, MA, USA) in April 2020 at 
the Clinical Neurochemistry Laboratory, University of 
Gothenburg, Mölndal, Sweden [15]. To select the bio-
marker to represent the plasma Aβ values, we initially 
compared a total of six plasma Aβ42/40 measures: three 
mass spectrometry methods (Shimadzu, University of 
Gothenburg, Washington University) and three immuno-
assay methods [Simoa Neuro 4-plex E (Quanterix), Simoa 
Aβ40 and Aβ42 Advantage Kit, Elecsys Neuro Toolkit] 
analyzed between December 2020 to April 2021; samples 
were tested in a blinded fashion with analytical controls 
by the different laboratories (for detailed information on 
sample handling procedures, assay protocols, and per-
formance, see www.​adni-​info.​org and adni.loni.usc.edu). 
For this, we evaluated the plasma amyloid biomarkers’ 
performance to predict Aβ PET positivity by comparing 
single biomarker-based receiver operating characteristics 
(ROC) curves with DeLong tests. The plasma Aβ42/40 
test with the highest area under the curve and the best 
performing commercially available assay were then 
selected for fitting logistic regression models in the next 
analysis stage.

Statistical analysis
Demographic information was compared between 
groups with t tests for continuous variables and Χ2 tests 
for categorical variables. Using a single-biomarker ROC 
curve approach, we compared the area under the curve 
(AUC) for each biomarker for cross-sectionally identi-
fying patients with cerebral amyloidosis. To assess the 
robustness of these biomarkers individually, we repeated 
these analyses by introducing random variations in the 
original biomarker measurements, ranging from 1% to 
20% in ± 1% intervals.

Next, we evaluated the power of different biomarker 
combinations to predict Aβ positivity with a logistic 
regression framework. For this, an initial basic demo-
graphic model was built including only age, sex, and 
APOE-ε4 carriership status as predictors of Aβ-positivity 
status. Then, we evaluated logistic regression models 
with the addition of the four biomarkers (Aβ42/40 = “A”, 
GFAP = “G”, p-tau181 = “P” and NfL = “N”) in all pos-
sible combinations: basic demographic model plus only 
one biomarker; basic demographic model plus different 
combinations of two or three biomarkers (e.g., AP; AGP); 
basic demographic model plus all four biomarkers (e.g., 
AGNP). To identify which specific biomarkers were the 
best predictors of brain amyloidosis, we evaluated mod-
els based on a decision tree, schematically represented 

http://www.adni-info.org
http://www.adni-info.org
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in Fig.  2. Among all models, the best-fitting model was 
defined as the one with the lowest Akaike informa-
tion criterion (AIC) value. Then, we performed likeli-
hood ratio (LR) tests between the best-fitting model and 
those models with up to two AIC units above that of the 
best-fitting, leading to exclusion of models significantly 
inferior to the best-fitting model. Among the remain-
ing models, the most useful biomarker combination was 
considered as the one present in the model with the low-
est Schwartz’s Bayesian information criterion (BIC), a 
more stringent metric than the AIC [28]. This process 
was repeated for logistic regression models fitted in three 
different populations across the AD continuum [all par-
ticipants (n = 118; also had CU/CI status as covariate in 
the model), CU (n = 50), and CI (n = 68)]. This was firstly 
performed for IP-MS Aβ42/40 from Washington Univer-
sity as “AIP-MS”, and in an additional analysis, the Simoa 
Neuro 4-plex E Aβ42/40 was utilized as the alternative 
“ASimoa” in the models.

For assessing the robustness of these model selec-
tions, we repeated these analyses by introducing ran-
dom variations to the original biomarker measurements. 
Firstly, we tested robustness using the reported coef-
ficients of variance (CVs) for each analytical technique 
[AIP-MS, CV = 4.0%7; p-tau18115, CV = 6.6%; (Supplemen-
tary Table  1, NfL: CV = 1.2%, ASimoa, CV = 1.0%; GFAP, 
CV = 10.5%)], and secondly, we tested robustness using 
random variations of ± 5%, ± 10%, ± 15%, and ± 20% of 
the original biomarker values. Each robustness analy-
sis was repeated in 10 iterations. We then applied the 
above-described decision tree to each iteration to assess 
whether the analytical variance could result in the 

selection of different biomarker combinations. Con-
tinuous predictors were centered and log-transformed 
depending on their distribution. All analyses were per-
formed with R Statistical Software (https://​www.r-​proje​
ct.​org/). Statistical significance was set as α = 0.05, and all 
tests were two-tailed.

Results
Study participant characteristics
The demographic characteristics of the study participants 
are displayed in Table  1. In the full sample (n = 118), 
Aβ-positivity was confirmed by Aβ PET in n = 60 (50.8%) 
of individuals. Aβ-negative and Aβ-positive groups were 
evenly distributed for age, gender, and years of educa-
tion. As expected, a significantly increased prevalence of 
patients with cognitive decline (P  < 0.05), APOE-ε4 car-
riage status (P  < 0.01), and poorer MMSE (P  < 0.0001) 
was observed in the Aβ-positive group.

Comparison of plasma Aβ42/40 methods to identify Aβ 
PET burden
Our first task was to select a plasma Aβ42/40  method 
to represent “A” in our models. Data from six 
plasma   Aβ42/40 assays were included in the ADNI 
database (Supplementary Figure  1). We determined 
that the IP-MS assay from Washington University dis-
criminated Aβ-positive and Aβ-negative groups with 
the highest AUC and was selected as the “AIP-MS” vari-
able in our models (AUC = 83.1%; 95% CI 75.5–90.7%; 
Supplementary Figure  2A). This method was found 
to be statistically superior to the other five Aβ42/40 
assays included (DeLong test, Shimadzu, P  = 0.007; 

Table 1  Demographics of selected participants from the ADNI cohort

Data shown as median (IQR; interquartile range) or n (%), as appropriate. Continuous variables were compared using t test and Pearson’s chi-square to compare 
frequencies of categorical variables between groups. As further explained, Aβ42/40 IP-MS corresponds to the IP-MS assay from Washington University whilst Aβ42/40 
Simoa refers to the measurements from the Simoa Neuro 4-plex E assay

Abbreviations: Aβ amyloid-β, CU cognitively unimpaired, CI mild cognitive impairment, MMSE Mini-Mental State Examination, NfL neurofilament light chain, P-tau181 
tau phosphorylated at threonine 181, SD standard deviation, SUVR standardized uptake value ratio

Aβ PET negative (n = 58) Aβ PET positive (n = 60) P value

Age, years, median (IQR) 70.8 (66.5, 75.7) 73.8 (69.9, 77.4) 0.14

Clinical diagnosis, n (CU/CI) 30/28 20/40 0.04

Female, n (%) 24 (41.4%) 26 (43.3%) 0.98

Years of education, median (IQR) 18.0 (14.2, 18.0) 16.0 (14.0, 18.0) 0.33

APOE-ε4 carriers, n (%) 15 (25.9%) 32 (53.3%) < 0.01

MMSE score, median (IQR) 29.0 (28.0, 30.0) 27.5 (24.0, 29.2) < 0.0001

Florbetapir, global SUVR, median (IQR) 1.00 (0.954, 1.03) 1.33 (1.22, 1.46) < 0.0001

Aβ42/40 IP-MS, median (IQR) 0.132 (0.128, 0.141) 0.122 (0.117, 0.127) < 0.0001

Aβ42/40 Simoa, median (IQR) 0.050 (0.043, 0.054) 0.044 (0.040, 0.048) < 0.01

GFAP, pg/mL, median (IQR) 113 (80.7, 154) 164 (125, 223) < 0.001

P-tau181, pg/mL, median (IQR) 11.7 (8.2, 17.2) 18.8 (13.1, 23.0) < 0.01

NfL, pg/mL, median (IQR) 23.6 (17.7, 36.1) 31.5 (24.8, 40.1) 0.04

https://www.r-project.org/
https://www.r-project.org/
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University of Gothenburg, P  = 0.0006; Simoa Neuro 
4-plex E, P  = 0.001; Simoa Aβ40 and Aβ42 Advantage 
Kit, P = 0.0006, Roche Elecsys, P = 0.03). In addition, we 
aimed to have a commercially available immunoassay as 
an alternative “A” to run the sensitivity analysis. We thus 
compared Aβ42/40 measured with Simoa Neuro 4-plex E 
(AUC = 65.1%; 95% CI 55.2–75.1%) with Aβ42/40 meas-
ured with Simoa Aβ40 and Aβ42 Advantage Kit 
(AUC = 55.3%; 95% CI 44.5–65.8%). We found no sta-
tistical difference between these AUCs (DeLong test: 
P  = 0.41; Supplementary Figure  2B), and therefore, for 
practical reasons, we chose to perform the sensitivity 
analysis using Aβ42/Aβ40 measured with Simoa Neuro 
4-plex E “ASimoa”, as GFAP and NfL are quantified in the 
same multiplex assay.

Robustness of individual plasma biomarkers 
for Aβ‑positivity
We evaluated how well the biomarkers identify par-
ticipants’ Aβ status (for biomarker distribution by Aβ 
status see Supplementary Figure  3). All plasma bio-
markers were significantly altered between Aβ-positive 
and Aβ-negative groups (Aβ42/40IP-MS < 0.0001; 
Aβ42/40Simoa < 0.01; GFAP< 0.001; p-tau181 < 0.01; 
NfL = 0.04). We then investigated how their AUC is 
affected by adding random variations on its original 
values. This robustness analysis sought to investigate if 
biomarkers’ performance would remain constant if the 
values were to change within a given CV. The rationale is 

that levels for plasma biomarkers may vary across analyt-
ical runs, laboratories, and cohorts [29], but data on this 
potential issue is essentially lacking for these biomarkers. 
This analysis was firstly done including all participants 
but also within CU and CI groups separately.

When all participants were evaluated, AIP-MS had the 
highest AUC (AUC = 83.1%; 95% CI 75.5–90.7%), fol-
lowed by GFAP (AUC = 71.7%; 95% CI 62.4–81.0%) and 
p-tau181 (AUC = 69.4%; 95% CI 59.6–79.3%; Fig.  1A). 
However, with increased CV variation, the “predictive” 
power of AIP-MS was drastically affected—while GFAP 
and p-tau181 AUCs remained stable through to a simu-
lated CV of 20%. Results from the CU group followed 
similar pattern to what was observed for the analy-
sis with all participants (Fig.  1B). Differently, for the CI 
group, original biomarker values concluded that AIP-MS 
have the highest AUC followed by p-tau181 and then 
GFAP (Fig. 1C). However, AIP-MS “predictive” power was 
strongly impacted with even smaller variations on the CV 
(< 5%) as compared to what described in the analysis with 
all participants.

Identifying Aβ‑positivity using biomarker models
The decision tree criteria for selecting biomarker mod-
els are illustrated in Fig. 2. This criterion firstly assessed 
models by AIC value and then LR tests between the best-
fitting model and those models within two AIC units. 
Models significantly different from the best-fitting model 
were then rejected. Among the remaining models, the 

Fig. 1  Robustness of the individual biomarkers at distinguishing Aβ status. The line plot shows the AUC for each individual biomarker at each 
random CV variations, ranging from up to and including 1 to 20% variations of the original biomarker measurements (represented here at 0%). 
This analysis was performed including all participants (A) as well as within CU (B) and CI (C) groups. Abbreviations: AUC, area under the curve; CI, 
cognitively impaired; CU, cognitively unimpaired; CV, coefficient of variation
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most useful biomarker combination was considered as 
the one present in the model with the lowest BIC.

In all participants, the model “AIP-MSG” was selected 
as the superior model and demonstrated high accuracy 
for identifying Aβ-positivity (AUC = 86.5; 95% CI 79.7–
93.4%; Table  2). Models “AIP-MSGP” and “AIP-MSGN” 
were < 2 AIC units of the selected model and were not 
statistically different to “AIP-MSG” in LR tests (P  > 0.5). 
However, these three-biomarker models were > 4 BIC 
units away from “AIP-MSG”. The highest-ranking single 
biomarker model “AIP-MS” was shown to be > 2 AIC units 
from the selected model “AIP-MSG”. In CU participants, 
model “AIP-MS” was the model selected by our crite-
ria (AUC = 82.3; 95% CI 68.5–96.1%; Table  2). Models 
“AIP-MSP”, “AIP-MSN”, “AIP-MSG”, and “AIP-MSGN” were < 2 
AIC units of the selected model and were not statisti-
cally different to “AIP-MS” in the LR test (P > 0.3). How-
ever, these biomarker models were > 2 BIC units away 
from “AIP-MS”. In CI participants, the model “AIP-MSGP” 
was selected by our criteria and demonstrated the high-
est overall accuracy for identifying Aβ-positivity in our 

study (AUC = 93.5; 95% CI 87.5–99.5%; Table  2). Only 
the four-plasma biomarker model “AIP-MSGNP” was 
within 2 AIC units from the best model and was not 
statistically different to “AIP-MSGP” in LR test (P = 0.18). 
However, “AIP-MSGNP” was > 4 BIC units away from 
“AIP-MSGP”. In summary, our criteria selected “AIP-MSGP”, 
“AIP-MS”, and “AIP-MSGP” for identifying Aβ-positivity 
in all participants, CU participants, and CI patients, 
respectively.

We also performed the sensitivity analysis by replac-
ing “AIP-MS” by a commercially available immunoas-
say for Aβ42/40 “ASimoa”, as previously described, which 
greatly impacted our results. In all participants, it was 
shown that “G” was the best model based on our cri-
teria (Table  2). The model “G” had a modest accuracy 
for Aβ-positivity (AUC = 77.5; 95% CI 68.9–86.0). The 
AIC criteria ranked the model “GP” as the best fitted 
model and models defined as “G”, “ASimoaG”, “ASimoaGP”, 
and “GNP” were within 2 AIC units and not statisti-
cally different to “GP” in the LR tests (P > 0.05). How-
ever, the BIC favored the single biomarker model “G” 

Fig. 2  Model selection criteria. The decision tree shows the steps that were followed when deciding the best biomarker model in each of the 
analyses. AIC, Akaike information criterion; BIC, Bayesian information criterion

Table 2  Summary information of the selected biomarker models (original measurements)

Abbreviations: AIC Akaike information criterion, AUC​ area under the curve, BIC Bayesian information criterion, CU cognitively unimpaired, CI mild cognitive impairment, 
LRT likelihood ratio test

*P value of the likelihood ratio test comparing the selected model with the demographic model on the respective sample group

Model AIC BIC R2, unadjusted R2, adjusted AUC, 95% CI LRT x2 P value

IP-MS for Aβ42/40
  All participants AG 124.2 143.6 40.7% 37.5% 86.5% (79.7, 93.4) 53.3 < 0.0001*

  CU A 62.6 76.7 33.5% 25.9% 82.3% (68.5, 96.1) 16.7 < 0.001*

  CI AGP 59.2 77.0 58.7% 52.9% 93.5% (87.5, 99.5) 43.5 < 0.0001*

Simoa for Aβ42/40
  All participants G 145.5 159.4 22.2% 19.4% 77.5% (68.9, 86.1) 28.0 < 0.0001*

  CU G 71.9 81.4 11.0% 3.1% 72.8% (58.1, 87.6) 5.4 0.04

  CI GP 71.7 85.0 42.2% 37.6% 87.1% (78.4, 95.9) 32.4 < 0.01*

Demographic
  All participants – 155.6 166.7 12.7% 10.5% 70.7% (61.3, 80.0) – –

  CU – 74.0 81.7 2.4% − 4.0% 58.1% (41.9, 74.3) – –

  CI – 78.9 87.8 27.8% 24.5% 81.3% (71.0, 91.5) – –
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(159.4) rather than “GP” (161.2) to be best fitting model. 
In CU participants, the model “G” was also selected 
as the superior model for Aβ-positivity (AUC = 72.8; 
95% CI 58.1–87.6). Only “GN” was within 2 AIC units 
and was not statistically different to “G” (P = 0.29) but 
> 2 BIC units from the best fitted model. In CI partici-
pants, the model “GP” was selected as the superior 
model Aβ-positivity (AUC = 87.1; CI 78.4–95.9). Mod-
els “ASimoaGP” and “GNP” were within 2 AIC units and 
were not statistically different to “GP” (P  > 0.25). In 
summary, when using immunoassay instead of IP-MS 
determinations for “A”, our criteria selected “G” for pre-
dicting Aβ-positivity in all participants and CU par-
ticipants. The model “GP” was selected for predicting 
Aβ-positivity in CI participants.

Comparing selected models for Aβ‑positivity
We compared the selected models from each category 
(all participants, CU participants and CI participants) 
from the analysis which included “AIP-MS” versus the 
analysis which used immunoassays for “ASimoa”. In two 
scenarios (all participants and CI participants), mod-
els that included “AIP-MS” statistically outperformed 
the equivalent analysis without; all participants (“AIP-

MSG” versus “G”, P  = 0.017) and CI participants (“AIP-

MSGP” versus “GP”, P = 0.042). In CU participants, no 
statistical superiority was observed (“AIP-MS” versus “G”, 
P = 0.20).

Robustness of plasma biomarkers models for Aβ‑positivity
Next, after demonstrating that certain biomarkers 
models have superiority in determining Aβ status at 
different stages of the disease, we sought to perform a 
robustness analysis to investigate if the selected models 
would remain constant if the biomarker values were to 
change within a given simulated CV. We performed 10 
iterations of randomly changed values for each one of 
the assays (Aβ42/40 defined as a single assay). Firstly, 
we changed biomarker values within and up to the 
reported CV of each assay (see methods), and secondly, 
we changed biomarker values within and up to 5%, 10%, 
15%, and 20%—anticipating larger variations in multi-
laboratory comparisons. The same model selection 
decision tree (Fig.  2) was then applied to each robust-
ness iteration.

Overall, the robustness of the reported variations did 
not largely impact on the model selection (Supplemen-
tary Table  1). However, if an increased variation up to 
10% (or greater) was applied, the model selection shifted 
from “AIP-MS” to “G” in CU participants (Fig.  3A). Lim-
ited change in biomarker selection was seen for all and 
CI participants, with some deviation when CV varied at 
15–20%.

Discussion
In this study, our results denote that plasma Aβ42/40 
as determined by IP-MS was the best predictor of 
Aβ-positivity, followed by p-tau181 and GFAP. In a 
novel approach, preparing for such tests in clinical 
chemistry routine, we were interested in how varia-
tions in the biomarker measurements would impact the 
robustness of these biomarker performances. Random 
variations on the CV indicated that, around a simulated 
CV of 5%, the accuracy of IP-MS Aβ42/40 drops below 
to that of GFAP and p-tau181. In contrast, GFAP and 
p-tau181 performances remain stable even at a 20% 
CV. When biomarkers were evaluated in several com-
binations of models, IP-MS Aβ42/40 was the most sig-
nificant contributor in predicting Aβ-positivity at the 
preclinical stages of AD, and adding p-tau181, GFAP, or 
NfL did not significantly improve this finding. At the CI 
stages of the AD continuum, however, a model comb-
ing IP-MS Aβ42/40, GFAP, and p-tau181 was found to 
be the best indicator of Aβ-positivity and results in very 
high accuracy. In general, models that included IP-MS 
Aβ42/40 significantly outperformed model selections 
that included Simoa Aβ42/40 as an alternative. We then 
investigated how the variations in biomarker CV would 
impact on the optimal model selection. With small var-
iations in biomarker measurements, all selected models 
were preserved and shown to be robust. However, for 
CU participants, IP-MS measurements were not able 
to withstand a larger variation (CV > 10%), being subse-
quently replaced by GFAP in the majority of model iter-
ations. Originally selected Aβ-positivity models which 
included all participants and CI were robust, i.e., were 
most frequently selected, up to 15%.

The use of plasma biomarkers to highlight underlying 
cerebral Aβ pathology is greatly anticipated in clinical 
routine and disease-modifying trials, for both sympto-
matic and preclinical stages of AD. An increasing number 
of plasma biomarkers, shown to be related to Aβ pathol-
ogy, have now been reported [7, 15, 30, 31], but it is yet 
to be determined which combinations are best suited in a 
heterogeneous population (e.g., diagnosis independent), 
preclinical or symptomatic stages. In this study, we show 
that IP-MS Aβ42/40 have high accuracy in the detection 
of Aβ pathology at all stages of the AD continuum and, 
in combination with GFAP and p-tau181, had a very high 
accuracy to determine Aβ-positivity in CI (> 93%). There 
is a mixture of reports about the use plasma Aβ42/40 in 
the literature [32]. While immunoassay results of p-tau 
from differing platforms are seemingly concordant with 
reproducible results and measures of plasma NfL and 
GFAP tend to utilize the same Simoa technology [33], 
methods to determine plasma Aβ42/40 varies. This study 
shows the importance of method choice for the detection 
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of brain amyloidosis by plasma Aβ since, when IP-MS 
measures of Aβ42/40 were not included, Aβ-positivity 
was best represented by GFAP and p-tau181 and not 
by immunoassay determinations of Aβ42/40. It is also 
important to signify that models that included IP-MS sig-
nificantly outperformed models without it.

It is unlikely that Aβ PET will be replaced from the 
recruitment process in anti-Aβ trials, as target engage-
ment and possible termination of Aβ removal agents are 

necessary to determine participant’s baseline and subse-
quent changes in Aβ burden relative to the intervention 
process [4]. However, the plasma biomarker models dem-
onstrated in this study may act, with good accuracy, as 
important initial screening tools to enrich a population 
for a larger success rate of Aβ PET scan or tau PET scans 
[4] in the recruitment process. Our aim was to report the 
best plasma models for this process while acknowledg-
ing that IP-MS technology currently has constraints on 

Fig. 3  Model selection over random variation. Stacked bar chart shows the frequency that each model was selected when random CV variation 
was generated for each biomarker. The best model selected when using the original biomarker measurements is represented on the “Original 
values” bar. The following bars represent the frequency that a model was selected as “best model,” at each of the 10 iterations, when random CV 
variation was created ranging from 5 to 20%. The analysis was performed with all participants, within CU and within CI groups. A, plasma Aβ42/40; 
AG, plasma Aβ42/40 + GFAP; AGN, plasma Aβ42/40 + GFAP + NfL; AGP, plasma Aβ42/40 + GFAP + p-tau181; AUC, area under the curve; CI, 
cognitively impaired; CU, cognitively unimpaired; CV, coefficient of variation; G, plasma GFAP; GP, plasma GFAP + p-tau181
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availability and costs in comparison to semi-automated 
immunoassay methods. Thus, we included a commer-
cially available immunoassay which did not significantly 
add to any biomarker model and was inferior to IP-MS 
Aβ42/40, GFAP, and p-tau181 at the single biomarker 
level. Therefore, at this time, it is important to dissemi-
nate that IP-MS Aβ42/40 measurements cannot sim-
ply be replaced by immunoassay Aβ42/40 and, if IP-MS 
is not a viable option, Aβ-positivity is best represented 
by surrogate measures of Aβ pathology, e.g., GFAP and 
p-tau181, as shown in this study. This difference between 
Aβ methods could be explained by IP-MS being less 
prone to matrix effects that are particularly noticeable in 
complex biological fluids such as blood.

However, there are constraints to Aβ42/40 as a plasma 
biomarker which could be significant limiting factor in 
clinical chemistry routine. As Aβ42/40 is suggested to 
change by only 10% in Aβ-positivity individuals, com-
pared with 50% in CSF [7], a moderate change in assay 
variability could greatly influence the result. Our first 
robustness analysis, which focused on random varia-
tion (not bias) on the single biomarker level, denoted a 
diminishing performance of IP-MS Aβ42/40 as the CV 
increased. While IP-MS Aβ42/40 was the best perform-
ing biomarker, random variations ~ 5% lowered the accu-
racy below GFAP in CU participants and p-tau181 in CI 
participants. As the CV increased to 15%, an accepted 
level of intra-assay variation in clinical chemistry, IP-MS 
Aβ42/40 produced AUC’s only around 60% to predict 
Aβ-positivity. In contrast, GFAP and p-tau181 main-
tained the same level of accuracy regardless of intra-
assay variation. This demonstrates that plasma measures 
Aβ42/40 need to have a very low-level variability in order 
to maintain maximum accuracy. Given the more com-
plex nature of IP-MS protocol and heterogeneous sample 
collections, we feel that an analytical variability of 10% 
or higher is likely across laboratories, particularly in ad 
hoc sampling in routine testing. While simulated varia-
tions showed clear shifts of best performance for single 
biomarkers, models incorporating biomarker combina-
tions were more robust, remaining relatively stable with 
greater variations—IP-MS Aβ42/40 in combination with 
either GFAP (all participants) and p-tau and GFAP (CI) 
were relatively robust up to 20%. Again, however, in CU, 
where IP-MS Aβ42/40 alone was the best biomarker, 
higher variability affects this model selection, opting for 
GFAP at > 10% CV.

Despite both being antibody-based assays, the Simoa 
and IP-MS Aβ assays have somewhat different biochemi-
cal properties. However, it is unknown if these techni-
cal differences contribute to the observed performances. 
The Simoa assay utilizes the same principle as a sandwich 
immunoassay, where the target analyte is first bound by 

a capture antibody and this immunocomplex further 
refined by binding of a detection antibody following 
washing steps to remove unspecific binding. In the Simoa 
Aβ40 and Aβ42 assays, the same capture antibody com-
mon to both analytes is used while antibodies specific to 
either peptide are used for detection [34]. The Aβ40 and 
Aβ42 assays in the Simoa Neuro 4-plex E kit and Advan-
tage kit are based on the same biochemical principle 
except that (1) different Aβ antibodies are used in either 
kit, and (2) the latter kit provides multiplexing advan-
tages that allow Aβ40 and Aβ42 to be measured along-
side NfL and GFAP concurrently in the same sample. The 
IP-MS assay enriches for Aβ in plasma by precipitating 
the analyte signal by binding to an Aβ-specific antibody 
or a cocktail of Aβ antibodies coated onto paramagnetic 
beads. Following elution of the bound analytes, the signal 
is read with a mass spectrometer, using labeled synthetic 
peptides as quantification [32] standards. The biochemis-
try of different plasma Aβ assays have been summarized 
in a recent review [32].

Limitations
The foremost constraint in this study is that the sample 
size of the ADNI participants with all plasma biomarkers 
was limited (total, n = 118; CU, n = 50; CI, n = 68), which 
could have led to slightly reduced overall biomarker per-
formance. Furthermore, it is known that preanalytical 
procedures and protocol variations may affect biomarker 
analysis and results, and therefore, we strongly advise 
the replication of these findings in larger independent 
cohorts with these available biomarker methods. How-
ever, we are encouraged that these results are in line with 
developing evidence from the recent literature [30]—
namely, IP-MS Aβ being a strong predictor of amyloido-
sis [6, 7], particularly at CU [6] and p-tau181 being more 
important at CI [15]. In studies where IP-MS Aβ has not 
been included, GFAP has emerged as the principal candi-
date for amyloidosis [18, 19, 31, 35]. It must be noted that 
plasma p-tau217 and p-tau231 are variables not included 
in the ADNI cohort at this time. These additional p-tau 
biomarkers have both been shown to have high accuracy, 
together with a high fold change in AD, in determining 
Aβ pathology at both the preclinical and symptomatic 
phases of the disease and therefore may significantly con-
tribute to the model selections, if available [10, 36].

Conclusion
In this report, utilizing participants in the ADNI data-
base, we demonstrate that plasma Aβ, as indexed by 
IP-MS, is the simplest model that best determines Aβ 
burden at the preclinical stage. At the symptomatic phase, 
IP-MS Aβ in combination with GFAP and p-tau181 was 
found to be the simplest model with the highest accuracy. 
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However, the accuracy of plasma IP-MS Aβ42/40 to indi-
cate Aβ burden deteriorates with only a modest increase 
in analytical variation, which will pose as an issue in ad 
hoc testing in clinical routine or multicenter laboratory 
testing in trials. In contrast, despite lower overall accu-
racies, GFAP and p-tau181 are highly robust. In the 
absence of IP-MS Aβ measures, GFAP is the best predic-
tor of amyloidosis at the preclinical stage of AD and, in 
combination with p-tau181, best predicts amyloidosis at 
the symptomatic phase of the disease.
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