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Abstract

We develop new classes of semiparametric multivariate time series models based on Multi-Output

Gaussian Processes and warped Multi-Output Gaussian Processes. These describe relationships between

a current vector of observations and the lagged history of each marginal time series. We encode a serial

dependence structure through mean and covariance functions and introduce a more complex dependence

structure using copulas to couple each warped marginal Gaussian process. Within this class of models

our primary goal is to detect causality and to study the interplay between the causal structure and the

dependence structure. We do not, however, require true representation of the data generating process,

but we model structural hypotheses regarding how causality may have manifested in the observed vector

valued processes. With our framework we test the dependence with regards to the structures that are

specified, and can use testing for causality under different model assumptions as a way to explore the

data and the potentially complex dependence relationships. To perform the testing we consider several

families of causality testing and develop compound tests which first require estimation/calibration of the

mean and covariance functions parametrising the nonparametric vector valued time series. Our approach

allows very general nonlinear dependence and causal relationships which are not often considered in

classical parametric time series models, including causality in higher order information and joint extreme

dependence features. We provide a generic framework which can be applied to a variety of different

problem classes and discuss a number of examples to illustrate the ideas developed.

Throughout, we will consider, without loss of generality, two multivariate time series denoted by

Xt ∈ R
d,Yt ∈ R

d′ where one may assume, for instance, that these have been generated by observing

partial realisations of a generalised diffusion processes:

dXt = µX(t,X−k
t ,Y−l

t ,Z
−m
t )dt + ΣX(t,X−k

t ,Y−l
t ,Z

−m
t )dWt (1)

dYt = µY (t,X−k
t ,Y−l

t ,Z
−m
t )dt + ΣY (t,X−k

t ,Y−l
t ,Z

−m
t )dW ′

t , (2)

where {Zt}, which may or may not be included, is some real process that we will call side information,
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dWt, dW ′
t are two different Brownian motions, possibly with marginal serial correlation and/or instan-

taneous cross-correlation. All of those processes are only partially observed, and may be sampled at

irregular intervals. The form of drift and volatility in Equations (1 - 2) means that the processes {Xt} and

{Yt} can be conditionally dependent on each other, and this dependence can be introduced through both

the drift and the volatility. Such generalised diffusion models can induce in the marginal process between

{Xt} and {Yt} different types of extremal dependence, depending on the forms of the drift and volatility

functions.

We propose a smooth stochastic process statistical model to capture the smooth variation of the

partially observed time series represented by data {Xt}t>0, {Yt}t>0, {Zt}t>0 using multiple output Warped

Gaussian Process models. In this work we are interested in partial observations of these processes, for

which the partially observed time series of {Xt} and {Yt} will have different types of extremal dependence

characteristics. We wish to detect the presence or absence of statistical causality where such extremal

dependence features may or may not obfuscate the ability to detect causality in nonlinear partially

observed time series models.

The rationale for developing a semiparametric solution for modelling the partially observed time

series is that we may accommodate, through the use of Gaussian Process models, a wide variety of

features for the hypotheses about the trends and volatility and importantly their possible causal structures,

which can be formally tested in our framework. Furthermore the use of Warped Gaussian Process models

allows to incorporate higher order dependence such as extremal tail dependence features.

Statistical Causality.

The notion of causality that lies at the centre of our research is the concept of statistical causality,

based on comparing two predictive models. Quoting Wiener [1956]: For two simultaneously measured

signals, if we can predict the first signal better by using the past information from the second one than

by using the information without it, then we call the second signal causal to the first one. The null

hypothesis of no causal relationship from time series {Xt} to {Yt} means that including the past of {Xt}

does not improve the prediction of future of {Yt}. In a most general form this can be written as equality of

conditional distribution of Y , conditioning on either set of explanatory variables (X−k
t ,Y−l

t ,Z−m
t ) denote

past of the Xt,Yt,Zt time series up to lags k, l,m respectively):

H0 : p(Yt | X−k
t−1,Y

−l
t−1,Z

−m
t−1) = p(Yt | Y−l

t−1,Z
−m
t−1), ∀t∈Z (3)

H1 : p(Yt | X−k
t−1,Y

−l
t−1,Z

−m
t−1) , p(Yt | Y−l

t−1,Z
−m
t−1), ∀t∈Z.
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The type of casual dependence that is described by statistical causality is a mechanism that occurs at

multiple lags over time - which could have been triggered by a sequence of processes, not an individual

one. It can help to gain an insight into both cross-sectional and temporal dynamics of the data analysed.

Warped Multi-Output Gaussian Processes.

A Gaussian process is a Markov process, such that all finite dimensional distributions are Gaussian.

While Gaussian processes models can accommodate wide range of properties and are very attractive

for their easy implementation and optimisation, but they do not allow higher order dependence such as

extremal tail dependence features. One way to generalise Gaussian process models so that higher order

dependence can be handled, is to apply a transformation to the joint collection of Gaussian processes for

each marginal time series model. We apply mean-variance transformation that results in the transformed

variables having multivariate skew-t distributions and being finite dimensional realisations of a general

multivariate skew-t process.

Motivation for the Model Choice.

There are numerous advantages of using Gaussian Processes, beginning with: ease of optimisation

and interpretability of hyperparameters, flexibility, richness of covariance functions, allowing for various

model structures. Using a likelihood ratio type test with a GP is a very natural choice, as estimating GP

model parameters is often done on the basis of maximising likelihood, and therefore this estimation can

be incorporated into the compound version of the likelihood ratio test (Generalised Likelihood Ratio

Test, GLRT). From Gaussian variables, GPs inherited the property of being fully specified by the mean

and the covariance, and so testing for model equivalence inherently means testing for equivalence of

the mean and covariance functions. But many popular kernels do not have the ARD property, and

using them for a likelihood ratio test settings gives no easy way to account for causal structures in

covariance. Consequently, it is using GLRT with an ARD-GP that gives a uniformly most powerful test

with an unparalleled flexibility: known asymptotic distribution under the null, explicit evaluation and in a

closed form, and usefulness also for misspecified models. The proposed use of copula warping allows

introduction of additional dependence, in particular tail dependence, while keeping the likelihood in

closed form.

Application.

We provide a generic framework which can be applied to a wide range of problems, and which can

be readily tailored or further extended. The illustrative examples included demonstrate how a range of
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data properties can be encoded in the model, and how they might affect the detection of causality.

We present two real data application: to commodity futures data and inflation and interest rates.

We show how the framework can be used in practice, and how it can be combined with, or enhance,

more common approaches to analysing financial time series. Our observations are in line with financial

interpretations, but they also offer additional insight and pose thought-provoking questions.

Structure of the thesis.

This thesis presents the research as it evolved: starting from an overview of a range of the causality

methods already known, and demonstrating out why they are unsatisfactory. Subsequently, a new approach

is presented – a method based on Gaussian processes, that was developed to solve the drawbacks of the

methods presented in the first part. Afterwards, an extension is proposed to widen the range of dependence

structures, as well as marginal properties of the data that can be incorporated.

Chapter 1 introduces the topic of the thesis, and reviews relevant literature. Chapter 2 discusses

philosophical roots of the concept of statistical causality, as well as alternative notions of causality. After

illustrating some of the varied ways of conceptual representation of causality, we present four distinct ways

of modelling statistical causality. Chapter 3 contains background on the models considered: Gaussian

processes, copulas and selected distributions. Chapter 4 describes inference procedures used: assessing

hypothesis tests, generalised likelihood ratio test, permutation tests, and likelihood ratio test.

The second part, New Perspectives on Causality Representation and Inference, presents the main

contribution of our work. It starts with Chapter 5 containing the theoretical background for describing and

testing causality with GP models. Chapter 6 extends the model from the previous chapter by introducing

mean-variance transformation that results in a warped GP model, which can describe causality in the

presence of skewness and tail dependence. Chapter 7 describes how synthetic data has been simulated,

details the algorithm for approximating likelihood in the warped GP, and provides information on other

relevant algorithms and the software used to implement our method. Chapter 8 presents an extensive

experiment section, which aim to show, firstly, the good behaviour of the proposed procedures (model

sensitivity and misspecification analysis), secondly, good power of the test for a range of structures, and,

thirdly, the interaction of causality and tail dependence. Applications to real-world data are described in

Chapter 9, where time series for commodities and currency markets are analysed.

Finally, Chapter (10 presents the conclusions and directions for further development, and Chapter

(A) provides supplementary material.



10 Abstract

Impact Statement

Causal analysis is widely used in all areas of science, social science, engineering.

Understanding of causal relationships is a crucial step in the analysis of data, regardless

of its type. The novel methodology of modelling and testing statistical causality based on

warped multiple output Gaussian Processes is applicable to a very wide range of multivariate

nonlinear time series. The work in this thesis will open discussion about how different types

of dependence, causality included, can interact with each other, and how statistical properties

of the data alter those interactions and the recognition of causality.

This thesis also develops new classes of nonparametric multivariate time series models

based on warped multiple output Gaussian Processes. These classes are extensions of widely

popular Gaussian Process methods, and as such can be of interest to researchers in the field.

Their properties, and the way they are constructed, have been inspired by copula methods,

and skew-t copula in particular – important tools in financial risk management.

Outside of academia, this research could be of interest especially to the innovative

branches of financial and technological sector, open to inventions and new ways of building

investment strategies and managing risk. Insurers could utilise this work for risk pooling,

asset managers could apply it for dynamic asset allocation, economist – for forecast and

stress testing, banks and hedge funds – for interest rates trading. The fact that causality can

be detected even for misspecified models, together with flexibility inherited from Gaussian

Process component, allows the user to tailor the framework to their needs.

Our work includes an exploration of how statistical causality can be understood and

how it compares to other notions of causality. Our aim is therefore to provide a reference

point for understanding statistical causality that readers from a wide range of backgrounds

could consult.
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Chapter 1

Introduction

“ In all disciplines in which there is systematic knowl-
edge of things with principles, causes, or elements, it
arises from a grasp of those: we think we have knowl-
edge of a thing when we have found its primary causes
and principles, and followed it back to its elements. ”

Aristotle, Physics Book 1

This chapter presents an overview of the thesis. Starting with the motivation for pursuing the subject

of causality, we then show the origins and the evolution of the concept, and how our treatment of it relates

to other works. Subsequently, in the Contribution section we describe the novelty in our research, and we

conclude with description of the structure of the thesis.

1.1 Motivation

Causality has been an object of research since Ancient times, but while scientists were interested in

discovering causes of particular phenomena, studying causality as an abstract concept of its own was for

a long time a domain of philosophy. That changed in the mid-XX century, when Wiener asserted that

causality can be estimated, followed by Granger who proposed a practical implementation of Wiener’s

concept. By the beginning of XXI century the sheer number of publications describing, measuring and

testing causality became too vast for a single person to follow.

When I started my PhD, I felt that I had found an important topic: causality is a ubiquitous concept,

relevant and applicable in many fields, with the possibility to be mathematically defined and tested

in numerous ways. To make it more fascinating, the philosophical connection is important, since the

methods of causality do not generally reflect the everyday understanding of the word “causality”, and

understanding of what it is that they actually model becomes essential. This dissertation concentrates on

one particular conceptual representation of causality, called “statistical causality” (a short introduction to

other methods is provided in the Section 2.1).
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My research on causality started from re-discovering Granger causality, an elegant concept which

I first encountered, and ignored, in the Econometrics lecture during my Masters studies in Financial

Engineering, when it was introduced in the context of model selection in a linear regression problem.

When I was trying to narrow down my research interests, I considered two approaches to causality, one

proposed by Granger, and a very different one – by Judea Pearl (please see Section (2.1) for more details

about different notions of causality). The decision was made on the basis of the area of application I was

primarily interested in – I wanted to work with time series, and financial time series in particular. The

fact that Granger causality was also a research area favoured by my supervisor, Prof. Tomaso Aste, also

played a role. The MRes part of my PhD program has mostly been devoted to building my knowledge

of Granger causality and its extensions. I have chosen four methods to study in depth, the choice being

based on the popularity of the methods and on the utility to a range of different fields. Scientific findings

from the MRes project are in the article “Measures of Causality in Complex Datasets with Application to

Financial Data”, [Zaremba and Aste, 2014]. They have helped to shape the primary research questions for

this thesis.

Granger causality has been proposed for linear regression problems and is therefore limited in its

scope. To allow working with nonlinear relationships I have been researching several generalisations

of Granger causality as well as alternative formulations, and settled on methods from the fields of

econometrics, information theory and machine learning. The three methods I chose to compare with the

classical Granger causality were: transfer entropy (TE), kernel ridge regression (KRR) and a nonparametric

conditional dependence measure based on the normalised conditional cross-covariance operator (which I

will refer to as HSNCIC, for Hilbert Schmidt Normalised Conditional Independence Criterion). A short

summary of basic properties of the four methods is presented in Table (1.1).

All four methods were analysed in terms of, among others, recognising linear and nonlinear causality

in multivariate time series, estimation, parameter selection, and ability to estimate causality in the presence

of nonstationarity. The investigation of theoretical properties has been supplemented by experiments on

simulated data structures with known causal structure, and on real data. The publication “Measures of

Causality in Complex Datasets with Application to Financial Data”([Zaremba and Aste, 2014]) includes

an analysis of economic data and application to equity and currency data. The economic data consisted of

United States Consumer Price Index and US Dollar 1 month BBA LIBOR, both from Thomson Reuters

and with the sampling period from December 1995 to June 2013, end of month data. The currency

application used daily data for the period from 19 July 2010 to 22 July 2013 for six curry trade currency

pairs (AUDJPY, CADJPY, NZDJPY, AUDCHF, CADCHF, NZDCHF), Standard & Poor’s 500 Index, and

the Chicago Board Options Exchange Market Volatility Index – the last one used as side information.
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Section (2.2) of Chapter (2), Overview and Comparison of Existing Causality Methods, provides

full details of the analysis of the four causal methods under consideration. Out of all the four methods,

kernel ridge regression performed the best in terms of not rejecting the true hypothesis of lack of causality

(small type I error) and rejecting the false hypothesis of lack of causality, i.e. spurious causality (small

type II error). This method achieved small type I error as well as small type II error regardless of whether

the data generating mechanism was linear or not, and whether the causality was direct or indirect. What

is more, kernel ridge regression based test statistic can be estimated in a way that is computationally

stable and efficient for small samples and high dimensionality. The parameter optimisation, however, has

to be achieved through methods such as cross-validation. Cross-validation is not only computationally

expensive, it does not allow the model to adapt parameters to each set of data, and in consequence it

enforces at least some level of local stationarity; together with the fact that the optimised parameters

cannot easily be interpreted in terms of structural properties of the data, the model might not adapt well to

data out of the learning sample. The other three methods suffer from a range of disadvantages. Granger

causality in the original form is unable to recognise nonlinear causality for a range of data. Typically the

estimators used for transfer entropy are based on binning procedures, or clustering procedures like nearest

neighbours, and they are less numerically stable than estimators for kernel ridge regression: exhibiting

high errors of both type I and type II for small samples, and suffering from the curse of dimensionality1.

HSNCIC should, as a kernel method, be computationally efficient for high-dimensional data, but in our

experiments it has failed to reject the hypothesis of no causality when used on four dimensional systems

(high type II error). Neither transfer entropy nor HSNCIC parameters can be interpreted in terms of data

properties. There is no literature on TE, HSNCIC, or on krr for that matter, that would provide estimators

with asymptotic properties known, outside of special cases, and as such permutation tests have to be used

for significance assessment. Finally, none of the four methods are able to deal with structural properties

such as nonstationarity2 and long memory without having to change the model.

The objective of my research became to improve on the kernel ridge regression, without sacrificing

its main strengths, and to expand the methodology to allow better understanding of causality as a part

of dependence structure, as well as support special structures in the marginal model (model describing

distribution of each of the time series separately) and in the joint model. I wanted to research the

following directions:

1. Parametrisation of different forms of statistical causality, in particular second order aspects of the

1The curse of dimensionality is a bigger problem for the estimators based on binning, than based on nearest neighbours. In my
experience, naive binning (histogram based approaches) typically fail in four dimensions. Approaches that use vector quantisation
are more suited for higher dimensional data systems, but they are more difficult to implement, and do not scale well with large data,
[Faes et al., 2011, Dimitriadis et al., 2016]

2Transfer entropy is not intrinsically unable to deal with nonstationary data, as it is possible to use density estimators for
nonstationary data. This approach does not seem to be used, but instead it has been proposed to use Partial Symbolic Transfer
Entropy [Papana et al., 2016] or use computationally expensive estimators on ensemble of realisations [Gómez-Herrero et al., 2015,
Wollstadt et al., 2014].
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GC TE krr HSNCIC
multivariate time series + + + +

nonlinear causality − + + +

Markov structure + + + +

known conditional distribution + − − −

test statistics in closed form + + + +

known asymptotic distribution (under null hypothesis) + − + −

causality in mean and in other statistical features − ± + ±

parameters interpretable in terms of model features + − − −

marginal distribution: heteroscedasticity − − − −

marginal distribution: tail dependence − − − −

marginal distribution: long memory − − − −

dependence structure: asymmetry − − − −

dependence structure: leptokurtic tails − − − −

dependence structure: tail dependence − − − −

testing framework to assess power of the test + − − −

Table 1.1: Properties of the four methods for statistical causality, analysed in Zaremba and Aste [2014]

process such as linear and nonlinear causality in covariance. The challenge is to form models that

are consistent with such parametrisations and allow to form tractable causal tests.

2. Methods for modelling and testing causality that could be applied in the multivariate time series

context, with linear and nonlinear causality present. In this context, we would like to achieve this

with models accounting for the following properties:

(a) flexible class of models that can capture linear / nonlinear causality, while admitting Markov

structure and knowledge of the conditional distribution of the model;

(b) test statistics can be evaluated in closed form;

(c) known asymptotic behaviour of the test statistic under the null;

(d) statistically unbiased, efficient, consistent and computationally efficient parameter optimisa-

tion, for which parameters can be interpreted with respect to the structural properties of the

model;

(e) can detect causality in the mean, covariance function, or higher order moments.

3. Extending the marginal models to incorporate range of special structures, for example

nonstationarity, heteroscedasticity, leptokurtic tails, long memory.

4. Broadening the framework, so that the joint model allows a wider range of dependence structures,

for example: asymmetry, leptokurtic tails, tail dependence. What influence do such statistical

features in underlying data generating mechanism have on the ability to perform inference, detect

causality, and accuracy and power of the test?
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5. How can one develop a testing framework to asses the power of the test for the models that meet

the requirements from the points 1 through 4?

To address the proposed questions, and study each of these attributes in a common framework,

without the need to change models for different types of data, a class of models is needed that is

sufficiently rich, but also interpretable. Following the review of literature on the topic, we have concluded

that models based on Gaussian processes (GP) allow us to address all of our research questions. GPs

are nonlinear, semiparametric models that can be used for autoregressive multivariate time series and

that have many desirable properties. Deriving from the properties of Gaussian distributions, they have

known conditional distributions, which results in test statistics that can be evaluated in closed form, and

known asymptotic behaviour of the test statistic under the null. Hyperparameter optimisation can be

performed in an efficient and easily interpretable way. Since GP model hyperparameters can be optimised

by maximising likelihood, then the likelihood ratio test – which is the uniformly most powerful test for

comparing model fit – also provides optimum parameters and can be used as a compound test. What is

worth emphasising, is that the Generalised Likelihood Ratio Test (GLRT) being a test for model selection,

allows to test for a model that is most useful, rather than one that is well specified. Furthermore, the

flexibility of a GP means that a wide range of data can be modelled through choice of functional form

for the mean and covariance functions. The practical consequences is that the dependence is tested with

regards to the structures that are specified, allowing testing for causality under many different model

assumptions, which - crucially - means the framework can still capture causal relationships in misspecified

context. The subsequent extension of the model is inspired by machine learning methods such as Gaussian

mixture models, mean-variance transformations and GP warpings. This research proposes warping GP

with a leptokurtic transform based on mean-variance mixing with an inverse gamma distribution.

The following acronyms will be used in this thesis:

GP - time series

GPC - random variable

wGP - warped Gaussian Process

wGPC - our framework using warped Gaussian Process for Causality

GLRT - Generalised Likelihood Ratio Test

1.2 Notation
In this thesis we will use the following notation:

{Yt} time series

Yt random variable



38 Chapter 1. Introduction

Yt column random vector

yt, yt realisation (univariate or multivariate)

Yt1:t2 =
[
Yt1 , ...,Yt2

]
random vector

k, l,m lag values, typically associated with, respectively, {Xt} , {Yt} , {Zt}

Y−l
t =

[
YT

t−l+1,Y
T
t−l+2, ...,Y

T
t

]
random vector

Y−l = Y−l
t1:t2 = [Yt1−l+1:t2−l+1,...,Yt1:t2 ] random vector

Ft filtration

F Y
t natural filtration for process Yt

Qt random vector, used to denote joint distribution [Xt,Yt,Zt]T , or

its subset

A matrix

Ai, j i, j-th element of a matrix A

aX,1 coefficient, or element of a matrix with alternative indexing

||Yt1:t2 ||2 quadratic norm

||Yt1:t2 ||max = maxt∈{t1,...,t2}
{
Yt1 , ...,Yt2

}
maximum norm

d dimension

q a difference in dimensionality between model A and B

p, px, py number of lags

Xt ⊥⊥ Yt | Zt conditional independence of random variables Xt,Yt, conditioned

on Zt

π(Y) density of random variable Y

F(Y) distribution of random variable Y

π constant 3.1415...

�(Y = y) probability of an event Y = y

ζ(t), t ∈ {t1, ..., t2} random permutation in the set t ∈ {t1, ..., t2}

1(M) characteristic function of a set M

H Hilbert space

⟨·, ·⟩ inner product

⟨·, ·⟩H inner product associated with Hilbert spaceH

A a linear operator

ϵt, ϵ
X
t , ϵ

Y
t (additive) noise; typically we will assume that its i.i.d. N(0, σ2)

µ(·), µ, µX , µY mean function

k(·, ·), k, kXkY covariance (kernel) function

µ,µX ,µY mean vector
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K,KX ,KY ,KXX ,KYY ,KXY ,KYX covariance (kernel, Gramm) matrix

⊕ direct sum of matrices

∗ convolution of two functions

Lp, Lp(X) An Lp space of functions on X, for which the p-th power of the

absolute value is Lebesgue integrable

C(u1, ..., un) n-dimentional copula

| x | absolute value of x

δ(·, ·) Kronecker delta

Vec(.) operator converting a matrix into a vector.

1.3 Related work
Over sixty years ago, Norbert Wiener formulated causality as a mathematical, rather than philosophical

concept, one that was based on predictive models:

“For two simultaneously measured signals, if we can predict the first signal better by using the past

information from the second one than by using the information without it, then we call the second signal

causal to the first one.” Wiener [1956].

In 1963, Clive Granger, the Nobel laureate in economics from 2003, proposed what is often seen as

the first testable definition of causality, consistent with Wiener’s definition, Granger [1963]. Granger’s

concept was defined for stochastic processes and was consistent with time direction and consequently,

with the philosophical and common sense understanding that cause precedes the effect. The context was

that of linear, multivariate, stationary and nondeterministic time series with autoregressive representation.

Let {Xt} , {Yt} be the two time series whose causal relationship will be analysed, and {Zt}will be a third

time series called “side information”. All three time series are stationary and non-deterministic, and can be

represented with a basic form of autoregressive representation, for which we will temporarily introduce a

shortened notation QT
t = [Xt,Yt,Zt], with Xt ∈ R

dX ,Yt ∈ R
dY ,Zt ∈ R

dZ , and so Qt : Rd, d = dX + dY + dZ .

Let F X
t ,F

Y
t ,F

Z
t be natural filtrations for, respectively, Xt,Yt,Zt.

A0Qt =

p∑
i=1

AiQt−i + ϵ t, Qs is adapted to a filtration F X
s ∪ F

Y
s ∪ F

Z
s (1.1)

E
[
ϵT

t ϵ s

]
= 1t=s, (1.2)

where Ai are d × d matrices, and ϵT
t =

[
ϵ1,t · · · ϵdt

]
is white noise. The assumption of noise being

standardised is not critical, and in fact it is often relaxed. The maximum lag p, which can be infinite, has
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to be chosen as part of the model selection.

For the stochastic process Yt, we can use an optimal linear predictor PY,t [X,Y,Z] based on the history

of all three time series {Xt} , {Yt} , {Zt}, and we compare it to PY,t [Y,Z] – an optimal linear predictor based

on the history of two time series {Yt} , {Zt}. The optimal linear predictors are chosen to minimise the

prediction error variances:

VY [X,Y,Z] =E
[(

Yt − PY,t [X,Y,Z]
)2
]

(1.3)

VY [Y,Z] =E
[(

Yt − PY,t [Y,Z]
)2
]

(1.4)

Then Granger defines causality of the process {Yt} by the process {Xt}, within the set of the three time

series {Xt} , {Yt} , {Zt}, denoted by {Xt} ⇒ {Yt}, if VY [Y,Z] − VY [X,Y,Z] > 0. There is no causality in

Granger sense, if VY [Y,Z] − VY [X,Y,Z] = 0, which is denoted by {Xt}⇏ {Yt}. Testing is performed for

failing to reject or not the null hypothesis of lack of causality:

H0 : VY [Y,Z] − VY [X,Y,Z] = 0, no causality of the process {Yt} by the process {Xt} (1.5)

H1 : VY [Y,Z] − VY [X,Y,Z] > 0, causality of the process {Yt} by the process {Xt} (1.6)

The test statistic is based on strength of causality {Xt} ⇒ {Yt}, denoted C(X,Y):

C(X,Y) = 1 −
VY [X,Y,Z]

VY [Y,Z]
, 0 ≤ C(X,Y) ≤ 1. (1.7)

In a vector autoregressive model, the value of the strength of causality is meaningful, because if the null

hypothesis of no causality is true, then the strength of causality equals zero and high value of strength

of causality will often be interpreted as meaning that the actual causal effect is “strong”. While the

latter is not a precise statement, high value of the estimate of C(X,Y) is consistent with rejecting the null

hypothesis with high confidence. However, a more popular test statistic is the following, called measure

of linear feedback by Geweke [1982]:

LGC
X→Y = log

[
VY [Y,Z]

VY [X,Y,Z]

]
. (1.8)

If all of the processes are Gaussian, then Granger proposes using the test statistic LGC
X→Y , which is

asymptotically chi-square distributed, [Granger, 1963, Whittle, 1953]. The estimator L̂GC
X→Y of the test

statistic LGC
X→Y is based on a approximations (finite dimensional and finite lag and finite sample) of

prediction error variances (V̂ (·) is used for finite approximation), with N - sample size, p - maximum
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number of lags, d - the dimensionality of the data:

L̂GC
X→Y = (N − d − p) log

[
V̂Y

[
Y,Z; p

]
V̂Y

[
X,Y,Z; p

] ] ∼ χ2
p if {Xt}⇏ {Yt} . (1.9)

For completeness, before proceeding with, mostly, chronological description of the evolution of

Granger’s concept, we would like to point out two tests similar to the one from Equation (B.5). Those

tests instead of using approximations of prediction error variances V̂(·), use sums of squared residuals

RS S . Let us denote the sum of squared residuals for the prediction PY,t [X,Y,Z] as RS S XYZ , and the

sum of squared residuals for the prediction PY,t [Y,Z] as RS S YZ . The following two test statistics can be

defined, [Hamilton, 1994, Hlaváčková-Schindler et al., 2007]:

LGC,2
X→Y =

(RS S YZ − RS S XYZ) /p
RS S XYZ/ (N − 2p − 1)

, L̂GC,2
X→Y ∼ Fp,T−2p−1 if {Xt}⇏ {Yt} (1.10)

LGC,3
X→Y =

N (RS S YZ − RS S XYZ)
RS S XYZ

, L̂GC,3
X→Y ∼ Fp,T−2p−1 if {Xt}⇏ {Yt} . (1.11)

In later years, Granger’s definition of causality became known as Granger causality, or less often

Wiener-Granger causality.

Granger also discussed analysing causality in the frequency domain – this approach made Granger

causality particularly useful in the field of neuroscience3. The frequency approach is applicable in

stationary setting, and does not change the information content or explanatory power. We direct the reader

to other works of Granger [1969, 1980], for spectral methods in causality, and also for discussion about

strengths and shortcomings of Granger’s method. The evolution of Granger’s approach can be seen in the

publication about causality between stock prices and currency exchange rates, Granger et al. [2000].

Of particular importance for the Granger causality in frequency domain are the works Geweke [1982,

1984b], who gave technical conditions for uniform boundedness of cross-power spectral density and

guarantees for square summability of the regression coefficient. The focus of the thesis is the time domain,

but the approach is applicable to the frequency domain, if one wanted to extend it.

In the following years, the concept of causality proposed by Granger became a very popular tool for

economic analysis, see Sims [1972], Hamilton [1983], Thornton and Batten [1985], Joerding [1986], Lee

[1992], Hiemstra and Jones [1994]. In 1972, Christopher Sims attempted to verify a hypothesis of key

importance to the field of macroeconomics: Milton Friedman and Anna Schwartz’s assertion that money

(monetary disturbances) was a key factor affecting output, and that this relationship was causal. Sims has

found that:

“(...) the hypothesis that causality is unidirectional from money to income agrees with the postwar

3Neuroscience has been one of the bigger fields of applications of methods of statistical causality. For a review of literature on
application of Granger causality in neuroscience, please see: [Seth et al., 2015] and references therein, as well as [Bressler and Seth,
2011], Porta and Faes [2015], [Seth, 2010] and Barnett and Seth [2014]
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U.S. data, whereas the hypothesis that causality is unidirectional from income to money is rejected. It

follows that the practice of making causal interpretations of distributed lag regressions of income on

money is not invalidated (on the basis of this evidence) by the existence of “feedback” from income to

money.” [Sims, 1972]

In his later publication, Sims analysed the relationship between money and income in a wider context,

including interest rate data, [Sims, 1980a,b], and found out that the causal effect from income to money

has disappeared. Typically, the interpretation is that side information (interest rate data) is a common

factor, whose inclusion in the analysis implies that a variable (money) is an indirect rather than a direct

cause of the second variable (income). In particular, Sims found that an innovation in the nominal rate of

interest leads to a decline in output; King and Watson (1996) later referred to this as the “inverted leading

indicator phenomenon”. This work led Sims to retract his view on the Friedman-Schwartz hypothesis. As

an “interesting working hypothesis”, he adopted the idea that monetary policy actually has little to do

with output fluctuations. Instead, he conjectured that the inverted leading indicator phenomenon reflects

the operation of real shocks, with monetary disturbances playing only a minor role in fluctuations. The

findings of a widely read publication (Litterman and Weiss, 1985) seem to provide support for Sims’

hypothesis.

The aforementioned paper, Sims [1972], was the first substantial application to economic analysis

and it has stimulated many interesting discussions in the field, both about the methodology and the

applications. The statistical test that Sims has suggested a test that takes in consideration future values of

the time series. The test has not been written with a precise mathematical notation:

We can always estimate a regression of Y on current and past X. But only in the special case where

causality runs from X to Y can we expect that no future values of X would enter the regression if we

allowed them. Hence, we have a practical statistical test for unidirectional causality: Regress Y on

past and future values of X, taking account by generalised least squares or prefiltering of the serial

correlation in w(t). Then if causality runs from X to Y only, future values of X in the regression should

have coefficients insignificantly different from zero, as a group. [Sims, 1972]

Literature provided different formulation for testing Sim’s causality, for example: Jacobs et al. [1979],

Florens and Mouchart [1982], Eichler [2001], Chicharro [2014]. Sims has considered causality in the

context of linear regression, and this is also the approach that Jacobs et al. [1979] has taken, while the

other three sources consider more general nonparametric expression - in line with what we will later see

as evolution of formulations of Granger causality concept. In bivariate case, Granger causality and Sims

causality are equivalent, [Jacobs et al., 1979, Florens and Mouchart, 1982, Chicharro, 2014].

Jacobs et al. [1979] discuss the usefulness and difficulties in interpretation of Granger’s and Sim’s

work. We will concentrate on the former, as Jacobs proves they are equivalent. Their critique addresses

disparity between testable and intuitive definitions of causality. Furthermore, Jacobs et al. [1979] argue
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that any specification error results in the causality test losing interpretability. Their arguments are

illustrated on the following structural model:

Xt = aX,0Yt + aX,1Xt−1 + aX,2Yt−1 + ϵXt (1.12)

Yt = aY,0Xt + aY,1Xt−1 + aY,2Yt−1 + ϵYt. (1.13)

We assume that ϵXt, ϵYt are independent and serially uncorrelated random variables, with zero means, and

variances σ2
Xt, σ

2
Yt, respectively. The reduced form of the equations above is:

 Xt

Yt

 = B

 Xt−1

Yt−1

 + εt, (1.14)

where, under assumption of aX,0aY,0 , 1, the matrix B can be expressed as:

B =
(
1 − aX,0aY,0

)−1

 aX,1 + aX,0aY,1 aX,2 + aX,0aY,2

aY,0aX,1 + aY,1 aY,0aX,2 + aY,2

 (1.15)

and the new error term is:

εt =
(
1 − aX,0aY,0

)−1

 1 aX,0

aY,0 1


 ϵX,t

ϵY,t

 . (1.16)

The extent to which the time series {Xt} affects {Yt} is assessed with one of the three hypotheses:

H1: aY,1 = aY,0 = 0. Disturbance in the equation of Xt is not transferred into Yt. [Jacobs

et al., 1979] describe it as “Xt does not cause Yt”.

H2: aY,0 = 0. Current disturbance in the equation of Xt is not transferred into Yt,

also called lack of “instantaneous causality”, or “Yt is not contempo-

raneously exogenous”.

H3: aY,1 + aY,0aX,1 = 0. Optimal linear prediction of Yt does not depend on Xt, lack of

Granger causality. Jacobs et al. [1979] describe it as “Xt is not

informative about Yt”.

The hypothesis H3 – Granger causality – becomes the same as H1 if there is no instantaneous

dependence.

Jacobs et al. [1979] point out, that due to identification issue, only the parameters of the reduced

form – the four coefficients of the matrix B from Equation (1.14) – can be estimated, but not the six

parameters of the structural model from Equations (1.12 - 1.13). In consequence, only the hypothesis H3
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can be estimated. We note that H3 being false implies that H1 is false, but H3 being true does not imply

that H1 is true. This means that if the test statistic for H3 is small, the data will support the hypothesis

that Xt is not informative about the future of Yt (Xt does not cause Yt in the sense of Granger), but can

have infinitesimal effect on Yt. It is possible therefore to gather evidence against the hypothesis of lack of

causality, but not in favour of it, and at the same time the evidence against this hypothesis can be attributed

to a slight misspecification.

The argument of Jacobs et al. [1979] describes one of the biggest shortcomings of the Granger’s

method. While their argument has been demonstrated on a model with instantaneous effect, we would

like to note that the same problem with identification will take place if any two, or more, lags were taken

into consideration.

The relationship between Granger’s and Sims’ concepts of non-causality are also the subject of

Florens and Mouchart [1982] and Florens and Mouchart [1985] who give conditions for their equivalence.

What is most interesting from our point of view, is that they formulate non-causality in terms of conditional

independence of σ-fields, or, heuristically, in terms of so-called “information sets”. A continuation of

their work has led to publication by Florens and Fougere [1996] who propose defining non-causality

in continuous time, which we present below. Process Yt is indexed by t ∈ I ⊂ R+. Yt is a real valued

measurable function defined on a probability space (Ω,A, P). Three sets of filtrations are defined: minimal

filtrationHt generated by the process Yt, Gt to which Yt is adapted but representing reduced information,

and the full information Ft to which Yt is also adapted, meaning:

Ht ⊂ Gt ⊂ Ft, t ∈ I. (1.17)

The notationHt ⊂ Gt ⊂ Ft resembles the notation introduced for the Equation (1.1), although in the latter

the filtrations F X
t ,F

Y
t ,F

Z
t are explicitly introduced as generated by the processes Xt,Yt,Zt, while the

filtrationsHt,Gt,Ft do not refer explicitly o stochastic processes, although they could be interpreted as

associated with stochastic processes Yt, (Yt,Zt) and (Yt, Xt,Zt).

Florens and Fougere [1996] defines weak global non-causality and strong global non-causality

through equality of expectations and conditional independence:

H1 : E (Yt | Fs) = E (Yt | Gs) , ∀s,t ∈ I, (Ft) does not weakly globally cause Yt, given (Gt) (1.18)

H2 : Yt ⊥⊥ Fs | Gs, ∀s,t ∈ I, (Ft) does not strongly globally cause Yt, given (Gt) (1.19)

In our research we are interested in strong non-causality. Although we use discrete time in our definitions,

continuous time can be straightforwardly introduced.

In 1994, a well-known tests for nonlinear causality has been proposed, based on nonparametric

estimators of temporal relations within and across time series, Hiemstra and Jones [1994]. For the bivariate
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model {Xt} , {Yt}, the hypothesis of lack of causality was written as equality of conditional distributions:

H0 : π
(
Yt | Xt−px:t−1,Yt−py:t−1

)
= π

(
Yt | Yt−py:t−1

)
, (1.20)

where px denotes a lag for the time series {Xt}, py denotes a lag for the time series {Yt}. The equality of

the two conditional densities from the Equation (1.20) can be equivalently expressed, using Bayes law, as:

H2
0 :

π
(
Yt,Xt−px:t−1Yt−py:t−1

)
π
(
Yt−py:t−1

) =
π
(
Yt,Yt−py:t−1

)
π
(
Yt−py:t−1

) π
(
Xt−px:t−1,Yt−py:t−1

)
π
(
Yt−py:t−1

) . (1.21)

The joint distributions from Equation (1.21) can be expressed in terms of correlation integrals CW (ϵ):

CW (ϵ) = P(||W1 −W2||max < ϵ), W1,W2
i.i.d.
∼ W (1.22)

Subsequently, Hiemstra and Jones [1994] argue that the null hypothesis from Equation (1.21) implies:

H3
0 :

CYt ,Xt−px :t−1Yt−py :t−1 (ϵ)

CYt−py :t−1 (ϵ)
=

CYt ,Yt−py :t−1 (ϵ)

CYt−py :t−1 (ϵ)

CXt−px :t−1,Yt−py :t−1 (ϵ)

CYt−py :t−1 (ϵ)
. (1.23)

The associated test statistic FHJ
X→Y is defined as a difference between the left-hand and right-hand

side ratios in the hypothesis H3
0 , Equation (1.23):

LHJ
X→Y =

CYt ,Xt−px :t−1Yt−py :t−1 (ϵ)

CYt−py :t−1 (ϵ)
−

CYt ,Yt−py :t−1 (ϵ)

CYt−py :t−1 (ϵ)

CXt−px :t−1,Yt−py :t−1 (ϵ)

CYt−py :t−1 (ϵ)

 . (1.24)

Estimator for correlation integrals CW (ϵ) are proposed

The test statistic based on the difference between the left and the right side of Equation (1.23) has

normal distribution.

The Hiemstra-Jones test for nonlinear causality has gained popularity, however Diks and Panchenko

[2005] give a counterexample for when the hypothesis H0 from Equation (1.20) is true, but the hypothesis

HHJ
0 from Equation (1.23) is not true.

In 2000, Schreiber [2000] published a paper where information-theoretical measure of transfer

entropy was defined as a way to measure causality. Transfer entropy became one of the most popular

nonlinear methods for statistical causality. It has been designed to measure departure from generalised

Markov property, as in Equation (1.20): Transfer entropy can be defined in terms of Shannon entropy

[Shannon, 1948], or related measures of mutual information, or conditional entropy – with the latter

being the best conceptual representation of the departure from Markov property in Equation (1.20). Let
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conditional (Shannon) entropy be defined as:

H(X | Y) = −
∫ ∫

π(x, y) log π(x | y)dxdy, (1.25)

then the transfer entropy is defined as:

LT E
X→Y = H(Y | Yt−k:t−1) − H(Y | Xt−k:t−1,Yt−k:t−1). (1.26)

Transfer entropy is a generalisation of Granger causality that can be parametric and nonparametric.

For variables that are distributed normally, transfer entropy is equivalent to Granger causality [Barnett

et al., 2009] , and it can be seen as a likelihood ratio [Barnett and Bossomaier, 2012] , with known

asymptotic properties. The popularity of transfer entropy is a result of the fact that it does not require any

parametric model assumptions. However, if estimated as a nonparametric model, transfer entropy requires

numerical estimation that is computationally expensive and potentially less practical than other methods.

In low-dimensional case, a simple and popular solution is to use the histogram of the embedding vectors

[Lungarella et al., 2007a]. Algorithms for calculating transfer entropy are typically based on algorithms

for estimating entropy, and those include a data-efficient technique based on nearest neighbours estimators,

[Lindner et al., 2011, Kaiser and Schreiber, 2002, Schreiber, 2000]. Please refer to [Hlaváčková-Schindler

et al., 2007] for an in-depth reference for estimation of transfer entropy. Asymptotic behaviour of

nonparametric transfer entropy cannot be easily modelled, which means that it has to be tested with, for

example, a bootstrap test, (Chávez et al. [2003]).

Instead of modifying the null hypothesis or choosing a different test statistic for testing the hypothesis,

a popular approach to generalising Granger causality is to start with a different predictive model. Ancona

et al. [2004] took the linear autoregressive model from Equation (1.1), which we write below as two

alternatives for explaining Yt:

Model A: Yt = aT
A,YYt−p:t−1 + ϵ

A
Y,t (1.27)

Model B: Yt = aT
B,YYt−p:t−1 + bT

B,YXt−p:t−1 + ϵ
B
Y,t. (1.28)

It is proposed to alter the embedding vectors from Equations (1.27 - 1.28) using n-dimensional real vectors

Φ,Ψ, such that Φ = (ϕ1, ..., ϕn),Ψ = (ψ1, ..., ψn) and ϕi(), ψi() are nonlinear radial basis functions (RBF).

For n centres X̃i, Ỹi chosen using a clustering procedure, the RBFs have the following form:

ψi(X) = exp
(
− || X − X̃i ||2 /2σ2

)
(1.29)

ϕi(X) = exp
(
− || Y − Ỹi ||2 /2σ2

)
. (1.30)
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The nonlinear predictive models formulated with RBF are now:

RBF Model A: Yt = α
T
A,Y Φ

(
Yt−p:t−1

)
+ ϵA

Y,t (1.31)

RBF Model B: Yt = α
T
B,Y Φ

(
Yt−p:t−1

)
+ βT

B,Y Ψ
(
Xt−p:t−1

)
+ ϵB

Y,t. (1.32)

For the null hypothesis of lack of causality as before, the test statistic LRBF
X→Y measures the difference

of prediction errors eA
Y,t, e

B
Y,t:

LRBF
X→Y = eA

Y,t − eB
Y,t. (1.33)

If LRBF
X→Y > 0 then incorporating Xt improves the prediction of Yt which can be interpreted as causal

influence from Xt to Yt. Analogously, one can test for causality in the opposite direction.

The growth of Machine Learning, and popularisation of kernels - which lead to many linear models

being generalised to nonlinear by kernelisation, has brought important developments to the studies of

statistical causality. One of the earliest methods of kernelisation was by some of the co-authors of the

already mentioned Ancona et al. [2004], who extended the radial basis approach by changing the radial

basis functions to radial kernels (Marinazzo et al. [2008b,a]). This meant a change from describing the

feature maps and feature space explicitly to describing them implicitly using the reproducing kernels

(please refer to Chapter 3 for an overview of kernels). To kernelise Granger causality Marinazzo et al.

[2008b] used the geometric interpretation of linear least squares regression. The idea was to start from

describing the residuals of the two compared models in terms of linear projections onto the spaces spanned

by the regressors respective to the two models. Such a description would allow to formulate the metric

used to quantify Granger causality in terms of inner product of regressors and hence enable the application

of the kernel trick.

The first example of kernel trick in the context of statistical causality that we provide is from the

publication by Marinazzo et al. [2008b]. In a bivariate model, we are interested in assessing causality

between the time series {Xt} ⇒ {Yt}, by studying the decrease in variance of prediction errors, see

Equation (1.6). The test for improving prediction is based on the comparison of the two models from

Equations (1.27 - 1.28). Fitting a linear regression means that a vector of responses is represented as a

linear combination of the regressors, or as a projection onto the subspace spanned by the regressors. Let

{Yt} , t ∈ [t1, ..., t2] be the [t2 − t1] × 1 vector of responses we want to model, and matrices KA and KB be
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defined as follows, based on the regressors of the two models, A and B:

KA =
[
Yt1−p:t1−1 · · · Yt2−p:t2−1

]T [
Yt1−p:t1−1 · · · Yt2−p:t2−1

]
(1.34)

KB =


 Yt1−p:t1−1

Xt1−p:t1−1

 · · ·
 Yt2−p:t2−1

Xt2−p:t2−1




T 
 Yt1−p:t1−1

Xt1−p:t1−1

 · · ·
 Yt2−p:t2−1

Xt2−p:t2−1


 . (1.35)

Let HA ⊆ Rt2−t1 be a p-dimensional space spanned by the matrix KA, and HB ⊆ Rt2−t1 be a 2p-dimensional

space spanned the matrix KB. Without loss of generality it can be assumed that the response vector Yt1:t2

has mean zero and norm 1. Denote by PA, PB the projectors (projection matrices) that can be used to

projecting the response vector onto the subspaces HA,HB, and denote by ŶA
t1:t2 , Ŷ

B
t1:t2 the fitted values, and

by uA
t1:t2 , u

B
t1:t2 the prediction errors:

ŶA
t1:t2 = PAYt1:t2 ; uA

t1:t2 = ||Yt1:t2 − ŶA
t1:t2 ||

2
2 = 1 −

(
ŶA

t1:t2

)T (
ŶA

t1:t2

)
(1.36)

ŶB
t1:t2 = PBYt1:t2 ; uB

t1:t2 = ||Yt1:t2 − ŶB
t1:t2 ||

2
2 = 1 −

(
ŶB

t1:t2

)T (
ŶB

t1:t2

)
. (1.37)

If H⊥ = HB ÷ HA, P⊥ is a projection onto H⊥, then uB
t1:t2 = uA

t1:t2 − ||P
⊥Yt1:t2 ||

2. The strength of causality

from Equation (1.7) will here be represented as:

C(X,Y) =
uA

t1:t2 − uB
t1:t2

uA
t1:t2

=
||P⊥Yt1:t2 ||

2
2

1 −
(
ŶA

t1:t2

)T (
ŶA

t1:t2

) . (1.38)

Let us observe that the subspace H⊥ is spanned by the matrix K⊥ = KB − PKB − KBP + PKBP. Let

v1, ..., vp be eigenvectors of K⊥, and the C(X,Y) can be represented as:

C(X,Y) =
m∑
i

corr
(
vi,Yt1:t2

)
. (1.39)

Marinazzo et al. [2008b] suggest an additional step, where the eigenvalues vi are filtered, so that only

significantly big eigenvalues are used.

To allow modelling nonlinear causality, the kernel trick is used. The kernel trick is a simple and

general principle based on the fact that kernels can be thought of as inner products. It can be stated as

follows:

“Any algorithm for vectorial data that can be expressed only in terms of dot products between vectors

can be performed implicitly in the feature space associated with any kernel, by replacing each dot product

by a kernel evaluation.” [Schölkopf et al., 2004]

The matrix KA now represents a Gramm matrix, such that KA
i j = k

(
Yi−p:i−1,Y j−p: j−1

)
, for

kernel function k (·, ·), and the matrix KB now represents a Gramm matrix, such that KB
i j =
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k
([

YT
i−p:i−1,X

T
i−p:i−1

]T
,
[
YT

j−p: j−1,X
T
j−p: j−1

]T
)
. For the kernelised strength of causality, the condition of

HA ⊆ HB is not guaranteed, and so Marinazzo et al. [2008b] provide a further correction to account for

that.

In 2012, Amblard et al. [2012b] proposed a generalisation of Granger causality using kernel ridge

regression, a well-established methodology for generalising linear regression and introducing kernels,

which has a clear interpretation and good computational properties. Ridge regression is a regularised least

squares method, where the regularisation is performed by imposing penalty on the size of the regression

coefficients [Friedman et al., 2001]. We use the notation from Equations (1.27 - 1.28), but add a time

series {Zt} representing side information:

Model A: Yt = aT
AYt−p:t−1 + cT

AZt−p:t−1 + ϵ
A
Y,t (1.40)

Model B: Yt = aT
BYt−p:t−1 + bT

BXt−p:t−1 + cT
BZt−p:t−1 + ϵ

B
Y . (1.41)

Equations (1.40 - 1.41) can be expressed in matrix notation, with the random vector Yt1:t2 =
[
Yt1 , ...,Yt2

]
,

and matrix �t1,t2;p =
[
YT

t1−p:t1−1, ...,Y
T
t2−p:t2−1

]
Model A: Yt1:t2 = aT

A�t1,t2;p + cT
A�t1,t2;p + ϵ

A
Y (1.42)

Model B: Yt1:t2 = aT
B�t1,t2;p + bT

B�t1,t2;p + cT
B�t1,t2;p + ϵ

B
Y . (1.43)

The mechanism of ridge regression is the same for both models A and B, and regardless of weather the side

information is present or not. Thus, we will refer to the optimisation problem using the notation Qt for

covariates (independent variables), where Qt = [Yt] (model A without side information), or Qt = [Xt,Yt]

(model B without side information), or Qt = [Yt,Zt] (model A with side information), or Qt = [Xt,Yt,Zt]

(model B with side information). Consequently, we will use different notation for the weights α.

Ridge regression attempts to find a solution, denoted α∗, that minimises the quadratic cost plus

weighted sum of the squared coefficients:

α∗ = argmin
α

 t2∑
t=t1

(
Yt − α

T Qt−p:t−1

)2
+ λαTα

 . (1.44)

with λ a chosen constant4. The solution – called primal solution – to the minimisation problem in

Equation (1.44) is:

primal solution: α∗ =
(
�

T
(t1,t2;p)�(t1,t2;p) + λ1t2−t1

)−1
�

T
(t1,t2;p)Yt1:t2 . (1.45)

4While for the purpose of this section we treat λ as a constant, the choice of the parameter λ itself can be interpreted as an actual
parameter estimation or model selection, in Bayesian framework expressing prior belief about the behaviour of the function we seek,
eg. smoothness. Furthermore, the regularisation can be applied separately to each of the parameters. [Friedman et al., 2001].
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In the Appendix, Section (A.1) we show that the primal solution can be expressed in terms β∗, which we

will call dual weights, such that, α∗ = �T
(t1,t2;p)β

∗. The corresponding dual solution can be expressed as

follows:

dual solution: β∗ =
(
�(t1,t2;p)�

T
(t1,t2;p) + λ1t2−t1

)−1
Yt1:t2 . (1.46)

The dual solution of ridge regression, from Equation (1.46), is in such a form that admits application of

the kernel trick by “substituting” the matrix �(t1,t2;p)�
T
(t1,t2;p) with a Gramm matrix which we will denote

K� to obtain kernel ridge regression. K� is such that
{
K�

}
i, j = k(Qi−p:i−1,Q j−p: j−1), for a Mercer kernel

function (semi-positive definite kernel function) k(·, ·). The optimal weights, fitted values and mean square

of prediction error will for kernel ridge regression be as follows:

krr optimal weights: βkrr =
(
K� + λ1t2−t1

)−1 Yt1:t2 (1.47)

krr fitted values: Ŷt1:t2 = K�βkrr (1.48)

krr MSE: V
(
Ŷt1:t2 − Yt1:t2

)
=

1
t2 − t1

(
K�βkrr

− Yt1:t2

)T (
K�βkrr

− Yt1:t2

)
. (1.49)

When kernel ridge regression is applied to model A, or model B, all of the steps above are applied, but

with different definition of Qt, and therefore different values of the covariance matrix K�. Denoting the

fitted values as ŶA
t1:t2 and ŶB

t1:t2 , we obtain the means square errors of kernel ridge regression prediction

of the two models: V
(
ŶA

t1:t2 − Yt1:t2

)
and V

(
ŶB

t1:t2 − Yt1:t2

)
, which are used in the test statistic in a similar

manner to the strength of causality from Equation (1.7), and to the test statistic from Equation (1.8).

Thus the test statistic based on the kernelised ridge regression, that [Amblard et al., 2012b] proposed is

formulated as follows:

Lkrr
X→Y = log

V
(
ŶA

t1:t2 − Yt1:t2

)
V

(
ŶB

t1:t2 − Yt1:t2

) . (1.50)

The hypotheses are:

H0 : Lkrr
X→Y = 0, no causality from {X} to {Y} (1.51)

H1 : Lkrr
X→Y > 0, causality from {X} to {Y} (1.52)

There is no explicitly known distribution for the test statistic, so such distribution has to be obtained

numerically, using a permutation test. Let m be the number of permutations used and for i ∈ {1, ...,m}, let

ζi(t), t ∈ {t1, ..., t2} denote a random permutation of the time index, and ζi(X) denote a time series, where

the original time ordered has been reorganised according to the permutation ζi(·). Then the null hypothesis
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is assessed by comparing the value of Lkrr
X→Y to a histogram of values of Lkrr

πi(X)→Y , and a p-value:

p(Lkrr
X→Y | H0) =

1
m

m∑
i=1

1
(
Lkrr

X→Y > Lkrr
X→Y

)
(1.53)

where 1(M) is a characteristic function for the set M. Amblard et al. [2012b] propose that the parameters

of the kernel – the hyperparameters of the model – are chosen using cross-validation.

Another approach to kernelising Granger causality has been proposed by Sun [2008]. Taking Granger

causality in the context of autoregressive time series as a starting point, Sun [2008] develops a nonlinear

extension based on methods rooted in computer science and functional analysis. Sun proposed to replace

the application of the kernel trick to the Granger causality metrics with a formulation of a kernel analogue

of these metrics. As a starting point, we will again use the autoregressive model from Equations (1.27 -

1.28). Sun [2008], like Ancona et al. [2004], proposed reframing the model setting in terms of feature

maps, but went further by moving from input spaces to feature spaces.

Let us assume here that Xt ∈ X,Yt ∈ Y, that HX,HY are reproducing kernel Hilbert spaces 5

(RKHS) of functions on X and Y respectively, and that the nonlinear maps ΦA,ΦB,ΨA : Y → HY,

ΨB : Y → HY⊗X. The two models A and B are described as follows:

Model A: αT
A,Y ΦA

(
Yt−p+1:t

)
= βT

A,Y ΨA

(
Yt−p:t−1

)
+ ϵA

Y,t (1.54)

Model B: αT
B,Y ΦB

(
Yt−p+1:t

)
= βT

B,Y ΨB

(
Yt−p:t−1,Xt−p+1:t

)
+ ϵB

Y,t. (1.55)

Just as in the original Granger formulation, or in the case of kernel ridge regression, for the evaluation

of the null hypothesis of lack of causality, the Models A and B are compared in terms of variance

of prediction errors. Calculating those variances could involve explicit computation of the potentially

infinitely-dimensional mappings Φ,Ψ. Instead, Sun’s approach defines covariance operators which require

only kernel evaluations. We refer the reader to Section (3.1.1) for more detailed definitions of covariance

operators, and relevant background from functional analysis and machine learning. Cross-covariance

operator ΣXY : HY → HX can be defined as a linear operator, which is analogous to covariance matrix,

but is defined for feature maps:

∀ f ∈ HX, g f ∈ HY ⟨ f ,ΣXY g⟩HX = Cov( f (X), g(Y)) (1.56)

If X = Y then the cross-covariance operator can be called a covariance operator ΣXX . Analogously to

the conditional covariance matrix, and assuming that Σ−1
XX exists , we can define conditional covariance

5Please refer to Chapter (3) for introduction to kernels, reproducing kernel Hilbert spaces (RKHS) and explanation how the
feature maps are related to kernels.
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operator ΣYY |X:

ΣYY |X = ΣYY − ΣYXΣ
−1
XXΣXY . (1.57)

The null hypothesis of no causality becomes a null hypothesis of equality of the trace norm of ΣYY and

trace norm of ΣYY |X . This hypothesis is tested with a permutation test. Furthermore, Sun suggested

recognition of causality using a permutation test and comparing the results for both directions. This is

another example of using the kernel trick to transform a linear algorithm into a nonlinear one by using the

nonlinear algorithm in a feature space.

Fukumizu et al. [2008] describes a closely related method (Sun was a co-author), originally based

on the methods for testing independence [Gretton et al., 2008, Chwialkowski and Gretton, 2014]. In

this method a normalised version of the cross-covariance operator from Equation (1.56) and conditional

cross-covariance operator from Equation (1.57) are proposed for testing independence and conditional

independence, and are said to be useful also for testing causality. The normalisation of the cross-covariance

operator ΣYX from Equation (1.56), which we will represent by VYX , can be seen as analogous to the

decomposition of cross-covariance to covariance of the marginals and correlation:

ΣYX = Σ
1
2
YYVYXΣ

1
2
XX . (1.58)

Following the same pattern, we can also start with a conditional cross-covariance operator ΣYX|Z =

ΣYX − ΣYZΣ
−1
ZZΣZX and define a normalised cross-covariance operator, denoted as VYX|Z :

ΣYX|Z = Σ
1
2
YYVYX|ZΣ

1
2
XX . (1.59)

Fukumizu et al. [2008] then prove than under certain conditions on the properties of the kernels used

(integrability, no degeneration), the normalised cross-covariance operator VYX and normalised cross-

covariance operators VYX|Z provide information about the independence of the variables:

VYX = 0 ⇐⇒ Y ⊥⊥ X (1.60)

V(Y,Z)(X,Z)|Z = 0 ⇐⇒ Y ⊥⊥ X|Z. (1.61)

The normalised version of the operator has the advantage that it is less influenced by the marginals than the

non-normalised operator, while retaining all the information about dependence. Interestingly, Fukumizu

et al. [2008] mention causality “both with and without time information” - which clearly indicates that

their understanding of causality is different than the statistical causality, which requires the time ordering.

However, the normalised conditional cross-covariance operator with time ordering can be used for testing
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for statistical causality [Seth and Principe, 2011]:

LHS NCIC
X→Y = ||V(Y,Z)(X,Z)|Z ||

2
HS (1.62)

The Hilbert-Schmidt norm (Section (3.1.1)) is used for the test statistic, and after [Seth and Principe,

2011], we will use the name Hilbert-Schmidt Normalised Conditional Independence Criterion (HSNCIC)

for this test statistic. Just as in the case of the framework proposed by Sun [2008], testing is done with the

permutation test.

In this context, it is Seth and Principe [2011] who focused on using methods of conditional in-

dependence, in particular HSNCIC in the context of causality. The relationship between conditional

independence and causality has not been explicitly referred to very often, but this is one that lies at the

centre of understanding the relationship between statistical causality and other philosophical concepts

of causality. We refer to Florens and Mouchart [1982], Florens and Fougere [1996] for one of the first

references of conditional independence methods for statistical causality. The second other big area where

conditional independence is used for studying statistical causality is literature on copulas, that will be

mentioned later.

The growth in prominence of machine learning, and one of its methods – graphical models – in

particular, coincided with development of an alternative concept of causality. In 2000, Judea Pearl

introduced to a wider audience the idea of using structural equations for describing causal mechanisms,

which he called Structural Causal Model (SCM) Pearl [2000, 1993], Simon [1977], and later – a general

theory of causation Pearl [2010]. Pearl’s way of looking at causality is very different from statistical

causality, and these differences are studied in Chapter (2), together with an overview of a wider range of

causal concepts. At the time when Granger’s method and its extensions were well established tools, Pearl

presented new arguments in the discussion about identifiability of causal relationships. It wasn’t only the

case, according to Pearl, that the existing methods were unsatisfactory, but the field of statistics did not

have language to deal with causal concepts. Pearl has proposed to distinguish between associations and

causal relations, with observation and joint distribution being enough to establish the former, but not the

latter.

Pearl [2000] defines causal model M = ⟨U,V, E⟩ in terms of endogenous variables U, exogenous

variables V , and a set F of functions that describe mappings from the exogenous variables to endogenous

variables. A probabilistic causal model is then described as a pair ⟨M,�(u)⟩, of causal model M and

the probability function defined over the set of exogenous variables U. The path diagram carries the

information about potential causal relationships via edges and paths, and missing edges mean lack of

correlation or direct effect. Graphical methods, in particular “d-connection” and “d-separation” can then

be used to verify which conditional independence relationships will hold, based on the observed data.
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The effect of intervention, which can be analysed with the use of “do operator” can also be studied using

the path diagram. These tools allow to establish whether a causal relationship is identifiable or not.

For those relationship which are not identifiable on the basis of observational data cannot, the path

diagram aids in designing which experiments are neccessary to achieve that identifiability.

Causality in the sense of Pearl does not require temporal ordering, but assumes ability to perform

both observation and intervention (hence the name “intervention-based causality” is sometimes used).

This is a very different setting than the one for which our statistical causality model is primarily designed

– one set of historical data (time series), and no possibility to design the experiment. Pearl gives tools

for analysing where a causal relationship is identifiable, and where not. If not, Pearl says additional

experiments need to be designed and performed.

Statistical causality and causal inference do have common ground, with Granger causal graphs being

the most popular link between the two Dahlhaus and Eichler [2003], Eichler [2012, 2007], Eichler and

Didelez [2010], Fiedor [2014].

Eichler [2012] proposed building so called Granger causality graphs to represent Granger causal

relationships. Granger causality graphs are mixed graphs, with time series represented as nodes, directed

edges representing Granger causality, and undirected edges – contemporaneous dependence. A direct

edge from X to Y will be drawn if an only if X Granger causes Y (the hypothesis of non-causality

is rejected). The contemporaneous dependence is based on rejection of the hypothesis of conditional

(contemporaneous) independence between X and Y . The Granger causal graphs introduced by Eichler

share some ideas with Pearl’s Structural Causal Models, in that it explores the use of tools from graphical

model and structural equations for analysing causal relations. But while having some similarities, these

two approaches are based on different causal concepts: Granger (statistical) causality versus “intervention

based causality”. Eichler [2012] builds graph with edges reflecting pairwise causal relations for one

observation of multivariate time series, with explicit time ordering. Causality in the Structural Causal

model is described in terms of a whole system We refer the reader to the Chapter (2) for more discussion

of different concepts of causality.

Please note, that Eichler later shows that in the context of Granger causality and Granger causal

graphs, one can still talk about interventions and identifiability. Using similar tools of graphical models as

Pearl, Eichler show how can one start from statistical causality in the sense of Granger - that suggest a

potential causal relationship, to proving whether a relationship can be identified as causal or not.

A very interesting link has been proposed by Billio et al. [2012], who build complex networks

based on linear Granger causality and analyse evolution of these network using methods from complex

network theory. Like Eichler [2012], they use nodes to represent time series, and directed edges to

represent Granger causality. They build the network for data on monthly returns of hedge funds, banks,

broker/dealers and insurance companies, and use measures of connectedness to describe changes in
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systemic risk. They conclude that there is asymmetry in the degree of connectedness between the four

sectors, with banks playing the biggest role in transmitting shocks.

One of the most important aspects of our work is the development of testing procedures with

tests with known asymptotic properties and good power of the test (please refer to Chapter (4) for the

definitions). The classical Granger causality allows the use of test statistics that are distributed according

to F distribution or χ2 distribution under the null hypothesis of no causality [Wald, 1943, Granger, 1963,

1969, Hlaváčková-Schindler et al., 2007]. The nonparametric Granger causality method by Hiemstra and

Jones, based on correlation integrals, has been shown to be biased, but asymptotically normally distributed

[Hiemstra and Jones, 1994]. Many of the methods for statistical causality do not allow formulation of

test statistics with known asymptotic properties. Geweke proposed using bootstrap tests for his method

of measuring causality in the frequency domain Geweke [1984a]. Bootstrap tests, or permutation tests

[Pesarin, 2001] are typically used for testing hypotheses when distributions of the statistical tests are

not known. For example, in the case of transfer entropy, whether the distribution of the test statistic is

easily obtainable depends on additional assumptions. For Gaussian data, transfer entropy is equivalent

to Granger causality [Barnett et al., 2009], and in broad parametric context the null hypothesis can be

tested with log-likelihood ratio. However, in the nonparametric context, using transfer entropy requires

permutation tests [Lindner et al., 2011, Gómez-Herrero et al., 2015, Zaremba and Aste, 2014]. As

mentioned before, permutation tests have been used in the methods involving kernels Amblard et al.

[2012b] Seth and Principe [2011] Sun [2008]. Amblard et al. [2012b], who propose using marginal

likelihood of a GP model to test for causality, do not go far enough to formulate an actual likelihood

ratio test Amblard et al. [2012a], but in their later publication employing kernel ridge regression, they

propose permutation test Amblard et al. [2012b]. Our proposal relies on the generalised likelihood ratio

test (GLRT) and necessitates nested model formulation MacKinnon [1983], Vuong [1989], Pesaran and

Weeks [2001], which is not very restrictive, please refer to Chapter (4) for detailed definitions.

The GLRT is a composite hypothesis test that assesses whether a set of parameter θ belong to a

particular set:

H0 : θ ∈ ω vs H1 : θ ∈ Ω − ω (1.63)

GLRT gives an asymptotic distribution of the test statistics, but it requires that the hypotheses are nested.

For a random sample X1, X2, ..., XN from a distribution with pdf π(x; θ) and likelihood L(θ; x) = π(x; θ)

define:

λ =
{
max
θ∈ω

L(θ; x)/max
θ∈Ω

L(θ; x)
}
. (1.64)
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For some constant A, we can use a test with critical region λ ≤ A. If we define d as the difference in

dimensionality of H0 and H0 ∪ H1, then we have that under the null the asymptotic distribution of the test

statistic is distributed according to:

−2 log λ ∼ χ2
d. (1.65)

Considering the general statistical test for non-causality seen as the lack of equality of conditional

distributions, we observe that when assuming specific models, these tests can become equivalent to testing

for particular properties or parameters. Employment of LRT and GLRT relies on the fact that a parametric

model is used and that parameters are known (LRT) or estimated (GLRT) [Garthwaite et al., 2002]. When

using GLRT, one has to ensure that the hypotheses are nested, which typically will be expressed in the

form of restrictions on the parameter (or hyperparameter) space. In the case of our framework of Gaussian

Processes for Causality (GPC) or warped Gaussian Processes for Causality (wGPC), the nesting of

hypotheses is introduced through kernels with the property of automatic relevance determination (ARD).

The ARD concept is typically used in the context of feature selection [MacKay, 1996, Neal, 2012] and

sparse learning in Bayesian models Qi et al. [2004]. For resources about the alternatives to GLRT that

allow for non-nested hypotheses, we suggest MacKinnon [1983], Vuong [1989], Pesaran [1990].

Having a test statistic with known distribution was essential when developing the generalised

framework for statistical causality. As a consequence, there are several classes of distributions that are of

highest importance for our method. Generalised hyperbolic distributions were introduced by Barndorff-

Nielsen in 1977 [Barndorff-Nielsen, 1977]. We are mostly interested in a special case of generalised

hyperbolic family: the skew-t distribution and the skew-t copula [Demarta and McNeil, 2005, Rachev,

2003, McNeil et al., 2015]. Cruz et al. [2015] describe the use of generalised skew-t distribution, where

the generalisation pertains to allowing different degrees of freedom for each of the dimensions, see [Cruz

et al., 2015, Luo and Shevchenko, 2010]. Fung and Seneta describe skew-t distribution based on skew

elliptical distribution, which they argue have better tail properties Fung and Seneta [2010b], Azzalini and

Capitanio [2003], Azzalini [2005]).

We are not aware of any models for statistical causality incorporating any type of the skew-t

copula, although parametric and nonparametric copulas have been used to model statistical causality by

Bouezmarni et al. [2012], Bahadori and Liu [2013], Hu and Liang [2014], Lee and Yang [2014], Hu et al.

[2015, 2016]. Hu and Liang [2014] formulate statistical causality as a of log-likelihood ratio, which

they express in terms of copula and copula density and test with bootstrap test. Later, Hu et al. [2016]

propose a model where the Wald test can be used to test significance of causality. Lee and Yang [2014]

use nonparametric and parametric copula tests for Granger causality, describe how causality in quantiles

can be modelled and tested and how it can be useful for Value-at-Risk (VaR) analysis and risk analysis.
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There is growing literature on use of GPs in the time series with financial applications, with the

[Ghoshal and Roberts, 2016] being of particular interest, due to their use of ARD kernels to help with

modelling multimodality. Other interesting sources are [Roberts et al., 2012],[Requeima et al., 2019]

Girard et al. [2003], Brahim-Belhouari and Bermak [2004], Cunningham et al. [2012], Hernández-Lobato

et al. [2013]. GP models are not common in the context of causality, and even less often in the context of

statistical causality. Causality described in the publication by Cunningham et al. [2012] should not be

understood as causality in the sense of any of the concepts mentioned before, but as a property of time

ordering. A unique work is the one by Amblard et al. [2012a], where marginal log-likelihood of a GP

model is suggested to test for causality. The statistic they proposed for testing causality by is similar to

what we use in GPC; however Amblard et al. [2012a] stopped short of introducing the LRT or GLRT, and

were not able to utilise most of the properties of GPs. In their following work, Amblard et al. [2012b]

asserted that kernelised ridge regression is more practical as the GP framework does not allow permit

defining instantaneous causality (coupling). We dispute this, since the use of multiple output GPs does

allow for instantaneous causality; and also kernel ridge regression can be seen as a less flexible special

case of GPs.

Warped GPs have appeared in the machine learning literature in a number of different types of

transformations [Snelson et al., 2004, Lázaro-Gredilla, 2012, Snoek et al., 2014, Adams and Stegle, 2008,

Bornn et al., 2012], while relatable methods of spatial transformations have been widely studied in the

spatial statistics literature [Anderes and Stein, 2008]. The most popular approach by Snelson et al. [2004],

is to apply a nonlinear mapping, whose parameters can by learnt, such that transformed data is well

modelled by a GP. In the statistics literature it is a standard practice to use a logarithm to transform the

data at the stage of preprocessing, and Snelson et al. [2004] formalise this stage as part of a framework

using GPs for modelling latent process. Let {Xt} , {Yt} denote observed time series, and {Wt} denote latent

process. With the notation from Section (3.1), with kernel k and assumption of the zero mean, we have a

GP:

Wt ∼ GP (0, k; Φ) (1.66)

with the likelihood:

− log π (Wt | Xt; Φ) =
1
2

log det K1:T,1:T +
1
2

XT
1:T K−1

1:T,1:T X1:T +
N
2

log 2π, (1.67)

where K1:T,1:T is a covariance matrix, which can be defined elementwise as
{
Kt1,t2

}T
t1,t2=1 = k

(
Xt1 , Xt2

)
. The
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transformation, also called warping, is assumed to be a monotonic function f , such that:

Wt = f (Yt; Ψ). (1.68)

This results in the negative log-likelihood being described as follows:

− log π (Yt | Xt; Φ,Ψ) =
1
2

log det K1:T,1:T +
1
2

f (Y1:T )T K−1
1:T,1:T f (Y1:T ) −

T∑
t=1

log
∂ f (Y)
∂Y

|Yt +
N
2

log 2π.

(1.69)

Subsequently, training and prediction is performed analogously to the standard GP model, but with the

altered marginal likelihood.

Like Snelson et al., we also apply a transformation to the joint collection of GPs for each marginal

time series model, although our approach differs in the class of transformations considered, and how we

later use it. To the best of our knowledge, in literature such distortion mappings have only been applied

marginally. In contrast, we develop a class of multivariate distortion or warping map. The mean-variance

transformation applied in our method results in the transformed variables having multivariate skew-t

distributions and being finite dimensional realisations of a general multivariate skew-t process whose

likelihood can be obtained in a closed form.

Finally, across all of the approaches described earlier, only a handful of causal methods can allow

application to data with more complicated structural forms. For example, [Papana et al., 2016] develops

method of partial symbolic transfer entropy, to deal with nonstationarity that is a major issue for traditional

transfer entropy. Chen claims that a spectrum estimator will allow recognition of Granger causality for a

data with long memory, Chen [2006], while the spectral measures of causality by their nature should deal

with periodicity. Candelon et al. [2013] describe method for testing causality in the tail. None of these

models is flexible enough so that a common framework could be used, without the need to change models

for different types of data.

1.4 Discussion on alternative modelling choices

There are multiple approaches to model selection, that can include inference procedures such as the

likelihood ratio tests as well as the more popular ones based on the information criteria such as the Bayes

factor [Kass and Raftery, 1995] or AIC [Akaike, 1974]. The approach favoured in this research is one of

hypothesis testing rather than the alternative approach of ranking by information criterion. Furthermore,

the models that are built are not interpreted as completely specified models of the processes being studied.

Rather, the model specification is made in the context of the causal structures studied, even if this results

in the model being misspecified for the distributional form, the trend or the covariance of the “true”
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generating process of the data.

Adopting a hypothesis test, such as the Generalised Likelihood Ratio Test (GLRT) as an inference

based procedure gives rise to three common challenges that must be considered when applying such tests

in practice:

1. the need to evaluate the test statistic computationally in an efficient matter and in closed form,

2. being able to have an asymptotic distribution to perform the decision logic on (p-value), in order

to avoid otherwise challenging time-series based bootstrap procedures that are computationally

expensive and challenging to formulate in the general model settings proposed.

3. understanding and studying how the power and sensitivity of the model behaves.

The rationale for choosing the classical setting of GLRT, is that all three concerns can be addressed in the

contexts of Gaussian Processes causal models, where causality was non-trivially entered into the model,

such as in the trend and in the covariance, or both. Moreover, other warping factors were also possible to

be included in these three considerations.

The Bayes factor approach to model selection provides a form of model ranking, whereas the

objective of the framework adopted was to be able to make a binary decision on the basis of the model

selection choice and to be able to understand and control Type I and Type II errors in this decision process.

Bayes factor would rank the models, but these rankings will not make distinct statements that model

A is better than model B with respect to any control for errors of Type I or Type II. In contrast, making

a decision on the probabilistic tail event with the hypothesis test will facilitate a more direct statement

about plausibility of different model causal structures.

Under the GLRT framework we’ve been able to perform detailed studies of the Type I and Type II

error, control that error through the decision of the hypothesis level of significance, and also study the

power of those test in the specificity or sensitivity studies.

Another type of model one could consider are continuous time diffusive models (classical sources

as Shreve [2004], Karatzas and Shreve [2012], Øksendal [2003]) as well as discrete time autoregressive

models with continuous coefficients.

The reason why we did not focus on continuous time diffusion models is that when one works with

non-standard and inhomogeneous drift and volatility functions, a significant amount of work is required

to prove existence and uniqueness of the diffusion in the first place. That becomes even more complicated

when trying to perform inference procedures. Doing stochastic calculus in these settings and discretising

these processes is highly non-trivial when inhomogeneity in drift and volatility are present, but to capture

causal structure in the manner I would like to introduce them requires such inhomogeneity in both drift

and volatility, which would include state dependence, temporal dependence as well as dependence on
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exogenous processes. Although one could specify such models, proving existence and uniqueness would

be highly non-trivial, as the standard compact operator conditions would be very difficult if not impossible

to verify except for very special cases of diffusion processes (please refer to Karatzas and Shreve [2012],

Ikeda and Watanabe [2014], especially the theorem giving conditions under which strong solution with

the pathwise uniqueness property exists in Karatzas and Shreve [2012]).

Another modelling choice is to use time series continuous coefficient models (most classical sources:

Harvey and Stock [1985]). Difficulties with that framework pertain model identification and estimation,

which are non trivial and may provide significant challenges when trying to build general causal structures

in trend and covariance. Furthermore, it could also lead to lack of parsimony, which is another disadvantage

compared to our chosen GP models, which even in ARD setting allows parsimonous representations.

1.5 Contributions

Expanding on recent results in the area of statistical causality, we have addressed many of the shortcomings

of the methods that already exist. Our research advances how dependence structure and causality structure

can be modelled, and will be of particular use in financial time series, or other types of data with a wide

range of different structural properties.

Firstly, our framework allows to have aspects of causality, linear and nonlinear, in the mean and the

covariance. We are not aware of research that studies these aspects in detail, and therefore we believe we

add novelty to this literature, even if individual components of the framework are familiar to statisticians,

the development of these in the context of mean and covariance causal structures is novel.

Secondly, analysing causal structure with Gaussian processes hasn’t been done in the likelihood ratio

framework, and in our research we propose a way to construct model nesting that allows for application

of the likelihood ratio test. This model nesting is constructed to be applicable for assessing causality in

the mean, or covariance, or both, and is achieved through ARD construction of the kernel (Automatic

Relevance Determination). We explain that nested models are important, as the standard asymptotic

distribution of χ2 does not hold for non-nested hypotheses. Thus, we emphasise that the novelty does not

lie in the asymptotic behaviour of the test, but in constructing a framework that allows to apply that test.

Furthermore, with our GP model formulations the test statistic can be written in a closed form, can be

computed point-wise, and is efficient to compute.

There are numerous advantages of using GPs, beginning with: ease of optimisation and interpretabil-

ity of hyperparameters, flexibility, richness of covariance functions, allowing for various model structures.

Using a likelihood ratio type test with a GP is a very natural choice, as estimating GP model parameters

is often done on the basis of maximising likelihood, and therefore this estimation can be incorporated

into the compound version of the likelihood ratio test (Generalised Likelihood Ratio Test, GLRT). From

Gaussian variables, GPs inherited the property of being fully specified by the mean and the covariance,
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and so testing for model equivalence inherently means testing for equivalence of the mean and covariance

functions. But many popular kernels do not have the ARD property, and using them for a likelihood ratio

test settings gives no easy way to account for causal structures in covariance. Consequently, it is using

GLRT with an ARD-GP that gives a uniformly most powerful test with an unparalleled flexibility: known

asymptotic distribution under the null, explicit evaluation and in a closed form, and usefulness also for

misspecified models.

Thirdly, we demonstrate the ability to detect and identify causal structures in the mean and covariance,

even in the presence of different types of model misspecifications. We undertake careful study of sensitivity

and robustness of these testing frameworks to various features that one would encounter, like: sample size,

parameter misspecification and structural misspecification. It is important as these studies demonstrate

that one can reliably apply these tests in a general framework, even if the model is misspecified in those

ways, and still have confidence that the inference procedure can detect these types of causality in mean

and covariance incorporated in this framework reliably.

The fourth contribution of this dissertation is the proposal of a framework of Warped Gaussian

Processes for Causality (wGPC) which allows for different types of causal and non-causal dependence

to be described – important but rarely studied in the literature on causality or on classical parametric

time series models. It can be customised in terms of mean functions, covariance functions, asymmetry,

thicker tails; it allows for nonlinearity, autoregression, volatility clustering, nonstationarity, periodicity, tail

dependence, etc. The wGPC framework can also be expended further, for example through introduction

of different mean-variance transformations.

The extensive testing on synthetic and real-world data illustrates how causal analysis can form a

part of a comprehensive time series analysis. Some of the experiments exemplify the interplay between

different structures of time series (for instance, long memory and autoregression, causality and volatility

clustering, causality and asymmetry or tail dependence), and how they all can influence understanding of

dependence and causality.

1.6 Structure of the Dissertation

The first part of the thesis, Background and literature review, provides all of the material necessary to

understand the context and the method proposed for modelling and testing statistical causality. The

methods proposed in our work might be of interest to researchers from several fields, hence a detailed

exposition of the concepts is helpful.

Chapter 1 introduces the topic of the thesis, related work and describes the structure.

Chapter 2 describes the original Granger’s formulation of causality, explains how statistical causality

differs from other notions of causality, and provides examples that demonstrate the strengths and weak-

nesses of existing methods for testing causality. Chapter 3 contains background on the models that are
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used: GPs, copulas and selected distributions. Chapter 4 describes inference procedures used: assessing

hypothesis tests, generalised likelihood ratio test, permutation tests, and likelihood ratio test.

The second part, New Perspectives on Causality Representation and Inference, presents the main

contribution of our work. It starts with Chapter 5 containing the theoretical background for describing and

testing causality with GP models. Chapter 6 extends the model from the previous chapter by introducing

mean-variance transformation that results in a warped GP model, which can describe causality in the

presence of skewness and tail dependence. Chapter 7, describes how synthetic data has been simulated,

details the algorithm for approximating likelihood in the warped GP, and provides information on other

relevant algorithms and the software used to implement our method. Chapter 8 presents a very extensive

experiment section, which aim to show, firstly, the good behaviour of the proposed procedures (model

sensitivity and misspecification analysis), secondly, good power of the test for a range of structures, and

thirdly, the interaction of causality and tail dependence. Applications to real-world data are described in

Chapter 9, where time series for commodities and currency markets are analysed.

The final section of the thesis: Chapter 10 Conclusions, summarise the research and offer directions

for further development. The appendix in Chapter A contains theorem proofs, algorithms for likelihood

estimation in the wGPC model, and other supplementary material.



Chapter 2

Overview and Comparison of Existing

Causality Methods

“ Primary causes are unknown to us; but are subject to
simple and constant laws, which may be discovered
by observation, the study of them being the object of
natural philosophy. ”
Jean-Baptiste-Joseph Fourier, Théorie Analytique de

la Chaleur, 1822

“ It has been suggested that although such deeper rela-
tions need to be named, that name should not involve
words like ‘cause’ or ‘causality’, as these words are
too emotion-laden, involve too much preconception
and have too long a history. (...) Provided I define
what I personally mean by causation, I can use the
term. I could, if I so wish, replace the word cause
throughout my lecture by some other words, such as

‘oshkosh’ or ‘snerd’, but what would be gained? ”
Clive W.J. Granger, Testing for causality : A personal
viewpoint, 1980

In modern statistics and data science there is a debate about where the different notions of causality

arise and how they can be useful. An in-depth study of a causal method should start from putting that

method into perspective: firstly, how it relates to other causal concepts, secondly, how it compares to

different implementation of the same conceptual representations of causality. Chapter (1) introduced the

concept of statistical causality and literature that is relevant to our research, in particular several methods

that gained popularity or were important stepping stones. The current chapter takes a broader look at

causality. We look at statistical causality as only one of concepts of causality that have been proposed,

and we show different ways how the concept of causality has emerged and been studied over time. We

refer to the history of philosophy and science to show how the concepts of causality were changing. We

will pay special attention to the General Theory of Causation by Pearl, and will answer the following

questions: How do Granger’s statistical causality and Pearl’s theory of causation cater to different needs?
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What do they have in common or how they could be combined?

Finally we concentrate again on the representation that interests us the most – statistical causality –

and take a closer look at four methods of measuring statistical causality that were introduced in Chapter

(1). Those methods arise from different fields of statistics and data science, and exemplify what problems

and potential issues lie in the process of testing causality. Their different properties, strengths and

weaknesses are used to motivate why we turned to GPs to build a causal framework. This section is based,

and contains excerpt from, the article “Measures of Causality in Complex Datasets with Application to

Financial Data” [Zaremba and Aste, 2014].

2.1 Conceptual representations of causality
The ideas presented here appear in chronological order, and necessarily, we offer only a light sketch on

the history of philosophical and scientific approaches to causality, as it too wide a topic for us to be able

to cover in a more exhaustive way.

2.1.1 History of causal theory

Causality has been of interest to philosophers from the classical period, and from that time has been seen

as a crucial tool for understanding the world. And just like humanity’s ability to understand the world

moved from the field of philosophy, theology to science, the same happened with what was seen as a

domain of causal analysis. This is represented in Figure (2.1).

The first theory of causality, also known as the doctrine of four causes, is attributed to Aristotle – as

presented in Physics and Methaphysics (see modern translations Aristotle et al. [2008] and Aristotle and

Lawson-Tancred [1998]). For Aristotle, the theory of causality was a necessary tool to understand the

world:

We suppose ourselves to possess unqualified scientific knowledge of a thing, as opposed to knowing

it in the accidental way in which the sophist knows, when we think that we know the cause on which the

fact depends as the cause of the fact and of no other, and further, that the fact could not be other than it is.

(BWA, 111, Post. An. I.1, 71b 5–10; [Aristotle and McKeon, 1941])

The four causes were different types of answers to the “why?” question, and they relate to:

• the composition of the subject (material cause)

• the form of the subject (formal cause)

• the entity which is the source of the change that the subject undergoes (efficient cause)

• the final state - the result of the change/process or action undertaken (final cause).

Out of the four causes that Aristotle proposed, only the “efficient cause” aligns with the modern under-

standing of causality – whether it is the common usage, philosophical understanding, or mathematical
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Philosophy

Theology

Scientific discovery (classical physics)

Scientific discovery (quantum mechanics)

Temporal causal relationships
(economy / econometrics)

Structural causal relationships
(Structural Equation Models)

1. composition
2. form
3. source of change
4. final state

Could God have created world in which P does not hold?

divine grace vs natural processes; free will vs determinism

necessity and sufficiency

counterfactual conditions

probabilistic causality

time series

prediction model

statistical causality

counterfactuals and interventions

graphs represent causal relationships

causal vs statistical terminology

Granger Pearl

Evolution of causal concepts

Aristotle and doctrine of four causes:


Figure 2.1: Causal concepts.

concept. For many centuries, however, the doctrine of four causes continued to be one of the most

influential approaches to understanding causality.

In medieval times Aristotlean causality served as a point of reference, even though the model of the

world changed, and the understanding of the world was described through the lens of theology. Aside

from the natural processes, it was also the divine intervention or God’s plan, that was crucial in the

succession of the events:

Medieval thinkers believed that the world was created by God, and so a question like “Is proposition

P contingent?” were seen as equivalent to the question “Could God have created a world in which P

does not hold?”. So our question can be reduced to one about divine power. [White, 2018]

The question “why?” was crucial for subsequent attempts to understand causality, but the focus

moved to studying the processes and the relationship between the cause and the effect. The inspiration for

studying causality was often coming from the sciences, especially physics and chemistry, for example:

what causes fire, movement, gravitation, and in all these cases causality was described in deterministic

terms. Indeed, from the XVIII century until XX century, the main approach to causality was deterministic,

as seen in Hume [2008], Kant [2007], Mill [2015], Russell [1912]. In the discussion about the nature of

causality, there were two aspects that were seen as most important [Granger, 1980]
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• Necessity - if A occurs, then B must occur.

Kant argued that there must be a necessary connection between the cause and the effect:

[...] that something, A, should be of such a nature, that something else, B, should follow from it

necessarily [Kant, 2007]

• Sufficiency - if B occurred, then A must have occurred.

Hume defined causality based on the condition of sufficiency:

We may define a cause to be an object followed by another, and where all the objects, similar to the

first, are followed by objects similar to the second. Or in other words, where, if the first object had

not been, the second never had existed. [Hume, 2008]

Hume has also conjectured that the notion of time and space are necessary to the concept of causality.

Since therefore it is possible for all objects to become causes or effects to each other, it may be proper to

fix some general rules, by which we may know when they really are so.

1. The cause and effect must be contiguous in space and time.

2. The cause must be prior to the effect.

3. There must be a constant union betwixt the cause and effect. It is chiefly this quality, that constitutes

the relation. [Hume, 2010]

The conditions of necessity and sufficiency described above do not capture all of the conditionals,

or “if-clauses”, relevant to deterministic causality. We can also look at counterfactual conditionals or

“false if-clauses”: if A had not happen, then B had not happen, or: if B had not happen, then A would not

have happened. If we think about common use of the words “cause”, “causal” and “causality”, then all, or

possibly a subset of the aforementioned conditionals will come to one’s mind. We refer to [Frosch and

Johnson-Laird, 2011] for a discussion about everyday “causation”, but urge the reader to keep in mind

Granger’s words:

One interesting aspect of the philosophers’ contribution is that they often try to discuss what the term

causality means in “common usage”, although they make no attempt to use common usage terms in their

discussion. Rather than trying to decide what the public thinks they mean by such a difficult concept as

causality, it may be preferable to try to influence common usage towards a sounder definition. [Granger,

1980].

Counterfactual analysis, which has long been present in the philosophical discourse about causality,

received more attention after the publication by Lewis [1974]. The definition of causal dependence

proposed by David Lewis is based on two conditionals:

An event E causally depends on C if, and only if, (i) if C had occurred, then E would have occurred,

and (ii) if C had not occurred, then E would not have occurred. [Lewis, 1974]
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In the 20th century development of science was again the reason for emergence of a new concept

of causality. While Newton’s laws of motion can be seen as describing physical phenomena in terms

of deterministic causality, the deterministic approach was not suitable to model quantum physics. The

development of modern probability theory, whose foundations were laid by Kolmogorov [1933], has

provided tools for developing non-deterministic model of causality. Probabilistic approach to causality

means that the effect is no longer seen as necessary, but more likely as a result of the cause. Reichenbach

[1991] proposes the condition for A being the cause of B should be:

�(B | A) > �(B | not A). (2.1)

The condition from Equation 2.1, does not explicitly include the notion of time, but the interpretation was

one of a temporal asymmetry. The development of probability theory was followed by certain notions of

probability entering into common usage, and consequently the common understanding of what causality

means started to include probabilistic causality. A great example, from [Granger, 1980], is the assertion

that smoking causes cancer: it is generally understood that while smoking will not always lead to cancer,

it is one of the biggest contributory factors. This understanding of causality is what both the scientists as

well as non-scientifically inclined people are able to accept.

In 1956, Norbert Wiener proposed a conceptual representation of causality that is central to our

understanding of this concept – based on predictive models for stochastic processes:

For two simultaneously measured signals, if we can predict the first signal better by using the past

information from the second one than by using the information without it, then we call the second signal

causal to the first one. [Wiener, 1956].

HWiener
0 : Prediction (Yt | Xt−k:t−1,Yt−k:t−1) ≡ Prediction (Yt | Yt−k:t−1) . (2.2)

2.1.2 Modern approaches to causality – two main concepts, and the link between

them

Wiener’s work has been one of the inspirations for Clive Granger and his groundbreaking work on

causality, popularly called Granger causality. Granger has introduced a rigorous definition of causality,

by clarifying the assumption about the data generating process, the model used for prediction, as well as

the test statistic for assessing the null hypothesis. The data was assumed to be generated by a stationary,

autoregressive process, the model used for prediction was linear regression, the null hypothesis was that

of equivalence of variances of the two predictions, and the test statistic was based on the ratio of the two

variances. For a formalisation, please refer to Chapter (1), Equations (1.1 - 1.6). In this section we will

only repeat the definition that Granger [1980] introduced later, based on conditional distributions. For the



2.1. Conceptual representations of causality 69

time series {Xt} , {Yt} and side information {Zt}, the hypothesis of lack of causality X → Y | Z is written as

equality of conditional distributions:

H0 : P (Yt | Xt−k:t−1,Yt−k:t−1,Zt−k:t−1) = P (Yt | Yt−k:t−1,Zt−k:t−1) . (2.3)

The definition from Equation (2.3) lies at the centre of our understanding of causality, and therefore of this

thesis. We will later see that the conditional independence is also important when building causal graphs.

Granger made certain assumptions, that he has called axioms, [Granger, 1980]:

Axiom A, Time ordering: The cause happens prior to the effect.

Axiom B, No redundant information: The cause contains unique information about the effect – it is not

related via a deterministic function.

Granger has also pointed out that there is a third axiom which is “[...] generally accepted, even

though it is not necessarily true”, which he saw as central to the applicability of the concept of causality:

Axiom C, Consistency: The existence and direction of the causal relationship remain constant in time.

We strongly recommend reading Granger’s opinion on other views on causality and discussion on

the need for introducing a new definition. Statistical causality relies on the historical data that relates

to observation. This, according to some, is not enough to be able to distinguish the true cause. Such

sentiment was expressed by Hume:

If all our information derives from empirical observation, how can we be sure that any particular

explanatory theory is the correct one?

The above quote can be seen as a starting point to Pearl’s General Theory of Causation, [Pearl, 2000,

2010]. According to Pearl, it was not only the case that the existing methods were unsatisfactory, but the

field of statistics did not have the language to deal with causal concepts. Pearl insisted on distinguishing

between associations and causal relationships, with observation and joint distribution being enough to

establish the former, but not the latter:

A useful demarcation line between associational and causal concepts crisp and easy to apply, can

be formulated as follows. An associational concept is any relationship that can be defined in terms

of a joint distribution of observed variables, and a causal concept is any relationship that cannot be

defined from the distribution alone. Examples of associational concepts are: correlation, regression,

dependence, conditional independence, likelihood, collapsibility, propensity score, risk ratio, odds ratio,

marginalization, conditionalization, “controlling for,” and many more. Examples of causal concepts are:

randomization, influence, effect, confounding, “holding constant,” disturbance, error terms, structural

coefficients, spurious correlation, faithfulness/stability, instrumental variables, intervention, explanation,

and attribution. The former can, while the latter cannot be defined in term of distribution functions. [Pearl,

2010]
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Using the criterion from the above quote, causality in the sense of Granger is an associational concept.

According to Pearl, given adequately large sample and precise measurements, one can in principle test

associational assumptions, but not causal assumptions, which require experimental control. Pearl has

revisited and reinvented the counterfactual theory, which before has been used mostly as a philosophical

concept, and as such has not been formalised mathematically and lacked relevant language. Pearl

postulated that causal analysis should allow to infer probabilities under static conditions, as well as how

they change under dynamic conditions, by answering three types of questions:

1. Policy evaluation: what is the effect of potential intervention?

2. Probabilities of counterfactuals: can an event be identified as responsible for another event?

3. Mediation: can causal effect be assessed as direct or indirect?

The investigation starts from formulating a causal model and building a path diagram that represents

causal assumptions. Inspection of this diagram, and the use of graphical model tools, allows one to decide

next steps to obtain the target quantity – as shown in Figure (2.2). Pearl [2000] defines causal model

M = ⟨U,V, E⟩ in terms of exogenous variables U, endogenous variables V , and a set F of functions that

describe mappings from the exogenous variables to endogenous variables. A probabilistic causal model is

then described as a pair ⟨M,�(u)⟩, of causal model M and the probability function defined over the set of

exogenous variables U. The path diagram carries the information about potential causal relationships

via edges and paths, and missing edges mean lack of correlation or direct effect. Graphical methods, in

particular “d-connection” and “d-separation” can then be used to verify which conditional independence

relationships hold, based on the observed data. The effect of intervention, which can be analysed with the

use of “do operator” can also be studied using the path diagram. These tools allow to establish whether a

causal relationship is identifiable or not.

Denote Q(M) as target quantity / causal effect for model M

Can a consistent estimate of Q(M) be made

on the basis of existing causal assumptions?

Derive a closed-form expression

of Q(M) based on the distributions

available from the observed data.

Decide which observations and
experiments are needed to make

estimation of Q(M) possible.

YES NO

Figure 2.2: Obtaining the estimate of target quantity for model M (denoted Q(M)), based on the existing
causal assumptions.

An example of analysis of intervention, and a use of a “do operator” can be observed on a simple case

of a model described in Pearl et al. [2009]. Let X,Y,Z stand for observable random variables of interest,
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and UX ,UY ,UZ represent variables or factors that might be observable or unobservable, but are not of

interest for the model, they are called “exogenous variables”, and might be seen as ’disturbances”. The

lower case x, y, z, uX , uY , uZ are realisations of the described variables. Let us assume that the observed

variables can be described as:

Model M : z = fZ (uZ)

x = fX (z, uX) (2.4)

y = fX (x, uY )

where UX ,UY ,UZ are assumed jointly independent, and the functions fX , fY , fZ are some functions whose

specific form is not necessary to be known to analyse interactions between the variables of interest.

It is only assumed that each of the functions is invariant to possible changes in other functions, i.e.

is “autonomous”, an property characterising a structural system of functions. The Equations (2.4)

correspond to the path diagram from Figure (2.3 a).

UZ

Z

UX

X

UY

Y

UZ

Z

UX

X

UY

Y

xo

(a) (b)

Figure 2.3: (a) Diagram representing the model from the Equations (2.4). (b) The same model but with an
intervention do(X = x0), as per the Equations (2.5).

An important development in Pearl’s approach is introduction of so called ‘do-calculus’, which

is a tool for modelling interventions and counterfactuals. The ‘do-operators’, denoted as do(x), are

representing the operation of some of the functions in the model, and replacing them with a constant:

X = x. An operation do(x0) of setting X to be equal x0 in the system from the Equations (2.4) is visually

represented in the Figure (2.3 b). We note here that the Equations (2.4) represent a structural system of

functions, which means that the the operation do(x0) affects only the functional representation fX , but not

fY or fZ :

Model Mx0 : z = fZ (uZ)

x = x0 (2.5)

y = fX (x, uY )

With the pre-intervention joint distribution of the original model M denoted as �(X,Y,Z) , the

notation for post-intervention joint distribution of the modified model Mx is �(Y,Z | X = x) . We define



72 Chapter 2. Overview and Comparison of Existing Causality Methods

the post-intervention distribution of the outcome Y in the model Mx, is the probability �(Y = y |

do(x)) =
∑

z � (Y = y,Z = z | do(x)) that the model Mx assigns to each outcome level Y = y. Pearl gives

two possible ways of assessing an effectiveness of a treatment: average difference and experimental Risk

Ratio:

average difference : E
(
Y | do(x′0)

)
− E (Y | do(x0)) (2.6)

experimental Risk Ratio :
E

(
Y | do(x′0)

)
E (Y | do(x0))

. (2.7)

To assess the causal effect of X on Y one need to obtain the distribution �(Y = y | do(x)),

[Pearl, 2000, Pearl et al., 2009]. Let us introduce the notation for the causal quantity of interest:

Q(Mx) = �(Y = y | do(x)). Not in all cases will one be able to estimate the causal effect Q(Mx)

from the data and the pre-intervention distribution. This is the question of identification, which Pearl has

formalised with the following definition:

Definition 1 (Identifiability, [Pearl, 2000, Pearl et al., 2009]) A quantity Q(M) is identifiable, given a set

of assumptions A, if for any two models M1 and M2 that satisfy A, we have:

�(M1) = �(M2)⇒ Q(M1) = Q(M2). (2.8)

.

An important criterion for the causal effects for model M to be identifiable, is that model M is

Markovian, defined as being represented by an acyclic graph, and having all of the error terms jointly

independent, [Pearl, 2000]. Identifiability for non-Markovian models is more complicated, but also can

be established on the basis of the graph that represents the model. What if the causal effect cannot be

identified by any method? In such a case it can only be approximated by deriving bounds.

We would like to emphasise, that causality in the sense of Pearl, does not require temporal ordering

- which is one of the principal assumptions of statistical causality. It is however possible to build a

time-ordered representation, if the variables in V are time indexed, and the causal assumption encoded in

the model M are such that only the earlier variables can cause later ones.

The Pearl’s general theory of causation has been seen as irreconcilable with Granger’s approach to

modelling causality. Eichler [2001] proposed using Granger causality graphs – a way to merge Granger

causality with graphs. Later, Eichler and Didelez [2007] introduced the idea of defining causality in time

series in the context of intervention, that would bring the causal graphs as defined by Pearl and Granger

causality even closer. Notably, Eichler and his colleagues were not the only to consider Granger causal

graphs, or link Granger causality with Pearl’s causal model. Billio et al. [2012] and Fiedor [2015] analyse

financial networks built on the basis of, respectively, linear Granger causality and transfer entropy as



2.1. Conceptual representations of causality 73

similarity measures. These authors use complex networks tools, rather than graphical model, to inspect

the networks, and are interested in properties of the network as a whole, and not in individual causal

relationships. White et al. [2011] demonstrate how Pearl’s Causal Model and Granger causality are linked,

when expressed in terms of extension of Pearl’s Causal Model with settable systems.

Eichler [2012] defines causality in the framework of Florens and Mouchart [1982], Florens and

Fougere [1996], in terms of conditional independence, and for continuous time, as introduced in Chapter(1)

Equation (1.18):

Definition 2 Granger non-causality, [Eichler and Didelez, 2007]

Let {Xt} , {Yt} , {Zt} be stationary time series, possibly multivariate. Xt is (strongly) Granger non-causal

for Yt up to horizon h, h ∈ N, with respect to process [Xt,Yt,Zt] if:

Yt+k ⊥⊥ X1:t | [Y1:t,Z1:t] , (2.9)

for all k = 1 : h, and t ∈ Z. If the above holds only for h = 1, then it is simply said that Xt is (strongly)

Granger non-causal for Yt with respect to process [Xt,Yt,Zt] and denoted Xt ↛ Yt [Xt,Yt,Zt], and if it

holds for all h ∈ N, then it is said that Xt is (strongly) Granger non-causal for Yt at all horizons, with

respect to process [Xt,Yt,Zt] and denoted Xt ↛ Yt [Xt,Yt,Zt].

Definition 3 Contemporaneous independence, [Eichler and Didelez, 2007]

Let {Xt} , {Yt} , {Zt} be stationary time series, possibly multivariate. Xt and Yt are contemporaneously

independent, with respect to process [Xt,Yt,Zt] if:

Yt+1 ⊥⊥ Xt+1 | [X1:t,Y1:t,Z1:t] , (2.10)

for all t ∈ Z. Contemporaneous independence is denoted Xt / Yt [Xt,Yt,Zt].

Eichler [2012] proposed building so called Granger causality graphs to represent Granger causal

relationships. Granger causality graphs G = (V, E) are mixed graphs, with time series represented as nodes,

directed edges representing Granger causality, and undirected edges – contemporaneous dependence. A

direct edge from X −→ Y (or X ←− Y) will be drawn if the hypothesis of non-causality is rejected, an

undirected edge X − −Y , if the hypothesis of contemporaneous independence is rejected, therefore three

edges can be drawn between every two of the nodes. A Granger causal graph can be shown on a following
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example

Model M : Xt = aXXt−1 + ϵ
X
t

Yt = aYYt−1 + bY Xt−1 + ϵ
Y
t (2.11)

Zt = aZZt−1 + bZYt−1 + cZ Xt−3 + ϵ
Z
t

X Y Z

Figure 2.4: Diagram representing the model from the Equations (2.11).

Eichler and Didelez [2007] introduce interventions to the Granger causal framework in a way that

is similar to Pearl’s approach, albeit using a different notation. An intervention is signalled with an

intervention indicator σ, where σX(t) = x0 means that Yt has been changed to y, with σX(t) = ∅ denoting

no intervention. This can be seen as equivalent to Pearl’s do-operator. Although we will not introduce

them here, Eichler and Didelez [2007] defined also conditional, random and multiple interventions.

An assessment of a causal effect can be made by analysing the average causal effect (ACE) of Xt on

Yt+h, h > 0, following a strategy σX(t) = x0:

ACEx0 = EsigmaX (t)=x0 Yt+h. (2.12)

The difference ACEx1 − ACEx2 will then be analogous to the Pearl’s average difference from the Equation

2.6. Just like Pearl, Eichler and Didelez [2007] pose then a question about identifiability of the causal

effect:

A priori there is no reason why data that is not collected under the regime of interest should allow

estimation of the ACE. By identifiability we mean the possibility to express the ACE in terms of quantities

that are known or estimable under the observational regime. [Eichler and Didelez, 2007]

The criteria for identification that Eichler and Didelez [2007] give are then based on the graphical

model properties of the graph G.

One of the main conclusion from the work of Eichler and his colleagues is that Granger causality

can be of use even if causality is understood in terms of interventions. In such a framework, however,

Granger causality can be used as a potentially causal relation. The criteria for identification that

Eichler and Didelez [2007] give can be seen as requiring that the set of multivariate time series and

side information must be “rich” enough. They also point out that while not including any concepts of

interventions or identifiability, Granger did suggest that the information available needs to include all

“relevant” information.
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2.2 Strengths and Weaknesses of Existing Methods, Based on Four

Chosen Methods

A researcher who decided to use statistical causality in their work, has to choose how to formulate the

hypothesis, which test statistic and test to use, how to estimate the test statistic, and finally how to interpret

the results. In this section we consider four of the methods introduced in Chapter (1). We analyse their

properties and performance in experiments on simulated data structures, and on real data. This section

points out the strength of the four methods, but more importantly, also the weaknesses, that inspired the

research presented in this thesis.

2.2.1 The Four Chosen Methods

The first method in this section is the classical Granger causality, which having many drawbacks is

nevertheless still commonly used as a benchmark. It is compared to three nonlinear methods: transfer

entropy (TE), kernel ridge regression (krr) and a nonparametric conditional dependence measure based

on the normalised conditional cross-covariance operator (which I will refer to as HSNCIC, for Hilbert

Schmidt Normalised Conditional Independence Criterion).

The test statistic for these four methods, which we remind below, were already defined in Equations

(1.8, 1.26, 1.50, 1.62).

1. Classical Granger causality (GC); Test statistic defined as improvement in the prediction error

variance.

LGC
X→Y = log

[
VY

[
Y,Z; p

]
VY

[
X,Y,Z; p

] ] (2.13)

2. Transfer Entropy (TE); Test statistic defined as a difference in conditional entropies. Designed to

measure departure from generalised Markov property.

LT E
X→Y = H(Y | Yt−k:t−1) − H(Y | Xt−k:t−1,Yt−k:t−1). (2.14)

3. Kernel ridge regression (krr), in some literature called “kernelised Geweke” [Amblard et al., 2012b];

Test statistic quantifies improvement in the prediction error variance for kernel ridge regression.

Lkrr
X→Y = log

V
(
ŶA

t1:t2 − Yt1:t2

)
V

(
ŶB

t1:t2 − Yt1:t2

) . (2.15)

4. Hilbert-Schmidt Normalised Conditional Independence Criterion (HSNCIC); Test statistic calcu-
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lated as a squared Hilbert-Schmidt norm for a normalised cross-covariance operator.

LHS NCIC
X→Y = ||V(Y,Z)(X,Z)|Z ||

2
HS (2.16)

The last method which has gained less popularity than the previous frameworks, is interesting from

methodological point of view, and also is more strongly connected to Machine Learning tools. The name

Hilbert-Schmidt Normalised Conditional Independence Criterion (HSNCIC) is used following Seth and

Principe [2011]. We refer the reader to Chapter (3) Section (3.1.1) for an introduction to functional

analysis including the Hilbert-Schmidt norm and the family of covariance operators.

In the Chapter (1), we have described several testing method, and we described that linear Granger

causality has tests, whose asymptotic distributions are known analytically. The other methods, however,

need to use some form of permutation test. When using the permutation test, we will work with the

following hypotheses:

H0 : LX→Y = 0, no causality from {X} to {Y} (2.17)

H1 : LX→Y > 0, causality from {X} to {Y} (2.18)

The test statistic for permutation test is obtained by using time series, with permuted time order. Let

pi(t), t = t1, ..., t2 denote a random permutation of the time index, and pi(X) denote a time series, where

the original time order has been reorganised according to the permutation pi(·). Then the null hypothesis

is assessed by comparing the value of LX→Y to a histogram of values of Lpi(X)→Y , and a p-value:

π(LX→Y | H0) =
1
m

m∑
i=1

1
(
Lpi(X)→Y > LX→Y

)
(2.19)

where 1(A) is a characteristic function for the set A.

Depending on the number of permutations used, we suggest to accept the hypothesis of causality for

the level of significance equal to 0.05 or 0.01. In our experiments, we report either single p-values or sets

of p-values for overlapping moving windows. The latter is particularly useful when analysing noisy and

non-stationary data. In the cases where not much data is available, we do not believe that using any kind

of subsampling (as proposed by Sun [2008], Amblard et al. [2012b], Seth and Principe [2011]) will be

beneficial, as far as the power of the tests is concerned.

2.2.2 Results

Linear multivariate data; causality at different lags and instantaneous coupling.

We performed an experiment on a set of eight time series with linear relationship: causal dependence at

lags 1 to 3, as well as instantaneous coupling (illustrated in the Table (B.1). We expected all methods to
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Table 2.1: Dependence structure of the simulated data.

ts1

ts2

ts3

ts4

ts5 

ts6

ts7

ts8

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8
ts1 × 0
ts2 0 ×

ts3 × -1
ts4 1 ×

ts5 × -1 -2 -3
ts6 1 × -1 -2
ts7 2 1 × -1
ts8 3 2 1 ×

Table 2.2: The directionality of causality between the eight simulated time series ts1 - ts8. Blue lines
represent causality with the arrowheads indicating direction, red line indicates instantaneous coupling.
The table shows lags at which true dependence occurs, with the interpretation that column variable causes
row variable.

detect causality, and wanted to test the effect of causal relationships existing at different lags. The details

of this experiment are in the Appendix (B.2).

All four methods performed well, although each of them had one false positive classification.

Classical Granger causality and kernel ridge regression method performed similarly, correctly identified

all lags and detecting causality and instantaneous coupling, but not rejecting spurious causality ts7→ts6,

though. Those two methods were able to analyse all time series, and include all 3 lags. Transfer entropy,

which typically analyses one lag at a time, successfully detected causality, however it failed to reject

spurious causality ts1→ts7. Similar results were obtained for the HSNCIC, with false positive ts7→ts2.

This method was, however,much slower slower.

Nonlinear multivariate data.

In this experiment, we analysed three time series {Xt} , {Yt} , {Zt}, with the following dynamic structure:



Xt = aXt−1 + ϵX,t

Yt = bYt−1 + dX2
t−1 + ϵY,t

Zt = cZt−1 + eYt−1 + ϵZ,t

(2.20)

This data exhibits a direct linear causality Y → Z, a direct nonlinear causality X → Y , and a nondirect

nonlinear causality X → Z. The complete results are in the Appendix (B.3). A similar data structure is

introduced in Section (3.2) and later used in experiments.

What this experiment allowed us to observe was that classical Granger causality was – as expected –

able to detect the linear relationship, but not the nonlinear ones. The other three methods were all able to

detect the nonlinear causal relationships X → Y , but only kernel ridge regression and HSNCIC were also

detecting the indirect causality X → Z.
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In this experiment we confirmed that the kernel ridge regressions method behaved like classical

Granger causality when linear kernel, and also that the choice of kernel parameters play a role in the

ability to detect causality. The choice of hyperparameters for kernel ridge regression was based on

cross-validation.

Interest rates and inflation.

The first financial data application has been performed for the consumer price index for the United States

(U.S. CPI) and the London Interbank Offered Rate (Libor) interest rate index. Both were monthly data

from January 31, 1986, to October 31, 2013, obtained from Thomson Reuters. These data series are of

vital importance from financial and microeconomic point of view, and have been studied extensively, also

with tools of Granger causality [Eichler, 2007]. More details in Appendix (B.4.2).

Libor is often used as a base rate (benchmark) by banks and other financial institutions, and it is

an important economic indicator. It is not a monetary measure associated with any country, and it does

not reflect any institutional mandate in contrast to, for example, when the Federal Reserve sets interest

rates. Instead, it reflects some level of assessment of risk by the banks who set the rate. Therefore, we ask

whether we detect that one of these two economic indicators causes the other one in a statistical sense?

[Zaremba and Aste, 2014].

The results shown that at lag of one month, there was a strong evidence for the direction CPI→Libor,

at acceptance level of 1% , especially for the longest time window considered. In Figure (2.5) one can see

that there was only one period in which the causal direction CPI→Libor would not be accepted at levels

1% and 5% (but would still be accepted at 10%). The direction from 1 month Libor to CPI, was exhibiting

the opposite behaviour, with the hypothesis of lack of causality rejected only for one short period. As the

scatter plot from Figure (2.5)shows, the two directions were clearly separated, meaning that there was

strong evidence for causality but not feedback.
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Figure 2.5: Kernelised Geweke’s measure of causality. The left chart shows sets of p-values for the
hypothesis that inflation statistically causes Libor (blue line) or the other way round (red line), when a
model with one lag is considered. The right chart shows the scatter plot of p-values and the value of the
causality measure. It represents the separation between the two causal directions – which in this case is
substantial.

This causal effect was also detectable for larger lags, in particular lag 2 and 7, and decreased with

shorter data windows. Moreover, the results from Figure (2.5) were nearly replicated by the results for

linear Granger causality, which indicated that there was a strong linear effect. Transfer entropy and

HSNCIC were in many cases unable to provide significant results, and were also not able to distinguish

between the two directions.

As before, the choice of hyperparameters for kernel ridge regression was based on cross-validation,

and possibly the most important conclusion was that parameter selection turned out to be critical for

kernel ridge regression method. For some tests, like the simulated 8 time series data described earlier,

size of the kernel did not play an important role, but in some cases the size of the kernel was crucial in

allowing the detection of causality. However, there was no kernel size that worked for all of the types of

the data.

Equity versus Carry Trade Currency Pairs

The last experiment was performed on the following exchange rates: AUDJPY, CADJPY, NZDJPY,

AUDCHF, CADCHF, NZDCHF, together with S&P index, for daily data for the period July 18, 2008–

October 18, 2013, from Thomson Reuters. The study aimed to investigate any patterns of the type “leader

- follower”. and had an expectation that S&P should be leading. More details in Appendix (B.4.3).

The analysis was performed with kernel ridge regression method using linear and Gaussian kernels,

and it shown similar results for the two kernels. The study has shown several periods where S&P seemed

to lead, however they were less prominent than expected. This has raised questions about how appropriate
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Measures Properties
Linearity versus nonlinearity

Granger causality assumes linearity; the best method for linear data, the worst for nonlinear
kernelised Geweke’s works for both linear and nonlinear data
transfer entropy works for both linear and nonlinear data
HSNCIC works for both linear and nonlinear data if low dimension

Distinguishing direct from indirect causality
Granger causality to some extent by comparing measure with and without side information
kernelised Geweke’s to some extent by comparing measure with and without side information
transfer entropy not able to (consider partial transfer entropy)
HSNCIC to some extent, as it is designed to condition on side information

Spurious casuality
Granger causality susceptible
kernelised Geweke’s susceptible
transfer entropy susceptible
HSNCIC susceptible

Good numerical estimator
Granger causality yes
kernelised Geweke’s yes
transfer entropy no
HSNCIC yes

Nonstationarity
Granger causality v. sensitive; test with ADF, KPSS, use windowing, differencing, large lag
kernelised Geweke’s somewhat sensitive; online learning is a promising approach
transfer entropy somewhat sensitive
HSNCIC somewhat sensitive

Choice of parameters
Granger causality lag
kernelised Geweke’s kernel, kernel size, regularisation parameter, lag; uses cross-validation
transfer entropy lag, binning size (if histogram approach used)
HSNCIC kernel, kernel size, regularisation parameter, lag

Table 2.3: The summary of main features of the different measures

was the choice of the models? How appropriate was the kernel choice, model selection, and parameter

optimisation?



Chapter 3

Models

“ I am among those who think that science has great
beauty. ”

Marie Skłodowska Curie, Physics Book 1

“ “You don’t see, Genry, why we perfected and practice
Foretelling?”

“No”
“To exhibit the perfect uselessness of knowing the an-
swer to the wrong question.” ”

Ursula K. Le Guin, The Left Hand of Darkness

This chapter provides an overview to models that form building blocks of our approach to modelling

causality. The first section will introduce elements of functional analysis that will be foundations for

kernels and kernel methods, second will concentrate on Gaussian processes (GPs), while the third section

will be devoted to selected multivariate distributions: copulas, generalised hyperbolic distributions,

skew-t distributions, tail behaviour.

3.1 Introduction to Gaussian Processes

A critical component for performing causality analysis, detection, and inference is to focus on the model

component of a GP. GPs can be understood both from the probabilistic perspective and functional analysis

perspective, and we will be adopting both to some extent. From the functional analysis perspective it

suffices to analyse some basic properties of the space where sample paths – realisations – will be defined,

and for this purpose it is useful to introduce Hilbert spaces. Quoting Hein et al.:

Positive definite kernels are extremely powerful and versatile tools. They allow to construct spaces

of functions on an arbitrary set with the convenient structure of a Hilbert space. Methods based on such

kernels are usually very tractable because of the particular structure (reproducing property) of the space

of functions. This has a large number of applications, in particular for statistical learning, approximation

or interpolation where one has to manipulate functions defined on various types of data (...)[Hein and
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Bousquet, 2004]

3.1.1 Functional analysis and Hilbert spaces for positive definite kernels

The definitions and theorems below follow Steinwart and Christmann [2008], Gretton et al. [2005], Sun

[2008]. All vector spaces will be over R, rather than C, however they can all be generalised for C with

little modification.

Definition 4 (Inner product) LetH be a vector space over R. A function ⟨·, ·⟩H : H ×H → R is said to

be an inner product onH if:

i) ⟨ f1 + f2, f ⟩ = ⟨ f1, f ⟩ + ⟨ f2, f ⟩, for all f , f1, f2 ∈ H

ii) ⟨α f1, f2⟩ = α⟨ f1, f2⟩ for all f1, f2 ∈ H , α ∈ R

iii) ⟨ f1, f2⟩ = ⟨ f2, f1⟩ for all f1, f2 ∈ H

iv) ⟨ f , f ⟩ ≥ 0 and ⟨ f , f ⟩ = 0 if and only if f = 0.

(3.1)

Definition 5 (Norm induced by inner product)

If ⟨·, ·⟩ is an inner product on H and f ∈ H , then || f ||H =
√
⟨ f , f ⟩H is a norm induced by the inner

product.

Definition 6 (Hilbert space)

If ⟨·, ·⟩ is an inner product onH , the pair (H , ⟨·, ·⟩) is called a Hilbert space ifH with metric induced by

the inner product is complete1.

Definition 7 (Linear operator)

for two vector spaces H and H ′ over R, a map A : H → H ′ is called a linear operator if it satisfies

A(α f ) = αA( f ) and A( f1 + f2) = A( f1) + A( f2) for all α ∈ R, f1, f2 ∈ H . Throughout the rest of the

chapter we use standard notational convention A f := A( f ).

The following three conditions can be proven to be equivalent:

i) linear operator A is continuous;

ii) A is continuous at 0;

iii) A is bounded2.

This result along with the Riesz representation theorem given later, are fundamental for the theory of

Reproducing Kernel Hilbert Spaces. It should be emphasised that while the operators we use, such as

mean element and cross-covariance operator, are linear, the functions they operate on will not in general

1A metric space is complete if every Cauchy sequence converges in this space.
2A bounded linear operator is generally not a bounded function.
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be linear. An important special case of linear operators are the linear functionals, which are operators

A : H → R.

Theorem 1 (Riesz representation theorem)

In a Hilbert space H , all continuous linear functionals3 A can be written in the form ⟨·, fA⟩, for some

fA ∈ H , so that:

A f = ⟨ f , fA⟩H (3.2)

One of the main mathematical concepts that will be used in this thesis, is a Mercer kernel, also

known under the names: positive definite kernel, covariance function, reproducing kernel, admissible

kernel, Support Vector kernel, nonnegative definite kernel. Mercer kernels were already referred to in

Chapters (1 - 2), used in methods extending linear algorithms to nonlinear ones – called “kernelisation” or

a “kernel trick”, and in methods of studying independence based on Hilbert spaces called reproducing

kernel Hilbert spaces (RKHSs). Below we will formally introduce Mercer kernels:

Definition 8 (Mercer kernel)

A function k : X × X → R is called a Mercer kernel if and only if it is symmetric, that is, ∀x, x′ ∈ X,

k(x, x′) = k(x′, x) and semi-positive definite, that is

∀x1, ..., xn ∈ X ∀c1, ..., cn ∈ R
n∑

i=1

n∑
j=1

cic jk(xi, x j) ⩾ 0. (3.3)

Remark 1 The term kernel has been initially used in the context of integral operators. A function

k : X × X → R which gives rise to an operator Ak according to:

(Ak f ) (·) =
∫
X

k(·, x) f (x)dx, (3.4)

is called the kernel of Ak.

Lemma 1 (Sums of kernels are kernels)

Let k, k1, k2 are Mercer kernels on X and α > 0, then αk, and k1 + k2 are kernels on X.

Lemma 2 (Products of kernels are kernels)

Let Let k1, k2 be Mercer kernels on, respectively, X1 and X2, then k1 × k2 is a Mercer kernel on X1 × X2.

If X1 = X2 = X1, then k = k1 × k2 is a kernel on X.

When defining Mercer kernels, we introduce the notion of a semi-positive definite function, even

though in practice we will typically be interested in Mercer kernels that are strictly positive definite. It
3If H is a normed space, the space of all continuous linear functionals A : H → R is called a topological dual space ofH and

denoted asH ′.
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will come as useful to introduce the following necessary condition for a function to be strictly positive

definite.

Lemma 3 Added

Let ϕ, ψ be positive functions defined on an interval I ∈ R with ϕ/ψ strictly increasing. Set:

k(t, s) =


ϕ(s)ψ(t) s ≤ t,

ϕ(t)ψ(s) t < s,
(3.5)

and assume that ϕ and ψ are such, that for all s, t ∈ I ϕ(s)ψ(t) > 0. Then k(s, t) is a strictly positive

definite function on I × I.

There are several important properties of kernels. A centered Gaussian process is uniquely determined

by its covariance function (semi-positive definite kernel). Conversely, any semi-positive kernel defines a

covariance function and a unique centered Gaussian Process Hein and Bousquet [2004]. Moreover there

exists a bijection between the set of all real-valued semi-positive kernels on some space X and the set of

all centered Gaussian processes defined on X. Kernels can also be seen as inner products Schölkopf et al.

[2004]:

Theorem 2 For any kernel k on space X, there exists a Hilbert space F and a mapping ϕ : X → F such

that:

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩, for any x, x′ ∈ X, (3.6)

where ⟨u, v⟩, u, v ∈ H represents an inner product inH .

The above theorem shows how we can create a kernel provided we have a feature map. Because the

simplest feature map is an identity map, this theorem proves that an inner product is a kernel.

Definition 9 (Stationary kernel)

A kernel k : X × X → R is called stationary, if k(x, x′) is a function of x − x′.

Definition 10 (Isotropic kernel)

A kernel k : X × X → R is called isotropic, if k(x, x′) is a function of ||x − x′|| .

Another important concept that will be broadly used in the context of kernel classes is the concept of

Automatic Relevance Determination (ARD). It has been initially introduced by MacKay [1996], Neal

[2012] as a Bayesian model where input relevance can be introduced and controlled with parameters.

This has later become popular in a wider context of feature selection and sparse learning in Bayesian

models Qi et al. [2004]. We use the same concept, but for a purpose of ensuring we have nested models

for inference hypothesis design (see section 4.3), and it will be crucial when applying the Generalised

Likelihood Ratio Test.
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In the ARD model each input variable has an associated hyperparameter whose value can scale the

effect of that input. In the Bayesian setting, this is achieved by setting a separate Gaussian prior for each

of the inputs. In our case we treat each dimension as a separate input and define our mean and covariance

functions in such manner that the effect of each of the univariate inputs can be separately changed with

hyperparameters. In particular, by setting specific values of the hyperparameters we can practically

eliminate some of the univariate variables from the mean/covariance. In the table below (Table 3.1)

are two examples of popular kernels and their ARD versions. Rasmussen and Williams in their Matlab

toolbox provide ARD versions of the squared exponential and Matern kernels, with one lengthscale

parameter for each dimension of the input space diag
([

l−2
1 , ..., l−2

n

])
, but our version from Table 3.1 allows

us to choose li = 0 which removes the effect of the i-th dimension of input on the kernel. And so a

covariance for lower dimensional space can be expressed as a covariance with a higher dimensional space

kS E([Yt−1,Zt−1] , [Yt′−1,Zt′−1]) = kS E([Xt−1,Yt−1,Zt−1] , [Xt′−1,Yt′−1,Zt′−1] ; l1 = 0).

Remark 2 Popular kernels, such as squared exponential or Matern (see Table 3.1) use lengthscale

parameter l and entering the covariance function as a multiplicative factor l−2, or diag
([

l−2
1 , ..., l−2

n

])
for an ARD kernel. Such lengthscale parameter can be interpreted in terms of a smoothing effect, with

large values l meaning that a variability is more likely to be attributed to noise, while in an ARD case,

large value of li imply i-th factor or input explaining less of the variability than other factors or inputs.

However, when we introduce definition of causality and of nested models in Chapter 5, we will require the

ability for the hyperparameters responsible for scaling the input to be equal zero. When using the squared

exponential ARD or Matern ARD kernel, this means defining the hyperparameter l as a reciprocal of the

typical lengthscale.

Given a set of input points {xi, i = 1, ..., n} we can compute the Gram matrix K whose entries are

Ki j = k(xi, x j). If k is a covariance function we call the matrix K the covariance matrix, or kernel matrix.

Definition 11 (Reproducing kernel Hilbert space (RKHS)) [Scholkopf and Smola, 2001]

Consider a Hilbert space H of real-valued functions on any set X, f : X → R. Then H is called a

reproducing kernel Hilbert space with an inner product ⟨·, ·⟩H , if there exists a function k : X × X → R

with the following properties:

1. k has a reproducing property:

⟨ f , k(x, ·)⟩H = f (x), for all f ∈ H ; (3.7)

in particular

⟨k(x, ·), k(x′, ·)⟩H = k(x, x′). (3.8)
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covariance function expression k(xp, xq) = stationary
constant (noise) σ2δp,q +

linear xT
p xq -

linear ARD xT
p Axq -

polynomial σ2
f

(
const + xT

p xq

)m
-

squared exponential σ2
f exp

(
−

(xp−xq)T (xp−xq)
2l2

)
+

squared exponential ARD σ2
f exp

(
− 1

2 D diag
([

l−2
1 , ..., l−2

n

])
DT

)
+

squared exponential* ARD σ2
f exp

(
− 1

2 D diag
([

l21, ..., l
2
n

])
DT

)
+

Matern
σ2

Γ(ν)2ν−1

(
√

2ν
d

l

)ν
Kν

(
√

2ν
d

l

)
+

Matern ARD
σ2

Γ(ν)2ν−1

(√
2νD

[
l−1
1 , ..., l−1

n

]T
)ν

Kν

(√
2νD

[
l−1
1 , ..., l−1

n

]T
)

+

Matern* ARD
σ2

Γ(ν)2ν−1

(√
2νD [l1, ..., ln]T

)ν
Kν

(√
2νD [l1, ..., ln]T

)
+

periodic σ2 exp
(
−

2 sin(Π(xq−xp)/a)
l2

)
+

separable nonstationary k1(xp, xp)k2(xq, xq) -

Table 3.1: Summary of several popular kernel functions. In the linear - ARD function, A is a matrix, in
the polynomial kernel m denotes a constant. In the Matern function d represents a distance d =|| xp − xq ||,
most often an Euclidean distance. In the modified Matern - ARD, we use the lengthscale to introduce
weighting separately for each of the dimensions and therefore we express the distance differently, by
defining D to be a vector of univariate ”distances” D =

[
|| xp,1 − xq,1 ||, ..., || xp,n − xq,n ||

]
. In the periodic

kernel a is a constant, and in the separable nonstationary kernel the functions k1, k2 are some stationary
kernels.
(*) refers to alternative formula for the covariance function, where the typical lengthscale parameter is
replaced by reciprocal lengthscale parameter.

2. k spansH , i.e. H = span {k(x, ·) | x ∈ X}, where X denotes the completion of the set X.

RKHS uniquely determines the kernel function k, and according to Moore-Aronszajn theorem the

opposite direction is also true:

Theorem 3 (Moore-Aronszajn)[Aronszajn, 1950]

If k is a Mercer kernel then there existsH – a unique RKHS whose kernel is k.

The Moore-Aronszajn theorem proves existence of RKHS associated with a Mercer kernel without

showing how to construct such an RKHS. The next theorem, proposed over hundred years ago by Mercer

[1909], provides a series representation for continuous kernels on compact domains, now called Mercer

kernels, and describes the corresponding RKHS.

Theorem 4 (Mercer theorem) [Mercer, 1909, Scholkopf and Smola, 2001]

Suppose k ∈ L∞(X2) is a symmetric real-valued function such that an integral operator Ak

Ak : Lp(X)→ Lp(X), (Ak f ) (·) :=
∫
X

k(·, x) f (x)dx (3.9)
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is positive definite, that is for all f ∈ L2(X)

∫
X2

k(x, x′) f (x) f (x′)dxdx′ ≥ 0. (3.10)

Let ψ j ∈ L2(X) be the normalised orthogonal eigenfunctions of Ak associated with eigenvalues λ j > 0,

sorted in non-increasing order. Then:

1. (λ j)∞j=1 ∈ l1, meaning that the eigenvalues are absolutely summable;

2. k(x, x′) =
∑∞

j=1 λ jψ j(x)ψ j(x′) holds for almost all (x, x′), where the series converges absolutely and

uniformly for almost all (x, x′).

Introducing kernel ridge regression method in the previous sections in the Equations (1.46 - 1.49),

we used kernel trick without explaining why it was permissible. The explanation is given below as the

representer theorem4. The theorem refers to a loss function L(x, y, f (x)) that describes the cost of the

discrepancy between the prediction f (x) and the observation y at the point x. The risk RL,S associated

with the loss L and data sample S is defined as the average future loss of the prediction function f .

Theorem 5 (Representer theorem)[Steinwart and Christmann, 2008]

Let L : X×Y×R→ [0,∞) be a convex loss, S := {(x1, y1), ..., (xn, yn)} ∈ (X×Y)n be a set of observations

and RL,S denote associated risk. Furthermore, letH be an RKHS over X. Then for all λ > 0 there exists

a unique estimator which we denote by fS ,λ ∈ H satisfying the equality:

fS ,λ = arg inf
f∈H

λ∥ f ∥2
H
+ RL,S ( f ) (3.11)

In addition, there exist α1, · · ·αn ∈ R such that for k being the reproducing kernel associated withH

fS ,λ(x) =
n∑

i=1

αik(x, xi), for x ∈ X. (3.12)

The representation theorem is especially relevant, because it states that not only a solution to the

minimisation problem exists and is unique, but it can be represented with Mercer kernels, as shown in

Equation (3.12).

Below we present definitions which are building blocks of the Hilbert Schmidt normalized conditional

independence criterion.

Definition 12 (Hilbert-Schmidt norm)

Let H be a Reproducing Kernel Hilbert Space (RKHS) of functions from X to R, induced by strictly

positive kernel k : X × X → R. LetH ′ be an RKHS of functions from Y to R, induced by strictly positive

4In some machine learning literature kernel trick is introduced via Mercers theorem.
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kernel l : Y × Y → R5. Denote by C : H ′ → H a linear operator. The Hilbert-Schmidt norm of the

operator C is defined as

∥C∥2HS :=
∑
i, j

⟨Cvi, u j⟩
2
H
, (3.13)

given that the sum converges, where ui and u j are orthonormal bases of H and H ′ respectively;

⟨v, u⟩H , u, v ∈ H represents an inner product inH

Following Gretton et al. [2005], Sun [2008], letHW denote the RKHS induced by a strictly positive

kernel kW : W ×W → R. Let X be random vector on X, Y be random vector on Y and (X,Y) be

random vector on X × Y. We assume X and Y are topological spaces and the measurability is defined

with respect to the relevant σ−fields. The marginal distributions are denoted by FX , FY and the joint

distribution of (X,Y) by FXY . The expectations EX , EY and EXY denote the expectations over FX , FY and

FXY , respectively. To ensureHX,HY are included in, respectively L2(PX) and L2(PY ), we consider only

random vectors (X,Y) such that the expectations EX[kX(X, X)] and EY [kY(Y,Y)] are finite.

Definition 13 (Hilbert-Schmidt operator) A linear operator C : H ′ → H is Hilbert-Schmidt if its

Hilbert-Schmidt norm exists.

The set of Hilbert-Schmidt operators HS (H ′,H) : H ′ → H is a separable Hilbert space with the

inner product:

⟨C,D⟩HS :=
∑
i, j

⟨Cvi, u j⟩H ⟨Dvi, u j⟩H , (3.14)

where C,D ∈ HS (H ′,H).

Definition 14 (Tensor product) Let f ∈ H and g ∈ H ′, then the tensor product operator f ⊗g : H ′ → H

is defined as follows:

( f ⊗ g)h := f ⟨g, h⟩H ′ , for all h ∈ H ′. (3.15)

The definition above makes use of two standard notational abbreviations. The first one concerns omitting

brackets when denoting application of an operator: ( f ⊗ g)h instead of ( f ⊗ g)(h). The second one relates

to multiplication by a scalar and we write f ⟨g, h⟩H ′ instead of f · ⟨g, h⟩H ′ .

The Hilbert-Schmidt norm of the tensor product can be calculated as:

∥ f ⊗ g∥2HS = ⟨ f ⊗ g, f ⊗ g⟩HS = ⟨ f , ( f ⊗ g)g⟩H

= ⟨ f , f ⟩H ⟨g, g⟩H ′ = ∥ f ∥2H∥g∥
2
H ′
.

(3.16)

When introducing the cross-covariance operator we will be using the following results for the tensor

5We will require that spaceH must be separable (to have a complete orthonormal system), but in practice we will use Rn and
therefore that would not be an issue.
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product. Given a Hilbert-Schmidt operator L : H ′ → H and f ∈ H and g ∈ H ′,

⟨L, f ⊗ g⟩HS = ⟨ f , Lg⟩H . (3.17)

A special case of Equation (3.17) with the notation as earlier and u ∈ H and v ∈ H ′,

⟨ f ⊗ g, u ⊗ v⟩HS = ⟨ f , u⟩H ⟨g, v⟩H ′ . (3.18)

Definition 15 (The mean element)

The mean element µX with respect to the probability measure PX is defined as an element of the RKHS

HX for which

⟨µX , f ⟩HX := EX[⟨ϕ(X), f ⟩HX ] = EX[ f (X)], (3.19)

where ϕ : X → HX is a feature map and f ∈ HX.

The mean elements exist as long as the respective norms are bounded, a condition that is met if the

relevant kernels are bounded.

The cross-covariance operator is analogous to a covariance matrix, but is defined for feature maps.

Definition 16 (Cross-covariance operator) The cross-covariance operator is a linear operator

ΣXY : HY → HX associated with the joint measure PXY defined as

ΣXY := EXY [(ϕ(X) − µX) ⊗ (ϕ(Y) − µY )] = EXY [ϕ(X) ⊗ ϕ(Y)] − µX ⊗ µY , (3.20)

where we use symbol ⊗ for tensor product and µ for mean embedding. The cross-covariance operator

applied to two elements f ∈ HX and g ∈ HY gives the covariance:

⟨ f ,ΣXYg⟩HX = Cov( f (X), g(Y)). (3.21)

The notation and assumptions follow Gretton et al. [2005], Sun [2008]: HX denotes the Reproducing

Kernel Hilbert Space (RKHS) induced by a strictly positive kernel kX : X × X → R, analogously forHY

and kY. X is a random variable on X, Y is a random variable on Y and (X,Y) is a random vector on

X × Y. We assume X and Y to be topological spaces and measurability is defined with respect to the

relevant σ−fields. The marginal distributions are denoted by FX , FY and the joint distribution of (X,Y)

by FXY . The expectations EX , EY and EXY denote the expectations over PX , PY and PXY , respectively. To

ensureHX,HY are included in, respectively, L2(PX) and L2(PY ), we consider only random vectors (X,Y)

such that the expectations EX[kX(X, X)] and EY [kY(Y,Y)] are finite.

Definition 17 (Hilbert-Schmidt Independence Criterion – HSIC)[Gretton et al., 2005]
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We define the Hilbert Schmidt independence criterion as the squared Hilbert Schmidt norm of the cross-

covariance operator ΣXY :

HS IC(PXY ,FX,FY) := ∥ΣXY∥
2
HS . (3.22)

The HSIC can be written in the kernel notation:

HS IC(PXY ,FX,FY) :=EX,X′,Y,Y ′ [kX(X, X′)kY(Y,Y ′)] + EX,X′ [kX(X, X′)]EY,Y ′ [kY(Y,Y ′)]

−2EX,Y [EX′ [kX(X, X′)]EY ′ [kY(Y,Y ′)]].
(3.23)

(X,Y) and (X′,Y ′) are i.i.d. from PXY .

Just as the cross-covariance operator is related to the covariance, we can define an operator that is

related to partial correlation:

Definition 18 (Normalised conditional cross-covariance operator Fukumizu et al. [2008]) Using the

cross-covariance operators we can define the normalised conditional cross-covariance operator in the

following way:

VXY |Z = Σ
−1/2
XX (ΣXY − ΣXZΣ

−1/2
ZZ ΣZY )Σ−1/2

YY . (3.24)

Gretton et al. [2005] state that for rich enough RKHS 6, zero norm of the cross-covariance operator

is equivalent to independence, which can be written as:

X ⊥⊥ Y ⇐⇒ ΣXY = 0, (3.25)

where 0 denotes a null operator. This equivalence is the premise from which follows the use of the

Hilbert-Schmidt independence criterion (HSIC) as a measure of independence.

It was shown in Fukumizu et al. [2008] that there is a relationship similar to (3.25) between the

normalised conditional cross-covariance operator and conditional independence, which can be written as:

X ⊥⊥ Y | Z⇐⇒ V(XZ)(YZ)|Z = 0, (3.26)

where by (YZ) and (XZ) we denote extended variables. Therefore the Hilbert-Schmidt norm of the

conditional cross-covariance operator has been suggested as a measure of conditional independence.

Using the normalised version of the operator has the advantage that it is less influenced by the marginals

than the non-normalised operator while retaining all the information about dependence. This is analogous

to the difference between correlation and covariance.

Definition 19 (Hilbert Schmidt normalised conditional independence criterion – HSNCIC) We define the

6By “rich enough” we mean universal, i.e. dense in the sense of continuous functions on X with the supremum norm Hofmann
et al. [2008].
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HSNCIC as the squared Hilbert Schmidt norm of the normalised conditional cross-covariance operator

V(XZ)(YZ)|Z:

HS NCIC := ∥V(XZ)(YZ)|Z∥
2
HS , (3.27)

where ∥ · ∥HS denotes Hilbert-Schmidt norm of an operator.

For the sample S = {(x1, y1, z1), ..., (xn, yn, zn)} HSNCIC has an estimator that is both straightforward

and has good convergence behaviour [Fukumizu et al., 2008, Seth and Principe, 2011]. As shown in

Appendix A.7, it can be obtained by defining empirical estimates of all of the components in following

steps: first define mean elements m̂(n)
X and m̂(n)

Y and use them to define empirical cross-covariance operator

Σ̂
(n)
XY . Subsequently using Σ̂(n)

XY , together with Σ̂(n)
XX and Σ̂(n)

YY obtained in the same way, define V̂ (n)
XY for the

empirical normalised cross-covariance operator. Note that VXY requires inverting ΣYY and ΣXX , hence to

ensure invertibility a regulariser nλIn is added. The next step is to construct the estimator V̂ (n)
XY |Z from V̂ (n)

XY ,

V̂ (n)
XZ and V̂ (n)

ZY . Finally, construct the estimator of the Hilbert-Schmidt norm of V̂ (n)
ZY as follows:

HS NCICn := Tr[R(XZ)R(YZ) − 2R(XZ)R(YZ)RZ + R(XZ)RZR(YZ)RZ], (3.28)

where Tr denotes a trace of a matrix, and RU = KU(KU + nλI)−1 and KU(i, j) = k(ui, u j) is a Gram matrix.

This estimator depends on the regularisation parameter λ which, in turn, depends on the sample size.

Regularisation becomes necessary when inverting finite rank operators.

3.1.2 Defining Gaussian Processes

We begin with the definition popular in the field of Machine Learning, given by Williams and Rasmussen

[2006].

Definition 20 Gaussian Process (GP)[Williams and Rasmussen, 2006]

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian

distribution.

Gaussian distribution is characterised by its mean and covariance, and in the Definition 21 we will

show how a GP can be defined by analogous characterisation – by its mean function and covariance

function. Below, we show how Gaussian process can be thought of as a Markov process, for which all

finite dimensional distributions are Gaussian. Such a representation requires assumption on the covariance

function, and without it one can have an infinite memory GP.

Lemma 4 Gaussian Process (GP)

Let I ∈ R be an interval, open or closed, and let {Xt} s.t. t ∈ I be a mean zero GP with continuous

strictly positive covariance k. Then {Xt} is a Gaussian Markov process, i.e. for all increasing sequences
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t1, ..., tn ∈ R+, for all n ∈ N

E
[
Xtn | Xtn−1

]
= E

[
Xtn | Xtn−1 , ..., Xt1

]
if and only if k can be expressed as in Equation (3.5).

A third definition of a GP that we provide, shows how a GP can be defined through a characterisation.

Definition 21 Characterisation of Gaussian Process (GP)

Denote by f (x) : X 7→ R a stochastic process parametrised by {x} ∈ X, where X ⊆ Rd. Then, the random

function f (x) is a Gaussian process if all its finite dimensional distributions are Gaussian, where for

any n ∈ N, the random vector ( f (x1) , f (x2) , . . . , f (xn)) is jointly normally distributed, see Williams and

Rasmussen [2006].

We can therefore interpret a GP as formally defined by the following class of random functions:

f := { f (·) : X 7→ R, s.t. f (·) ∼ GP
(
µ
(
·; θµ

)
, k (·, ·; θk)

)
, with

µ
(
·; θµ

)
:= E

[
f (·)

]
: X 7→ R,

k (·, ·; θk) := E
[(

f (·) − µ
(
·; θµ

)) (
f (·) − µ

(
·; θµ

))]
: X × X 7→ R+

}
.

At each point the mean of the function is µ(·; θµ), parametrised by θµ, and the spatial dependence

between any two points is given by the covariance function (Mercer kernel) k (·, ·; θk), parametrised by θk,

see detailed discussion in Williams and Rasmussen [2006]. We will later use notation θ = θµ ∪ θk, and

will refer to θ as hyperparameters of the Gaussian Process f .

3.1.2.1 Gaussian Processes Time Series

GPs are a flexible class of models, and can be successfully used for modelling distributions over functions

with space or time domain. In the Definition (21) we introduced the notation f (x) : X 7→ R a stochastic

process parametrised by {x} ∈ X. There are different approaches to how they can be used for modelling

time series, and in particular autoregressive time series, see [Roberts et al., 2012], [Requeima et al., 2019],

[Candela et al., 2003].

A popular way of defining a GP time series is by using the index t as the input, and the time series

observation as an output, in which case X ≡ R, µ : R→ R, and k : R × R→ R.

Xt = f (t) + ϵt, f ∼ GP (µ, k) , ϵt ∼ N(0, σ2). (3.29)

In the context of statistical causality, we are typically interested in autoregressive time series, where

what constitutes the input space is not time, but past observations. Let {Xt} be two time series, and their

past observations be denoted as X−k
t−1 = [Xt−k, · · · , Xt−1]. We nonparameterically model the time series
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{Xt} as realizations from a GPs with additive Gaussian noise:

Xt = f
(
X−k

t−1

)
+ ϵt, f ∼ GP (µ, k) , ϵt ∼ N(0, σ2). (3.30)

Remark 3 The autoregressive formulation from Equation 3.30 is more general than the Equation 3.29,

to which it can be converted. The autoregressive formulation is, however, not time reversible, which is

consistent with the fact that when modelling statistical causality we want to describe a property that is

not symmetrical in terms of time.

Remark 4 The formulation from Equation 3.30 can be extended to include past values of an additional

time series {Yt} as the input space:

Xt = f
([

X−k
t−1,Y

−l
t−1

])
+ ϵt, f ∼ GP (µ, k) , ϵt ∼ N(0, σ2). (3.31)

Remark 5 Please note that given the fact that sum of kernels is a kernel (Lemma 1) the additive Gaussian

noise ϵt can be either explicitly stated as in the Equations 3.29 - 3.31 or represented as a GP itself and

included in the formulation of the GP f .

3.1.3 Multiple Output Gaussian Processes for Time Series

Gaussian Processes are typically used to model only a single output variable. When one wants to use

Gaussian processes to cater for multiple outputs, the main difficulty that arises is how to define covariance

functions that capture cross-covariances and still guarantees positive-definite covariance matrices. Some

authors suggest modelling each output as a separate, independent Gaussian Process ( “multi-kriging”

[Williams and Rasmussen, 1996]). There are several approaches to achieving multiple output GP, such

as “cokriging” (see Cressie 1993 [Cressie, 1993] and literature therein), modelling the outputs as linear

combinations of latent channels [Teh et al., 2005], [Micchelli and Pontil, 2005], or modelling them as

convolutions of the same underlying white noise process [Boyle and Frean, 2005], [Álvarez and Lawrence,

2011].

We can think of a multi-output GP in terms of describing marginal and joint distributions, and so on

the most general level, a multi-output GP representation for two time series, {Xt} , {Yt}, could be described

as follows:

 Xt

Yt

 =
 fX

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
+ ϵX

t

fY
([

X−k
t−1,Y

−l
t−1,Z

−m
t−1

])
+ ϵY

t

 marginal fX ∼ GP(µX , kX); ϵX
t ∼ N(0, σ2

X)

marginal fY ∼ GP(µY , kY ); ϵY
t ∼ N(0, σ2

Y )
(3.32)

where X−k
t−1,Y

−l
t−1,Z

−m
t−1 are the lagged observations of Xt,Yt and the side information Zt, with k, l,m being

their respective lags.
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Equation 3.32 can resemble the way how copulas are used for modelling joint distributions of

multivariate random variables, and we indeed will introduce copulas as one way of expressing symmetrical

dependence in out multivariate time series models (see Section 3.3 and Chapter 6 for more details).

We can write the covariance matrix of the Eqution 3.32 as follows:

Σ =

 kX kXY

kYX kY

 +
 δt,sσ

2
X 0

0 δt,sσ
2
Y

 ,
where δt,s is a Kronecker delta.

It is not enough for the functions kYX and kXY to be kernels, to ensure that the whole covariance

matrix is positive definite, and it is also trivial to give (practical) conditions for the functions kYX and kXY

to achieve positive definiteness. There are some special cases though, where this can be done easily. For

example, if we choose a kernel k(·, ·) and set kX = kXY = kYX = kY = k, then the covariance matrix Σt will

automatically be positive-definite.

Alternatively, one can introduce the dependence structure through the structure of the noise compo-

nent. The covariance between outputs of the multiple output GP is then equal to:

Σ =

 kX 0

0 kY

 +
 δt,sσ

2
X ρ

ρ δt,sσ
2
Y

 .
Below we talk in more details about two other approaches: using independent Gaussian processes, and

already mentioned method of Boyle and Frean 2005 [Boyle and Frean, 2005] to incorporate convolutions

of common white noise process.

3.1.3.1 Two Independent Gaussian Processes

The first approach to obtaining multiple outputs with GP models that we discuss is by using two

independent Gaussian processes. The trivial solution to specifying cross-covariance is to set this structure

to identity matrix, in which case the two GPs are decoupled. It should be pointed out, though, that failing

to model the covariance structure can lead to the loss of information about the causal dependence, as this

will only be encoded through the structure placed on the inputs.

Assume two (observed) time series {Xt} , {Xt} whose dynamic can be described with two independent

GP models analogously to how it was described in the Equations 3.30 - 3.31.

Xt = fX

([
X−k

t−1,Y
−l
t−1

])
+ ϵX

t , fX ∼ GP
(
µX , kX

)
ϵX

t ∼ N(0, σ2
X) (3.33)

Yt = fY
([

X−k
t−1,Y

−l
t−1

])
+ ϵY

t , fY ∼ GP
(
µY , kY

)
ϵY

t ∼ N(0, σ2
Y ) (3.34)

Remark 6 One natural way how a source of symmetrical dependence can be incorporated in the multi-



3.1. Introduction to Gaussian Processes 95

output GP model with independent GPs is via addition of another time series {Zt}

Xt = fX

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
+ ϵX

t , fX ∼ GP
(
µX , kX

)
ϵX

t ∼ N(0, σ2
X) (3.35)

Yt = fY
([

X−k
t−1,Y

−l
t−1,Z

−m
t−1

])
+ ϵY

t , fY ∼ GP
(
µY , kY

)
ϵY

t ∼ N(0, σ2
Y ) (3.36)

We will refer to {Zt} as side information, and we note that typically {Zt} will be introduced as an observed

time series.

3.1.3.2 Convolved Multiple Output Gaussian Processes

A GP can be expressed as a convolution integral between a smoothing kernel and a latent function.

According to Álvarez and Lawrence [2011], any type of latent process can be used, the smoothing

kernel has to be absolutely integrable. Here we will describe the case, where as Boyle and Frean [2005]

suggested, Gaussian process is constructed by stimulating a linear filter with noise.

A Gaussian Process uX can be expressed as a convolution integral between a smoothing kernel hX

and an independent white Gaussian noise process u0:

uX(t) = hX(t) ∗ u0(t) =
∫ ∞

−∞

hX(t − τ)u0(τ)dτ =
∫ ∞

−∞

hX(τ)u0(t − τ)dτ. (3.37)

Two dependent time series {Xt} , {Yt} can be written as a sum of the independent GPs fX , fY and

dependent GPs uX , uX , (see Figure 7.3):

X(t) = fX

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
+ uX(t), Y(t) = fY

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
+ uY (t), (3.38)

where fX ∼ GP
(
µX , kX

)
, fY ∼ GP

(
µY , kY

)
. Additional additive Gaussian noise term can be included in

fX , fY to incorporate sources of noise that are not common for {Xt} , {Yt}.

u0common white noise ———————————–

uX uY

smoothing kernels ————————————–

fX fYindependent GPs; dependent smoothed noise ——

x ydependent GPs ——————————————

hX∗ ∗hY

+ +

Figure 3.1: How to obtain dependent Gaussian Processes X,Y from independent fX , fY and a common
white noise u0 smoothed by smoothing kernels (linear filters) hX , hY .

If u0 is a white Gaussian noise process with covariance ku0 (z, z′) = σ2
uδz,z′ , then the covariance
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function of uX is as follows (please note uX will be zero mean), Boyle and Frean [2005]:

cov(uX(t), uX(t′)) = E
{
uX(t), uX(t′)

}
= (3.39)

= E
{∫ ∞

−∞

hX(τ)u0(t − τ)dτ
∫ ∞

−∞

hX(λ)u0(t′ − λ)dλ
}

=

∫ ∞

−∞

∫ ∞

−∞

hX(τ)hX(λ)E
[
u0(t − τ)u0(t′ − λ)

]
dτdλ

=

∫ ∞

−∞

∫ ∞

−∞

hX(τ)hX(λ)σ2
uδ(λ − (t′ − t + τ))dτdλ

= σ2
u

∫ ∞

−∞

hX(τ)hX(t′ − t + τ)dτ,

where we used the fact that the smoothing kernels are absolutely integrable, and so we can change the

order of the integration.

The form of the auto- and cross-covariances for the multiple output Gaussian Processes from the

Equations 3.38 are as follows:

cov (Xt, Xs) = cov
(

fX

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
, fX

([
X−k

s−1,Y
−l
s−1,Z

−m
s−1

]))
+ cov

(
uX(t), uX(s)

)
cov (Yt,Ys) = cov

(
fY

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
, fY

([
X−k

s−1,Y
−l
s−1,Z

−m
s−1

]))
+ cov

(
uY (t), uY (s)

)
cov (Xt,Ys) = cov

(
uX(t), uY (s)

)
.

The covariance term for cov
(
uX(t), uX(s)

)
can be obtained from the Equation 3.39, and analogously

for both cov
(
uY (t), uY (s)

)
and cov

(
uX(t), uY (s)

)
, where the Gaussian noise u0 stays the same, but only the

smoothing kernel changes:

cov (Xt, Xs) = kX + σ2
u

∫ ∞

−∞

hX(τ)hX(s − t + τ)dτ (3.40)

cov (Yt,Ys) = kY + σ2
u

∫ ∞

−∞

hY (τ)hY (s − t + τ)dτ (3.41)

cov (XT ,Ys) = σ2
u

∫ ∞

−∞

hX(τ)hY (s − t + τ)dτ. (3.42)

The integrals in the Equations 3.39 and 3.40 do not have a closed form solution for all smoothing

kernels. They do have closed form solutions for, for example, squared exponential smoothing kernels

hX , hY , defined as:

hX(s) = θX exp
(
−

1
2

(s − µX)2

lX

)
hY (s) = θY exp

(
−

1
2

(s − µY )2

lY

)
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Following the appendix of Boyle’s thesis, the smoothing kernels above lead to:

cov
(
uX(t), uY (s)

)
= σ2

u
(2Π)

1
2√

| 1
lX
+ 1

lY
|

exp

−1
2

(
t − s − (µX − µY )

)2

lX + lY

 (3.43)

Analogously, the autocovariance function:

cov
(
uX(t), uX(s)

)
= σ2

u
(2Π)

1
2√

| 2
lY
|

exp
(
−

1
2

(t − s)2

2lX

)
. (3.44)

In the sequel, we will be using shorthand notation for the covariances from Equations 3.43 and 3.44:

ρX
t,s = cov

(
uX(t), uX(s)

)
ρXY

t,s = cov
(
uX(t), uY (s)

)
ρY

t,s = cov
(
uY (t), uY (s)

)
ρYX

t,s = cov
(
uY (t), uX(s)

)
.

With the symmetry of the covariance function implying equalities: ρXY
t,s = ρ

YX
s,t and ρYX

t,s = ρ
XY
s,t .

The mean vector µ and covariance matrix K of the Multiple-Output GP, which refer to a joint

distribution of random variables
[
Xt1 , . . . , Xtn ,Yt1 , . . . ,Ytn

]
, can be represented as:

µ :=
[
µX ,µY

]
(3.45)

K :=

 KXX KXY

KYX KYY ,

 (3.46)

where K ∈ X+ (Rm) and

{
KXX

}
i j
= kX

([
X−k

ti−1,Y
−l
ti−1,Z

−m
ti−1

]
,
[
X−k

t j−1,Y
−l
t j−1,Z

−m
t j−1

])
+ ρX

ti, j (3.47){
KYY

}
i j
= kY

([
X−k

ti−1,Y
−l
ti−1,Z

−m
ti−1

]
,
[
X−k

t j−1,Y
−l
t j−1,Z

−m
t j−1

])
+ ρY

ti, j (3.48)

Note, that the convolved multiple output Gaussian process can be reduced to the case of independent

Gaussian processes, by choosing a smoothing kernel that is equivalent to zero. If we choose equal

smoothing kernel for both hX and hY , and either choose fX , fY to be always zero, or equivalent to additive

noise – then the convolved case can be seen as equivalent to what we called “pseudo-multiple Gaussian

process”. In the sequel, when introducing the notion of statistical causality using GPs we will use use

general notation that allows for multivariate time series and multi-output GPs.



98 Chapter 3. Models

3.2 Illustrative Non-Linear Multi-Variate Time Series Models

In order to motivate the causality studies in this thesis, we consider three illustrative nonlinear time series

models that will be references that we will apply our causality testing framework to, throughout the

synthetic studies undertaken in the results analysis for testing power, sensitivity and robustness of our

proposed causality testing framework.

In particular the classes of model we have chosen as illustrations of data generating processes for the

time series that will form inputs to our testing framework characterise a range of general model structures

which allow for assessment of linear and non-linear causality structures in the trend or the volatility or

both components of the resulting data generating models.

Example Time Series Model Class 1: Structural Trend Based Causality Consider an autoregressive

non-linear model class comprised of structures incorporating time series with linear and non-linear

polynomial causality in the trend, with Gaussian noise.

Xt = aXXt−1 + ϵX ϵX ∼ N
(
0, σ2

X

)
, (3.49)

Yt = aYYt−1 + bY Xt−1 + ϵY ϵY ∼ N
(
0, σ2

Y

)
,

Zt = aZZt−1 + bZYq
t−1 + ϵZ ϵZ ∼ N

(
0, σ2

Z

)
,

The examples that we will use will assume q = 2, which means that in the mean this time series will have

a non-linear causality in the direction Y → Z, aside from the linear causality X → Y .

We will express the model from the Equations 3.49 in the form of three GPs, as in the Equations 3.50.

When generating the data, as Equations 3.52 show, we will use Matern covariance functions for k1(t, t′)

and k2(t, t′), we will also extend the model to allow causal relationship in covariance – relationships, that

were not existing in the time series formulations from Equations 3.49.

A formulation of the time series from the Equation 3.49 explicitly as GPs can be done according to

the following conditional distributions:

Xt = fX(Xt−1) fX ∼ GP
(
µX , kX

)
(3.50)

Yt = fY ([Yt−1, Xt−1]) fY ∼ GP
(
µY , kY

)
Zt = fZ([Zt−1,Yt−1]) fZ ∼ GP

(
µZ , kZ

)
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where the mean functions are linear:

µX(Xt−1) = aXXt−1 no causality (3.51)

µY ([Yt−1, Xt−1]) = aYYt−1 + bY Xt−1 linear causality

µZ([Zt−1,Yt−1]) = aZZt−1 + bZY2
t−1 non-linear causality

and covariance functions incorporate the noise which was already defined as a GP:

kX(Xt−1, Xt′−1) = kMatern
la,σ f

(Xt−1, Xt′−1) + σ2
nδt,t′ (3.52)

kY ([Yt−1, Xt−1], [Yt′−1, Xt′−1]) = kMatern
la,lb,σ f

([Yt−1, Xt−1], [Yt′−1, Xt′−1]) + σ2
nδt,t′

kZ([Zt−1,Yt−1], [Zt′−1,Yt′−1]) = kMatern
la,lb,σ f

([Zt−1,Yt−1], [Zt′−1,Yt′−1]) + σ2
nδt,t′

Note that the main causality structure has been encoded in the mean functions, but the way the

covariance functions are formulated allows some causality in the covariance in the directions X → Y and

Y → Z.

Example Time Series Model Class 2: Structural Causality Incorporated in Volatility The second

causality structure has similar autoregressive and causal components to the Structure 1, but the error terms

depend on past values of the other time series (so no autoregression in the covariance) via non-linear

functions fy, fz:

Xt = aXXt−1 + ϵx (3.53)

Yt = aYYt−1 + bY Xt−1 + ϵ
∗
y ;

Zt = aZZt−1 + bZYq
t−1 + ϵ

∗
z ;

where: ϵ∗y = fy (Xt−1,Zt−1) ϵy =
(
gy(t) + cyXp

t−1 + dyZr
t−1

)2
ϵy

ϵ∗z = fz (Xt−1,Yt−1) ϵz =
(
gz(t) + czX

p
t−1 + dzYr

t−1

)2
ϵz

The formulation above is general and the noise terms ϵy, ϵz can depend explicitly on time via the functions

gy(t) and gz(t). We use cy, cz, dy, dz, p, q to denote constants. For this time series to be expressed in terms

of GP we will have exactly the same general GP structure as for the time series 1 in the Equation 3.50,

and exactly the same mean functions – the Equation 3.51. To construct the kernels that will match the

covariance structure, we use the properties that summations and multiplications of kernels yields new
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kernels, for example as follows:

kX([Xt−1,Yt−1,Zt−1], [Xt′−1,Yt′−1,Zt′−1]) = σ2
nδt,t′ (3.54)

kY ([Xt−1,Yt−1,Zt−1], [Xt′−1,Yt′−1,Zt′−1]) = kts2
g,p,r,cY ,dY

([Xt−1,Zt−1], [Xt′−1,Zt′−1])σ2
nδt,t′

kZ([Xt−1,Yt−1,Zt−1], [Xt′−1,Yt′−1,Zt′−1]) = kts2
g,p,r,cZ ,dZ

([Xt−1,Yt−1], [Xt′−1,Yt′−1])σ2
nδt,t′

where: kts2
g,p,r,c,d([Wt,Vt], [Wt′ ,Vt′]) = (g + cW p

t + dVq
t )2(g + cW p

t′ + dVq
t′)

2 is a kernel with the functions

gy(t), gz(t) simplified to a constant g. The notation [Wt,Vt] should be understood as either [Xt−1,Zt−1] or

[Xt−1,Yt−1].

Example Time Series Model Class 3: Causality Features in Presence of Long Memory The third data

structure is a long memory process: ARFIMA(p,d,q), for d ∈ [0, 0.5), with causality structure encoded in

the form of external regressors:

Xt − aXXt−1 = ϵx,t (3.55)

(Yt − aYYt−1 − bY Xt−1)(1 − B)d = ΘY (B)ϵy,t (3.56)

(Zt − aZZt−1 − bZYq
t−1)(1 − B)d = ΘZ(B)ϵz,t, (3.57)

where B is a backshift operator, the autoregressive coefficients for the time series Yt,Zt include external

regressors, the moving average coefficient according to characteristic polynomial: Θ(B) = 1 − θ1B − ... −

θqBq, and the long memory operator has linear process series expansion given for d ∈ (0, 0.5) as follows:

(1 − B)−d =

∞∑
k=0

Γ(k + d)
Γ(k + 1)Γ(d)

Bk.

In this example, there is no natural way to trivially develop a GP representation, however it does not

preclude fitting a misspecified model in order to screen for causality structures that may be present. We

can fit such a model to partial observations of this reference example. This poses an interesting example to

study the effect of model misspecification on the ability to detect linear and non-linear causality structures.

3.3 Selected Multivariate Distributions

3.3.1 Copulas

Copulas are well established methods for modelling dependence [Nelsen, 2007, Chiu et al., 2015, Durante,

2013, Trivedi et al., 2007, Oh and Patton, 2017]. There are many examples of copulas being used in

finance and more specifically in modelling risk – the advances in the quantitative risk management

beginning in the eighties lied behind the explosion of interest in copulas. Given the strong connection

between modelling causality and dependence, employing copula for measuring causality seems natural,
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but is not a popular approach. Several such applications were proposed recently: Bouezmarni et al. [2012],

Hu and Liang [2014], Lee and Yang [2014], Póczos et al. [2012].

Below we present a few basic definitions and theorems from the copula theory and introduce notation

that will be used later [Elidan, 2013, Lee and Yang, 2014, Nelsen, 2007].

3.3.1.1 Defining Copulas

Copulas are functions that link multivariate distribution functions one-dimensional marginal distribution

functions. It can be seen as a way of modelling scale-free measures of dependence between variables.

Formally:

Definition 22 (Copula)

Let U1, ...,Ud be d real random one-dimensional variables with uniform distribution on [0, 1]. A copula

function C : [0, 1]d → [0, 1] is a joint distribution

C(u1, ..., ud) = P(U1 ≤ u1, ...,Ud ≤ ud) (3.58)

Embrechts et al. [2001] calls above definition, in which the copula is simply the original multivariate

distribution function with transformed univariate margins, as “operational”. A copula can be, however,

constructed in various ways and not necessary involve multivariate distributions, or even be defined in

probabilistic terms. Below, we introduce an analytic definition of a copula, which requires a definition of

a C-volume and d-nondecreasing function. The last two concepts are introduced in the narrower sense -

as needed for the copula.

Definition 23 C-volume

For a function C : [0, 1]d → [0, 1] and a hyperrectangle B = Πd
i=1 [ai, bi] ∈ [0, 1]d, C-volume, denoted VC

is defined as follows:

VC(B) =
∑

sgn(w)C(w), (3.59)

where the sum is taken over all vertices of B and sgn(w) = 1 if wi = ai for an even number of i’s of

sgn(w) = −1 if wi = ai for an odd number of i’s.

Definition 24 d-nondecreasing function

A function C : [0, 1]d → [0, 1] is d-nondecreasing if for each hyperrectangle B = Πd
i=1

[
xi, yi

]
∈ [0, 1]d its

C-volume in non-negative.

Definition 25 (Copula)

A function C : [0, 1]d → [0, 1] is a d-dimensional copula, if:

• C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, if at least one arguments is zero, the copula is zero;
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• C(1, . . . , 1, u, 1, . . . , 1) = u, if one argument is equal u and the rest are equal 1, the copula is equal

to u;

• C is n-nondecreasing

Following is the most important theorem of the copula theory, saying that any joint distribution can

be represented as a copula function of univariate marginal distributions.

Theorem 6 (Sklar’s theorem)

Let (X) = (X1, ..., Xd) be a multivariate random variable with joint distribution FX(x) and univariate

marginal distributions F1(x1), ..., Fn(xd), and let C(·) be a copula function. Then the joint distribution can

be represented as follows:

FX(x) = C(F1(x1), ..., Fn(xd)), (3.60)

Moreover, if the marginals are continuous, then the copula function C(·) is uniquely defined.

The converse is also true, meaning that and d-dimensional copula function and n marginal distri-

butions will define a valid joint distribution with those marginals. Consequently copulas can be called

“distribution generating”.

Definition 26 (Copula density)

Let C : [0, 1]d → [0, 1] be a copula function that has d’th order partial derivative and let Fi(xi) denote

marginal distribution functions as before. Then the joint density can be derived from the copula functions

as follows:

π(x) =
∂d(F1(x1), ..., Fd(xd))
∂F1(x1)...∂Fd(xd)

∏
i

πi(xi) ≡ c(F1(x1), ..., Fn(xn))
∏

i

πi(xi), (3.61)

where the introduced function c(·) is called a copula density.

3.3.1.2 Examples of Copula Families

In this section we present several parametric copulas that will be used later in the thesis. We start from

independence copula, which represent a joint distribution of independent variables.

Definition 27 Independence copula

The d-dimensional independence copula is given by:

Cd
Π (u1, ..., ud) =

d∏
i=1

ui. (3.62)

One of the most popular copulas is the Gaussian copula:

Definition 28 Gaussian copula
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The d-dimensional Gaussian copula is given by:

CGaussian (u1, ..., ud) = Φρ
(
Φ−1(u1), ...,Φ−1(ud)

)
, (3.63)

whereΦ denotes a standard normal distribution, and ρ is a correlation coefficient. The density of Gaussian

copula is:

cGaussian (u1, ..., ud) =
πN

(
F−1
N

(u1), ..., F−1
N

(ud)
)

Πd
i=1πN

(
F−1
N

(ui)
) (3.64)

Gaussian copula appears naturally in Gaussian processes, and just like the Gaussian processes it is

restrictive if one is interested in tail dependence. A popular copula that can be seen as generalisation of

Gaussian copula that allows for tail dependence is a t-copula:

Definition 29 Student t-copula

The two dimensional student t-copula is given by:

Ct (u1, u2; ν, ρ) =
∫ t−1

ν (u1

−∞

∫ t−1
ν (u2

−∞

1

2π
√

1 − ρ2

(
1 +

s2 − 2ρst + t2

ν
(
1 − ρ2) )− ν+2

2

dsdt, (3.65)

where tν is a cdf of a standard univariate t-distribution with ν degrees of freedom.

The student t distribution can also be obtained as a normal mixing distribution:

X d
= W +

√
WN, N ∼ N(0,Σ) (3.66)

W ∼ IG(−ν/2,−ν/2), W ⊥⊥ N

3.3.2 Generalised Hyperbolic Distribution

Generalised hyperbolic distributions are a class of distributions, introduced by Barndorff-Nielsen [1977],

that can be represented as a normal mean-variance mixture where the mixture variable is distributed ac-

cording to Generalised Inverse Gaussian (GIG) distribution. The Generalised Inverse Gaussian distribution

was first used by Good [1953] and became popular thanks to, among others, Barndorff-Nielsen [Barndorff-

Nielsen and Halgreen, 1977]. For other resources on the two distribution consult [Barndorff-Nielsen,

1978, Blaesild and Jensen, 1981, Olbricht, 1991, Jorgensen, 2012]

This particular infinite mixture representation will be a key feature of such models that will be of

relevance to the models developed and testing frameworks introduced for causality. We say that the
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random variable X is obtained as a normal mean-variance mixture distribution if

X d
= µ + γW +

√
WN, N ∼ N(0,Σ) (3.67)

W ∼ GIG(λ, χ, ψ), W ⊥⊥ N

where W is called a mixing variable, and is distributed according to Generalised Inverse Gaussian

distribution (GIG), formally introduced in the Definition 31. The form of the transformation that defines

the variable X implies the following conditional distribution:

X | W ∼ N(µ + γW,WΣ). (3.68)

First, we introduce an integral presentation of the modified Bessel function of the third kind. This

function is usually defined as one of the two solution to modified Bessel differential equation, but the

integral form is useful when calculating the density of generalised hyperbolic distribution.

Definition 30 Modified Bessel Function of the Third Kind [Barndorff-Nielsen and Blaesild, 1981].

Kλ(x) =
1
2

∫ ∞

0
yλ−1 exp

(
−

x
2

(y + y−1)
)

dy, x > 0, λ ∈ R (3.69)

Definition 31 Generalised Inverse Gaussian (GIG). The random variable W is distributed according to

the generalised inverse Gaussian distribution with parameters λ, χ, ψ, denoted GIG(λ, χ, ψ), if its density

function can be expressed as:

π(x; λ, χ, ψ) =
χ−λ

(√
χψ

)λ
2Kλ

(√
χψ

) xλ−1 exp
(
−

1
2

(
χx−1 + ψx

))
, x > 0, (3.70)

where Kλ(x) is the modified Bessel function of the third kind, and the parameters λ, χ, ψ satisfy one of the

three conditions:



χ > 0, ψ ≥ 0, if λ < 0,

χ > 0, ψ > 0, if λ = 0,

χ ≥ 0, ψ > 0, if λ < 0.

(3.71)

The Generalised Inverse Gaussian (GIG) distribution is infinitely divisible [Barndorff-Nielsen and

Halgreen, 1977] and its special cases include Inverse Gaussian (λ = −0.5), Gamma (χ = 0, λ > 0) and

Inverse Gamma distributions (ψ = 0, λ < 0). The Gamma and Inverse Gamma distributions are limiting

cases, calculated using the limit: Kλ(x) ∼ Γ(λ)2λ−1x−λ as x ↓ 0, and the property: K−λ(x) = Kλ(x).
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Definition 32 Generalised Hyperbolic Distribution (GH). Variable X is said to have a generalised

hyperbolic distribution, denoted GH(λ, χ, ψ,m,Σ, γ), if the density is given by:

π(x) =c
Kλ− d

2

(√(
χ + (x − mt)T Σ−1 (x − mt)

) (
ψ + γTΣ−1γ

))
exp

(
(x − mt)T Σ−1γ

)
(√(

χ + (x − mt)T Σ−1 (x − mt)
) (
ψ + γTΣ−1γ

)) d
2−λ

(3.72)

where x ∈ Rd, Kλ(x) is a modified Bessel function of the third kind with λ degrees of freedom, and c is a

constant:

c =
(
√
χψ)−λψλ

(
ψ + γTΣ−1γ

) d
2−λ

(2π)
d
2 | Σ |

1
2 Kλ(

√
χψ)

, (3.73)

where | · | denotes a determinant. The parameters λ, χ, ψ satisfy conditions from the Equation 3.71

[McNeil et al., 2015].

The first three parameters (λ, χ, ψ) are associated with the mixing GIG distribution, the scale

parameter Σ comes from the normal variable, and the parameters µ, γ are the parameters of the mixing. In

practice, there will often be an additional restriction on | Σ |= 1 (or other fixed value) to avoid identifiability

problem. This is because GH(λ, χ, ψ,m,Σ, γ) = GH(λ, χ/k, kψ,m, kΣ, kγ), for any k > 0.

Theorem 7 Generalised Hyperbolic Distribution (GH) [McNeil et al., 2015]. If N ∼ N(0,Σ) and

Σ is full rank, with the mixing variable W ∼ GIG(λ, χ, ψ), then the normal mean variance mixture

X d
= m+ γW +

√
WN will have a marginal distribution for X, having integrated out uncertainty attributed

to W, given by a generalised hyperbolic distribution, denoted GH(λ, χ, ψ,m,Σ, γ), given by the formula

3.72.

Proof: of the Theorem 7

We use the fact that the X will be normally distributed when conditioned on the mixing variable:

X | W ∼ N(m + γW,WΣ). The unconditional distribution is therefore calculated as a following integral:

π(x) =
∫ ∞

0
f (x | w)π(w)dw (3.74)

Using the density of a generalised inverse Gaussian (GIG) distribution W ∼ GIG(λ, χ, ψ) from the

Equation 31 we extend A.16 and write:
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π(x) =
∫ ∞

0

1

(2π)
d
2 | Σ |

1
2 w

d
2

exp
{
−(x − m − γw)T (wΣ)−1(x − m − γw)

2

}
π(w)dw

=

∫ ∞

0

e(x−m)TΣ−1γ

(2π)
d
2 | Σ |

1
2 w

d
2

exp
{
−

(x − m)TΣ−1(x − m)
2w

−
γTΣ−1γ

2/w

}
π(w)dw

=
χ−λ

(√
χψ

)λ
e(x−m)TΣ−1γ

(2π)
d
2 | Σ |

1
2 Kλ

(√
χψ

)
1
2

∫ ∞

0
wλ− d

2−1 exp
{
−

(x − m)TΣ−1(x − m) + χ
2w

−
γTΣ−1γ + ψ

2/w

}
π(w)dw

To allow expressing the integral in terms of a modified Bessel function of the third kind, we perform

a change of variable:

z = w

√(
ψ + γTΣ−1γ

)√(
ψ + (x − m)TΣ−1(x − m)

)
and as a result we obtain:

π(x) =
χ−λ

(√
χψ

)λ
e(x−m)TΣ−1γ

(2π)
d
2 | Σ |

1
2 Kλ

(√
χψ

)  √(
ψ + (x − m)TΣ−1(x − m)

)√(
ψ + γTΣ−1γ

) 
d
2−λ

1
2

∫ ∞

0
zλ−

d
2−1 exp

{
−

1
2

√(
χ + (x − m)TΣ−1(x − m)

) (
ψ + γTΣ−1γ

) [1
z
+ z

]}
f (z)dz︸                                                                                                       ︷︷                                                                                                       ︸

K
λ− d

2
(
√

(χ+(x−m)TΣ−1(x−m))(ψ+γTΣ−1γ)

which after reorganisation gives the requested density. □

An important observation is that the proof of the Theorem 7 holds for mean variance mixture where

the normal random variable N has a normal distribution with zero mean.

3.3.3 Properties of the Generalised Hyperbolic Distribution

The class of generalised hyperbolic distributions have several very useful properties. The closed form

expressions for characteristic function and moment generating function allow easy calculation of moments

and allows to easily show that the class is closed under linear transformations, and therefore closed for

marginalisation. The marginalisation property is then used when defining copula density.

Theorem 8 Moment Generating Function of Generalised Hyperbolic Distributions. Let X ∼

GH(λ, χ, ψ, µ,Σ, γ), then the moment generating function of X is:

MX(s) = esTµMGIG(λ,χ,ψ)

(
sTγ +

1
2

sTΣs
)
,
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this can also be expressed explicitly in terms of modified Bessel functions of the third kind:

MX(s) = esTµ

 ψ

ψ − 2
(
sTγ + 1

2 sTΣs
) 

λ
2 Kλ

(√
χ + (ψ − 2

(
sTγ + 1

2 sTΣs
)
)
)

Kλ

(√
χψ

) .

Proof: see Appendix, Section A.4

Theorem 9 Characteristic Function of Generalised Hyperbolic Distributions Let X ∼ GH(λ, χ, ψ, µ,Σ, γ),

then the characteristic function of X is:

φX(s) = eisTµφGIG(λ,χ,ψ)

(
isTγ −

1
2

sTΣs
)
,

this can also be expressed explicitly in terms of modified Bessel functions of the third kind:

φX(s) = esTµ

 ψ

ψ − 2
(
isTγ − 1

2 sTΣs
) 

λ
2 Kλ

(√
χ + (ψ − 2

(
isTγ − 1

2 sTΣs
)
)
)

Kλ

(√
χψ

) .

From the moment generating function we can obtain (using some properties of Bessel functions) the

moments, for example the mean and the variance:

E[X] = µ + γ
(
χ

ψ

) 1
2 Kλ+1

(√
χψ

)
Kλ

(√
χψ

) ,

Cov[X] =
(
χ

ψ

) 1
2 Kλ+1

(√
χψ

)
Kλ

(√
χψ

) Σ + γγT


(
χ

ψ

) Kλ+2

(√
χψ

)
Kλ

(√
χψ

) − (χψ
) 1

2 Kλ+1

(√
χψ

)
Kλ

(√
χψ

) 
2 .

The generalised hyperbolic is closed under linear transformations [Hu, 2005]:

Theorem 10 Linear Transformations of Generalised Hyperbolic Distributions, [McNeil et al., 2015].

If X ∼ GHd(λ, χ, ψ,m,Σ, γ) and Y = BX + b, where B ∈ Rk×d, b ∈ Rk, then Y ∼ GHd(λ, χ, ψ, Bm +

b, BΣBT , Bγ).

Theorem 11 Weighted Sum of Generalised Hyperbolic Distributions. If X ∼ GHd(λ, χ, ψ, m,Σ, γ),

ωT = (ω1, ..., ωd) and Y = ωT X, then Y ∼ GH1(λ, χ, ψ, ωT m, ωTΣω,ωTγ), which is a one dimensional

distribution.

As a consequence of the Theorem 11, we have that the generalised hyperbolic distribution is closed

under marginalisations, [McNeil et al., 2015] if X ∼ GH(λ, χ, ψ, µ,Σ, γ), then the marginal distribution of

Xi is: Xi ∼ GH(λ, χ, ψ, µi,Σii, γi).
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A d-dimensional copula C is a d-dimensional distribution function on [0, 1]d with standard uniform

marginal distributions. Sklar’s Theorem (see [Nelsen, 2007]) states that any multivariate joint distribution

can be represented in terms of univariate marginal distribution functions and a function:

F(x1, ..., xd) = C (F1(x1), ..., Fd(xd)) ,

where F is a joint distribution function, F1, ..., Fd are marginal distribution functions. If the marginal

distribution functions are continuous and strictly increasing, we have the following formulation for the

copula function:

C(u1, ..., ud) = F
(
F−1

1 (u1), ..., F−1
d (ud)

)
.

Furthermore, if the multivariate distribution has a density function π, and the marginal distributions –

π1, ..., πd, then the density of a copula can be expressed as:

π(x1, ..., xd) = c (F1(x1), ..., Fd(xd)) π1(x1) · ... · πd(xd)

and conversely:

c(u1, ..., ud) =
π
(
F−1

1 (u1), ..., F−1
d (ud)

)
∏d

i=1 πi

(
F−1

i (ui)
) .

Consequently, if we have a normal mean-variance mixture X d
= µ + γW +

√
WN, as defined in 3.67,

then the following variable will be distributed from a Generalised Hyperbolic copula:

U =
(
FGH1 (X1; λ, χ, ψ, µ1,Σ11, γ1), ..., FGH1 (Xd; λ, χ, ψ, µd,Σdd, γd)

)T , (3.75)

where FGH1 (·) is the distribution of a one dimensional Generalised Hyperbolic variable.

Some of the most popular distributions are, in fact, special cases of the GH distribution. We are

especially interested in the skew-t distribution, which is a generalisation of the t-student distribution.

Those distributions are summarised in the Table 3.2.

3.3.4 Skew-t Distributions, Generalisations and Alternative Parametrizations

There are several different distributions that have been given the “skew-t” name and we mention three

of those here. To differentiate between them we would use the name “GH skew-t” for our main skew-t

distribution – one that is a special case of Generalised Hyperbolic distribution. The name “generalised

skew-t” refers to a distribution very similar to the classical one, but with separate degrees of freedom for
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name λ, χ, ψ,m,Σ, γ properties
hyperbolic λ = 1 the result is multivariate generalised hyperbolic

distribution, with univariate hyperbolic distribu-
tions marginals

hyperbolic λ = d+1
2 the result is d-dimensional hyperbolic distribution,

with marginals which are not hyperbolic distribu-
tions

normal inverse Gaus-
sian (NIG)

λ = − 1
2

Variance Gamma
(VG)

λ > 0, χ = 0

skew-t λ > 0, χ = ν, ψ = 0 normal mean-variance mixture using inverse
gamma mixing distribution IG( ν2 ,

ν
2 ). Implicitly

defined skew t-copula density is given (Sklar’s
theorem) as the ratio of the multivariate skew-t
distribution over the product of the marginal skew-
t densities.

student-t λ > 0, χ = ν, ψ, γ = 0
normal λ > 0, χ, ν = ∞, ψ, γ = 0 t-student distribution in the limit ν = ∞

Table 3.2: Special cases of the GH(λ, χ, ψ) distribution.

each dimension. The third, which we will call an “elliptical skew-t” is a special case of a skew-elliptical

family of distributions, but it can also be obtained through a mean variance transformation.

3.3.4.1 The GH skew-t distribution

In this section we will recall the link between the GH model for the case of mixing random variable W

being Inverse Gamma and the copula dependence structure implicitly defined for this multivariate GH

sub-family which will correspond to what is known as a skew-t copula. The skew-t copula has been

introduced by Demarta and McNeil as a generalisation of the t copula to provide “ (. . . )more heterogeneity

in the modelling of dependent observations” [Demarta and McNeil, 2005]. It has also been studied

by Rachev [2003], see also: [McNeil et al., 2015]. In our research we devote special attention to this

distribution and its tail properties. Being a special case of a generalised hyperbolic distribution, the GH

skew-t can be obtained from the same normal mean-variance transformation from the Equation 3.67.

Here, however, the mixing variable W has an Inverse Gamma (IG) distribution, which is a special case of

GIG distribution:

X d
= m + γW +

√
WN, N ∼ N(0,Σ) (3.76)

W ∼ IG(
ν

2
,
ν

2
), W ⊥⊥ N

The Inverse Gamma distribution used above is a limiting case of the Generalised Inverse Gaussian

distribution (GIG), where the following limit is used: Kλ(x) ∼ Γ(−λ)2−λ−1xλ as x ↓ 0. At the same time

we could say that the skew-t distribution as a limiting case of the Generalised Hyperbolic distribution,

where the same limit is applied. The multivariate skew-t distribution can therefore be defined as follows:
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Definition 33 Skew-t distribution X has a multivariate skew-t distribution S t(µ,Σ, γ, ν), with location

parameter µ, scale parameter Σ, skewness parameter γ and shape parameter ν, if it has density:

π(x) =c
K ν+d

2

(√(
ν + (x − m)T Σ−1 (x − m)

) (
γTΣ−1γ

))
exp

(
(x − m)T Σ−1γ

)
(√(

ν + (x − m)T Σ−1 (x − m)
) (
γTΣ−1γ

))− ν+d
2 (

1 + 1
ν

(x − m)T Σ−1 (x − m)
) ν+d

2

, (3.77)

where Kλ(x) is a modified Bessel function of the third kind with λ degrees of freedom, and c is a constant:

c =
{
21− ν+d

2

} {
Γ( ν2 )(πν)

d
2 | Σ |

1
2

}
.

Being a special case of the GH distribution, the skew-t distribution has the same conditional normal

distribution as we have seen in the Equation 3.68:

X | W ∼ N(µ + γW,WΣ). (3.78)

The most important property of this distribution is that it has an implicitly defined skew t-copula

density that is given (Sklar’s theorem) by the ratio of the multivariate skew-t distribution over the product

of the marginal skew-t densities. Analogously to the Equation 3.75, we have that, for FS t1 representing

distribution of a one dimensional skew-t variable,

U =
(
FS t1 (X1; µ1,Σ11, γ1, ν), ..., FS t1 (Xd; µd,Σdd, γd, ν)

)T (3.79)

is distributed from the skew-t copula.

The GH skew-t distribution also inherits many useful properties from the Generalised Hyperbolic

family, including easy to calculate moment generating function MXt = etTµMW(tTγ + 1
2 tTΣt), mean

E(X) = m + γ ν
ν−2 and covariance COV(X) = ν

ν−2Σ + γγ
T 2ν2

(ν−2)2(ν−4) . Also, the normal mean-variance

representation result in a convenient estimation with the Expectation Maximisation (EM) algorithm.

3.3.4.2 Generalised skew-t

In this section we provide the details of generalised skew-t distribution, where the generalisation pertains

to allowing different degrees of freedom for each of the dimensions, see [Cruz et al., 2015, Luo and

Shevchenko, 2010]. The construction of such a distribution will be analogous to the construction of

classical skew-t distribution in Equation 3.76. The main difference is that the mixing variable W will be

multivariate, with the marginals Wi having inverse gamma distributions, and being perfectly dependant
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via a uniform variable U:

X d
= m + γW +

√
WN, N ∼ N(0,Σ) (3.80)

W = diag ([W1,W2, . . .Wd]) , W ⊥⊥ N

Wi = F−1
Wi

(U) = IG(u;
νi

2
,
νi

2
), where U ∼ U [0, 1] .

Although distribution of W is slightly different, we have the same conditional normal distribution as

for the skew-t in the Equation 3.68 and 3.78:

X | W ∼ N(µ + γW,WΣ). (3.81)

We also have analogous form of the generalised skew-t copula (see Equations3.75 and 3.79), with

FGS t1 denoting a distribution of a variable distributed according to one dimensional generalised skew-t

(which is equivalent to the one dimensional skew-t distribution):

U =
(
FGS t1 (X1; µ1,Σ11, γ1, ν1), ..., FGS t1 (Xd; µd,Σdd, γd, νd)

)T . (3.82)

The distribution of X is, however, no longer given analytically, for example in a bivariate case:

π(x) =
∫

π(x | w)π(w)dw =
∫

π(x | u)π(u) |
∂w
∂u
|−1 du (3.83)

=

∫
ϕ(

x − µ − γw
wΣ

| u)w−2
1 (u)w−2

2 (u)︸                                   ︷︷                                   ︸
φ(u)

du. (3.84)

The last integral in the Equations 3.83 needs to be approximated. The simplest example of approx-

imation would be:
∑n

i=1(ui+1 − ui)(φ(ui+1) + φ(ui)). However, as it will become clear later, we will not

require calculation of the joint distribution for our test statistic, but only marginal, which has a skew-t

distribution. This can be easily seen, for example, for bivariate generalised skew-t variable X = [X1, X2]T

π(x1) =
∫ ∞

−∞

π(x)dx2 =

∫ ∞

−∞

∫ ∞

0
π(x | w)π(w)dwdx2

=

∫ ∞

0

∫ ∞

−∞

π(x | w)︸  ︷︷  ︸
joint normal

dx2π(w)dw =
∫ ∞

0
π(x1 | w)π(w)dw︸                     ︷︷                     ︸

univariate GH

The joint distribution will only be needed to estimate the model parameters.

3.3.4.3 The Alternative Skew-t Distribution

Fung and Seneta argued in their paper [Fung and Seneta, 2010b] that the extension of symmetric t

distribution to the skew-t distribution proposed by Demarta and McNeil in [Demarta and McNeil, 2005]
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is not appropriate. They suggested that an appropriate extension should have a non-trivial values of the

tail dependence coefficients (discussed in the Section 3.3.5), given that these are non-trivial for symmetric

t distribution.

The alternative definition of the skew-t distribution suggested by Fung and Seneta, is given following

Azzalini and Capitanio [2003] (a comprehensive review in Azzalini [2005]), where it has been derived

as a special case of a class of multivariate skew-elliptical distributions. Note, that Branco and Dey

[2001] propose a different parametrisation of skew-elliptical distribution and a special case of a skew-t

distribution being therefore obtained from a different parametrisation. Azzalini and Capitanio prove that

their parametrisation of skew-elliptical distributions is closely connected to the one proposed by Branco

and Dey [2001], while the two parametrisations of skew-t distributions actually coincide Azzalini and

Capitanio [2003]. The class of skew-elliptical distributions can accommodate both the skewness and the

heavy tails and can be generated from (symmetrical) elliptical distributions with the conditioning method.

Here we will follow with the derivation by Fung and Seneta [2010a], which we adapt to be consistent

with the rest of the thesis. It is obtained as a mean variance mixture similar to the one used in the Equations

3.76 and 3.80 for defining the skew-t or generalised hyperbolic, but with one additional step and one

additional mixing variable.

Definition 34 Skew normal distribution An n dimensional variable X is said to have a skew normal

distribution with skewness parameter γ, written X ∼ S N(γ) if its density function can be presented as:

π(x) = 2ϕn(x,Ω)Φ(γx), (3.85)

where ϕn(x,Ω) denotes density function of n-variate normal variable with standardised marginals and

correlation matrix Ω, and Φ is cumulative distribution function of the normal distribution N(0, 1).

The above definition, given by in Azzalini and Valle [1996], is sufficient for how we will use the

skew normally distributed variables. For a more general definition – with nonzero mean and covariance

rather than correlation matrix, we direct the reader to Azzalini and Capitanio [2003].

There are several ways how one might construct a skew normal distribution, we present the following

transformation. Let N ∼ Nn(0,Ω), where Ψ is a correlation matrix (or in other words: N has standardised

marginals), and let N0 ∼ N(0, 1) be independent of N. Therefore we have:

 N0

N

 ∼ N
0,

 1 0

0 Ω



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If we then choose θ1, ..., θn, such that θ ∈ (−1, 1) for all i, then

Yi = θi | N0 | +

√
1 − θ2

i Ni for i = 1, ..., n. (3.86)

We then say that Yi ∼ S N(γi) or that Y ∼ S Nn(γ,Ω), where the skewness parameter γ =

(γ(θ1), ..., γ(θn))T is obtained as:

γ(θi) =
θi√

1 − θ2
i

.

After the construction of the skew-normal variable is complete, the skew-normal variable can be

obtained as a mean-variance transformation:

X d
= µ +

√
WY, Y ∼ S N(γ,Ω) (3.87)

W ∼ IG(
ν

2
,
ν

2
), W ⊥⊥ Y

We formally define the elliptical skew-t distribution as follows:

Definition 35 Alternative skew-t distribution A random vector X has an n - dimensional elliptical skew-t

distribution, denoted as X ∼ AS tn(µ,Ω, γ, ν), with location parameter ν, dispersion parameter Σ, skewness

parameter γ and a shape parameter ν, if its density is of type:

π(x) = 2ptn (x; µ,Σ, ν)Ft1

(
γTω−1(x − µ)

√
ν + n
ν + Qx

; 0, 1, ν + n
)

(3.88)

where Qx = (x−µ)Ω−1(x−µ), ω is a diagonal matrix formed by standard deviations of Σ, Ft1 (x; 0, 1, ν+n)

is a univariate, standardised distribution function of t distribution with ν + d degrees of freedom, and

ftn (x; µ,Σ, ν) is an n-variate density of t distribution defined:

ptn (x; µ,Ω, ν) =
Γ
(
ν+n

2

)
| Σ |

1
2 (πν)

n
2 Γ

(
ν
2

) (
1 +

Qx

ν

)− ν+n
2

(3.89)

The copula for the elliptical skew-t is, similarly to other distributions that we have seen (see:

Equations 3.75, 3.79 and 3.82), we have that:

U =
(
FAS t1 (X1; µ1, 1, γ1, ν), ..., FAS t1 (Xd; µd, 1, γd, ν)

)T , (3.90)

with FAS t1 being the distribution of a one dimensional elliptical skew-t variable, is distributed from the

elliptical skew-t copula, where we observe that Ωii = 1.

We observe here, that when defining the mean-variance transformation to obtain the “classical”
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skew-t, we were transforming a normal variable with zero mean, and when defining the elliptical skew-t,

we were adding the restriction on covariance matrix as well. Also the skewness was introduced in a

different way. We will later observe that those differences do seem to have effect on practical aspects of

our models.

3.3.5 Tail Behaviour and Tail Dependence in the Skew-t distributions

Both generalised hyperbolic and skew-elliptical distributions are designed to allow modelling a wide

range of shapes and in particular allow for heavy tailed features as well as asymmetric tail behaviours

in each marginals left and right tails. Analysing the two skew-t distributions: GH and the elliptical we

observe several things. We notice that both have a power tail for their marginal processes, but in the case

of the elliptical skew-t the tails are symmetric. When we look at the tail dependence, we find out that the

GH skew-t will have a trivial (0 or 1) behaviour whenever both of the skewness parameters are non-zero,

while the elliptical skew-t variables will have non-trivial tail dependence in most cases.

Does it mean that one of the distributions is clearly better? We believe this means that in the first

place the behaviour of the models need to be well understood so that an appropriate model can be matched

with the problem or data to be modelled. We will return to this idea later in the context of testing for

causality in such models.

3.3.5.1 Tail behaviour

Both GH skew-t model and the elliptical skew-t model display power tails, but there are some important

differences.

First we start with the tail behaviour of univariate skew-t distribution. The variable X ∼ S t(ν, µ, σ, γ)

has a power tail, which can be described as follows:

pX(x) ∼ const | x |−
ν
2−1 e−α|x|+βx as x→ ±∞,

where the constants are α = |γ|
σ2 and β = γ

σ2 . The sign of the skew parameter γ influences which tail will

be heavier: the right for γ > 0, left for γ < 0. To reiterate, this means we either have symmetric tails,

when the distribution is not skewed, or one tail heavier and one lighter.

As mentioned earlier, the elliptical skew-t distribution has been suggested as a way to improve on

what Fung and Seneta [2010b] declared to be a non-satisfactory tail dependence. But the tail behaviour

might be unexpected.

The tail behaviour of the elliptical skew-t is is also power law, however it behaves as the symmetrical

of the classical skew-t (just with a different constant). Let X ∼ AS t1(µ, σ2, γ, ν), then:

pX(x) ∼ const | x |−ν .
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Arellano-Valle and Genton [2010] point out the elliptical skew-t distribution is therefore capable of

modelling heavier tails, but not lighter tails. They also introduce a new class of distributions: multivariate

extended skew-t distributions, which are supposed to help help relax this restriction.

3.3.5.2 Tail Dependence

Although we haven’t yet formally defined causality, or explained how we propose to utilise skew-t

distribution to model it, we would like to point out that we will be interested in analysing interaction

between causality and dependence, in particular - tail dependence. We will be using the tail dependence

coefficients, so below we first define it, and then report on it’s behaviour for the GH and the elliptical

skew-t distributions.

Definition 36 Bivariate Tail Dependence Coefficient. [Cruz et al., 2015] Let X,Y be two random

variables with distributions F,G respectively. Then the upper tail dependence coefficient λu and the lower

tail dependence coefficient λl are defined by:

λu = lim
u↑1

P
(
Y > G−1(u) | X > F−1(u)

)
(3.91)

λl = lim
u↓0

P
(
Y ≤ G−1(u) | X ≤ F−1(u)

)
. (3.92)

Both upper and lower tails can also be expressed in terms of the copula:

λu = lim
u↑1

1 − 2u +C(u, u)
1 − u

λl = lim
u↓0

C(u, u)
u

.

We observe that C̃(1 − u, 1 − u) = 1 − 2u +C(u, u) is survival copula. Upper tail for copula C equals

lower tail for the survival copula C̃, and other way round: λu = λ̃l, λl = λ̃u.

A result that we will later require is the following decomposition of the upper and lower tail

coefficients:

Theorem 12 Let X,Y be two random variables with continuous and strictly increasing distributions F,G

respectively. Then λu and λl can be expressed as:

λu = lim
u↑1

P
(
Y > G−1(u) | X = F−1(u)

)
+ lim

u↑1
P

(
X > F−1(u) | Y = G−1(u)

)
(3.93)

λl = lim
u↓0

P
(
Y ≤ G−1(u) | X = F−1(u)

)
+ lim

u↓0
P

(
X ≤ F−1(u) | Y = G−1(u)

)
. (3.94)

Proof: The assumption of continuous distributions F,G implies the random variables U := F(X) and

V := G(Y) to be uniformly distributed on (0, 1). The joint distribution of (U,V)T is a copula, and the

assumption of F,G being strictly increasing, then this copula is also a copula of of X and Y . Let’s denote
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it as CXY . We are interested in the partial derivatives of the copula CXY . To ensure the existence of the

partial derivatives we refer to the Theorem 2.2.7 from [Nelsen, 2007], stating that: for any v ∈ [0, 1]

partial derivative ∂C(u, v)/∂v exists for almost all u, and when it exists it is bounded: 0 ≤ ∂
∂uC(u, v) ≤ 1.

Analogously for ∂C(u, v)/∂u. As a consequence:

∂CXY

∂u
(u, v) = lim

ϵ→0

CXY (u + ϵ, v) −CXY (u, v)
ϵ

= lim
ϵ→0

P(u ≤ U ≤ u + ϵ,V ≤ v)
P(u ≤ U ≤ u + ϵ)

= P(V ≤ v | U = u).

Furthermore, we have that P (V ≤ v | U = u) = P (G(Y) ≤ v | F(X) = u) = P
(
Y ≤ G−1(v) | X = F−1(u)

)
.

And analogously, ∂CXY
∂v (u, v) = P(U ≤ u | V = v) = P

(
X ≤ F−1(u) | Y = G−1(v)

)
. We apply L’Hospital’s

rule and use the notation ∂CXY
∂u and ∂CXY

∂v to represent partial derivative with respect to the first variable of

the multivariate function

λl = lim
q↑1

CXY (q, q)
q

= lim
q↑1

dCXY (q, q)
dq

= lim
q↑1

(
∂CXY

∂u
(q, q) +

∂CXY

∂v
(q, q)

)
= lim

q↑1
(P (V ≤ q | U = q) + P (U ≤ q | V = q))

= lim
q↑1

(
P

(
Y ≤ G−1(q) | X = F−1(q)

)
+ P

(
X ≤ F−1(q) | Y = G−1(q)

))
Likewise, the result λu = limu↑1 P

(
Y > G−1(u) | X > F−1(u)

)
, but with the survival copula.

□

In the sequel, we follow the results shown in Fung and Seneta [2010b] to describe the tail coefficients

for the classical and elliptical skew-t distributions The result for generalised skew-t is very similar to

the one for classical skew-t and can be found for example in Banachewicz and Van Der Vaart [2008],

Banachewicz et al. [2009].

Theorem 13 Tail dependence for generalised skew-t distribution. Let X1, X2 be a bivariate skew-t

distributed variable, as defined in the Equations 3.88, with γ1, γ2 being the skewness parameters and ρ

the correlation of the normal variables in the mixture. Then the upper and lower tail coefficients of X1, X2

are given by:

1. If γ1 = γ2 = 0 (i.e. bivariate symmetric t), then:

λL = 2Ft1


√

(ν + 1)(1 − ρ)
1 + ρ

 .
2. If γ1 > 0, γ2 > 0, then λL = 0

3. If γ1 < 0, γ2 < 0, then λL = 1
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4. If γ1 < 0, γ2 > 0, then λL = 0

5. If γ1 = 0, γ2 > 0, then λL = 0

6. If γ1 = 0, γ2 < 0, then

λL =

∫ 1

0

1 − Φ
2

ν
2 Γ( ν+1

2 )

2
√
π

1/ν

u1/ν1


 du.

.

For results about tail dependence coefficients in the generalised hyperbolic distribution we direct the

reader to the book chapter by Hammerstein [2016]. Here we point out that those results are in line with

the ones for the skew-t distribution in terms of showing full or no tail dependence for most of the cases,

and non-trivial tail dependence only in a narrow range of cases.

Theorem 14 Tail dependence for an elliptical skew-t distribution [Fung and Seneta, 2010a]. Let

[X1, X2]T ∼ AS t2(µ,Σ, γ, ν) be a bivariate elliptical skew-t distributed random vector. The asymptotic

lower tail dependence coefficient for [X1, X2]T is given by:

λL =

∫ c1

−∞

p ftν+1 (z)

Ftν+2

(θ2

√
1−ρ2

ν+1 − (θ1 + ρθ2)
) √

ν+2
1+ z2

ν+1


Ftν+1 (−λ1

√
ν + 1)

dz

+

∫ c2

−∞

ptν+1 (z)

Ftν+2

(θ1

√
1−ρ2

ν+1 − (θ2 + ρθ1)
) √

ν+2
1+ z2

ν+1


Ftν+1 (−λ2

√
ν + 1)

dz,

where

c1 =


Ftν+1 (−λ2

√
ν + 1)

Ftν+1 (−λ1
√
ν + 1)

1/ν

− ρ


√

ν + 1
1 − ρ2

c2 =


Ftν+1 (−λ1

√
ν + 1)

Ftν+1 (−λ2
√
ν + 1)

1/ν

− ρ


√

ν + 1
1 − ρ2 .

where the notation ptν (.), Ftν (.) is used for, respectively, the p.d.f. and c.d.f. of a univariate symmetric

t distributions with ν degrees of freedom.

The elliptical skew-t distribution is not closed for marginalisations. But it’s extension – the multi-

variate extended skew-t distributions proposed by Arellano-Valle and Genton [2010] does exhibit this

property. One could obtain the tail dependence coefficient can from this conditional distribution and using

the Equation 3.93. One more interesting result, is the one obtained by Bortot [2010], where a simple
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formula is given for a tail in the case of the two gamma parameters having the same value:

λl =

1 − Ft1

(
2γ1,2

√
(ν+2)(1+ρ)

2

)
1 − T f1

(
λ1
√
ν + 1

) λt1(ν+1) (3.95)

λu =

Ft1

(
2γ1,2

√
(ν+2)(1+ρ)

2

)
T f1

(
λ1
√
ν + 1

) λt1(ν+1), (3.96)

where γ1,2 = γ1 = γ2. Kollo et al. [2017] show that in the case of skewness parameters not being equal,

the result from 3.95 can be used as a lower bound for the tail dependance coefficient, with 2γ1,2 replaced

by γ1 + γ2.

A proper discussion about choosing an appropriate skew extension of the symmetric t distribution

is beyond the scope of this work. But we would like to draw attention to a few points, without fully

discussing them. Firstly, the tail behaviour of the elliptical skew-t distribution is symmetric, and this might

be deemed to be undesirable. Secondly, in some applications the tail dependence coefficient might be too

extreme as a measure of tail dependence. In fact, this idea was reflected also in Fung and Seneta [2010a]:

“This sort of difference [different tail dependence coefficients obtained for the data under different model

assumptions - author’s comment] means tail dependence has to be interpreted as a property of the model

rather than reflecting the real dependence structure in the data set. This leads one to question positivity

of λL (...) as a measure of lower tail dependence. It is too extreme a measure, as substantial lower tail

dependence may be present even when the limit is zero”.



Chapter 4

Inference Procedures

“ “Nonsense,” said the witcher. “And what’s more, it
doesn’t rhyme. All decent predictions rhyme.” ”

Andrzej Sapkowski, The Last Wish.

4.1 Assessing hypothesis tests

Let observations x = (x1, ..., xn) be realisations of random variables X = (X1, ..., Xn), and lets assume

that the probability density function (pdf) of X, which we denote by π(X; θ) belongs to a family of

distributions Pθ : θ ∈ Θ, parametrised by θ which belongs to a parameter space Θ.

Definition 37 Hypothesis Test

A hypothesis test is a statement about a population parameter, [Casella and Berger, 2002].

Silvey adds to the definition, that a hypothesis test is a statement which implies that the true

distribution π(X; θ) belongs to a subset of the family of distributions Pθ : θ ∈ Θ, [Silvey, 2017]. The

hypothesis can subsequently be associated with that subset, and we can talk about the hypothesis of θ ∈ ω,

where ω ⊂ Θ.

Definition 38 Null and Alternative Hypotheses

The two complementary hypotheses in a hypothesis testing problem are called the null hypothesis and the

alternative hypothesis. They are denoted H0 and H1 respectively, [Casella and Berger, 2002].

The general for of the null and alternative hypotheses will be, using the notation we introduced

above: H0 : θ ∈ ω versus H1 : θ < ω, or if we denote the complement of ω ⊂ Θ by ωc ⊂ Θ, then we can

also write H1 : θ ∈ ωc.

Let πA (X, θA) and πB (X, θB) represent the density functions for the two models MA and MB,
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respectively. If we are interested in figuring out which model is the correct one, we will test for:

HA :
{
πA (X, θA) , θA ∈ Θ

A
}

(4.1)

HB :
{
πB (X, θB) , θB ∈ Θ

B
}
. (4.2)

In the case above, there is no natural null hypothesis. One could perform two tests, with each of the

hypotheses treated as a null hypothesis and tested against the other. There are four potential outcomes: (i)

HA rejected against HB, but not vice versa, (i) HB rejected against HA, but not vice versa, (i) HA rejected

against HB and HB rejected against HA, (i) neither of the hypotheses rejected against the other. Only the

first two outcomes are straightforward to interpret. This would, however, simplify, if we knew that the

densities of the two models belonged to the same class of distributions, and if the parameter sets were

complementing each other (ΘA ∪ ΘB = Θ,ΘA = Θ
c
B), or containing one another (ΘA ⊂ ΘB ). The latter

case will be called nested models.

Definition 39 Nested Models

Two models,MA parametrised by θA andMB parametrised by θB, are said to be nested if it is possible to

derive one from another by means of parametric restriction, [Clarke, 2001].

Example 1 Nested Models for linear regression

Let {Yt} be a time series that we want to explain by a linear model of multivariate {Xt}, such that

Xt =
[
X1,t X2,t X3,t

]T . Four models (hypotheses) are considered:

M1 : Yt = β1X1,t + ϵ1,t M1 nested inM2,M3,M4 (4.3)

M2 : Yt = β1X1,t + β2X2,t + ϵ2,t M2 nested inM4 (4.4)

M3 : Yt = β1X1,t + β3X3,t + ϵ3,t M3 nested inM4 (4.5)

M4 : Yt = β1X1,t + β2X2,t + β3X3,t + ϵ4,t (4.6)

In the example above, there are five pairs of nested models, while modelsM2 andM3 could be seen as

partially nested.

Garthwaite et al. [2002] gives a definition of nested models that occurs naturally in the case of linear

regression, as in the case of the Example (1).

Definition 40 Nested Models for linear regression

ModelM2 has q2 parameters and modeM1 has q1 parameters, where q2 > q1. Let X1 denote model

matrix forM1 and X2 the model matrix forM2. ModelM1 is nested in the modelM2 if the columns of

X1 are contained within the linear span of the columns of X2, [Garthwaite et al., 2002].
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The concept of nested models will be crucial for the GPC framework. The GPC approach, introduced

in the Part (II) Chapter (5), will describe and test causality by comparing two nested GP models. The

nesting will be important for two reasons: firstly, it will allow to either include or exclude the potential

causal effect of one time series on another, secondly, it will allow to use GLRT which requires nested

models. Below is an example of nested GP models.

Intuitively, we could say that a GP model A is nested in model B, as the input space of model A

is embedded in input space of model B, but the definition 39 is formulated in terms of embedding of

model parameter spaces, not input spaces. Formulating our Gaussian Process models A and B in such a

way that they are nested according to the above definition is not always possible. This is because for the

above definition of nested models we require the mean and covariance function to have parameters that

correspond to the dimensionality of the input space, or that correspond to the inclusion or not of the input

X.

In practice, when we talk about nested models, we talk about mean and kernel functions allowing the

nested model representation. The simplest example of how mean and kernel functions can allow nested

models are for linear mean and kernel functions.

Example 2 Nested GP models

Define µt ([Xt−1,Yt−1,Zt−1]) = a1Xt−1 + a2Yt−1 + a3Zt−1, which under restriction a1 = 0 will become

equivalent to a mean µt ([Yt−1,Zt−1]) = a2Yt−1 + a3Zt−1, defined on the parameter space [Yt−1,Zt−1].

Analogously, for the linear kernel:

kt,t′ ([Xt−1,Yt−1,Zt−1] , [Xt′−1,Yt′−1,Zt′−1]) = [Xt−1,Yt−1,Zt−1]


A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3




Xt−1

Yt−1

Zt−1


restriction A1,1, A1,2, A1,3, A2,1, A2,2, A2,3, A3,1 = 0 will make this kernel equivalent to a linear kernel

defined on [Yt−1,Zt−1] with parameters A2,2, A2,3, A3,2, A3,3.

A popular kernel function that does not allow nested models is squared exponential kernel k(w,w′) =

σ2
f exp

(
−

(w−w′)T (w−w′)
2l2

)
, which however can be represented in an ARD form that does allow nested models

(see Table 3.1)

k(w,w′) = σ2
f exp

(
−

1
2

(w − w′)T diag
([

l21, ..., l
2
n

])
(w − w′)

)
,

Or more general, instead of (w−w′) we can use D(w,w′), where Di(w,w′) is any function that is a distance

between wi and w′i .

The Theorem 2 in Subsection 3.1.1 shows that each kernel has a basis function representation, so

one could attempt to express the notion of nesting in terms of embedding of the basis function spaces.
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However that representation can be infinite dimensional (as is the case for the squared exponential kernel)

and might not be practical. So although in theory we’re guaranteed to always have a nested model

representation, we might not always be able to use it.

Definition 41 (Type I error, Type II error)

Rejection of the true hypothesis H0 is called a Type I error, and accepting false hypothesis H0 is called

Type II error, [Garthwaite et al., 2002].

Definition 42 (Significance level, Power of the test)

Significance level, is the probability of a Type I error. Power of the test equals 1 minus probability of the

Type II error, or equivalently: the probability of not accepting the null hypothesis, when it is false.

If we look at the hypothesis testing from the point of view of (binary) classification problems, then

the hypotheses can be understood as statement about participation in one of the two classes. We will then

have two true classes, say {1,−1}, and two possible hypothesised classes. The result of the hypothesis

assessment can then give on of the four possible outcomes: true positive (TP), true negative (TN), false

positive (FP) and false negative (FN). Below are popular ratios that can be used to asses the classifier:

true positive rate (recall, sensitivity), false positive rate, specificity, precision

true positive rate =
true positives
total positives

=
true positives

true positives + false negatives
(4.7)

false positive rate =
false negatives
total negatives

=
false negatives

true negatives + false positives
(4.8)

specificity =
true negatives
total negatives

=
true negatives

true negatives + false positives
(4.9)

precision =
true positives

predicted positive
=

true positives
true positives + false positive

(4.10)

If we know the distributions of the two classes, then the TPR and FPR can be written in terms of

cdfs. Let us assume that π1(x) is the density function of X, if it belongs to the positive class, and π0(x) is

if it does not.

true positive rate: T PR (T ) =
∫ ∞

T
π1(x)dx (4.11)

false positive rate: FPR (T ) =
∫ ∞

T
π0(x)dx (4.12)

Receiver operating characteristics (ROC) graphs are two-dimensional graphs, commonly used in

classification models to quantify the accuracy with which a model can discriminate between two classes,

but also a trade-off between the benefits (TP) and costs (FP) for a classifier. The TPR is plotted on the

Y axis, as a function of the threshold level T for a classifier, and the FPR is plotted on X axis, also as a

function of threshold level T.
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An example of four sets of ROC curves is given in Figure (4.1). When interpreting the results shown

by the ROC curve, there are several points in the graph that have very clear interpretation. The point (0,0)

represents a strategy in which all points are labelled as negative, and therefore both TPR and FPR are

zero regardless of the threshold. When all points are always classified as positive, the result would be a

point (1,1). A perfect classification, one with all true positives and no false positives, will be represented

by point (0,1). A diagonal line from (0,0) to (1,1) would represent a random classification strategy of

labelling a point according to 1U>T , for threshold T and U ∼ Uniform(0, 1).
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Figure 4.1: ROC curves for the data sets 1-4 from the table, calculated with (linear) Granger causality,
tested with the GCCA toolbox.

See Zou et al. [2007], Hillis and Metz [2012].

4.2 Likelihood Ratio Test

The likelihood ratio test (LRT) compares the goodness of fit of two nested models based on the ratio of

their likelihoods. This ratio is found by maximisation over the entire parameter space – for one of the

models, and constrained parameter set – for the other model.If the null hypothesis of the restricted model

being true is supported by the observation, then the maximum likelihood for this model over all available

parameters will not differ much from the maximum likelihood for the unrestricted model.

Let X1,X2, ...,XN be a random sample from a distribution with pdf f (x; θ), and suppose that we wish

to test

H0 : θ ∈ ω vs H1 : θ ∈ Ω − ω (4.13)

Then define:

λ(x) =
{

maxθ∈ω L(θ; x)
maxθ∈Ω L(θ; x)

}
, (4.14)

where L(θ; x) = π(x; θ) is likelihood function. For some constant A, we can use a test with critical region

λ ≤ A.

Theorem 15 Neyman–Pearson lemma
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• Existence. Given a null hypothesis H0 : θ ∈ ω and the alternative hypothesis H1 : θ ∈ Ω − ω,

there exist a test statistic L and a constant k such that:

1. Eλ(x) = α;

2. L has a form:

L(x) =


1 if

{
maxθ∈ω L(θ;x)
maxθ∈Ω L(θ;x)

}
> k

0 if
{

maxθ∈ω L(θ;x)
maxθ∈Ω L(θ;x)

}
< k

(4.15)

• Sufficiency. If L satisfies (1) and (2) for some constant k, then L is the most powerful at level α.

• Necessity. If a test L∗ is most powerful at a level α, then it satisfies (2) for some level k, and it also

satisfies (1) unless there exists a test strictly less than α with power 1.

By Wilks’ theorem, LRT has an asymptotic χ2-distribution under the null hypothesis.

4.3 Generalized Likelihood Ratio Test (GLRT)
The GLRT is a composite hypothesis test that can be used in the case of nested hypothesis if the parameters

are unknown and need to be estimated. Below we describe the test, using notation from Garthwaite et al.

[2002]. The GLRT gives us asymptotic distribution of the test statistics, but it requires that the hypotheses

are nested – what can be expressed in terms of restriction on mean and covariance formulations.

Let X1, X2, ..., XN be a random sample from a distribution with pdf f (x; θ), and suppose that we wish

to test

H0 : θ ∈ ω vs H1 : θ ∈ Ω − ω (4.16)

Then define:

λ =
{
max
θ∈ω

L(θ; x)/max
θ∈Ω

L(θ; x)
}
, (4.17)

where L(θ; x) = p(x; θ) is likelihood function. For some constant A, we can use a test with critical region

λ ≤ A.

If we define d as the difference in dimensionality of H0 and H0 ∪ H1, then we have that under the

null the asymptotic distribution of the test statistic is distributed according to:

−2 log λ ∼ χ2
d. (4.18)

If nested model representation is not practical, then GLRT test should not be used.
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4.4 Non-nested models and alternatives to GLRT
There are several approaches for non-nested models: modified (centered) loglikelihood ratio procedure

– Cox procedure, “comprehensive model approach”, “encompassing procedure”, Vuong closeness test:

likelihood-ratio-based test for model selection using the Kullback-Leibler information criterion.

We refer the reader to the following papers (and references therein): Vuong [1989], MacKinnon

[1983], Pesaran and Weeks [2001] and Wilson [2015].

4.5 Permutation tests
Let us, first of all, emphasise that in the general case the causality measures introduced before should

not be used as absolute values but rather serve the purpose of comparison. While we observe that, on

average, increasing the strength of coupling increases the value of causality, there is a large deviation in

results unless the data has been generated with linear dependence and small noise. Consequently, we

need a way of assessing the significance of the measure as a way of assessing significance of the causal

relationship itself. To achieve this goal we shall use permutation tests, following the approach in Amblard

et al. [2012b], Sun [2008], Seth and Principe [2011].

By permutation test we mean a type of statistical significance test in which we use random permuta-

tions to obtain the distribution of the test statistic under the null hypothesis. We would like to compare the

value of our causality measure on the analysed data and on “random” data and conclude that the former is

significantly higher. We expect that destroying the time ordering should also destroy any potential causal

effect, since statistical causality relies on the notion of time. Therefore we create the distribution of H0 by

reshuffling y, while keeping the order of x and z intact. More precisely, let π1, ..., πnr be a set of random

permutations. Then instead of yt we consider yπ j(t), obtaining a set of measurements GYπ j→X||Z that can be

used as an estimator of the null hypothesis G0
Y→X||Z . We will accept the hypothesis of causality only if, for

most of the permutations, the value of the causality measure obtained on the shuffled (surrogate) data is

smaller than the value of causality measure of original data. This is quantified with a p-value defined as

follows:

p =
1
nr

nr∑
j=1

1(GYπ j→X||Z > GY→X||Z). (4.19)

Depending on the number of permutations used we suggest to accept the hypothesis of causality for the

level of significance equal to 0.05 or 0.01. In our experiments we report either single p-values or sets of

p-values for overlapping moving windows. The latter is particularly useful when analysing noisy and

non-stationary data. In the cases where not much data is available we do not believe that using any kind

of subsampling (as proposed by Sun [2008], Amblard et al. [2012b], Seth and Principe [2011]) will be

beneficial as far as the power of the tests is concerned.
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New Perspectives on Causality

Representation and Inference

127





Chapter 5

Characterising Causality With Gaussian

Process Models

“ “But what am I going to see?”
“I don’t know. In a certain sense, it depends on you.” ”

Stanislaw Lem, Solaris.

In this chapter we describe the representative model used throughout the rest of the thesis. Building

on the Gaussian Process (GP) autoregressive time series representation introduced in the Section 3.1.2.1,

we show how to use such representation to formulate causal hypotheses and test for statistical causality.

5.1 Semi Parametric Non-Linear Time Series Models

When performing inferential tests for statistical causality one will typically compare two alternative model

hypotheses. We have already seen in the Section (1), that such hypotheses can be formulated in multiple

ways, see Equations (1.5 - 1.6, 1.20, 1.22,1.23, 1.24, B.6 - B.7). We have also observed how with different

modelling approaches the choice between the two hypotheses is seen as a choice between two models,

which for nested models means a parametric restriction (see: Definition 39).

We begin by defining a GP representation for autoregressive time series, as this will serve as our

base distribution (process) to characterise different examples of causality model structures (please refer

to Equations 3.31, 3.31 and 3.32). We consider three multivariate time series denoted generically by

{Xt} ∈ R
p, {Yt} ∈ R

p′ and {Zt} ∈ R
p̄, which will be treated as column vectors. Below, we introduce

notation that will allow convenient matrix operations, and that will be used throughout also in the later

sections.

Below, we introduce notation that will allow convenient matrix operations, and that will be used
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throughout also in the later sections:

Yt ∈ R
p′ , p′ × 1 column vector

Y1:T := [Y1,Y2, ...,YT ]T , T × p′

Y−l
t :=

[
YT

t−l+1,Y
T
t−l+2, ...,Y

T
t

]
, 1 × (lp′)

Y−l := Y−l
1:T = [Y1−l+1:T−l+1,Y1−l+2:T−l+2, ...,Y1:T ] , T × (lp′)

�t :=
[
XT

t ,Y
T
t ,Z

T
t

]
for model B, 1 × (p + p′ + p̄)

� :=
[
X−k,Y−l,Z−m

]
for model B, T × (kp + lp′ + mp̄))

We nonparametrically model the time series {Yt} as realizations from a Gaussian Process with additive

Gaussian noise:

Yt = f (X−k
t−1,Y

−l
t−1,Z

−m
t−1) + ϵt, f (·) ∼ GP (µ, k; θ) , (5.1)

ϵt ∼ N(0, σ2
t ),

with the mean function µ : Rkp+lp′+mp̄ → R and the covariance function k : Rkp+lp′+mp̄ × Rkp+lp′+mp̄ → R.

and associated mean vector µ and covariance matrix K.

Please note, that the mean and covariance functions will often not depend explicitly on time. Rather,

they will depend on time implicitly, through the temporal structure on the inputs. In the case of mean and

covariance functions depending explicitly on time, it would be more appropriate to write, for example,

µ
([

X−k
t−1,Y

−l
t−1,Z

−m
t−1

]
; t
)

and kXY
([

X−k
t1−1,Y

−l
t1−1,Z

−m
t1−1

]
,
[
X−k

t2−1,Y
−l
t2−1,Z

−m
t2−1

]
; t1, t2

)
.

5.2 Testing for Causality - Introducing Two Models

The two model structures are generically represented in general as multidimensional GP time series

models observed with additive Gaussian noise and denoted by Model A and Model B below in Equations

5.2 and the Equations 5.3 below as Gaussian Process models with White Noise:

Model A: Yt = fA(Y−l
t−1,Z

−m
t−1) + ϵA

t , fA ∼ GP (µA, kA; θA) (5.2)

ϵA
t ∼ N(0, σ2

A,t)

Model B: Yt = fB(X−k
t−1,Y

−l
t−1,Z

−m
t−1) + ϵB

t , fB ∼ GP (µB, kB; θB) (5.3)

ϵB
t ∼ N(0, σ2

B,t).

where the different dimensionality of the input spaces result in the following dimensionality of the

domains of the mean and covariance functions: µA : Rlp′+mp̄ → R, µB : Rkp+lp′+mp̄ → R and covariance
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functions kA : Rlp′+mp̄ × Rlp′+mp̄ → R, kB : Rkp+lp′+mp̄ × Rkp+lp′+mp̄ → R.

We assume the mean and covariance functions, µA, kA and respectively µB, kB, have similar function

forms and only differ in dimensionality and hyperparameters. Having defined these two models we may

now state the form of the hypotheses for testing for non-causality (lack of causality) in non-linear times

series.

5.3 Testing for Causality – Distributional Test

The test that allows as to compare two models from the Equations 5.2 and 5.3 is fundamentally a test

comparing two distributions – conditional distribution of the time series Y conditioned on inputs from

either of the two models. As it was already mentioned, we never actually confirm the statistical causality,

but rather reject lack of causality (test for non-causality).

Under such a test, the null hypothesis is that there is no causal relationship from time series X to

Y , and including the past of X does not improve the prediction of Y . Given the model formulations,

this means equality of conditional distribution of Y , conditioning on either set of explanatory variables

(analogously to Equations 1.20):

H0 : π(Y | X−k,Y−l,Z−m) = π(Y | Y−l,Z−m) (5.4)

H1 : π(Y | X−k,Y−l,Z−m) , π(Y | Y−l,Z−m). (5.5)

The distributions above can be obtained in closed form only in the case of additive Gaussian noise, or in

cases where there is no assumed additive noise in Model A or model B.

Since a Gaussian process is also specified by its sufficient mean and covariance functions, therefore

testing for equality of distributions will be equivalent to testing for equality of the mean functions and

the covariance functions. Hence, the convenient feature of the causality testing framework developed

from the Gaussian process framework we propose is that these general distributional statements about

population quantities in the null and alternative hypotheses are equivalent to the following population

statements on mean and covariance functions.

H0 :∃ kA(., .) ∈ M, µA ∈ C(Rd) ∀ t1, t2 ∈ {l + 1, ...,T } (5.6)

kB

([
X−k

t1−1,Y
−l
t1−1,Z

−m
t1−1

]
,
[
X−k

t2−1,Y
−l
t2−1,Z

−m
t2−1

])
= kA

([
Y−l

t1−1,Z
−m
t1−1

]
,
[
Y−l

t2−1,Z
−m
t2−1

])
µB

([
X−k

t2−1,Y
−l
t2−1,Z

−m
t2−1

])
= µA

([
Y−l

t2−1,Z
−m
t2−1

])
H1 : ¬∃ k(., .) ∈ M, µ ∈ C(Rd) ∀ t1, t2 ∈ {l + 1, ...,T } (5.7)

kB

([
X−k

t1−1,Y
−l
t1−1,Z

−m
t1−1

]
,
[
X−k

t2−1,Y
−l
t2−1,Z

−m
t2−1

])
= kA

([
Y−l

t1−1,Z
−m
t1−1

]
,
[
Y−l

t2−1,Z
−m
t2−1

])
µB

([
X−k

t2−1,Y
−l
t2−1,Z

−m
t2−1

])
= µA

([
Y−l

t2−1,Z
−m
t2−1

])
.

If we restrict ourselves to certain classes of mean and covariance function so that the Model A is
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nested in the Model B (Definition 39), then the above hypotheses can be tested with the Generalized

Likelihood Ratio Test.

5.3.1 Generalised Likelihood Ratio Test for Testing Causality

One of the main advantages of Gaussian Process models is that many of the required probability dis-

tributions for evaluating the test statistic in the GLRT are easily accessible: in many cases, such as

those described in this thesis, they can be calculated in closed form, in other cases there are effective

approximation methods.

Lets refer to the null hypothesis of non-causality as it was formed in the Equation 5.4. Non-causality

was expressed in terms of equality of two conditional distributions: π(Y | X−k,Y−l,Z−m) = π(Y | Y−l,Z−m).

This is equivalent to equality of the two marginal log-likelihoods:

log π(Y | X−k,Y−l,Z−m; θB,MB) = log π(Y | Y−l,Z−m; θA,MA), (5.8)

and it leads to the definition of a causality test statistic LX→Y |Z :

LX→Y |Z = max
θB

log π(Y | X−k,Y−l,Z−m; θB,MB) −max
θA

log π(Y | Y−l,Z−m; θA,MA) (5.9)

This test statistic was first proposed by Amblard et al. [2012a].

We assume here additive Gaussian errors, which allows us to calculate the marginal likelihoods

analytically. For the calculations please refer to the appendix A.3. The resulting distributions are:

π(Y | Y−l,Z−m; θA,MA) = N(Y;µA,KA + Σ
A) (5.10)

π(Y | X−k,Y−l,Z−m; θB,MB) = N(Y;µB,KB + Σ
B). (5.11)

If we use the hat notation for MLE estimators, then the test statistic is given by:

L̂X→Y |Z = −
(
Vec(Y) − Vec(µ̂B)

)T
(
⊕T

t=1K̂�B,t + σ̂
2
BIT p′×T p′

)−1 (
Vec(Y) − Vec(µ̂B)

)
+

(
Vec(Y) − Vec(µ̂A)

)T
(
⊕T

t=1K̂�A,t + σ̂
2
AIT p′×T p′

)−1 (
Vec(Y) − Vec(µ̂A)

)
− ln

∣∣∣⊕T
t=1K̂�B,t + σ̂

2
BIT p′×T p′

∣∣∣ + ln
∣∣∣⊕T

t=1K̂�A,t + σ̂
2
AIT p′×T p′

∣∣∣ , (5.12)

where �B,t =
[
XT

t ,YT
t ,ZT

t

]
, �A,t =

[
YT

t ,ZT
t

]
, and Vec(.) denotes conversion of a matrix into a vector.

In the Equation 5.12 we present a general form of the test statistic for multivariate time series,

and in the special case of a univariate time series Y this simplifies to a form from the Equation 5.13.

Distinguishing between the two definitions can also be seen as a distinction between joint causality and
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marginal causality.

L̂X→Y |Z = −(Y − µ̂B)T
(
K̂B + σ̂

2
BI

)−1
(Y − µ̂B) − log | K̂B + σ̂

2
BI | (5.13)

+(Y − µ̂A)T
(
K̂A + σ̂

2
AI

)−1
(Y − µ̂A) + log | K̂A + σ̂

2
AI | .

Under certain regularity conditions, with the assumptions of conditional independence of Yt |

X−k
t−1,Y

−l
t−1,Z

−m
t−1 for all t, and with the assumption that models A and B are nested (Definition (39) and

Section (4.3)) we can treat LX→Y |Z as a GLRT and use the asymptotic results:

H0 : 2L̂X→Y |Z ∼ χ
2
q as T → ∞, (5.14)

where q is the difference in dimensionality between the parameter space for θA and θB.

5.3.2 Statistical Causality and the Model Choice

As we have already discussed before, analysing causal structure with Gaussian processes hasn’t been done

in the likelihood ratio framework, and vice versa: existing approaches to casuality testing with likelihood

ratio type of tests have not been utilising GPs. What we propose, is a way to construct model nesting

that allows for application of the likelihood ratio test and thus formulation of the test statistic that can be

written in a closed form, can be computed point-wise, and is efficient to compute.

There are numerous advantages of using GPs, beginning with: ease of optimisation and interpretabil-

ity of hyperparameters, flexibility, richness of covariance functions, allowing for various model structures.

Using a likelihood ratio type test with a GP is a very natural choice, as estimating GP model parameters

is often done on the basis of maximising likelihood, and therefore this estimation can be incorporated

into the compound version of the likelihood ratio test (Generalised Likelihood Ratio Test, GLRT). From

Gaussian variables, GPs inherited the property of being fully specified by the mean and the covariance,

and so testing for model equivalence inherently means testing for equivalence of the mean and covariance

functions. But many popular kernels (for example squared exponential, see Table 3.1) do not have the

ARD property, and using them for a likelihood ratio test settings gives no easy way to account for causal

structures in covariance. Consequently, it is using GLRT with an ARD-GP that gives a uniformly most

powerful test with an unparalleled flexibility: known asymptotic distribution under the null, explicit

evaluation and in a closed form, and usefulness also for misspecified models.

When using GPs for modelling statistical causality, we do not assume that the data is truly generated

by a Gaussian process, and we make a distinction between the knowledge of the true model, and

formulating a model that is useful for testing a causal relationship. It is crucial that GLRT is a test for

model selection, and therefore it can be employed to test for a model that is most useful, rather than one

that is well specified. As a result, the choice of a mean and covariance function has the biggest impact on
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the presence or absence of specific statistical structures that they introduce, and thus the interpretation in

terms of statistical causality.

In Chapter 8, we demonstrate the ability to detect and identify causal structures in the mean and

covariance, even in the presence of different types of model misspecifications. We give examples of

three time series models, one of which does not have a natural GP representation (ARFIMA, example

time series model class 3, Equations: 3.55 - 3.57), and we discuss results of using our framework for

testing causality in those models. For example, for the time series with long memory (ARFIMA model),

our framework is still able to identify causality, and the interpretability of the parameters mean we can

conclude that the introduction of long memory is reflected by the expected increase in estimates of the

serial correlation. We also note how a causal effect in the trend might overshadow a causal effect in

the covariance. Additionally, in Chapter 9 we show on real data that the effect on the recognition of

causality of choosing different degrees of freedom in the Matern kernel are negligible, unlike the effect of

incorporating different statistical structures, such as serial correlation and causality in covariance.

5.4 Irregularly Sampled Time Series
Causal analysis based on statistic causality will, typically, be applied to time series. Consequently it will

often be assumed that the data is regularly sampled, and therefore the mean and covariance functions will

often not depend explicitly on time. Rather, they might depend on time implicitly, through the temporal

structure on the inputs.

The most popular kernel is the squared exponential kernel kS E , which is stationary (Definition 9) and

does not depend on the absolute value of inputs, but rather on their difference.

kS E(xp, xq) = σ2
f exp

(
−

(xp − xq)T (xp − xq)
2l2

)
(5.15)

Matern kernel, which we we used in majority of experiments is isotropic (Definition 10)

kMatern(d) =
σ2

Γ(ν)2ν−1

(
√

2ν
d

l

)ν
Kν

(
√

2ν
d

l

)
, (5.16)

where d =|| xp − xq ||. These, and other example of kernels are shown in the Table (3.1).

One could however change the definitions of mean and kernel functions in to include time explicitly:

µ
([

X−k
t−1,Y

−l
t−1,Z

−m
t−1

]
; t
)

(5.17)

k
([

X−k
t1−1,Y

−l
t1−1,Z

−m
t1−1

]
,
[
X−k

t2−1,Y
−l
t2−1,Z

−m
t2−1

]
; t
)
. (5.18)

Mean and covariance functions that depend on time explicitly can easily be incorporated into the GPC

framework.
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When would the above approach naturally appear as a way of reflecting the fact that data is not mea-

sured at fixed time intervals? For example, in the case of a phenomenon that has a known time-dependent

pattern. Instances of such phenomena occur in everyday life: the average amount of precipitation varies

with the season; the change in child’s weight over time follows an empirically measured distribution.

In the financial domain, zero-coupon bond price converges to its face value as the product approaches

maturity; the risk of an investment changing in time can be modelled by a GP with a covariance function

depending on time.

To deal with time series which are both irregularly sampled and sparse in a context of classification,

Li and Marlin [2015] propose to first re-represent the time series through a GP posterior induced under

a GP regression model, and then to define kernels over the space of GP posteriors and apply standard

kernel-based classification.

Cunningham et al. [2012] propose a method to deal with multivariate time series which are observed

with different time markers. In the case of multiple time markers, it might not be meaningful to temporarily

align observations, so they treat each of the (originally univariate) time series as a multidimensional time

series where each input dimension is time with respect to a particular marker. Lets say a collection of N

time series is observed
{
y(n)(t)

}
n=1:N

with time markers
{
m(n)

k

}
n=1:N,k=1:K

. Subsequently, Cunningham et al.

[2012] suggest to define kernels as follows:

kT M

(
t(p)
i , t(q)

j

)
= k

t
(p)
i −


m(p)

1
...

m(p)
K

 , t
(q)
j −


m(q)

1
...

m(q)
K



 .



Chapter 6

Characterising Causality With Warped

Gaussian Process Models

“ Come, let us hasten to a higher plane,
Where dyads tread the fairy fields of Venn,
Their indices bedecked from one to n,
Commingled in an endless Markov chain! ”

Stanislaw Lem, The Cyberiad.

Building on from the Multi-Output GP model first introduced in Section 3.1, we take one step further

to generalise the Multi-Output GP framework by widening the class of joint distributions considered.

Based on the warping transformation from Section 3.3 we first construct warped Multi-Output GPs, and

then show how they can be used as a framework for modelling statistical causality. We finish the chapter

by discussing properties of tail dependence, and how this can interrelate with causal dependence.

Assume we have two (unobserved) univariate time series of interest, for which {Xt} , {Yt} will denote

the marginal and unobserved distributions (modelled with Gaussian processes), while
{
X̃t

}
,
{
Ỹt

}
will refer

to observed joint distribution that can be described with a warped Gaussian process model related to the

skew-t distribution. We also have side information – observed time series {Zt}, that contains any additional

information about the “state of the world” and is described with a Gaussian process model.

We want to model the time series {Xt} , {Yt} as an autoregressive process, depending on lagged values

of X−k
t−1 = [Xt−k, · · · , Xt−1] ,Y−l

t−1 = [Yt−l, · · · ,Yt−1] and lagged values of a side information time series

Z−m
t−1 = [Zt−m, · · · ,Zt−1].

 Xt

Yt

 =
 fX

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
fY

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
 +

 ϵX,t

ϵY,t

 . (6.1)
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We will be assuming that the Gaussian processes have zero mean.

f X ∼ GP
(
0, kX

)
f Y ∼ GP

(
0, kY

)
(6.2)

We refer the reader to the Section 3.3.2 and in particular to the Theorem 7 and to its proof in the Appendix

A.4, for an explanation of why the mean functions need to be equal to zero. The noise is uncorrelated and

normally distributed.

ϵX
t ∼ N(0, σ2

X), ϵY
t ∼ N(0, σ2

Y ).

We assume that the Gaussian processes fX , fY might be correlated. In line the discussion about

multiple output GPs from the Section (3.1.3), the fact that fX , fY are correlated can be expressed in many

ways. One way is to introduce the kernel functions, kXY , kYX : Rk+l+m × Rk+l+m → R to describe the joint

process of fX , fY .

6.1 Warped Gaussian Processes: Normal Mean-Variance Mixture

of Gaussian Processes
We have already introduced the three mean-variance mixtures and resulting three skew-t distributions. We

have announced that these will be used to connect the Gaussian processes to warped Gaussian processes

and in this section we present details.

We will take a GP time series model as defined in Equation (6.1) for {Xt} , {Yt} and we will modify

them to produce warped GP processes
{
X̃t

}
,
{
Ỹt

}
which will admit joint dependence structures given by

the skew-t copula structures defined in Section (3.3.4). We assume that we are observing partially a

time series for X̃t and Ỹt represented by the warped GP processes of the GH type. These time series are

implicitly defined by latent GP processes X and Y and the specified model transform for a particular class

of GH and skew-t copula 3.76. Here, variable Wt is inverse gamma distributed.

Wt ⊥⊥ [Xt,Yt]T Wt ∼ IG
(
ν

2
,
ν

2

)
.

Then the transformation from [Xt,Yt]T to
[
X̃t, Ỹt

]T
is :

[
X̃t, Ỹt

]T d
= mt + γWt +

√
Wt [Xt,Yt]T , (6.3)

where: mt,γ ∈ R
2 and mt represents the mean and γ – the skewness. Just like in the case of the mean,

the skewness γ can be interpreted as a marginal skewness. The relationship between the variables is

represented in Figure (7.2).
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Ỹt+1

Ỹt

Ỹt−1

Yt+1

Yt

Yt−1

fY,t+1(·)

fY,t(·)

fY,t−1(·)

Wt+1

Wt

Wt−1

fX,t+1(·)

fX,t(·)

fX,t−1(·)

Xt+1

Xt

Xt−1

X̃t+1

X̃t

X̃t−1

Figure 6.1: Direct Acyclic Graph (DAG) representation of the time series {Xt} , {Yt} and
{
X̃t

}
,
{
Ỹt

}
.

According to the properties of Gaussian processes, we know that conditioned on the past time series

values, the [Xt,Yt]T has a normal distribution:

 Xt

Yt

 | X−k
t−1,Y

−l
t−1,Z

−m
t−1 ∼ N (0,Σt) , where: Σt =

 kX + δt1t2σ
2
X kXY

kYX kY + δt1t2σ
2
Y

 (6.4)

We would like to point out that the conditioning on X−k
t−1,Y

−l
t−1,Z

−m
t−1 will often be omitted in later sections.

The reasoning is that if we look at {Xt} , {Yt} as stochastic processes together with their natural filtrations,

say F X
t ,F

Y
t , then it’s only natural to consider a filtration Ft := F X

t ∪ F
Y

t . The variables Xt and Yt are

measurable with respect to the filtration Ft.

As a direct result of how we defined the mixture, we know that the conditional distribution of the

transformed variable conditioned on the mixing variable is normally distributed:

 X̃t

Ỹt

 | Wt,X−k
t−1,Y

−l
t−1,Z

−m
t−1

i.i.d.
∼ N(mt + γWt,WtΣt). (6.5)

We also know that the unconditional distribution of the transformed variables will be bivariate skew-t

of the GH type, with location mt and skewness γ parameters coming from the transformation, shape

parameter ν coming from the mixing variable Wt, and scale parameter Σt coming from the Gaussian

variable (Gaussian process):

[
X̃t, Ỹt

]T
∼ S t2(mt,Σt,γ, ν).

We are not making any model assumption about the time series {Zt}, which represents the side

information. Also we are not including the side information in the transformation, although this can be
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done.

6.2 Alternative Normal Mean-Variance Mixture

Using generalised mean-variance mixture requires no additional steps or explanations – after all it’s the

same transformation as in the Subsection 6.1, but with the Inverse Gamma variable having two degrees of

freedom 3.76.

The elliptical skew-t does however have more complicated transformation, as was already shown in

3.87. As a first step, we have to transform the variables Xt,Yt into one that has a skew-normal distribution,

lets call them XS N
t ,YS N

t :

 XS N
t

YS N
t

 d
=

 θ1

θ2

 | N | +


√
1 − θ2

1 0

0
√

1 − θ2
2




Xt−mean(Xt)
Var(Xt)

Yt−mean(Yt)
Var(Yt)

 , (6.6)

where N ∼ N(0, 1). The transformed variable is skew-normally distributed with skewness parameters

γ =
[
γ1, γ2

]T related to θ1, θ2 as follows: γi = θi/
√

1 − θ2
i , and with the correlation matrix Ωt.

The second step of the transformation is more similar to what we had before:

[
X̃t, Ỹt

]T d
= mt +

√
Wt

[
XS N

t ,YS N
t

]T
,

[
XS N

t ,YS N
t

]T
∼ S N(γ,Ωt) (6.7)

Wt ⊥⊥
[
XS N

t ,YS N
t

]T
, Wt ∼ IG

(
ν

2
,
ν

2

)
.

The conditional and unconditional distributions obtained with this transformation are as follows:

[
X̃t, Ỹt

]T
| Wt,N,X−k

t−1,Y
−l
t−1,Z

−m
t−1

i.i.d.
∼ N(mt + γNWt,WtΩt), (6.8)[

X̃t, Ỹt

]T
∼AS t2(mt,Ωt,γ, ν). (6.9)

6.3 Testing for Causality - Two Alternative Models

Once again, we look at statistical causality as a comparison of two alternative models, and testing for

causality – as comparing conditional distributions in those two models. In this section we develop we

show how such a test can be expressed for warped GP models. Formulation of the two alternative tests is

based on a similar rationale, regardless of the form of the test that is later used: the time series whose

effect is investigated needs to be absent from one of the models (lets call it model A) and present in the

other (lets call it model B).
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Model B - the unrestricted model. So far we have described the model:

 Xt

Yt

 =
 f B

X

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
f B
Y

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
 +

 ϵX,t

ϵY,t

 (6.10)

 X̃t

Ỹt

 =
 mX

B;t

mY
B;t

 +
 γ1

γ2

 Wt +
√

Wt

 Xt

Yt

 (6.11)

the covariance between outputs of the multiple output GP is then equal to:

ΣA;t = cov([Xt,Yt] , [Xt,Yt]) =

 kB;X + δt,sσ
2
B;X ρB;XY

t,s

ρB;XY
t,s kB;Y + δt,sσ

2
B;Y

 .
And our goal is the conditional probability:

π
(
Ỹt | X−k

t−1,Y
−l
t−1,Z

−m
t−1;MB

)
.

Model A - the restricted model. We want to compare it with the model A which would be correct if X

and Y where not causally dependant:

 Xt

Yt

 =
 f A

X

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
f A
Y

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
 +

 ϵX,t

ϵY,t

 (6.12)

 X̃t

Ỹt

 =
 mX

B;t

mY
B;t

 +
 γ1

γ2

 Wt +
√

Wt

 Xt

Yt

 (6.13)

the covariance between outputs of the multiple output GP is then equal to:

ΣA;t = cov ([Xt,Yt] , [Xt,Yt]) =

 kA;Xδt,sσ
2
A;X ρA;XY

t,s

ρA;XY
t,s kA;Yδt,sσ

2
A;Y

 .
And our goal is the conditional probability:

π
(
Ỹt | X−k

t−1,Y
−l
t−1,Z

−m
t−1;MA

)
.

We say that X has no causal effect on Y if model A and B are equivalent:

π(Ỹt | X̃−k
t−1, Ỹ

−l
t−1,Z

−m
t−1;MB) = π(Ỹt | Ỹ−l

t−1,Z
−m
t−1;MA).
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6.3.1 Obtaining the Correct Conditional Distribution

For the test above we require a conditional probability which is conditioned on the observed (transformed)

X̃−k
t−1, Ỹ

−l
t−1. The theorem 7 gives the distribution in the case of unobserved X−k

t−1,Y
−l
t−1. In this section we

show that variables Ỹt | X̃−k
t−1, Ỹ

−l
t−1,Z

−m
t−1 and Ỹt | X−k

t−1,Y
−l
t−1,Z

−m
t−1 are equal in distribution.

According to the transformation formula from Equation 6.67, and according to how the lags were

define, we have that:

X̃−k
t−1 =

[
X̃t−k, ..., X̃t−1

]
=

[
mt−k(1) + γ(1)Wt−k +

√
Wt−kXt−k, ...,mt−1(1) + γ(1)Wt−1 +

√
Wt−1Xt−1

]
Ỹ−l

t−1 =
[
Ỹt−l, ..., Ỹt−1

]
=

[
mt−l(2) + γ(2)Wt−l +

√
Wt−lYt−l, ...,mt−1(2) + γ(2)Wt−1 +

√
Wt−1Yt−1

]
and so the conditional distribution:

π(Ỹt | X̃−k
t−1, Ỹ

−l
t−1,Z

−m
t−1) = π

(
Ỹt |

[
mt−k(1) + γ(1)Wt−k +

√
Wt−kXt−k, ...,mt−1(1) + γ(1)Wt−1 +

√
Wt−1Xt−1

]
,

[
mt−l(2) + γ(2)Wt−l +

√
Wt−lYt−l, ...,mt−1(2) + γ(2)Wt−1 +

√
Wt−1Yt−1

]
,Z−m

t−1

)
.

Furthermore, we observe that:

Yt =
Ỹt − mt(2) + γ(2)Wt

√
Wt

⇒ Yt | Ỹt,Wt ∼ const,

Xt =
X̃t − mt(2) + γ(2)Wt

√
Wt

⇒ Xt | X̃t,Wt ∼ const.

Therefore if we condition on the whole history of the mixing variable Wt, and all of the relevant lags

of X̃t, Ỹt, we obtain the following equivalence:

π(Ỹt |X̃−k
t−1, Ỹ

−l
t−1,Z

−m
t−1,Wt−k:t−1) = π(Ỹt | X−k

t−1,Y
−l
t−1,Z

−m
t−1,Wt−k:t−1)

But this implies

∫
π(Ỹt | X̃−k

t−1, Ỹ
−l
t−1,Z

−m
t−1,Wt−k:t−1)π(Wt−k:t−1)dWt−k:t−1 =∫

π(Ỹt | X−k
t−1,Y

−l
t−1,Z

−m
t−1,Wt−k:t−1)π(Wt−k:t−1)dWt−k:t−1

which means equality on all non-zero sets, and therefore:

�
(
Ỹt | X̃−k

t−1, Ỹ
−l
t−1,Z

−m
t−1 , Ỹt | X−k

t−1,Y
−l
t−1,Z

−m
t−1

)
= 0.
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6.3.2 Generalised Likelihood Ratio Test

The GLRT is a composite hypothesis test that can be used in the case of nested hypothesis if the parameters

are unknown and need to be estimated. Below we describe the test, using notation from Garthwaite et al.

[2002]. We are reminding the Section (4.3):

Let X1, X2, ..., XN be a random sample from a distribution with pdf π(x; θ), and suppose that we wish

to test

H0 : θ ∈ ω vs H1 : θ ∈ Ω − ω. (6.14)

Then define:

λ =
{
max
θ∈ω

L(θ; x)/max
θ∈Ω

L(θ; x)
}
, (6.15)

where L(θ; x) = p(x; θ) is likelihood function. For some constant A, we can use a test with critical

region λ ≤ A.

If we define d as the difference in dimensionality of H0 and H0 ∪ H1, then we have that:

−2 log λ ∼ χ2
d. (6.16)

6.4 Evaluating the test statistic

We observe the data
{
X̃t

}T

t=1
,
{
Ỹt

}T

t=1
and we want to asses causal dependence in the direction X̃ → Ỹ .

Causality will be tested by comparing the marginal likelihoods from the two models, which we will call

model A and model B, and which will be defined in the next sections. To use a GLRT type causal test, we

need to compare (an estimate) two marginal likelihoods, that arise from the models A and B:

H0 : π(Ỹt | Ỹt−1, X̃t−1;MB) = π(Ỹt | Ỹt−1;MA), ∀t = 1, ...,T . (6.17)

We will be estimating the likelihoods above jointly for all t:

H0 : π(Ỹ2:T | X̃1:T−1;MB) = π(Ỹ2:T ;MA). (6.18)

For the sake of estimation, we define all of the models with two simplifications: firstly not looking at the

side information
{
Z̃t

}T

t=1
, secondly using only one lag, i.e. in the general formulations of X−k

t−1,Y
−l
t−1 we will

take k = l = 1
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6.4.1 Model A

We define two univariate Gaussian Processes:

 Xt

Yt

 =
 f A

X (Xt−1)

f A
Y (Yt−1)

 +
 ϵ

A
X,t

ϵA
Y,t

 , f A
X ∼ GP

(
0, kA

X,t1,t2

)
, ϵA

X,t ∼ N(0, σ2
X,A),

f A
Y ∼ GP

(
0, kA

Y,t1,t2

)
, ϵB

Y,t ∼ N(0, σ2
Y,A).

(6.19)

Then the transformation from [Xt,Yt]T to
[
X̃t, Ỹt

]T
is :

[
X̃t, Ỹt

]T d
= mA

t + γ
A
t Wt +

√
Wt [Xt,Yt]T , Wt ⊥⊥ [Xt,Yt]T (6.20)

Wt ∼ IG
(
νA

2
,
νA

2

)
,

The marginal likelihood of interest can be written as follows:

π
(
Ỹ1:T ;MA

)
(6.21)

1.
=

∫ ∫
π(Ỹ1:T ,W1:T , f A

Y (·);MA)dW1:T d f A
Y (·)

2.
=

∫ ∫
π(Ỹ1:T | W1:T , f A

Y (·);MA)π(W1:T , f A
Y (·);MA)dW1:T d f A

Y (·)

3.
=

∫ ∫
π(Ỹ1:T | W1:T , f A

Y (·);MA)π(W1:T ;MA)π( f A
Y (·);MA)dW1:T d f A

Y (·)

4.
=E f A

Y (·);MA

[
EW1:T ;MA

[
π
(
Ỹ1:T | W1:T , f A

Y (·);MA

)]]
5.
=E f A

Y (·);MA

EW1:T ;MA

 T∏
t=1

π
(
Ỹt | Ỹ1:s−1W1:T , f A

Y (·);MA

)
6.
=E f A

Y (·);MA

EW1:T ;MA

 T∏
t=1

π
(
Ỹt | Ỹt−1,W1:T , f A

Y (·);MA

)
7.
=E f A

Y (·);MA

EW1:T ;MA

 T∏
t=1

π
(
Ỹt | Yt−1,W1:T , f A

Y (·);MA

) . (6.22)

Figure 6.2 shows the graphical model representation of the Model A. This is followed by Graph 6.3,

which shows visually the variables that we condition on (in green).

Ỹt+1

Ỹt

Ỹt−1

Yt+1

Yt

Yt−1

f A
Y,t+1(·)

f A
Y,t(·)

f A
Y,t−1(·)

ϵY,t+1

ϵY,t

ϵY,t−1

Wt+1

Wt

Wt−1

Figure 6.2: Direct Acyclic Graph (DAG) representation of the Model A random variables.
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Ỹt

Ỹt−1

Yt

Yt−1

f A
Y,t(·)

f A
Y,t−1(·)

ϵY,t

ϵY,t−1Wt

Wt−1

Figure 6.3: Direct Acyclic Graph (DAG) representation of the time series Model A variables, visualising
the conditional probability of π

(
Ỹt | Yt−1,W1:T , f A

Y (·);MA

)
, with the conditioning variables marked in

green.

The fact that the time series Ỹt is defined as a mean-variance mixture (Equation 7.2), results in the

following distributions:

Ỹt | Wt ∼ N
(
mA

t + γ
A
t Wt,Wt

(
kA

Y,t,t + σ
2
Y,A

))
, (6.23)

Ỹt | Wt,Yt−1, f A
Y (·) ∼ N

(
mA

t + γ
A
t Wt +

√
Wt f A

Y (Yt−1),Wtσ
2
Y,A

)
. (6.24)

Now, what is f A
Y (Yt−1)? We are not able to simulate realisation of this GP, but we can draw a

finite values of such a realisation, and approximate in between. To do this, we first draw points from a

multivariate normal distribution, with zero mean and kA
Y,t,t′ covariance function, and then calculate the

approximation for the latent variables {Yt} using the conditional distribution from the equation A.14, from

the Appendix.

Take a grid of N points y =
[
y1, ..., yN

]
, for which we will obtain the values for the covariance matrix

KA and an N-dimensional random vector gA
Y that represents the noisy realisation of the GP.

y =
[
y1, ..., yN

]
KA : kA

l,m = kA
Y (yl, ym), l,m ∈ [1,T ]

gA
Y =

[
gA

Y,1, ..., g
A
Y,N

]
∼ N(0,KA + σ2

A,YI)

For a point Yt−1, the conditional distribution for f A
Y (Yt−1) will be as follows:

f A
Y (Yt−1) | y,gA

Y ,Yt−1 ∼
(

f A
Y (Yt−1); f̄ A

Y (Yt−1), cov( f A
Y (Yt−1))

)
, (6.25)

f̄ A
Y (Yt−1) = KA(Yt−1, y)

[
KA + σ2

Y,AI
]−1

gA
Y (6.26)

cov( f A
Y (Yt−1)) = KA(Yt−1,Yt−1) − KA(Yt−1, y)

[
KA + σ2

A,YI
]−1

KA(y,Yt−1). (6.27)

To account for the fact, that we do not simulate whole f A
Y (·), but only N points, and therefore need to
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include the approximation detailed in the Equations 6.25 - 6.27:

Ỹt | Wt,Yt−1, f A
Y (·) ∼ (6.28)

N
(
Ỹt; mA

t + γ
A
t Wt +

√
WtKA(Yt−1, y)

[
KA + σ2

Y,AI
]−1

gA
Y ,

Wt(σ2
Y,A + KA(Yt−1,Yt−1) − KA(Yt−1, y)

[
KA + σ2

Y,AI
]−1

KA(y,Yt−1)
)
.

6.4.1.1 Approximation algorithm

This algorithm shows how to calculate the likelihood π
(
Ỹ1:T ;MA

)
from Eqution 6.21. We will introduce

the following notation:

π̂Y,A,t
de f .
= π̂

(
Ỹt | Yt−1,W1:T , f A

Y (·)
)
≈ π

(
Ỹt | Yt−1,W1:T , f A

Y (·);MA

)
,

which approximates the distribution from the Equation 7.4,

π̂Y,A,T
de f .
= π̂

(
Ỹ1:T | W1:T , f A

Y (·)
)
≈ π

(
Ỹ1:T | W1:T , f A

Y (·);MA

)
=

T∏
t=1

π
(
Ỹt | Yt−1,W1:T , f A

Y (·);MA

)
EW,A

de f .
= π̂

(
Ỹ1:T | f A

Y (·)
)
≈ π

(
Ỹ1:T | f A

Y (·);MA

)
E f ,A

de f .
= π̂

(
Ỹ1:T

)
≈ π

(
Ỹ1:T ;MA

)
,

where the main part of the approximation will consist of approximating the expected values:

EW,A ≈ EW1:T ;MA

 T∏
t=1

π̂Y,A,t

 ≈ EW1:T ;MA

 T∏
t=1

π
(
Ỹt | Yt−1,W1:T , f A

Y (·);MA

)
E f ,A ≈ E f A

Y (·);MA

[
EW,A

]
≈ E f A

Y (·);MA

EW1:T ;MA

 T∏
t=1

π
(
Ỹt | Yt−1,W1:T , f A

Y (·);MA

)
6.4.2 Model B

We define two univariate Gaussian Processes:

 Xt

Yt

 =
 f B

X ([Xt−1,Yt−1])

f B
Y ([Xt−1,Yt−1])

 +
 ϵ

B
X,t

ϵB
Y,t

 , f B
X ∼ GP

(
0, kB

X,t1,t2

)
, ϵB

X,t ∼ N(0, σ2
X,B),

f B
Y ∼ GP

(
0, kB

Y,t1,t2

)
, ϵB

Y,t ∼ N(0, σ2
Y,B).

(6.29)

Then the transformation from [Xt,Yt]T to
[
X̃t, Ỹt

]T
is :

[
X̃t, Ỹt

]T d
= mB

t + γ
B
t Wt +

√
Wt [Xt,Yt]T , Wt ⊥⊥ [Xt,Yt]T (6.30)

Wt ∼ IG
(
νB

2
,
νB

2

)
,
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Figure 7.2 shows the graphical model representation of the Model B.

Ỹt+1

Ỹt

Ỹt−1

Yt+1

Yt

Yt−1

fY,t+1(·)

fY,t(·)

fY,t−1(·)

Wt+1

Wt

Wt−1

fX,t+1(·)

fX,t(·)

fX,t−1(·)

Xt+1

Xt

Xt−1

X̃t+1

X̃t

X̃t−1

Figure 6.4: Direct Acyclic Graph (DAG) representation of the time series X,Y,Z from the point of view
of generating a realization of Yt.

When calculating the joint density of interest, we have a more complicated form, with additional

elements:

π
(
Ỹ2:T | X̃1:T−1;MB

)
=

T∏
t=2

π
(
Ỹt | Ỹ1:t−1, X̃1:t−1

)
= (6.31)

T∏
t=2

∫ ∫ ∫
π
(
Ỹt,W1:t, f B

Y (·), f B
X (·) | Ỹ1:t−1, X̃1:t−1

)
dW1:td f B

Y (·)d f B
X (·) =

T∏
t=2

∫ ∫ ∫
π
(
Ỹt | W1:t, f B

Y (·), f B
X (·), Ỹ1:t−1, X̃1:t−1

)
π
(
W1:t, f B

Y (·), f B
X (·) | Ỹ1:t−1, X̃1:t−1

)
dW1:td f B

Y (·)d f B
X (·) =

T∏
t=2

∫ ∫ ∫ [
π
(
Ỹt | Yt−1, Xt−1,W1:t, f B

Y (·)
)
π
(
Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B

Y (·), f B
X (·)

) π( f B
X (·), f B

Y (·))π(W1:t−1)

π(Ỹ1:t−1, X̃1:t−1)

]
dW1:td f B

Y (·)d f B
X (·) =

T∏
t=2

E f B
Y (·);MB

E f B
X (·);MB

EW1:t−1;MB

[
π
(
Ỹt | Yt−1, Xt−1,W1:t, f B

Y (·)
)
π
(
Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B

Y (·), f B
X (·)

)
1

π(Ỹ1:t−1, X̃1:t−1)

]
(6.32)

where the integrand can be broken down into three components:

First component

π
(
Ỹt | Yt−1, Xt−1,W1:t, f B

Y (·)
) d
=π

(
Ỹt | Wt−1, f B

Y (·),Yt−1, Xt−1

)
(6.33)

∼N
(
Ỹt; mB

t + γ
B
t Wt +

√
W t f B

Y ([Xt−1,Yt−1]T ),Wtσ
2
Y,B

)
(6.34)

As in the case of the Model A, when simulating the realisation of the GP, we will be only drawing a finite
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number of points for f B
Y , and based on those values, we will be using conditional distribution to calculate

the f B
Y ([Xt−1,Yt−1]T )

Take two grids of N points each x = [x1, ..., xN] and y =
[
y1, ..., yN

]
, for which we will obtain the

values for the covariance matrix KA and an N-dimensional random vector gB
Y that represents the noisy

realisation of the GP.

x = [x1, ..., xN] y =
[
y1, ..., yN

]
KB : kB

l,m = kB
Y (

[
xl, yl

]T ,
[
xm, ym

]T ), l,m ∈ [1,T ]

gB
Y =

[
gB

Y,1, ..., g
B
Y,N

]
∼ N(0,KB + σ2

B,YI)

For a point [Xt−1,Yt−1]T , the conditional distribution for f B
Y ([Xt−1,Yt−1]T ) will be as follows:

f B
Y ([Xt−1,Yt−1]T ) | x, y,gB

Y , Xt−1,Yt−1 (6.35)

∼
(

f B
Y ([Xt−1,Yt−1]T ); f̄ B

Y ([Xt−1,Yt−1]T ), cov( f B
Y ([Xt−1,Yt−1]T ))

)
,

f̄ B
Y ([Xt−1,Yt−1]T ) = KB([Xt−1,Yt−1]T ,

[
x, y

]T )
[
KB + σ2

Y,BI
]−1

gB
Y (6.36)

cov( f B
Y ([Xt−1,Yt−1]T ) = KB([Xt−1,Yt−1]T , [Xt−1,Yt−1]T ) (6.37)

− KB([Xt−1,Yt−1]T ,
[
x, y

]T )
[
KB + σ2

B,YI
]−1

KB(
[
x, y

]T , [Xt−1,Yt−1]T ).

To account for the fact, that we do not simulate whole f B
Y (·), but only N points, and therefore in the

distribution 6.33 we need to include the approximation detailed in the Equations 6.35 - 6.37:

Ỹt | Wt, Xt−1,Yt−1, f B
Y (·) ∼ (6.38)

N

(
Ỹt; mB

Y,t + γ
B
Y,tWt +

√
WtKB([Xt−1,Yt−1]T ,

[
x, y

]T )
[
KB + σ2

Y,BI
]−1

gB
Y , (6.39)

Wt

(
σ2

Y,B + KB
(
[Xt−1,Yt−1]T , [Xt−1,Yt−1]T

)
(6.40)

− KB
(
[Xt−1,Yt−1]T ,

[
x, y

]T
) [

KB + σ2
B,YI

]−1
KB

([
x, y

]T , [Xt−1,Yt−1]T
) ))

. (6.41)

Second component The second element will be calculated in a similar way as the first one: with the

multivariate version of the distribution 6.33 including the approximation analogous to the Equations 6.35 -
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6.37:

π
(
Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B

Y (·), f B
X (·)

)
= (6.42)

π
(
mB

X,1:t−1 +
[
γB

X,1W1, ...,γ
B
X,t−1Wt−1

]T
+

[ √
W1X1, ...,

√
Wt−1Xt−1

]T
, (6.43)

mB
Y,1:t−1 +

[
γB

Y,1W1, ...,γ
B
Y,t−1Wt−1

]T
+

[ √
W1Y1, ...,

√
Wt−1Yt−1

]T
| W1:t−1, f B

Y (·), f B
X (·)

)
= (6.44)

π
(
mB

X,1:t−1 +
[
γB

X,1W1, ...,γ
B
X,t−1Wt−1

]T
+

[ √
W1

(
f B
X

(
[X0,Y0]T

)
+ ϵB

X,1

)
, ...,

√
Wt−1

(
f B
X

(
[Xt−2,Yt−2]T

)
+ ϵB

X,t−1

)]T
,

(6.45)

mB
Y,1:t−1 +

[
γB

Y,1W1, ...,γ
B
Y,t−1Wt−1

]T
+

[ √
W1

(
f B
Y

(
[X0,Y0]T

)
+ ϵB

Y,1

)
, ...,

√
Wt−1

(
f B
Y

(
[Xt−2,Yt−2]T

)
+ ϵB

Y,t−1

)]T

(6.46)

| W1:t−1, f B
Y (·), f B

X (·)
)
= (6.47)

N

(
X̃1:t−1; mB

X,1:t−1 +
[
γB

X,1W1, ...,γ
B
X,t−1Wt−1

]T
+

[ √
W1 f B

X

(
[X0,Y0]T

)
, ...,

√
Wt−1 f B

X

(
[Xt−2,Yt−2]T

)]T
, σ2

X,BW1:t−1I
)

(6.48)

N

(
Ỹ1:t−1; mB

Y,1:t−1 +
[
γB

Y,1W1, ...,γ
B
Y,t−1Wt−1

]T
+

[ √
W1 f B

Y

(
[X0,Y0]T

)
, ...,

√
Wt−1 f B

Y

(
[Xt−2,Yt−2]T

)]T
, σ2

Y,BW1:t−1I
)
=

(6.49)

using the Equations 6.35, 6.36, 6.37:

N

(
X̃1:t−1; mB

X,1:t−1 +
[
γB

X,1W1, ...,γ
B
X,t−1Wt−1

]T
+

[ √
W1, ...,

√
Wt−1

]T
IKB

X

(
[X0:t−2,Y0:t−2]T ,

[
x, y

]T
) [

KB
X + σ

2
X,BI

]−1
gB

X ,

(6.50)√
W1:t−1I

[
σ2

X,BI + KB
X ([X0:t−2,Y0:t−2]T , [X0:t−2,Y0:t−2]T ) (6.51)

− KB
X ([X0:t−2,Y0:t−2]T ,

[
x, y

]T )
[
KB

X + σ
2
B,XI

]−1
KB

X (
[
x, y

]T , [X0:t−2,Y0:t−2]T )
)
I
√

W1:t−1
T
]

(6.52)

N

(
Ỹ1:t−1; mB

Y,1:t−1 +
[
γB

Y,1W1, ...,γ
B
Y,t−1Wt−1

]T
+

[ √
W1, ...,

√
Wt−1

]T
IKB

Y

(
[X0:t−2,Y0:t−2]T ,

[
x, y

]T
) [

KB
Y + σ

2
Y,BI

]−1
gB

Y ,

(6.53)√
W1:t−1I

[
σ2

Y,BI + KB
Y ([X0:t−2,Y0:t−2]T , [X0:t−2,Y0:t−2]T ) (6.54)

− KB
Y ([X0:t−2,Y0:t−2]T ,

[
x, y

]T )
[
KB

Y + σ
2
B,Y I

]−1
KB

Y (
[
x, y

]T , [X0:t−2,Y0:t−2]T )
)
I
√

W1:t−1
T
]

(6.55)

Third component And finally, π(Ỹ1:t−1, X̃1:t−1) is a normalising constant whom we don’t know, and

therefore we need to approach it as a self normalising constant.

π(Ỹ1:t−1, X̃1:t−1) d
= E f B

Y (·);MB
E f B

X (·);MB
EW1:t−1;MB

[
π
(
X̃1:t−1Ỹ1:t−1 | W1:t−1, f B

X (·), f B
Y (·)

)]
(6.56)

This can be estimated by summing the distribution from 6.50. We can’t calculate such a sum separately,

but to do this, we will use the approach of importance sampling with self normalising weights and
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calculate the normalising constant 6.56 together when calculating the whole density from Equation 6.32.

Imagine, that one needs to calculate an expectation µ = Eπ(h(x)) =
∫

D h(x)π(x)dx, but cannot draw

from the distribution p. Assume it is possible to draw from a distribution q (which is nonzero, when

h(x)π(x) is non-zero), such that:

µ =

∫
D

h(x)π(x)dx =
∫

D

h(x)π(x)
q(x)

q(x)dx = Eq

[
h(x)π(x)

q(x)
dx

]

Lets define w(x) as a ratio of the two densities: w(x) = π(x)
q(x) , then the estimator of µ can be written as

follows:

µ̂ =
1
n

n∑
i

h(xi)π(xi)
q(xi)

=
1
n

n∑
i

h(xi)w(xi).

This estimation can be calculated, if we’re able to evaluate both h(x) and w(x) using importance sampling

[Kloek and Van Dijk, 1978], [Tokdar and Kass, 2010]. It can also be used in the case that will interest

us the most – in the case where we know w(x) up to a normalising constant. We will denote πu(x) as

the unnormalised version of the density π(x), qu(x) as the unnormalised version of the density q(x),

which means that there are constants c, d such that πu(x) = cπ(x), qu(x) = dq(x), and we will introduce

an unnormalised ratio u(x) = πu(x)
qu(x) =

cπ(x)
dq(x) . The constants c, d being normalising constatnts mean that

c =
∑n

i πu(xi), d =
∑n

i qu(xi), and w(x) = u(x) d
c =

u(x)∑n
i u(xi)

. And so:

µ̂ =
1
n

n∑
i

h(xi)π(xi)
q(xi)

=
1
n

n∑
i

h(xi)w(xi) =
1
n

n∑
i

h(xi)u(xi)
d
c
=

1
n

∑n
i h(xi)u(xi)∑n

i u(xi)

When translating the notation to our problem, I will use the notation as follows:

h(t,i,k, j)
B =π

(
Ỹt | Yt−1, Xt−1,W1:t, f B

Y (·)
)

(6.57)

wt,i,k, j
B, fY , fX ,W

=π
(
Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B

Y (·), f B
X (·)

) 1
π(Ỹ1:t−1, X̃1:t−1)

(6.58)

ut,i,k, j
B, fY , fX ,W

=π
(
Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B

Y (·), f B
X (·)

)
(6.59)

the expected value that we want to calculate is as follows:

EB =

T∏
t=2

E f B
Y (·);MB

[
E f B

X (·);MB

[
EW1:t ;MB

[
π
(
Ỹt | Yt−1, Xt−1,W1:t, f B

Y (·)
) π (

Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B
Y (·), f B

X (·)
)

π(Ỹ1:t−1, X̃1:t−1)

]]]
(6.60)
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and with the estimator:

ÊB ≈

T∏
t=2

1
Ni

Ni∑
i=1

[
1

Nk

Nk∑
k=1

[ 1
N j

N j∑
j=1

[
h(t,i,k, j)

B w(t,i,k, j)
B, fY , fX ,W

]]]
(6.61)

=

T∏
t=2

1
Ni

Ni∑
i=1

[
1

Nk

Nk∑
k=1

[ 1
N j

N j∑
j=1

[
h(t,i,k, j)

B

u(t,i,k, j)
B, fY , fX ,W∑Ni

i=1
∑Nk

k=1
∑N j

j=1 u(t,i,k, j)
B, fY , fX ,W

]]]
(6.62)

=

T∏
t=2

1
NiNkN j

∑Ni
i=1

∑Nk
k=1

∑N j

j=1 h(t,i,k, j)
B u(t,i,k, j)

B, fY , fX ,W∑Ni
i=1

∑Nk
k=1

∑N j

j=1 u(t,i,k, j)
B, fY , fX ,W

(6.63)

Note: fY , fX ,W1:t are independent, so the sums can be seen as three dimensional.

6.4.2.1 Approximation algorithm B

This algorithm shows how to calculate the likelihood EB ≈ π
(
Ỹ2:T | X̃1:T−1;MB

)
from Eqution 6.31,

which is reminded below:

π
(
Ỹ2:T | X̃1:T−1;MB

)
=

T∏
t=2

E f B
Y (·);MB

E f B
X (·);MB

EW1:t−1;MB

[
π
(
Ỹt | Yt−1, Xt−1,W1:t, f B

Y (·)
)

π
(
Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B

Y (·), f B
X (·)

) 1
π(Ỹ1:t−1, X̃1:t−1)

]

Just like for the model A, we will simulate the realisation of Gaussian process (in finite number of

points), and the mixing variable. These will be encapsulated, and that encapsulation is represented by

the superscripts referring to each realisation: i-th realisation of fY , k-th relisation of fX , j-th realisation

of W1:t. We will introduce the following notation, to approximate components from the above equation

(Equation 6.32), continuing with the notation from the Equation 6.63:

h(t,i,k, j)
B =π

(
Ỹt | Y

(t,i,k, j)
t−1 , X(t,i,k, j)

t−1 ,W (t,i,k, j)
1:t , f B,(t,i)

Y (·)
)

u(t,i,k, j)
B, fY , fX ,W

=π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f B,(t,i)

Y (·), f B,(t,i,k)
X (·)

)
u(t,i,k)

B, fY , fX
=

N j∑
j=1

π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f B,(t,i)

Y (·), f B,(t,i,k)
X (·)

)
u(t,i)

B, fY
=

Nk∑
k=1

π
(
Ỹ1:t−1, X̃1:t−1 | f B,(t,i)

Y (·), f B,(t,i,k)
X (·)

)
u(t)

B =

Ni∑
i=1

π
(
Ỹ1:t−1, X̃1:t−1 | f B,(t,i)

Y (·)
)

The next step of the notation is introduced to remind that we’re not simulating the whole Gaussian

processes, but only their value on a grid (and the points between the grid will be calculated as conditional
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distributions)

ȟ(t,i,k, j)
B =π

(
Ỹt | Y

(t,i,k, j)
t−1 , X(t,i,k, j)

t−1 ,W (t,i,k, j)
1:t , f̌ B,(t,i)

Y (·)
)

ǔ(t,i,k, j)
B, fY , fX ,W

=π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f̌ B,(t,i)

Y (·), f̌ B,(t,i,k)
X (·)

)
ǔ(t,i,k)

B, fY , fX
=

N j∑
j=1

π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f̌ B,(t,i)

Y (·), f̌ B,(t,i,k)
X (·)

)
ǔ(t,i)

B, fY
=

Nk∑
k=1

π
(
Ỹ1:t−1, X̃1:t−1 | f̌ B,(t,i)

Y (·), f̌ B,(t,i,k)
X (·)

)
ǔ(t)

B =

Ni∑
i=1

π
(
Ỹ1:t−1, X̃1:t−1 | f̌ B,(t,i)

Y (·)
)

All of the summations will be calculated in loops, hence notation for the partial sums (estimation of the

unnormalised expectations):

F(t,i,k)
B,W =

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

F(t,i)
B, fX
=

Nk∑
k=1

F(t,i,k)
B,W =

Nk∑
k=1

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

F(t)
B, fY
=

Ni∑
i=1

F(t,i)
B, fX
=

Ni∑
i=1

Nk∑
k=1

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

and finally:

ÊB =

T∏
t=2

1
NiNkN j

1

ǔ(t)
B

F(t)
B, fY
=

T∏
t=2

1
NiNkN j

1

ǔ(t)
B

Ni∑
i=1

Nk∑
k=1

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

Note! In the case that we’re considering here, the two Gaussian processes are independent, and both

are independent from the mixing variables. This means that we are allowed to treat the integrals as one

multidimensional integrals, and the sum, as one sum, as follows:

ÊB =

T∏
t=2

1
Ni

1

ǔ(t)
B

F(t)
B =

T∏
t=2

1
Ni

1

ǔ(t)
B

Ni∑
i=1

ȟ(t,i)
B ǔ(t,i)

B

6.4.3 Introducing autoregression.

Autoregression can already be introduced via covariance structure. This, however, will not suffice for how

we want to be able to model autoregression and causality.
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[
X̃t, Ỹt

]T d
=mt + γtWt +

√
Wt [Xt,Yt]T , where: (6.64)

mt = mt

([
X̃t−1, Ỹt−1

]T
)

We’d like to point out, that conditioning on the past values of the time series, the mean function

mt

([
X̃t−1, Ỹt−1

]T
)

will be deterministic. Also because
{
X̃t

}T

t=1
,
{
Ỹt

}T

t=1
are observed time series, then the

conditioning does not introduce a state space equation.

The algorithms for the models A and B will be the same, up to a different formulation for the mean

function, which will no longer be a constant. When performing optimisation, we are going to have more

parameters to optimise though.

6.4.4 Interplay between different dependence structures

Referring back to the way we have introduced the multi-output GPs using convolution (see Section 3.1.3.2

and Figure 7.3), we can present the relationships between different components of warped multi-output

GP as in Figure 6.5. Like before, we assume that X̃t, Ỹt are observable variables, while all other structures

are latent.

u0

uX uYfX(·) fY (·)

Xt Yt

Wt

X̃t Ỹt

hX∗ ∗hY

+ +

Figure 6.5: How to obtain dependent Gaussian Processes X,Y from independent fX , fY and a common
white noise U0 smoothed by smoothing kernels (linear filters) hX , hY .

Firstly, at the level of marginal distributions of Xt,Yt, described in the Equations 6.65, we can study

the number of lags, and the effect of structural properties encoded via the covariance functions. We can

also introduce side information, or multimodality at this level. The autoregressive GPs fX , fY are generally

not time-reversible (see Section 3.1.2.1), which agrees with the conceptual notion of statistical causality

that can be encoded via these type of structures.

Xt = fX

([
X−k

t−1,Y
−l
t−1,Z

−m
t−1

])
+ uX,t (6.65)

Yt = fY
([

X−k
t−1,Y

−l
t−1,Z

−m
t−1

])
+ uY,t

Convolved GP structure allows to introduce contemporaneous dependence, with uX,t, uY,t expressed
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as convolution integral between a smoothing kernels hX , hY and u0:

u•,t = h•(t) ∗ u0(t) =
∫ ∞

−∞

h•(t − τ)u0(τ)dτ. (6.66)

The warping with mean-variance transformation is the source of encoding temporal dependence, in

particular tail dependence, and a wide class of transformations can be used for this purpose:

[
X̃t, Ỹt

]T d
= mt + γtWt +

√
Wt [Xt,Yt]T , (6.67)

The use of skew-t copula has the advantage of marginalisation property, meaning the marginal distribution

of Ỹ is described by the same law as the joint distribution of
[
X̃t, Ỹt

]
. But it is not the only choice that can

be made here. In fact, we also briefly look at what the use of alternative skew-t distributions could mean

for the ability to model tail dependence in the data.

6.4.4.1 Causality versus Tail Dependence

The warped GP setting has been designed in a such a way, that the marginal distributions can exhibit

skewness and leptokurtic tails, while the joint distribution can exhibit tail dependence.

Theorem 16 Tail dependence for generalised skew-t distribution. Let X1, X2 be a bivariate skew-t

distributed variable, as defined in the Equations 3.88, with γ1, γ2 being the skewness parameters and ρ

the correlation of the normal variables in the mixture. Then the upper and lower tail coefficients of X1, X2

are given by:

1. If γ1 = γ2 = 0 (i.e. bivariate symmetric t), then:

λL = 2Ft1


√

(ν + 1)(1 − ρ)
1 + ρ

 .
2. If γ1 > 0, γ2 > 0, then λL = 0

3. If γ1 < 0, γ2 < 0, then λL = 1

4. If γ1 < 0, γ2 > 0, then λL = 0

5. If γ1 = 0, γ2 > 0, then λL = 0

6. If γ1 = 0, γ2 < 0, then

λL =

∫ 1

0

1 − Φ
2

ν
2 Γ( ν+1

2 )

2
√
π

1/ν

u1/ν1


 du.

.
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Interesting points: the tail is increasing function of ρ and ν in point 1, not sure about point 6.

Theorem 17 Tail dependence for an elliptical skew-t distribution [Fung and Seneta, 2010a]. Let

[X1, X2]T ∼ AS t2(µ,Σ, γ, ν) be a bivariate elliptical skew-t distributed random vector. The asymptotic

lower tail dependence coefficient for [X1, X2]T is given by:

λL =

∫ c1

−∞

p ftν+1 (z)

Ftν+2

(θ2

√
1−ρ2

ν+1 − (θ1 + ρθ2)
) √

ν+2
1+ z2

ν+1


Ftν+1 (−λ1

√
ν + 1)

dz

+

∫ c2

−∞

ptν+1 (z)

Ftν+2

(θ1

√
1−ρ2

ν+1 − (θ2 + ρθ1)
) √

ν+2
1+ z2

ν+1


Ftν+1 (−λ2

√
ν + 1)

dz,

where

c1 =


Ftν+1 (−λ2

√
ν + 1)

Ftν+1 (−λ1
√
ν + 1)

1/ν

− ρ


√

ν + 1
1 − ρ2

c2 =


Ftν+1 (−λ1

√
ν + 1)

Ftν+1 (−λ2
√
ν + 1)

1/ν

− ρ


√

ν + 1
1 − ρ2 .

where the notation ptν (.), Ftν (.) is used for, respectively, the p.d.f. and c.d.f. of a univariate symmetric

t distributions with ν degrees of freedom.



Chapter 7

Algorithms

“ It’s a rare gift, to know where you need to be, before
you’ve been to all the places you don’t need to be. ”

Ursula K. Le Guin, Tales from Earthsea

7.1 Estimating the test statistic for wGP

This algorithm is an implementation of the estimation from Section 6.4

For observed data
{
X̃t

}T

t=1
,
{
Ỹt

}T

t=1
, which are modelled as a wGP, we want to asses causal dependence

in the direction X̃ → Ỹ . The null hypothesis is:

H0 : π(Ỹt | Ỹt−1, X̃t1 ;MB) = π(Ỹt | Ỹt−1;MA), ∀t = 1, ...,T . (7.1)

For the sake of estimation, we define all of the models with two simplifications: firstly not looking at

the side information
{
Z̃t

}T

t=1
, secondly using only one lag, i.e. in the general formulations of X−k

t−1,Y
−l
t−1 we

will take k = l = 1

7.1.1 Model A

First of all, we assume that the observed data
{
X̃t

}T

t=1
,
{
Ỹt

}T

t=1
can be described byt a following warped GP:

[
X̃t, Ỹt

]T d
= mA

t + γ
A
t Wt +

√
Wt [Xt,Yt]T , Wt ⊥⊥ [Xt,Yt]T (7.2)

Wt ∼ IG
(
νA

2
,
νA

2

)
,
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where

 Xt

Yt

 =
 f A

X (Xt−1)

f A
Y (Yt−1)

 +
 ϵ

A
X,t

ϵA
Y,t

 , f A
X ∼ GP

(
0, kA

X,t1,t2

)
, ϵA

X,t ∼ N(0, σ2
X,A),

f A
Y ∼ GP

(
0, kA

Y,t1,t2

)
, ϵB

Y,t ∼ N(0, σ2
Y,A).

(7.3)

This model can be represented by Diagram (7.1).

Ỹt+1

Ỹt

Ỹt−1

Yt+1

Yt

Yt−1

f A
Y,t+1()

f A
Y,t()

f A
Y,t−1()

ϵY,t+1

ϵY,t

ϵY,t−1

Wt+1

Wt

Wt−1

Figure 7.1: Direct Acyclic Graph (DAG) representation of the Model A random variables.

The conditional likelihood of interest is as follows:

Ỹt | Wt,Yt−1, f A
Y () ∼ (7.4)

N
(
Ỹt; mA

t + γ
A
t Wt +

√
WtKA(Yt−1, y)

[
KA + σ2

Y,AI
]−1

gA
Y ,

Wt(σ2
Y,A + KA(Yt−1,Yt−1) − KA(Yt−1, y)

[
KA + σ2

Y,AI
]−1

KA(y,Yt−1)
)
.

7.1.1.1 Approximation algorithm

This algorithm shows how to calculate the likelihood π
(
Ỹ1:T ;MA

)
from Eqution 6.21. We will introduce

the following notation:

π̂Y,A,t
de f .
= π̂

(
Ỹt | Yt−1,W1:T , f A

Y ()
)
≈ π

(
Ỹt | Yt−1,W1:T , f A

Y ();MA

)
,

which approximates the distribution from the Equation 7.4,

π̂Y,A,T
de f .
= π̂

(
Ỹ1:T | W1:T , f A

Y ()
)
≈ π

(
Ỹ1:T | W1:T , f A

Y ();MA

)
=

T∏
t=1

π
(
Ỹt | Yt−1,W1:T , f A

Y ();MA

)
EW,A

de f .
= π̂

(
Ỹ1:T | f A

Y ()
)
≈ π

(
Ỹ1:T | f A

Y ();MA

)
E f ,A

de f .
= π̂

(
Ỹ1:T

)
≈ π

(
Ỹ1:T ;MA

)
,
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where the main part of the approximation will consist of approximating the expected values:

EW,A ≈ EW1:T ;MA

 T∏
t=1

π̂Y,A,t

 ≈ EW1:T ;MA

 T∏
t=1

π
(
Ỹt | Yt−1,W1:T , f A

Y ();MA

)
E f ,A ≈ E f A

Y ();MA

[
EW,A

]
≈ E f A

Y ();MA

EW1:T ;MA

 T∏
t=1

π
(
Ỹt | Yt−1,W1:T , f A

Y ();MA

)

Initialise:

E f ,A = 0.

Choose parameters:

m = [m1, ...,mT ], γ =
[
γ1, ..., γT

]
, ν, σ2

Y,A, hyperparameters for kA
Y,s,t.

Note: start with fixed mt , γt .

Set a grid of N points y =
[
y1, ..., yN

]
For this grid we will obtain the values for the covariance matrix K with elements kl,m = kA

Y (yl, ym), l,m ∈

[1,T ].

Note: Start with the same grid for all i = 1..Ni. Which is why the grid before the loops!

Note: We can use a random grid! It’s worth comparing to fixed grid.

Calculate the conditioning number of KA. If Rcon(KA < 10−3, perform a regularisation (for example

with Nystrom approximation).

Precalculate
[
KA + σ2

Y,AI
]−1

.

For i = 1..Ni, repeat (1) - (6), to obtain value E f ,A

7−→−→Loop (i)

1. Draw an N-dimensional noisy random vector gA,(i)
Y =

[
gA,(i)

Y,1 , ..., gA,(i)
Y,N

]
∼ N(0,KA + σ2

Y,AI).

2. Precalculate:
[
KA + σ2

Y,AI
]−1

gA,(i)
Y .

3. Initialise: EW,A = 0.

For j = 1..N j, repeat (a) - (c), to estimate the expected value EW,A

7−→−→Inner Loop (j)

(a) Draw i.i.d. W (i, j)
t ∼ IG (ν/2, ν/2), t ∈ [1,T ].

(b) Initialise: π̂Y,A,T = 1.
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For t = 1..T , repeat (i) - (iv), to estimate π̂Y,A,t

7−→−→Inner Loop (t)

i. Evaluate points Y (i, j)
t , t ∈ [1,T ], as a function of the observations Ỹt and the draws of

W (i, j)
t : Y (i, j)

t (Ỹt,W
(i, j)
t ) = 1

√
Wt

(Ỹt − mt − γtW
(i, j)
t ).

ii. Evaluate the conditional distribution f A
Y (Y (i, j)

t−1 ) | y,gA,(i)
Y ,Y (i, j)

t−1 ∼
(

f A
Y (Y (i, j)

t−1 ); f̄ A
Y (Y (i, j)

t−1 ), cov( f A
Y (Y (i, j)

t−1 ))
)
,

from the Equation 6.25, with the mean and the covariance given by Equations 6.26 and

6.27:

f̄ A
Y (Y (i, j)

t−1 ) = KA(Y (i, j)
t−1 , y)

[
KA + σ2

Y,AI
]−1

gA,(i)
Y ,

cov( f A
Y (Y (i, j)

t−1 )) = KA(Y (i, j)
t−1 ,Y

(i, j)
t−1 ) − KA(Y (i, j)

t−1 , y)
[
KA + σ2

A,YI
]−1

KA(y,Y (i, j)
t−1 )

iii. Use normal distribution from 7.4:

N

(
mt + γtW

(i, j)
t +

√
W (i, j)

t f̄ A
Y (Y (i, j)

t−1 ),W (i, j)
t

(
σ2

Y,A + cov( f A
Y (Y (i, j)

t−1 ))
))

to evaluate π̂Y,A,t =

π̂
(
Ỹ1:T | W

(i, j)
1:T , f A

Y ()
)
.

iv. Update the product: π̂Y,A,T := π̂Y,A,T ∗ π̂Y,A,t

End Inner Loop (t)

(c) Update the sum: EW,A := EW,A + π̂Y,A,T

End Inner Loop (j)

4. Obtain the final value of the estimation: EW,A := EW,A/N j

5. Update the sum: E f ,A := E f ,A + EW,A

End Inner Loop (i)

Obtain the final value of the estimation: E f ,A := E f ,A/Ni

End of the algorithm.

7.1.2 Model B

Figure 7.2 shows the graphical model representation of the Model B.

This algorithm shows how to calculate the likelihood EB ≈ π
(
Ỹ2:T | X̃1:T−1;MB

)
from Eqution 6.31,

which is reminded below:

π
(
Ỹ2:T | X̃1:T−1;MB

)
=

T∏
t=2

E f B
Y ();MB

E f B
X ();MB

EW1:t−1;MB

[
π
(
Ỹt | Yt−1, Xt−1,W1:t, f B

Y ()
)

π
(
Ỹ1:t−1, X̃1:t−1 | W1:t−1, f B

Y (), f B
X ()

) 1
π(Ỹ1:t−1, X̃1:t−1)

]

Just like for the model A, we will simulate the realisation of Gaussian process (in finite number of

points), and the mixing variable. These will be encapsulated, and that encapsulation is represented by
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Ỹt+1

Ỹt

Ỹt−1

Yt+1

Yt

Yt−1

fY,t+1()

fY,t()

fY,t−1()

Wt+1

Wt

Wt−1

fX,t+1()

fX,t()

fX,t−1()

Xt+1

Xt

Xt−1

X̃t+1

X̃t

X̃t−1

Figure 7.2: Direct Acyclic Graph (DAG) representation of the time series X,Y,Z from the point of view
of generating a realization of Yt.

the superscripts referring to each realisation: i-th realisation of fY , k-th relisation of fX , j-th realisation

of W1:t. We will introduce the following notation, to approximate components from the above equation

(Equation 6.32), continuing with the notation from the Equation 6.63:

h(t,i,k, j)
B =π

(
Ỹt | Y

(t,i,k, j)
t−1 , X(t,i,k, j)

t−1 ,W (t,i,k, j)
1:t , f B,(t,i)

Y ()
)

u(t,i,k, j)
B, fY , fX ,W

=π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f B,(t,i)

Y (), f B,(t,i,k)
X ()

)
u(t,i,k)

B, fY , fX
=

N j∑
j=1

π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f B,(t,i)

Y (), f B,(t,i,k)
X ()

)
u(t,i)

B, fY
=

Nk∑
k=1

π
(
Ỹ1:t−1, X̃1:t−1 | f B,(t,i)

Y (), f B,(t,i,k)
X ()

)
u(t)

B =

Ni∑
i=1

π
(
Ỹ1:t−1, X̃1:t−1 | f B,(t,i)

Y ()
)

The next step of the notation is introduced to remind that we’re not simulating the whole Gaussian

processes, but only their value on a grid (and the points between the grid will be calculated as conditional
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distributions)

ȟ(t,i,k, j)
B =π

(
Ỹt | Y

(t,i,k, j)
t−1 , X(t,i,k, j)

t−1 ,W (t,i,k, j)
1:t , f̌ B,(t,i)

Y ()
)

ǔ(t,i,k, j)
B, fY , fX ,W

=π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f̌ B,(t,i)

Y (), f̌ B,(t,i,k)
X ()

)
ǔ(t,i,k)

B, fY , fX
=

N j∑
j=1

π
(
Ỹ1:t−1, X̃1:t−1 | W

(t,i,k, j)
1:t−1 , f̌ B,(t,i)

Y (), f̌ B,(t,i,k)
X ()

)
ǔ(t,i)

B, fY
=

Nk∑
k=1

π
(
Ỹ1:t−1, X̃1:t−1 | f̌ B,(t,i)

Y (), f̌ B,(t,i,k)
X ()

)
ǔ(t)

B =

Ni∑
i=1

π
(
Ỹ1:t−1, X̃1:t−1 | f̌ B,(t,i)

Y ()
)

All of the summations will be calculated in loops, hence notation for the partial sums (estimation of the

unnormalised expectations):

F(t,i,k)
B,W =

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

F(t,i)
B, fX
=

Nk∑
k=1

F(t,i,k)
B,W =

Nk∑
k=1

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

F(t)
B, fY
=

Ni∑
i=1

F(t,i)
B, fX
=

Ni∑
i=1

Nk∑
k=1

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

and finally:

ÊB =

T∏
t=2

1
NiNkN j

1

ǔ(t)
B

F(t)
B, fY
=

T∏
t=2

1
NiNkN j

1

ǔ(t)
B

Ni∑
i=1

Nk∑
k=1

N j∑
j=1

ȟ(t,i,k, j)
B ǔ(t,i,k, j)

B, fY , fX ,W

Note! In the case that we’re considering here, the two Gaussian processes are independent, and both

are independent from the mixing variables. This means that we are allowed to treat the integrals as one

multidimensional integrals, and the sum, as one sum, as follows:

ÊB =

T∏
t=2

1
Ni

1

ǔ(t)
B

F(t)
B =

T∏
t=2

1
Ni

1

ǔ(t)
B

Ni∑
i=1

ȟ(t,i)
B ǔ(t,i)

B

Choose parameters:

mB =
[
mB

1 , ...,m
B
T

]
, γB =

[
γB

1 , ..., γ
B
T

]
, νB, σ2

Y,B, σ
2
X,B, hyperparameters for kB

Y .

Note: start with fixed mB
t , γ

B
t .

Set two grids of N points y =
[
y1, ..., yN

]
, x = [x1, ..., xN]

For this grid we will obtain the values for the covariance matrices:
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KB
Y with elements kB

Y,l,m = kB
Y (

[
xl, yl

]T ,
[
xm, ym

]T ), l,m ∈ [1,T ],

KB
X with elements kB

X,l,m = kB
X(

[
xl, yl

]T ,
[
xm, ym

]T ), l,m ∈ [1,T ].

Note: Start with the same grid for all i = 1..Ni. Which is why the grid before the loops!

Note: We can use a random grid! It’s worth comparing to fixed grid.

Calculate the conditioning number of KB
Y and KB

X . If either Rcon(KB
Y ) < 10−3 or Rcon(KB

X) < 10−3,

perform a regularisation (for example with Nystrom approximation).

Precalculate
[
KB

Y + σ
2
Y,BI

]−1
and

[
KB

X + σ
2
X,BI

]−1
.

Initialise: ÊB = 1.

For t = 2..T , repeat (1) - (6), to obtain value ÊB

7−→−→Loop (t)

Initialise: F(t)
B = 0, ǔ(t)

B = 0.

For i = 1..Ni, repeat (1) - (6), to obtain value F(t)
B and ǔ(t)

B .

7−→−→Loop (i)

1. Draw an N-dimensional noisy random vector gB,(t,i)
Y =

[
gB,(t,i)

Y,1 , ..., gB,(t,i)
Y,N

]
∼ N(0,KB

Y + σ
2
Y,BI).

2. Precalculate:
[
KB

Y + σ
2
Y,BI

]−1
gB,(t,i)

Y .

3. Draw an N-dimensional noisy random vector gB,(t,i)
X =

[
gB,(t,i)

X,1 , ..., gB,(t,i)
X,N

]
∼ N(0,KB

X + σ
2
X,BI).

4. Precalculate:
[
KB

X + σ
2
X,BI

]−1
gB,(t,i)

X .

5. Draw i.i.d. W (t,i)
s ∼ IG

(
νB/2, νB/2

)
, s ∈ [1, t].

6. Assume Y (t,i)
0 = 0. Evaluate the vector of points Y (t,i)

1:t−1, as a function of the observations Ỹ1:t−1 and

the draws of W (t,i)
1:t−1:


Y (t,i)

1

..

Y (t,i)
t−1

 =

√

W (t,i)
1 0 0

0 .. 0

0 0
√

W (t,i)
t−1


−1 


Ỹ1

..

Ỹt−1

 −


mB
Y,1

..

mB
Y,t−1

 −


W (t,i)
1 0 0

0 .. 0

0 0 W (t,i)
t−1



γB

Y,1

..

γB
Y,t−1



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7. Assume X(t,i)
0 = 0. Evaluate the vector of points X(t,i)

1:t−1, as a function of the observations X̃1:t−1 and

the draws of W (t,i)
1:t−1:


X(t,i)

1

..

X(t,i)
t−1

 =

√

W (t,i)
1 0 0

0 .. 0

0 0
√

W (t,i)
t−1


−1 


X̃1

..

X̃t−1

 −


mB
X,1

..

mB
X,t−1

 −


W (t,i)
1 0 0

0 .. 0

0 0 W (t,i)
t−1



γB

X,1

..

γB
X,t−1




8. Evaluate the conditional distribution f B
Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)
| y, x,gB,(t,i)

Y ,Y (t,i)
0:t−1, X

(t,i)
0:t−1

∼

(
f B
Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)

; f̄ B
Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)
, cov( f B

Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
))

, from the Equation 6.35,

with the mean and the covariance given by Equations 6.36 and 6.37:

f̄ B
Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)
=KB

Y (
[
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
,
[
x, y

]T )
[
KB

Y + σ
2
Y,BI

]−1
gB,(t,i)

Y ,

cov
(

f B
Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
))
=KB

Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
,
[
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)

−KB
Y

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
,
[
x, y

]T
) [

KB
Y + σ

2
B,YI

]−1
KB

Y

([
x, y

]T ,
[
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)

9. Evaluate the conditional distribution f B
X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)
| y, x,gB,(t,i)

X ,Y (t,i)
0:t−1, X

(t,i)
0:t−1

∼

(
f B
X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)

; f̄ B
X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)
, cov( f B

X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
))

, analogously to the Equa-

tion 6.35, with the mean and the covariance given analogously to the Equations 6.36 and 6.37:

f̄ B
X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)
=KB

X (
[
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
,
[
x, y

]T )
[
KB

X + σ
2
X,BI

]−1
gB,(t,i)

X ,

cov
(

f B
X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
))
=KB

X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
,
[
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)

−KB
X

([
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
,
[
x, y

]T
) [

KB
X + σ

2
B,XI

]−1
KB

X

([
x, y

]T ,
[
X(t,i)

0:t−1,Y
(t,i)
0:t−1

]T
)

10. Evaluate ȟ(t,i)
B ≈ π

(
Ỹt | Wt, Xt−1,Yt−1, f B

Y ()
)
, using the normal distribution from 6.38:

N

(
mt + γtW

(t,i)
t +

√
W (t,i)

t f̄ B
Y (

[
X(t,i)

t−1 ,Y
(t,i)
t−1

]T
),W (t,i)

t

(
σ2

Y,B + cov( f B
Y (

[
X(t,i)

t−1 ,Y
(t,i)
t−1

]T
))
))
.
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11. Evaluate ǔ(t,i)
B ≈ π

(
Ỹ1:t−1, Ỹ1:t−1 | W1:t−1, f B

Y (), f B
X ()

)
, using distribution from 6.50:

ǔ(t,i)
B ∼ N

(
X̃1:t−1; mB

X,1:t−1 +
[
γB

X,1W (t,i)
1 , ...,γB

X,t−1W (t,i)
t−1

]T
+

[√
W (t,i)

1 , ...,

√
W (t,i)

t−1

]T

I f̄ B
X

([
X(t,i)

0:t−2,Y
(t,i)
0:t−2

]T
)
,√

W (t,i)
1:t−1

T I
[
σ2

X,BI + cov
(

f B
X

([
X(t,i)

0:t−2,Y
(t,i)
0:t−2

]T
)) ]
I

√
W (t,i)

1:t−1
T
)

N

(
Ỹ1:t−1; mB

Y,1:t−1 +
[
γB

Y,1W (t,i)
1 , ...,γB

Y,t−1W (t,i)
t−1

]T
+

[√
W (t,i)

1 , ...,

√
W (t,i)

t−1

]T

I f̄ B
Y

([
X(t,i)

0:t−2,Y
(t,i)
0:t−2

]T
)
,√

W (t,i)
1:t−1

T I
[
σ2

Y,BI + cov
(

f B
Y

([
X(t,i)

0:t−2,Y
(t,i)
0:t−2

]T
)) ]
I

√
W (t,i)

1:t−1
T
)
.

12. Update the sums: F(t)
B := F(t)

B + ȟ(t,i)
B ǔ(t,i)

B ǔ(t)
B := ǔ(t)

B + ǔ(t,i)
B .

End Inner Loop (i)

Update the multiplication: ÊB := ÊB
F(t)

B

ǔ(t)
B

End Loop (t)

Obtain the final value of the estimation: ÊB := 1
NiNk N j

ÊB.

End of the algorithm.

7.2 On simulating autoregressive time series data with GP

Causality structure 1. Autoregressive time series with linear and power law causality.

Xt = fX(Xt−1) fX ∼ GP
(
µX,t, kX,t,t′

)
Yt = fY ([Yt−1, Xt−1]) fY ∼ GP

(
µY,t, kY,t,t′

)
Zt = fZ([Zt−1,Yt−1]) fZ ∼ GP

(
µZ,t, kZ,t,t′

)
(7.5)

This data is introduced as a time series, with the means as below:

µX,t = µX,t(Xt−1) = aXXt−1

µY,t = µY,t([Yt−1, Xt−1]) = aYYt−1 + bY Xt−1

µZ,t = µZ,t([Zt−1,Yt−1]) = aZZt−1 + bZY2
t−1 (7.6)

and noise is already incorporated in the Gaussian processes:
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kX,t,t′ = kX,t,t′ (Xt−1, Xt′−1) = kMatern
la,s f

(Xt−1, Xt′−1) + s2
nδt,t′

kY,t,t′ = kY,t,t′ ([Yt−1, Xt−1], [Yt′−1, Xt′−1]) = kMatern
la,lb,s f

([Yt−1, Xt−1], [Yt′−1, Xt′−1]) + s2
nδt,t′

kZ,t,t′ = kZ,t,t′ ([Zt−1,Yt−1], [Zt′−1,Yt′−1]) = kMatern
la,s f

([Zt−1,Yt−1], [Zt′−1,Yt′−1]) + s2
nδt,t′ (7.7)

The Matern covariance:

– d denote distance between two points w and w′

– C(d) Matern covariance as a function of d; C(d) = C(d(x, y))

– ν is a non-negative parameter of the covariance, referred to as a ”smoothness parameter” or as

degrees of freedom

– l is a non-negative parameters of the covariance, referred to as a lenghtscale; we define it here as

a vector that introduce Automatic Relevance Determination (ARD), if it’s zero for a particular

dimention, then this dimension is removed; please note that if it’s zero for all dimensions, then the

value fo the kernel function is equal to σ2

– σ2 is a a parameter of the covariance, it’s also the limit of the Matern covariance function in d = 0

– Kν(z) denotes the modified Bessel function of the second kind

– Γ is the gamma function

C(d) = σ2 1
Γ(ν)2ν−1

(√
2νdl

)ν
Kν

(√
2νdl

)
(7.8)

In the kernel definitions above, we use l = [la] for kX , kZ and l = [la, lb]T for kY . The la is the

reciprocal lengthscale corresponding to the autocorrelation, while lb – causality. If we choose lb = 0, then

there’s no causality in the covariance, while la = 0 affects the autocorrelation in covariance. If we choose

σ2 = 0, then the Matern kernel component is removed altogether with any autocovariance or causality in

the dependence, and we end up with a simple AR(1):

Xt = aXXt−1 + ϵX

Yt = aYYt−1 + bY Xt−1 + ϵY

Zt = aZZt−1 + bZYq
t−1 + ϵZ (7.9)
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This data is introduced as a time series, but the errors are generated as Gaussian processes, which depend

on previous value of the time series:

ϵY ∼ N
(
0, σ2

)
,

ϵZ ∼ N
(
0, σ2

)
,

How to simulate the data The fact that we have data Y1, ...,Yn from a Gaussian process means that this

data has joint normal distribution with appropriate mean function and kernel. When no autoregression is

present, the data generation is simple: get all of the input points W1, ...,Wn, apply mean function µ(·) and

covariance function kt,t′ (·) to obtain mean vector m and covariance matrix K and generate n points normal

distribution N(m,K).

But when autoregression is present (and even worse: causality as well), then everything needs to be

simulated recursively, with every new step agreeing with the all previous steps. This means generating

from the posterior distribution. Quoting Ebden [Ebden, 2015] ”Since the key assumption in GP modelling

is that our data can be represented as a sample from a multivariate Gaussian distribution, we have that

 y

y∗

 ∼ N
0,

 K K∗T

K∗ K∗∗


 ,

”

The equation above was given for a GP with mean zero, and with the notation: y∗ for a value of y at

a new point (for convenience lets call it a testing point, although in our case that won’t be meaningful), y

for all past values of y (lets call them training points). The kernel notation is as follows: K as a Gramm

matrix for all training points, K∗∗ – for the training point, and K∗ for a cross-covariance matrix of all

training points with the testing point.

In our model the ”training” point is Yt, the ”testing” points are all of the earlier ones: Y1, ...,Yt−1.

Let’s introduce the short notation of K for Gramm matrix of all ”training points”, Kt,t for cov(Yt,Yt) and

Kt for a vector of cross covariances cov(Ys,Yt), s = 1, ..., t − 1. The joint distribution of Y1, ...,Yt−1,Yt is

then:



Y1

...

Yt−1

Yt


∼ N


µY



Y1

...

Yt−1

Yt


,


K KT

t

Kt Kt,t




, (7.10)
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Xt−3

Xt−2

Xt−1

Yt−3

Yt−2

Yt−1

Yt

Zt−3

Zt−2

Zt−1

Figure 7.3: Direct Acyclic Graph (DAG) representation of the time series X,Y,Z from the point of view
of generating a realization of Yt. The graph helps to visually explain why Yt ⊥⊥ Yt−n | Yt−1 for any n >= 2.

In our case the data is generated recurrently, so when adding the Yt point, it needs to consistend

with the distribution of previous points, and hence it should be drawn from a conditional distribution of

p(Yt | Y1, ...,Yt−1). Based on equation 7.10 and properties of normal distribution will be as follows, and

with µ ≡ µ([Y1, ...,Yt−1]T ) and µt = µ(Yt) the conditional distribution will be:

p(Yt | Y1, ...,Yt−1) ∼ N(µt + KtK−1([Y1, ...,Yt−1]T − µ),Ktt − KtK−1Kt
t ). (7.11)

In general simulating data in this way will be either computationally expensive (having to inverse a

matrix K with grows with each iteration) or would need approximation techniques. However in case of

the time series structure as introduced by 7.5, we don’t need to include all history of Y . If we look at the

graph associated with our model:

As the graph 7.3 explains, we have the conditional independence of Yt ⊥⊥ Yt−n | Yt−1 for any n >= 2.

This means, that p(Yt | Y1, ...,Yt−1) = p(Yt | Yt−1) and instead of requiring consistence with all of the

previous points, it’s enough to ensure the consistence of new point Yt with the previous point Yt−1. Hence,

we can generate the point Yt from the conditional distribution:

p(Yt | Yt−1) ∼ N(µY,t +
kY,t,t−1

kY,t−1,t−1
(Yt−1 − µY,t−1), kY,t,t −

k2
Y,t

kY,t−1,t−1
). (7.12)

We’ve been concentrating on generating time series Y , but analogously we will generate Z – from

the conditional distribution:

p(Zt | Zt−1) ∼ N(µZ,t +
kZ,t,t−1

kZ,t−1,t−1
(Zt−1 − µZ,t−1), kZ,t,t −

k2
Z,t

kZ,t−1,t−1
). (7.13)
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7.3 Efficient testing procedures

With the simplifying assumptions we were able to achieve closed form solutions for our causality

metric LX→Y |Z and approximate distribution. But for some data, we will find that the computations are

theoretically achievable, but very impractical.

Let’s recall the log marginal-likelihood used for the causality metric LX→Y |Z :

log π(Y | X−k,Y−l,Z−m)

=
1
2

(Y − µB)T (KB + σ
2
B,t)
−1(Y − µB) −

1
2

log | KB + Σ
B | −

N
2

log 2Π.

Here the inversion (KB + Σ
B)−1, and similarly (KA + Σ

A)−1 for the model A, can become computationally

very expensive if the matrix becomes high dimensional. The second place, where the same matrix

inversion appears is when calculating the derivatives of the marginal log-likelihood needed to optimise

the hyperparameters:

∂

∂θB
j

log π(Y | X−k,Y−l,Z−m; θB, ) =

1
2

(ααT − (KB + Σ
B)−1

) ∂(KB + Σ
B)

∂θB
j

 , where α = (KB + Σ
B)−1(Y − µB)

Referring to Chapter (5), here is a reminder of what (KB + Σ
B) is:

{
KB + Σ

B
}
t1,t2
= kB,t1,t2 + σ

2
B,tδt1,t2

= kB

([
X−k

t1−1,Y
−l
t1−1,Z

−m
t1−1

]
,
[
X−k

t2−1,Y
−l
t2−1,Z

−m
t2−1

])
+ σ2

B,tδt1,t2

= cov(Yt1 ,Yt2 ).

There are some suggestions how to achieve an efficient implementation (for example mentioned

by Garthwaite et al. [2002]) including: the use of Cholesky decomposition instead of straightforward

inversion, pre-computing elements involving the matrix inverse that are used repetitively for example in

the calculation of derivatives. But for very high dimensional problems, that may not suffice. Might be

necessary to introduce some sparse approximations.

7.4 Software for Causality

For the purpose of the experiments described in the section 2.2, we have used code from several sources:

own Matlab code, open access Matlab toolbox for Granger causality GCCA1 [Seth, 2010] and open access

Matlab code provided by Sohan Seth [Seth and Principe, 2011]2.

1The code can be requested from the Author’s website: http://www.sussex.ac.uk/Users/anils/aks_code.htm
2Code available at http://www.sohanseth.com/Home/publication/causmci

http://www.sussex.ac.uk/Users/anils/aks_code.htm
http://www.sohanseth.com/Home/publication/causmci
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Our code allows the calculation of: a) kernelised Geweke’s measures of Granger causality with 3

kernels: Gaussian, linear, polynomial; choice of the linear kernel gives linear Geweke’s measure (the

effect of regularisation negligible), b) transfer entropy based on naive histogram. Parameters for the ridge

regression can be chosen with n-fold cross-validation 3, and the significance of the measurement can be

calculated with a permutation test.

The GCCA tooldbox has been very popular for Granger causality, including causality in the frequency

domain and analysing Granger causality network. Also the GCCA toolbox is employed in the code

written by Seth. For many examples we incorporated the framework from Seth’s code as this proved to be

better optimised to run large quantities of tests. From the original Seth’s framework we have employed

the tests for HSNCIC and Granger causality (using GCCA toolbox, results in line with the ones were

our own code was used, but faster), we have added our own tests for kernelised Granger causality and

transfer entropy. In the Seth’s framework we have also changed the implementation for permutation tests

from using rotation to using actual permutation, which we believe is more suitable given that we never

run fewer tests per experiment that Seth performed.

The GCCA toolbox4 for calculating Granger causality provides some tools for detecting non-

stationarity and to a limited degree also for managing it [Seth, 2010]. In the VAR setting of Granger

causality it is possible to run parametric tests to detect nonstationarity: ADF test (Augmented Dickey

Fuller) and KPSS test (Kwiatkowski, Phillips, Schmidt, Shin). For managing non-stationarity Seth

suggests analysing shorter time series (windowing) and differencing, although both approaches can

introduce new problems. It also advisable to detrend and demean the data, and in the case of for example

economic data it might also be possible to perform seasonal adjustment.

7.5 Software for Gaussian Processes

7.5.0.1 Errors in the GPML Matern covariance

Below, I’m presenting original code for covMaterniso.m from the GPML toolbox. The function

covMaterniso.m uses the same lengthscale parameter for each dimension, the toolbox also contains a

function covMaternard.m, which uses different lengthscale for each dimension. Both functions are very

similar (and contains the same mistakes).

f u n c t i o n K = c o v M a t e r n i s o ( d , hyp , x , z , i )

% Matern c o v a r i a n c e f u n c t i o n w i t h nu = d / 2 and i s o t r o p i c d i s t a n c e

% measure . For d=1 t h e f u n c t i o n i s a l s o known as t h e e x p o n e n t i a l

3Validation is a process of confirming that a model or parameters are acceptable to describe the given data. In machine learning
validation is often performed by splitting the data into training and validation sets and analysing the error of modelling the validation
set with parameters optimised on the training set. Cross-validation is a type of validation when the whole procedure is performed
several time with the same data being randomly selected to either the training or in the validation set. For more information on
model selection and cross-validation please refer to Friedman et al. [2001] or Grasa [2013]

4Code can be requested at: http://www.sussex.ac.uk/Users/anils/aks_code.htm

http://www.sussex.ac.uk/Users/anils/aks_code.htm
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% c o v a r i a n c e f u n c t i o n or t h e O r n s t e i n −Uhlenbeck c o v a r i a n c e i n 1d .

% The c o v a r i a n c e f u n c t i o n i s :

%

% k ( x ˆ p , x ˆ q ) = s f ˆ2 * f ( s q r t ( d )* r ) * exp (− s q r t ( d )* r )

%

% w i t h f ( t )=1 f o r d=1 , f ( t )=1+ t f o r d=3 and f ( t )=1+ t+ tA ˆ 2 / 3 f o r d=5.

% Here r i s t h e d i s t a n c e s q r t ( ( x ˆ p−x ˆ q ) ’ * i n v ( P ) * ( x ˆ p−x ˆ q ) ) , P i s e l l

% t i m e s t h e u n i t m a t r i x and s f 2 i s t h e s i g n a l v a r i a n c e . The

% h y p e r p a r a m e t e r s are :

%

% hyp = [ l o g ( e l l )

% l o g ( s f ) ]

%

% C o p y r i g h t ( c ) by Car l Edward Rasmussen and Hannes N i c k i s c h ,

% 2010−09−10.

% See a l s o COVFUNCTIONS .M.

i f nargin <3 , K = ’ 2 ’ ; re turn ; end % r e p o r t number o f p a r a m e t e r s

i f nargin <4 , z = [ ] ; end % make sure , z e x i s t s

xeqz = i sempty ( z ) ; dg = strcmp ( z , ’ d i a g ’ ) ; % d e t e r m i n e mode

e l l = exp ( hyp ( 1 ) ) ;

s f 2 = exp (2* hyp ( 2 ) ) ;

i f a l l ( d ˜= [ 1 , 3 , 5 ] ) , error ( ’ on ly 1 , 3 and 5 a l l o w e d f o r d ’ ) , end

% d eg re e

s w i t c h d

% d f ( t ) = f ( t )− f ’ ( t )

c a s e 1 , f = @( t ) 1 ; d f = @( t ) 1 ;

c a s e 3 , f = @( t ) 1 + t ; d f = @( t ) t ;

c a s e 5 , f = @( t ) 1 + t . * ( 1+ t / 3 ) ; d f = @( t ) t . * ( 1+ t ) / 3 ;

end

m = @( t , f ) f ( t ) . * exp (− t ) ; dm = @( t , f ) d f ( t ) . * exp (− t ) . * t ;

% precompute d i s t a n c e s

i f dg % v e c t o r kxx

K = z e r o s ( s i z e ( x , 1 ) , 1 ) ;

e l s e

i f xeqz % s y m m e t r i c m a t r i x Kxx

K = s q d i s t ( s q r t ( d ) / e l l *x ’ ) ;

e l s e % c r o s s c o v a r i a n c e s Kxz

K = s q d i s t ( s q r t ( d ) / e l l *x ’ , s q r t ( d ) / e l l *z ’ ) ;

end
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end

i f nargin <5 % c o v a r i a n c e s

K = s f 2 *m( s q r t (K) , f ) ;

e l s e % d e r i v a t i v e s

i f i==1

K = s f 2 *dm( s q r t (K) , f ) ;

e l s e i f i==2

K = 2* s f 2 *m( s q r t (K) , f ) ;

e l s e

error ( ’Unknown h y p e r p a r a m e t e r ’ )

end

end

The function above uses simplified forms of the Matern covariance for three degrees of freedom:

0.5, 1.3, 2.5. While values of the covariance function are correct, the derivatives are not. Below I’m

presenting the analytical derivation of the derivatives for ν = 3/2 and show why ones in the function

above are incorrect.

Cν=3/2(d) = σ2
1 + √3d

l

 exp
− √3d

l

 (7.14)

7.5.0.2 Correct derivatives:

With respect to σ:
∂Cν=3/2(d)

∂σ
= 2σ

1 + √3d
l

 exp
− √3d

l

 , (7.15)

with respect to lengthscale:

∂Cν=3/2(d)
∂l

= σ2
∂
(
1 +

√
3d
l

)
∂l

exp
− √3d

l

 + σ2
1 + √3d

l

 ∂ exp
(
−
√

3d
l

)
∂l

= σ2
− √3d

l2

 exp
− √3d

l

 + σ2
1 + √3d

l

 exp
− √3d

l

  √3d
l2


=
−σ2
√

3d
l2

exp
− √3d

l

 + σ2
√

3d
l2

exp
− √3d

l

 + σ2
√

3d
l

 √3d
l2

 exp
− √3d

l


=

3σ2d2

l3
exp

− √3d
l



(7.16)

Derivatives in the GPML code:

Note that the hyperparameters are read as follows:

e l l = exp ( hyp ( 1 ) ) ;

s f 2 = exp (2* hyp ( 2 ) ) ;
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which means that the second parameter always appears as σ2.

The derivative with respect to σ is therefore as follows:

∂Cν=3/2(d)
∂σ

= 2σ2
1 + √3d

l

 exp
− √3d

l

 , (7.17)

which is incorrect, and would be incorrect even if the derivative was taken with respect to σ2 rather than

σ.

For the derivative with respect to lengthscale, some explanations as to the details of the code are

needed. sq dist is a function that computes a matrix of all pairwise squared distances between two sets

of vectors and it is homogenous of degree 2 and so:

sq dist

 √3
l

x′,

√
3

l
x′
 = 3

l2
sq dist

(
x′, x′

)
≡

3
l2

d2. (7.18)

For clarity when comparing with the code, I’ve used above the notation of x for the vector and d for

the matrix. Below I drop this notation as it’s not neccessary, because many operations in the code are

performed element-wise anyway.

To compute the derivative with respect to the lengthscale, the code defines the following functions (I

fix the degrees of freedom to be equal 3/2):

f (t) ≡ 1 + t

d f (t) ≡ 1

m(t, f ) ≡ f (t) ∗ exp(−t) = (1 + t) ∗ exp(−t)

dm(t, f ) ≡ d f (t) ∗ exp(−t) = exp(−t)

(7.19)

then the derivative:

∂Cν=3/2(d)
∂σ

= σ2dm
 √3

l
d, f

 3
l2

d2 =
3σ2d2

l2
exp(−

√
3

l
d) (7.20)

The difference is that 7.20 contains a division by l2, while 7.16 has a division by l3. After introducing

that correction, I’m obtaining same results when using either my own code for Matern function or the

code from GPML toolbox. The same fix works for all three options of degrees of freedom that exist in the

GPML toolbox.



Chapter 8

Experiments

“ Nature behaves in ways that look mathematical, but
nature is not the same as mathematics. Every math-
ematical model makes simplifying assumptions; its
conclusions are only as valid as those assumptions. ”
Ian Stewart and Martin Golubitsky, Fearful Symmetry:
Is God a Geometer?

The framework for modelling and testing causality proposed in this article is novel, and thus it is

important to demonstrate that it behaves appropriately. Therefore, we have designed a series of tests of

performance and robustness of our framework. The experiments in this chapter are all based on synthetic

data, for the results on real data we direct the reader to Chapter (9). Firstly, we explain how the synthetic

data sets are generated. The actual experiments begin with sensitivity and misspecification tests, which

are followed with experiments on the power of the test (probability of rejecting null hypothesis if it’s not

true, also equal to 1 - type II error rate) for simple and compound tests. We refer to the 3 types of data

with different structural and causal features, that were introduced in the subsection 3.2.

The sensitivity analysis shows how the test reacts to varying the parameter values used to generate

the time series data in Example model 1 (Section 3.2). Here, we know the exact model so that test is a

simple test where we asses its power over the parameter space.

The model misspecification tests show how the test reacts to discrepancy between the parameter

values used to generate the time series data for Examples in Section 3.2 and the parameters used in the

test statistic. This is a structured form of compound test analysis, since in practical settings in general the

parameters will be estimated from data and then used in a compound testing procedure, and therefore

even in a synthetic study with known parameters, they will still not correspond to the “true” values used

to generate the synthetic data time series.

Note: throughout these tests the 50% change in the parameters relates to the model parameters, and

the covariance parameters are all used as logarithm, so the actual decrease/increase is much bigger than

for the mean.

The analysis of the power of the hypothesis tests shows that the framework not only behaves as
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expected, but also has properties that make it practical. An important result in this research is obtaining a

test statistic with known asymptotic distribution, but what is even more important is that we don’t need

a very large sample to to be able to use that result in practice. For simple tests – ones that use exact

hyperparameters, and compound tests – where the hyperparameters are estimated, we look at popular

tools for assessing quality of a testing procedure: test statistic distribution, power of the test and the ROC

curves.

Before going into specific result, an illustration of the type of outputs that we have when running our

simulations / analysis. Below two examples showing the values of the test statistics from the Equation

5.9 change for different data samples, and what values of the χ2 cdf they would obtain. The rejection

level of 0.9 (significance value of α = 0.1) is a value that we will often use, but that has been chosen

arbitrarily. The Figure C.1 illustrates a compound test with optimised parameters – showing the values of

test statistics LX→Y vs LY→X and the distribution χ2
2(2LX→Y ) vs χ2

2(2LY→X). The data has been generated

from causality structure 1 with strong causal effect X → Y , with each of the 50 data sample being of

length 500.
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Figure 8.1: Test statistics and corresponding cumulative density function evaluations. Causality structure
1, true parameters: aX = aY = aZ = 0.3, bY = bZ = 0.7, q = 2, la = lb = e−6, σ f = e−10, σn = 0.01. The
horizontal axis represents 50 separate trials, each with a time series of length 500.

The interpretation of the Figure C.1 is the following. From the left plot we can see that the test

statistics LX→Y has values which are separated from and considerably larger than the test statistics LY→X .

This by itself is an indication that the causal effect X → Y should be stronger than Y → X. From the plot

of cdf evaluations we observe that all of the values of LX→Y are in the tail (with cdf values of exactly 1)

and therefore the null hypothesis is strongly rejected at any confidence level, for each of the trials. This

means that the estimator of the power of the test (probability of rejecting null hypothesis if it’s not true,

also equal to 1 - type II error rate) is equal to 1 at any confidence level. If we set up confidence level at

0.1, then one trial will lead to rejecting the null hypothesis in the Y → X direction, which corresponds to

type I error rate of 0.02.
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8.1 Power of the Hypothesis Tests

Summary of the section: analysing power of the test (1-rate of type II error) is popular for assessing

quality of a test or a testing procedure. It is expected that the power of the test will increase with the

increasing sample size, and showing that this is indeed the case for our testing procedure will be the focus

of this and the following sections. We start by analysing the results of simple tests, where exact parameters

are used, and there is no effect of parameter misspecification. Strictly speaking, the simple test can be

performed only for the first two data structures, as the third has been defined as an econometric model

with no Gaussian Process representation. However for the third data structure we perform a few tests

with chosen parameters – to show reaction of the test to some properties of the data.

8.1.1 Simple Tests

Example Time Series Model Structure 1: When using the exact parameters, as in a simple test, typically

the behaviour for the Example model data 1 (Equations 3.51 and 3.52) is as expected: power of the

test increases with the sample size, and even in case of short time series the classification rule works

well. The notable exceptions observed are as detailed below. The Figure 8.2 shows evolution of receiver

operating characteristic (ROC) curves with increasing sample length, for three sets of parameters. The

left chart represents typical behaviour for most of the parameters: positives and negatives almost always

properly classified, even for short time series. The middle and the right figures coincide with large value

of σ2 = e−2 ≃ 0.1353. The right chart shows an extreme case, where the power of the test degrades with

length of the time series to a random coin flip on the hypothesis, although it improves if we consider

exceptionally long samples of 5000 data points.
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Figure 8.2: Examples of parameter combinations for which the ROC curve shows different behaviour with
longer sample (time series). True parameters: aX = 0.3, bY = 0.7 in all 3 charts, the kernel parameters
respectively: (left) la = e−3, lb = e−1, σ2 = e−10, (middle) la = e−3, lb = e−1, σ2 = e−2 and (right)
la = e−1, lb = e−3, σ2 = e−2.

The Figure 8.3 shows box plots representing the distributions of the test statistics for data corre-

sponding to that from the Figure 8.2. In line with the ROCs, distributions of the test statistic in the first

set of data converges to 1 very quickly (sample of size 100). For the second set of data we see much

slower convergence and increased number of outliers for the data of middle sizes. The third set of data
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sees distribution that would appear to converge to 0 if only the standard samples of 20 - 1000 sizes were

considered, but that eventually rebounds to value 1 for data length 5000.
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Figure 8.3: Examples of parameter combinations that lead to different evolution of the test statistics
distribution. True parameters: aX = 0.3, bY = 0.7 in all 3 charts, the kernel parameters respectively: (left)
la = e−3, lb = e−1, σ2 = e−10, (middle) la = e−3, lb = e−1, σ2 = e−2 and (right) la = e−1, lb = e−3, σ2 = e−2.

The parameters that cause such behaviour is primarily the signal noise σ2, and to a smaller extent

la – the coefficient of autoregression in covariance function. The hyperparameter σ2 increases the value

of the covariance proportionately, while la - inversely and less than proportionately. Higher values of

the covariance function means higher volatility clustering, an effect which could compete with causality,

but that could be less visible in short time series. We won’t elaborate on this point here, but additional

dependence structure can complicate explanation of causality structure. Therefore longer time series

appears necessary to correctly recognise causality in this case. The Figure 8.4 shows the effect of length

of a time series on the value of the test statistics LX→Y for a particular combination of parameters. A

single data set of length 5000 has been simulated and subsequently tests statistics have been calculated

on the first 100, 200, 300, ...5000 data points. The chosen data set has a general trend of test statistics

increasing for longer data lengths (as for all other data sets generated with the same parameters) but it

shows to major dips of test statistics temporarily worsening.
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Figure 8.4: Evolution of LX→Y when (overlapping) data of different length is used. True parameters:
aX = 0.3, bY = 0.7, la = e−3, lb = e−3, σ2 = e−2 .

The causal effect in the covariance function is difficult to observe. This is because on one hand it

seems to have a much subtler effect than the causality in mean, but also because it is entwined with other

effects that can be observed for different parameter combinations. Figure 8.5 shows that for following

parameters bY = 0, aY = 0, la = e, lb = e, σ2 = e4 the causality in covariance is unambiguously observed
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already for sample size of 50. Reminder, according to the Equations 3.51, bY = 0 means no causality in

the mean and aY = 0 means no autoregression in the mean.
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Figure 8.5: Test statistics and the distribution evaluation: no causality in mean (bY = 0), no autocorrelation
in mean (aY = 0), very large covariance parameters la = e, lb = e, σ2 = e4. The right subplot doesn’t
explicitly show distribution evaluations for sample sizes from 50 to 500, because they are all equal 1 (just
like for sample size 1000).

Example Time Series Model Structure 2: The results for Example model data 2 (Section 3.2) are

just commented on here since in the simple testing framework, they don’t show anything unexpected. In

particular, the power of the test does increase with increasing length of the time series. Arguably, there is

much less opportunity for problematic behaviour. This is firstly because the range of parameters which are

available for the Example structure 2 is much narrower than for the Example structure 1 (i.e. parameters

for which the series does not explode to infinity). Secondly, we assumed cov(ϵY,t, ϵY ′t ) = 0, but if we didn’t

we could have had again the problem with volatility clustering masquerading as causality.

Example Time Series Model Structure 3: We do however report a few observations on the data

3. Firstly, data 3 does not have a Gaussian Process representation, so when reporting on the results of

the “simple test” in this case we don’t mean a test with “true” parameters, but a test with fixed, rather

than optimised parameters. These observations become particularly interesting when compared with the

results of the compound test for the data 3. The main property of interest in the data 3 is the long memory

and this is what we concentrate on here. When analysing results for the data 3 (simple or compound

test), on one hand we expect that existence of the long memory will make recognition of causality more

difficult, but on the other hand we would like to see that causality can still be reasonably detected. Figure

8.6 shows how the power of the test is affected by increasing the long memory (values of the parameter

d = 0.1 vs d = 0.45), and how this effect can be increased by changing other parameters (the degree of

moving average from MA(1) to MA(4), noise covariance from σ2 = 0.1 to σ2 = 10, strength of linear

causality from bY = 0.7 to bY = 0.2). It’s worth emphasizing that decreasing strength of causality has the

biggest influence, and is the only factor that affects the power of the test for long time series (length =

1000).
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Figure 8.6: The effect of longer memory on the power of the test in data 3 varies strongly with different
parameters.

8.1.2 Compound Tests

Summary of the section: Compound tests are two stage tests where both the likelihood as well as the

model parameters are estimated. Robust estimation of parameters while possibly costly, is one of the most

important pillars of robust testing with compound tests. In this section we want to draw attention of the

reader to a few important phenomena: firstly, that the framework is much better in picking up causality

than accepting the lack of causality; and secondly, that even with strong model misspecification - which

we will see for the data 3, it is possible to identify causality.

One of the biggest factors influencing quality of the compound test is the efficiency of the optimisation

algorithm. Likelihood is, in general case, not a convex optimisation problem, which means that existence

of local optima is likely. Using multiple starting points is highly recommended, but can potentially make

the calculations very time consuming (our implementation involves a random grid of starting points).

Using Gaussian Processes with the assumptions we have in this research (mainly: additive Gaussian noise)

offers the advantage of being able to calculate the likelihood analytically. However it is still possible that

the data set can be so large, that this calculation would be prohibitive. A popular approach in the literature

is to decrease the dimensionality of the input data (Snelson and Ghahramani [2007]), or strive for efficient

implementation (Williams and Rasmussen [2006]). An interesting an little known approach is to choose

covariance function that promotes sparsity of the covariance matrix (mel [2009]). Ensuring an approach

is suitable to time series potentially adds a level of complication.

Example Time Series Model Structure 1: An observation that holds for arguably all data – not only

the Model Structure 1, is that when causality does exist in the data, the distribution of the test statistics

estimator is much narrower than when there is no causality. An example is shown in the Figure 8.7: the

first plot shows that the causal signal can be picked up even for the shortest data, and the distribution of



178 Chapter 8. Experiments

the tests statistics converges to value 1 already for length 100. When causality is not present (subplots 2

to 4) even for the longest used samples the distributions of test statistics are wide with median at zero, but

75th percentile often reaching close to 1.
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Figure 8.7: Boxplots showing how the sample size affects distributions of the test statistics, in the case of
existing causal effect (first subplot X → Y and bY = 0.7) and in the case where causal effect disappears
due to causal coefficient equal to zero (second subplot X → Y and bY = 0), construction (third subplot
Y → X) or both (fourth subplot).

Example Time Series Model Structure 2: The results for Example model data 2 shows some very

interesting behaviours. When fitting the model, we introduced some model misspecification, because we

allowed the structures to be the same for both directions. The first misspecification is in using polynomial

means of second degree for Y → Z | X as well as Z → Y | X. The second misspecification is in using the

same volatility structure for both X → Y | Z and Y → X | Z. As a result the estimated parameters in mean

are often correctly estimated to be near zero, but the parameters in variance are strongly misspecified.

The results still have reasonable power of the test: the existence of causality is always correctly picked,

however in same cases we have results which could be interpreted as spurious causality. Also, like with

data 1, there are cases where we seem to be spotting the causal effect in the covariance function when

there’s no causality in the mean, shown in the Figure 8.8.
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Figure 8.8: Data 2, X → Y | Z. Changes in recognition of causality in covariance with increases sample
size: different parameter settings. The top row shows the parameter settings where causal effect in
covariance can be expected (cY , 0), while the bottom row shows cases where causality in covariance is
not expected (cY = 0). In those cases there was no causality in the mean (bY = 0).
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At the same time we see that we detect some spurious causality signals for the opposite direction:

Y → X | Z. Figure 8.9 show how in the presence of causality X → Y | Z (bY = 0.7), the opposite

direction also starts displaying causality with growing sample size. Explaining spurious causality is often

complicated. In this case we want to emphasize the following observations. First of all, the value of the

test statistics is much bigger for the side where true causality exist, and much smaller sample is needed

to start indicating that causality with a high confidence. Secondly, we run misspecified model for the

Y → X | Z direction (the misspecification is in the covariance function, with the multiplicative parameter

σ f having to equal zero to achieve properly specified function consisting of the multiplicative noise only),

and even with multiple starting points, the optimised parameters are not as close to the true parameters as

we would like.
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Figure 8.9: Data 2, Y → X | Z. Changes in recognition of causality in covariance with increases sample
size: different parameter settings. The top row shows the parameter settings where causal effect in
covariance can be expected (cY , 0), while the bottom row shows cases where casuality in covariance is
not expected (cY = 0). In those cases there was no causality in the mean (bY = 0.7).

Example Time Series Model Structure 3: The results for the third data set follow similar trend

in the aspect that when a strong causal signal is present, it is correctly recognised. In case of lack of

causality, or with very weak causal component, the distribution of the test statistics can be wide, but

no spurious causality was detected. The data 3 set has a long memory component, controlled by the

parameter d ∈ [0, 0.5), and one of the most interesting aspects is understanding is analysing the effect of

long memory.

The First of all, when in case of standard parameters, long memory hardly influences recognition of

causality. Here, standard parameters are: strong causal component present (bY = 0.7, bZ = 0.7), and the

noise variance isn’t substantial (σ2
n = 0.01).

Figure 8.10 shows the distribution of test statistics for no long memory (d = 0) and strong long

memory d = 0.45) for different data lengths. The effect on the data 3 of changing parameters in particular

of changing the memory parameter d is not significant. This seems unexpected at first, compared to the
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results of the simple test.
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Figure 8.10: Long memory barely affects the distribution of test statistics. This figure shows the
distribution for the test statistics for X → Y for increasing length of the time series, first with no long
memory d = 0, then with strong long memory d = 0.45.

However the explanation lies in how the parameter estimation works, illustrated in the Figure 8.11.

The model is strongly misspecified and several properties of the data are not well described by the model.

But lets remember that the long memory component has an infinite sum moving average representation,

and the moving average model has an autoregressive representation. So the primary effect of increasing

moving average part and the long memory part is the increase of parameters responsible for autoregression.
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Figure 8.11: How estimation of the autoregressive aY parameter “compensates” long memory or moving
average effects. This figure shows the estimates of âY for different values of d,MA, σ2

Y and for different
experiments, all of length 1000. It can be seen that the estimates strongly increase with increasing d and
MA, and that this pattern appears for all values of the noise variance.

8.1.3 Warped Gaussian Process Models

This section presents results of the experiments that use the GH skew-t distribution. We establish the

quality of the test by assessing the power of the test (1-rate of type II error), and how it reflects changes in

parameters, sample size, and how it reacts to tail dependence. It is expected that the power of the test will

increase with the increasing sample size, and that is what we observe. We also observe that existence of
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heavier tails affects the ability to recognise causal effect, and that therefore using the Gaussian Process

model that does not take tails to account makes it impossible to detect causality.

In the Figure 8.12 we show the effect of increasing length of the time series, and how it is affected

by changing skewness parameter. As expected, the power of the test increases whenever the length of

the time series increases, regardless of other parameters. Skewness parameter has a very pronounced

effect: when the skewness parameter moves away from zero, it translates into widening of the test

statistic distribution and the need to have larger samples, with the direction of skewness not making much

difference. Figure 8.12 shows that only the skewness parameter corresponding to the Y time series makes

a difference, because the parameter γ1 does not have any effect. This is in line with the property of GH

distributions discussed in 3.3.3, stating that if X ∼ GH(λ, χ, ψ, µ,Σ, γ), then the marginal distribution of

Xi is: Xi ∼ GH(λ, χ, ψ, µi,Σii, γi) with γ =
[
γ1, γ2

]T being the skewness parameter [McNeil et al., 2015].
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Figure 8.12: Boxplots showing how the sample size affects distributions of the test statistics for the GH
skew-t distribution, for different skewness parameters for the X → Y direction. The other parameters
are: strength of causality bY = 0.7, parameter of autoregression aY = 0.3, kernel parameters: la = lb =
e−3, σ2

f = e−10, degrees of freedom ν = 5.

In the Figure 8.13 we analyse the effect of changing the degrees of freedom parameter. For time

series of length 100 we change both the skewness parameter γ2 ∈ {−1,−0.6, 0, 0.6, 1} and the shape

parameter ν ∈ {1, 3, 10, 20}. Both parameters have a considerable effect. It is worth noting, however, that

the covariance for the GH skew-t distribution exists only for ν > 4.
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Figure 8.13: Boxplots showing how the sample size affects distributions of the test statistics for the GH
skew-t distribution, for skewness parameters γ2 ∈ {−1,−0.6, 0, 0.6, 1}, and for different ν ∈ {1, 3, 10, 20}
parameters. The other parameters are: strength of causality bY = 0.7, parameter of autoregression
aY = 0.3, kernel parameters: la = lb = e−3, σ2

f = e−10. The length of the time series is 100 for each of the
samples.

To better illustrate the effect of the parameters ν, γ on the tail dependence, the Figure 8.14 shows

numerically estimated upper and lower tails of the GH skew-t distribution (for the estimation method, see

Ames et al [Ames et al., 2015]). The results that we are numerically obtaining vary from the theoretical in
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that a considerable lower and upper tail dependence is observed not only when both skewness parameters

are negative, but also when they are both positive. However, the numerical estimation of the tail

dependence coefficient is, in practice, estimating less extreme dependence.

ll, ν=3

-1 0 1 
γ

2

-1

0 

1 

γ
1

lu, ν=3

-1 0 1 
γ

2

-1

0 

1 

γ
1

ll, ν=5

-1 0 1 
γ

2

-1

0 

1 
γ

1

lu, ν=5

-1 0 1 
γ

2

-1

0 

1 

γ
1

ll, ν=10

-1 0 1 
γ

2

-1

0 

1 

γ
1

lu, ν=10

-1 0 1 
γ

2

-1

0 

1 
γ

1

ll, ν=50

-1 0 1 
γ

2

-1

0 

1 

γ
1

0

0.5

1

lu, ν=50

-1 0 1 
γ

2

-1

0 

1 

γ
1

0

0.5

1

Figure 8.14: Numerically estimated upper and lower tail with a GH skew-t distribution. Causality exists
in the X → Y direction. The parameters are: strength of causality bY = 0.7, parameter of autoregression
aY = 0.3, kernel parameters: la = lb = e−3, σ2

f = e−10, degrees of freedom ν = 3, 5, 10, 50, the skewness
parameter is ρ = {−1,−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8, 1}.

8.1.4 Experiments with the “Alternative” Skew-t Distribution

In the case of the alternative skew-t distribution, both the skewness parameter and the degrees of freedom

parameters will have different effect on the underlying Gaussian Process, as this enters the transformation

after its marginals were standardised. This is clearly visible when we use skewness parameters similar to

the ones from the previous example, the effect of the gamma parameter is not what we would intuitively

expect – see Figure 8.15. The distribution for zero γ is actually marginally worse than for other non-zero

skewness parameters.
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Figure 8.15: Boxplots showing how the sample size affects distributions of the test statistics, for different
skewness parameters for the X → Y direction, for the alternative skew-t distribution. The other parameters
are: strength of causality bY = 0.7, parameter of autoregression aY = 0.3, kernel parameters: la = lb =
e−3, σ2

f = e−10, degrees of freedom ν = 5.

Dividing by the standard deviations has a complex effect. Most importantly, it scales the variable

compared to the mean vector, and in the case of a Matern kernel, the scaling is inversely proportional

to the standard deviation of the noise. We know that (symmetrical) dependence of copula is invariant
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under affine transformation, but the ability to detect causality does seem to be affected. Unlike in the GH

skew-t distribution, in the alternative skew-t distribution the skewness parameter is not the sole lever for

changing the amount of skewness in the model. Figure 8.16 shows an effect of choosing big skewness

parameters: −10,−3, 3, 10. We can see now the expected effect of skewness: an increase in skewness

parameter worsening the test statistics.
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Figure 8.16: Boxplots showing how the sample size affects distributions of the test statistics, for different
skewness parameters for the X → Y direction, for the alternative skew-t distribution. The other parameters
are: strength of causality bY = 0.7, parameter of autoregression aY = 0.3, kernel parameters: la = lb =
e−3, σ2

f = e−10. Data length equals 200.

We also note that γ1 could participate in the dynamics of the variable Ỹt, if the two variables Xt,Yt

were correlated, but in our models we were using the assumption of no correlation, so again γ1 does not

influence the test statistics for the X → Y .

Compared to the GH skew-t distribution, the alternative skew-t shows much lower tail dependence

with comparable range of γ parameter - which is in line with the previous observations. We recall here

that one of the arguments for studying the “alternative” skew-t model was the fact that the theoretical tail

dependence coefficient for the skew-t distribution of the GH type has trivial values. But analysing the

empirical tail dependence coefficients we see, that this might not be a problem in practical applications.

Ultimately, it is the role of the researcher/analyst to decide which features of the data are most important

to be reflected by the model.
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Figure 8.17: Numerically estimated upper and lower tail with an alternative skew-t distribution. Causality
exists in the X → Y direction. The parameters are: strength of causality bY = 0.7, parameter of
autoregression aY = 0.3, kernel parameters: la = lb = e−3, σ2

f = e−10, degrees of freedom ν = 3, 5, 10, 50,
the skewness parameter is ρ = {−1,−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8, 1}.

When comparing the empirical and theoretical lower tails for the alternative skew-t distribution

(Figures 8.17 and 8.18) we see that the the pattern is similar to the one obtained for GH skew-t distribution,

although the theoretical has higher values.
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Figure 8.18: Theoretical lower tail for an alternative skew-t distribution. Degrees of freedom ν = 5, 10, 50,
correlation ρ = −0.5, 0, 0.5, the skewness parameter is ρ = {−1,−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8, 1}
Results for ν = 100 omitted from the figure, as they were all zero.
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8.2 Comparison to Other Models

This section is provided to substantiate some of the claims we make about how our methods compare to

existing methods. We provide three case studies, two of them compare our method to benchmark methods

for causality: Granger causality and transfer entropy. The third case study compares our method to using

generalised likelihood ratio test on a well specified econometric model (ARFIMA, example time series

model class 3, Equations: 3.55 - 3.57). What we show in our experiments is that our model has good

results for all types of data, but in all cases, except for applying linear Granger causality test to linear

causality, our method has superior asymptotic properties, as it reaches good power of the test for small

samples.

Please note that in these case studies we concentrate on the ability to detect causality, and not on the

speed of the algorithm.

Case Study 1: Granger Causality Granger causality can be seen as the original, but also the simplest

method of assessing causality. For Gaussian noise and linear causal relationship, Granger causality is

arguably the best method, given that the test statistics have known asymptotic distributions, and estimators

have excellent numerical properties. What is more, Granger causality can perform well for a range of data

that departs from the model assumptions.

In this, and in the next case study, we will use four data sets, designed to show the effect of the

departure from the assumption of data with linear dependence, stationary distributions, and Gaussian

noise (as introduced earlier in the Equations 3.49), replicated below with slight modifications:

Xt = aXXt−1 + ϵX , (8.1)

Yt = aYYt−1 + bY Xt−1 + ϵY ,

Zt = aZZt−1 + bZY2
t−1 + ϵZ , ϵX , ϵY , ϵZ ∼ i.i.d white noise,

The data model from Equations 8.1 exhibits two causal relationships. The causal relationship X → Y is

– if we assume Gaussian white noise – of the type that Granger causality has been designed to model:

linear, stationary, with Gaussian distributions. We will call this a base case (set one), and we will consider

three other cases, each presenting a departure from one of those three properties. The causal relationship

Y → Z is not linear, and it forms the set 2. We will also consider what happens to the ability to detect

relationship X → Y , if we changed Gaussian noise to t-student noise (set 3), and if we changed stationary

to non-stationary marginal distributions (set 4); in this case we use polynomial covariance, please refer to

the Table 3.1). These four set and their properties are summarised in the Table 8.1.
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set nr. 1 2 3 4

direction X → Y Y → Z X → Y X → Y

linearity linear non-linear (square) linear linear

noise Gaussian Gaussian t-student, 5 df Gaussian

stationarity stationary stationary stationary non-stationary

Table 8.1: Data used for Case Study 2 and 3. Causal relationship number 1 is the base case: linear, with
stationary marginal distributions and Gaussian noise. The three other causal relationships show three
types of departure from the base case.

We present the results for the Granger causality method, using the GCCA toolbox. The test statistic

used in the toolbox is the one that has been introduced by [Geweke, 1982], as in the Equation 1.8. The

corresponding test used for testing the null hypothesis of lack of causality is the F-test. The results

are presented graphically in the Figures 8.19 - 8.20. The results for using Grangercausality can be
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Figure 8.19: ROC curves for the data sets 1-4 from the table, calculated with (linear) Granger causality,
tested with the GCCA toolbox.

summarised by two main observation. Firstly, for strong linear causality relationship, using the linear

Granger causality test is very robust and practical even if we do not observe Gaussian noise or stationary

covariance. Secondly, for non-linear causality, the linear Grange causality method behaves no better than

a random guess, regardless of the data size. How does that compare to our method? The figure 8.20

shows that for strong, linear causality, our method is not as robust as linear Granger causality, and requires

a bigger sample. However, our method can successfully detect non-linear causality. For the data with

t-distributed noise, we present results for the test statistic calculated by assuming the correctly specified

model, and using an approximate method. Assuming a misspecified model with Gaussian likelihood, and

then using the exact method to optimise parameters bring comparable results in this case.
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Figure 8.20: ROC curves for the data sets 1-4 from the table, tested with our method.
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Case Study 2: Transfer Entropy This is a continuation of the Case Study number 1. We have used

the same data structures as described in the Equations 8.1 together with the Table 8.1. The results are

graphically shown in the Figure 8.21.

Transfer entropy is a popular method used as a non-linear extension of the linear Granger causality

(for Gaussian distributions these two methods are equivalent). It is able to consider wider range of

data types and relationships, however it is much more difficult to estimate. Compared to our method,

transfer entropy requires much larger data samples, and at the same time it is not be able to deal with

model structures like long memory, non-stationarity, etc. Comparing Figures 8.19 – 8.21 shows inferior

performance of transfer entropy to our method in each of the four cases, and inferior to (linear) Granger

causality in three cases. Transfer entropy is better than Granger causality in recognising non-linear

causality, however only for the sample of size 500 is transfer entropy performing recognisably better than

a random choice.

What is not shown in the results, but for the sake of fairness needs to be mentioned, is the fact that

transfer entropy is much faster than our method, with the current implementation.
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Figure 8.21: ROC curves for the data sets 1-4 from the table, calculated with transfer entropy based on
the binning algorithm.

Case Study 3: ARFIMA model The data that was used for this example has been generated according to

an ARFIMA (1,d,1) model with external regressors, Equations 3.55 - 3.57, can be represented in a form

emphasising the autoregressive part (this is possible because we restricted the choice of d to (0, 0.5)):

Xt = aXXt−1 + ϵX

Yt = aYYt−1 + bY Xt−1 + ϵ
∗
y,t, ϵ∗Y,t = (1 − B)−dΘY (B)ϵY,t

Zt = aZZt−1 + bZYq
t−1 + ϵ

∗
z,t, ϵ∗Z,t = (1 − B)−dΘZ(B)ϵZ,t. (8.2)

We estimate data using modified Matlab code ARFIMA-SIM by Fatichi [2009]. For fitting the

ARFIMA with external regressors we use the rugarch R library. We present results for nine parameter

settings, which are listed in the Table 8.2 .
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Set nr aY bY MA d

1 0 0 0 0 pure noise

2 0.3 0 0 0 ARFIMA(1,0,0)

3 0.3 0.7 0 0 ARFIMA(1,0,0) and causality

4 0 0 0.9 0 ARFIMA(0,0,1)

5 0 0 0 0.49 ARFIMA(0,d,0)

6 0.3 0.7 0 0.25 ARFIMA(1,d,0) and causality

7 0.3 0.7 0.9 0 ARFIMA(1,0,1) and causality

8 0.3 0.7 0.9 0.25 ARFIMA(1,d,1) and causality

9 0.3 0.7 0.9 0.49 ARFIMA(1,d,1) and causality

Table 8.2: Nine sets of parameters for the ARFIMA model, that were used in our analysis, in the Case
Study 3.

We present the results of using our causality method to estimate causality in Figure 8.22, while the

results of using a fully specified likelihood of the ARFIMA model is shown in the Figure 8.23.
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Figure 8.22: Distributions of test statistic for GPC method, shown for three lengths of the time series, and
for 9 data sets.

Our method is operating on the GP model representation, which is clearly misspecified. However,

that does not prevent our model from detecting causality even for the smallest samples of length 20. That

is not the case for using the well specified ARFIMA model and estimated likelihood – in this case a very

large sample is needed for the estimation to even be successful – data of length 1000 is needed to be able

to present results for all 9 data sets.
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Figure 8.23: Distributions of test statistic for the AFRIMA likelihood method, shown for two lengths of
the time series, and for 9 data sets.

8.3 Warped Gaussian Process Models - Causality vs Tail Depen-

dence

8.3.1 Tail ordered warping

In this paragraph we present the finite sample effect of warping Gaussian processes when applying the

asymptotic distribution of the test-statistic to make decisions on existence of causality. If we use the

median power of the test for the finite sample as an estimator of the power of the test, we can observe

(Figure 8.24) that it is a decreasing function of the tail ordering for all cases, except of the shortest time

series presented. As we will also observe later, for the shortest time series, the number of observation

might be too short for the heavy tail to be noticeable. We do not show it in the Figure, but the effect on

the power of the tail is further amplified by skewness.
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Figure 8.24: Effect of the shape parameter ν on the recognition of causality in the symmetric case. The
upper figure shows the effect on distribution of the power of the test with increasing length of the time
series for ν = 1, the lower chart shows only medians, but for different tails ν = 1, 2, 4, 7, 10, 15, 20.

8.3.2 Sensitivity to misspecification in the mean

We present the effect on performance of incorrectly specifying the mean function for the direction

Y → X, by adding the causal term: bXYt−1 to the mean µX,t (compare: Equation 3.51). We set bX ∈

{−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3}. We present results for skewed {Yt} and symmetrical {Xt}, by setting

γ = [0,−1], for tails close to normal with ν = 20, or heavier than normal, with ν = 5, and for data lengths
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of 20 and 100. We conclude that the effect of misspecification in the mean is amplified by skewness (the

effect is different for γX and γY ) and to a smaller degree by heavy tails, nevertheless, it starts to disappear

for time series of length 200 and longer (not shown). The decrease in performance resulting from heavier

tails is bigger with longer time series, which is to be expected, as for short time series rare events might

not be observed. For short time series (Figure 8.25) the effect of skewing the {Yt} time series is more

prominent – the performance decrease nearly monotonically with increasing absolute deviation in the bX ,

but for longer time series (Figure 8.26) that effect is offset by lack of skewness in {Xt}. This agrees with

the property that for exact parameters γX does not influence LX̃→Ỹ |Z (Sections 3.3.4.2 and 3.3.5).
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Figure 8.25: Sensitivity to misspecification in µX,t. Data length = 20, Skewness = [0,−1].
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Figure 8.26: Sensitivity to misspecification in µX,t. Data length = 100, Skewness = [0,−1].

8.3.3 Tail dependence decreases power of the test

The effect of the changing skewness parameter γY on the recognition of causality, as measured by the

power of the test, depends on the absolute value of γY and diminishes with the size of the sample. As

mentioned, the power of the test does not depend on the value of γX LX̃→Ỹ |Z (Section 3.3.4.2). is shown in

the Figure 8.24. The larger the skewness (regardless of the sign), the lower average power of the test, and

wider range of values the power of the test take. This effect diminishes with the size of the sample.

The effect of the tail dependence is more complicated. While the expectation is that the larger the

skewness, the less likely we should be to detect causality, that is not always the case, because unlike

causality, dependence coefficient is affected by γX . In the Figure 8.27, we present the effect of numerically

estimated λu (estimation from [Ames et al., 2015]) on the power of the test, with γX = 0. The distribution

of the power of the test is shown as corresponding to the tail dependence coefficient binned in the

intervals [0, 0.1] , · · · , (0.9, 1]. The plots present results for data lengths 50, 100, 200, 1000 and for a) 100
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Figure 8.27: The effect of λu on the power of the test, numerically estimated λu is binned in intervals
[0, 0.1] , (0.1, 0.2] , · · · , (0.9, 1]. Analytical value of the λu is in the range [0, 0.1).

realisations, ν = 20, b) 1000 realisations, ν = 5. Figure 8.27 shows that the increasing tail dependence

indeed makes the causality more difficult to detect. The numerical estimation of λu converges very slowly,

but for for 1000 realisations is closer to the analytical value, calculated according to the Theorem 13,

which belongs to [0, 0.1).



Chapter 9

Real Data

“ Notice that this approach again changes the meaning
of “solve.” First that word meant “find a formula.”
Then its meaning changed to “find approximate num-
bers.” Finally, it has in effect become “tell me what
the solutions look like.” ”
Ian Stewart, Nature’s Number: The Unreal Reality of
Mathematics

This chapter demonstrates how our framework for modelling statistical causality can be applied

in practice to help to understand the characteristics of real data. We benefit from the flexibility of the

framework that allows to test for statistical causality under different model assumptions, as it aid with the

data exploration. We show the effect of inclusion of a range of statistical properties on recognition of

causality, and we provide interpretation of the results.

We apply our framework to commodity futures data, and show how understanding of causal relations

can be a part of to analysing risk factors that investors should consider when building a portfolio of oil

futures, currencies and physicals.

9.1 Commodity Futures Data
In this section we apply the testing procedures to analyze commodity futures data.

In our analysis we use the following data: 1 and 36 month expiry oil futures contracts, obtained from

futures curves built on the basis of West Texas Intermediate (WTI) Crude oil futures prices traded on the

New York Mercantile Exchange, as described by Ames et al. [2016]. The affect of the currency level,

captured by the US Dollar Index DXY, is constructed as index of USD relative to EUR, JPY, GBP, CAD,

SEK, CHF. Thirdly, we also use a widely considered proxy for convenience yield based on a component

related to transportation expense, given by the cost of freighting and short term storage, measured by the

Baltic Dry Index (BDI), see Ames et al. [2016]. There is a stochastic functional relationship between

commodity futures contracts of different maturities (term structure) based on: spot price, convenience
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Figure 9.1: 1 and 36 month oil futures (WTI), Baltic Dry Index (BDI), Dollar index (DXY), all standard-
ised.

yield, interest rate, and dollar value. Convenience yield is very hard to model, but can be captured to some

extent by BDI, and the interest rate can be proxied by the time value of money expressed by the futures

contracts. Hence the choice of both long and short dated futures contracts for our analysis. The Figure

9.1 shows the four covariates from 17th Jan 1990 to 23rd Dec 2015. For literature studying classical

relationships between these data, we refer to: Ames et al. [2016], Bakshi et al. [2010] and Dempster et al.

[2012].

9.1.1 Interpreting causal relationships

The study performed here uses causality testing to demonstrate the risk factors that investors should

consider in their decision process. It also shows how speculators in currency markets and futures markets

have a propensity to respond to information observed at different lags and the time it takes them to

re-adjust the expectations for futures market hedging or speculation in light of this information.

Figures 9.2 - 9.5 present the changing significance of causal relationships between the dates 17th

Jan 1990 to 23rd Dec 2015. The four pairs that we look at, and the abbreviations that we will use are

as follows: 1 month oil futures (1m WTI) and freighting/ storage index (BDI), 36 months oil futures

(36m WTI) and freighting/ storage index, 1 month oil futures and dollar index (DXY), 36 months oil

futures and dollar index. We are presenting causal reactions at two lags: one week, which can be seen

as instantaneous, and eight weeks. Figures 9.2 - 9.5 show charts smoothed with cubic spline smoothing,

which makes it easier to observe the main trends, in particular in the case of lags of 8 weeks.

Markets learn from the news and facilitate them into the price, according to the efficient market

hypothesis 1, to which we subscribe (Malkiel and Fama [1970], Fama and French [1988], Malkiel [1973],

Campbell and Shiller [1988], Campbell et al. [1997], Malkiel [2003]). We want to learn which variables

1Efficient market can be defined as “ [a market that] (...) do not allow investors to earn above-average returns without accepting
above-average risks. (...) Markets can be efficient in this sense even if they sometimes make errors in valuation”, Malkiel [2003].
Market efficiency, as it is understood nowadays, is the belief that new information is reflected in price quickly and accurately, but
not necessarily instantaneously. See Malkiel [2003] and sources therein.
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Figure 9.2: Evolution of the causal influence: 1-pvalues of the test statistic for 1 months WTI and BDI,
with 1 lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline
smoothing. Bottom subplot presents prices of 1 month oil futures contracts and historical values of BDI
index.

have effect on price formation, and at what time horizon. We also want to relate to the fact that the three

different classes of investments (oil futures, currencies, physicals) have different investor profiles, and

thus we expect difference in the type and speed of reaction. The last question that interests us, is whether

the results confirm the intuition that regimes affect the direction and significance of causal influence.

The interplay between WTI oil futures and the cost of freighting (BDI). Market participants investing

in freighting are likely to be interested in the ownership of the physical asset, therefore BDI can be used

as a proxy for convenience yield. It is expected that the WTI oil futures will not have instantaneous effect

on the BDI, which is confirmed by our analysis showing that the causal direction from WTI to BDI is

generally not statistically significant at 1 lag (Figures 9.2 - 9.3, top subplots).

The effect to which the WTI futures incorporate the BDI movements varies across maturities. Short

contracts have not been reacting to BDI changes in 1 week, with the exception of 2008/2009, which was a

reaction to crisis. Similar response can be seen for longer maturities, however for longer maturities we

observe the BDI→36m WTI to be significant through late nineties.

At 8 lags, we observe that the causal effects are significant in both directions, majority of the time.

This can be seen as markets being able to absorb the information and adjust the expectation. For the times

when this relationship breaks, investors use other sources, to inform their long term perception of risk and

expectations: for example as a result of the 2008 crisis investors across many markets were decreasing

their exposure to risk. In late nineties, as well as in 2014, we can observe a divergence of reactions of BDI

to short and long term oil futures at 8 week lags: this could be seen as investors using outside information

to decide on their long term expectations: for example about advancement in methodology or legislation

pertaining renewable energy.
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Figure 9.3: Evolution of the causal influence: 1-pvalues of the test statistic for 36 months WTI and BDI,
with 1 lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline
smoothing. Bottom subplot presents prices of 1 month oil futures contracts and historical values of BDI
index.

The interplay between WTI oil futures and the dollar index (DXY). The dollar index is a weighted

geometric mean of the dollar’s value relative to a basket of foreign currencies: Euro (EUR) 57.6%

weight, Japanese yen (JPY) 13.6% weight, Pound sterling (GBP) 11.9% weight, Canadian dollar (CAD)

9.1% weight, Swedish krona (SEK) 4.2% weight, Swiss franc (CHF) 3.6% weight. Canadian dollar is

considered a commodity currency, while Japanese yen is particularly sensitive to changes in oil prices

due to Japan importing almost all of its oil. Therefore market expectations towards dollar index will

incorporate to a large degree the expectations that arise from the oil market.

Following the results from the Figure 9.5, there is evidence to suggest that DXY drives longer dated

futures more strongly. At the same time, when comparing top charts from Figures 9.5 and 9.3, we notice

similarity in causal pattern between DXY→ 36m WTI and BDI→ 36m WTI, in particular during the

nineties. This could suggest another direct or indirect factor, common for the two causal direction, for

example general attitude to risk.

We look at Markov Switching Model, to analyse if DXY and BDI will have similar patterns of states

for volatility, when explained with VIX. We use the following models:

Dt = α1,S t + α2Vt + ϵ
D
t ϵD

t ∼ N(0, σ2
D,S t

), (9.1)

Bt = β1,S ′t + β2Vt + ϵ
B
t ϵB

t ∼ N(0, σ2
B,S ′t

), (9.2)

where: S t and S ′t , which we assume to only take values 1 and 2, are the states at time t for DXY and

BDI respectively, σ2
D,S t

, σ2
B,S ′t

are the variances of the innovation at state S t, S ′t , α1,S t , β1,S ′t are the mean

coefficients at state S t, S ′t , and ϵD
t , ϵ

B
t are innovations.
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Figure 9.4: Evolution of the causal influence: 1-pvalues of the test statistic for 1 months WTI and DXY,
with 1 lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline
smoothing. Bottom subplot presents prices of 1 month oil futures contracts and historical values of dollar
index.
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Figure 9.5: Evolution of the causal influence: 1-pvalues of the test statistic for 36 months WTI and DXY,
with 1 lags (top subplot) and 8 lags (middle subplot), rolling window of 104 weeks and cubic spline
smoothing. Bottom subplot presents prices of 1 month oil futures contracts and historical values of dollar
index.
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Figure 9.6: Conditional standard deviation of error of the regime switching model explaining DXY or
BDI with constant and VIX, scaled to [0, 1], compared to the 1-pvalue of the BDI→ 36m WTI and DXY
→ 36m WTI, for 1 lag.

Figure 9.6 presents the conditional standard deviation of error term for regime switching models

from Equations 9.1 - 9.2, scaled for clarity to [0, 1], and superimposed on the power of the tests of BDI→

36m WTI and DXY→ 36m WTI, for 1 lag. First of all, for BDI it is the decreased conditional volatility

that coincides with higher evidence of causality, while for DXY it is the increased volatility. However

the persistence of high evidence for causality from 1996 to 2002 for both DXY→ 36m WTI and BDI

→ 36m WTI, coincides with the persistence of one state for conditional standard deviation of respective

covariates over that period of time. This suggests that the perception of market risk as seen via VIX is a

common driving factor for during the nineties, a factor which can supersede other dependencies.

9.1.2 Influence of the absolute value of the oil prices on the causal structure.

During the times when world oil prices are seen as high, it is more reasonable to expect investments

in oil infrastructure as well as storage and transport. Therefore, we would expect that the absolute

level of the oil price affects the behaviour (direction, strength, persistence) of causality. To test this, we

compare the causal structure, as well as the fitted models, during the period of low prices: 17.01.1990

– 11.08.1999 (bellow $40), and period of high prices: 26.05.2004 – 11.03.2009 (above $90). We will

be interested in the relative difference between the fitted mean values, as well as the relative difference

between hyperparameters (coefficients of the mean): autoregressive and causal. For that we will be using

two sample mean test. Please note, that while we are particularly interested in the change of regime in

the fitted models, we also check the regime change of the causal test statistics – this is because we were

earlier making a point of being able to detect causality even in misspecified models!

Lets assume that for each of the pairs: 1 month oil futures and freighting/ storage index, 36 months
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Figure 9.7: Mean function estimations for each of the pairs of time series. The two colours represent
the two different segments: 17.01.1990 – 11.08.1999 (oil prices bellow $40), and period of high prices:
26.05.2004 – 11.03.2009 (oil prices above $90)

oil futures and freighting/ storage index, 1 month oil futures and dollar index, 36 months oil futures and

dollar index, we take Xt to denote one of the time series from the pair, and Yt - the other:

Xt = fX([Xt−1,Yt−1]) fX ∼ GP (µX , kX)

Yt = fY ([Xt−1,Yt−1]) fY ∼ GP (µY , kY ) ,

with the usual notation. We denote MX
t and MY

t as time series of values of the mean functions fitted by

the models used for causality testing on rolling windows. Figure 9.7 shows the two segments of the fitted

means: segment corresponding to prices below $40 and above $90. The mean function estimations are

calculated on moving windows, with one mean function estimation equal to a mean of fitted values for the

respective window.

For each of the pairs, we performed a two means test:

H0 : mean(MX
01.90−08.99) = mean(MY

05.04−03.09)

H1 : mean(MX
01.90−08.99) , mean(MY

05.04−03.09)

We have run the popular student-t distribution two means test, as well as a two means test using sieve

bootstrap to correct for serial dependence. The results are unanimously rejecting the hypotheses of equal

means.
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Figure 9.8: Mean function estimations for each of the pairs of time series, shown only for the time points
for which the hypothesis of lack of 8 week lag causality has been rejected at the level of α = 5%. The two
colours represent the two different segments: 17.01.1990 – 11.08.1999 (oil prices bellow $40), and period
of high prices: 26.05.2004 – 11.03.2009 (oil prices above $90)

9.2 Effect of model assumptions on recognition and explanation of

causality.

In this section we look at the commodity data and results presented earlier from a different perspective.

We use a series of models with different model assumptions as an exploratory tool to help us understand

better the various structures and statistical properties of the data. We want to understand better causal

effects in the mean, covariance, and both, and how are they affected by: serial correlation, skewness,

kurtosis, and tail dependence.

We use the models built in the previous section as a reference point, and we start with a comparison

to a linear regression model. For the purpose of clarity and compactness we focus our attention on the

causal relationships between the 1 month future contracts (1m WTI), and Baltic Dry Index (BDI). To

ensure comparability, we continue using the same settings: weekly data, lags 1 and 8, window length of

104, Matern covariance with 3 degrees of freedom. The code we use for Granger causality is based on the

GCCA toolbox Geweke [1982].

As we have already seen on the synthetic examples, Section 8.2, using linear regression / Granger

causality has a comparably high, or higher power of the test (and ROC ratio) for data with linear causal

structure, but it can perform no better than a random classifier when nonlinear causality is present.

Comparing the result of testing for causality with linear regression (Figure 9.9) with our ARD-GP model

framework (Figure 9.10) we see a difference in confidence for some, but not all, data windows. We

conjecture, that linear regression model is overconfident due to not being able to recognise nonlinear

effects, in particular to remove excess serial correlation that would subsequently invalidate the assumptions
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of the hypothesis test resulting in excess kurtosis in the test statistic distribution and overly confident

decision outcomes as a result.
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Figure 9.9: Evolution of the causal influence tested with the linear regression (GCCA toolbox): 1-pvalues
of the test statistic for 1 months WTI and BDI, with 1 lags (top subplot) and 8 lags (bottom subplot),
rolling window of 104 weeks and cubic spline smoothing.
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Figure 9.10: Evolution of the causal influence tested with the framework based on GPs: 1-pvalues of the
test statistic for 1 months WTI and BDI, with 1 lags (top subplot) and 8 lags (bottom subplot), rolling
window of 104 weeks and cubic spline smoothing.

To argue our interpretation of the difference in the model confidence, we begin by analysing residuals

of the linear regression fits. Earlier, we came to a conclusion that the lag of one week was not generally

sufficient for the information to be incorporated, which is the interpretation from 1-pvalues of the GPC

model rarely reaching close to 1 for either direction. But the result from the GCCA model advocate for

rejection of non-causality throughout much of the data history. In Figures 9.9 and 9.10 we marked three

specific point in time to show three scenarios where either one, or both of the directions show a high

confidence for the linear model, that we observe with our framework. These are summarised in Table 9.1.

Table 9.1: Direction of causality implied for lag 1 by GCCA and GCP models, for three windows
highlighted in Figures 9.9 and 9.10.

window GCCA GCP
27 Jan 1998 – 24 Jun 1998 1mWT I → BDI
30 Nov 2001 – 1 May 2002 BDI → 1mWT I
22 Aug 2008 – 21 Jan 2009 1mWT I → BDI, BDI → 1mWT I BDI → 1mWT I

Figure 9.11 presents a series Quantile-Quantile (QQ) plots of empirical residual quantiles versus
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Figure 9.11: QQ plots of the residuals for the linear regression models for testing causality, for data
windows ending on: data windows ending on 24th January 1998, 1st May 2002, and 21st January 2009
(rows). Each of the four columns of qq plots represent a combination of lag and direction of the causality.

normal quantiles of the residuals for the linear regression models for testing causality, and relate to the

three dates marked on the evolution of causal influence in Figure 9.10. Linear regression for the window

ending on 24th June 1998 (first row in Figure 9.11), strongly suggests a causal direction from 1 month

futures contract to the Baltic Dry Index for 1 lag, a relationship which our framework strongly rejects.

But when we look at the residuals of the linear model, we see evidence of serial correlation and skewness,

and this is arguably stronger than for the opposite direction for which linear regression model does not

support the existence of causality. For window ending on 1st May 2002, linear regression results with

residuals that exhibit very strong leptokurtic tails in both directions – and again our framework does not

support the hypothesis of lack of causality here. Finally for the window ending on 21st January 2009

linear regression again does not sufficiently account for serial correlation, but in this case our framework

rejects the hypothesis of lack of causality for the direction of BDI to 1 month WTI.

Our flexible causal framework allows to further the analysis with the step-wise correction for various

nonlinear effect, as summarised in Table 9.2.

Our conjecture of serial correlation in residuals leading to overconfidence of the linear model is

supported by results that correct for such serial correlation. Figure 9.12 presents the result of testing for

causality with the model denotes as M2 in Table 9.2: GP framework that a) incorporates linear trend from

linear regression, and b) does not incorporate causal structure in the covariance. The GP framework from
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Table 9.2: Models designed for step-wise correction for various nonlinear effects.

no. description properties
GCCA linear model (Granger causality) linear causality
M2 GP with: linear trend from GCCA, corrects for: serial correlation only

no causality in covariance
M3 GP with: linear trend from GCCA, corrects for: serial correlation,

covariance function allowing for causality causality in covariance
GCP GP with: linear mean function, corrects for: serial correlation,

covariance function allows for causality causality in covariance

Figure 9.13, named M3 in the Table 9.2, incorporates a) linear trend from the linear regression, b) allows

for causality in covariance. Correcting for serial correlation removes some of the overconfidence of the

linear regression model, which is then further reduced by also correcting for potential dependence in the

covariance. To be more precise, allowing for causality in covariance decreases the test statistic (1-pvalue)

in all but one cases, the direction 1m WTI→ BDI for the 22 Aug 2008 – 21 Jan 2009 which suggests

causal effect which at lag 1 could be better captured by the causality in covariance than causality in the

mean.

We conclude that while using linear regression models for testing causality can have higher power,

this could be misleading, as the model could be overconfident due to incorrect statistical assumptions.

Using GPs can not only help with these specific structural properties that we mentioned: serial correlation

and causality in covariance, but it goes even further, by allowing to test for causality under a range of

model assumptions without penalising model misspecification.

9.2.1 Skewness, kurtosis and tail dependence.

It is natural to ask, what else can we discover about our data, if we are able to control for additional

statistical structures? Looking at the partial autocorelation of the GPC models (Figure 9.19) we clearly

see evidence of additional stochastic structures present for at least some of the windows, and that structure

is more present when analysing the lag 8. To figure out which properties of the data might be of interest,

we begin by looking at skewness, kurtosis, empirical lower and upper tail estimates, as well as lower

and upper extremograms. The values of skewness, kurtosis, empirical lower and upper tail estimates are

presented in two forms: in Table 9.3 for the whole history, as well as for the three previously identified

time windows, and in Figures 9.14 - 9.15 for the two year moving windows.

As is common in financial data, we observe some type of departure from normality throughout the

history. The most apparent effect is the skewness, which for BDI increases and decreases with a cyclical

pattern, while the excess kurtosis appears infrequently. When analysing the properties of returns of the

time series instead, however, we can see that excess kurtosis is the norm, which suggests that we might

particularly benefit from using the warped GP framework for returns rather than for the levels.

In terms of properties related to symmetrical dependence, the data expresses empirical tail depen-
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Figure 9.12: Evolution of the causal influence tested with the model M2, framework based on GPs with
trend from linear regression and no causality in covariance: 1-pvalues of the test statistic for 1 months
WTI and BDI, with 1 lags (top subplot) and 8 lags (bottom subplot), rolling window of 104 weeks and
cubic spline smoothing.
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Figure 9.13: Evolution of the causal influence tested with the model M3, framework based on GPs with
trend from linear regression and allowing for causality in covariance: 1-pvalues of the test statistic for
1 months WTI and BDI, with 1 lags (top subplot) and 8 lags (bottom subplot), rolling window of 104
weeks and cubic spline smoothing.

Table 9.3: Statistical properties of the data that refer to the windows ending on 24 Jun 1998, 1 May 2002,
and 21 Jan 2009.

27.01.98 - 30.11.01 - 22.08.08 - 17.01.90 -
data property - 24.06.98 - 01.05.02 - 21.01.09 - 23.12.15
WTI 1m skewness -0.17 -0.24 0.43 0.76
BDI skewness -0.21 -0.39 -0.38 2.56
WTI 1m kurtosis 2.41 2.53 2.23 2.24
BDI kurtosis 1.97 1.51 2.44 10.19

empirical upper tail 0.37 0.61 0.28 0.17
empirical lower tail 0.54 0.59 0.64 0.09

WTI 1m, returns skewness 0.21 -0.8 -0.02 -0.22
BDI, returns skewness 0.73 -0.45 -0.62 -1.14
WTI 1m, returns kurtosis 2.95 4.42 3.3 8
BDI, returns kurtosis 4.56 3.62 5.01 23.36

empirical upper tail 0.08 0 0.12 0.11
empirical lower tail 0 0.02 0.32 0.15
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dence intermittently, with lower and upper tail dependence following similar pattern, especially for the

levels. However, when we look at the extremograms in Figures 9.16 and 9.17, what we can observe is a

strikingly asymmetrical effect, with high level of lower extremogram, which can be interpreted as high

correlation for negative returns.

We run the warped GP model with similar settings as previously when using GP models: rolling

window of 104 length, lags of 1 and 8. We utilise linear mean function and Matern covariance function

with 3 degrees of freedom. We focus our attention on the standardised returns rather than levels, to form

an insight about how the returns, and how the risk connected to those returns is affected by causal and

non-causal dependence.

Previously, we have pointed out that in the case of GP framework, the existence of causality in the

trend can overshadow the ease of detecting causality in covariance. But in the generalised setting of

warped GPs however, we have additional interactions that can be incorporated, which affect the ability

to detect causality. In the Section 8.3 we have shown on simulated data how tail dependence decreases

the ability to detect causal dependence. And so we more consciously interpret the results as testing for

relationships under certain structural assumptions.

The results of the warped GP framework with presented in Figure 9.18 points to the hypothesis of

lack of causality being rejected for a majority of time windows. Given that the data, and in particular the

returns time series, show clear evidence that kurtosis was required, once the ability to incorporate kurtosis

has been included in the model, we find that the model gives preference to strong kurtosis. Subsequently,

performing causal test with such models lead to more evidence for causal structures.

Restricting the warped GP model from incorporating skewness, as presented in Figure 9.20, does

not have any substantial effect on the power of the model though. Which allows to conclude that it is the

kurtosis structure, not the skewness structure, that is important for this case.

When we look at three windows that we have chosen for our analysis in Section 9.2, we see that

allowing to incorporate skewness and kurtosis has led to two interesting effects. Firstly, as we have

expected, there is a higher detection of causal dependence in volatility than in trend. Secondly, on the

example of causal direction from WTI 1m to BDI in the second window (30.11.01 - 01.05.02), there is

more evidence for causality in covariance rather than in the trend, but the hypothesis of lack of causality is

most strongly reject when both of these effects are taken into consideration. When we look more closely

at the parameters chosen for these models, the shape parameter ν that maximises the model B in each case

is, respectively 7, 5 and 3, which indicates that when causal effect in the covariance was not allowed, the

model was compensating by incorporating higher multiplicative scaling covariance parameter.
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Table 9.4: Power of the test for analysing causal dependence in trend, volatility and both, on three chosen
time windows.

WTI 1m→ BDI 27.01.98 - 30.11.01 - 22.08.08 -
- 24.06.98 - 01.05.02 - 21.01.09

trend and volatility 1 1 0.95
volatility only 0 0.98 0.87
trend only 1 0.85 0
BDI→WTI 1m
trend and volatility 1 0.61 1
volatility only 1 0 1
trend only 0.99 0.57 0

9.3 Commodity Futures Experiment Conclusions
We summarise the results of the real data experiment, by revisiting our questions and remarks from the

Section 9.1.1. Firstly, analyse the causal structure using GP framework, and we observe that 8 weeks

is generally enough for each of the markets to price in associated causal impacts in both oil futures

markets and currency markets, which supports the literature that relates to efficient market hypothesis. We

conclude that the different classes of investments affect the type and speed of reaction. We also observe,

that the direction and significance of causal influence is affected by regimes, as shown on the example of

the period of low prices: 17.01.1990 – 11.08.1999 (bellow $40), and period of high prices: 26.05.2004 –

11.03.2009 (above $90).

Our analysis involved only three investment classes, and therefore in no way sufficient to understand

all important risk factors. We do however point out, that useful information can be obtained from analysing

similarity of causal effects of two different factors. Such similarity can suggest that both factors are

affected by a common factor (market volatility in our case). Increasing similarity of causal dependence

can be understood in terms of systemic risk, see Billio et al. [2012].

We follow by employing a range of models to study the effect of including various structural

properties of the data, and we concentrate on the Baltic Dry Index and 1 month oil futures pair. We

carefully consider how the difference in the power of the model between using GP framework and linear

regression (Granger causality) can be explained by correcting for serial correlation and causality in

covariance. Subsequently, we study the returns of the time series, for which the covariance structure

becomes more prominent, and studying them with the warped GP framework we are able to consistently

detect causality.

We propose, that if one wants to test with misspecified models for causality structure in the mean,

one might be better off with using the GP framework, and to test for causality in covariance with a

misspecified model, one might consider choosing warped GP.
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Figure 9.14: Skewness, kurtosis and tail dependence for running windows of length 104, for 30d WTI and
BDI.
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Figure 9.15: Skewness, kurtosis and tail dependence for running windows of length 104, for returns time
series of 30d WTI and BDI.



9.3. Commodity Futures Experiment Conclusions 207

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Upper extr, par = 0.95

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Upper extr, par = 0.8

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Lower extr, par = 0.95

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Lower extr, par = 0.8

Figure 9.16: Lower and upper extremogram for the whole history, with par 0.95 and 0.8

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Upper, par=0.8, 24/06/98

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Upper, par=0.8, 01/05/02

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Upper, par=0.8, 21/01/09

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Lower, par=0.8, 24/06/98

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Lower, par=0.8, 01/05/02

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ex
tr

em
og

ra
m

Lower, par=0.8, 21/01/09

Figure 9.17: Lower and upper extremogram for the three analised dates, with par 0.8
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Figure 9.18: Evolution of the causal influence as modelled with warped GPC model: 1-pvalues of the test
statistic for 1 months WTI and BDI, with 1 lags (top subplot) and 8 lags (bottom subplot), rolling window
of 104 weeks and cubic spline smoothing.
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Figure 9.19: Sample partial autocorrelation of the residuals of the GPC model for the three chosen dates,
and for lags 1 and 8.
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Chapter 10

Conclusions

10.1 Summary
In the thesis we present a novel testing framework for statistical causality in general classes of multi-

variate nonlinear time series models: Gaussian process models for testing causality (GPC) framework,

and its generalisation, warped Gaussian process models for testing causality (wGPC). They accommodate

flexible features where causality may be present in linear or nonlinear forms either in the trend, volatility

or both structural components of the general multivariate Markov processes under study. We also develop

new classes of nonparametric multivariate time-series models based on warped Multiple Output Gaussian

Processes. This allows to encode a serial dependency structure through a covariance function and introduce

a more complex dependence structure using copulas to couple each warped marginal Gaussian process.

In addition, we accommodate the added possibilities of flexible structural features such as long memory

and persistence in the multivariate processes when applying our semiparametric approach to causality

detection.

Proposed are calibration and formal testing procedures to detect these relationships through semi-

parametric models. We provide a generic framework which can be applied to a wide range of problems,

including partially observed generalised diffusions or general multivariate linear or nonlinear time series

models.

We develop several illustrative examples of features that are easily testable under our framework,

to study the properties of the inference procedure developed including power of the test, sensitivity and

robustness. We then illustrate our method on several real data examples from commodity modelling and

interest rates and inflation.

10.2 Findings
We were interested in methods that had wide range of applicability, but in particular ones that would be

practical for financial time series. Real data, and financial data specifically, exhibits a range of stochastic

features including temporal trends, heteroskedasticity, nonstationarity, long memory, tail dependence. The
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earlier methods we analysed did not accommodate most of these features. They either did not perform

well on nonlinear, noisy time series, or had problems with estimation, model and/or parameter selection, or

lacked good asymptotic properties of the test. Furthermore, there were no works claiming to be applicable

for data with more than one of the following structural properties: nonstationarity, long memory, tail

dependence. Researching existing methodology inspired to create a framework that will address the main

shortcomings, while keeping many of the strengths of established approaches. While statistical causality

is only one of the conceptual representations of causality, it is the one that is, arguably, the most suitable

to the task of understanding causal dependence in financial time series.

In the Motivation section in Chapter (1) we identified the main research questions and the directions

that we wanted to explore in our research. Listed below are the main results we have managed to achieve:

1. We defined models that allow parametrisation of different forms of statistical causality, in particular

second order aspects of the process such as linear and nonlinear causality in covariance. The use of

Gaussian process (GP) models meant that such parametrisations can be done in a convenient and

easy to interpret way, that allow to form tractable causal tests.

2. Our framework is defined in multivariate time series context, by models which allow encoding

both linear and nonlinear causality. These models are also capable of accounting for the following

properties:

(a) inheriting properties of GPs, they are flexible and can capture linear / nonlinear causality,

while admitting Markov structure and knowledge of the conditional distribution of the model;

(b) we describe how to use automatic relevance determination (ARD) models so that noncausality

can be tested with nested hypothesis, allowing the use of generalised likelihood ratio test

(GLRT);

(c) use of GLRT with our frameworks results in test statistics that can be evaluated in closed form.

In the case of GPC framework, these are given in analytic form, in the case of wGPC, these

are approximated;

(d) use of GLRT results in known asymptotic behaviour of the test statistic under the null;

(e) In the GPC framework, parameter optimisation is statistically unbiased, efficient, consistent

and computationally efficient, and parameters can be interpreted with respect to the structural

properties of the model;

(f) The framework can detect causality in the mean, covariance function, or higher order moments.

3. Our use of the mean-variance transformation (warping) and skew-t copula in the wGPC framework



10.3. Applications and results of Experiments 211

extends the marginal models to incorporate range of special structures, for example nonstationarity,

heteroscedasticity, leptokurtic tails, long memory.

4. Warping allows the joint model to have a wider range of dependence structures, for example:

asymmetry, leptokurtic tails, tail dependence.

5. The experiments performed show that both skewness and kurtosis can affect the ability to perform

inference, detect causality, and accuracy and power of the test.

6. With our testing framework it is possible to asses the power of the test for the models that meet the

requirements from the points 1 through 5.

We would like to reiterate that the methods of Gaussian Process for causality (GPC) and warped

Gaussian process for causality (wGPC) are easily customised. The choice of mean and kernel functions,

noise structure, autoregressive structure – all these allow to capture a vast range of properties in the data.

Warpings allow extra layer of flexibility, and the way that the warping is defined can also be altered to

further generalise the entire framework.

10.3 Applications and results of Experiments
We provided an extensive set of experiments illustrating many of the above properties. The experiments

with synthetic data demonstrate model sensitivity analysis, model misspecification analysis and power of

the hypothesis test for simple and compound tests. The GPC framework, in particular, is shown to have

good power of the test even for relatively small samples, and to not be sensitive to parameter changes

for wide ranges of parameters. Following the properties of GP models, GPC framework has efficient

algorithms for parameter optimisation. Most importantly, GPC is able to detect causality even when

the model is misspecified. A particularly interesting illustration of that is given in Section (8.1), where

we show that GPC can detect causality in data generated from a model with long memory property

(ARFIMA).

The real data section explained how the framework can be used in practice, and how it can be

combined with, or enhance more typical approaches to analysing financial time series. We provide

illustrative examples for two sets of real data, firstly, commodity futures, dollar index, and Baltic Dry

Index, and, secondly, 1 and 10 year US treasury bonds, US inflation linked swaps and US Consumer Price

Index. Our results agree with economic interpretations, but also allow more insight into the dynamic

relationships between the time series.

10.3.1 Commodity Futures Experiment Conclusions

In our analysis we used 1 and 36 month expiry oil futures contracts, US Dollar Index DXY and Baltic Dry

Index which can be seen as a proxy to convenience yield, based on a component related to transportation



212 Chapter 10. Conclusions

expense, given by the cost of freighting and short term storage [Ames et al., 2016]. Firstly, we concluded

that 8 weeks was generally enough for each of the markets to price in associated causal impacts in both

oil futures markets and currency markets, which supports the literature that relates to efficient market

hypothesis. Different classes of investments, however, affect the type and speed of reaction. We also

observed evidence of causal influence being affected by regimes, which is a commonly agreed on property

of commodity markets.

Our analysis involved only three investment classes, and therefore in no way sufficient to understand

all important risk factors. We do demonstrate, however, that useful information can be obtained from

analysing similarity of causal effects of two different factors. Such similarity can suggest that both factors

are affected by a common factor (market volatility in our case), and can be interpreted in terms of systemic

risk [Billio et al., 2012].

The second study was based on US inflation proxied by 10 US year inflation based swaps, the interest

rates based on 1 year and 10 year US treasury bonds, and US Consumer Price Index (CPI) as a side

information.

10.4 Future Research and Directions

We believe that one of the greatest strengths of the model framework that we are proposing is its flexibility,

making it easy to extend or alter. During our research, we came across a multitude of topics, models,

special cases or extensions that were closely related to our work, and deciding what not to pursue was

sometimes a bigger problem than deciding what to pursue. There are some areas that we did not have the

opportunity to fully explore, and which will form the foundations of future publications.

In our research we have included some work on employing multiple output Gaussian processes, but

more could be done to describe and test how the cross-correlation can affect recognition of causality.

The use of GPC with multiple output GPs allows a convenient definition of instantaneous causality

(instantaneous coupling), which could be of interest in a wide range of applications. A property of

Gaussian processes that we have not explored, but that makes them particularly useful for time series data,

is feasibility to treat data with different time markers.

We mentioned use of different warpings – to obtain different skew-t copulas. This work is of

particular interest for modelling causality in the presence of tail dependence. We looked at three types

of skew-t distributions, with different types of tail dependence, but one might find different structures

that are preferable. Various structures could be introduced to the framework – especially via the warping

representation. For example, warping with the generalised inverse Gaussian, which results in generalised

hyperbolic distribution, can be catered for in the wGPC very similarly to the skew-t, with the main

difference being the increased computational complexity of estimating additional hyperparameters.

In the Gaussian process literature methods of sparse approximations are seen as important for
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enabling the processing of bigger data sets. Some of the natural approaches here would be to alter the

input data (choosing subset of points, or using pseudo-inputs), choose or design appropriate covariance

matrix (low rank approximations for the covariance matrix, covariance function that generates sparse

covariance matrix), alter inference methods (perform the inference only on points in the neighbourhood

of a query point, use Nyström approximation).

A direction which we did not intend to explore, but which could be found useful for some applications,

is the extension of GLRT to non-nested models, or replacement of GLRT with a different test for non-

nested models.

There are several applications of great interest – that had to be sacrificed due to limited time and

resources. A particularly interesting application, to which our framework would have been very suitable,

is the analysis of the relationship between different types of bonds (corporate, municipal and green bonds)

and their term structure.
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Appendix A

Appendix

A.1 Solving Ridge Regression

We have introduced ridge regression and kernel ridge regression in Chapter (1), here we describe how the

solutions are obtained. The time series of interest {Yt} is explained by a regression model with time series

{Qt} as covariates, and p lags taken into consideration:

Yt = α
T Qt−p:t−1 + ϵt. (A.1)

Or equivalently:

Yt1:t2 = α
T
�t1,t2;p + ϵ. (A.2)

Ridge regression aims to find coefficients α that minimise the squared error
∑t2

t=t1

(
Yt − α

T Qt−p:t−1

)2

subject to an L2 regularisation – added penalty, which equals the square of the magnitude of coefficients

αTα scaled by a chosen constant λ:

α∗ = argmin
α

 t2∑
t=t1

(
Yt − α

T Qt−p:t−1

)2
+ λαTα

 . (A.3)

The minimisation problem from Equation (A.3) is typically solved using the technique of Lagrange

multipliers:

L :=
t2∑

t=t1

(
Yt − α

T Qt−p:t−1

)2
+ λαTα (A.4)

=
(
�t1,t2;pα − Yt1:t2

)T (
�t1,t2;pα − Yt1:t2

)
+ λαTα

=αT
�

T
t1,t2;p�t1,t2;pα − 2YT

t1:t2�t1,t2;pα + YT
t1:t2 Yt1:t2 + λα

Tα
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∂L

∂α
= 2�T

t1,t2;p�t1,t2;pα − 2YT
t1:t2�t1,t2;p + 2λα

∂L

∂α
= 0⇔

�
T
t1,t2;p�t1,t2;pα

∗ + λIt2−t1α
∗ = �T

t1,t2;pYt1:t2 ⇔ (A.5)

primal solution: α∗ =
(
�

T
t1,t2;p�t1,t2;p + λIt2−t1

)−1
�

T
t1,t2;pYt1:t2 (A.6)

We notice however that using equality A.5 α∗ can also be expressed as follows:

�
T
t1,t2;p�t1,t2;pα

∗ + λIt2−t1α
∗ = �T

t1,t2;pYt1:t2 ⇔

α∗ =
1
λ
�

T
t1,t2;p

(
Yt1:t2 − �t1,t2;pα

∗
)
⇔ (A.7)

α∗ = �T
t1,t2;p

1
λ

(
Yt1:t2 − �t1,t2;pα

∗
)

︸                    ︷︷                    ︸
denote by β∗

⇔ (A.8)

α∗ = �T
t1,t2;pβ

∗. (A.9)

As a next step, several transformations are performed that would allow us to express the new weights in

terms covariance matrix (inner product) of the covariates:

β∗ =
1
λ

(
Yt1:t2 − �t1,t2;pα

∗
)
⇔ (A.10)

β∗ =
1
λ

(
Yt1:t2 − �t1,t2;p�

T
t1,t2;pβ

∗
)
⇔ (A.11)

dual solution: β∗ =
(
�t1,t2;p�

T
t1,t2;p + λIt2−t1

)−1
Yt1:t2 . (A.12)

The dual solution of ridge regression, is in such a form that covariates appear only in the form of

covariance matrix (inner product) �t1,t2;p�
T
t1,t2;p. This means that it can be “kernelised” by substituting the

existing covariance matrix (inner product) by one that is inferred from a Mercer kernel k(·, ·), and denoted

K�, where
{
K�

}
i, j = k(Qi−p:i−1,Q j−p: j−1). Consequently, the optimal weights for kernel ridge regression

will take the form:

βkrr =
(
K� + λ1t2−t1

)−1 Yt1:t2 (A.13)

A.2 Predictive / conditional distribution

Here we remind a formula that is typically used in the case of predictive distribution, but which can be

simply seen as a conditional distribution.

Lets say that we have data y =
[
y1, ..., yN

]
, g =

[
g1, ..., gN

]
and we assume that the data come from a
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following GP model:

gi = f (yi) + ϵi, f ∼ GP(0, kt,t′ ), ϵi ∼ N(0, σ2)

So if we use denote the covariance matrix K : kl,m = kY (yl, ym), l,m ∈ [1,T ], then we know that

g ∼ N(0,K + σ2
YI).

Lets take a new point y∗, for which we are interested in the noiseless value of f∗ = f (y∗), that would

be consistent with the model and observations so far. If we treat y∗ as a new observation, then f∗ will be

seen as predictive distribution, however if y∗ is not a new observation, but for example part of a more

dense grid of observations we had so far, then we are simply talking about a conditional distribution,

given by equation A.14:

f∗ | y,g, y∗ ∼
(
f∗; f̄∗, cov(f∗)

)
, (A.14)

f̄∗ = K(y∗, y)
[
K + σ2I

]−1
g

cov(f∗) = K(y∗, y∗) − K(y∗, y)
[
K + σ2I

]−1
K(y, y∗).

A.3 Obtaining marginal likelihood

We want to show:

p(Yt | Xt) = N(µ(Xt), k(Xt, Xt) + σ2
t ). (A.15)

Introduce shorthand notation: ft ≡ f (Xt), µt ≡ µ(Xt), kt ≡ k(, Xt).
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p(Yt | Xt) =
∫

p(Yt | Xt, ft)p( ft | Xt)d ft =

=

∫
N(Yt; ft, σ2

t )N( ft; µt, kt)d ft =

=

∫
1
√

2π

1√
σ2

t

exp
(
−

1
2

(Yt − ft)2

σ2
t

)
1
√

2π

1
√

kt
exp

(
−

1
2

( ft − µt)2

kt

)
d ft =

=

∫
1
√

2π

1√
σ2

t

1
√

2π

1
√

kt
exp

(
−

1
2

Y2
t

σ2
t
+

Yt ft
σ2

t
−

1
2

f 2
t

σ2
t
−

1
2

f 2
t

k
+

ftµt

k
−

1
2
µ2

t

k

)
d ft =

=

∫
1
√

2π

1√
kt + σ

2
t

exp
(
−

1
2

(Yt − µt)2

kt + σ
2
t

)

1
√

2π

√
1
kt
+

1
σ2

t
exp

−1
2

 ft −
(

Yt

σ2
t
+
µt

kt

) (
1
kt
+

1
σ2

t

)−12 (
1
kt
+

1
σ2

t

) d ft =

= N(Yt; µt, kt + σ
2
t )

∫
N

 ft;
(

Yt

σ2
t
+
µt

kt

) (
1
kt
+

1
σ2

t

)−1

,

(
1
kt
+

1
σ2

t

)−1 d ft

= N(Yt; µt, kt + σ
2
t )

A.4 Proof of Theorem (7)

Proof:

We use the fact that the Ṽ will be normally distributed when conditioned on the mixing variable:

Ṽ | W ∼ N(m + γW,WΣ). The unconditional distribution is therefore calculated as a following integral:

f (ṽ) =
∫ ∞

0
f (ṽ | w)p(w)dw (A.16)

Using the density of a generalised inverse Gaussian (GIG) distribution W ∼ GIG(λ, χ, ψ) from the

Equation 31 we extend A.16 and write:

p(ṽ) =
∫ ∞

0

1

(2π)
d
2 | Σ |

1
2 w

d
2

exp
{
−(ṽ − m − γw)T (wΣ)−1(ṽ − m − γw)

2

}
p(w)dw

=

∫ ∞

0

e(x−m)TΣ−1γ

(2π)
d
2 | Σ |

1
2 w

d
2

exp
{
−

(ṽ − m)TΣ−1(ṽ − m)
2w

−
γTΣ−1γ

2/w

}
p(w)dw

=
χ−λ

(√
χψ

)λ
e(x−m)TΣ−1γ

(2π)
d
2 | Σ |

1
2 Kλ

(√
χψ

)
1
2

∫ ∞

0
wλ− d

2−1 exp
{
−

(ṽ − m)TΣ−1(ṽ − m) + χ
2w

−
γTΣ−1γ + ψ

2/w

}
p(w)dw
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To allow expressing the integral in terms of a modified Bessel function of the third kind, we perform

a change of variable:

z = w

√(
ψ + γTΣ−1γ

)
√(
ψ + (ṽ − m)TΣ−1(ṽ − m)

)
and as a result we obtain:

p(ṽ) =
χ−λ

(√
χψ

)λ
e(x−m)TΣ−1γ

(2π)
d
2 | Σ |

1
2 Kλ

(√
χψ

)

√(
ψ + (ṽ − m)TΣ−1(ṽ − m)

)
√(
ψ + γTΣ−1γ

)


d
2−λ

1
2

∫ ∞

0
zλ−

d
2−1 exp

{
−

1
2

√(
χ + (ṽ − m)TΣ−1(ṽ − m)

) (
ψ + γTΣ−1γ

) [1
z
+ z

]}
f (z)dz︸                                                                                                       ︷︷                                                                                                       ︸

K
λ− d

2
(
√

(χ+(ṽ−m)TΣ−1(ṽ−m))(ψ+γTΣ−1γ)

which after reorganisation gives the requested density. □

A.5 Proof of (Theorem 8)

Proof:

The moment generating function of GIG is:

MX(s) =
(

ψ

ψ − 2s

) λ
2 Kλ

( √
χ + (ψ − 2s)

)
Kλ

(√
χψ

) ,

and the fact that moment generating function of variable X ∼ µ,Σ is equal exp(sTµ + 1
2 sTΣs) . Then for

the variable X ∼ GH(λ, χ, ψ, µ,Σ, γ), with W | GIG(λ, χ, ψ) being the mixing variable:

MX(s) =E
(
E

(
esT X

)
| W

)
= E

(
esT (µ+γW)+ 1

2 sT WΣs
)
= esTµE

(
e(sT γ+ 1

2 sTΣs)W
)

=esTµMW

(
sTγ +

1
2

sTΣs
)
.

Expressing the moment generating function of GH distribution in terms of GIG distribution is

practical. But we can also expand it to obtain:

MX(s) = esTµ

 ψ

ψ − 2
(
sTγ + 1

2 sTΣs
) 

λ
2 Kλ

(√
χ + (ψ − 2

(
sTγ + 1

2 sTΣs
)
)
)

Kλ

(√
χψ

) .
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□

A.6 Hilbert-Schmidt Independence Criterion (HSIC)

LetHX,HY denote the RKHS induced by strictly positive kernels kX : X×X → R and kY : Y ×Y → R.

Let X be random variable on X, Y be random variable on Y and (X,Y) be random vector on X ×Y. The

marginal distributions are denoted by PX , PY and the joint distribution of (X,Y) by PXY .

Definition 43 (Hilbert-Schmidt Independence Criterion – HSIC) With the notation forHX,HY, PX , PY

as introduced earlier, we define the Hilbert Schmidt independence criterion as the squared Hilbert Schmidt

norm of the cross-covariance operator ΣXY :

HS IC(PXY ,HX,HY) := ∥ΣXY∥
2
HS . (A.17)

We cite without proof the following lemma from Gretton et al. [2005]:

Lemma 5 (HSIC in kernel notation)

HS IC(PXY ,HX,HY) :=EX,X′,Y,Y ′ [kX(X, X′)kY(Y,Y ′)] + EX,X′ [kX(X, X′)]EY,Y ′ [kY(Y,Y ′)]

−2EX,Y [EX′ [kX(X, X′)]EY ′ [kY(Y,Y ′)]].
(A.18)

where X, X′ and Y,Y ′ are independent copies of the same random variable.

A.7 Estimator of HSNCIC

Empirical mean elements:

m̂(n)
X =

1
n

n∑
i=1

kX(·, Xi),

m̂(n)
Y =

1
n

n∑
i=1

kY(·,Yi)

(A.19)

Empirical cross-covariance operator:

Σ̂
(n)
XY =

1
n

n∑
i=1

(kY(·,Yi) − m̂(n)
Y )⟨kX(·, Xi) − m̂(n)

X , ·⟩HX

=
1
n

n∑
i=1

{kY(·,Yi) − m̂(n)
Y } ⊗ {kX(·, Xi) − m̂(n)

X }.

(A.20)

Empirical normalised cross-covariance operator

V̂ (n)
XY = (Σ̂(n)

XX + nλIn)−1/2Σ̂
(n)
XY (Σ̂(n)

YY + nλIn)−1/2, (A.21)
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where nλIn is added to ensure invertibility.

Empirical normalised conditional cross-covariance operator

V̂ (n)
XY |Z = V̂ (n)

XY − V̂ (n)
XZV̂ (n)

ZY . (A.22)

For U symbolising any of the variables (XZ), (YZ) or Z, we denote by KU a centred Gram matrix,

such that each elements equal to: KU,i j = ⟨kU(·,Ui)− m̂(n)
U , kU(·,U j)− m̂(n)

U ⟩HU , let RU = KU(KU + nλI)−1.

With this notation the empirical estimation of HSNCIC can be written as:

HS NCICn := Tr[R(XZ)R(YZ) − 2R(XZ)R(YZ)RZ + R(XZ)RZR(YZ)RZ]. (A.23)

A.8 Sieve bootstrap two-sample t-test

Following Chen and Gel [2011], this section describes a sieve bootstrap two-sample t-test that corrects for

serial correlation.

A.8.1 Classical t-test for two sample problem

Random samples: X1 = (X1,1, ..., X1,n1 ) and X2 = (X2,1, ..., X2,n2 ), with joint continuous distributions:

F1, F2, with n1 and n2 observations. Let µ1, µ2 be corresponding population means. We want to test if the

means are equal or not:

H0 : µ1 = µ2 H1 : µ1 , µ2.

Let X1, j
i.i.d.
∼ N(µ1, σ

2
1) and X2, j

i.i.d.
∼ N(µ2, σ

2
2). The t-test statistic is defined as:

T =
X̄1 − X̄2√

s2
1/n1 + s2

2/n2

, (A.24)

where: for i = 1, 2 we have sample means X̄i = n−1
i Σ

ni
j=1Xi, j and sample variances s2

i = (ni−1)−2Σ
ni
j=1(Xi, j−

X̄i)2.

Under H0, the test statistic T follows approximately a t-distribution with ν degrees of freedom:

ν =

(
s2

1/n1 + s2
2/n2

)2(
s2

1/n1

)2
(n1 − 1) +

(
s2

2/n2

)2
(n2 − 1)

.

A.8.2 Model Assumptions

Random samples: X1 = (X1,1, ..., X1,n1 ) and X2 = (X2,1, ..., X2,n2 ), with joint continuous distributions:

F1, F2, with n1 and n2 observations. Let µ1, µ2 be corresponding population means. We want to test if the
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means are equal or not:

H0 : µ1 = µ2 H1 : µ1 , µ2.

We assume that the samples are no longer independent, but instead we assume that
{
X1,t

}
t∈Z,

{
X2,t

}
t∈Z

can be described by models:

Σ∞j=0c j

(
X1,t− j − µ1

)
= ϵ1,t Σ∞j=0c j < ∞ (A.25)

Σ∞j=0d j

(
X2,t− j − µ2

)
= ϵ2,t Σ∞j=0d j < ∞ (A.26)

A.8.3 Algorithm

Step 0. Prepare the time series, by differencing if the time series is not stationary.

Step 1. Select AR orders p1, p2 with Akaike information criterion for X1,X2.

Step 2. Estimate AR coefficients for X1,X2: (ĉ1, ...ĉp1 ), (d̂1, ...d̂p2 ), using Yule Walker equations.

Step 3. Estimate residuals
{
ϵ̂1,t

}
t=p1+1 and

{
ϵ̂2,t

}
t=p2+1 for the models A.25 - A.26, with:

ϵ̂1,t = Σ
p1
j=0ĉ j

(
X1,t− j − X̄1

)
ĉ0 = 1, t = p1 + 1, ..., n1

ϵ̂2,t = Σ
p2
j=0d̂ j

(
X2,t− j − X̄2

)
d̂0 = 1, t = p2 + 1, ..., n2

Step 4. Center estimated residuals:

ϵ̃i,t =

(
ϵ̂i,t −

1
T − pi

Σ
ni
t=pi+1ϵ̂i,t

)
.

The empirical distributions of the centered residuals
{
ϵ̄i,t

}
t=pi+1 are:

F̂ϵi,t ,T (y) = Σni
t=pi+11{ϵ̄i,t≤y}.

Step 5. Sample with replacement bootstrap error processes
{
ϵ∗1,t

}T

t=1
and

{
ϵ∗2,t

}T

t=2
from the empirical

distributions F̂ϵ1,t ,T (y), F̂ϵ2,t ,T (y).

Step 6. Construct bootstrap samples X∗1 = (X∗1,1, ..., X
∗
1,n1

) and X∗2 = (X∗2,1, ..., X
∗
2,n1

), by recursion:

Σ∞j=0ĉ j

(
X∗1,t − X̂1

)
= ϵ∗1,t ĉ0 = 1, t = p1 + 1, ..., n1

Σ∞j=0d j

(
X∗2,t − X̂2

)
= ϵ∗2,t d̂0 = 1, t = p2 + 1, ..., n2
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Step 7. Calculate the bootstrap t-statisic T ∗b :

T ∗b =
X̄∗1 − X̄∗2√

s2∗
1 /n1 + s2∗

2 /n2

,

where: for i = 1, 2 we have sample means X̄∗i = n−1
i Σ

ni
j=1X∗i, j and sample variances s2∗

i = (ni−1)−2Σ
ni
j=1(X∗i, j−

X̄∗i )2.

Step 8. Generate B values of the bootstrap t-statistic
{
T ∗1 , ...,T

∗
B

}
.

Under the null hypothesis, the distribution of the test statistic T from the equation A.24 is approxi-

mated by the bootstrap distribution of T ∗:

F̂T ∗ (x) = ΣB
b=11{T ∗b<x}.

Reject the null hypothesis if T ≤ Q∗T (α) or T ≥ Q∗T (1 − α), if α is significance level, Q∗T (α) is a

lower α-quantile and Q∗T (1 − α) is an upper α-quantile of the distribution F̂T ∗ (x).



Appendix B

Experiments and real data applications from

Zaremba and Aste 2014.

This chapter Experiments and Real Data applications from “Measures of Causality in Complex Datasets

with Application to Financial Data”, [Zaremba and Aste, 2014].

B.1 The Four Chosen Methods

Four methods of measuring and testing causality used in this section, defined in Chapter (1) in Equations

(1.8, 1.26, 1.50, 1.62).

1. Classical Granger causality (GC)

LGC
X→Y = log

[
VY

[
Y,Z; p

]
VY

[
X,Y,Z; p

] ] (B.1)

2. Transfer entropy (TE)

LT E
X→Y = H(X | Xt−k:t−1) − H(X | Xt−k:t−1,Yt−k:t−1). (B.2)

3. Kernel ridge regression (krr), in some literature called “kernelised Geweke” [Amblard et al., 2012b]

Lkrr
X→Y = log

V
(
ŶA

t1:t2 − Yt1:t2

)
V

(
ŶB

t1:t2 − Yt1:t2

) . (B.3)

4. Hilbert-Schmidt Normalised Conditional Independence Criterion (HSNCIC)

LHS NCIC
X→Y = ||V(Y,Z)(X,Z)|Z ||

2
HS (B.4)

The estimator of the test statistic LGC
X→Y , denoted L̂GC

X→Y , is based on a approximations of prediction
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error variances (V̂ (·) is used for finite approximation), with N - sample size, p - maximum number of

lags, d - the dimensionality of the data:

L̂GC
X→Y = (N − d − p) log

[
V̂Y

[
Y,Z; p

]
V̂Y

[
X,Y,Z; p

] ] ∼ χ2
p if {Xt}⇏ {Yt} . (B.5)

The other methods need to use some form of permutation test. When using the permutation test, we

will work with the following hypotheses:

H0 : LX→Y = 0, no causality from {X} to {Y} (B.6)

H1 : LX→Y > 0, causality from {X} to {Y} (B.7)

If there is no explicitly known distribution for the test statistic, we need to obtain them numerically

using a permutation test. Let pi(t), t = t1, ..., t2 denote a random permutation of the time index, and pi(X)

denote a time series, where the original time order has been reorganised according to the permutation

pi(·). Then the null hypothesis is assessed by comparing the value of LX→Y to a histogram of values of

Lpi(X)→Y , and a p-value:

π(LX→Y | H0) =
1
m

m∑
i=1

1
(
Lpi(X)→Y > LX→Y

)
(B.8)

where 1(A) is a characteristic function for the set A.

Depending on the number of permutations used, we suggest to accept the hypothesis of causality for

the level of significance equal to 0.05 or 0.01. In our experiments, we report either single p-values or sets

of p-values for overlapping moving windows. The latter is particularly useful when analysing noisy and

non-stationary data. In the cases where not much data is available, we do not believe that using any kind

of subsampling (as proposed by Sun [2008], Amblard et al. [2012b], Seth and Principe [2011]) will be

beneficial, as far as the power of the tests is concerned.

B.2 Testing on simulated data - detecting lag in a linear example
Before applying the methods to real-world data it is prudent to verify whether they work for data with

known and simple dependence structure. We tested the methods on a data set containing eight time

series with a relatively simple causal structure at different lags and some instantaneous coupling. We

used the four methods to try to capture the dependence structure as well as to figure out which lags

show dependence. The data was simulated by first generating a set of eight time series from a Gaussian

distribution with correlation matrix represented in Table B.1a. Subsequently, some of the series were

shifted by one, two or three time steps to obtain the following “causal” relations: x1 ←→ x2 at lag 0 i.e.

instantaneous coupling of the two variables, x3 → x4 at lag 1, x5 → x6 at lag 1, x5 → x7 at lag 2, x5 → x8
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Table B.1: Dependence structure of the simulated data.

(a) Correlation matrix that has been used to generate the
testing data.

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8
ts1 1 0.7 0.1 0.1 0.1 0.1 0.1 0.1
ts2 0.7 1 0.1 0.1 0.1 0.1 0.1 0.1
ts3 0.1 0.1 1 0.7 0.1 0.1 0.1 0.1
ts4 0.1 0.1 0.7 1 0.1 0.1 0.1 0.1
ts5 0.1 0.1 0.1 0.1 1 0.7 0.7 0.7
ts6 0.1 0.1 0.1 0.1 0.7 1 0.7 0.7
ts7 0.1 0.1 0.1 0.1 0.7 0.7 1 0.7
ts8 0.1 0.1 0.1 0.1 0.7 0.7 0.7 1

(b) Lags at which true dependence occurs, with the inter-
pretation that column variable causes row variable.

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8
ts1 × 0
ts2 0 ×

ts3 × -1
ts4 1 ×

ts5 × -1 -2 -3
ts6 1 × -1 -2
ts7 2 1 × -1
ts8 3 2 1 ×

at lag 3, x6 → x7 at lag 1, x6 → x8 at lag 2, x7 → x8 at lag 1. The network structure is shown in Figure

B.1, while the lags at which the causality occurs are given in the Table B.1b. The length of the data is

250.

ts1

ts2

ts3

ts4

ts5

ts6

ts7

ts8

 

 

Figure B.1: The directionality of causality between the eight simulated time series. Green lines represent
causality with the arrowheads indicating direction; red line indicates instantaneous coupling.

For the purpose of the experiments described in this paper, we used code from several sources:

Matlab code that we developed for kernelised Geweke’s measure and transfer entropy, open access Matlab

toolbox for Granger causality GCCA1 [Seth, 2010] and open access Matlab code provided by Sohan Seth

[Seth and Principe, 2011]2.

To calculate Geweke’s measure and kernelised Geweke’s measure we used the same code, with a

linear kernel in the former case and a Gaussian kernel in the latter. The effect of regularisation on the

(linear) Geweke’s measure is negligible, and the results are comparable to the ones obtained with GCCA

code with the main difference being more flexibility on the choice of lag ranges allowed by our code.

Parameters for the ridge regression were either calculated with n-fold cross-validation for the grid of

regulariser values in the range of [2−40, · · · , 2−26] and kernel sizes in the range of [27, · · · , 213], or fixed
1The code can be requested from the author’s website: http://www.sussex.ac.uk/Users/anils/aks_code.htm
2Code available at http://www.sohanseth.com/Home/publication/causmci

http://www.sussex.ac.uk/Users/anils/aks_code.htm
http://www.sohanseth.com/Home/publication/causmci
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Table B.2: P-values for four measures for lag 1. From top left to bottom right: Geweke’s measure (Gc),
kernelised Geweke’s measure (kG), transfer entropy (TE), HSNCIC (HS). All lag 1 causalities were
correctly retrieved by all methods.

Gc ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8
ts1 × 0.97 0.35 0.26 0.24 0.68 0.11 0.23
ts2 0.42 × 0.88 0.52 0.37 0.69 0.14 0.46
ts3 0.26 0.86 × 0.75 0.45 0.19 0.43 0.72
ts4 0.14 0.11 0 × 0.24 0.49 0.41 0.64
ts5 0.78 0.94 0.10 0.02 × 0.40 0.96 0.91
ts6 0.96 0.31 0.62 0.22 0 × 0.04 1.00
ts7 0.74 0.98 0.10 0.53 0.35 0 × 0.96
ts8 0.86 0.70 0.05 0.63 0.68 0.87 0 ×

kG ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8
ts1 × 0.92 0.30 0.25 0.20 0.74 0.16 0.16
ts2 0.50 × 0.93 0.54 0.52 0.71 0.19 0.46
ts3 0.29 0.88 × 0.68 0.48 0.11 0.38 0.62
ts4 0.12 0.14 0 × 0.22 0.47 0.41 0.65
ts5 0.73 0.93 0.11 0.04 × 0.47 0.99 0.93
ts6 0.94 0.38 0.55 0.18 0 × 0.07 0.99
ts7 0.81 0.92 0.04 0.55 0.36 0 × 0.95
ts8 0.83 0.67 0.06 0.63 0.62 0.86 0 ×

TE ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8
ts1 × 0.59 0.53 0.60 0.34 0.91 0.38 0.66
ts2 0.48 × 0.86 0.30 0.87 0.96 0.49 0.70
ts3 0.45 0.17 × 0.33 0.34 0.57 0.81 0.81
ts4 0.04 0.31 0 × 0.12 0.09 0.76 0.08
ts5 0.21 0.52 0.86 0.05 × 0.68 0.60 0.30
ts6 0.53 0.89 0.65 0.30 0 × 0.77 0.09
ts7 0.01 0.42 0.59 0.37 0.95 0 × 0.77
ts8 0.85 0.46 0.07 0.48 0.85 0.13 0 ×

HS ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8
ts1 × 1.00 0.81 0.35 0.19 0.48 0.71 0.82
ts2 1.00 × 0.80 0.61 0.85 0.34 0.02 0.72
ts3 0.90 0.95 × 0.18 0.59 0.47 0.21 0.19
ts4 0.90 0.29 0 × 0.31 0.81 0.26 0.31
ts5 0.75 0.59 0.77 0.14 × 0.71 0.85 0.46
ts6 0.64 0.88 0.75 0.79 0 × 0.71 0.79
ts7 0.38 0.13 0.75 0.24 0.75 0 × 0.60
ts8 0.90 0.55 0.46 0.73 0.78 0.78 0 ×

at a preset level, with no noticeable impact on the result. Transfer entropy utilises a naive histogram to

estimate distributions. The code for calculating HSNCIC and for performing p-value tests incorporates a

framework written by Seth Seth and Principe [2011]. The framework has been altered to accommodate

some new functionalities; the implementation of permutation tests has also been changed from rotation to

actual permutation3. In the choice of parameters for the HSNCIC we followed Seth and Principe [2011],

where the size of the kernel is set up as the median inter-sample distance and regularisation is set to 10−3.

Our goal was to uncover the causal structure without prior information, and detect the lags at which

causality occurred. This was performed by applying all three measures of causality with following sets

of lags: {[1 − 10]}, {[1 − 20]}, {[1 − 5], [6 − 10], [11 − 15]}, {[1 − 3], [4 − 6], [7 − 9]} and finally with all

four measures to single lags {0, 1, 2, 3, 4}. Those ranges were used for linear and kernelised Geweke’s

measures and HSNCIC but not for transfer entropy, for which only single lags are available with the

current framework. Using five sets of lags allowed us to analyse the effects of using ranges of lags that are

different from lags corresponding to the “true” dynamic of the variables. Table B.2 presents part of the

results: p-values for the four measures of interest for lag 1. Below we present the conclusions for each of

the methods separately, with two Geweke’s measures presented together:

Geweke’s measures. Both Geweke’s measures performed similarly, which was expected as the

data was simulated with linear dependencies. Causalities were correctly identified for all ranges of

lags, for which the causal direction existed, including the biggest range [1-20]. For the shorter ranges

{[1 − 5], [1 − 3]} as well as for the single lags {0, 1, 2, 3} the two measures reported p-values of 0 for all

of the existing causal directions. This means that the measures were able to detect precisely the lags at

which causal directions existed, including the lag 0, i.e. instantaneous coupling. However, with number

of permutations equal 200 and at acceptance level of 0.01, the two measures detected only the required

causalities, but would fail to reject some spurious causalities at level of 0.05.

3Use of permutation, which is more general than rotation, is helpful when data is short or the analysed time windows are short.
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Transfer entropy. By design, this measure can only analyse one lag at a time. It is also inherently

slow, and for these two reasons it will be inefficient when a wide range of lags needs to be considered.

Furthermore, it cannot be used for instantaneous coupling. In order to detect this we applied the mutual

information method instead. For the lags {1, 2, 3} transfer entropy reported 0 p-values for all the relevant

causal directions. However, it failed to reject spurious direction 1 → 7 with p-value of 0.01. For lag

{0} where mutual information has been applied, the instantaneous coupling x1 ←→ x2 was recognised

correctly with p-value 0.

HSNCIC. Due to slowness, HSNCIC is impractical for the largest ranges of lags. More importantly,

HSNCIC performs unsatisfactorily for any of the ranges of lags that contained more than a single lag. This

is deeply disappointing, as the design suggests HSNCIC should be able to handle both side information

and higher dimensional variables. Even for a small range [1 − 3] HSNCIC correctly recognised only the

x5 → x8 causality. Nevertheless, it did recognise all of the causalities correctly when analysing one lag at

a time, reporting p-values of 0. This suggests that HSNCIC is unreliable for data that has more than one

lag or more than two time series. HSNCIC is also not designed to detect instantaneous coupling.

From this experiment we conclude that Geweke’s measures with linear and Gaussian kernels provide

the best performance, are not vulnerable to lag misspecification and seem the most practical. The other two

measures, transfer entropy and HSNCIC, provide good performance when analysing one lag at a time. In

Section B.3 we show the results of one of the tests from Amblard et al. [2012b], which investigates ability

to distinguish between direct and non-direct causality in data where both linear and non-linear dependence

have been introduced. We refer to Seth and Principe [2011] for results of a wide range of tests applied to

linear Granger causality and HSNCIC. We tested all four methods and managed to reproduced the results

from Seth and Principe [2011] to a large degree, however we used smaller number of permutations and

realisations and we obtained somewhat lower acceptance rates for true causal directions, particularly for

HSNCIC. From all of those tests we conclude that linear causality can be detected by all measures in most

cases, with the exception of HSNCIC when more lags or dimensions are present. Granger causality can

detect some nonlinear causalities, especially if they can be approximated by linear functions. Transfer

entropy will flag more spurious causalities in the case where causal effects exist for different lags. There

is no maximum dimensionality that HSNCIC can accept; in some experiments this measure performed

well for three and four dimensional problems, in others three dimensions proved to be too many.

Possibly the most important conclusion is that parameter selection turned out to be critical for

kernelised Geweke’s measure. For some tests, like the simulated 8 time series data described earlier,

size of the kernel did not play an important role, but in some cases the size of the kernel was crucial in

allowing the detection of causality. However, there was no kernel size that worked for all of the types of

the data.
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B.3 Testing on simulated data - nonlinear multivariate example

Our second example follows one presented by Amblard [Amblard et al., 2012b] and involves a system

with both linear and non-linear causality. Apart from presenting the benefits of generalising Granger

causality, this example demonstrates the potential effect of considering side information on distinguishing

direct and indirect cause. The true dynamic of the time series is as follows:



Xt = aXt−1 + ϵX,t

Yt = bYt−1 + dX2
t−1 + ϵY,t

Zt = cZt−1 + eYt−1 + ϵZ,t

(B.9)

where the parameters were chosen in the following way: a = 0.2, b = 0.5, c = 0.8, d = 0.8, e = 0.7,

the variables ϵx,t, ϵy,t, ϵz,t are i.i.d. Gaussian with zero mean and unit variance. From the setup we know

that we have the following causal chain x→ y→ z (with nonlinear effect of x on y) and therefore there is

an indirect causality x → z. We calculate kernelised Geweke measures Lkrr
X→Z and Lkrr

X→Z|Y to assess the

causality.

We repeat the experiment 500 times, each time generating a time series of length 500. We choose

an embedding of 2, i.e. we consider the lag range [1 − 2]. To evaluate the effect of using kernelised

rather than linear Granger causality, we run each experiment for the Gaussian kernel and for linear kernel

k(x, y) = xT y. Using the linear kernel is nearly equivalent to use the linear Geweke measures. We obtain

a set of 500 measurements for Lkrr
X→Z and Lkrr

X→Z|Y , each run with a Gaussian and with a linear kernel.

The results are shown in Figures B.2, B.3 and B.4. As expected, Lkrr
X→Z|Y does not detect any causality

regardless of the kernel chosen. When no side information is taken into consideration we should see

the indirect causality x→ z being picked up, however this is the case only for kernelised Geweke with

Gaussian kernel and for HSNCIC. As the dependence was nonlinear, the linear Geweke’s measure did not

detect it.
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Figure B.2: Histogram of the measurements Lkrr
X→Z (red face),Lkrr

X→Z|Y (blue face) calculated with the
kernelised Geweke’s using the linear kernel (i.e. equivalent of Granger causality).

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

Gx−>z (blue) and Gx−>z||y (red)

fr
eq

ue
nc

y 
co

un
t (

ou
t o

f t
ot

al
 5

00
)

Figure B.3: Histogram of the measurements Lkrr
X→Z (red face),Lkrr

X→Z|Y (blue face) calculated with the
kernelised Geweke’s using the Gaussian kernel.
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Figure B.4: Histogram of the measurements LHS NCIC
X→Z (red face),LHS NCIC

X→Z|Y (blue face) calculated with the
HSNCIC.

Transfer entropy, as defined in this paper, does not allow side information and therefore the result we

achieve is a distribution that appear significantly different from zero (fig B.5).
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Figure B.5: Histogram of the measurements LT E
X→Z (red face),LT E

X→Z|Y (blue face) calculated with the
transfer entropy.

B.4 Applications
Granger causality was introduced as an econometrics concept, and for many years, it was mainly used in

economic applications. After around 30 years of relatively little acknowledgement, the concept of causality
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started to gain significance in a number of scientific disciplines. Granger causality and its generalisations

and alternative formulations became popular, particularly in the field of neuroscience, but also climatology

and physiology Hlaváčková-Schindler et al. [2007], Amblard and Michel [2011], Chávez et al. [2003],

Knuth et al. [2005], Gourévitch and Eggermont [2007], Vicente et al. [2011]. The methodology was

successfully applied in those fields, particularly in neuroscience, due to the characteristics of the data

common in those fields and the fact that the assumptions of Gaussian distribution and/or linear dependence

are often reasonable [Bressler and Seth, 2011]. This is generally not the case for financial time series.

B.4.1 Applications to Finance and Economics

In finance and economics, there are many tools devoted to modelling dependence, mostly for symmet-

rical dependence, such as correlation/covariance, cointegration, copula and, to a lesser degree, mutual

information Alexander and Wyeth [1994], Cont [2005], Patton [2009], Durante [2013]. However, in

various situations where we would like to reduce the dimensionality of a problem (e.g., choose a subset of

instruments to invest in, choose a subset of variable for a factor model, etc.), knowledge of the causality

structure can help in choosing the most relevant dimensions. Furthermore, forecasting using the causal

time series (or Bayesian priors in Bayesian models or parents in graphical models [Pearl, 2000, Barber,

2012]) helps to forecast “future rather than the past”.

Financial data often have different characteristics than data most commonly analysed in biology,

physics, etc. In finance, the typical situation is that the researcher has only one long, multivariate time

series at her disposal, while in biology, even though the experiments might be expensive, most likely,

there will be a number of them, and usually, they can be reasonably assumed to be independent identically

distributed (i.i.d.). The assumption of linear dependencies or Gaussian distributions, often argued to be

reasonable in disciplines, such as neuroscience, are commonly thought to be invalid for financial time

series. Furthermore, many researchers point out that stationarity usually does not apply to this kind of

data. As causality methods in most cases assume stationarity, the relaxation of this requirement is clearly

an important direction for future research. In the sections below, we describe the results of applying

causal methods to two sets of financial data.

B.4.2 Interest Rates and Inflation

Interest rates and inflation have been investigated by economists for a long time. There is considerable

research concerning the relationship between inflation and nominal or real interest rates for the same

country or region, some utilising tools of Granger causality (for example, Eichler [2007]).

In this experiment, we analyse related values, namely the consumer price index for the United States

(U.S. CPI) and the London Interbank Offered Rate (Libor) interest rate index. Libor is often used as a

base rate (benchmark) by banks and other financial institutions, and it is an important economic indicator.

It is not a monetary measure associated with any country, and it does not reflect any institutional mandate
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in contrast to, for example, when the Federal Reserve sets interest rates. Instead, it reflects some level of

assessment of risk by the banks who set the rate. Therefore, we ask whether we detect that one of these

two economic indicators causes the other one in a statistical sense?

We ran our analysis for monthly data from January 31, 1986, to October 31, 2013, obtained from

Thomson Reuters. The implementation and parameter values used for this analysis were similar to those

in the simulated example (Section 2.2.2). We used kernelised Geweke’s measure with linear and Gaussian

kernels. Parameters for the ridge regression were at a preset level in the range of [27, · · · , 213] or as a

median.

We investigated time-windows of size 25, 50, 100 and 250. The most statistically significant and

interpretable results were observed for the longer windows (250 points), where Geweke’s measure and

kernelised Geweke’s measure show a clear indication of the direction U.S. CPI → Libor. For shorter

windows of time, significant p-values were obtained considerably less often, but the results were consistent

with the results for the longer time window. The dependence for the 250 day window were seen most

strongly for Lag 1 (i.e., one month) and less strongly for Lags 2, 7, 8, 9, but there is no clear direction for

the interim lags. In Figures B.6–B.9, we report p-values for the assessment of causality for Lags 1, 2 and

7 alongside the scatter plot showing p-values and the values of Geweke’s measure. All of the charts have

been scaled to show p-values in the same range [0,1]. We can clearly see the general trend that the higher

the values of causality, the lower their corresponding p-values.
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Figure B.6: Kernelised Geweke’s measure of causality. The left chart shows sets of p-values for the
hypothesis that inflation statistically causes Libor (blue line) or the other way round (red line), when a
model with one lag is considered. The right chart shows the scatter plot of p-values and the value of the
causality measure.
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In Figure B.6, we observe that the U.S. CPI time series lagged by one month causes one-month

Libor in a statistical sense, when assessed with kernelised Geweke’s measure with Gaussian kernel. The

p-values for the hypothesis of causality in this direction allow us to accept (not reject) this hypothesis

at a significance level of 0.01 in most cases, with the p-values nearly zero most of the time. We can

also observe that several of the causality measurements are as high as 0.2, which can be translated to an

improvement of roughly 0.18 in the explanatory power of the model citenote6. Applying the linear kernel

(Figure B.7) resulted in somewhat similar patterns of measures of causality and p-values, but the two

directions were less separated. Interest rates causing Libor still have p-values at zero most of the time,

but the other direction has p-values that fall below the 0.1 level for several consecutive windows at the

beginning, with the improvement in the explanatory power of the model at a maximum 0.07 level; our

interpretation is that the causality is nonlinear.
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Figure B.7: Linear Geweke’s measure of causality. (Left) Sets of p-values for the hypothesis of statistical
causality in the direction U.S. consumer price index → one-month Libor (blue line) or the other way
round (red line), when a model with a linear kernel and Lag 1 is considered. (Right) Scatter plot of
p-value and value of the causality measure.

The results for the second lag, given in Figure B.8, are no longer as clear as for Lag 1 in Figure B.6

(Gaussian kernel in both cases). The hypothesis of inflation causing interest rates still has p-values close

to zero most of the time, but the p-values for the other direction are also small. This time, the values of

causality are lower and reach up to just below 0.08. Using a linear kernel, we obtain less clear results, and

our interpretation is that the causal direction CPI→ Libor is stronger, but there might be some feedback,

as well.

Figure B.9 presents the results of using a linear kernel, which shows a much better separation of
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the two directions, applied to the model with Lag 7. Very similar results can be seen for models with

Lags 8 and 9. There is no obvious reason why the linear kernel performed much better than the Gaussian

kernel for these large lags. We offer the interpretation that no nonlinear causality was strong enough and

consistent enough and that this was further obscured by using a nonlinear kernel. The conclusion here is

that model selection is an important aspect of detecting causality and needs further research.
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Figure B.8: Kernelised Geweke’s measure of causality. (Left) Sets of p-values for the hypothesis of
statistical causality in the direction U.S. CPI→ one-month Libor (blue line) or the other way round (red
line), when the model with the Gaussian kernel and Lag 2 is considered. (Right) Scatter plot of the
p-value and the value of the causality measure.
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Figure B.9: Linear Geweke’s measure of causality. (Left) Sets of p-values for the hypothesis of statistical
causality in the direction U.S. CPI→ one-month Libor (blue line) or the other way round (red line), when
model with a linear kernel and Lag 7 is considered. (Right) Scatter plot of the p-value and the value of
the causality measure.

In our analysis, we did not obtain significant results for transfer entropy or HSNCIC. The results

for Lag 1 for transfer entropy and HSNCIC are shown in Figures B.10 and B.11, respectively. For Lag
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1, there was a significant statistical causality in the direction U.S. CPI→ one-month Libor supported

by both Geweke’s measures. This is barely seen for transfer entropy and HSNCIC. p-values for transfer

entropy are at a level that only slightly departs from a random effect, and for HSNCIC, they are often

significant; however, the two directions are not well separated. The results for higher lags were often

even more difficult to interpret. We must stress that the different implementation of transfer entropy and

parameter choice for HSNCIC might result in better performance (please refer to Sections B.5.0.1 and

B.5.1).
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Figure B.10: Transfer entropy. (Left) sets of p-values for the hypothesis of statistical causality in the
direction U.S. CPI → one-month Libor (blue line) or the other way round (red line), when Lag 1 is
considered. (Right) Scatter plot of the p-value and the value of the causality measure.
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Figure B.11: HSNCIC. (Left) sets of p-values for the hypothesis of statistical causality in the direction
U.S. CPI→ one-month Libor (blue line) or the other way round (red line), when Lag 1 is considered.
(Right) Scatter plot of the p-value and the value of the causality measure.
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B.4.3 Equity versus Carry Trade Currency Pairs

We analysed six exchange rates (AUDJPY, CADJPY, NZDJPY, AUDCHF, CADCHF, NZDCHF and the

index S&P) and investigated any patterns of the type “leader - follower”. Our expectation was that S&P

should be leading. We used daily data for the period July 18, 2008–October 18, 2013, from Thomson

Reuters. We studied the pairwise dependence between the currencies and S&P, and we also analysed the

results of adding the Chicago Board Options Exchange Market Volatility Index (VIX) as side information.

In all of the cases, we used logarithmic returns.

Figure B.12 presents the results of applying kernelised Geweke’s measure with a Gaussian kernel.

The plots show series of p-values for a moving window of a length of 250 data points (days), moving

each window by 25 points. Unlike in the previous case of interest rates and inflation, there is little

actual difference between the linear and Gaussian kernel methods. However, in a few cases, employing a

Gaussian kernel results in better separation of the two directions, especially CADCHF→ S&P and S&P

→ CADCHF given VIX.
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Figure B.12: Sets of p-values for the hypothesis that an exchange rate causes the equity index, S&P (blue),
or the other way round (red).

Excepting CADCHF, all currency pairs exhibit similar behaviour when analysed for the causal

effect on the S&P. This behaviour consists of a small number of windows for which a causal relationship

is significant at a p-value below 0.1, but that does not persist. CADCHF is the only currency with a

consistently significant causal effect on S&P, which is indicated for periods starting in 2008 and 2009.

As for the other direction, for AUDCHF, CADCHF and NZDCHF, there are periods where S&P has a

significant effect on them as measured by p-values.

Figure B.13 shows similar information as in Figure B.12, but taking into consideration VIX as side
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information. The rationale is that the causal effect of S&P on the carry trade currencies is likely to be

connected to the level of perceived market risk. However, the charts do not show the disappearance of a

causal effect after including VIX. While the patterns do not change considerably, we observe that exchange

rates have lost most of their explanatory power for S&P, with the biggest differences for CADCHF. There

is little difference for the p-values for the other direction; hence, the distinction between the two directions

became more significant.
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Figure B.13: Sets of p-values for the hypothesis that an exchange rate causes the equity index, S&P, given
the Volatility Index (VIX) as side information (blue) or the other way round (red).

We obtained all of the main “regimes”: periods when either one of the exchange rates or S&P had

more explanatory power (p-values for one direction were much lower than for the other) and periods

when both exhibited low or both exhibited high p-values. p-values close to one did not necessarily mean

purely a lack of causality: in such cases, the random permutations of the time series tested for causality at

a specific lag appear to have higher explanatory power than the time series at this lag itself. There are a

few possible explanations related to the data, the measures and to the nature of the permutation test itself.

We observed on the simulated data that when no causality is present, autocorrelation introduces biases

to the permutation test: higher p-values than we would expect from a randomised sample, but also the

higher likelihood of interpreting correlation as causality. Furthermore, both of these biases can result

from assuming a model with a lag different from that of the data. Correspondingly, if the data has been

simulated with instantaneous coupling and no causality, this again can result in high p-values. Out of all

four methods, transfer entropy appeared to be most prone to these biases.
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B.5 Discussion

While questions about causal relations are asked often in science in general, the appropriate methods of

quantifying causality for different contexts are not well developed. Firstly, often answers are formulated

with methods not intended specifically for this purpose. There are fields of science, for example nutri-

tional epidemiology, where causation is commonly inferred from correlation. A classical example from

economics, known as “Milton Friedman’s thermostat”, describes how lack of correlation is often confused

with lack of causation in the context of the evaluation of the Federal Reserve Friedman [2003]. Secondly,

often questions are formulated in terms of (symmetrical) dependence because it involves established

methods and allows clear interpretation. This could be a case in many risk management applications

where the question of what causes losses should be central but is not commonly addressed with causal

methods. The tools for quantifying causality that are currently being developed can help to better quantify

causal inference and better understand the results.

In this section we provide a critique of the methods to help understand their weaknesses and enable

the reader to choose the most appropriate method for intended use. This will also set out possible

directions of future research. The first part of this section describes the main differences between the

methods, followed by a few comments on model selection and problems related to permutation testing.

Suggestions of future research directions conclude the section.

B.5.0.1 Theoretical differences

Linearity versus nonlinearity. The original Granger causality and its Geweke’s measure formulation

were developed to assess linear causality and they are very robust and efficient in doing so. For data with

linear dependence using linear Granger causality is most likely to be the best choice. The measure can

work well also in cases where the dependence is not linear but has a strong linear component.

As financial data does not normally exhibit stationarity, linearity or Gaussianity, linear methods

should arguably not be used to analyse them. In practice, requirements on the size of the data sets and

difficulties with model selection take precedence and mean that linear methods should still be considered.

Direct and indirect causality. Granger causality is not transitive, which might be unintuitive.

Although transitivity would bring the causality measure closer to the common understanding of the term,

it could also make it impossible to distinguish between direct and indirect cause. As a consequence it

could make the measure useless for the purpose of reduction of dimensionality and repeated information.

However, differentiation between direct and indirect causality is not necessarily well defined. This is

because adding a conditioning variable can both introduce as well as remove dependence between variables

Hsiao [1982]. Hence the notion of direct and indirect causality is relative to the whole information system

and can change if we add new variables to the system. Using methods from graphical modelling [Pearl,

2000] could facilitate defining the concepts of direct and indirect causality, as these two terms are well
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defined for causal networks.

Geweke’s and kernelised Geweke’s measures can distinguish direct and indirect cause in some cases.

Following the example of Amblard [Amblard et al., 2012b] we suggest comparing the conditional and

non-conditional causality measurements as means of distinguishing between direct and indirect cause

for both linear and kernel Granger causality. Measures like HSNCIC are explicitly built in such a way

that they condition on side information and therefore are geared towards picking up only the direct

cause; however, this does not work as intended as we noticed that HSNCIC is extremely sensitive to

the dimensionality of the data. Transfer entropy – in the form we are using – does not consider side

information at all. A new measure, called partial transfer entropy Papana et al. [2013], Kugiumtzis [2013]

has been proposed to distinguish between direct and indirect cause.

Spurious causality. Partially covered in the previous point about direct and indirect cause, the

problem of spurious causality is a wider one. As already indicated, causality is inferred in relation to

given data and introducing more data can both add and remove (spurious) causalities. The additional

problem is that data can exhibit many types of dependency. None of the methods we discuss in this paper

is capable of managing several simultaneous types of dependency, be it instantaneous coupling, linear

or nonlinear causality. We refer the interested reader to literature on modelling Granger causality and

transfer entropy in the frequency domain or using filters Seth [2010], Lungarella et al. [2007b], Dhamala

et al. [2008].

Numerical estimator. It was already mentioned that Granger causality and kernel Granger causality

are robust for small samples and high dimensionality. Both of those measures optimise quadratic cost,

which means they can be sensitive to outliers, but kernelised Geweke’s measure can somewhat mitigate

this with parameter selection. Granger causality for bivariate data has good statistical tests for significance,

while the others do not and need permutation tests which are computationally expensive. Also, in the

case of ridge regression, there is another layer of optimising parameters which is also computationally

expensive. Calculating kernels is also relatively computationally expensive (unless the data is high-

dimensional), but they are robust for small samples.

The HSNCIC is shown to have a good estimator which in the limit of infinite data does not depend

on the type of kernel. Transfer entropy, on the other hand, suffers from issues connected to estimating a

distribution: problems with small sample size and high dimensionality. Choosing the right estimator can

help reduce the problem. A detailed overview of possible methods of estimation of entropy can be found in

Hlaváčková-Schindler et al. [2007]. Trentool, one of more popular open access toolboxes for calculating

transfer entropy, uses a nearest neighbour technique to estimate joint and marginal probabilities, that has

been first proposed by Kraskov et.al. Kraskov et al. [2004], Lindner et al. [2011], Vicente et al. [2011].

The nearest neighbour technique is data efficient, adaptive and has minimal bias Hlaváčková-Schindler

et al. [2007]. The important aspect of this approach is that it depends on a correct choice of embedding
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parameter and therefore does not allow analysing the information transfer for arbitrary lags. It also

involves additional computational cost and might be slower for low dimensional data. We tested Trentool

on several data sets and found that the demands on the size of the sample were higher than for the naive

histogram and the calculations were slower, with comparable results. The naive histogram however does

not have good performance for higher dimensions Hlaváčková-Schindler et al. [2007], in which case the

nearest neighbour approach would be advised.

Non-stationarity. This is one of the most important areas for future research. All of the described

measures suffer to some degree from an inability to deal with non-stationary data. Granger causality in

the original, linear formulation, is the only measure that explicitly assumes stationarity (more precisely,

covariance stationarity Granger [1969], Geweke [1984b]) and the asymptotic theory is developed for

that case. Geweke describes in Geweke [1984a] special cases of non-stationary processes that can still

be analysed within the standard framework and corresponding literature on adapting the linear Granger

causality framework to the case of integrated or cointegrated processes Toda and Yamamoto [1995]. In all

of those cases the type of non-stationarity needs to be known and that is a potential source of new biases

Toda and Yamamoto [1995]. The GCCA toolbox4 for calculating Granger causality provides some tools

for detecting nonstationarity and to a limited degree also for managing it [29]. In the vector autoregressive

setting of Granger causality it is possible to run parametric tests to detect nonstationarity: ADF test

(Augmented Dickey Fuller) and KPSS test (Kwiatkowski, Phillips, Schmidt, Shin). For managing non-

stationarity GCCA toolbox manual Seth [2010] suggests analysing shorter time series (windowing) and

differencing, although both approaches can introduce new problems. It is also advisable to detrend

and demean the data, and in the case of economic data it might also be possible to perform seasonal

adjustment.

The other measures described in this article do not explicitly assume stationarity, however some

assumptions about stationarity are necessary for the methods to work correctly. Schreiber developed

transfer entropy under the assumption that analysed system can be approximated by stationary Markov

processes [Schreiber, 2000]. Transfer entropy in practice can be affected if the time series is highly

nonstationary, as the reliability of the estimation of probability densities will be biased Vicente et al.

[2011], but non-stationarity due to slow change of parameters does not have to be a problem Gómez-

Herrero et al. [2015]. For the other two methods, kernelised Geweke’s measure and HSNCIC, the results

for estimator convergence are available only for stationary data, according to our knowledge. However,

the asymptotic results for HSNCIC have been developed for the too restrictive case of i.i.d. data Fukumizu

et al. [2008]5. The results for kernel ridge reression given by Hang and Steinwart [2014] have been

developed for alpha-mixing data.

4Code can be requested at: http://www.sussex.ac.uk/Users/anils/aks_code.htm
5We believe that the generalisation from i.i.d. data to alpha-mixing can be done similarly as for the HSICChwialkowski and

Gretton [2014]

http://www.sussex.ac.uk/Users/anils/aks_code.htm
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Choice of parameters. Each of the methods requires parameter selection – an issue related to

model selection described in Section B.5.1. All of the methods need a choice of the number of lags (lag

order), while kernel methods additionally require choice of kernel, kernel parameter (kernel size) and

regularisation parameter.

In the case of the Gaussian kernel, the effect of the kernel size on the smoothing of the data

can be understood as follows Fukumizu [2007], Shawe-Taylor et al. [2004]. The Gaussian kernel

k(x, y) = exp(−∥x − y∥2/σ2) corresponds to an infinite dimensional feature map consisting of all possible

monomials of input features. If we express a kernel as a Taylor series expansions, using the basis

1, u, u2, u3, ... the random variables X and Y can be expressed in RKHS by:

Φ(X) = k(X, ·) ∼ (1, c1X, c2X2, c3X3, ...)T

Φ(Y) = k(Y, ·) ∼ (1, c1Y, c2Y2, c3Y3, ...)T ,

(B.10)

therefore the kernel function can be expressed as follows:

k(x, y) = 1 + c1xy + c2x2y2 + c3x3y3 + ... (B.11)

and the cross-covariance matrix will contain information on all of the higher-order covariances:

ΣXY ∼



0 0 0 0 0

0 c2
1Cov[X,Y] c1c2Cov[X,Y2] c1c3Cov[X,Y3] ...

0 c2c1Cov[X2,Y] c2
2Cov[X2,Y2] c2c3Cov[X2,Y3] ...

0 c3c1Cov[X3,Y] c3c2Cov[X3,Y2] c2
3Cov[X3,Y3] ...

0 ... ... ... ...


(B.12)

According to Fukumizu et al. [2008] the HSNCIC measure does not depend on the kernel in the

limit of infinite data. However, the other parameters still need to be chosen, which is clearly a drawback.

Kernelised Geweke’s measure optimises parameters explicitly with the cross-validation while HSNCIC

focuses on embedding the distribution in RKHS with any characteristic kernel. Additionally, transfer

entropy requires the choice of method for estimating densities and the binning size in the case of naive

histogram approach.

Another important aspect is the choice of lag order and the number of lags. We observed in Section

B.2 that the two Geweke’s measures were not sensitive to the choice of lags and we were able to correctly

recognise causality both in the case of smaller and bigger lag ranges used. The two other measures

however behaved differently. HSNCIC is often not able to observe causality in the case of more lags

analysed at the time, but performed well for single lags. Transfer entropy flagged spurious causality in
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Measures Properties
Linearity versus nonlinearity

Granger causality assumes linearity; the best method for linear data, the worst for nonlinear
kernelised Geweke’s works for both linear and nonlinear data
transfer entropy works for both linear and nonlinear data
HSNCIC works for both linear and nonlinear data if low dimension

Distinguishing direct from indirect causality
Granger causality to some extent by comparing measure with and without side information
kernelised Geweke’s to some extent by comparing measure with and without side information
transfer entropy not able to (consider partial transfer entropy)
HSNCIC to some extent, as it is designed to condition on side information

Spurious casuality
Granger causality susceptible
kernelised Geweke’s susceptible
transfer entropy susceptible
HSNCIC susceptible

Good numerical estimator
Granger causality yes
kernelised Geweke’s yes
transfer entropy no
HSNCIC yes

Nonstationarity
Granger causality v. sensitive; test with ADF, KPSS, use windowing, differencing, large lag
kernelised Geweke’s somewhat sensitive; online learning is a promising approach
transfer entropy somewhat sensitive
HSNCIC somewhat sensitive

Choice of parameters
Granger causality lag
kernelised Geweke’s kernel, kernel size, regularisation parameter, lag; uses cross-validation
transfer entropy lag, binning size (if histogram approach used)
HSNCIC kernel, kernel size, regularisation parameter, lag

Table B.3: The summary of main features of the different measures

one case where lag was far from the “true” one. However for real data, with more complex structure, the

choice of lag is likely to be important for all measures (see Section B.5.1).

B.5.1 Model selection

For the kernel measures we observed that model selection was an important issue. In general, the choice

of kernel influences the smoothness of the class of functions considered, while the choice of regulariser

controls the trade-off between smoothness of the function and the error of the fit. Underfitting can be a

consequence of a too large regulariser and a too large kernel size (in case of a Gaussian kernel); conversely,

overfitting can be a consequence of a too small regulariser and a too small kernel size. One of the methods

suggested to help with model selection is cross-validation [Amblard et al., 2012b]. This method is

particularly popular and convenient for the selection of kernel size and regulariser in the ridge regression.

Given nonstationary data it would seem reasonable to fit the parameters; however, we concluded that

cross-validation was too expensive in the computational sense and did not provide the expected benefits.
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Another aspect of model selection (and choice of parameters) is the determination of an appropriate

lag order. For kernel methods increasing the number of lags does not increase the dimensionality of

the problem as could be expected in case of the methods representing the data explicitly. In the case of

kernelised Geweke’s measure, increasing the number of lags decreases the dimensionality of the problem,

due to the fact that the data is represented in terms of (n − p) × (n − p) pairwise comparisons, where n

is the number of observations and p – the number of lags. On the other hand, increasing the number of

lags will decrease the number of degrees of freedom. This decrease will be less pronounced for kernel

methods which allocate smaller weights to higher lags (as is the case in Gaussian kernel, but not for the

linear kernel). Apart from cross-validation the other approaches to choosing the lag order suggested in the

literature are based on the analysis of the autocorrelation function or partial autocorrelation Hamilton

[1994], Lindner et al. [2011].

We feel that more research is needed on model selection.

B.5.2 Testing

Indications of spurious causality can be generated not only when applying measures of causality but

also when testing those measures. The permutation test that was described in the Section 4.5 involves

the destruction of all types of dependency, not just causal dependence. In practice it means that for

example the existence of instantaneous coupling can result in incorrect deduction of causal inference,

if the improvement in prediction due to existence of causality is confused with improvement due to

instantaneous coupling. Nevertheless, simplicity is the deciding factor in favour of permutation tests over

other approaches.

Several authors Seth and Principe [2011], Amblard et al. [2012b], Sun [2008] propose repeating the

permutation test on subsamples to achieve acceptance rates, an approach we do not favour in practical

applications. The rationale for using acceptance rates is that the loss in significance from decreasing the

size of the sample will be more than made up by calculating many permutation tests for many subsamples.

We believe this might be reasonable in the case where the initial sample is big and the assumption of

stationarity is reasonable, but that was not the case for our data. We instead decided to report p-values for

an overlapping running window. This allows us to additionally assess consistency of results and does not

require us to choose the same significance rate for all of the windows.
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Experiments: testing sensitivity and

misspecification

Before going into specific result, an illustration of the type of outputs that we have when running our

simulations / analysis. Below two examples showing the values of the test statistics from the Equation

5.9 change for different data samples, and what values of the χ2 cdf they would obtain. The rejection

level of 0.9 (significance value of α = 0.1) is a value that we will often use, but that has been chosen

arbitrarily. The Figure C.1 illustrates a compound test with optimised parameters – showing the values of

test statistics LX→Y vs LY→X and the distribution χ2
2(2LX→Y ) vs χ2

2(2LY→X). The data has been generated

from causality structure 1 with strong causal effect X → Y , with each of the 50 data sample being of

length 500.
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Figure C.1: Test statistics and corresponding cumulative density function evaluations. Causality structure
1, true parameters: aX = aY = aZ = 0.3, bY = bZ = 0.7, q = 2, la = lb = e−6, σ f = e−10, σn = 0.01. The
horizontal axis represents 50 separate trials, each with a time series of length 500.

The interpretation of the Figure C.1 is the following. From the left plot we can see that the test

statistics LX→Y has values which are separated from and considerably larger than the test statistics LY→X .

This by itself is an indication that the causal effect X → Y should be stronger than Y → X. From the plot

of cdf evaluations we observe that all of the values of LX→Y are in the tail (with cdf values of exactly 1)

and therefore the null hypothesis is strongly rejected at any confidence level, for each of the trials. This
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means that the estimator of the power of the test (probability of rejecting null hypothesis if it’s not true,

also equal to 1 - type II error rate) is equal to 1 at any confidence level. If we set up confidence level at

0.1, then one trial will lead to rejecting the null hypothesis in the Y → X direction, which corresponds to

type I error rate of 0.02.

C.1 Model Sensitivity Analysis

It is important to ensure that on one hand the tests behave in a stable way when parameters are changed

– at least in some non-extreme region, and on the other hand that the tests are not heavily penalizing

misspecifications.

This test is performed for the first data structure (Section 3.2). We use the following settings: Matern

kernel, additive noise with variance of σ2
n = 0.01, grid of 21 different parameter values for each parameter.

We use each time 100 trials and the length of the simulated time series of 20, 50, 100, 200, 500, 1000. We

report rejection or lack of rejection of the test with the significance of α = 0.1 (so rejecting null hypothesis

above 0.9). The starting point is the parameter set: aX = aY = aZ = 0.3 and bY = bZ = 0.7 (parameters

of, respectively, autoregression and causality in the mean, as per Equations 3.51), la = lb = e−1, σ f =

e−3, σn = 0.1 (covariance parameters: autoregression, causality, multiplicative scaling, noise covariance,

Equations 3.52). Parameters are changed one at a time, and new set of data is generated for each set of

parameters.

We don’t report results of the sensitivity test for the directions without causality: Y → X or Z → X,

as the test statistics in those cases will always be zero. When performing simple test (i.e. with the true

parameters) the direction with no causality present will always show test statistics equal to zero - by

definition lack of causality means that test statistics is quantifying difference between equivalent models.

When changing parameters in both models at the same time, we no longer use the true parameters, but we

still compare models that are equivalent.

In the direction with causality X → Y we see that the behaviour of the test is very stable, with

the changes in the frequency of rejection / non-rejection (here presented as estimated power of the test)

influenced mostly by the sample size. The power of the test is the probability P(H0 rejected|H1 true),

which in our case is estimated as 0.01 ·
∑100

i F(2LX→Y ), where we have 100 trials, F denotes the cdf of χ2
2

and 0.9 is 1 - confidence level.

When compared to the X → Y direction, the results for Y → Z are less uniform, as shown in Table

C.1. The Table C.1 demonstrates the power of the test for minimum and maximum of the parameter range,

which is enough to portray the behaviour of the test for all parameters except σ f for the Y → Z direction,

for which local minimum can be seen in the Figure C.2. Based on the Table C.1, and corresponding

Figure C.2, we can also observe that the results for Y → Z are more sensitive to the change in parameters

than the results for X → Y , in particular the causal coefficient bZ .
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XY bY aY aX lb la σ f σY
n σX

n

uniform? + + + + + +- – –

min, max min, max min, max min, max min, max min, max min, max min, max

n=20 0.45, 0.98 0.84, 0.84 0.83, 0.88 0.84, 0.84 0.84, 0.84 0.80, 0.84 1.00, 0.09 0.40, 1.00

n=50 0.76, 1.00 0.98, 0.98 0.97, 1.00 0.98, 0.98 0.98, 0.98 0.97, 0.92 1.00, 0.46 0.80, 1.00

n=100 0.92, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 0.96 1.00, 0.70 0.91, 1.00

n=200 0.99, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 0.87 0.99, 1.00

n=500 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 0.99 1.00, 1.00

n=1000 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00

YZ bZ aZ aY lb la σ f σZ
n σY

n

uniform? – +- + + + – – –

min, max min, max min, max max, min max, min max, min max, min max, min

n=20 0.02, 0.87 0.55, 0.22 0.33, 0.39 0.35, 0.35 0.35, 0.35 0.38, 0.63 0.35, 0.38 0.30, 0.96

n=50 0.02, 1.00 0.72, 0.40 0.53, 0.61 0.55, 0.55 0.56, 0.56 0.79, 0.80 0.26, 0.77 0.50, 0.98

n=100 0.05, 1.00 0.87, 0.52 0.69, 0.79 0.70, 0.71 0.71, 0.72 0.99, 0.85 0.21, 0.97 0.64, 1.00

n=200 0.13, 1.00 0.98, 0.70 0.81, 0.93 0.86, 0.87 0.85, 0.89 1.00, 0.98 0.25, 1.00 0.77, 1.00

n=500 0.31, 1.00 1.00, 0.90 0.94, 0.99 0.98, 0.98 0.97, 0.99 1.00, 1.00 0.80, 1.00 0.85, 1.00

n=1000 0.50, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.97, 1.00

Table C.1: How power of the test changes with length of the time series (n) and changes of single
parameters. The values of the power of the test are given at the boundary parameter values (corresponding
to the values in Fig C.2 and for time series of length n = 20, 50, 100, 200, 500, 1000).
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Figure C.2: Causality structure 1, direction Y → Z original parameters: aX = aY = aZ = 0.3, bY = bZ =

0.7, q = 2, la = lb = e−1, σ f = e−3, σn = 0.1. Heatmaps show power of the test (hypothesis of no-causality
rejected for cdf above 0.9) for different lengths of the time series and for one of the mean or covariance
parameters changing + − 50% in simulation and model as well.
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C.1.1 Model Sensitivity of wGPC

To test sensitivity of the wGPC model, we have chosen a starting point of parameters similar to those in

the sensitivity experiment for GPC model, results in Table (C.1 ). Those parameters are: aY = 0.3, aX =

0.3, la = −1, lb = −1, s f = −3, σn = 0.1. We have chose, however, to decrease the main parameter

responsible for causality: bY = 0.3 to be able to see the results more clearly. The parameters specific for

the warpings were chosen to have starting point of γ = 0.3, ν = 5

For most of the parameters, the wGPC model behaves in a robust way – increasing power of the test

with increasing length of the data, and not exhibiting numerical instability. The only exception is the

shape parameter ν, responsible for the leptokurtic tails. It is something that we have observed repeatedly,

that for small values of ν, become less stable. The theoretical explanation for that is the fact that for ν = 2,

skew-t distribution does not have a finite second moment!

length aY aX bY γ

min max min max min max min max min max

0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45

20 0.67 0.63 0.61 0.73 0.3 0.87 0.35 0.89

50 0.83 0.63 0.62 0.92 0.05 0.98 0.41 0.99

100 0.99 0.99 0.98 1 0.81 1 0.94 1

200 1 1 1 1 1 1 1 1

length ν la lb s f σn

min max min max min max min max min max

2.5 7.5 -0.5 -1.5 -0.5 -1.5 -1.5 -4.5 0.05 0.15

20 0.98 0.52 0.65 0.65 0.65 0.65 0.24 0.68 0.98 0.97

50 1 0.72 0.76 0.76 0.76 0.76 0 0.83 1 1

100 1 0.99 0.99 0.99 0.99 0.99 1 0.99 1 1

200 NaN 1 1 1 1 1 1 1 1 1

Table C.2: How power of the test changes with length of the time series (n) and changes of single
parameters. The values of the power of the test are given at the boundary parameter values and for time
series of length n = 20, 50, 100, 200).

C.2 Model Misspecification Analysis

For the misclassification test we’ve chosen different starting settings for the covariance function la = lb =

e−3, σ f = e1, which result in higher covariance, and much more pronounced effects of misclassification

of covariance functions parameters. Starting from the base set of parameters we alter one parameter at

a time when calculating the test statistic, but we use data generated for the base parameters: hence that
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altered parameter is misspecified. It has to be emphasized that in the misspecification test a parameter

will be altered for model A or model B, but not both.
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Figure C.3: Power of the test of the hypothesis of non-causality in the direction X → Y changes with the sample size and misspecification of a

single hyperparameter (here – covariance parameters).

log(l
a
); in A

-4.5 -3   -1.65
Parameter range

500

100

20 D
at

a 
le

ng
th

0

0.5

1
log(σ

f
); in A

1.5 1   0.55
Parameter range

500

100

20 D
at

a 
le

ng
th

0

0.5

1
log(σ

n
); in A

-3.45 -2.3 -1.27
Parameter range

500

100

20 D
at

a 
le

ng
th

0

0.5

1

log(l
a
); in B

-4.5 -3   -1.65
Parameter range

500

100

20 D
at

a 
le

ng
th

0.6

0.7

0.8

0.9

1
log(σ

f
); in B

1.5 1   0.55
Parameter range

500

100

20 D
at

a 
le

ng
th

0.85

0.9

0.95

1
log(σ

n
); in B

-5.18 -3.45 -1.9 
Parameter range

500

100

20 D
at

a 
le

ng
th

0

0.5

1

Figure C.4: How 1-rejection rate of the hypothesis of non-causality in the direction Y → X changes with the sample size and misspecification of a

single hyperparameter (here – covariance parameters).

Results of misclassification in the mean, which we don’t report, are straightforward to understand

and interpret. The power of the test depends mostly on the size of the sample and, to a smaller degree, on

the deviation from the true mean. For the direction where causality exists, the power of the test changes

almost uniformly with the misclassification of the mean parameter. This is in line with observations that

we will see repeatedly – that the power of the test is more robust to any parameter changes in the presence

of causality in mean.

Results of misclassification in the covariance, Figures C.3 and C.4, are not so straightforward to

understand and interpret though. In particular, the performance of the tests seems to be more sensitive to

the misclassification of the noise – this is not observed when parameters of the covariance (mainly σ f )
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are smaller.

Note: the 50% change in the parameters relates to the model parameters, and the covariance

parameters are all used as logarithm, so the actual decrease/increase is much bigger than for the mean.
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Luca Faes, Giandomenico Nollo, and Alberto Porta. Information-based detection of nonlinear granger

causality in multivariate processes via a nonuniform embedding technique. Physical Review E, 83(5):

051112, 2011.

Eugene F Fama and Kenneth R French. Permanent and temporary components of stock prices. Journal of

political Economy, 96(2):246–273, 1988.

Simone Fatichi. ARFIMA simulations, 2009.

Paweł Fiedor. Causal non-linear financial networks. arXiv preprint arXiv:1407.5020, 2014.

Pawel Fiedor. Granger-causal nonlinear financial networks. Journal of Network Theory in Finance, 1(2):

53–82, 2015.

Jean-Pierre Florens and Denis Fougere. Noncausality in continuous time. Econometrica: Journal of the

Econometric Society, pages 1195–1212, 1996.

Jean-Pierre Florens and Michel Mouchart. A note on noncausality. Econometrica: Journal of the

Econometric Society, pages 583–591, 1982.

Jean-Pierre Florens and Michel Mouchart. A linear theory for noncausality. 53(1):157–75, 1985.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.

Springer series in statistics New York, 2001.

Milton Friedman. The fed’s thermostat. The Wall Street Journal, pages 8–8, 2003.

Caren A Frosch and Philip N Johnson-Laird. Is everyday causation deterministic or probabilistic? Acta

psychologica, 137(3):280–291, 2011.

Kenji Fukumizu. Kernel methods for dependence and causality. Machine Learning Summer School, 2007.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of conditional

dependence. pages 489–496, 2008.



262 BIBLIOGRAPHY

Thomas Fung and Eugene Seneta. Modelling and estimation for bivariate financial returns. International

statistical review, 78(1):117–133, 2010a.

Thomas Fung and Eugene Seneta. Tail dependence for two skew t distributions. Statistics & probability

letters, 80(9-10):784–791, 2010b.

Paul H Garthwaite, Ian T Jolliffe, IT Jolliffe, and Byron Jones. Statistical inference. Oxford University

Press on Demand, 2002.

John Geweke. Measurement of linear dependence and feedback between multiple time series. Journal of

the American statistical association, 77(378):304–313, 1982.

John Geweke. Inference and causality in economic time series models. Handbook of econometrics, 2:

1101–1144, 1984a.

John F Geweke. Measures of conditional linear dependence and feedback between time series. Journal of

the American Statistical Association, 79(388):907–915, 1984b.

Sid Ghoshal and Stephen Roberts. Extracting predictive information from heterogeneous data streams

using gaussian processes. 5(1-2):21–30, 2016.

Agathe Girard, Carl Edward Rasmussen, Joaquin Quinonero Candela, and Roderick Murray-Smith.

Gaussian process priors with uncertain inputs application to multiple-step ahead time series forecasting.

In Advances in neural information processing systems, pages 545–552, 2003.
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