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Brain information processing 
capacity modeling
Tongtong Li1*, Yu Zheng1, Zhe Wang1, David C. Zhu2, Jian Ren1, Taosheng S. Liu3 & 
Karl Friston4

Neurophysiological measurements suggest that human information processing is evinced by 
neuronal activity. However, the quantitative relationship between the activity of a brain region and 
its information processing capacity remains unclear. We introduce and validate a mathematical model 
of the information processing capacity of a brain region in terms of neuronal activity, input storage 
capacity, and the arrival rate of afferent information. We applied the model to fMRI data obtained 
from a flanker paradigm in young and old subjects. Our analysis showed that—for a given cognitive 
task and subject—higher information processing capacity leads to lower neuronal activity and faster 
responses. Crucially, processing capacity—as estimated from fMRI data—predicted task and age-
related differences in reaction times, speaking to the model’s predictive validity. This model offers a 
framework for modelling of brain dynamics in terms of information processing capacity, and may be 
exploited for studies of predictive coding and Bayes-optimal decision-making.

Characterizing the information processing capacity of the human brain is a key challenge in cognitive psychol-
ogy and neuroscience. Most of the existing research in this area has focused on the capacity limit of short-term 
working memory, or how well an individual handles information processing demands when several tasks have 
to be executed simultaneously1–5. It is thought that our visual short-term memory can maintain representations 
of three to four objects at any given moment6. Along this line, in7, information processing capacity was mapped 
to the computational capacity of a dynamic system and characterized as the total number of linearly independent 
functions of input stimuli the system can compute.

Previous research in neurophysiology suggests that human information processing is reflected in neuronal 
activity8–10. For example, the amplitude of neuronal activity is modulated by the input information flow or the 
number of objects held in memory, before approaching an asymptotic limit8,9. Furthermore, automation of 
cognitive functions can increase capacity and attenuate neuronal responses10.

Early quantitative characterizations of neuronal activity considered the computational properties of the spikes 
of single neurons. The first formal neuron model was the Hodgkin–Huxley model, which was based on detailed 
neurophysiological recordings of the squid giant axon11. While this model can reproduce electrophysiological 
measurements accurately, it is intrinsically complex and difficult to analyze. To reduce model complexity, sim-
ple statistical spiking neuron models—represented by the integrate-and-fire (IF) models—were developed, by 
replacing the rich dynamics of the Hodgkin–Huxley formulation with a simple fire-and-reset process12. Refined 
with the time elapsed since the last spike, the ensuing generalized IF models were shown to have high accuracy 
in predicting the responses of real neurons13.

In light of the Hodgkin–Huxley models and IF models, dynamic models for collective activity were subse-
quently developed by exploiting the interactions of excitatory and inhibitory cells, and the coherence of neural 
populations14–16, or by approximating the cumulative activity of the neural population as a Gaussian random 
process based on the central limit theorem17–19. A comprehensive review of dynamic models for population or 
ensemble activity can be found in20.

Moving from the modeling of the collective activity of neuronal populations (or individual brain regions) to 
the characterization of network-level activity of connected brain regions, dynamic neural system models were 
developed21,22. A representative network-level model is used in dynamic causal modeling (DCM)22–24, which 
models neuronal dynamics in terms of the (intrinsic) self-connectivity within each region and the (extrinsic) 
cross-connectivity among regions based upon neural mass formulations. Recently, network models—based on 
graph theory and entropy—have also been used to characterize the directed information flow and integration 
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in large-scale brain networks25,26. In summary, existing models of neuronal activity offer a panoramic coverage 
of brain dynamics, from the single neuron, through neural populations, to brain networks. However, under all 
these models, the quantitative relationship between the activity of a brain region and its information processing 
capacity remains unclear.

In this article, we considered neuronal activity and information processing capacity from an information-
theoretic perspective. Starting from an information conservation law, we showed that for an individual brain 
region, the information processing capacity, input storage capacity, neuronal activity, and the arrival rate of 
exogenous information can all be related through a first-order differential equation. Theoretically, our model 
indicates that the difference between the information arrival rate and the information processing rate directly 
influences neuronal activity changes. Higher information arrival rate enhances neuronal activity, while larger 
processing capacity decreases neuronal activity; on the other hand, larger input information storage capacity 
can alleviate the demand on neuronal activity, when the arrival rate increases.

We applied this model to an empirical fMRI dataset, which was acquired under a rapid event-related arrow 
flanker task—used to study aging-associated decline in selective attention and executive functions. Both young 
and old adult groups participated in the experiment. We analyzed individual brain regions that were activated 
in both the young and old groups. We also considered overall information processing by averaging the data 
from each region. Our numerical analysis demonstrated the accuracy of the model in explaining fMRI meas-
urements and showed that—for a given cognitive task—higher information processing capacity engenders a 
lower neuronal activity and faster response in younger subjects. That is, younger adults have faster responses 
and better performance in the flanker test than the seniors, because they have higher information processing 
capacity. This result is consistent with findings in literature suggesting that high-capacity individuals tend to have 
lower neuronal activity8,9, and that—compared with young adults—more brain activation was required for older 
adults to accomplish the same cognitive task27,28. Crucially, these findings speak to the predictive validity of the 
model, in the sense that we were able to predict the behavioral responses from (independent) fMRI responses.

While the information processing capacity (IPC) model is a novel formulation, it is reassuring that—although 
originating from information theory—our model has a similar functional form to the conductance-based neu-
ral mass models in DCM, as well as the IF model of individual neurons. The implication here is that—with an 
information conservation law as the cornerstone—our model is not limited to brain regions, but can be applied 
to any neuronal system that has the attributes of information processing and storage capability. In sum, the 
model offers a framework for multiscale modelling of brain dynamics in terms of information processing and 
provides a new perspective on computational architectures in the brain. And it can be applied to any data from 
which neuronal activity can be estimated.

*The notations used throughout this article are provided in Table 1.

Results
Information conservation in a lossless brain region.  In a functional sense, we can claim that any neu-
ronal system (e.g., brain region) has a processing unit and an input storage unit, which can vary across time and/
or on-going cognitive tasks. Let I(t) denote the overall information delivered to a brain region during the period 
[0, t] ; Ip(t) be the information taken by the processing unit to process during [0, t], and Im(t) the information 
saved in the input storage unit at time instant t that is waiting to be processed.

We start with the lossless situation, that is, there is no information loss in the region. In this case, we have: the 
total information delivered to the region equals the sum of the information taken for processing, and the information 
saved in the input storage unit. That is,

all in bits. We refer to this as the information conservation law in a lossless region. It should be emphasized that 
our input storage unit here holds only the input information waiting to be processed, and is just a functional 
construct used to simplify the analysis. The memory request that occurs during the processing operations is con-
sidered to be part of the processing rather than the storage. As demonstrated below, the information conservation 

(1)I(t) = Ip(t)+ Im(t),

Table 1.   Notation table.

Notation Meaning Notation Meaning

y(t) BOLD Signal m/α Relative input storage capacity

x(t) Neuronal activity p Information processing capacity (in bit/sec)

h(t) Hemodynamic response function (HRF) p/α Relative information processing capacity

α1 Response delay of the HRF Ty Time to peak of the BOLD signal

α Input information (in bits) Tc
Time constant of the (regional) brain circuit (in 
seconds)

αC Input information under Congruent condition (in bits) T0
Onset time of the inhibitory neuronal activity (in 
seconds)

αIC
Input information under Incongruent condition (in 
bits) T1

Onset time of the secondary excitatory neuronal activity 
(in seconds)

m Input storage capacity (in bits) Tr
Average response time of the subject group observed in 
the experiment (in seconds)
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law—a simple but fundamental principle—serves as the bridge between the information processing and storage 
capacities of a brain region and its neuronal activity level.

Representing the neuronal activity in terms of information processing and storage capaci-
ties.  Taking derivatives with respect to t  on both sides of Eq.  (1), we get H(t) = Hp(t)+Hm(t) where 
H(t) = dI(t)/dt is the information arrival rate, Hp(t) = dIp(t)/dt is the information processing rate and 
Hm(t) = dIm(t)/dt is the instantaneous information rate in the storage unit, all in bits per second.

Let p(t) represent the processing capacity, defined as the maximal information processing rate (in bit/s) of 
the region with respect to a particular cognitive task. Let m(t) represent the input storage capacity, defined as the 
total amount of input information storage resource (in bits) available to, or allocated by, the region.

Recall that the neuronal activity x(t) , which reflects the computational cost (or effort level) of fulfilling a 
cognitive task or function, can be understood as the instantaneous percentage of the total “workforce” being 
utilized in the neuronal population or region. From an information processing perspective, (normalized) neu-
ronal activity can be defined as the ratio of the instantaneous processing rate and the maximum processing rate: 
x(t) = Hp(t)/p(t). This reflects how actively the processing unit is ‘working’ to fulfill the cognitive task. Similarly, 
from the storage perspective, (normalized) neuronal activity can be defined as: x(t) = Im(t)/m(t), which is the ratio 
between the actual input information saved in the input storage unit and the overall storage capacity.

A first‑order differential equation model for neuronal activity.  We consider a single state brain 
region, that is, a region whose activity is summarized with one neuronal activity level at any given time instant. 
We adopt a single-state model by appealing to Landauer’s principle and, specifically, the Jarzynski equality29–31, 
which suggests that there is a singular thermodynamic cost for the processing of information. For a brain region, 
this cost is generally thought to be reflected in the hemodynamic responses measured with fMRI32–35. Practi-
cally, we treat the average BOLD signal from voxels in the region as a measure of this cost x(t), over the region 
in question. In other words, for a single-state brain region, input storage and processing are underwritten by the 
same neuronal activity level. Moreover, when the task itself has a sufficiently short duration, we can assume that 
the processing capacity p and the storage capacity m remain unchanged throughout the task (i.e., an adiabatic 
approximation). In this case, we have

and x(t) = Hp(t)

p  ; it then follows that the neuronal activity of an individual brain region can be modeled as:

This furnishes a first-order linear differential equation that connects the neuronal activity of a brain region 
with its information processing, storage capacities and the information arrival rate. We refer to it as the Informa-
tion Processing Capacity (IPC) model. In the special case when I(t) = αu(t) is a step input, where u(t) is the 
unit step function, we have H(t) = αδ(t) , where δ(t) is the Dirac delta function, and then x(t) = α

me−
t
Tc u(t) , 

with Tc =
m
p . As can be seen, x(0−) = 0 and x(0) = α

m , that is, there is an abrupt change of the neuronal activity 
at t = 0. This is consistent with the findings in literature that neuronal responses to new sensory information 
show a phasic or onset response. For example, neural engagement increases abruptly at the start of learning, and 
then gradually declines [36].

From Eq. (2), the interpretation of this first-order IPC model is as follows: the gap between the information 
arrival rate H(t) and the information processing rate Hp(t) directly determines the changing rate of the neuronal 
activity. When H(t) > Hp(t) , that is, when the arrival rate is higher than the processing rate, then the neuronal 
activity level will increase; otherwise, it will decrease. On the other hand, a greater input information storage 
capacity m can alleviate the demand on neuronal activity, when the arrival rate H(t) increases. This affords the 
potential for adaptation and self-adjustment that is a ubiquitous aspect of neuronal processing.

An equivalent brain circuit model of excitatory and inhibitory interactions.  As is well-known, 
the first-order differential equation model above can be associated with a resistor–capacitor (RC) circuit as 
shown is Fig. 1, where vT and RT denote the Thévenin equivalent voltage and resistance, respectively, and x(t) 
can be regarded as the current that goes through the RC circuit.

We say that x(t) is the current—as opposed to the voltage—across the capacitor, since x(t) experiences an 
abrupt change at t = 0, and the voltage across the capacitor is a continuous variable and therefore cannot change 
abruptly. Compare Eq. (3) and the differential equation corresponding to the RC circuit, if vT (t) = I(t), then 
we have RT = m,C =

1
p , and the time constant of the circuit is Tc = RTC =

m
p  , which is related to the response 

time of the brain region.
Recall that—based on experimental observations of neuronal networks—neurons constantly integrate excita-

tory activity and inhibitory input over both time and the dendrites receiving synaptic contacts37–39. In other 
words, postsynaptic responses reflect the superposition of the excitatory activity and inhibitory input37,39. Recent 
studies24 suggest that neural mass models equipped with both excitatory and inhibitory neuronal populations 
provide a better account of BOLD (fMRI) responses than models based upon a single (lumped) neuronal state. 
To accommodate a more expressive model of information processing—that integrates both inhibitory and excita-
tory neuronal activity—let IE(t) = I(t) denote the excitatory input information as before, and II (t) the inhibitory 

(2)
dx(t)

dt
=

1

m

dIm(t)

dt
=

1

m

[

H(t)−Hp(t)
]

(3)
dx(t)

dt
= −

p

m
x(t)+

1

m
H(t).
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control signal, then we have vT (t) = IE(t)− II (t). We start with a simple case and model this superposition 
through the circuit in Fig. 1 as a switched circuit with vT (t) = αu(t)− βu(t − T0).

The interpretation here is that, under a stimulus, the excitatory input information lasts a period of T0 seconds 
before it is subverted by an inhibitory control signal. The first transition in vT (t) occurs at t = 0, and can be 
considered as the onset response to an input stimulus; the latter can be considered as clearing the previous input 
data and preparing for new input: a process driven by a negative feedback control mechanism to prevent the brain 
from excessive activation39. Based on the superposition property of linear circuits, the overall neuronal activity 
x(t) = xE(t)− xI (t), where xE(t) = α

me−
p
m tu(t) is the excitatory activity and xI (t) = β

me−
p
m (t−T0)u(t − T0) is 

the inhibitory activity.
Note that excitatory inputs and inhibitory control signals can occur multiple times38. Recent studies indicate 

that excitation–inhibition balance (E–I balance) is a form of homeostatic plasticity that helps to maintain neu-
ronal activity within a safe physiological range40,41. We can incorporate this dynamic by extending the two-state 

model above to: x(t) = xE(t)− xI (t), where xE(t) =
M
∑

i=0

αi
m e−

p
m (t−TE,i)u

(

t − TE,i

)

 is the excitatory activity and 

xI (t) =
N
∑

j=0

βj
m e−

p
m (t−TI ,j)u

(

t − TI ,j

)

 is the inhibitory activity.

We now have a physiologically plausible model of evoked neuronal responses that are parameterized in terms 
of information processing capacity and storage capacity. This means that when estimating the shape of evoked 
responses from empirical data, the ensuing parameter estimates have a direct interpretation in terms of informa-
tion processing. In what follows, we apply this formalism to event related responses, in which we try to recover 
the neuronal responses from fMRI timeseries.

Model inversion and validation using fMRI data.  We applied the IPC model in Eq. (3) to character-
ize neuronal activity in terms of information processing capacity using fMRI data obtained from a flanker test, 
which was used to study the aging-associated decline in selective attention and executive function42. Twenty-
three young adults and twenty-six older adults participated in this study. In the experiment, the subjects were 
presented with three conditions: the Congruent (C) condition (“>>>>>>>” or “<<<<<<<”), the Incongruent 
(IC) condition (“>>><>>>” or “<<<><<<”) and the Neutral condition (“□□□ > □□□” or “□□□ < □□□”). 
Each trial was presented for 2.5 s, during which time the subjects were asked to identify the direction of the 
central arrowhead and press the corresponding button for each trial. The rapid event-related design was chosen 
so that the subjects’ general attentiveness level was kept relatively constant. More details can be found in the 
Method section. For model verification, we analyzed the middle frontal gyri (MFG), the inferior frontal gyrus 
(IFG), the inferior occipital gyrus (IOG), the middle occipital gyrus (MOG), and the superior  frontal  gyrus (SFG). 
All the regions were inferred to be activated using standard fMRI data analysis procedures.

We considered both fixed and flexible hemodynamic response functions (HRFs) when estimating information 
processing parameters, i.e., we used the same (fixed) HRF for all groups or a separate HRF for each group, using 
standard maximum likelihood estimates. The basic idea was to identify the h(t) that minimized the mean-square-
error (MSE) between the true BOLD signal y(t) and the estimated BOLD signal yest(t) = xest(t) ∗ h(t), where 
xest(t) was obtained for the selected h(t) using the Least-Square method. For fixed HRF, h(t) was estimated with 
respect to the old group (under the Incongruent condition) and was assumed to be invariant over each region, 
young and old groups, and Incongruent and Congruent Conditions. For Flexible HRFs, h(t) was estimated for 
each group (Young vs. Old) and condition (Congruent vs. Incongruent).

Figure 1.   A resistor–capacitor (RC) circuit model for neuronal activity.
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We found that the response delay of the HRF has a greater impact on the MSE than the undershoot delay, 
since the peak response has a larger amplitude than the undershoot. However, provided the peak delay is within 
an appropriate range, small MSEs (generally ∼ 10−4 or smaller) were obtained. This explains why we obtained 
similar information processing results, under fixed and flexible HRFs. Please refer to the Methods section and 
the supplementary material for more details.

Because the flanker paradigm was an event related design, we were able to characterize evoked neuronal 
responses using a simple form of hemodynamic deconvolution. The analysis procedure is summarized in Table 2 
and more details can be found in the Methods section and supplementary material. The results for right MFG 
and left MOG are provided in Figs. 2 and 3, and the results for IFG, SFG and IOG can be found in supplemen-
tary material.

Under the same cognitive task, higher information processing capacity reduces the amplitude 
and time constants of neuronal responses.  Recall that we approximated the information arrival rate 
during Congruent and Incongruent trials with H(t) = αCδ(t) and H(t) = αICδ(t) , respectively. Due to the sim-
plicity of the experimental design, we can assume that both the young and old groups have the same (encoded) 
input information αC . Under this assumption, we can quantify the relative information processing capacity for 
young and old groups. Note that generally, the processing capability—associated with a particular cognitive 
task—does not change over a short time, and therefore for a given age group (either young or old group), it is 
reasonable to assume that the information processing capacity p is a constant and does not differ between the 
Congruent and Incongruent conditions during the experiment.

From Figs. 2 and 3, we can see that in both right MFG and left MOG, the young group has higher processing 
capacity, lower neuronal activity, and a smaller time constant than the old group, under the same task condition. 
Similar results were obtained for IFG, SFG and IOG. In other words, our analysis suggests that in individual brain 
regions, higher information processing capacity reduces neuronal activity and enables faster neuronal responses 
under the same cognitive task. This is consistent with the notion that to fulfill a particular task, individuals with 
high processing capacities tend to exert less effort and have faster responses, i.e., are more efficient in their pro-
cessing. Our results echo findings in literature where it was reported that compared with young adults, more 
brain activation was required for older adults to accomplish the same cognitive task27,28.

It is interesting to note that in regions where the younger group demonstrates significantly higher processing 
capacity than the old (e.g., the left and right MFG and left SFG), the young group also has significantly shorter 
time-to-peak in BOLD response.

Within each age group, the Incongruent task furnishes a higher information arrival rate, and 
hence higher neuronal activity than the Congruent task.  From the simulation results, it can also be 
observed that within both the young and old groups, αIC/αC > 1, i.e., αIC > αC . That is, the Incongruent task 
entails a higher information arrival rate than the Congruent task. Concurrently, it can be seen that both young 
and old groups have higher neuronal activity in the incongruent condition than the congruent condition. This is 
consistent with the fact that the incongruent case is a more demanding (i.e., higher information load) task, and 
hence evokes a greater neuronal response.

Overall brain performance evaluation.  To characterize overall brain performance, we averaged the data 
from all the active regions/clusters identified in both young and old groups and repeated the above analysis using 
the average responses. The result is shown in Fig. 4. We can see that, on average, compared with the older group, 
the younger group has higher relative information processing capacity, as well as higher relative input storage 
capacity and a smaller time constant (or faster response) under the same task conditions. In Fig. 5, in addition to 
the time constant, we have also listed the average behavioral response times for both groups under different con-
ditions. The average time constant and the behavioral response time have exactly the same profile, in descending 
order: Old IC, Young IC, Old C and then Young C. The ratio between the average response time and the time 
constant is within the range 2.07–2.62. This is an interesting result because it speaks to the predictive validity of 
the model. In other words, at the whole brain and group level, we were able to predict independent behavioral 
responses, based purely on a modelling of hemodynamic responses.

Table 2.   Model verification procedure.

The blood-oxygen-level-dependent (BOLD) signal, denoted as y(t), is generally modeled as a convolution44 of the neuronal activity or 
response function x(t) and a canonical hemodynamic response kernel h(t) 45–47, that is y(t) = x(t) ∗ h(t) . Our analysis was conducted in 
three steps:

Step 1: Estimate (i.e., deconvolve) the neuronal response function x(t) from the average BOLD signal across the trials.

Step 2: Estimate the relative information processing capacity, storage capacity, and the accompanying time constant from the ensuing neuronal 
response function. Due to the simplicity of the experimental design, we approximated the information arrival rate—during Congruent and 
Incongruent trials—as H(t) = αCδ(t) and H(t) = αICδ(t) , respectively, and estimated the requisite parameters based on the two-state model 
x(t) = xE(t)− xI (t), where xE(t) = α

m e−
p
m tu(t)+ α1

m e−
p
m (t−T1)u(t − T1) is excitatory activity and xI (t) = β

m e−
p
m (t−T0)u(t − T0) is inhibi-

tory activity.

Step 3: Model validation and accuracy evaluation. With the ensuing parameter estimates, we can obtain a model-based estimate of the 
neuronal activity xest (t) and the estimated BOLD signal yest (t) = xest (t) ∗ h(t). The accuracy of the IPC model can then be evaluated by 
comparing yest (t) to the empirical BOLD signals.
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Figure 2.   RMFG young: Analysis results for the right middle frontal gyrus (RMFG) region found in the young 
group. The parameter estimation results indicated that compared with the old group, the young group has 
higher relative information processing capacity under the same task. In (C) and (D), the estimated BOLD signal 
yest(t) = xest(t) ∗ h(t), where xest(t) = xE(t)− xI (t), was obtained based on the IPC model.
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Figure 3.   LMOG Old Analysis results for the left middle occipital gyrus (LMOG) region found in the old 
group. The parameter estimation results indicate that compared with the old group, the young group has higher 
relative information processing capacity under the same task. In (C) and (D), the estimated BOLD signal 
yest(t) = xest(t) ∗ h(t), where xest(t) = xE(t)− xI (t) was obtained based on the IPC model.
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Figure 4.   Average. Analysis results for the averaged data from all activated regions in the young and old groups. 
The parameter estimation results indicate that compared with the old group, the young group has higher relative 
information processing capacity and faster response under the same task. In (C) and (D), the estimated BOLD 
signal yest(t) = xest(t) ∗ h(t), where xest(t) = xE(t)− xI (t) was obtained based on the IPC model.
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Note that due to the simplicity of the congruent task, we have assumed that both the young and old group 
receive the same amount of information in bits, i.e., αC,old = αC,young . However, from Fig. 4, we note that on 
average, αIC,old > αIC,young . This effect of age is consistent with a higher complexity of the incongruent task, 
where older adults require more redundancy in the input information than younger adults. Higher redundancy 
results in more encoded information, and is considered to be a neuroprotective mechanism against aging-related 
cognitive decline48,49. In other words, the code with a length of αIC,old bits has more redundancy than that with 
αIC,young bits, if both represent the same input information.

Discussion
The contribution of this article is two-fold. First, we have established and validated—a formal model—named 
the IPC model—to quantify the relationship between the regional information processing capacity and its input 
storage capacity, neuronal activity, and the arrival rate of the input information. Second, we applied the IPC 
model to fMRI data obtained from a flanker test, designed to assess age-related differences in brain activation. 
Our numerical analysis suggests that for a given cognitive task, higher information processing capacity leads to 
lower neuronal activity levels and faster responses. This observation is consistent with the findings reported in 
literature that high-capacity individuals generally have lower neuronal activity8, and that—compared with young 
adults—greater brain activation is required for older adults to accomplish the same cognitive processing27,28. The 
numerical results also demonstrated the accuracy of our model in fMRI signal prediction.

This paper is an initial step towards the quantitative characterization of the information processing capacity 
of individual brain regions. In what follows, we discuss the flexibility and scalability of the model, examine the 
relationship of our model with existing work, and present some possible limitations and extensions that could 
be explored.

Model flexibility and scalability.  Our model is flexible and scalable. First, although the IPC model was 
initially validated with the fMRI data, it can be applied to any data type from which neuronal responses can be 
estimated. Second, the model rests on the information conservation law, which is a universal principle that can 
be applied to any lossless unit with information processing and storing capability. Therefore, our model is not 
limited to individual brain regions. This explains why the information-theoretic neuronal activity model devel-
oped for localized neural population has the same first-order conductance circuit functional form that describes 
the membrane potential of a single neuron13,50,51, and the neural mass models used in DCM22,23. Potentially, our 
model can serve as a bridging framework for multiscale modeling of brain dynamics, from neuron to region, 
and to the whole brain. In short, the IPC model links neuronal activity to information processing capacity and 
provides a functional perspective on neuronal computations.

Extension to regions with information loss.  Given the experimental design and the fact that all the 
participants were neurotypical subjects, we assumed that there was no information loss in the brain regions 
under consideration. However, when the information arrival rate is higher than the processing capacity, over-
flow could occur. Under information loss, the original information conservation law needs to be generalized as: 
c(t)I(t) = Ip(t)+ Im(t) , where 0 ≤ c(t) ≤ 1 denotes the portion of the information that is not lost by the region. 
If c(t) = 1, it means that no information is lost in the region; if c(t) = 0, it means that all the information is lost. 
If we assume that c(t) is a constant during a short trial, then the first-order circuit IPC model in Eq. (3) can be 
generalized as

This generalized IPC model may help us evaluate the information loss in different neural systems or brain 
regions, especially those involved in overflow-driven faulty decision making or abnormal conditions such as 
Alzheimer’s disease or seizures.

Similarity and differences with Shannon’s mutual information framework.  A communication 
network, like the brain network, is a connected set of nodes/regions. The similarity between the IPC model and 
Shannon’s mutual information framework lies in that both involves information conservation. However, Shan-
non’s mutual information framework characterizes the communication or connectivity between nodes, while 
our information conservation law (and the implicit IPC model) considers information as an extensive quantity 
in terms of receiving, processing, and storage at each node.

More specifically, recall that in a communication system, if X is the signal emitted by the source and transmit-
ted through a channel, and Y is the signal received at the destination, the mutual information I(X,Y) represents 
the information conveyed by the channel; in other words, the information obtained (or recovered) about X 
when Y is observed. The largest mutual information that can be achieved over a channel is called the capacity 
of the channel. Note that Shannon’s mutual information is based on a conservation law concerning information 
transmission between nodes:

(4)
dx(t)

dt
= −

p

m
x(t)+

c

m
H(t).
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The information conservation law we have introduced, on the other hand, concerns the information process-
ing and storing in individual nodes:

From a communication network perspective, the information conservation law introduced here can be 
regarded as the counterpart to Shannon’s mutual information framework, and allows us to evaluate the infor-
mation processing and storing capability of each individual region. In this way, when cognitive impairment 
occurs, it is possible for us to identify whether there is impaired regional processing, or connectivity, or both.

Relationship with neural mass models.  Dynamic causal modelling (DCM) generally characterizes 
the self-connectivity and cross-connectivity of the brain regions using a model based upon coupled neuronal 
masses. If we consider an individual region and absorb the cross-connectivity (i.e., inputs from other regions) 
into the exogenous input e(t) , then we obtain a DCM for a single region. More specifically, consider a region with 
a single neuronal state (i.e., the region can be summarized with a single neuronal activity level at any given time 
instant), the synaptic activity of the neuronal population in this region can be summarized with22,23:

where the parameter σ is referred to as the intrinsic connectivity or self-connectivity22,23, in the sense that how 
the previous neural state influences the current state, and β denotes the strength of the afferent input.

Compare the IPC model with the single-state DCM (S-DCM) model, we can now provide an information-
theoretic interpretation of the self-connectivity parameter σ . That is, σ = p/m , which is the ratio between the 
processing capacity p and the input storage capacity m of the region. Moreover, we can see that the parameter 
β =

c
m is determined by both the portion of the information retained and the storage capacity of the region. The 

formal connection to the S-DCM makes it possible to relate the processing and storage capacities of an individual 
region to the neuronal activity of other regions in the network and links this information-theoretic model of 
neuronal activity to the extensive research using DCM.

Detection of individual differences in processing capacity using the IPC.  To examine whether the 
IPC model can distinguish the differences in individuals, we selected two subjects randomly from each group, 
i.e., one pair from the young group and one pair from the old group. Within each pair, one subject has faster 
response than the other (as reflected in the response times). For each subject, we applied the IPC model to all the 
regions that were identified to be active during the flanker test, as well as the averaged BOLD signal across all the 
regions. We found that for both the young and old individual pairs, the IPC model was able to demonstrate that 
the faster subject has higher processing capacity than the slow subject, in most brain regions (and the average 
across all regions). It was also observed that compared to the group average, the BOLD signals for individual 
subjects are much noisier. In some regions (e.g., the right inferior frontal gyrus (IFG) in the young pair), the 
BOLD signals were considered too noisy for further processing, suggesting that an efficient identification of the 
IPC model may require noise suppression, through pooling data over regions, trials, or subjects. When we put 
all the four subjects together, 6 possible pairs can be formulated. IPC could detect the differences between most 
pairs based on the averaged BOLD across all regions for each subject. However, the young slow subject and the 
old slow subject, who had very close and relatively large (recorded) response times, can barely be distinguished 
by IPC. Results corresponding to the average BOLD signals in the young and old pairs are provided in Fig. 5. 
Please refer to the Supplementary Material for more details.

The total information in X = the information recovered about X after Y is received
(

i.e., the mutual information
)

+ the information left in X

(i.e., not recovered) after Y is received.

The total information delivered to the region

= the information taken for processing

+ the information saved in the input storage unit.

(5)
dx(t)

dt
= −σx(t)+ βe(t)

(6)y(t) =

∞
∫

−∞

x(t − τ )h(τ )dτ
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Possible misinterpretations.  While we say that high information processing capacity leads to lower neu-
ronal activity, the inverse statement may not be true. One needs to proceed with care when dealing with the data 
of older adults, where low neuronal activity does not necessarily imply higher processing capacity but may just 
be a sign of age-related decline in brain activation. In this research, as shown in Fig. 6, we noticed that in the 
cunei (especially the right cuneus), older adults showed much lower neuronal activity than the young adults. 
Pending further verification, we tend to explain this as an age-related decline rather than older adults having 
a stronger processing capacity than the young adults in this region. Our result is consistent with the findings 
in52,53, where the age-related decline in cunei, which corresponds to the decline in visual processing efficiency, 
was also noted.

Further analysis and future work.  Although the IPC model demonstrated high accuracy in fMRI signal 
prediction, our analysis was still limited by the low sampling rate of the fMRI data, as part of our parameter 
estimation relied on interpolation. To improve the estimation accuracy, one might apply our analysis to data 
with higher time resolution, such as the EEG (especially joint EEG-fMRI54) and MEG data. With more precise 
information-theoretic parameter estimates, it will be very interesting to compare the information processing 
and storage capacity estimates with estimates of message passing under predictive coding models, and indeed 
models of Bayes-optimal decision using belief propagation. For example, one might ask how learning reduces 
the number of bits required for input encoding and the dimension of the decision space, hence reducing the 
complexity in decision making and increasing processing capacity. Further testing and refining of the model in 
other behavioral scenarios (e.g., working memory, attentional blink) is also a future goal of our research.

Methods
The data used in this work was collected by David Zhu and originally used to study aging-associated decline in 
selective attention and executive function42. A full description of the subjects, image acquisition, fMRI signal pre-
processing and BOLD signal extraction can be found in42. Here, we focus on the methods used to deconvolve the 
neuronal response functions from the BOLD signal, to estimate the relative information processing and storage 

Figure 5.   Individual difference in information processing capacity: results for the averaged BOLD across all 
regions for each subject. Here, relative processing capacity denotes the capacity with respect to the Congruent or 
Incongruent task, respectively.
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capacities (and associated time constants) in terms of a parameterized neuronal response function. Finally, we 
explain how we addressed model validation and accuracy.

Subjects.  Twenty-three young adults and twenty-six older adults participated in this study. All subjects self-
reported that they were free of neurological disorders. The Institutional Review Board at Michigan State Uni-
versity approved the study, and written informed consent was obtained from all subjects prior to the study. All 
methods were performed in accordance with the institution’s relevant guidelines and regulations. Data from 
one young subject and three older adults were discarded due to vision problems and/or highly irregular ana-
tomical structure or a diagnosis of past stroke. Data from an additional older adult were discarded due to very 
low correct response rates during the flanker task (48.7% accuracy). Twenty-two young adults (11 males, age 
20 ± 3 years) and twenty-two older adults (9 males, age 74 ± 6 years) were included in the data analyses. All 22 
young subjects were students from Michigan State University. All 22 older subjects were recruited from Michi-
gan State University and surrounding communities and were well educated with a mean of 16.4 (± 3.6) years of 
education for the 18 subjects who provided this information.

Imaging acquisition.  The experiment was conducted on a GE 3T Signa® HDx MR scanner (GE Healthcare, 
Waukesha, WI) with an 8-channel head coil. During each session, images were first acquired for the purpose 
of localization, and then first and higher-order shimming procedures were carried out to improve magnetic 
field homogeneity55. Echo planar images (EPI), starting from the most inferior regions of the brain, were then 
acquired with the following parameters: 34 contiguous 3-mm axial slices in an interleaved order, TE = 27.7 ms, 
TR = 2500 ms, flip angle = 80°, FOV = 22 cm, matrix size = 64 × 64, ramp sampling, and with the first four data 

Figure 6.   Left and Right Cunei. In these two regions, especially the right cuneus, old adults showed much lower 
neuronal activity than the young adults under both congruent and Incongruent conditions. This is most likely 
an indication of age-related brain activation decline, rather than enhanced information processing capacity.
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points discarded. Each volume of slices was acquired 164 times during each of the four functional runs, while a 
subject viewed the stimuli and pressed a button to indicate the pointing direction of the central arrow, resulting 
in a total of 656 volumes of images over the course of the entire experiment. After functional data acquisition, 
high-resolution volumetric T1-weighted spoiled gradient recalled (SPGR) images—with cerebrospinal fluid sup-
pressed—were obtained, covering the whole brain with 120 1.5-mm sagittal slices, 500 ms time of inversion, 8° 
flip angle and 24 cm FOV. These images were used to identify anatomical locations.

Experimental paradigm for fMRI.  This study employed a flanker task with a rapid event-related design, 
including a total of 128 trials for each of three conditions: Incongruent, Congruent and Neutral. Each of the 
four 7-min runs started with a 10-s baseline condition (a fixation cross) followed by stimulus trials (32 for each 
condition) presented in random order and with randomized inter-stimulus intervals (ISI) at multiples of 2.5 s 
(mean of ISI = 4.27  s). A fixation cross was presented as the baseline condition between stimuli. The stimuli 
for all trials—and the fixation cross—were presented in white on a black background. Each stimulus array was 
presented for 2.5 s, during which time the participant pressed a button to identify the direction of the central 
arrowhead. Subjects were naive to the flanker task but performed a 2-min practice flanker task immediately 
before the imaging.

The stimulus trials were randomized with the “RSFgen” program in AFNI software43 for optimizing the cal-
culation of the hemodynamic response function for each stimulus condition and for the contrasts between them. 
For each stimulus condition, targets and flankers were presented in the two possible directions an equal number 
of times. Stimuli were displayed on a 640 × 480 LCD monitor mounted on top of the RF head coil. The LCD 
subtended 12° × 16° of visual angle. The paradigm was controlled by an IFIS-SA system (Invivo Corp., Gaines-
ville, FL). A pair of 5-button MR-compatible keypads with this system was used to record participant responses.

fMRI Data pre‑processing.  All fMRI data pre-processing was conducted with AFNI software43. For each 
subject, the acquisition timing difference was first corrected for different slice locations. With the first functional 
image as the reference, rigid-body motion correction was performed in three translational and three rotational 
directions. The amount of motion in these directions was estimated and used as a nuisance regressors in subse-
quent data analysis. For each subject, spatial blurring with a full-width half maximum of 4 mm was used to sup-
press measurement noise, and to reduce the effects of inter-subject anatomical variation (and Talairach transfor-
mation) during group analysis. For the group analysis, all images were converted to Talairach coordinate space56 
with interpolation to 1  mm3 voxels. The coordinates of brain activity are presented in Talairach space in the 
format of (RL, AP, IS) in mm, where R = Right, L = Left, A = Anterior, P = Posterior, I = Inferior, and S = Superior.

The impulse response function (IRF) at each voxel with respect to each stimulus condition was resolved with 
multiple linear regression using the “3dDeconvolve” software in AFNI57 In the “3dDeconvolve” procedure, MRI 
signal modeling included subject motion regressors in the three translational and the three rotational directions, 
and the constant, linear and quadratic trends for each of the four functional runs. The IRFs were resolved to seven 
points from zero to 15 s at the resolution of 2.5 s (TR). The BOLD signal change was calculated based on the area 
under the IRF curve. The equivalent BOLD percent signal change relative to the baseline state was then calculated.

Although the task included the Neutral (N) condition described above, in data analysis, we focused on the 
Congruent (C) and Incongruent (IC) conditions since Congruent versus Incongruent comparisons yield the 
greatest effect sizes. Moreover, to avoid the impact of possible activation pattern differences in incorrect trials 
(especially in older adults), the fMRI data used for analysis in this article were based on correct (i.e., successful) 
trials only.

Neuronal activity deconvolution, parameter estimation and performance evaluation.  Our 
analysis comprised three steps:

1.	 Estimating the neuronal response function x(t) from the BOLD signal y(t) using Least Squares deconvolution. 
We assumed that: y(t) = x(t) ∗ h(t)+ n(t), where n(t) denotes the noise in the BOLD signal, and h(t) is a 

canonical hemodynamic response function [45]. More specifically, h(t) = A

(

tα1−1β
α1
1 e−β1 t

Ŵ(α1)
− c

tα2−1β
α2
2 e−β2 t

Ŵ(α2)

)

,

here α1 denotes the ratio of the response delay and response dispersion, α2 denotes the ratio of the undershoot 
delay and undershoot dispersion, β1 is the reciprocal of the response dispersion (default = 1), β2 is the recip-
rocal of the undershoot dispersion (default = 1), c the ratio of undershoot to response (default = 1/6) and A 
is the scaling parameter of the hemodynamic response function. Note that if we adopt the default values for 
the response dispersion and undershoot dispersion, then α1 = the response delay, and α2 = the undershoot 
delay. Analyses were carried out under both fixed and flexible HRFs. The basic idea was to select h(t) to 
minimize/reduce the mean-square-error (MSE) between the true BOLD signal y(t) and the estimated BOLD 
signal yest(t) = xest(t) ∗ h(t), where xest(t) was obtained for the selected h(t) using the Least-Square method. 
For fixed HRF, h(t) was selected with respect to the old group under Incongruent condition and assumed to 
be invariant for each region, and the same h(t) was used for both young and old groups, and under both 
Incongruent and Congruent Conditions. For each region, the response delay and undershoot delay of the 
HRF were adjusted based on the experimental BOLD signals46,47,58,59. For Flexible HRFs, h(t) was adjusted 
for each group (Young vs. Old) and under different conditions (Congruent vs. Incongruent). More details 
can be found in the supplementary material.

2.	 Estimating the relative information processing capacity, input storage capacity and the system time constant 
from the neuronal response functions. First, we interpolated the estimated neuronal response function x(t) 
using a standard cubic spline interpolation function in MATLAB. Due to the simplicity of the experimental 
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design, we approximated the information arrival rate corresponding to the Congruent and Incongruent 
conditions as H(t) = αCδ(t) and H(t) = αICδ(t) , respectively. Based on our framework and the observa-
tion of the estimated neuronal activity, we model the neuronal response as x(t) = xE(t)− xI (t), where 
xE(t) =

α
me−

p
m tu(t)+ α1

m e−
p
m (t−T1)u(t − T1) is the excitatory component and xI (t) = β

me−
p
m (t−T0)u(t − T0) 

is the inhibitory component of the neuronal response. Note that for our data, the sampling period T = 2.5s, 
we can rewrite the inhibitory component as xI (t) = be−

p
m (t−T)u(t − T0) and the excitatory component as 

xE(t) =
α
me−

p
m tu(t)+ ce−

p
m (t−2T)u(t − T1). This fitting procedure provides estimates of αm ,

p
m , b, c,T0,T1 and 

hence the relative information processing capacity p
α
, the relative input storage capacity m

α
, and the system 

time constant Tc =
m
p . The details are provided in supplementary material.

3.	 Valuation of accuracy. For model validation and accuracy evaluation, using the estimated αm ,
p
m , b, c,T0,T1, 

we predicted the excitatory activity xE(t), and the inhibitory activity xI (t) , and hence obtained an esti-
mate of the overall neuronal activity xest(t) = xE(t)− xI (t). We then predict the BOLD signal with 
yest(t) = xest(t) ∗ h(t), and evaluate the accuracy or model fit by comparing the predicted BOLD signal and 
the empirical BOLD signal obtained using fMRI.

Data and materials availability
All the simulation data used in this research are available in the main text or the supplementary materials. Access 
to the experimental fMRI data is subject to standard material transfer agreements.
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