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Abstract 21 

Predicting vector abundance and seasonality, key components of mosquito-borne 22 

disease (MBD) hazard, is essential to determine hotspots of MBD risk and target 23 

interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading 24 

cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but 25 

data on the principal vector Culex tritaeniorhynchus is lacking. We developed a 26 

Bayesian joint-likelihood model that combined information from available vector 27 

occurrence and abundance data to predict seasonal vector abundance for C. 28 

tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the 29 

environmental drivers of these patterns. Using data collated from 57 locations from 30 

24 studies, we find distinct seasonal and spatial patterns of JE vector abundance 31 

influenced by climatic and land use factors. Lagged precipitation, temperature and 32 

land use intensity metrics for rice crop cultivation were the main drivers of vector 33 

abundance, independent of seasonal, or spatial variation. The inclusion of 34 

environmental factors and a seasonal term improved model prediction accuracy 35 

(mean absolute error [MAE] for random cross validation = 0.42) compared to a 36 

baseline model representative of static hazard predictions (MAE = 0.51), signalling 37 

the importance of seasonal environmental conditions in predicting JE vector 38 

abundance. Vector abundance varied widely across India with high abundance 39 

predicted in northern, north-eastern, eastern, and southern regions, although this 40 

ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, 41 

Tamil Nadu). One-month lagged predicted vector abundance was a significant 42 

predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), 43 

highlighting the possible development of vector abundance as a proxy for JE hazard. 44 

We demonstrate a novel approach that leverages information from sparse vector 45 
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surveillance data to predict seasonal vector abundance –a key component of JE 46 

hazard – over large spatial scales, providing decision-makers with better guidance 47 

for targeting vector surveillance and control efforts.  48 

 49 

Author summary 50 

Japanese encephalitis (JE) is the leading cause of viral encephalopathy in Asia with 51 

an estimated 100,000 annual cases and 25,000 deaths. However, insufficient data 52 

on the predominant mosquito vector Culex tritaeniorhynchus – a key component of 53 

JE hazard – precludes hazard estimation required to target public health 54 

interventions. Previous studies have provided limited estimates of JE hazard, often 55 

predicting geographic distributions of potential vector occurrence without accounting 56 

for vector abundance, seasonality, or uncertainty in predictions. This study details a 57 

novel approach to predict spatiotemporal patterns in JE vector abundance using a 58 

joint-likelihood modelling technique that leverages information from sparse vector 59 

surveillance data. We showed that patterns in JE vector abundance were driven by 60 

seasonality and environmental factors and so demonstrated the limitations of 61 

previously available static vector distribution maps in estimating the vector 62 

population component of JE hazard. One-month lagged vector abundance 63 

predictions showed a positive relationship with JE outbreaks, signalling the potential 64 

use of vector abundance as a proxy for JE hazard. While vector surveillance data 65 

are limited, joint-likelihood models offer a useful approach to inform vector 66 

abundance predictions. This study provides decision-makers with a more complete 67 

picture of the distribution of JE vector abundance and can be used to target vector 68 

surveillance and control efforts and enhance the allocation of resources.  69 
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 70 

Background  71 

Mosquito-borne diseases (MBDs) pose a substantial global health concern due to 72 

their ongoing geographic expansion and increasing incidence [1,2]. Identifying 73 

hotspots of MBD risk is critical in informing effective interventions and safeguarding 74 

public health [3]. This is particularly important for understudied diseases, such as 75 

neglected tropical diseases, because resources for disease surveillance and control 76 

are often limited [4]. Mosquito-borne disease risk can be understood as the likelihood 77 

of an outbreak due to exposure of a susceptible population to an infected mosquito 78 

vector (hazard) [5]. Defining areas of MBD hazard requires knowledge of pathogen 79 

prevalence in reservoir host and vector populations however, these data are often 80 

not available. Therefore, models that predict how vector populations may vary over 81 

space and time, thereby estimating a key component of hazard, have become vital 82 

tools in MBD epidemiology [6,7]. Nevertheless, considerable costs associated with 83 

vector sampling [8] have resulted in the limited availability of long-term vector 84 

surveillance datasets over large spatial scales, hindering the ability to predict vector 85 

abundance accurately and inform interventions.  86 

 87 

Vector abundance i.e., the number of individuals in a site at a given time, and 88 

seasonality i.e., intra-annual change in abundance, are important contributors to 89 

pathogen establishment, persistence and transmission [6,8,9]. For example, regions 90 

with high vector abundance and a low seasonality (i.e., longer periods when adult 91 

vectors are active) will lead to increased likelihood of pathogen establishment and 92 

persistence [8]. Longer periods of high vector abundance may also increase the 93 
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likelihood of pathogen transmission between vectors and hosts due to increased 94 

contact rates that could lead to pathogen exposure i.e., via vector feeding [8,10]. 95 

Despite the epidemiological importance of vector abundance, most commonly 96 

available vector surveillance data consist of categorical information on occurrence 97 

(i.e., presence/absence) and rarely provide quantitative information on abundance 98 

[11].  99 

 100 

The relative availability of vector occurrence data has contributed to the popularity of 101 

species distribution models (SDMs) in MBD research [6,7,12]. These statistical 102 

models typically correlate the presence of a species at multiple locations with 103 

environmental covariates to predict species distributions [13]. Although they provide 104 

valuable information on potential vector geographic distributions, knowledge of 105 

where vectors can occur is insufficient to provide an accurate estimation of MBD 106 

hazard [8] particularly because these models do not consider spatial and temporal 107 

dynamics [14]. In addition, for widely-used SDM approaches such as boosted 108 

regression tree (BRT) models and MaxEnt, uncertainty estimates are produced by 109 

bootstrapping data which can be computationally prohibitive [15,16]. Without 110 

predictive uncertainty metrics, results may be misleading for decision-makers since it 111 

may be difficult to distinguish between regions with accurate predictions and those 112 

that have a high degree of uncertainty [17]. Alternatively, seasonal vector abundance 113 

has been estimated using mechanistic models of vector populations based on a 114 

system of differential equations depicting each life stage [10,18]. However, these 115 

models rely on large amounts of experimental or empirical data [6] which can be 116 

expensive to obtain and are often sparse for many vector species [19]. The lack of 117 

long-term abundance data [1,9] has also meant that statistical models of seasonal 118 
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vector abundance often exist for local [20–22] rather than for national or regional 119 

geographic scales. Overall, there is a need for improved estimates of components of 120 

MBD hazard which also account for uncertainty to enable a better understanding of 121 

seasonal patterns in the risk of disease transmission. 122 

 123 

One of the most important yet relatively understudied MBDs is Japanese 124 

encephalitis (JE), the leading cause of viral encephalopathy in Asia [23–25]. JE 125 

accounts for over 100,000 human cases and 25,000 deaths annually, primarily 126 

affecting children and those living in rural, agricultural areas [25,26]. Although the 127 

disease is endemic in 24 countries [25], the majority (87%) of cases in Asia are 128 

reported from India, Nepal, China and Vietnam [27,28]. The causative pathogen, 129 

Japanese encephalitis virus (JEV) is maintained in an enzootic transmission cycle 130 

between mosquitoes and a range of amplifying hosts including domestic pigs and 131 

ardeid wading birds [29]. Agricultural practices such as rice cultivation and pig 132 

breeding provide an ideal environment for human exposure to JEV, however other 133 

factors such as population immunity due to vaccination will also influence the risk of 134 

disease outbreaks [30]. The virus is predominantly transmitted by the mosquito 135 

vector Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) [31] and JE 136 

outbreaks are reported to be strongly associated with vector abundance [32–34]. 137 

Despite C. tritaeniorhynchus being a major threat to human health and wellbeing, 138 

there are limited surveillance data for this species [35] which has impeded 139 

knowledge on spatiotemporal trends in vector abundance, a constituent of JE 140 

hazard.  141 

 142 
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C. tritaeniorhynchus population dynamics are strongly linked to climatic conditions, 143 

such as temperature and rainfall [36,37], and to anthropogenic activities that 144 

increase standing water, such as irrigated agriculture [38–41]. Experimental studies 145 

on other Culex species have found important life history traits such as development 146 

rate and survival generally peak at 15.7-38.0°C (mean thermal optimum = 28.4°C) 147 

and then decline to zero for thermal minima (mean = 9.5°C) and maxima (mean = 148 

39.5°C) [19]. Rainfall can both positively influence C. tritaeniorhynchus abundance 149 

via the creation of standing water for vector breeding [37,42,43] and negatively 150 

impact abundance during the monsoon [44] via the destruction of breeding sites [45]. 151 

Irrigated agriculture provides suitable habitat for vector development and C. 152 

tritaeniorhynchus is reported to breed preferentially in rice paddy fields [38,39]. 153 

Indeed, previous studies have shown that vector abundance is positively associated 154 

with rice field density [46], rice crop growth stage [40,41] and standing water 155 

availability [38,47]. Interestingly, the availability of standing water due to irrigation 156 

practices may lead to a reduction in vector seasonality (i.e., by extending vector 157 

breeding seasons), especially in arid regions which would otherwise be unable to 158 

sustain vector development during summer months [40,41,48–50]. Although 159 

environmental conditions are known to underpin the seasonal dynamics of many 160 

vector populations [18,51], the importance of these factors in driving broad-scale 161 

spatial and temporal patterns of JE vector populations remains poorly defined.  162 

 163 

Previous studies have investigated the spatial distribution of C. tritaeniorhynchus 164 

occurrence using SDMs [35,52–54] however, there is a paucity of data on seasonal 165 

vector abundance. Bayesian hierarchical modelling approaches have been used 166 

widely for other animal species to estimate biodiversity trends by integrating multiple 167 
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data types in a single estimator [55,56]. This joint-likelihood approach has also been 168 

used in MBD research to explicitly account for differences in data quality and 169 

structure (i.e., different probability distributions) and can handle and quantify sources 170 

of uncertainty associated with each data type [57,58]. Here, we use this approach to 171 

develop a joint-likelihood Bayesian hierarchical model that leverages spatial 172 

information from vector occurrence probability to estimate seasonal vector 173 

abundance for principal JE vector, C. tritaeniorhynchus across India. Firstly, our 174 

study aims to quantify the importance of different environmental drivers of C. 175 

tritaeniorhynchus abundance – a key component of JE hazard. We hypothesise that 176 

a critical driver of vector abundance is standing water provided by rice crop irrigation 177 

practices and periods of heavy rainfall during the winter and monsoon seasons. 178 

Secondly, we aim to construct seasonal vector abundance maps for India that 179 

account for uncertainty in predictions. Thirdly, we use logistic regression to test 180 

whether there is a relationship between mosquito abundance estimates and JE 181 

cases and discuss the potential for vector abundance to be used as a proxy for JE 182 

hazard. The purpose of this research is to provide decision-makers with useful 183 

information that will assist in their resource allocation for intervention strategies and 184 

highlight areas to target for future vector surveillance. India is used as a case study 185 

since it has one of the highest JE burdens in Asia [26–28] and reports both endemic 186 

and epidemic epidemiological patterns [59,60]. 187 

 188 
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Materials and methods 189 

Datasets 190 

Vector data 191 

We assembled a database of geo-referenced, spatially, and temporally unique C. 192 

tritaeniorhynchus vector occurrence and abundance records in India from published 193 

literature. A systematic literature search was conducted in PubMed and Web of 194 

Science using the search terms “Culex tritaeniorhynchus” and “India”. The search 195 

was limited to articles published in English between 1st January 1990 and 31st 196 

December 2017 and returned 101 unique citations. Article abstracts were screened 197 

to meet the following criteria for inclusion; (i) the reported study was undertaken after 198 

1990, (ii) surveys provided species-level information at the studied location, and (iii) 199 

the surveys were conducted in the mainland of India. The full text articles were then 200 

reviewed and excluded if they pooled observations for more than one month since 201 

this would increase uncertainty in the associations between vector occurrence and 202 

abundance and predictor variables. The resulting 24 studies that met the inclusion 203 

criteria were used to build the dataset. The database included 340 unique records of 204 

adult vectors which ranged from 1990-2012 from 54 sampling locations resulting in 205 

data from 352 location-months (see S1 Table). Of the 340 unique records, 74 were 206 

occurrence-only records and 266 included occurrence and abundance data (Fig 1). 207 

Records that included occurrence and abundance data were used twice in the 208 

analysis; once as occurrence data and once as abundance data (total occurrence 209 

data n= 340, total abundance data n= 267) (see S1 Table). The study period was 210 

chosen to maximise the number of vector surveillance records whilst enabling the 211 

use of high-resolution land cover datasets that were available from 1990s. We built 212 
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on previous C. tritaeniorhynchus occurrence datasets developed by Miller et al., ( 213 

2012) and Longbottom et al., ( 2017) to include information on mosquito presence, 214 

absence, and abundance, collection method, collection year and month, and habitat 215 

descriptions. Mosquito sampling locations in each study were identified as point 216 

locations. We calculated effort-corrected abundance values of C. tritaeniorhynchus 217 

from the raw measurement values by aggregating monthly counts and standardising 218 

them to survey effort (one survey hour) abundance measure for each month. Most 219 

abundance data (86%; n=228) were recorded from the state of Tamil Nadu (Fig 1A) 220 

and only four studies performed continuous abundance measurements over 221 

consecutive months (see S1 Table). Survey effort (one survey hour) vector 222 

abundance measures were transformed to logscale to conform to normality and 223 

ranged from 0 to 6.49 (0 to 655 true scale) with a mean of 3.61. The occurrence and 224 

abundance data used in the models were evenly distributed across all study months 225 

(Fig 1B). However, there is a lack of vector data from 1992 to 1998 and most 226 

abundance data were recorded from 2006 to 2012 (Fig 1C).  227 

 228 

Additional inferred absence vector data 229 

We randomly generated additional absence data for regions above 3500m since to 230 

our knowledge, this is above the altitude that C. tritaeniorhynchus mosquitoes have 231 

been recorded [61]. To limit artefactual spatial and temporal autocorrelation in model 232 

residuals, we limited these data to a total of 20 records from 12 locations which were 233 

randomly selected from high altitude regions in the states of Arunachal Pradesh, 234 

Himachal Pradesh, Jammu and Kashmir and Sikkim (Fig 1A) and randomly assigned 235 

a date from the study period.  236 
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 237 

Fig 1. Spatial and temporal distribution of vector surveillance dataset used in 238 

model. (A) Points show the geographical sampling locations (n= 57) of the C. 239 

tritaeniorhynchus records across India*, with occurrence-only records coloured 240 

orange (n = 74), records which included occurrence and abundance data in green (n 241 

= 266), and pseudoabsence records in purple (n = 20). Stacked barplots show the 242 

temporal distribution of the total vector occurrence (orange) and abundance data 243 

(green) used in the analysis per month (B) and year (C). *Abbreviations for Indian 244 

states and union territories: AP - Andhra Pradesh,  AR - Arunachal Pradesh, AS - 245 

Assam, BR - Bihar, CH – Chandigarh, CT- Chhattisgarh, DD - Daman and Diu, DL - 246 

Delhi, DN - Dadra and Nagar Haveli, GA – Goa, GJ – Gujarat, HP - Himachal 247 
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Pradesh, HR - Haryana, JH - Jharkhand, JK - Jammu and Kashmir, KA - Karnataka, 248 

KL – Kerala, MH - Maharashtra, ML - Meghalaya, MN - Manipur, MP - Madhya 249 

Pradesh, MZ - Mizoram, NL - Nagaland, OR - Odisha, PJ - Punjab, PY - Puducherry, 250 

RJ - Rajasthan, SK - Sikkim, TL – Telangana, TN – Tamil Nadu, TR - Tripura, UP - 251 

Uttar Pradesh, UT - Uttarakhand, WB – West Bengal.  252 

 253 

Seasonal, environmental and land use data 254 

We selected environmental variables hypothesised or reported to influence the 255 

presence or abundance of C. tritaeniorhynchus populations (see S2 Table and S1 256 

Fig). For instance, temperature is known to influence the development and survival 257 

rates of mosquito vectors and the availability of standing water provided from 258 

precipitation or irrigated agricultural practices is required for mosquito breeding 259 

[41,50,62]. The full suite of covariates tested across all analyses, data sources and 260 

associated hypotheses, including those considered but then dropped from the 261 

model, are described as follows:  262 

 263 

Climate variability was incorporated through inclusion of TerraClimate [63] high-264 

spatial resolution rasters (1/24°, ~4-km) for monthly cumulative precipitation (mm), 265 

monthly maximum and minimum temperatures (⁰C). We calculated monthly mean 266 

temperature (⁰C) from the maximum and minimum temperature datasets. Mean 267 

monthly precipitation was log transformed to represent the nonlinear effect reported 268 

between rainfall and vector abundance [64]. To represent the lag association 269 

between weather conditions and mosquito abundance [30], we also calculated 270 

average temperature and precipitation data for the two months prior to the vector 271 
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observation (henceforth referred to as two-month lagged variables in this study) to 272 

account for the period for mosquito larval habitat to increase and the development 273 

period of the mosquito.  274 

 275 

We obtained annual land cover data from the European Space Agency (ESA) 276 

Climate Change Initiative Land Cover dataset (version 3.14) for 1992-2012 (ESA; 277 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php) with a spatial resolution of 300m. 278 

The 37 original land cover classes were reclassified into six broad groups 279 

(agricultural, mixed agricultural, forest, mixed vegetation, urban and water) since the 280 

land cover types associated with the vector surveillance data were not varied enough 281 

to evaluate the importance of more diverse land classes (i.e., rainfed versus irrigated 282 

cropland). Zonal statistics function was used to determine the percent cover of each 283 

of land cover class within 1km buffer around each location, with the buffer size based 284 

on previous analyses [65]. Since ESA land cover data were missing for 1990 and 285 

1991, we assessed changes in the proportion of land cover classes for the period 286 

1992 to 1995 and found strong significant correlation between the years (Mantel 287 

statistic R: 0.99, p = 0.001), so we used land cover data for 1992 for the missing 288 

years. Agricultural land use intensity can be assessed via three categories: input 289 

metrics (e.g., irrigation), output metrics (e.g., yields) and system level metrics (e.g., 290 

actual vs. attainable yield) [66]. Due to the strong positive associations reported 291 

between C. tritaeniorhynchus abundance and rice paddy cultivation, we used the 292 

RiceAtlas database of global rice production [67] to extract district-level data for the 293 

agricultural intensification input metric of total annual rice area cultivated (hectares) 294 

and for the output metrics of total annual rice produced (tonnes) and average 295 

number of crops harvested per year. To assess seasonal variation in rice cropping 296 
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practices, district-level data on the rice planting and harvesting months were also 297 

extracted from the RiceAtlas dataset.  298 

 299 

All raster data layers were manipulated and resampled to a 0.208⁰  (~23km) grid cell 300 

size using a World Geodetic System 84 projection using the ‘raster’ package in R 301 

[68]. We examined all covariates for collinearity and excluded covariates that were 302 

collinear with one or more others (Pearson correlation coefficient >0.8).  303 

 304 

Japanese encephalitis human case data 305 

Monthly JE human cases recorded were retrieved from the Indian Government’s 306 

Ministry of Health and Family Welfare [69]. Data were obtained for the period 307 

January 2009 to December 2015 and were converted to geographic point locations 308 

(n= 123) from their village level description using online gazetteers (e.g., Google 309 

Maps). The data comprised of the number of confirmed cases rather than suspected 310 

cases since clinical signs for JE may overlap with several other diseases [70]. 311 

Confirmed cases correspond to those confirmed by laboratory tests using JE-ELISA 312 

on serum or cerebrospinal fluid samples.   313 

 314 

Statistical analysis 315 

Statistical modelling was conducted using Bayesian hierarchical regression using 316 

Integrated Nested Laplace Approximation (INLA). This framework enables the 317 

development of spatiotemporal models that address data sparsity and spatial bias 318 

whilst also being computationally tractable [71,72].  319 
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 320 

Model specification 321 

We developed a joint-likelihood Bayesian spatiotemporal model of C. 322 

tritaeniorhynchus with separate likelihoods for occurrence and abundance data. The 323 

first model tier estimates vector occurrence probability with species 324 

presence/absence (0, 1) as response "!"	using a Binomial distribution with a logit link 325 

function, such that $# denotes the expected probability of vector occurrence and %# is 326 

the observed survey sample size at observation &: 327 

(1)   "!"	~	Binom-$#,%#	. 328 

 329 

$# is modelled as a function of environmental covariates and spatial, seasonal, and 330 

random effects: 331 

(2)  logit($#) = 	5 + 5&' +∑ 8(9(,# +)
(*+ :# +	γ# + 	<# +	=# 	+	># 332 

where 5 is the intercept; 5&' is an occurrence data specific intercept; 9 is a matrix of 333 

the environmental covariates at each observation, with vector of linear coefficients 8; 334 

:# is a nonlinear effect for mean monthly temperature smoothed using a second-335 

order random walk to represent expected nonlinear relationships between 336 

temperature and vector occurrence and abundance [19]; seasonality was included 337 

as an effect of reporting month specified as a second-order random walk ( γ# ); and 338 

spatial variation was included using state-level   spatially-structured (conditional 339 

autoregressive; =#) and unstructured i.i.d. (<#) effects jointly specified as a Besag-340 

York-Mollie (BYM) model [73].  Finally, ># is an independent, identically distributed 341 
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(i.i.d.) random effect of source study to enable the model to account for between-342 

study variation in sampling effort that might otherwise confound inferences. 343 

 344 

The second tier in the joint-likelihood model estimated relative vector abundance as 345 

response variable "",-. using a Gaussian distribution such that ?# denotes the 346 

expected mean of vector abundance with standard deviation, @: 347 

(3)  "",-.	~	Norm-?#,@	. 348 

 349 

The same shared covariates and spatial, seasonal, and random effects parameters 350 

were included as for the first tier model apart from the occurrence specific intercept:  351 

(4)  exp(?#) = 	5 + ∑ 8(9(,# +)
(*+ :# +	γ# + 	<# +	=#		+	># 	 352 

 353 

Prior to being included in the model, all continuous predictor covariates were 354 

standardised (to mean= 0, SD=1) and log vector abundance was rescaled from 0-1 355 

(to preserve zero as a reference point) to help with assigning model priors [74]. 356 

Weakly informative prior probability distributions (priors) were assigned for the 357 

intercept, 	5 ~ N(0,0.6) and fixed effects, 8 ~ N(0,0.3) to constrain the position and 358 

scale of the outcome of interest ("",-.) to fall within a reasonable range. The 359 

intercept for occurrence data 5&' is a single, fixed parameter that was only added in 360 

the first tier of the model when modelling occurrence data. It acts as a varying 361 

intercept so that all occurrence data are modelled as a separate cluster to 362 

abundance data and therefore allows some flexibility in the joint modelling of both 363 

data types. Fixed effects priors were centred on 0 to allow for positive or negative 364 
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relationships between environmental covariates and vector abundance. We assigned 365 

penalized complexity (PC) priors [75] to hyperparameters of the month, state-level 366 

and study-level effects. PC priors were used to penalise the complexity resulting 367 

from deviating from a simple base model. The PC priors are defined such that the 368 

probability that a given hyperparameter (ρ) exceeds an upper limit (ρ0) is χ (i.e., P(ρ> 369 

ρ0) = χ). The PC priors in the model include: 370 

Seasonal effects:    P(F#> 0.05) = 0.01 371 

Unstructured state-level effects:  P(<#>0.175) = 0.01 372 

Study-level random effects:  P(># >0.175) = 0.01 373 

 374 

These values were chosen by comparing the variance of the effect variables and the 375 

resulting difference in log vector abundance observed. For example, an i.i.d. effect 376 

with a SD of 0.175 would typically (95% probability interval) yield intercepts between 377 

-0.34 and 0.34. Transforming these values through a log link gives abundances 378 

between 0.71 and 1.4 and therefore the effect allows a variation in abundance of 379 

about 100%. We based the values on assumptions from the data that log vector 380 

abundance may vary by up to 33% between one month and the previous two months 381 

(order-two random walk), whereas it may vary by 100% between studies. A 382 

conservative PC prior (mean 0.5, precision 0.667) was assigned to the structured 383 

state-level effect to account for the assumption that the unstructured effect accounts 384 

for more of the variability than the spatially structured effect. 385 

 386 
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Model selection 387 

Collinearity was detected between temperature variables therefore only monthly 388 

mean temperature was used in the final model to capture long term associations with 389 

vector abundance (i.e., reduced effect of temperature extremes). We conducted 390 

model selection on model covariates (all fixed and spatial, seasonal and study-level 391 

random effects), evaluating their contribution to the model fit by removing each 392 

component in turn from the full model and examining the effect on the Bayesian 393 

pointwise diagnostic metric Watanabe-Akaike Information Criterion (WAIC) [76]. We 394 

tested 17 environmental variables (see S2 Table). We screened variables using a 395 

single pass whereby we removed each variable in turn from the model and assessed 396 

the change in WAIC. Covariates that did not improve model parsimony by a 397 

threshold of at least 2 WAIC units were excluded. We used this screening procedure 398 

to remove variables which were not improving model parsimony rather than 399 

searching for a best subset of variables as is performed in stepwise selection. The 400 

models were examined for fit and adherence to assumptions which included testing 401 

the model residuals for spatial autocorrelation using Moran’s I [77]. Temporal 402 

autocorrelation could not be assessed since the data were not sampled at regular 403 

intervals over the whole study period. In addition, to assess the influence of 404 

additional inferred absence data on model fit, we repeated the process of randomly 405 

selecting 20 inferred absence data points 25 times and examined the impact on 406 

WAIC.  407 

 408 

We further evaluated the predictive ability of the models using random (10-fold) 409 

cross-validation which involved fitting separate models holding out data from each 410 

fold in turn. The random assignment of data to folds was chosen to represent the 411 
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spatiotemporal variation in predictor space in all folds. The spatial clustering in 412 

abundance data meant that spatially structured cross-validation by state was not 413 

used for model evaluation [78]. The final model was selected by comparing models 414 

of increasing complexity, in terms of input variables and model structure, to a 415 

baseline model which only included spatial effects and study-level random effects. 416 

This baseline model represents static vector abundance predictions that do not 417 

account for seasonality. We compared the baseline model to a seasonal model 418 

which also included the addition of a seasonal effect to account for seasonality in 419 

vector abundance and an environmental model which included spatial, seasonal, 420 

and random effects and environmental covariates. The ability of the models to 421 

predict log vector abundance (unscaled) was compared using the mean absolute 422 

error (MAE) between the predicted posterior mean values and the corresponding 423 

observed log vector abundance [79] where lower values indicate a smaller difference 424 

between the predictions and the observations. In addition, we used conditional 425 

predictive ordinates (CPO) [80] and predictive integral transform (PIT) [81] as cross-426 

validatory criterion for model assessment. For CPO, a value is computed for each 427 

observation with small values indicating a bad fitting of the model to that observation 428 

and the potential for it to be an outlier. Predictive integral transform provides a 429 

version of CPO that is calibrated so that values like between 0 and 1. A histogram of 430 

PIT values that appears approximately uniform indicates the model represents the 431 

observation well. We also compared the direction and magnitude of fixed effects for 432 

hold-out models to examine the robustness of vector-environment relationships. The 433 

fixed effects parameter estimates were assessed using the posterior mean and 95% 434 

credible interval which is interpreted as the interval that covers the true parameter 435 

value with a probability of 95%, given the evidence provided by the observed data.  436 
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 437 

Spatiotemporal predictions of JE vector abundance and uncertainty  438 

The best-fitting model was used to predict seasonal relative vector abundance 439 

(logscale) per (0.208⁰) grid cell across India for the three main seasons: winter 440 

(October to February), summer (March to May), monsoon (June to September). The 441 

seasons were chosen for their distinct climatic characteristics with heavy rainfall in 442 

central regions and the eastern coast  during the winter, heavy rainfall in 443 

southwestern and north-eastern India during monsoon and high temperatures with 444 

little to no rainfall during summer [82]. We evaluated the uncertainty in model 445 

predictions by mapping the SD in estimated vector abundance per grid cell for each 446 

season. A narrow SD (SD < 1) indicated low uncertainty and a wide SD (SD > 1) 447 

indicated high uncertainty. 448 

 449 

Model-outbreak data comparison  450 

To examine whether predicted mosquito abundance is correlated to JE cases, we 451 

compared observed human outbreaks of JE with model predictions for vector 452 

abundance at the same geographic location and calendar month. We define a JE 453 

outbreak as one or more confirmed or suspects cases of JE occurring in the same 454 

village within the same month. We converted JE outbreak data to binomial 455 

(presence/absence) data that a JE outbreak occurred in a particular geographic 456 

location and calendar month. We randomly generated pseudoabsence JE case data 457 

for 1000 locations for the 12 months (n=12000) to assess the ability of the model to 458 

correctly predict the probability that an outbreak occurred (which we describe as JE 459 

outbreak probability). We fitted a logistic regression of the probability of JE outbreak 460 
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occurrence as a function of model-predicted vector abundance with and without a 461 

one-month lag using glm in R [83] . A null model (i.e., intercept only) was developed 462 

to represent predictions expected at random so that the effect of vector abundance 463 

predictions in explaining JE outbreaks could be assessed via comparing model 464 

Akaike Information Criterion (AIC) values. All data processing was conducted in R 465 

v.4.0.3 [83] with the packages R-INLA (http://r.inla.org) [84] and raster [68].  466 

 467 

Results 468 

Model selection 469 

Table 1 shows model predictive accuracy statistics for a series of models of 470 

increasing complexity. The most complex model structure (Model 3), which 471 

contained spatial, seasonal, and random effects and environmental factors, achieved 472 

superior model fit (∆WAIC from baseline model = -77.53) (and see S2 Fig). 473 

Comparison of out-of-sample predictive ability showed that the inclusion of 474 

seasonality in the model (Model 2) improved predictions of vector abundance by 475 

decreasing MAE by 15% (∆MAE = -0.14) when compared to the baseline model 476 

(Model 1). The addition of environmental covariates (Model 3) led to a further 40% 477 

decrease in MAE when compared to seasonal Model 2 (∆MAE = -0.32). As well as 478 

spatial, seasonal, and random effects, the final selected environmental model (Model 479 

3) included six covariates after accounting for collinearity and covariate selection as 480 

described. The fixed effects in the final model included two-month lagged 481 

precipitation, proportion of land under agricultural use in 1km radius, annual number 482 

of rice crops, rice area cultivated, and rice produced per district and a nonlinear 483 

function for mean temperature. The CPO and PIT histograms demonstrated that 484 



 

22 
 

addition of environmental covariates in Model 3 led to a better fit of the model to the 485 

data and a superior representation of the observations when compared to the other 486 

models (S3 Fig). Model residuals displayed no significant (p <0.05) spatial 487 

autocorrelation among sites. The random selection of inferred absence data points 488 

was found to have no substantial impact on the ∆WAIC values for the different 489 

models (S3 Table). 490 

 491 

Table 1. Model selection results for models of increasing complexity.  492 

The table details the structure of the joint-likelihood models and their corresponding 493 

within-sample predictive accuracy assessed on Watanabe-Akaike Information 494 

Criterion (WAIC) values. Best models were selected based on minimising WAIC 495 

while adhering to model assumptions. Out-of-sample predictive accuracy was 496 

compared using mean absolute error (MAE) statistic for random cross validation. 497 

Fixed effects included two-month lagged precipitation, proportion of land under 498 

agricultural use in 1km radius and district-level measures for annual number of rice 499 

crops and total rice area cultivated and rice produced per year. Mean temperature 500 

was included as a second-order random walk function to represent the nonlinear 501 

relationship between temperature and vector population dynamics. Non-502 

environmental effects considered were for month (M) and state-level spatial (ST) 503 

effects specified as a BYM model and study-level (S) random effects.  504 

Model Non-
environmental 
effects 

Environmental effects WAIC MAE  

1 Baseline 
model 
 

ST, S - 722.15 0.95 
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2 Seasonal 
model 
 

M, ST, S - 
 

651.14 0.81 

3 Environmen
tal model 
 

M, ST, S Precipitation, 
Agri. land proportion, 
Annual rice crops, 
Annual rice area, 
Annual rice production, 
Nonlinear temp. function 

644.62 0.48 

 505 

 506 

Associations between environmental variables and vector 507 

abundance 508 

We found that C. tritaeniorhynchus abundance was influenced by climatic and land 509 

use factors (Fig 2B). We found positive associations between vector abundance and 510 

two-month lagged precipitation, number of rice crops and annual rice production. 511 

The annual area under rice cultivation had a negative effect on vector abundance 512 

and the proportion of land under agricultural use had a weakly positive but uncertain 513 

association. Annual rice area and annual rice production had relatively wide credible 514 

intervals (CIs) for their parameter estimates when compared to the other covariates 515 

making the effect of these parameters on vector abundance more uncertain. These 516 

fixed-effects estimates were robust to randomly structured sensitivity tests (S4 Fig). 517 

We found that the inclusion of a nonlinear effect for mean monthly temperature 518 

without a lag improved model predictive ability when compared to the nonlinear 519 

effect with two-month lagged temperature (∆WAIC = -81.83). The resulting 520 

temperature function suggests an increase in vector abundance from 9⁰C with a 521 

peak at around 23⁰C (Fig 2C). CI widths were low for this function at high 522 

temperature values.  523 
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 524 

Fig 2. Spatiotemporal correlates of JE vector abundance across India averaged 525 

over the period 1990–2012. Map to show predicted C. tritaeniorhynchus abundance 526 

(maximum annual value) and vector seasonality (intra-annual variance in 527 

abundance) (A). These measures were calculated from the scaled abundance 528 

predictions and ranged from 0 to 7 logscale for maximum abundance and 0 to 3 529 

logscale for seasonality. The map displays areas of high perennial vector abundance 530 

as orange, high seasonal vector abundance as pink, low perennial vector abundance 531 

as green and low seasonal vector abundance as blue. The fixed-effect parameter 532 

estimates and 95% credible intervals for the joint likelihood model (B) show that 533 

vector abundance is strongly influenced by climatic and land use variables. The 534 

nonlinear relationship between monthly mean temperature and vector abundance for 535 

the observed range of temperatures (C) where 95% CI is shown shaded and peaks 536 
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at around 23⁰C and then declines. The reported thermal minima (9.5⁰C) for important 537 

Culex species life history traits [19] is indicated with a dashed line. 538 

 539 

Spatiotemporal predictions of JE vector abundance and uncertainty  540 

Spatially projecting the final model predictions revealed differences in predicted 541 

areas of high (i.e., hotspots) or low (i.e., coldspots) C. tritaeniorhynchus abundance 542 

between seasons (Fig 3). Peaks in vector abundance were found in the northern, 543 

eastern, north-eastern, and southern regions, with highest levels predicted during the 544 

winter months (October to February) and lowest levels during the summer months 545 

(March to May). Hotspots of vector abundance were predicted with low uncertainty 546 

(i.e., narrow SD) in northern, southern, and north-eastern India during the winter (Fig 547 

3A) and in north-eastern and southern India during the summer (Fig 3B) and 548 

monsoon (June to September) seasons (Fig 3C). By contrast, hotspots were 549 

predicted with high uncertainty (i.e., wide SD) for all seasons in the northern state of 550 

Punjab, the eastern state of West Bengal and the south-eastern state of Andhra 551 

Pradesh. Areas predicted with low vector abundance (i.e., coldspots) were predicted 552 

throughout the year in the Himalayas, and in central and north-western states, and 553 

eastern state of Odisha. Uncertainty in coldspot predictions was low for the 554 

Himalayas throughout the year (likely as a result of inferred absence data) whereas 555 

summer predictions for Odisha, central and north-western states and monsoon 556 

predictions for Rajasthan were more uncertain (represented as increased 557 

transparency in Fig 3). Assessing vector abundance and seasonality simultaneously 558 

reveals hotspots of high perennial vector abundance in north-eastern areas and the 559 
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southern tip of the country (Fig 2A). Conversely, high seasonal vector abundance is 560 

predicted in northern and southern regions (Fig 2A). 561 

 562 

 563 

Fig 3. Predicted seasonal abundance of C. tritaeniorhynchus across India for 564 

the period 1990–2012. Average vector abundance (logscale) for the (A) winter 565 

(October to February), (B) summer (March to May) and (C) monsoon (June to 566 

September) seasons. The figure legend is scaled from 0 to 7 logscale, with light 567 

yellow colours signifying low vector abundance and dark purple emphasising high 568 

abundance. Uncertainty in predictions was estimated from standard deviation (range 569 

0-2 SD) and is represented in the maps by transparency, (high uncertainty is more 570 

transparent). The black circles represent the location and magnitude (i.e., number of 571 
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cases) for JE human outbreaks per season during the period 2009-2015 across India 572 

[69]. 573 

  574 

Model-outbreak data comparison 575 

The results for the comparison between predicted mosquito abundance and JE 576 

cases is summarised in S4 Table. Logistic regression of JE outbreak probability as a 577 

function of model predicted vector abundance with a one-month lag month showed 578 

superior predictive ability (AIC = 144.17) when compared to the same analysis with 579 

vector abundance predicted in the same month as the outbreak (AIC = 147.66) and 580 

to the null model (AIC= 168.02). Both model-predicted vector abundance with and 581 

without a one-month lag had a significant positive effect on human JE outbreaks 582 

however, the lagged variable had a stronger association (odds ratio [OR] 2.45, 95% 583 

confidence interval: 1.52-4.08) than the variable without a lag (OR 2.25, 95% 584 

confidence interval: 1.35 -3.74) (see S4 Table). Plotting predicted JE outbreak 585 

probability against log-scaled vector abundance for the best-fitting model (S5 Fig) 586 

illustrates that the strong association between these variables is non-linear and 587 

plateaus at high levels of vector abundance lagged by one month. 588 

 589 

Discussion 590 

This study details a novel approach to predict spatiotemporal patterns in C. 591 

tritaeniorhynchus abundance – a key component of JE hazard - using a joint-592 

likelihood modelling technique that leverages information from sparse vector 593 

surveillance data. We show that the addition of environmental covariates in the 594 
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model substantially improved out-of-sample predictive ability, highlighting the 595 

importance of environmental and climate data in driving JE vector abundance. This 596 

provides strong justification for producing spatiotemporal vector predictions to focus 597 

future work efforts and build towards forecasts of JE risk. This framework provides a 598 

powerful and flexible method to define seasonal JE vector abundance over large 599 

spatial scales and assist in guiding future surveillance efforts where long-term and 600 

large spatial scale data are not available or could not be practically acquired. This 601 

analysis builds on previous correlative studies of C. tritaeniorhynchus which have 602 

mapped vector occurrence but have overlooked seasonal variation in population 603 

dynamics and have not accounted for uncertainty within the predictions [35,52–54].  604 

 605 

A distinct temporal pattern was observed across India in predicted vector abundance 606 

with peaks in the winter (October to February), reductions during the summer (March 607 

to May) and increased vector abundance again during the monsoon (June to 608 

September). This temporal pattern can be explained by seasonality in climatic 609 

factors during the year which supports findings in previous studies [42,85,86] and our 610 

hypothesis that vector abundance would be strongly influenced by seasonal rainfall. 611 

During the monsoon, heavy rainfall moving in a south-westerly direction across the 612 

country has been reported to enhance the availability of vector breeding habitats [44] 613 

and causes a reduction in local temperatures [87] which provide suitable 614 

environments for vector development. The peaks in vector abundance observed 615 

during the winter months probably reflect the post-monsoon rice cultivation period 616 

when water availability is high in the paddy fields [88]. This translates to the strong 617 

positive influence of lagged precipitation on JE vector abundance found in this 618 

analysis and in other studies [30]. Conversely, high temperatures and low rainfall 619 
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during the summer months probably limits vector survival and breeding [85], 620 

especially in areas with low levels of irrigated agriculture. Climatic conditions will also 621 

influence areas with predicted low perennial vector abundance such as arid regions 622 

in the northwest and northern states in the Himalayas which record temperatures 623 

beyond the thermal limit for Culex species vectors [19].  624 

 625 

In addition to precipitation and temperature, land use and rice cultivation metrics 626 

were identified as important drivers of broad-scale spatiotemporal patterns of vector 627 

abundance. The importance of land use factors is illustrated by comparing hotspots 628 

of JE vector abundance in southern and north-eastern India which have high levels 629 

of irrigated agriculture despite differing climates (i.e., tropical in south, temperate in 630 

northeast) [89]. Regions with high proportions of agricultural land allocated to 631 

intensive irrigated agriculture provide suitable vector breeding habitats for extended 632 

periods which undoubtedly influence vector abundance and seasonality. Indeed, 633 

regions that cultivate rice biannually report lower vector seasonality compared with 634 

those that have a single annual crop [90]. The positive relationship between land use 635 

intensity metrics for rice crop cultivation (i.e., number of rice crops cultivated and 636 

amount of rice produced per year) and vector abundance detected in this study, 637 

supports previous research that has found a strong positive association between 638 

vector abundance and rice irrigation practices at local scales [38,41,46,91]. 639 

Surprisingly, we found that the annual area under rice cultivation was negatively 640 

associated with vector abundance, albeit with wide CIs. This result may be spurious 641 

due to data quality issues or could be explained by unmeasured underlying factors 642 

such as agrichemical use (i.e., fertilisers and pesticides) [92], methods of irrigation 643 

(i.e., surface, sprinkler or drip irrigation) or use of fallow periods between crops which 644 
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may lead to changes in local ecology (e.g., biotic interactions such as competition 645 

and predation) [93]. Indeed, local changes in ecology due to rice crop phenology are 646 

also likely to influence the presence of JE hosts since wading bird use irrigated rice 647 

paddies as feeding habitat [94] and fallow fields may be used to graze livestock. 648 

Understanding these relationships would require improved understanding of rice 649 

crop phenology together with biodiversity monitoring in rice fields. Our findings 650 

highlight the impact of land use practices on JE vector abundance which may have 651 

implications for the predicted expansion of flooded areas for rice cultivation needed 652 

to improve food security [38,95] and the ongoing intensification of rice production in 653 

India [96]. 654 

 655 

Spatiotemporal patterns in JE vector abundance varied widely across India with 656 

seasonal hotspots predicted in northern, eastern, and southern regions and 657 

perennial hotspots predicted in north-eastern regions and the southern tip of India 658 

(Fig 2). These results support the spatial pattern in endemic regions of India which 659 

report particularly high endemicity in the states of Uttar Pradesh in the north, Bihar 660 

and West Bengal in the east, Assam in the northeast, and Tamil Nadu in the south 661 

[97]. In addition, vector abundance predictions reflected the described seasonality in 662 

JE transmission with increased outbreaks reported during the monsoon and winter 663 

seasons (Fig 3). However, predicted seasonal hotspots in the southeast did not 664 

correspond to high cases, which could reflect factors not accounted for in the 665 

analysis such as unmeasured environmental factors affecting transmission, spatial 666 

biases in different datasets or differing vaccination and vector control measures. In 667 

addition, it may also reflect the importance of vertical transmission for this disease 668 

which is selected for when there is seasonality in vector abundance [98]. We found a 669 
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positive correlation between one-month lagged vector abundance predictions and 670 

the occurrence of human JE outbreaks when using a simple correlative analysis (S4 671 

Table). This analysis assumes that the location of the vector abundance will also be 672 

the location in which exposure occurred which may be inaccurate. Indeed, to fully 673 

gauge the strength of this association and assess the usefulness of vector 674 

abundance as potential proxy for JE hazard would require a more complex model 675 

that accounts for temporal and spatial autocorrelation in model residuals and 676 

uncertainty in the model. The development of a reliable proxy for JE hazard would be 677 

invaluable since data on pathogen prevalence in both animal reservoir host 678 

populations and vector populations that is required to define areas of JE hazard 679 

remains scarce. The further translation of hazard to disease risk requires additional 680 

knowledge about the potential exposure and susceptibility of human populations. For 681 

example, data on human demography, socioeconomics and vaccination coverage 682 

will provide information on contact with pathogens (exposure) and likelihood of 683 

infection (susceptibility) [5]. Furthermore, potential lags between peak vector 684 

abundance and human cases that occur due to transmission dynamics or timeliness 685 

of reporting need to be considered [99]. Indeed, future studies could extend this 686 

analysis by including further information on hazard, exposure, and vulnerability of 687 

human populations as well as any potential time lags to determine spatiotemporal 688 

predictions of JE risk [12]. 689 

 690 

A significant limitation of this study was related to the spatial and temporal biases of 691 

available C. tritaeniorhynchus surveillance data which is likely connected to the high 692 

costs associated with vector sampling studies [8]. Although data paucity leads to less 693 

accurate predictions in data-poor regions, we accounted for this by presenting the 694 
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level of uncertainty within predictions on the vector abundance maps. Furthermore, it 695 

should be acknowledged that model predictions will not provide accurate data at the 696 

local level, instead they reveal broad scale ecological patterns that can help to direct 697 

future research efforts. In addition, the generation of additional absence data 698 

assumes that vectors do not occur at altitudes above 3500m which may need to be 699 

reviewed overtime with future surveillance studies and the influence of climate 700 

change [100]. This study highlights the need for improved vector surveillance for JE, 701 

with the potential for future surveillance efforts to be targeted in those areas with 702 

high predicted vector abundance to validate our results with independent data and 703 

improve predictions in areas that have not been surveyed. In addition, we find that 704 

despite JE vector abundance predictions being relatively focal (Fig 2), the 705 

spatiotemporal distribution of vector sampling in the data are more evenly distributed 706 

across India (Fig 1), suggesting that spatial bias is not driving model predictions (Fig 707 

3). A further limitation of this study was the coarse spatial resolution of rice 708 

cultivation data used in the model [67]. The data were provided at district-level which 709 

may have been too coarse to detect an accurate relationship between land use 710 

intensity metrics and vector abundance [99] and may have prevented the detection 711 

of a correlation between vector abundance and rice cropping calendar data [40]. 712 

Future studies could explore the use of vegetation datasets such as normalized 713 

difference vegetation index (NDVI) at high spatial and temporal resolution to provide 714 

more accurate information on rice cultivation metrics [101] and rice crop phenology 715 

[102] in India. Investigating the lagged effects of these land use factors on vector 716 

abundance [30] may also help to elucidate the unexpected negative association 717 

between area for rice crop cultivation and vector abundance.  718 

 719 
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Despite these limitations, this work provides a framework to monitor and predict the 720 

seasonal abundance of JE vectors which will be crucial for public health bodies in 721 

their objective “to strengthen surveillance, (and) vector control” [97]. Current 722 

management for JE varies regionally across India depending on socioeconomic 723 

factors and whether areas have historically recorded high cases [97]. With ongoing 724 

environmental change, we believe the Indian public health bodies cannot afford to 725 

continue to focus their vector surveillance efforts on currently endemic regions, and 726 

instead need to establish a broader scanning surveillance system which can assist in 727 

developing early warning signals for predicting and mitigating JE outbreaks 728 

nationally. The maps produced in this study could be especially useful to guide 729 

public health actors in targeting future vector surveillance in understudied regions 730 

predicted to have high vector abundance with varying uncertainty. These data could 731 

then be used to inform the model and improve and update predictions. Our work may 732 

also be used to improve the effectiveness of vector control measures especially in 733 

areas predicted high seasonal vector abundance, so that instead of being employed 734 

during JE outbreaks as is current practice [97], measures could be employed prior to 735 

an outbreak when vector abundance is high.  736 

Conclusions 737 

In this study we provided i.e. scale estimates of the variation in vector abundance 738 

across space and time by leveraging different types of data sources for C. 739 

tritaeniorhynchus, an understudied JE vector. We showed that distinct 740 

spatiotemporal patterns of JE vector abundance were driven by seasonality and 741 

environmental factors and so demonstrated the limitations of previously available 742 

static vector distribution maps estimating vector occurrence across large geographic 743 
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ranges [35,52,54]. In addition, we showed that model predictions of vector 744 

abundance were positively correlated with JE outbreaks, highlighting the possible 745 

development of vector abundance as a proxy for JE hazard. We propose that the 746 

joint-likelihood model used in our research will be easily adaptable for other 747 

mosquito vectors and enable other vector abundance estimations to be made from 748 

limited vector surveillance data. Furthermore, this novel approach can be used to 749 

help guide future vector surveillance programmes by targeting data collection. 750 

Understanding the timing and drivers of patterns in vector abundance and 751 

seasonality offers important insights into how and when intervention measures 752 

should be applied to reduce JE risk and how disease risk may vary with future 753 

environmental changes.  754 
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Supporting information 1103 

1104 

S1 Fig. Maps of covariates used in models. (A) average mean temperature per 1105 

month (⁰C) (example given for the year 2005); (B) average precipitation per month 1106 

(mm) (example given for the year 2005); (C) number of rice crop rotations per year 1107 

(average for period 2010-12); (D) total annual rice area cultivated per year in 1108 

hectares (average for period 2010-12); (E) total rice produced per year in tonnes 1109 

(average for period 2010-12); (F) land use classes (example given for the year 1110 

2005).  1111 
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1112 

S2 Fig. Diagnostic plots for joint likelihood models; scatterplot of predicted 1113 

versus observed vector abundance (logscale) data. Plots show observed data 1114 

against model predicted values, and the red line shows the expectation if observed 1115 

equals predicted for each model: (A) baseline (spatial effects and study- level 1116 

random effects), (B) seasonal (spatial, seasonal, and random effects), (C) 1117 

environmental (spatial, seasonal, and random effects and environmental covariates). 1118 

 1119 
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1120 

S3 Fig. Histograms of CPO and PIT values for joint likelihood models. Plots 1121 

show CPO and PIT histograms, with the red line indicating the level of the of the 1122 

different values if their distribution was uniform: (A) baseline (spatial effects and 1123 

study- level random effects), (B) seasonal (spatial, seasonal and random effects), 1124 

(C) environmental (spatial, seasonal and random effects and environmental 1125 

covariates). 1126 

 1127 
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 1128 

S4 Fig. Random spatiotemporal cross-validation of the final model. We tested 1129 

the sensitivity of fixed effects estimates to random (10-fold) subsampling. Points and 1130 

error bars show posterior marginal parameter distributions for each hold-out model 1131 

(median and 95% quantile range), with colour denoting hold-out group. Directionality 1132 

and magnitude of fixed-effects estimates are robust to all tests.  1133 

 1134 
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 1135 

S5 Fig. Association between one-month lagged vector abundance and 1136 

predicted JE outbreak probability. Vertical axis displays model predicted JE 1137 

outbreak probability, and vertical axis gives predicted vector abundance on the log 1138 

scale. Smooth line highlights the non-linear relationship of JE outbreak probability to 1139 

predicted vector abundance with a one-month lag. 1140 

  1141 
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S1 Table. Vector surveillance data used in analyses. The table includes the study from which the data were extracted, the state 1142 

or union territory in India in which the survey was conducted, the year of the survey, the type of data collected, the survey method, 1143 

the total number of months that were surveyed, the number of sampling sites per study and the total number of datapoints 1144 

(occurrence and abundance) generated from the study.  1145 

Study  
reference 

Surveyed 
state/ union 
territory 

Date 
range 

Type of 
vector 
surveillance 
data* 

Survey 
method for 
adult 
mosquitos 

Total 
number 
of 
months 
surveyed 

Number of 
sampling 
sites 

Number of 
occurrence 
datapoints 

Number of 
abundance 
datapoints 

Total 
number of 
datapoints  

1 Andhra 

Pradesh 

2003-

2004 

OC Aspirator 1 2 3 - 3 

2 Assam 1993 OC Aspirator 1 1 1 - 1 

3 Assam 2011 OC Indoor light 

trap, 

aspirator 

1 3 3 - 3 

4 Delhi 2011 OC, AB Aspirator, net 

sweeping 

1 2 2 2 4 

5 Goa 2006 OC, AB Human 

landing catch 

1 1 1 1 2 

6 Gujarat 2003 OC, AB Aspirator 1 1 1 1 2 

7 Gujarat,  

Uttar Pradesh 

2005 OC, AB Aspirator 1 2 2 2 4 
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8 Karnataka, 

Kerala 

2003 OC Aspirator 1 2 2 - 2 

9 Karnataka, 

Maharashtra, 

Tamil Nadu 

2007 OC Aspirator 1 3 3 - 3 

10 Kerala 2011 OC, AB Aspirator 1 1 1 1 2 

11 Odisha 1990-

1991 

OC, AB Aspirator 24 1 24 18 42 

12 Odisha 1993 OC, AB Aspirator 1 1 1 1 2 

13 Odisha 2000 OC, AB Light trap, 

aspirator 

1 2 2 1 3 

14 Tamil Nadu 1998-

2000 

OC, AB Aspirator 23 2 46 23 69 

15 Tamil Nadu 2003-

2006 

OC, AB  Hand catch 4 9 20 4 24 

16 Tamil Nadu 2006-

2011 

OC, AB Aspirator 60 3 180 180 360 

17 Tamil Nadu 2007-

2008 

OC Not 

described 

1 1 2 - 2 

18 Tamil Nadu 2011-

2012 

OC, AB Aspirator 21 1 21 21 42 

19 Telangana 2003 OC, AB Aspirator 1 6 6 6 12 

20 Uttar Pradesh 1991 OC Aspirator 1 4 4 - 4 
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21 Uttar Pradesh 1991-

2000 

OC Aspirator 1 1 3 - 3 

22 Uttar Pradesh 2011 OC, AB Aspirator 1 2 2 2 4 

23 West Bengal 2000 OC Light trap, 

aspirator 

1 2 2 - 2 

24 West Bengal 2011-

2012 

OC, AB Aspirator 2 4 8 4 12 

Totals      54 340 267 607 

 1146 

*OC = occurrence data; AB = abundance data 1147 
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S2 Table. Data and rationale for covariates included in analyses. The table includes the sources and rationale (hypothesises) 1204 

for inclusion of covariates in spatiotemporal models of vector abundance.  1205 

Covariate Dataset Description Spatial 
resolution 

Temporal 
resolution 

Data 
classification 

Source Rationale 

Mean, min 
and max air 
temperature  

TerraClimate  High-spatial 
resolution 
data 
WorldClim is 
combined 
with coarser 
spatial 
resolution, 
but time-
varying data 
from CRU 
Ts4.0 and 
JRA55. 

1/24°, 
~4 km; 
Global. 

Monthly:  
1958–
2019. 

Maximum 
temperature, 
minimum 
temperature, 
and derived 
mean 
temperature 
(⁰C). 
 
 

http://www.climatologylab.org/terraclimate.html  Temperature 
affects important 
vector life history 
traits such as 
development rate 
and survival [1]. 

Mean 
precipitation  

TerraClimate High-spatial 
resolution 
data 
WorldClim is 
combined 
with coarser 
spatial 
resolution, 
but time-
varying data 
from CRU 
Ts4.0 and 
JRA55. 

1/24°, 
~4 km; 
Global. 

Monthly:  
1958–
2019. 

Precipitation 
(mm). 
 

http://www.climatologylab.org/terraclimate.html  Rainfall has been 
shown to influence 
vector populations 
due to the creation 
of standing water 
for vector breeding 
[2–4]. 

Land cover European 
Space 
Agency 
Climate 
Change 
Initiative 
(CCI) Land 

Land cover 
time series 
produced 
with the 
reprocessing 
and the 
interpretation 

300m,  
Global. 

Annual:  
1992 -
2015. 

37 UN Land 
Cover 
Classes, 
derived into 
six broad 
groups: 
agricultural, 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php  Irrigated 
agricultural 
practices provide 
suitable habitat for 
vector development 
and C. 
tritaeniorhynchus is 



 

56 
 

Cover; 
version 3.14. 

of five 
different 
satellite 
missions 
providing 
daily 
observation 
of the Earth. 

mixed 
agricultural, 
forest, mixed 
vegetation, 
urban and 
water. 
 

reported to 
preferentially breed 
in rice paddy fields 
[5,6]. 
 

Land use 
intensity 
metrics for 
rice crop 
cultivation  

RiceAtlas;  
version 2. 

Database of 
rice planting 
and 
harvesting 
dates by 
growing 
season and 
estimates of 
monthly 
production 
for all rice-
producing 
countries. 

Second 
level 
subdivisions 
(i.e., district-
level for 
India), 
Global. 

2010–
2012 
average. 

Location 
information – 
geographic 
scale / crop 
calendar -
planting, 
harvesting, 
growing / 
production / 
area. 

[67] Vector abundance 
is positively 
associated with rice 
field density [8], 
rice crop growth 
stage [9,10] and 
standing water 
availability [5,11]. 
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S3 Table. Impact of additional inferred absence data on selection results for 1231 

models of increasing complexity. The table details the structure of the joint-1232 

likelihood models and the difference between their corresponding within-sample 1233 

predictive accuracy assessed on Watanabe-Akaike Information Criterion (WAIC) 1234 

values when additional absence data are excluded. The differences (∆) in WAIC 1235 

from the baseline for the environmental and seasonal models are still equivalently 1236 

large when compared to the ∆WAIC values when the additional absence data are 1237 

included.  1238 

Model Fixed effects Random 
intercepts 

WAIC ∆WAIC ∆WAIC for 
model with 
additional 
absence 
data 

1 Baseline 

model 

 

- ST, S 721.60 72.94 77.53 

2 Seasonal 

model 

 

- 

 

ST, S, M 652.62 3.96 6.52 

3 Environmental 

model 

 

Precipitation, 

Agri. land 

proportion, 

Annual rice 

crops, 

Annual rice area, 

Annual rice 

production, 

Nonlinear temp. 

function 

ST, S, M 648.66 0.00 0.00 

 1239 

  1240 
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S4 Table. Model comparison results for observed JE outbreaks. AIC, odds ratio 1241 

and 95% confidence intervals reported from logistic regression of JE outbreak 1242 

probability as a function of model predicted vector abundance. Vector abundance 1243 

predictions were generated from the final model with and without a one-month lag. A 1244 

null model (i.e., intercept only) was developed to assess the ability of vector 1245 

abundance predictions in estimating JE outbreaks when compared to predictions 1246 

expected at random. 1247 

Model  AIC ∆AIC Akaike 

weight 

Odds 

ratio 

95% 

Confidence 

interval 

Null (intercept-only) 168.02 23.85 0 - - 

No lag 

(JE outbreak 

probability as a 

function of predicted 

vector abundance in 

the same month) 

147.66 3.49 0 2.25 1.35 - 3.74 

One month lag  

(JE outbreak 

probability as a 

function of predicted 

vector abundance in 

the previous month) 

144.17 0.00 1 2.45 1.52 - 4.08 

 1248 


