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Abstract
Modeling the neuronal processes underlying short-term working memory remains the focus of many theoretical studies in

neuroscience. In this paper, we propose a mathematical model of a spiking neural network (SNN) which simulates the way

a fragment of information is maintained as a robust activity pattern for several seconds and the way it completely

disappears if no other stimuli are fed to the system. Such short-term memory traces are preserved due to the activation of

astrocytes accompanying the SNN. The astrocytes exhibit calcium transients at a time scale of seconds. These transients

further modulate the efficiency of synaptic transmission and, hence, the firing rate of neighboring neurons at diverse

timescales through gliotransmitter release. We demonstrate how such transients continuously encode frequencies of

neuronal discharges and provide robust short-term storage of analogous information. This kind of short-term memory can

store relevant information for seconds and then completely forget it to avoid overlapping with forthcoming patterns. The

SNN is inter-connected with the astrocytic layer by local inter-cellular diffusive connections. The astrocytes are activated

only when the neighboring neurons fire synchronously, e.g., when an information pattern is loaded. For illustration, we

took grayscale photographs of people’s faces where the shades of gray correspond to the level of applied current which

stimulates the neurons. The astrocyte feedback modulates (facilitates) synaptic transmission by varying the frequency of

neuronal firing. We show how arbitrary patterns can be loaded, then stored for a certain interval of time, and retrieved if the

appropriate clue pattern is applied to the input.
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1 Introduction

Understanding principles of information processing in the

brain remains one of the primary challenges of neuro-

science [1, 2]. In theory, there should be a gap between

molecular and cellular levels of implementation and its

functionality at the cognitive level. Scholars proposed a

variety of conceptual, mathematical, and computational

models of neuronal networks pretending to implement

cognitive functions, such as learning and memory [3–9].

Systems neuroscience views memory as a substantially

complicated paradigm involving different types and forms.

Working memory represents one of these types [10]. Just

like RAM in computers, it can store several patterns for

several seconds to be used ‘on the spot.’ After that, some

patterns can be stored in a long-term memory, while others

will be completely erased. Working memory is believed to

be ‘‘encoded’’ by changes in the strengths of synaptic

connections, e.g., synaptic plasticity [4, 11, 12]. These

changes determine, which particular neuronal clusters or

signal transmission pathways that encode the information

should be memorized. When an appropriate clue is applied,

the information is retrieved in the form of a spatio-temporal

neuronal firing pattern reproducing original information. In

modeling, the design of an adequate mathematical model

that can possess both biological plausibility and processing

functionality is still an open question [13, 14].

Studies conducted in the last decade reveal increasingly

more aspects related to the implementation of information

functions of the CNS. The list of functions handled by the

astrocytic cells keeps getting updated and revised quite

frequently [15–20]. Several studies discuss the role of
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astrocytes in the perception of sensory stimuli [21–24],

spatio-temporal coordination of neural network signaling

[25–30], information processing, and cognitive functions

[31–33]. A growing number of arguments are accumulating

in favor of the theory of continuity and joint coordinated

activity of neuron–astrocyte functional networks [34–36].

By modulating synaptic transmission, astrocytes act as the

third part of the so-called tripartite synapses [37, 38].

1.1 Related works

The morphological and functional connectivity of spiking

neural networks (SNN) enhanced by astrocytes determines

the features of the biologically motivated computational

frameworks. For example, two recent studies demonstrate

how a neuron–astrocyte network can improve pattern

recognition performed by cortical SNN without retraining

[39] and illustrate the self-repairing capability of dis-

tributed SNN accompanied by astrocytes in a robotic

application [40]. Several attempts to digitally simulate the

astrocytic dynamics [41] and neuron–astrocyte interaction

[42, 43] indicate that astrocytes could, indeed, be used to

solve neurocomputing tasks, which opens a novel funda-

mental field of research.

A biologically plausible computational model of work-

ing memory implemented via SNN interaction with a net-

work of astrocytes was first proposed in our recent work

[44]. The astrocytes operate via calcium transients at a

much slower time scale of a few seconds by releasing

gliotransmitters that modulate synaptic transmission in

neurons and, hence, their firing rate. The working memory

is associated with item-specific patterns of astrocyte-in-

duced enhancement of synaptic transmission in neuronal

networks.

Our work [44], as the majority of conceptual and

mathematical models of neuronal memory, operates with

binary information. However, the real-world data are

analogous, not binary. Initially, the exploitation of binary

information patterns in neural networks was the conse-

quence of ‘‘digitizing’’ neuronal signals. These signals are

naturally continuous and possess analogous and gradually

changing characteristics, such as firing rate, timing, phase.

In artificial digital systems, the ‘‘black-and-white’’ (BW)

paradigm can be easily enhanced to ‘‘colored’’ (CL) by

simple ‘‘spatial’’ scaling—increasing the number of bits.

The same cannot be done in the neuronal systems with

brain-inspired processing, where such scaling is impossi-

ble. The transition from BW to CL dynamics will require

conceptual changes in the models. For proper recognition

of non-binary (grayscale or color) images, stimuli should

be converted into signals of spiking neurons. For example,

Kulkarni and Wozniak [45, 46] attempted to do that by

stimulating sensory neurons proportional to the intensity of

the corresponding pixels. Other studies proposed SNNs for

grayscale [47, 48] and color [49] image recognition.

However, such SNNs belong to the class of convolutional

networks composed of hierarchically stacked convolutional

layers. Such networks are trained to contrast the boundaries

of objects, which are clearly expressed only in binary

images. Thus, the circuit that processes the SNN input

signal should contain an algorithm for translating the input

image into neural instructions, or the network should have

a complex artificial architecture. These factors limit the

biological relevance of the models.

Synaptic plasticity represents directed changes of

synaptic weights, which either facilitate or depress partic-

ular connections. In terms of information encoding, such

changes are binary, and their main function is the BW

representation of the memorized information. The revealed

dependence of the level of calcium elevations generated by

astrocytes on neural activity [50] indicates that the astro-

cytes are involved in the regulation of synaptic transmis-

sion [51]. This modulation is gradual and can provide

proportional control of the connection efficacy. In other

words, astrocytes enable analogous information encoding.

1.2 Problem statement

In this paper, we employ our bioinspired model of SNN

accompanied by astrocytes [44] and show how it can

reliably store ‘‘colored’’ images for several seconds. To the

best of the authors’ knowledge, this is the first time that a

spiking neuron–astrocyte network has been shown to be

able to simulate a robust analogous memory that can be

used in brain-inspired artificial intelligence frameworks.

For illustration, we take grayscale images as the informa-

tion patterns and encode them into the level of input cur-

rents of the neuronal layer. By interacting with the

astrocyte layer, the patterns can be further stored in the

network and maintained during the astrocyte activation

interval, e.g., several seconds. During this time, the pat-

terns can be retrieved if an appropriate image, e.g., similar

to the original, is fed to the system. After that, the pattern

completely disappears, and the network becomes ready to

store another image.

2 Colored memory and image recognition
in the neuron–astrocyte network model

The neuron–astrocyte network has two interconnected

layers: the SNN and the astrocytic network. The SNN is

composed of random, sparsely connected excitatory

Izhikevich’s neurons [52] with non-plastic synapses

arranged in a two-dimensional layer. This layer is inter-

connected with the astrocytic layer modeled by the Ullah
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model [53] with local inter-cellular diffusive connections.

Each astrocyte bidirectionally communicates with ensem-

bles of Na neurons. Astrocytes are activated by coordinated

activity of the neighboring neurons, e.g., when an input is

applied to the neuronal layer. Astrocytic calcium activation

induces gliotransmitter release, which modulates the

synaptic transmission in neuronal ensemble corresponding

to the astrocyte. This astrocyte-induced synaptic regulation

forms spatially distributed clusters of synchronized neu-

rons. The temporal and amplitude characteristics of astro-

cytic feedback are determined by its calcium dynamics.

This biologically relevant mechanism of bidirectional

coordination between neuronal and astrocytic activities

provides loading, storage, and retrieval of information

patterns in the proposed model. The period of information

storage in the system is unequivocally determined by the

duration of the calcium signals in astrocytes. The neuron–

astrocyte network architecture is schematically shown in

Fig. 1. Detailed description of the model structure and its

parameters is found in our previous paper [44]. The key

mathematical details are summarized in Appendix A.

We trained the network to memorize grayscale images.

The original 8-bit image (Fig. 2a) was converted to the

pattern of input current, I
ði;jÞ
app , (Fig. 2b) and fed to the

neuronal layer. Description of the stimulation protocol can

be found in A.5. In response to these signals, the neurons

fire at different rates depending on the amplitude of the

input current (Fig. 2c). Differences in the activity of neural

ensembles lead to a variety of Ca2þ events in astrocytes

that interact with these ensembles. Figure 2d shows the

Ca2þ pattern formed in the astrocytic layer. Such sample-

specific distribution of Ca2þ concentration in the astrocytic

layer lasts for several seconds.

We assessed the learning performance of the proposed

neuron–astrocyte network model by giving it an image

recognition problem. For this purpose, we used four test

images: the sample image distorted by 80% Gaussian noise

(Fig. 3a), by 40% ‘‘salt and pepper’’ noise (Fig. 3c), uni-

form noise (Fig. 3e), and a new image (Fig. 3g). To

illustrate the impact of astrocytes in the image classifica-

tion task performed by the neuron–astrocyte network, we

compared two results of the system recall—with astrocytic

modulation of synaptic transmission and without it. Fig-

ure 3 shows that the neuronal layer working alone can

only repeat the input signal without information process-

ing. The results of four tests performed by the full neuron–

astrocyte network model are demonstrated in Fig. 4. Fig-

ure 4a, c, e, g contains four types of input test images and

Fig. 4b, d, f, h represents the system recalls shown as the

mean neuronal firing rate distributions. The proposed

neuron–astrocyte network model can recognize and effec-

tively restore the distorted test image. In the first and

second tests, in which the network was fed the matching

noisy image, our system significantly reduced the excessive

noise as shown in Fig. 4b, d. Applying noise (Fig. 4e) or a

nonmatching test image (Fig. 4g) to the neuron–astrocyte

network results in a nonspecific (Fig. 4f) or chimera-like

(Fig. 4h) output.

To evaluate the robustness to noise of the proposed

neuron–astrocyte network model, we investigated the

dependence of the quality of model retrieval on the noise

level in the test image. We used two different types of

random noise: ‘‘salt and pepper’’ pulsed noise and Gaus-

sian white noise. This allowed us to examine the ability of

our model to remove and reduce noise in an image. In the

case of the pulsed noise, the noise pixels could be either 1

or 0, which makes them significantly different from image

pixels, which is why the neuron firing rates also differ from

the neuronal ensemble. When the noise level is not high,

the neuronal correlated activity evokes the astrocyte-me-

diated feedback which can decrease or increase the firing

rates of noise neurons. With Gaussian noise, all pixels of

the image change their intensity depending on the noise

level. In this case, the astrocyte-induced regulation of

synaptic weights restores the general level of activity and

synchronization in the neural ensemble. We measured the

PSNR between the recalled pattern (e.g., Fig. 4b, d) and the

ideal sample image (see Sect. A.6) to create a conventional

quality metric of image processing systems. Please note

that the maximum possible recall PSNRmax to the response

to the ideal image in the system is 18.295 dB (which is not

a very high value) because the resolution of our system is

determined by the radius of the interaction of astrocytes

with neurons. The results of the measurements are provided

in Fig. 5 and Table 1. The PSNR in % denotes the PSNR

of recalls related to the PSNRmax. We can see that the

neuron–astrocyte network can robustly retrieve a memo-

rized image even with a high level of noise. The model

significantly improved the PSNR for pulsed noise and high-

intensity Gaussian noise (Fig. 5). The high level of pulsed

noise destroys coordinated activity in the neural ensembles

which prevents astrocyte-mediated synaptic modulation

and, as a result, disturbs the retrieval of formation. Calcium

patterns in the astrocytic layer are not frozen and their

dynamics is determined by the intracellular biophysical

mechanisms. Therefore, the astrocyte-induced feedback

and the system recall that depends on it will vary in time.

To investigate this, we fed a test image to the system at

different moments corresponding to different distribution

schemes of calcium pattern amplitudes in the astrocytic

layer. Figure 6 shows the dependence of the PSNR recall

on the astrocytic calcium dynamics. A greater difference

between the amplitudes of calcium pulses in astrocytes

leads to an increase in the difference between the activity
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Fig. 1 a A concept of the system and neuron–astrocyte network

architecture. The input signal is fed to the layer of neurons. Shades of

blue indicate the firing rates of corresponding neurons. Neurons and

astrocytes interact bidirectionally: each astrocyte is interconnected

with a neuronal ensemble of Na ¼ 16 neurons with 4� 4 dimensions

overlapping in one row. Neuronal spiking rate converts to [Ca2þ]
amplitude, while astrocytes modulate synaptic transmission. The

output pattern is decoded as a mean neuronal firing rate. b Neuron–

astrocyte interaction. The synchronized activity in the neuronal

ensemble triggers the elevation of intracellular Ca2þ concentration in

astrocytes. The global events of Ca2þ elevation in astrocytes result in

glutamate release which can modulate the synaptic strength of all

synapses corresponding to the morphological territory of a given

astrocyte. We assume that the astrocytic glutamate-induced potenti-

ation of the synapse consists of NMDAR-dependent postsynaptic

slow inward currents (SICs) generation [24, 54] and mGluR-

dependent heterosynaptic facilitation of presynaptic glutamate release

[55–57] (Color figure online)

Fig. 2 a Original image I in 256 shades (8-bit image: values from 0 to

255), b the amplitudes of the input currents I
ði;jÞ
app applied to the

neuronal layer, c the mean neuronal firing rate in the network during

the presentation of the sample pattern, d intracellular Ca2þ concen-

trations in the astrocytic layer
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levels of neural ensembles and, thus, to a better recall bit

depth and improved recall quality.

3 Discussion

We demonstrated how astrocytes accompanying neuronal

synaptic connections can enhance the capacity of the

neuronal network to store and retrieve gradual (analogous)

information patterns. Grayscale images were used to

stimulate our two-layer neuron–astrocyte network. Corre-

sponding synchronous activation of the astrocytic layer

allows the system to store images in the form of astrocyte

calcium signal levels during the calcium transients. Fur-

thermore, different levels of calcium were associated with

different strengths of modulation of the synaptic connec-

tions in the neuronal layer. Consequently, in the neuronal

layer, the images appeared in the form of activity patterns

with different firing rates. During the storage interval, the

system maintained the information and could retrieve it if

the appropriate clue was shown in the input. We showed

that the retrieval was quite effective even if a noisy clue

pattern was shown.

These findings raise an important question: how can we

guarantee that almost the same image will reach the input

during the characteristic time interval of the calcium

events? The key phenomenon which needs to be investi-

gated is the structure of the data flow in real life. The data

stream is not an i.i.d. sample taken from the general pop-

ulation. All animals learn to survive in the world with

significant local correlations. Thus, we can formulate the

local recurrence principle: the probability to receive ‘‘al-

most the same’’ image reaches its peak at a certain

moment, after which the image begins to decay. Moreover,

we can even trace several characteristic periods in these

decays. The mechanism described in our work allows the

astrocyte network to extract the correlations in the time

scale of calcium events. Of course, not all the images return

in the characteristic time. The proposed mechanism high-

lights the returned images that can be considered as

essential elements of the situation. The duration of infor-

mation storage in the proposed model is determined by the

duration of the elevation in the intracellular Ca2þ con-

centration in astrocytes. Therefore, in this work, testing of

information storage in the form of induced recall is carried

out during the time interval during which the Ca2þ signal

exists. Sequences of several Ca2þ signals and the hetero-

geneous calcium events allow the neuron–astrocyte net-

work to capture longer and more complex correlations.

The role of the astrocytes in brain information pro-

cessing has been intensively debated in neuroscience in

Fig. 3 Snapshots the neuron–astrocyte network tests without modu-

lation of synaptic transmission by astrocytes. a, c, e, g are the testing

images. a is the sample image distorted by 80% Gaussian noise; c is

the sample image distorted by 40% ‘‘salt and pepper’’ noise; e uniform

noise; g new image. b, d, f, h are the neural network cued recalls. The

figure shows the mean neuronal firing rate in a time window of 500

ms from the beginning of the test image presentation
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recent years [35]. By modulating synaptic transmission,

astrocytes can be involved in many computational func-

tions of the brain circuits [33, 36]. Today, we have a

variety of experimental facts indicating a similar functional

role of astrocytes and neurons in perception processes, for

example in the processing of visual stimuli. Along with

metabolic, homeostatic, and other supporting functions

[58], Muller glia cells in the retina provide the delivery of

visual information—light—from the anterior surface of the

retina to photoreceptors with minimal losses [59]. Muller

cells participate in the structural organization of the retina

by creating non-overlapping microdomains that integrate

through gap junctions [60]. This organization allows glial

subnets to communicate over long distances [61]. It was

shown that astrocytes, like neurons, generate calcium sig-

nals in response to visual stimuli, with distinct spatial

receptive fields and sharp tuning to a visual stimulus

[25, 62]. Schumer also discovered a significant overlap of

the receptive fields of astrocytes and nearby neuronal cells

[62]. Interestingly, sensory stimulation was recently found

to be able to evoke astrocytic calcium signals with similar

temporal dynamics to neurons [22]. Unlike the neuronal

activations, the astrocyte calcium transients are gradual in

amplitude [63]. These features indicate that the astrocytes

can add an analogous component to the digitized neuronal

computations, which can significantly increase the com-

putational power of brain circuits.

The presented result indicates that the spiking neuron–

astrocyte network can provide robust analogous informa-

tion encoding via the astrocytic modulation of synaptic

transmission mechanisms. This is a small but important

step in ongoing research on the development of brain-in-

spired artificial intelligence. For instance, the performance

Fig. 4 Snapshots of neuron–astrocyte network test. a, c, e, g are the

testing input signals. a is the sample image distorted by 80% Gaussian

noise; c is the sample image distorted by 40% ‘‘salt and pep-

per’’ noise; e uniform noise; g new image. b, d, f, h are the neural

network cued recalls. The figure shows the mean neuronal firing rate

in a time window of 500 ms from the beginning of the test image

presentation
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Fig. 5 Neuron–astrocyte network model robustness to noise. The

dependencies of the PSNR of model recall on the noise level. The

dashed lines are the PSNR of model recall related to the maximum

PSNR value. The solid lines correspond to the PSNR improvement in

the test image in system recall. The blue and red correspond to the

Gaussian noise and ‘‘salt and pepper’’ noise, respectively (Color

figure online)
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and accuracy of neuromorphic computing implemented by

spiking neural networks are still behind modern deep-

learning networks in most learning tasks [64]. Along with

the desire to understand how our brains work, the main

reason for the intensified ongoing research efforts in

designing brain-like hardware systems that implement

neuronal and synaptic computations through spike-driven

communication is that it can enable energy-efficient

machine intelligence [65]. It is believed that the exploita-

tion of spatio-temporal encoding in SNNs could make the

exchange of information more efficient. In this regard, the

experimentally and theoretically revealed ability of the

astrocytes to evoke the local spatial synchronization in

neuronal ensembles due to the activity-dependent short-

term synaptic plasticity can become a promising additional

feature of training algorithms for SNNs. Another important

point that should be stressed is that short-term memory

implemented by astrocytes is characterized by one-shot

learning and is maintained during the interval of slow

astrocytic calcium dynamics. Including the astrocyte-me-

diated synaptic plasticity in SNN learning algorithms can

help achieve better results than deep learning, especially

for training on limited data sets.

Appendix A model details

Spiking neuron–astrocyte network model

The neuron–astrocyte network consists of two layers: the

spiking neural network with dimension W � H

(151� 151) and the astrocytic network. The SNN consists

of Izhikevich neurons [52] connected by random excitatory

synaptic connections. The astrocytic network is M � N

(50� 50) square lattice with only nearest-neighbor con-

nectivity. The dynamics of the intracellular calcium con-

centration in each astrocyte is described by the Ullah model

[53]. The network models a bidirectional neuron–astrocyte

interaction. Each astrocyte interacts with Na ¼ 16 neurons

located spatially close to it. A graphical representation of

the network topology is shown in Fig. 1. The model was

integrated using the 4th order Runge–Kutta method with a

time step of 0.1 ms. All parameters used in this computa-

tional study are given in Table 2 and our previous paper

[44]. The code is available at https://github.com/altergot/

neuro-astro-network-grayscale.

Neuronal network

The Izhikevich neuron [52] was chosen as a model to

describe the dynamics of each neuron in our network due to

its biological relevance and computational efficiency. This

model is described by the following differential equations

[52]:

dV ði;jÞ

dt
¼ 0:04 Vði;jÞ

� �2
þ5V ði;jÞ � Uði;jÞþ

þ 140þ Iði;jÞapp þ I
ði;jÞ
syn

dUði;jÞ

dt
¼ a bV ði;jÞ � Uði;jÞ
� �

ðA1Þ

with the auxiliary after-spike resetting:

Table 1 PSNR recalls (in dB)

for different noise levels in the

test image (mean ± standard

deviation for 10 tests)

Noise level 20% 40% 60% 80% 100%

Gaussian noise

Test image 24:2� 0:04 18:53� 0:05 15:34� 0:03 13:18� 0:05 11:63� 0:06

Model recall 18:27� 0:11 18:12� 0:24 17:98� 0:17 17:87� 0:08 17:68� 0:07

Model recall % 99:86� 0:11 99:04� 0:24 98:28� 0:17 97:68� 0:08 96:64� 0:07

‘‘Salt and pepper’’ noise

Test image 11:38� 0:11 8:37� 0:06 6:61� 0:04 5:36� 0:02 4:38� 0:02

Model recall 17:75� 0:21 17:1� 0:13 16:26� 0:04 15:23� 0:06 13:88� 0:09

Model recall % 97:02� 0:22 93:47� 0:14 88:88� 0:05 83:25� 0:07 75:87� 0:12

0 1 2 3 4 5
time, s
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20
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S
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R

, d
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[C
a2+

] i, µ
M

Model recall:
Gaussian noise 80%
S&P noise 40%
Test image:
Gaussian noise 80%
S&P noise 40%

Test

Fig. 6 PSNR of model recall and corresponding astrocytic activity in

time. The time corresponds to the moments when the test image was

presented. The blue and red curves correspond to the PSNRs of the

model recalls in response to test images distorted by 80% Gaussian

noise and by 40% ‘‘salt and pepper’’ noise, respectively. Examples of

calcium activity in astrocytes are shown in green. The dashed lines

are the PSNR of test images (Color figure online)
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if V ði;jÞ � 30 mV, then
V ði;jÞ  c

Uði;jÞ  Uði;jÞ þ d

(
ðA2Þ

where i, j ði ¼ 1;W ; j ¼ 1;HÞ are the neural indices, V is

the transmembrane potential, t is the time in ms. I
ði;jÞ
app is the

input signal. I
ði;jÞ
syn is the total synaptic current from all

presynaptic neurons N
ði;jÞ
in , which is calculated as follows

[66, 67]:

Iði;jÞsyn ¼
XNði;jÞin

k¼1

g
ði;jÞ
syn Esyn � Vði;jÞ
� �

1þ exp
�Vk

pre

ksyn

� � ðA3Þ

where the parameter g
ði;jÞ
syn is the synaptic weight:

g
ði;jÞ
syn ¼ gþ mðm;nÞCa , g is the weight of the synaptic connec-

tion, mðm;nÞCa is the astrocyte-induced modulation of the

synaptic weight (see Sect. A4). Esyn ¼ 0 is the synaptic

reversal potential for excitatory synapses. Vpre is the

membrane potential of the presynaptic neuron, ksyn is the

slope of the synaptic activation function. In this model, we

do not take into account synaptic and axonal delays.

The architecture of synaptic connections between neu-

rons is random: for each neuron, the number of output

connections is fixed and equal to Nout. Thus, the proba-

bilities of the formation of a local and remote synaptic

connection are the same.

First, we tested the functionality of our model with the

same weights of synaptic connections between all neurons

in the neuron–astrocyte network. Differences in the total

synaptic input current resulted in some noise in the firing

rate response when the original training image was fed. To

reduce this effect, at the beginning of the session, we pre-

trained the synaptic connections depending on the shades

of the training image I:

g ¼ gmin þ gmax � gminð Þ � 0:9jI
ði;jÞ�Iði� ;j�Þj ðA4Þ

where Iði;jÞ is the pixel shade value of the training source

image I from the interval [0; 255] corresponding to the

presynaptic neuron (i,j), Iði
�;j�Þ is the pixel shade value of

the training source image I corresponding to the postsy-

naptic neuron ði�; j�Þ. Thus, a small difference in the shades

of the pixels of the original training image corresponding to

the presynaptic and postsynaptic neurons corresponds to a

strong synaptic connection between this pair of neurons.

The greater the difference in pixel shades, the weaker the

synaptic connection between the corresponding neurons.

Astrocytic network

Astrocytic dynamics is determined by changes in the

concentration of two main substances: inositol 1,4,5-

triphosphate (IP3) and intracellular calcium (Ca2þ). The
main astrocytic intracellular calcium store is the

Table 2 Neuron–astrocyte network parameters

Parameter Parameter description Value

W � H Neural network grid size 151� 151

gmax Maximum pre-trained weight of synaptic connection without astrocytic influence 0.025

gmin Minimum pre-trained weight of synaptic connection without astrocytic influence 0.001

Esyn Synaptic reversal potential for excitatory synapses 0 mV

ksyn Slope of synaptic activation function 0.2 mV

Nout Number of output connections per each neuron 100

M � N Astrocytic network grid size 50� 50

dCa Ca2þ Diffusion rate 0.05 s�1

dIP3
IP3 Diffusion rate 0.05 s�1

Na Number of neurons interacting with one astrocyte 16, 4� 4

aglu Glutamate clearance constant 10 s�1

kglu Efficacy of the glutamate release 600 lM s�1

Gthr1 Threshold concentration of glutamate for IP3 production 2

Gthr2 Threshold of total glutamate required for the occurrence of astrocytic modulation of synaptic transmission 3

m�Ca Strength of astrocyte-induced modulation of synaptic weight 0.1

½Ca2þ�thr Threshold concentration of Ca2þ for astrocytic modulation of synapse 0.2 lM

sastro Duration of astrocyte-induced modulation of synapse 300 ms
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endoplasmic reticulum (ER). Ca2þ can be released from

the ER through the membrane channels into the cytoplasm,

which corresponds to an increase in intracellular calcium

concentration. Ca2þ flux from the ER to the cytoplasm,

JER, is a non-linear function of calcium concentration

[Ca2þ] and is controlled by the IP3 concentration. The rate

of this flow is determined by the fraction of channels on the

ER membrane that are in the open (non-inactivated) state h.

The reverse flow of calcium Jpump from the cytoplasm to

the ER is an active transport that pumps calcium back into

the ER and is directed to the concentration gradient.

To describe the dynamics of the intracellular [Ca2þ] in
each astrocyte (m,n) of our network, we used the Ullah

model [53], which qualitatively reflects the main features

of the calcium dynamics of astrocyte (for more details

about this model and the biophysical meaning of all flows

and parameters, see [53]). This model consists of the fol-

lowing differential equations:

d½Ca2þ�ðm;nÞ

dt
¼ J

ðm;nÞ
ER � Jðm;nÞpump þ J

ðm;nÞ
leak þ

þ J
ðm;nÞ
in � J

ðm;nÞ
out þ diff

ðm;nÞ
Ca

dhðm;nÞ

dt
¼ a2 d2

½IP3�ðm;nÞ þ d1

½IP3�ðm;nÞ þ d3
ð1� hðm;nÞÞ�

 

�½Ca2þ�ðm;nÞhðm;nÞ
�

d½IP3�ðm;nÞ

dt
¼ ½IP

�
3� � ½IP3�ðm;nÞ

sIP3
þ J

ðm;nÞ
PLCd

þ J
ðm;nÞ
glu þ diff

ðm;nÞ
IP3

ðA5Þ

where Jleak is the leakage flux from the ER to the cytosol.

The fluxes Jin and Jout describe the exchange of calcium

with the extracellular space, m,n (m = 1,..., M, n = 1,...,N)

are the astrocyte indices. The parameter [IP�3] denotes the

steady-state concentration of IP3, JPLCd describes the pro-

duction of IP3 by phospholipase Cd (PLCd), Jglu describes
the glutamate-induced IP3 production in response to neural

activity. The fluxes are expressed as follows:

JER ¼ c1v1½Ca2þ�3h3½IP3�3
c0=c1 � ð1þ 1=c1Þ½Ca2þ�ð Þ
ð½IP3� þ d1Þð½Ca2þ� þ d5Þð Þ3

Jpump ¼
v3½Ca2þ�2

k23 þ ½Ca2þ�
2

Jleak ¼ c1v2 c0=c1 � ð1þ 1=c1Þ½Ca2þ�
� �

Jin ¼
v6½IP3�2

k22 þ ½IP3�2

Jout ¼ k1½Ca2þ�

JPLCd ¼
v4 ½Ca2þ� þ ð1� aÞk4ð Þ

½Ca2þ� þ k4

ðA6Þ

Astrocytes form networks by connecting through gap-

junctions Cx43 [68–71]. Diffusion currents of IP3 mole-

cules and Ca2þ ions, diffCa and diffIP3
, can be expressed as

follows:

diff
ðm;nÞ
Ca ¼ dCaðD½Ca2þ�Þðm;nÞ

diff
ðm;nÞ
IP3 ¼ dIP3ðD½IP3�Þðm;nÞ

ðA7Þ

where dCa and dIP3
describe the Ca2þ and IP3 diffusion

rates, respectively. In our model each astrocyte is coupled

with only four nearest neighbors. ðD½Ca2þ�Þðm;nÞ and

ðD½IP3�Þðm;nÞ are the discrete Laplace operators:

ðD½Ca2þ�Þðm;nÞ ¼ ½Ca2þ�ðmþ1;nÞ þ ½Ca2þ�ðm�1;nÞ
�

þ

þ ½Ca2þ�ðm;nþ1Þ þ ½Ca2þ�ðm;n�1Þ�

�4½Ca2þ�ðm;nÞ
�

ðD½IP3�Þðm;nÞ ¼ ðD½IP3�Þðmþ1;nÞ þ ðD½IP3�Þðm�1;nÞ
�

þ

þ ðD½IP3�Þðm;nþ1Þ þ ðD½IP3�Þðm;n�1Þ�

�4ðD½IP3�Þðm;nÞ
�

ðA8Þ

Bidirectional neuron–astrocyte interaction

Each astrocyte in the spiking neuron–astrocyte network

interacts with a 4 by 4 ensemble of Na neurons overlapping

in one row. The spiking activity of neurons leads to the

release of the neurotransmitter glutamate G from the

presynaptic terminal into the synaptic gap. The amount of

G that reached the astrocyte is described by the following

equation: [72–74]:
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dGði;jÞ

dt
¼ �agluG

ði;jÞ þ kgluH Vði;jÞ � 30mV
� �

ðA9Þ

where aglu is the glutamate clearance constant, kglu is the

release efficiency, H is the Heaviside step function, and

V ði;jÞ is the membrane potential of a neuron (i,j). Glutamate

contacts metabotropic glutamate receptors (mGluR) on the

astrocyte membrane and initiates the production of IP3.

The Jglu variable in the equation describes glutamate-in-

duced IP3 production and is modeled as:

Jglu ¼
G
ðm;nÞ
sum; if G

ðm;nÞ
sum[Gthr1

0; otherwise

(
ðA10Þ

where Gthr1 is the threshold for the total amount of gluta-

mate G released by all neurons associated with the astro-

cyte (m,n). G
ðm;nÞ
sum is the total glutamate G that reached an

astrocyte (m,n):

G
ðm;nÞ
sum ¼

X
ði;jÞ2Na

Gði;jÞ ðA11Þ

Higher neuronal activity causes more glutamate to be

released. This, in turn, leads to longer duration and greater

amplitude of the Jglu elevation. Differences in the Jglu
elevations initiated by the activity of neural ensembles lead

to differences in Ca2þ dynamics of astrocytes corre-

sponding to these neurons through IP3 production. Thus,

the larger the amplitude and duration of the Jglu elevation,

the longer and higher-amplitude calcium event it will

cause.

The proposed model of spiking neuron–astrocyte net-

work takes into account the following mechanisms of the

astrocytic enhancement of excitatory synaptic transmission

due to the gliotransmitter action. Astrocytic glutamate-in-

duced (1) potentiation of the synapse through the genera-

tion of the slow inward currents (SICs) in the postsynapse

[24, 54]; and (2) mGluR-dependent heterosynaptic facili-

tation of presynaptic glutamate release [55–57]. The

revealed dependence of the level of calcium elevations

generated by astrocytes on neural activity allows astrocytes

to gradually regulate synaptic transmission [51]. For sim-

plicity, the relationship between the astrocyte Ca2þ con-

centration and synaptic weight of the affected synapses

gsyn, is described as follows:

mðm;nÞCa ¼m�Ca
½Ca2þ�ðm;nÞ � ½Ca2þ�thr

½Ca2þ�max

�

�H ½Ca2þ�ðm;nÞ � ½Ca2þ�thr
� � ðA12Þ

where m�Ca is the strength of the astrocyte-induced modu-

lation of the synaptic weight, H is the Heaviside step

function, ½Ca2þ�max is the maximum Ca2þ concentration in

the astrocytic layer at the specific moment. Feedback from

astrocytes to neurons is activated when ½Ca2þ� is greater

than ½Ca2þ�thr, and the total amount of glutamate released

by the neurons corresponding to the astrocyte is greater

than the threshold: G
ðm;nÞ
sum [Gthr2. The duration of synaptic

transmission by astrocytes is fixed and equal to sastro
according to the experimental data of astrocyte-induced

SICs dynamics [54].

Stimulation protocol

The size of each visual stimulus is equal to the neural net-

work size: W � H. The original image I was quantized in

256 shades (8-bit image: values from 0 to 255) (Fig. 2a).

Then, to train the network, for each of the 256 shades, a value

was assigned from a range of linearly spaced values from 4 to

8 (Fig. 2b). Each pixel value was used as the amplitude of

the input signal I
ði;jÞ
app from Eq. (A1) for the corresponding

neuron (i,j). Thus, the input signal I
ði;jÞ
app for a neuron (i,j) was a

rectangular pulse with an amplitude Astim equal to the pixel

(i,j) value and duration tstim. A detailed list of stimulation and

testing parameters can be found in Table 3.

To illustrate how the network can store and retrieve

grayscale patterns, we used four images: the same photo

with pixel intensities normalized to the range [4; 9] and

with an additional 80% Gaussian noise (Fig. 3a), the same

photo with pixel intensities normalized to the range [4; 9]

and with an additional 40% ‘‘salt and pepper’’ noise

(Fig. 3c), uniform noise with values from the range [4; 9]

(Fig. 3e), another photo with pixel intensities normalized

to the range [4; 9] (Fig. 3g). Test images were also pre-

sented as an input signal to neurons with the duration ttest.

The ‘‘salt and pepper’’ noise level (in %) is the fraction

of noisy pixels. The Gaussian noise level (in %) represents

the ratio of standard deviations of the white Gaussian noise

from the unaltered normalized image.

Metrics for evaluating retrieval quality

To assess the retrieval quality of the developed neuron–

astrocyte network, we used the PSNR method:

PSNR ¼ 10 log10
MAX2

I

MSE

MSE ¼ 1

WH

XW
i¼1

XH
j¼1
½Iði; jÞ � Kði; jÞ�2

ðA13Þ

where MAXI = 255 is the maximum possible pixel value.

To use this method, we converted all the results obtained

(mean neuronal firing rate during testing) into 8-bit
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grayscale images K and compared them with the original

image I. We calculated the mean firing rate of each neuron

during testing as the mean number of spikes in a time

window of 500 ms from the beginning of the test image

presentation.

The algorithm of the proposed model operation is

schematically summarized in Fig. 7.
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